Sample records for metric tons carbon

  1. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in

    E-Print Network [OSTI]

    94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only active lithium carbonate plant in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from domestic or South

  2. 9,997,638 Metric Tons of CO2 Injected as of April 9, 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  3. 9,805,742 Metric Tons of CO2 Injected as of February 27, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  4. 9,981,117 Metric Tons of CO2 Injected as of April 2, 2015 | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  5. 9,355,469 Metric Tons of CO2 Injected as of January 29, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  6. 9,449,421 Metric Tons of CO2 Injected as of February 12, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  7. 10,045,885 Metric Tons of CO2 Injected as of April 16, 2015

    Broader source: Energy.gov [DOE]

    This carbon dioxide (CO2) has been injected in the United States as part of DOE’s Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

  8. 10,180,047 Metric Tons of CO2 Injected as of May 28, 2015 | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  9. (Data in metric tons of silver content unless otherwise noted)

    E-Print Network [OSTI]

    146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production.S. refiners of commercial-grade silver, with an estimated total output of 6,500 tons from domestic and foreign to minimize odor, electroplating, hardening bearings, inks, mirrors, solar cells, water purification, and wood

  10. (Data in metric tons of silver content unless otherwise noted)

    E-Print Network [OSTI]

    146 SILVER (Data in metric tons 1 of silver content unless otherwise noted) Domestic Production, with an estimated total output of 2,500 tons from domestic and foreign ores and concentrates, and from old and new, mirrors, solar cells, water purification, and wood treatment. Silver was used for miniature antennas

  11. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...

    National Nuclear Security Administration (NNSA)

    Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  12. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Oregon% of the titanium metal used was in aerospace applications. The remaining 40% was used in the armor, chemical

  13. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada and Utah. Ingot was produced. In 2011, an estimated 66% of the titanium metal was used in aerospace applications. The remaining 34

  14. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Oregon produced titanium forgings, mill products, and castings. In 1996, an estimated 65% of the titanium metal

  15. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    182 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Oregon% of the titanium metal used was in aerospace applications. The remaining 35% was used in the chemical process

  16. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Oregon produced titanium forgings, mill products, and castings. In 1997, an estimated 65% of the titanium metal

  17. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two operations in Nevada and Utah. Ingot was made forged components, mill products, and castings. In 2005, an estimated 65% of the titanium metal was used

  18. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Oregon% of the titanium metal used was in aerospace applications. The remaining 40% was used in armor, chemical processing

  19. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two operations in Nevada and Utah. Ingot was made forged components, mill products, and castings. In 2004, an estimated 60% of the titanium metal was used

  20. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two firms with operations in Nevada and Utah. Ingot to produce forged components, mill products, and castings. In 2001, an estimated 65% of the titanium metal

  1. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada, Oregon, and Utah. Ingot and castings. In 2006, an estimated 72% of the titanium metal was used in aerospace applications. The remaining

  2. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada and Utah. Ingot was produced. In 2012, an estimated 72% of the titanium metal was used in aerospace applications. The remaining 28

  3. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    170 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada and Utah. Titanium ingot and castings. In 2013, an estimated 73% of the titanium metal was used in aerospace applications. The remaining

  4. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada, Oregon, and Utah. Ingot and castings. In 2007, an estimated 76% of the titanium metal was used in aerospace applications. The remaining

  5. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless noted)

    E-Print Network [OSTI]

    178 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless noted) Domestic Production and Use: Titanium sponge metal was produced by two firms in Nevada and Oregon. Ingot was made by the two sponge producers and by nine other firms in seven States. About 30 companies produced titanium forgings, mill

  6. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    180 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two operations in Nevada and Utah. Ingot was made forged components, mill products, and castings. In 2002, an estimated 65% of the titanium metal used

  7. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by four operations in Nevada, Oregon, and Utah. Ingot and castings. In 2010, an estimated 75% of the titanium metal was used in aerospace applications. The remaining

  8. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada, Oregon, and Utah. Ingot and castings. In 2008, an estimated 79% of the titanium metal was used in aerospace applications. The remaining

  9. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons, unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by two operations in Nevada and Utah. Ingot was made forged components, mill products, and castings. In 2003, an estimated 55% of the titanium metal used

  10. TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM AND TITANIUM DIOXIDE1 (Data in metric tons unless otherwise noted) Domestic Production and Use: Titanium sponge metal was produced by three operations in Nevada, Oregon, and Utah. A fourth, an estimated 76% of the titanium metal was used in aerospace applications. The remaining 24% was used in armor

  11. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 94% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  12. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 95% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  13. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless surface mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  14. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States. About 95% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  15. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless surface mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  16. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless proprietary data. Based on average prices, the value of titanium mineral concentrates consumed in the United is zircon. About 95% of titanium mineral concentrates were consumed by five titanium pigment producers

  17. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 94% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  18. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise mining operations in Florida, Georgia, and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  19. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise mining operations in Florida, Georgia, and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  20. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 94% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  1. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of TiO2 content, unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of TiO2 content, unless otherwise-mineral sands operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 95% of titanium mineral concentrates was consumed by TiO2 pigment producers

  2. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless-mineral sands operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 95% of titanium mineral concentrates was consumed by TiO2 pigment producers

  3. (Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2004. Two companies,

    E-Print Network [OSTI]

    80 INDIUM (Data in metric tons unless otherwise noted) Domestic Production and Use: Indium-efficiency photovoltaic devices. A major manufacturer is testing indium for a new application as a heat-management material in computers, which could increase consumption by 40 metric tons per year. The estimated

  4. 9,959,066 Metric Tons of CO2 Injected as of March 26, 2015 |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

  5. 9,932,381 Metric Tons of CO2 Injected as of March 18, 2015 |...

    Office of Environmental Management (EM)

    210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

  6. 9,894,105 Metric Tons of CO2 Injected as of March 12, 2015 |...

    Broader source: Energy.gov (indexed) [DOE]

    210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed...

  7. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont. Together, these firms operated about 820 mines. Estimated value of all marketable clay produced was about

  8. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, and Wisconsin. A total of 238 companies operated approximately 700 clay pits or quarries. The leading 20 firms

  9. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, these firms operated approximately 739 mines. The estimated value of all marketable clay produced was about $1

  10. (Data in thousand metric tons, unless noted) Domestic Production and Use: In 1995, clays were produced in most States except Alaska, Delaware, Hawaii,

    E-Print Network [OSTI]

    44 CLAYS (Data in thousand metric tons, unless noted) Domestic Production and Use: In 1995, clays, these firms operated about 983 mines. Estimated value of all marketable clay produced was about $1.8 billion. Major domestic uses for specific clays were estimated as follows: kaolin--55% paper, 8% kiln furniture

  11. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode Island, Vermont, and Wisconsin. A total of 233 companies operated approximately 650 clay pits or quarries

  12. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode clay produced was about $2.14 billion. Major domestic uses for specific clays were estimated as follows

  13. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1996, 13 companies operated 22 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    . 18.5% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free 11.0% ad val. Waste and scrap18 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1996, 13 companies operated 22 primary aluminum reduction plants. Montana, Oregon

  14. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2004, 6 companies operated 14 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    . Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 7602.00.0000 Free. Depletion20 ALUMINUM1 (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2004, 6 companies operated 14 primary aluminum reduction plants; 6 smelters continued

  15. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1999, 12 companies operated 23 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    .10.3000 2.6% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 760222 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1999, 12 companies operated 23 primary aluminum reduction plants. Montana, Oregon

  16. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2001, 12 companies operated 23 primary aluminum reduction plants. The 11

    E-Print Network [OSTI]

    coils) 7601.10.3000 2.6% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste20 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2001, 12 companies operated 23 primary aluminum reduction plants. The 11 smelters east

  17. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2003, 7 companies operated 15 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    . Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 7602.00.0000 Free. Depletion, prices in the aluminum scrap and secondary aluminum alloy markets fluctuated through September but closed20 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production

  18. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2006, based on contained zinc recoverable from

    E-Print Network [OSTI]

    186 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production accounted for about 80% of total U.S. production. Two primary and 12 large- and medium-sized secondary, and rubber industries. Major coproducts of zinc mining and smelting, in order of decreasing tonnage, were

  19. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2003, based on contained zinc recoverable from

    E-Print Network [OSTI]

    188 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production three-fourths of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters uses. Zinc compounds and dust were used principally by the agriculture, chemical, paint, and rubber

  20. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2002, based on contained zinc recoverable from

    E-Print Network [OSTI]

    190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production% of production. Two primary and 13 large- and medium-sized secondary smelters refined zinc metal of commercial principally by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining

  1. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2004, based on contained zinc recoverable from

    E-Print Network [OSTI]

    188 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters refined zinc metal were used principally by the agriculture, chemical, paint, and rubber industries. Major coproducts

  2. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine

    E-Print Network [OSTI]

    94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine in the United States was a brine operation in Nevada. The mine's production capacity was expanded in 2012, and a new lithium hydroxide plant opened in North

  3. (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    100 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

  4. (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    98 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

  5. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    100 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, Russia, and the United States also were major producers. Australia, Canada, and Zimbabwe were major producers of lithium

  6. (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    96 LITHIUM (Data in metric tons of lithium content, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world; Argentina, China, Russia, and the United States were large producers also. Australia, Canada, and Zimbabwe were major producers of lithium

  7. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    98 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, Russia, and the United States also were major producers. Australia, Canada, and Zimbabwe were major producers of lithium

  8. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a

    E-Print Network [OSTI]

    94 LITHIUM (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: The only commercially active lithium mine operating in the United States was a brine operation in Nevada. Two companies produced a large array of downstream lithium compounds in the United States from

  9. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies

    E-Print Network [OSTI]

    44 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

  10. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

  11. (Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2007. Indium-containing

    E-Print Network [OSTI]

    were exported to Canada for processing. Two companies, one in New York and the other in Rhode Island gallium diselenide (CIGS) solar cells require approximately 50 metric tons of indium to produce 1 gigawatt of solar power. Research was underway to develop a low-cost manufacturing process for flexible CIGS solar

  12. (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China,

    E-Print Network [OSTI]

    , but growing through the recycling of lithium batteries. Import Sources (1994-97): Chile, 96%; and other, 4 lithium salts from battery recycling and lithium hydroxide monohydrate from former Department of Energy102 LITHIUM (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production

  13. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2007, the United States consumed about 11% of world chromite ore production in

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption was about $408 million as measured

  14. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2000, the United States consumed about 13% of world chromite ore production in

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel and superalloys

  15. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 13% of world chromite ore production in various

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals, chromium ferroalloys, and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal by end use was: stainless and heat-resisting steel, 76%; full-alloy steel, 8

  16. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2001, the United States consumed about 14% of world chromite ore production in

    E-Print Network [OSTI]

    46 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel and superalloys

  17. (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production and Use: In 2005, the United States consumed about 11% of world chromite ore production

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production. Imported chromite was consumed by one chemical firm to produce chromium chemicals. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel

  18. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2011, the United States was expected to consume about 5% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2010 was $883 million as measured by the value

  19. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2009, the United States was expected to consume about 7% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and chromium metal. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2008 was $1,283 million

  20. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 14% of world chromite ore production in various

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel and superalloys, respectively. The value

  1. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2012, the United States was expected to consume about 6% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production company produced chromium metal. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2011 was $1

  2. (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production and Use: In 2004, the United States consumed about 10% of world chromite ore production

    E-Print Network [OSTI]

    46 CHROMIUM (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production. Imported chromite was consumed by one chemical firm to produce chromium chemicals. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel

  3. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 16% of world chromite ore production in various

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals, chromium ferroalloys, and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal by end use was: stainless and heat-resisting steel, 74%; full-alloy steel

  4. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2010, the United States was expected to consume about 2% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2009 was $358 million as measured by the value

  5. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2008, the United States consumed about 10% of world chromite ore production in

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2007 was $548 million as measured

  6. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 12% of world chromite ore production in various

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals, chromium ferroalloys, and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal by end use was: stainless and heat-resisting steel, 68%; full-alloy steel, 8

  7. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: In 1997, little if any tungsten concentrate was produced from U.S. mines.

    E-Print Network [OSTI]

    182 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production in a significant decrease in mine production. The amount of tungsten concentrates remaining in stockpiles in China for the tungsten industry. Once the stockpiles are depleted, world mine production will have to increase to meet

  8. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: Limited shipments of tungsten concentrates were made from a California mine in

    E-Print Network [OSTI]

    178 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and primary products, wrought and unwrought tungsten, and waste and scrap: China, 43%; Germany, 11%; Canada,630 1,450 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

  9. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2012. Approximately eight

    E-Print Network [OSTI]

    176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,200 3,630 1,610 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

  10. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2010. Approximately

    E-Print Network [OSTI]

    176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2006­09): Tungsten contained in ores and concentrates, intermediate and primary products, Trends, and Issues: World tungsten supply is dominated by Chinese production and exports. China

  11. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: In 1998, little if any tungsten concentrate was produced from U.S. mines.

    E-Print Network [OSTI]

    184 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: In 1998, little if any tungsten concentrate was produced from U.S. mines. Approximately 10 companies in the United States processed tungsten concentrates, ammonium paratungstate, tungsten oxide, and

  12. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A mine in California produced tungsten concentrates in 2009. Approximately eight

    E-Print Network [OSTI]

    176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production. Import Sources (2005-08): Tungsten contained in ores and concentrates, intermediate and primary products, and Issues: World tungsten supply was dominated by Chinese production and exports. China's Government limited

  13. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A mine in California restarted operations and made its first shipment of tungsten

    E-Print Network [OSTI]

    182 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and primary products, wrought and unwrought tungsten, and waste and scrap: China, 43%; Canada, 16%; Germany, 9 by Chinese production and exports. China's Government restricted the amounts of tungsten that could

  14. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded production of tungsten concentrates in the United States was in

    E-Print Network [OSTI]

    182 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded production of tungsten concentrates in the United States was in 1994 of ores and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste

  15. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded production of tungsten concentrates in the United States was in

    E-Print Network [OSTI]

    178 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded production of tungsten concentrates in the United States was in 1994. In 2000, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 39%; Russia, 21

  16. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: A tungsten mine in California produced concentrates in 2013. Approximately eight

    E-Print Network [OSTI]

    174 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 45,100 2,300 2,240 Events, Trends, and Issues: World tungsten supply was dominated by Chinese production

  17. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: One mine in California produced tungsten concentrates in 2011. Approximately

    E-Print Network [OSTI]

    176 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production (2007­10): Tungsten contained in ores and concentrates, intermediate and primary products, wrought: World tungsten supply is dominated by Chinese production and exports. China's Government regulates its

  18. Energy Department Project Captures and Stores One Million Metric Tons of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'KaneSystemsDepartmentCarbon | Department of

  19. Manufacturing Energy and Carbon Footprint - Sector: Computer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for) Electricity Export 0 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

  20. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

  1. DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

    Broader source: Energy.gov [DOE]

    Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

  2. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2007, based on zinc contained in concentrate, was about

    E-Print Network [OSTI]

    190 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production U.S. production. One primary and 12 large- and medium-sized secondary smelters refined zinc metal by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining and smelting, in order

  3. (Data in thousand metric tons of zinc content, unless noted) Domestic Production and Use: The value of zinc mined in 1995 was about $700 million. Essentially all came from

    E-Print Network [OSTI]

    188 ZINC (Data in thousand metric tons of zinc content, unless noted) Domestic Production and Use were used principally by the agricultural, chemical, paint, and rubber industries. Major coproducts--United States: 1991 1992 1993 1994 1995e Production: Mine, recoverable 518 523 488 570 600 Primary slab zinc 253

  4. (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.

    E-Print Network [OSTI]

    176 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 92% of the primary tin consumed

  5. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 90% of the primary tin consumed domestically in 2012. The major uses were as follows

  6. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.

    E-Print Network [OSTI]

    174 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 80% of the primary tin consumed

  7. (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S.

    E-Print Network [OSTI]

    180 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1998, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

  8. (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only

    E-Print Network [OSTI]

    178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1997, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

  9. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2006. The major uses were as follows

  10. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    172 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 86% of the primary tin consumed domestically in 2008. The major uses were as follows

  11. (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only

    E-Print Network [OSTI]

    176 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1999, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 97% of the primary tin. The major uses

  12. (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S.

    E-Print Network [OSTI]

    174 TIN (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: Tin has not been mined domestically since 1993. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms used about 77% of the primary tin consumed

  13. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 81% of the primary tin consumed domestically in 2005. The major uses were as follows

  14. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2009. The major uses were as follows

  15. (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S.

    E-Print Network [OSTI]

    178 TIN (Data in metric tons of contained tin, unless otherwise noted) Domestic Production and Use: In 1996, there was no domestic tin mine production. Production of tin at the only U.S. tin smelter, at Texas City, TX, stopped in 1989. Twenty-five firms consumed about 85% of the primary tin. The major uses

  16. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    168 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms accounted for about 90% of the primary tin consumed domestically in 2013. The major uses for tin

  17. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    170 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 91% of the primary tin consumed domestically in 2010. The major uses were as follows

  18. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    176 TIN (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989, respectively. Twenty-five firms used about 84% of the primary tin consumed domestically in 2007. The major uses were as follows

  19. (Data in thousand metric tons of boric oxide (B2O3) unless otherwise noted) Domestic Production and Use: Two companies in southern California produced boron minerals, mostly sodium

    E-Print Network [OSTI]

    proprietary data, U.S. boron production and consumption in 2010 were withheld. The leading boron producer standards with respect to heat conservation, which directly correlates to higher consumption of borates32 BORON (Data in thousand metric tons of boric oxide (B2O3) unless otherwise noted) Domestic

  20. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2006,

    E-Print Network [OSTI]

    178 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2006, approximately. Import Sources (2002-05): Tungsten contained in ores and concentrates, intermediate and primary products

  1. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2003,

    E-Print Network [OSTI]

    180 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2003, approximately and concentrates, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 49

  2. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2005,

    E-Print Network [OSTI]

    182 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2005, approximately. Import Sources (2001-04): Tungsten contained in ores and concentrates, intermediate and primary products

  3. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded U.S. production of tungsten concentrates was in 1994. In 2001,

    E-Print Network [OSTI]

    180 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last recorded U.S. production of tungsten concentrates was in 1994. In 2001, approximately, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 41%; Russia, 21

  4. (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2002,

    E-Print Network [OSTI]

    182 TUNGSTEN (Data in metric tons of tungsten content, unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2002, approximately, intermediate and primary products, wrought and unwrought tungsten, and waste and scrap: China, 48%; Russia, 16

  5. (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2004,

    E-Print Network [OSTI]

    180 TUNGSTEN (Data in metric tons of tungsten content unless otherwise noted) Domestic Production and Use: The last reported U.S. production of tungsten concentrates was in 1994. In 2004, approximately (2000-03): Tungsten content of ores and concentrates, intermediate and primary products, wrought

  6. (Data in thousand metric tons, gross weight, unless noted) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    purposes as producing dry cell batteries, as an ingredient in plant fertilizers and animal feed Recycling: Scrap recovery specifically for manganese was negligible, but a significant amount was recycled of nonstockpile- grade materials, as follows: 16,400 tons of natural battery ore, 81 tons of chemical ore, and 392

  7. (Data in thousand metric tons, gross weight, unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    for such nonmetallurgical purposes as producing dry cell batteries, as an ingredient in plant fertilizers and animal feed Recycling: Scrap recovery specifically for manganese was negligible, but a significant amount was recycled of nonstockpile-grade materials, as follows: 16,400 tons of natural battery ore, 81 tons of chemical ore, and 392

  8. (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and

    E-Print Network [OSTI]

    ,000 tons of the material from the Department of Energy's stockpile, while the remaining 10,000 tons,700 1,800 150,000 160,000e Bolivia -- -- -- 5,400,00 Brazil 32 32 910 NA Canada 660 660 180,000 360

  9. (Data in thousand metric tons, gross weight, unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    for such nonmetallurgical purposes as producing dry cell batteries, as an ingredient in plant fertilizers and animal feed Recycling: Scrap recovery specifically for manganese was negligible, but a significant amount was recycled inventories of nonstockpile-grade materials, as follows, in tons: natural battery ore, 16,800; chemical ore

  10. (Data in thousand metric tons, gross weight, unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    of ore were used for such nonmetallurgical purposes as production of dry cell batteries, as an ingredient Recycling: Scrap recovery specifically for manganese was negligible, but a significant amount was recycled, as follows, in tons: natural battery, 16,800, and metallurgical, 331,000. Prepared by Thomas S. Jones [(703

  11. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were

    E-Print Network [OSTI]

    and Use: In 2013, 5 companies operated 10 primary aluminum smelters; 3 smelters were closed temporarily, and Issues: In February 2013, the owner of the 270,000-ton-per-year Hannibal, OH, smelter filed for chapter in October. In June, the Sebree, KY, smelter was sold as part of a corporate restructuring. Expansion

  12. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters

    E-Print Network [OSTI]

    and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters continued. Most of the production decreases continued to take place in the Pacific Northwest. Domestic smelters from 693 thousand tons at yearend 2004. World Smelter Production and Capacity: Production Yearend

  13. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2003, clay and shale production was reported in all States except Alaska,

    E-Print Network [OSTI]

    ; bentonite-- 25% pet waste absorbent, 21% drilling mud, 21% foundry sand bond, 15% iron ore pelletizing,300 Imports for consumption: Artificially activated clay and earth 17 18 21 27 20 Kaolin 57 63 114 158 275,980 Consumption, apparent 37,500 35,600 34,800 34,600 34,600 Price, average, dollars per ton: Ball clay 40 42 42

  14. Figure 3. Energy-Related Carbon Dioxide Emissions

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Energy-Related Carbon Dioxide Emissions" " (million metric tons)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,...

  15. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2013, the United States was expected to consume about 6% of world chromite

    E-Print Network [OSTI]

    primary metal: South Africa, 29%; Kazakhstan, 20%; Russia, 12%; China, 5%; and other 34%. Total imports Normal Trade Relations 12­31­13 Ore and concentrate 2610.00.0000 Free. Ferrochromium: Carbon more than 4% 7202.41.0000 1.9% ad val. Carbon more than 3% 7202.49.1000 1.9% ad val. Other: Carbon more than 0

  16. 5 DECEMBER 2014 VOL 346 ISSUE 6214 1189SCIENCE sciencemag.org he social cost of carbon (SCC) is a

    E-Print Network [OSTI]

    Napp, Nils

    climate change damages associated with a one-metric-ton reduction in carbon dioxide (CO2 ) emissions- til a federal court held in 2008 that carbon emission reductions have nonzero value. After a brief to 2015. The SCC is the difference in damage valuations with and without the extra ton of CO2 in 2015

  17. (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: Chile was the largest lithium chemical producer in the world, followed by China, the

    E-Print Network [OSTI]

    and Use: Chile was the largest lithium chemical producer in the world, followed by China, the United of lower production costs as compared to the costs for hard rock ores. Most of the lithium minerals mined purchased from a producer in Chile. The increased production of low-cost lithium carbonate in South America

  18. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs

    E-Print Network [OSTI]

    Fortunat, Joos

    Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean to assess mitigation of global warming by carbon capture and storage are discussed. The climatic impact penalty for carbon capture. For an annual leakage rate of 0.01, surface air temperature becomes higher

  19. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    SciTech Connect (OSTI)

    Pfeifer, Peter [University of Missouri; Wexler, Carlos [University of Missouri; Hawthorne, M. Frederick [University of Missouri; Lee, Mark W. [University of Missouri; Jalistegi, Satish S. [University of Missouri

    2014-08-14T23:59:59.000Z

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have demonstrated the predicted increase in binding energy experimentally, currently at ~10 kJ/mol. The synthetic route for incorporation of boron at the outset is to create appropriately designed copoly- mers, with a boron-free and a boron-carrying monomer, followed by pyrolysis of the polymer, yielding a bo- ron-substituted carbon scaffold in which boron atoms are bonded to carbon atoms by synthesis. This is in contrast to a second route (funded by DE-FG36-08GO18142) in which first high-surface area carbon is cre- ated and doped by surface vapor deposition of boron, with incorporation of the boron into the lattice the final step of the fabrication. The challenge in the first route is to create high surface areas without compromising sp2 boron-carbon bonds. The challenge in the second route is to create sp2 boron-carbon bonds without com- promising high surface areas.

  20. Transport mode and network architecture : carbon footprint as a new decision metric

    E-Print Network [OSTI]

    Andrieu, Nelly

    2008-01-01T23:59:59.000Z

    This thesis examines the tradeoffs between carbon footprint, cost, time and risk across three case studies of United States' perishable or consumer packaged goods firms and their transportation partners. Building upon ...

  1. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    SciTech Connect (OSTI)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05T23:59:59.000Z

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  2. (Data in metric tons of silver content unless otherwise noted)

    E-Print Network [OSTI]

    in casino chips, freeway toll transponders, gasoline speed purchase devices, passports, and on packages,680 6,600 Exports 2 797 685 478 796 1,000 Consumption, apparent 5,250 6,300 4,600 7,220 7,850 Price September 2011, silver prices averaged $36.39 per troy ounce. The overall rise in silver prices corresponded

  3. ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    concentrates: Australia, 48%; South Africa, 47%; and other, 5%. Zirconium, unwrought, including powder: France, 51%; Germany, 10%; United Kingdom, 10%; South Africa, 9%; and other, 20%. Hafnium, unwrought: France. The leading consumers of zirconium metal and hafnium metal are the nuclear energy and chemical process

  4. ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    consumers of zirconium and hafnium metal are the nuclear energy and chemical process industries. Salient during metal production and fabrication and was recycled by companies in Oregon and Utah. Scrap zirconium. Zirconium and hafnium metal were produced from zircon by two domestic producers, one in Oregon and the other

  5. (Data in metric tons of silver content unless otherwise noted)

    E-Print Network [OSTI]

    odor, electronics and circuit boards, electroplating, hardening bearings, inks, mirrors, solar cells,250 1,250 1,280 Refinery: Primary 2,210 791 779 796 800 Secondary (new and old scrap) 1,110 1,220 1

  6. (Data in metric tons of gold content unless otherwise noted)

    E-Print Network [OSTI]

    %; electrical and electronics, 9%; dental and other, 22%. Salient Statistics--United States: 2006 2007 2008 2009,630 9,700 Net import reliance 6 as a percentage of apparent consumption E E E E 33 Recycling: In 2010­09): 2 Canada, 31%; Mexico, 30%; Peru, 13%; Chile, 8%; and other, 18%. Tariff: Most imports of unwrought

  7. (Data in metric tons of gold content unless otherwise noted)

    E-Print Network [OSTI]

    %; electrical and electronics, 7%; dental and other, 21%. Salient Statistics--United States: 2005 2006 2007 2008 ounce 4 446 606 699 *874 950 Employment, mine and mill, number 5 7,910 8,350 9,130 9,560 9,600 Net%; Peru, 29%; Mexico, 16%; Chile, 9%; and other, 16%. Tariff: Most imports of unwrought gold, including

  8. (Data in metric tons of gold content unless otherwise noted)

    E-Print Network [OSTI]

    %; dental, 10%; electrical and electronics, 7%; and other, 29%. Salient Statistics--United States: 2007 2008,560 9,630 10,200 10,300 Net import reliance 6 as a percentage of apparent consumption E E E 40 36 Sources (2007­10): 2 Mexico, 49%; Canada, 25%; Colombia, 8%; Peru, 5%; and other, 13%. Tariff: Most

  9. (Data in metric tons of gold content unless otherwise noted)

    E-Print Network [OSTI]

    %; dental, 12%; electrical and electronics, 5%; and other, 17%. Salient Statistics--United States: 2008 2009 9,560 9,650 10,300 11,200 12,000 Net import reliance 6 as a percentage of apparent consumption E E consumption. Import Sources (2008­11): 2 Mexico, 57%; Canada, 20%; Colombia, 9%; Peru, 3%; and other, 11

  10. ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    ). Government Stockpile: None. Events, Trends, and Issues: Domestic consumption of zirconium mineral coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy,610 1,720 Zirconium oxide1 1,520 1,600 2,260 3,340 2,270 Consumption, zirconium ores and concentrates

  11. ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    Stockpile: None. Events, Trends, and Issues: Domestic consumption of zirconium mineral concentrates coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy,830 1,910 Zirconium oxide1 1,600 2,260 3,340 2,400 3,310 Consumption, zirconium ores and concentrates

  12. ZIRCONIUM AND HAFNIUM (Data in metric tons unless otherwise noted)

    E-Print Network [OSTI]

    @usgs.gov, fax: (703) 648-7757] #12;187 ZIRCONIUM AND HAFNIUM Events, Trends, and Issues: Domestic consumption coatings, and sandblasting. The leading consumers of zirconium and hafnium metal are the nuclear energy,080 2,300 Zirconium oxide1 2,260 3,340 2,400 2,970 1,700 Consumption, zirconium ores and concentrates

  13. (Data in metric tons of gold content unless otherwise noted)

    E-Print Network [OSTI]

    , expansion projects, and development projects were placed on hold because of the drop in the price of gold,140 8,140 Price, dollars per troy ounce 4 975 1,228 1,572 1,673 1,400 Employment, mine and mill, number, and Issues: The estimated gold price in 2013 was 16% lower than the price in 2012. This was the first time

  14. (Data in metric tons1 of gold content, unless noted)

    E-Print Network [OSTI]

    of Defense administers a Government-wide secondary precious metals recovery program. Events, Trends Refinery: Primary 225 284 243 241 240 Secondary 153 163 152 148 150 Imports2 154 159 144 114 115 Exports2

  15. Energy Department Sponsored Project Captures One Millionth Metric Ton of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy Act of 2005 | Department ofCO2 |

  16. Self-benchmarking Guide for Data Centers: Metrics, Benchmarks, Actions

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01T23:59:59.000Z

    good practice” for data center infrastructure efficiency metric. Data Center Benchmarking Guidegood practice benchmark and 0.6 kW/ton as a better practice benchmark. Data Center Benchmarking Guide

  17. DEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein, Marilyn Brown, Richard Brown,

    E-Print Network [OSTI]

    Wh/year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metricDEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein June 2009 Short title: Defining a standard metric for electricity savings Keywords: Electricity savings

  18. DEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein, Marilyn Brown, Richard Brown,

    E-Print Network [OSTI]

    Diamond, Richard

    Wh/year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metricDEFINING A STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*, Hashem Akbari, Carl Blumstein title: Defining a standard metric for electricity savings Keywords: Electricity savings, energy

  19. Metric Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MODERN GRID S T R A T E G Y Smart Grid Metrics Monitoring our Progress Smart Grid Implementation Workshop Joe Miller - Modern Grid Team June 19, 2008 1 Conducted by the National...

  20. The Governmentalization of “Lifestyle” and the Biopolitics of Carbon

    E-Print Network [OSTI]

    Lipschutz, Ronnie D.

    2009-01-01T23:59:59.000Z

    Tim Jackson, “The Carbon Footprint of UK Households 1990-tried to quantify the carbon footprints (or similar metrics)

  1. 90-Ton Triple Cylinder Jack Design

    SciTech Connect (OSTI)

    Jaques, Al; /Fermilab

    1988-09-26T23:59:59.000Z

    The three D-Zero cryostats (2 EC and 1 CC) will rest on three carriages which in turn ride on a set of hardened ways in the center beam. A pair of Tychoway rollers will be fitted to each of the four corners of the three carriages to provide the rolling support. In the final design, the two EC cryostats will be able to roll out and away from the CC cryostat in order to provide access to the space between each cryostat for maintenance and repairs. The cryostat will be frequently accessed, about once a month. during a collider run. The heaviest cryostat weighs about 360 tons. The large roller weight in one position for such a long period of time, created a concern about the rollers dimpling the hardened ways or even suffering permanent deformations themselves. There is also the possibility that the vertical position of the cryostat will need to be adjusted to align it with the beam line or that the carriage and cryostat will have to be lifted to remove and service the rollers. A device or system was needed to (1) relieve the weight of the cryostats from the rollers and the hardened ways, and (2) minimally adjust the vertical position of the cryostats, if necessary, and/or service the rollers. Compact hydraulic jacks seemed to be the answer. The first and foremost criteria was capacity. It was desired that the jacks be rated to twice the actual load. A jack is to be placed beside each roller, giving a total of eight per cryostat. The load per jack for a 360 ton cryostat would then be 45 tons, leaving 90 tons as the required capacity. The second and equally important criteria to be met was size. After installation of the Tychoway rollers. room to mount these jacks is very limited underneath the carriage. The space surrounding the bottom of the carriage is cluttered with wiring and plumbing and thus further limits available space for the jacks. What was left was a 3.75-inch x 6.0625-inch x 12.25-inch rectangular envelope on each side of a pair of rollers (see Appendix A).

  2. E TON Solar Tech | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjinDynetek Europe GmbH JumpOne MoliTON

  3. Reading the Tea Leaves: How Utilities in the West Are Managing Carbon Regulatory Risk in their Resource Plans

    E-Print Network [OSTI]

    Barbose, Galen

    2008-01-01T23:59:59.000Z

    2 Carbon Emission Price Projections in Utilitycarbon emission price projection (approximately $24/ton,carbon emission price projections to their base-case.

  4. OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62%

    E-Print Network [OSTI]

    Guillas, Serge

    OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62% Landfill 1080 tons / 38% Electricals 36 Landfill As of Monday 7 March 2011, no general waste generated from the Bloomsbury Campus has been sent to landfill. Through partnership between UCL Estates and Office and General, an agreement has been reached

  5. 6.347 metric tons of netting and rope worth $ 10 million .

    E-Print Network [OSTI]

    in the aeration tanks . Heat treatment did not noticeably affect the taste or keep- ing quality of the oyster meat ng. when oysters are held at temperatures just above freezing. or immediately aft er frozen oysters

  6. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    , electronics, electroplating, medical and wound care, mirrors, solar energy, and water purification. Salient base8 2004 2005e United States 1,250 1,300 25,000 80,000 Australia 2,240 2,250 31,000 37,000 Canada 1

  7. (Data in metric tons1 of silver content, unless otherwise noted)

    E-Print Network [OSTI]

    ,250 2,000 Shipments from Government stockpile excesses 220 232 109 -- -- Consumption, apparent NA NA 4 and technical uses. Industrial and technical uses include photographic materials, electrical products, catalysts,360 1,700 1,700 Imports for consumption2 3,250 3,010 2,540 3,330 2,800 Exports2 2,890 2,950 3,080 2

  8. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    odor, electronics and circuit boards, electroplating, hardening bearings, inks, mirrors, solar cells,230 1,230 Refinery: Primary 2,530 2,210 791 779 1,600 Secondary (new and old scrap) 981 1,110 1,220 1

  9. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    boards, electroplating, hardening bearings, mirrors, solar cells, wood treatment to resist mold,140 1,220 Refinery: Primary 2,580 1,140 2,530 3,150 2,500 Secondary (old scrap) 1,010 1,920 980 1,500 1

  10. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    odor, electronics and circuit boards, electroplating, hardening bearings, inks, mirrors, solar cells,260 1,120 Refinery: Primary 1,140 2,530 3,150 4,110 2,500 Secondary (old scrap) 1,920 980 1,500 1,540 1

  11. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    , hardening bearings, mirrors, solar cells, wood treatment to resist mold, and water purification. Silver,580 2,580 1,140 2,530 1,000 Secondary 1,030 1,010 1,920 980 1,050 Imports for consumption2 4,300 4,510 4

  12. (Data in metric tons1 of silver content unless otherwise noted)

    E-Print Network [OSTI]

    and technical uses. Industrial and technical uses include photographic materials, electrical and electronic and mill,6 number 1,500 1,100 1,000 980 900 Net import reliance7 as a percentage of apparent consumptione. Import Sources (2000-03):2 Mexico, 44%; Canada, 34%; United Kingdom 11; Peru, 7%; and other, 4%. Tariff

  13. (Data in metric tons1 of silver content, unless otherwise noted)

    E-Print Network [OSTI]

    and technical uses. Industrial and technical uses include photographic materials, electrical and electronic, mine and mill,6 number 1,550 1,550 1,500 1,500 1,300 Net import reliance7 as a percentage of apparent. Import Sources2 (1997-2000): Mexico, 38%; Canada, 37%; Peru, 8%; United Kingdom, 8%; and other, 9

  14. (Data in metric tons1 of silver content, unless otherwise noted)

    E-Print Network [OSTI]

    and technical uses. Industrial and technical uses include photographic materials, electrical products, catalysts,400 1,550 1,550 1,600 1,500 Net import reliance7 as a percent of apparent consumptione NA E 43 39 52-99): Canada, 36%; Mexico, 31%; Peru, 8%; United Kingdom, 5%; and other, 20%. Tariff: No duties are imposed

  15. (Data in metric tons1 of silver content, unless otherwise noted)

    E-Print Network [OSTI]

    by industrial and technical uses. Industrial and technical uses include photographic materials, electrical -- Employment, mine and mill,6 number 1,550 1,500 1,500 1,100 1,100 Net import reliance7 as a percentage scrap in 2001. Import Sources2 (1998-2001): Canada, 40%; Mexico, 37%; Peru, 7%; United Kingdom, 3

  16. (Data in metric tons1 of silver content, unless otherwise noted)

    E-Print Network [OSTI]

    and technical uses. Industrial and technical uses include photographic materials, electrical and electronic and mill,6 number 1,500 1,500 1,100 1,000 980 Net import reliance7 as a percentage of apparent consumptione. Import Sources2 (1999-2002): Mexico, 45%; Canada, 42%; Peru, 5%; United Kingdom, 4%; and other, 4

  17. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...

    Office of Environmental Management (EM)

    2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that...

  18. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless noted)

    E-Print Network [OSTI]

    Imports:3 Thorium ore (monazite) -- -- -- -- 22 Rare-earth metals, alloys 271 352 235 284 406 Cerium Exports:3 Thorium ore, monazite -- -- 3 27 -- Rare-earth metals, alloys 71 44 194 329 456 Cerium compounds. Rare-earth metals, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad val. 31.3% ad val

  19. (Data in metric tons1 of gold content, unless otherwise noted)

    E-Print Network [OSTI]

    ) and the U.S. Department of Defense administers a Government-wide secondary precious metals recovery program 1999 2000 2001e Production: Mine 362 366 341 353 350 Refinery: Primary 270 277 265 197 220 Secondary

  20. (Data in metric tons1 of gold content unless otherwise noted)

    E-Print Network [OSTI]

    ), and the U.S. Department of Defense administers a Governmentwide secondary precious-metals recovery program 2008e Production: Mine 258 256 252 238 230 Refinery: Primary 222 195 181 176 170 Secondary (new and old

  1. (Data in metric tons1 of gold content, unless otherwise noted)

    E-Print Network [OSTI]

    1997 1998 1999e Production: Mine 317 326 362 366 340 Refinery: Primary (2 ) (2 ) 270 277 260 Secondary above) and the U.S. Department of Defense administers a Government-wide secondary precious metals recovery program. Prepared by Earle B. Amey [(703) 648-4969, eamey@usgs.gov, fax: (703) 648-7757] #12

  2. (Data in metric tons1 of gold content unless otherwise noted)

    E-Print Network [OSTI]

    2006e Production: Mine 298 277 258 256 260 Refinery: Primary 196 194 222 163 180 Secondary (new and old above), and the U.S. Department of Defense administers a Government wide secondary precious-metals recovery program. Events, Trends, and Issues: Domestic gold mine production in 2006 was estimated to be 2

  3. (Data in metric tons1 of gold content, unless otherwise noted)

    E-Print Network [OSTI]

    ) and the U.S. Department of Defense administers a Government-wide secondary precious metals recovery program Secondary (new and old scrap) 163 143 82 83 85 Imports2 278 221 223 193 125 Exports2 522 523 547 489 165

  4. (Data in metric tons1 of gold content unless otherwise noted)

    E-Print Network [OSTI]

    2007e Production: Mine 277 258 256 252 240 Refinery: Primary 194 222 195 181 190 Secondary (new and old above), and the U.S. Department of Defense administers a Governmentwide secondary precious-metals recovery program. Events, Trends, and Issues: Domestic gold mine production in 2007 was estimated to be 6

  5. (Data in metric tons1 of gold content, unless otherwise noted)

    E-Print Network [OSTI]

    above) and the U.S. Department of Defense administers a secondary precious metals recovery program Secondary (new and old scrap) 143 82 83 89 95 Imports2 221 223 194 217 220 Exports2 523 547 489 257 320

  6. An estimated three billion metric tons of mineral aerosols are injected into the tropo-

    E-Print Network [OSTI]

    Science Expeditions (AEROSE) are a series of intensive field experiments conducted aboard the U seasons through 2010.The ongo- ing AEROSE mission focuses on providing a set of critical measurements as they transit the Atlantic Ocean. The three central scientific questions addressed by AEROSE are as follows: (1

  7. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies HighAnnounces

  8. U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 -Helicopter Accident atConference | DepartmentU.S. LNG

  9. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0and Transparency, and MoreEnergyof Energy DOEEnergy DOEDOE to

  10. Metrics for enterprise transformation

    E-Print Network [OSTI]

    Blackburn, Craig D. (Craig David), S. M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The objective of this thesis is to depict the role of metrics in the evolving journey of enterprise transformation. To this end, three propositions are explored: (i) metrics and measurement systems drive transformation, ...

  11. Surveillance Metrics Sensitivity Study

    SciTech Connect (OSTI)

    Bierbaum, R; Hamada, M; Robertson, A

    2011-11-01T23:59:59.000Z

    In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

  12. Surveillance metrics sensitivity study.

    SciTech Connect (OSTI)

    Hamada, Michael S. (Los Alamos National Laboratory); Bierbaum, Rene Lynn; Robertson, Alix A. (Lawrence Livermore Laboratory)

    2011-09-01T23:59:59.000Z

    In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

  13. EIA - AEO2013 Early Release Energy-Related Carbon Dioxide Emissions

    Gasoline and Diesel Fuel Update (EIA)

    Energy-Related CO2 Emissions Total U.S. energy-related CO2 emissions do not return to their 2005 level (5,997 million metric tons) by the end of the AEO2013 projection period.6...

  14. Carbon Price Drivers:Carbon Price Drivers:Carbon Price Drivers:Carbon Price Drivers: AAAAnnnn UpdatedUpdatedUpdatedUpdated Literature ReviewLiterature ReviewLiterature ReviewLiterature Review

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , such as unexpected fluctuations in energy demand, energy prices (e.g., oil, gas, coal) and weather conditions1 Carbon Price Drivers:Carbon Price Drivers:Carbon Price Drivers:Carbon Price Drivers: AAAAnnnn the factors that shape the price of carbon, where one European Union Allowance is equal to one ton of CO2

  15. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18T23:59:59.000Z

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  16. Defining a Standard Metric for Electricity Savings

    SciTech Connect (OSTI)

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01T23:59:59.000Z

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

  17. Carbon Footprinting for the Food Industry

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    174-1 Carbon Footprinting for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-174 and Natural Resources Carbon footprinting in the food industry is an activity that determines the greenhouse.g. tons) of carbon dioxide (CO2) equivalent per functional unit (e.g. kg or liter of goods sold) (PAS2050

  18. Cyber threat metrics.

    SciTech Connect (OSTI)

    Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott

    2012-03-01T23:59:59.000Z

    Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.

  19. Common Carbon Metric | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCityCoated ConductorsColonialComancheCommittee on

  20. Tax CarbonEnhancing environmental quality

    E-Print Network [OSTI]

    Paulsson, Johan

    . Jorgenson has also studied economic growth, energy utilization, and envi- ronmental quality in China of 36 billion metric tons. As the no doubt fraught scientific and political discussion in the French economic growth, the relationship between energy and the environment, and the effects of tax policy on both

  1. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01T23:59:59.000Z

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

  2. THERMAL MODELING ANALYSIS OF SRS 70 TON CASK

    SciTech Connect (OSTI)

    Lee, S.; Jordan, J.; Hensel, S.

    2011-03-08T23:59:59.000Z

    The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

  3. Performance Metrics for Commercial Buildings

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Wang, Na; Romero, Rachel L.; Deru, Michael P.

    2010-09-30T23:59:59.000Z

    Commercial building owners and operators have requested a standard set of key performance metrics to provide a systematic way to evaluate the performance of their buildings. The performance metrics included in this document provide standard metrics for the energy, water, operations and maintenance, indoor environmental quality, purchasing, waste and recycling and transportation impact of their building. The metrics can be used for comparative performance analysis between existing buildings and industry standards to clarify the impact of sustainably designed and operated buildings.

  4. Farm Buildings Pocketbook in Metric 

    E-Print Network [OSTI]

    Anonymous

    1971-01-01T23:59:59.000Z

    Some useful advice giving standards, dimensions and data in metric for those interested in the design of farm buildings

  5. www.sciam.com SCIENTIFIC AMERICAN 49 Pumping carbon dioxide

    E-Print Network [OSTI]

    O'Donnell, Tom

    for capture and storage already exists and that the obstacles hindering implementa- tion seem to the gallon and go 10,000 miles next year, you will need to buy 330 gallons-- about a ton--of gasoline. Burning that much gasoline sends around three tons of carbon dioxide out the tailpipe. Al- though CO2

  6. Social Media Ad Metrics Definitions

    E-Print Network [OSTI]

    Collins, Gary S.

    these metrics to encourage growth through consistency. Social media speaks to a new way of understanding howSocial Media Ad Metrics Definitions Released May 2009 #12;Social Media Metrics Definitions © 2008 & Social Media Committee. About the IAB's User-Generated Content & Social Media Committee: The User

  7. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon...

  8. Climate VISION: Private Sector Initiatives: Mining: GHG Information

    Office of Scientific and Technical Information (OSTI)

    various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon...

  9. Metrics for Energy Resilience

    SciTech Connect (OSTI)

    Paul E. Roege; Zachary A. Collier; James Mancillas; John A. McDonagh; Igor Linkov

    2014-09-01T23:59:59.000Z

    Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today?s energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system?s energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth.

  10. All conformally flat pure radiation metrics

    E-Print Network [OSTI]

    S. Brian Edgar; Garry Ludwig

    1996-12-20T23:59:59.000Z

    The complete class of conformally flat, pure radiation metrics is given, generalising the metric recently given by Wils.

  11. KCP relocates 18-ton machine | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministration Field Officerelocates 18-ton machine

  12. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2001 declined to 1.34 million metric tons and was

    E-Print Network [OSTI]

    at about $2.2 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico%; electric and electronic products, 28%; transportation equipment, 11%; industrial machinery and equipment, and metal exchanges 314 532 565 334 800 Employment, mine and mill, thousands 13.2 13.0 11.6 10.2 10 Net

  13. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2000 declined to 1.45 million metric tons and was

    E-Print Network [OSTI]

    at about $2.8 billion. The principal mining States, in descending order, Arizona, Utah, New Mexico construction totaled 41%; electric and electronic products, 27%; transportation equipment, 12%; industrial, yearend, refined6 146 314 532 564 280 Employment, mine and mill, thousands 13.3 13.2 13.0 11.6 10 Net

  14. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2002 declined to 1.13 million metric tons and was

    E-Print Network [OSTI]

    at about $1.9 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico alloy products consumed1 in building construction totaled 44%; electric and electronic products, 25,020 Employment, mine and mill, thousands 13.0 10.3 9.1 8.2 7 Net import reliance4 as a percentage of apparent

  15. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1998 declined to 1.85 million metric tons and was

    E-Print Network [OSTI]

    at about $3.3 billion. The five principal mining States, in descending order, Arizona, Utah, New Mexico in building construction, 42%; electric and electronic products, 25%; industrial machinery and1 equipment, 11, refined 119 163 146 314 4505 Employment, mine and mill, thousands 13.1 13.8 13.3 13.2 13.0 Net import

  16. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1999 declined to 1.66 million metric tons and was

    E-Print Network [OSTI]

    at about $2.8 billion. The five principal mining States, in descending order, Arizona, Utah, New Mexico construction, 42%; electric and electronic products, 26%; transportation equipment, 12%; industrial machinery and mill, thousands 13.8 13.3 13.2 13.0 12.0 Net import reliance6 as a percent of apparent consumption 7 14

  17. Quotients of Metric Spaces

    E-Print Network [OSTI]

    Herman, Robert A.

    1968-01-01T23:59:59.000Z

    . PRELIMINARIES 1 CHAPTER II . SFACBS IN WHICH SEQUENCES SUFFICE 6 CHAPTER III . QUOTIENTS OF SEPARABLE METRIC SPACES Ik CHAPTER IV. GENERAL QUOTIENT SPACES 25 CHAPTER V. CLOSED QUOTIENT MAPS 35 CHAPTER VI. OPEN QUOTIENT MAPS 50 CHAPTER VII. OPEN AND CLOSED... QUOTIENT MAPS 55 CHAPTER VIII. ANOTHER RESULT 6l BIBLIOGRAPHY 65 CHAPTER I. PRELIMINARIES We begin by stating some basic definitions and theorems. Definition 1 . 1 ; Let f be a function from a topological space X onto a set Y. Then the quotient...

  18. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    moderately. Cost-cutting measures were expected to idle mining operations in Green Cove Springs, FL year of rutile. The first of two dredges was refurbished and commissioned at the Sierra Rutile mine in Sierra Leone. The second dredge is scheduled for start-up in 2007 and is expected to raise capacity

  19. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    . The approximate distribution in 2002 by end use was as follows: petroleum refining catalysts, 27%; glass polishing. The estimated value of refined rare earths consumed in the United States was more than $1 billion-earth metals, alloy 1,780 2,470 1,420 1,450 1,130 Cerium compounds 3,990 4,310 3,850 2,540 2,630 Mixed REOs 5

  20. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    in 2001 by end use was as follows: glass polishing and ceramics, 34%; petroleum refining catalysts, 16-earth products. Domestic ore production was valued at an estimated $28 million. The estimated value of refined, alloy 953 1,780 2,470 1,420 1,520 Cerium compounds 4,940 3,990 4,310 3,850 2,660 Mixed REO's 2,530 5

  1. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    , was as follows: chemical catalysts, 22%; metallurgical applications and alloys, 21%; petroleum refining catalysts, and importer of rare-earth products in 2010. The estimated value of refined rare earths imported by the United) -- -- -- -- -- Rare-earth metals, alloy 867 784 564 188 250 Cerium compounds 2,590 2,680 2,080 1,500 1,400 Mixed REOs

  2. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    %; permanent magnets, 16%; petroleum refining catalysts, 12%; metallurgical additives and alloys, 9%; rare-earth products. Domestic ore production was valued at an estimated $28 million. The estimated value of refined, alloy 529 953 1,780 2,470 1,670 Cerium compounds 1,810 4,940 3,990 4,310 4,940 Mixed REOs 974 2,530 5

  3. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    , televisions, computer monitors, radar, and X-ray intensifying film, 10%; petroleum refining catalysts, 8 continued to be a major exporter and consumer of rare-earth products in 2006. The estimated value of refined-earth metals, alloy 1,450 1,130 804 880 947 Cerium compounds 2,540 2,630 1,880 2,170 2,530 Mixed REOs 1,040 2

  4. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    %; glass polishing and ceramics, 14%; metallurgical additives and alloys, 13%; petroleum refining catalysts continued to be a major exporter and consumer of rare-earth products in 2004. The estimated value of refined,980 Mixed REOs 2,190 2,040 1,040 2,150 1,540 Rare-earth chlorides 1,330 2,590 1,800 1,890 1,520 Rare

  5. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    , televisions, and x-ray-intensifying film, 14%; chemicals and petroleum refining catalysts, 11%; ceramics, 3, and importer of rare-earth products in 2008. The estimated value of refined rare earths imported by the United,880 2,170 2,590 2,680 2,180 Mixed REOs 1,660 640 1,570 2,570 2,750 Rare-earth chlorides 1,310 2,670 2

  6. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    of rare earths by end use was as follows: automotive catalytic converters, 25%; petroleum refining, and consumer of rare-earth products in 2007. The estimated value of refined rare earths consumed in the United -- Rare-earth metals, alloy 1,130 804 880 867 831 Cerium compounds 2,630 1,880 2,170 2,590 3,090 Mixed

  7. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    catalytic converters, 9%; glass polishing and ceramics, 6%; permanent magnets, 5%; petroleum refining, and importer of rare-earth products in 2009. The estimated value of refined rare earths imported by the United) -- -- -- -- 20 Rare-earth metals, alloy 880 867 784 679 210 Cerium compounds 2,170 2,590 2,680 2,080 1,190 Mixed

  8. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    ,380 840 1,350 1,400 Rare-earth metals, alloys 1,470 1,390 4,920 1,380 3,400 Other rare-earth compounds 1,750 5,480 2,300 Rare-earth oxides, compounds 9,900 8,820 5,130 3,980 3,700 Rare-earth metals, alloy 784 scrap. Import Sources (2007­10): Rare-earth metals, compounds, etc.: China, 79%; France, 6%; Estonia, 4

  9. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    ) 56 11 -- -- -- Rare-earth metals, alloys 429 529 953 1,780 2,370 Cerium compounds 3,180 1,810 4,940 3 metals, alloys 250 991 724 1,600 1,830 Cerium compounds 6,100 5,890 4,640 3,960 3,870 Other rare-earth-99): Monazite: Australia, 67%; France, 33%; Rare-earth metals, compounds, etc.: China, 71%; France, 23%; Japan

  10. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    at Mountain Pass were further processed into rare-earth compounds and metal products. The United States,980 3,770 2,840 5,800 Rare-earth metals, alloy 226 525 468 240 390 Exports: 2 Cerium compounds 840 1,350 1,640 992 730 Rare-earth metals, alloys 4,930 1,380 3,030 2,080 1,000 Other rare-earth compounds 455

  11. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    Thorium ore (monazite) -- -- -- 22 -- Rare-earth metals, alloys 352 235 284 905 442 Cerium compounds 806 1:3 Thorium ore, monazite -- 3 27 -- -- Rare-earth metals, alloys 44 194 329 444 272 Cerium compounds.20.0000 Free Free. Rare-earth metals, whether or not intermixed or interalloyed 2805.30.0000 5.0% ad val. 31

  12. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    -- -- -- -- Imports: Thorium ore (monazite) -- 22 56 11 --3 Rare-earth metals, alloys 284 905 429 529 760 Cerium 121 123 Exports: Thorium ore, monazite 27 -- -- -- --3 Rare-earth metals, alloys 329 444 250 991 856 (monazite) 2612.20.0000 Free Free. Rare-earth metals, whether or not intermixed or interalloyed 2805

  13. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content unless otherwise noted)

    E-Print Network [OSTI]

    ) -- -- -- -- -- Rare-earth metals, alloy 1,420 1,450 1,130 804 945 Cerium compounds 3,850 2,540 2,630 1,880 2,210 Mixed, compounds 9,150 7,260 10,900 11,400 9,800 Ferrocerium, alloys 118 89 111 105 142 Exports:2 Rare-earth metals-04): Rare-earth metals, compounds, etc.: China, 76%; France, 14%; Japan, 6%; Austria, 2%; and other, 2

  14. RARE EARTHS1 [Data in metric tons of rare-earth oxide (REO) content unless otherwise noted

    E-Print Network [OSTI]

    at Mountain Pass, CA, were further processed into rare-earth compounds and metal products. The United States -- -- -- -- 7,000 Exports: 2 Cerium compounds 1,380 840 1,350 1,640 1,100 Rare-earth metals, alloys 1,390 4,980 3,770 2,700 Rare-earth metals, alloy 679 226 525 468 280 Thorium ore (monazite or various thorium

  15. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    10,000 e 5,000 5,000 Imports:3 Thorium ore (monazite) 22 56 11 -- -- Rare-earth metals, alloys 905,720 5,600 Ferrocerium, alloys 78 107 121 117 122 Exports:3 Rare-earth metals, alloys 444 250 991 724 1%; Rare-earth metals, compounds, etc.: China, 75%; France, 19%; Japan, 3%; United Kingdom, 1%; and other

  16. RARE EARTHS1 (Data in metric tons of rare-earth oxide (REO) content, unless otherwise noted)

    E-Print Network [OSTI]

    : Thorium ore (monazite) -- -- 22 56 --3 Rare-earth metals, alloys 235 284 905 429 507 Cerium compounds 1 Exports: Thorium ore, monazite 3 27 -- -- --3 Rare-earth metals, alloys 194 329 444 250 879 Cerium for individual rare-earth metals and compounds, with most import categories slightly behind 1996's record high

  17. Materials management in an internationally safeguarded fuels reprocessing plant. [1500 and 210 metric tons heavy metal per year

    SciTech Connect (OSTI)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01T23:59:59.000Z

    The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium.

  18. 10,248,196 Metric Tons of CO2 Injected as of June 19, 2015 | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|IdahotheWhat is theBrian Larsen 1010 Resources

  19. Case studies of the potential effects of carbon taxation on the stone, clay, and glass industry

    SciTech Connect (OSTI)

    Bock, M.J.; Boyd, G.A. (Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Rosenbaum, D.I. (Nebraska Univ., Lincoln, NE (United States). Dept. of Economics); Ross, M.H. (Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics)

    1992-12-01T23:59:59.000Z

    This case study focuses on the potential for a carbon tax ($25 and $100 per metric ton of carbon) to reduce energy use and associated carbon dioxide (CO[sub 2]) emissions in three subsectors of the stone, clay, and glass industry: hydraulic cement, glass and glass products, and other products. A conservation supply curve analysis found that (1) opportunities for reducing fossil fuel use in the subsectors are limited (15% reduction under $100 tax) and (2) the relationship between the tax and reduced CO[sub 2] emissions is nonlinear and diminishing. Because cement manufacturing produces a significant amount of CO[sub 2], this subsector was analyzed. A plant-level analysis found more opportunities to mitigate CO[sub 2] emissions; under a $100 tax, fossil fuel use would decrease 52%. (A conservative estimate lies between 15% and 52%). It also confirmed the nonlinear relationship, suggesting significant benefits could result from small taxes (32% reduction under $25 tax). A fuel share analysis found the cement industry could reduce carbon loading 11% under a $100 tax if gas were substituted for coal. Under a $100 tax, cement demand would decrease 17% and its price would increase 32%, a substantial increase for a material commodity. Overall, CO[sub 2] emissions from cement manufacturing would decrease 24--33% under a $100 tax and 10--18% under a $25 tax. Much of the decrease would result from the reduced demand for cement.

  20. Case studies of the potential effects of carbon taxation on the stone, clay, and glass industry

    SciTech Connect (OSTI)

    Bock, M.J.; Boyd, G.A. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Rosenbaum, D.I. [Nebraska Univ., Lincoln, NE (United States). Dept. of Economics; Ross, M.H. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics

    1992-12-01T23:59:59.000Z

    This case study focuses on the potential for a carbon tax ($25 and $100 per metric ton of carbon) to reduce energy use and associated carbon dioxide (CO{sub 2}) emissions in three subsectors of the stone, clay, and glass industry: hydraulic cement, glass and glass products, and other products. A conservation supply curve analysis found that (1) opportunities for reducing fossil fuel use in the subsectors are limited (15% reduction under $100 tax) and (2) the relationship between the tax and reduced CO{sub 2} emissions is nonlinear and diminishing. Because cement manufacturing produces a significant amount of CO{sub 2}, this subsector was analyzed. A plant-level analysis found more opportunities to mitigate CO{sub 2} emissions; under a $100 tax, fossil fuel use would decrease 52%. (A conservative estimate lies between 15% and 52%). It also confirmed the nonlinear relationship, suggesting significant benefits could result from small taxes (32% reduction under $25 tax). A fuel share analysis found the cement industry could reduce carbon loading 11% under a $100 tax if gas were substituted for coal. Under a $100 tax, cement demand would decrease 17% and its price would increase 32%, a substantial increase for a material commodity. Overall, CO{sub 2} emissions from cement manufacturing would decrease 24--33% under a $100 tax and 10--18% under a $25 tax. Much of the decrease would result from the reduced demand for cement.

  1. Carbon emissions and sequestration in forests: Case studies from seven developing countries

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J. (eds.) (Lawrence Berkeley Lab., CA (United States)); Fearnside, P.M. (Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Departmento de Ecologia)

    1992-08-01T23:59:59.000Z

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as committed carbon,'' or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil's use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  2. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    SciTech Connect (OSTI)

    Robert Finley

    2005-09-30T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

  3. August 2003 IT SECURITY METRICS

    E-Print Network [OSTI]

    August 2003 IT SECURITY METRICS Elizabeth B. Lennon, Editor Information Technology Laboratory approach to measuring information security. Evaluating security at the sys tem level, IT security metrics and techniques contained in NIST SP 800-26, Security Self-Assessment Guide for Information Technology Systems

  4. Variable metric conjugate gradient methods

    SciTech Connect (OSTI)

    Barth, T.; Manteuffel, T.

    1994-07-01T23:59:59.000Z

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  5. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Office of Environmental Management (EM)

    resiliency metrics for the energy sector and use cases o The framing of a resilience roadmap, and the implication and consequences of introducing new energy resilience metrics...

  6. Technical Workshop: Resilience Metrics for Energy Transmission...

    Energy Savers [EERE]

    of and need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures. Issues important to resilience metrics were identified and...

  7. Characterization of Arsenic Contamination on Rust from Ton Containers

    SciTech Connect (OSTI)

    Gary S. Groenewold; Recep Avci; Robert V. Fox; Muhammedin Deliorman; Jayson Suo; Laura Kellerman

    2013-01-01T23:59:59.000Z

    The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5 oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.

  8. Daylight metrics and energy savings

    SciTech Connect (OSTI)

    Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

    2009-12-31T23:59:59.000Z

    The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

  9. Segmental alternations and metrical theory

    E-Print Network [OSTI]

    Vaysman, Olga

    2009-01-01T23:59:59.000Z

    This dissertation focuses on phonological alternations that are influenced or constrained by word-internal prosody, i.e. prominence and foot structure, and what these alternations can tell us about metrical theory. Detailed ...

  10. Normalization of Process Safety Metrics

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...

  11. Mining metrics for buried treasure

    E-Print Network [OSTI]

    D. A. Konkowski; T. M. Helliwell

    2005-01-07T23:59:59.000Z

    The same but different: That might describe two metrics. On the surface CLASSI may show two metrics are locally equivalent, but buried beneath one may be a wealth of further structure. This was beautifully described in a paper by M.A.H. MacCallum in 1998. Here I will illustrate the effect with two flat metrics -- one describing ordinary Minkowski spacetime and the other describing a three-parameter family of Gal'tsov-Letelier-Tod spacetimes. I will dig out the beautiful hidden classical singularity structure of the latter (a structure first noticed by Tod in 1994) and then show how quantum considerations can illuminate the riches. I will then discuss how quantum structure can help us understand classical singularities and metric parameters in a variety of exact solutions mined from the Exact Solutions book.

  12. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

    2007-07-01T23:59:59.000Z

    China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

  13. Combined heat and power: How much carbon and energy can it save for manufacturers?

    SciTech Connect (OSTI)

    Kaarsberg, T.M.; Roop, J.M.

    1998-07-01T23:59:59.000Z

    As part of a September 1997 National Laboratory study for the US Department of Energy, the authors estimated the potential for reducing industrial energy consumption and carbon emissions using advanced technologies for combined heat and power (CHP) for the year 2010. In this paper the authors re-analyze the potential for CHP in manufacturing only. The authors also refine the assessment by more accurately estimating the average efficiency of industrial boilers most likely to be replaced by CHP. The authors do this with recent GRI estimates of the age distribution of industrial boilers and standard age-efficiency equations. The previous estimate was based on use of the best CHP technology available, such as the about-to-be commercialized industrial advanced turbine system (ATS). This estimate assumes the use of existing off-the-shelf CHP technologies. Data is now available with which to develop a more realistic suite of penetration rates for existing and new CHP technologies. However, potential variation in actions of state and federal electricity and environmental regulators introduces uncertainties in the use of existing and potential new CHP far greater than those in previous technology penetration estimates. This is, thus, the maximum cost-effective technical potential for the frozen technology case. The authors find that if manufacturers in 1994 had generated all their steam and electric needs with existing CHP technologies, they could have reduced carbon equivalent (carbon dioxide) emissions by up to 30 million metric tons of carbon equivalent (MtC) or nearly 20%. This result is consistent with carbon and energy savings found in other studies. For example, the aforementioned laboratory study found that just three CHP technologies, fuel cells, advanced turbines, and integrated combined cycle technologies, accounted for nearly 10% of the study's projected carbon savings of 400 MtC by 2010--enough to reduce projected US 2010 emissions to 1990 levels.

  14. DAYLIGHTING METRICS FOR RESIDENTIAL BUILDINGS

    E-Print Network [OSTI]

    unknown authors

    It is now widely accepted that the standard method for daylighting evaluation- the daylight factor- is due for replacement with metrics founded on absolute values for luminous quantities predicted over the course of a full year using sun and sky conditions derived from standardised climate files. The move to more realistic measures of daylighting introduces significant levels of additional complexity in both the simulation of the luminous quantities and the reduction of the simulation data to readily intelligible metrics. The simulation component, at least for buildings with standard glazing materials, is reasonably well understood. There is no consensus however on the composition of the metrics, and their formulation is an ongoing area of active research. Additionally, non-domestic and residential buildings present very different evaluation scenarios and it is not yet clear if a single metric would be applicable to both. This study uses a domestic dwelling as the setting to investigate and explore the applicability of daylighting metrics for residential buildings. In addition to daylighting provision for task and disclosing the potential for reducing electric lighting usage, we also investigate the formulation of metrics for non-visual effects such as entrainment of the circadian system.

  15. The potential role of a carbon tax in U.S. fiscal reform

    SciTech Connect (OSTI)

    McKibbin, Warwick [Australian National Univ. (Australia); The Brookings Institution, Washington, DC (United States); Morris, Adele [The Brookings Institution, Washington, DC (United States); Wilcoxen, Peter [Syracuse University, NY (United States); The Brookings Institution, Washington, DC (United States); Cai, Yiyong [Commonwealth Scientific and Industrial Research Organization, Australian National Univ. (Australia)

    2012-07-24T23:59:59.000Z

    This paper examines fiscal reform options in the United States with an intertemporal computable general equilibrium model of the world economy called G-Cubed. Six policy scenarios explore two overarching issues: (1) the effects of a carbon tax under alternative assumptions about the use of the resulting revenue, and (2) the effects of alternative measures that could be used to reduce the budget deficit. We examine a simple excise tax on the carbon content of fossil fuels in the U.S. energy sector starting immediately at $15 per metric ton of carbon dioxide (CO2) and rising at 4 percent above inflation each year through 2050. We investigate policies that allow the revenue from the illustrative carbon tax to reduce the long run federal budget deficit or the marginal tax rates on labor and capital income. We also compare the carbon tax to other means of reducing the deficit by the same amount. We find that the carbon tax will raise considerable revenue: $80 billion at the outset, rising to $170 billion in 2030 and $310 billion by 2050. It also significantly reduces U.S. CO2 emissions by an amount that is largely independent of the use of the revenue. By 2050, annual CO2 emissions fall by 2.5 billion metric tons (BMT), or 34 percent, relative to baseline, and cumulative emissions fall by 40 BMT through 2050. The use of the revenue affects both broad economic impacts and the composition of GDP across consumption, investment and net exports. In most scenarios, the carbon tax lowers GDP slightly, reduces investment and exports, and increases imports. The effect on consumption varies across policies and can be positive if households receive the revenue as a lump sum transfer. Using the revenue for a capital tax cut, however, is significantly different than the other policies. In that case, investment booms, employment rises, consumption declines slightly, imports increase, and overall GDP rises significantly relative to baseline through about 2040. Thus, a tax reform that uses a carbon tax to reduce capital taxes would achieve two goals: reducing CO2 emissions significantly and expanding short-run employment and the economy. We examine three ways to reduce the deficit by an equal amount. We find that raising marginal tax rates on labor income has advantages over raising tax rates on capital income or establishing a carbon tax. A labor tax increase leaves GDP close to its baseline, reduces consumption very slightly and expands net exports slightly. Investment remains essentially unchanged. In contrast, a capital tax increase causes a significant and persistent drop in investment and much larger reductions in GDP. A carbon tax falls between the two: it lowers GDP more than a labor tax increase because it reduces investment. However, its effects on investment and GDP are more moderate than the capital tax increase, and it also significantly reduces CO2 emissions. A carbon tax thus offers a way to help reduce the deficit and improve the environment, and do so with minimal disturbance to overall economic activity.

  16. Criticality safety review of 2 1/2 -, 10-, and 14-ton UF sub 6 cylinders

    SciTech Connect (OSTI)

    Broadhead, B.L.

    1991-10-01T23:59:59.000Z

    Currently, UF{sub 6} cylinders designed to contain 2{1/2} tons of UF{sub 6} are classified as Fissile Class 2 packages with a transport index (TI) of 5 for the purpose of transportation. The 10-ton UF{sub 6} cylinders are classified as Fissile Class 1 with no TI assigned for transportation. The 14-ton cylinders, although not certified for transport with enrichments greater than 1 wt % because they have no approved overpack, can be used in on-site operations for enrichments greater than 1 wt %. The maximum {sup 235}U enrichments for these cylinders are 5.0 wt % for the 2{1/2}-ton cylinder and 4.5 wt % for the 10- and 14-ton cylinders. This work reviews the suitability for reclassification of the 2{1/2}-ton UF{sub 6} packages as Fissile Class 1 with a maximum {sup 235}U enrichment of 5 wt %. Additionally, the 10- and 14-ton cylinders are reviewed to address a change in maximum {sup 235}U enrichment from 4.5 to 5 wt %. Based on this evaluation, the 2{1/2}-ton UF{sub 6} cylinders meet the 10 CFR.71 criteria for Fissile Class 1 packages, and no TI is needed for criticality safety purposes; however, a TI may be required based on radiation from the packages. Similarly, the 10- and 14-ton UF{sub 6} packages appear acceptable for a maximum enrichment rating change to 5 wt % {sup 235}U. 11 refs., 13 figs., 7 tabs.

  17. Development of Technology Readiness Level (TRL) Metrics and Risk Measures

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Anderson, K. K.; Sivaramakrishnan, Chandrika; Lansing, Carina

    2012-10-01T23:59:59.000Z

    This is an internal project milestone report to document the CCSI Element 7 team's progress on developing Technology Readiness Level (TRL) metrics and risk measures. In this report, we provide a brief overview of the current technology readiness assessment research, document the development of technology readiness levels (TRLs) specific to carbon capture technologies, describe the risk measures and uncertainty quantification approaches used in our research, and conclude by discussing the next steps that the CCSI Task 7 team aims to accomplish.

  18. COSMOS{sup SM} based composite metrics

    SciTech Connect (OSTI)

    Culross, M.J.; Leslie, M.D.; Toland, J.A. [Raytheon E-Systems, Dallas, TX (United States)

    1996-12-31T23:59:59.000Z

    Process improvement is one of the goals of many organizations. Metrics for measuring process improvement are key to consistent, focused improvement. This paper introduces an approach for developing robust metrics suitable for measuring the improvement in complex processes. The approach uses the Cosmos framework to guide the user in where to collect metrics and it uses the composite metric to guide the user in how to collect metrics.

  19. Nonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD

    E-Print Network [OSTI]

    Schmittner, Andreas

    properties and anthropogenic CO2. These findings suggest that metrics of carbon cycle feedback that pos, human activities have emitted large amounts of carbon dioxide (CO2) into the atmosphere (490 PgC fromNonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD Canadian Centre for Climate Modelling

  20. Recovery Act | Department of Energy

    Office of Environmental Management (EM)

    of metric tons per year. Utility to Purchase Low-Carbon Power from Innovative Clean Coal Plant Lawrence Livermore National Laboratory demonstrated coal gasification in...

  1. Historic Energy Efficiency Rules Would Save Consumers Money and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and federal buildings set in the first and second terms combined will reduce carbon pollution by at least 3 billion metric tons cumulatively by 2030 -- equivalent to nearly...

  2. Facilities Initiatives | Department of Energy

    Energy Savers [EERE]

    page available through this link. Note: Emission reduction estimates are measured in MTCO2e, Metric Tonnes (tons) of Carbon Dioxide Equivalent. This is the standard measurement...

  3. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds

    Broader source: Energy.gov [DOE]

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

  4. I read with interest the report entitled, "Carbon Dioxide Footprint of the Northwest Power System." Unfortunately your analysis does not take into consideration renewable power production using a Solena Group gasification process

    E-Print Network [OSTI]

    . In these tanks, we will sequester the carbon by growing algae that we would harvest and use as a biomass feedstock for the renewable power plant. This service would cost $50 per ton of carbon sequestered. Do you

  5. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 2, Greenhouse gas emissions from deforestration in the Brazilian Amazon

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J. [eds.] [Lawrence Berkeley Lab., CA (United States); Fearnside, P.M. [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Departmento de Ecologia

    1992-08-01T23:59:59.000Z

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  6. Thermodynamic Metrics and Optimal Paths

    SciTech Connect (OSTI)

    Sivak, David; Crooks, Gavin

    2012-05-08T23:59:59.000Z

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  7. Horizon thermodynamics and composite metrics

    E-Print Network [OSTI]

    Lorenzo Sindoni

    2012-11-12T23:59:59.000Z

    We examine the conditions under which the thermodynamic behaviour of gravity can be explained within an emergent gravity scenario, where the metric is defined as a composite operator. We show that due to the availability of a boundary of a boundary principle for the quantum effective action, Clausius-like relations can always be constructed. Hence, any true explanation of the thermodynamic nature of the metric tensor has to be referred to an equilibration process, associated to the presence of an H-theorem, possibly driven by decoherence induced by the pregeometric degrees of freedom, and their entanglement with the geometric ones.

  8. Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide

    E-Print Network [OSTI]

    1 Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide by Jérémy, which releases nearly six billion tons of carbon per year into the atmosphere. These fuels will continue development. Since power plants are the largest point sources of CO2 emissions, capturing the carbon dioxide

  9. The Implied Cost of Carbon Dioxide under the Cash for Clunkers Christopher R. Knittel

    E-Print Network [OSTI]

    Rothman, Daniel

    The Implied Cost of Carbon Dioxide under the Cash for Clunkers Program Christopher R. Knittel of the implied cost of carbon dioxide reductions under the Cash for Clunker program. The estimates suggest pollutants. Conservative estimates of the implied carbon dioxide cost exceed $365 per ton; best case scenario

  10. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01T23:59:59.000Z

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  11. Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models

    SciTech Connect (OSTI)

    Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.

    2013-08-24T23:59:59.000Z

    Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.

  12. Interpretation of the Cosmological Metric

    E-Print Network [OSTI]

    Richard J. Cook; M. Shane Burns

    2008-09-03T23:59:59.000Z

    The cosmological Robertson-Walker metric of general relativity is often said to have the consequences that (1) the recessional velocity $v$ of a galaxy at proper distance $\\ell$ obeys the Hubble law $v=H\\ell$, and therefore galaxies at sufficiently great distance $\\ell$ are receding faster than the speed of light $c$; (2) faster than light recession does not violate special relativity theory because the latter is not applicable to the cosmological problem, and because ``space itself is receding'' faster than $c$ at great distance, and it is velocity relative to local space that is limited by $c$, not the velocity of distant objects relative to nearby ones; (3) we can see galaxies receding faster than the speed of light; and (4) the cosmological redshift is not a Doppler shift, but is due to a stretching of photon wavelength during propagation in an expanding universe. We present a particular Robertson-Walker metric (an empty universe metric) for which a coordinate transformation shows that none of these interpretation necessarily holds. The resulting paradoxes of interpretation lead to a deeper understanding of the meaning of the cosmological metric.

  13. Deep Energy Retrofit Performance Metric Comparison: Eight California Case Studies

    SciTech Connect (OSTI)

    Walker, Iain; Fisher, Jeremy; Less, Brennan

    2014-06-01T23:59:59.000Z

    In this paper we will present the results of monitored annual energy use data from eight residential Deep Energy Retrofit (DER) case studies using a variety of performance metrics. For each home, the details of the retrofits were analyzed, diagnostic tests to characterize the home were performed and the homes were monitored for total and individual end-use energy consumption for approximately one year. Annual performance in site and source energy, as well as carbon dioxide equivalent (CO{sub 2}e) emissions were determined on a per house, per person and per square foot basis to examine the sensitivity to these different metrics. All eight DERs showed consistent success in achieving substantial site energy and CO{sub 2}e reductions, but some projects achieved very little, if any source energy reduction. This problem emerged in those homes that switched from natural gas to electricity for heating and hot water, resulting in energy consumption dominated by electricity use. This demonstrates the crucial importance of selecting an appropriate metric to be used in guiding retrofit decisions. Also, due to the dynamic nature of DERs, with changes in occupancy, size, layout, and comfort, several performance metrics might be necessary to understand a project’s success.

  14. Homogeneous Einstein metrics on SU(n)

    E-Print Network [OSTI]

    Abid H. Mujtaba

    2011-10-10T23:59:59.000Z

    It is known that every compact simple Lie group admits a bi-invariant homogeneous Einstein metric. In this paper we use two ansatz to probe the existence of additional inequivalent Einstein metrics on the Lie group SU (n) for arbitrary n. We provide an explicit construction of (2k+1) inequivalent Einstein metrics on SU (2k) and 2k inequivalent Einstein metrics on SU (2k + 1).

  15. Daylight metrics and energy savings J. Mardaljevic

    E-Print Network [OSTI]

    LBNL-4585E Daylight metrics and energy savings Authors: J. Mardaljevic Institute of Energy 2009; 0: 1­23 ! Daylight metrics and energy savings J. Mardaljevic a , L. Heschong b , E.S. Lee c comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor

  16. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    SciTech Connect (OSTI)

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01T23:59:59.000Z

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density between the 2003 and 2009 did not affect the biomass estimates. Overall, LiDAR data coupled with field reference data offer a powerful method for calculating pools and changes in aboveground carbon in forested systems. The results of our study suggest that multitemporal LiDAR-based approaches are likely to be useful for high quality estimates of aboveground carbon change in conifer forest systems.

  17. Design and Development of Performance Metrics for Elite Runners

    E-Print Network [OSTI]

    Mittal, Nikhil R.

    2012-01-01T23:59:59.000Z

    metric with distance for Jimmy for both feet Figure 5.29:metric vs. Distance for Jimmy Figure 5.32: Over-strideCDEL metric vs. Distance for Jimmy Figure 5.35: CDEL metric

  18. Multi-Metric Sustainability Analysis

    SciTech Connect (OSTI)

    Cowlin, S.; Heimiller, D.; Macknick, J.; Mann, M.; Pless, J.; Munoz, D.

    2014-12-01T23:59:59.000Z

    A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.

  19. Normalization of Process Safety Metrics 

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    , for this research, the number of process safety incidents is not available; since all the companies just started recording process safety incidents after API RP 745 was issued. Therefore, the most similar reported indicator-operational oil spills is used... for lagging metrics testing as a proper substitute. The major related data was obtained for this section as follows: • Process and environmental incidents (operational oil spills) • Total oil production volume • Total natural gas production volume • Total...

  20. Metrics and Benchmarks for Energy Efficiency in Laboratories

    E-Print Network [OSTI]

    Mathew, Paul; Rumsey Engineers

    2008-01-01T23:59:59.000Z

    gsf, ton/m 2 ), boiler efficiency (%), pumping efficiency (to evaluate the efficiency of chiller and boiler systems in

  1. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2004 rose to 1.16 million tons and was valued at

    E-Print Network [OSTI]

    .4 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico, accounted for 99 consumers. Copper and copper alloy products were used in building construction, 48%; electric and electronic exchanges 334 952 1,030 657 130 Employment, mine and mill, thousands 9.1 8.2 7.0 6.8 7.0 Net import reliance

  2. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons,

    E-Print Network [OSTI]

    , and was valued at about $9 billion. Arizona, Utah, New Mexico, Nevada, and Montana--in descending order and miscellaneous consumers. Copper and copper alloys products were used in building construction, 44%; electric 236 270 Employment, mine and mill, thousands 8.3 9.5 10.6 11.5 12.0 Net import reliance 4

  3. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2003 declined to 1.12 million tons and was valued at

    E-Print Network [OSTI]

    .0 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico, accounted for 99 alloy products were used in building construction, 46%; electric and electronic products, 23 Employment, mine and mill, thousands 10.3 9.1 8.2 7.0 6.8 Net import reliance4 as a percentage of apparent

  4. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2006 rose to more than 1.2 million tons and was

    E-Print Network [OSTI]

    Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also recovered at mines, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 49%; electric, and metal exchanges 1,030 657 134 66 115 Employment, mine and mill, thousandse 7.0 6.8 7.0 7.0 7.2 Net

  5. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2005 fell nominally to 1.15 million tons and was

    E-Print Network [OSTI]

    Mexico, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 49%; electric exchanges 952 1,030 657 134 70 Employment, mine and mill, thousands 8.2 7.0 6.8 7.0 7.0 Net import reliance4

  6. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2008 increased by about 12% to 1.3 million tons and

    E-Print Network [OSTI]

    --Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 49%; electric, mine and mill, thousands 6.4 7.0 8.4 9.7 11.2 Net import reliance4 as a percentage of apparent

  7. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2011 increased slightly to about 1.1 million tons

    E-Print Network [OSTI]

    and its value rose to about $10 billion. Arizona, Utah, New Mexico, Nevada, and Montana--in descending construction, 45%; electric and electronic products, 23%; transportation equipment, 12%; consumer and general.5 Net import reliance 4 as a percentage of apparent consumption 37 31 21 32 35 Recycling: Old scrap

  8. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2007 declined nominally to 1.19 million tons, but its

    E-Print Network [OSTI]

    --Arizona, Utah, New Mexico, Nevada, and Montana--accounted for 99% of domestic production; copper was also, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 51%; electric, mine and mill, thousandse 6.8 7.0 7.0 7.2 7.3 Net import reliance4 as a percentage of apparent

  9. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2009 declined by about 9% to 1.2 million tons and its

    E-Print Network [OSTI]

    --Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 50%; electric and mill, thousands 7.0 8.4 9.7 11.9 9.1 Net import reliance4 as a percentage of apparent consumption 42 38

  10. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2012 increased by 4% to about 1.15 million tons,

    E-Print Network [OSTI]

    [(703) 648­4978, dedelste@usgs.gov] #12;49 COPPER 80% year-on-year increase in China's net imports 975 Secondary 54 46 38 37 60 Copper from all old scrap 156 138 143 153 170 Imports for consumption 33% of the U.S. copper supply. Import Sources (2008­11): Unmanufactured: Chile, 43%; Canada, 32

  11. Planning for the 400,000 tons/year AISI ironmaking demonstration plant

    SciTech Connect (OSTI)

    Aukrust, E. (LTV Steel Corp., Cleveland, OH (United States). AISI Direct Steelmaking Program)

    1993-01-01T23:59:59.000Z

    The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

  12. 2 million tons per year: A performing biofuels supply chain for

    E-Print Network [OSTI]

    1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

  13. Comparing Resource Adequacy Metrics: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-09-01T23:59:59.000Z

    As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.

  14. Metric Construction | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II JumpMepsolarMesilla,MethanetoMetric

  15. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31T23:59:59.000Z

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

  16. Sandia National Laboratories: performance metric evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    metric evaluation PV Plant Performance Technical Briefing Published in PV Power Tech On March 4, 2015, in Computational Modeling & Simulation, Energy, Facilities, News, News &...

  17. Implicit Multifunction Theorems in complete metric spaces

    E-Print Network [OSTI]

    2010-06-10T23:59:59.000Z

    Implicit Multifunction Theorems in complete metric spaces. Huynh Van Ngai ? Nguyen Huu Tron† and. Michel Théra ‡. Abstract. In this paper, we establish some ...

  18. Defining a Standard Metric for Electricity Savings

    E-Print Network [OSTI]

    Koomey, Jonathan

    2009-01-01T23:59:59.000Z

    1991. The Potential for Electricity Efficiency Improvementswww.eia.doe.gov/cneaf/electricity/page/eia860.html>. FigureA STANDARD METRIC FOR ELECTRICITY SAVINGS Jonathan Koomey*,

  19. Original Article Error Bounds and Metric Subregularity

    E-Print Network [OSTI]

    2014-06-18T23:59:59.000Z

    theory of error bounds of extended real-valued functions. Another objective is to ... Another observation is that neighbourhood V in the original definition of metric.

  20. TORIC LEBRUN METRICS AND JOYCE METRICS NOBUHIRO HONDA AND JEFF VIACLOVSKY

    E-Print Network [OSTI]

    Viaclovsky, Jeff

    TORIC LEBRUN METRICS AND JOYCE METRICS NOBUHIRO HONDA AND JEFF VIACLOVSKY Abstract. We show that Foundation under grant DMS-1105187. Mathematics Subject Classification (2010) 53A30. 1 #12;2 NOBUHIRO HONDA

  1. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

    2011-08-01T23:59:59.000Z

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

  2. Relevance of underground natural gas storage to geologic sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Lippmann, Marcelo J.; Benson, Sally M.

    2002-07-01T23:59:59.000Z

    The practice of underground natural gas storage (UNGS), which started in the USA in 1916, provides useful insight into the geologic sequestration of carbon dioxide--the dominant anthropogenic greenhouse gas released into the atmosphere. In many ways, UNGS is directly relevant to geologic CO{sub 2} storage because, like CO{sub 2}, natural gas (essentially methane) is less dense than water. Consequently, it will tend to rise to the top of any subsurface storage structure located below the groundwater table. By the end of 2001 in the USA, about 142 million metric tons of natural gas were stored underground in depleted oil and gas reservoirs and brine aquifers. Based on their performance, UNGS projects have shown that there is a safe and effective way of storing large volumes of gases in the subsurface. In the small number of cases where failures did occur (i.e., leakage of the stored gas into neighboring permeable layers), they were mainly related to improper well design, construction, maintenance, and/or incorrect project operation. In spite of differences in the chemical and physical properties of the gases, the risk-assessment, risk-management, and risk-mitigation issues relevant to UNGS projects are also pertinent to geologic CO{sub 2} sequestration.

  3. CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite

    E-Print Network [OSTI]

    Rollins, Andrew M.

    materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

  4. Reparametrization invariance of the classical metric

    E-Print Network [OSTI]

    G. G. Kirilin

    2006-11-16T23:59:59.000Z

    There is a statement on the parametrization dependence of the classical metric in the recent paper of N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, gr-qc/0610096. I completely disagree with this statement. Here I show reparametrization invariance of the classical metric.

  5. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01T23:59:59.000Z

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  6. Program for implementing software quality metrics

    SciTech Connect (OSTI)

    Yule, H.P.; Riemer, C.A.

    1992-04-01T23:59:59.000Z

    This report describes a program by which the Veterans Benefit Administration (VBA) can implement metrics to measure the performance of automated data systems and demonstrate that they are improving over time. It provides a definition of quality, particularly with regard to software. Requirements for management and staff to achieve a successful metrics program are discussed. It lists the attributes of high-quality software, then describes the metrics or calculations that can be used to measure these attributes in a particular system. Case studies of some successful metrics programs used by business are presented. The report ends with suggestions on which metrics the VBA should use and the order in which they should be implemented.

  7. Topology on locally finite metric spaces

    E-Print Network [OSTI]

    Capraro, Valerio

    2011-01-01T23:59:59.000Z

    The necessity of a theory of General Topology and, most of all, of Algebraic Topology on locally finite metric spaces comes from many areas of research in both Applied and Pure Mathematics: Molecular Biology, Mathematical Chemistry, Computer Science, Topological Graph Theory and Metric Geometry. In this paper we propose the basic notions of such a theory and some applications: we replace the classical notions of continuous function, homeomorphism and homotopic equivalence with the notions of NPP-function, NPP-local-isomorphism and NPP-homotopy (NPP stands for Nearest Point Preserving); we also introduce the notion of NPP-isomorphism. We construct three invariants under NPP-isomorphisms and, in particular, we define the fundamental group of a locally finite metric space. As first applications, we propose the following: motivated by the longstanding question whether there is a purely metric condition which extends the notion of amenability of a group to any metric space, we propose the property SN (Small Neighb...

  8. Electrochemical Double-Layer Capacitors Using Carbon Nanotube Electrode Structures

    E-Print Network [OSTI]

    Schindall, Joel E.

    The structure and behavior of the electrical double-layer capacitor (EDLC) are described. The use of activated carbon electrodes is discussed and the limitations on voltage and accessible surface area are presented. Metrics ...

  9. adaptive metric knn: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We also prove that the set of points where a path with values in a metric space Maleva, Olga 97 SOBOLEV METRICS ON THE MANIFOLD OF ALL RIEMANNIAN METRICS Mathematics Websites...

  10. Comparative vs. Absolute Performance Assessment with Environmental Sustainability Metrics

    E-Print Network [OSTI]

    High, Karen

    Comparative vs. Absolute Performance Assessment with Environmental Sustainability Metrics Xun Jin Different goals and potential audiences determine that two types of environmental performance assessments metrics can be partitioned into two camps. One suite of metrics aim to assess the environmental

  11. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and

    E-Print Network [OSTI]

    States is extremely difficult because of the large number of compounds used in a wide variety of end uses are estimated as follows: ceramics and glass, 31%; batteries, 23%; lubricating greases, 9%; air treatment, 6 conditions improved for lithium-based products in 2010. Sales volumes for the major lithium producers were

  12. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    . Estimation of value for the lithium mineral compounds produced in the United States is extremely difficult lithium company identified its end-use markets as ceramics and glass, 21%; batteries, 19%; lubricating greases, 16%; pharmaceuticals and polymers, 9%; air conditioning, 8%; primary aluminum production, 6

  13. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and

    E-Print Network [OSTI]

    be published. Estimation of value for the lithium mineral compounds produced in the United States is extremely as follows: batteries, 25%; ceramics and glass, 18%; lubricating greases, 12%; pharmaceuticals and polymers, 7%; air conditioning, 6%; primary aluminum production, 4%; continuous casting, 3%; chemical

  14. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2002, the United States consumed about 14% of world chromite ore production in

    E-Print Network [OSTI]

    -2001): Chromium contained in chromite ore and chromium ferroalloys and metal: South Africa, 50%; Kazakhstan, 20, Kazakhstan, and South Africa) accounted for about 76% of world production. South Africa alone accounts States -- -- -- 7,000 India 1,680 1,900 18,000 39,000 Kazakhstan 2,050 2,300 410,000 410,000 South Africa

  15. (Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon metal and alloys (excluding semiconductor-grade silicon)

    E-Print Network [OSTI]

    metal: Brazil, 37%; South Africa, 25%; Canada, 14%; Norway, 6%; and other, 18%. Total: Brazil, 20%; China, 16%; South Africa, 13%; Canada, 12%; and other, 39%. Tariff: Item Number Normal Trade Relations energy costs. Demand for silicon metal comes primarily from the aluminum and chemical industries

  16. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2002, clay and shale production was reported in all States except Alaska,

    E-Print Network [OSTI]

    to be as follows: ball clay--35% floor and wall tile, 22% sanitaryware, and 43% other uses; bentonite--28% pet for consumption: Artificially activated clay and earth 19 17 18 21 20 Kaolin 53 57 63 114 155 Other 14 16 16 13 49, not elsewhere classified 432 329 357 344 464 Total3 5,230 4,800 5,260 4,970 4,990 Consumption, apparent 36

  17. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clay and shale production was reported in all States except Alaska,

    E-Print Network [OSTI]

    % floor and wall tile, 22% sanitaryware, and 43% other uses; bentonite--26% pet waste absorbent, 25,280 9,450 9,160 8,800 9,030 Total3 41,800 41,600 42,200 40,800 40,600 Imports for consumption classified 390 432 329 357 363 Total3 5,080 5,230 4,800 5,260 5,130 Consumption, apparent 36,800 36,500 37

  18. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2004, clay and shale production was reported in 41 States. About 240

    E-Print Network [OSTI]

    --31% floor and wall tile, 20% sanitaryware, and 49% other uses; bentonite--25% pet waste absorbent, 20,800 8,110 8,010 7,680 8,780 Total3 40,800 39,600 39,300 40,000 48,900 Imports for consumption, not elsewhere classified 357 344 449 420 516 Total3 5,260 4,970 4,960 4,980 5,580 Consumption, apparent 35

  19. (Data in thousand metric tons, gross weight, unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    of ore were used for such nonmetallurgical purposes as production of dry cell batteries, as an ingredient Recycling: Scrap recovery specifically for manganese was negligible, but a significant amount was recycled inventory inventory for disposal FY 2001 FY 2001 Battery: Natural ore 103 0.2 103 27 1 Synthetic dioxide 3

  20. (Data in thousand metric tons gross weight unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    as production of dry cell batteries, plant fertilizers and animal feed, and as a brick colorant. Manganese Recycling: Manganese was recycled incidentally as a minor constituent of ferrous and nonferrous scrap inventory inventory for disposal FY 2006 FY 2006 Manganese ore: Battery grade -- 18 -- 27 -- Chemical grade

  1. (Data in thousand metric tons gross weight unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese has not been produced

    E-Print Network [OSTI]

    Torgersen, Christian

    purposes as production of dry cell batteries, in plant fertilizers and animal feed, and as a brick colorant of apparent consumption 100 100 100 100 100 Recycling: Manganese was recycled incidentally as a minor inventory for disposal FY 2009 FY 2009 Manganese ore: Battery grade -- -- 18 -- Chemical grade -- -- 23

  2. (Data in thousand metric tons gross weight unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    as production of dry cell batteries, in plant fertilizers and animal feed, and as a brick colorant. Manganese of apparent consumption 100 100 100 100 100 Recycling: Manganese was recycled incidentally as a minor inventory inventory for disposal FY 2007 FY 2007 Manganese ore: Battery grade 16 2 16 27 2 Chemical grade 0

  3. (Data in thousand metric tons gross weight unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced

    E-Print Network [OSTI]

    Torgersen, Christian

    as production of dry cell batteries, plant fertilizers and animal feed, and as a brick colorant. Manganese Recycling: Manganese was recycled incidentally as a minor constituent of ferrous and nonferrous scrap inventory inventory for disposal FY 2005 FY 2005 Manganese ore: Battery grade -- 18 -- 27 23 Chemical grade

  4. (Data in thousand metric tons gross weight unless otherwise specified) Domestic Production and Use: Manganese ore containing 35% or more manganese was not produced domestically

    E-Print Network [OSTI]

    Torgersen, Christian

    as production of dry cell batteries, in plant fertilizers and animal feed, and as a brick colorant. Manganese 100 100 100 100 Recycling: Manganese was recycled incidentally as a minor constituent of ferrous FY 2008 FY 2008 Manganese ore: Battery grade -- -- 18 16 Chemical grade -- -- -- -- Metallurgical

  5. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2012, clay and shale production was reported in 40 States. About 180 companies

    E-Print Network [OSTI]

    : Insignificant. Import Sources (2008­11): Brazil, 80%; Mexico, 5%; Canada, 4%; United Kingdom, 2%; and other, 9 and pet litter were expected to decline. Fuller's earth could see slight gains as sales increase

  6. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2013, clay and shale production was reported in 40 States. About 180 companies

    E-Print Network [OSTI]

    . Import Sources (2009­12): Brazil, 83%; Canada, 6%; Mexico, 4%; and other, 7%. Prepared by Robert L. Virta. Bentonite sales declined slightly because sales to most markets, except pet litter, appeared to have declined. Fuller's earth saw slight gains, mainly because of sales increases for pet litters and fluid

  7. (Data in metric tons of tungsten, unless otherwise noted) Domestic Production and Use: In 1996, one mine in California produced tungsten concentrate. The mine operated at

    E-Print Network [OSTI]

    38 63 44 10 32 Government stockpile shipments, concentrate -- -- -- -- -- Consumption: Reported and equipment, 80%; electrical and electronic machinery and equipment and transportation, 9%; lamps and lighting shipments W W W W W Imports for consumption, concentrate 2,500 1,700 3,000 4,200 3,100 Exports, concentrate

  8. (Data in metric tons of tin content, unless noted) Domestic Production and Use: In 1995, there was no domestic tin mine production. Production of tin at the only

    E-Print Network [OSTI]

    ,600 2,560 2,000 Shipments from Government stockpile excesses 6,195 6,310 6,022 5,620 5,000 Consumption and containers, 32%; electrical, 23%; construction, 9%; transportation, 11%; and other, 25%. The estimated value of primary metal consumption in 1995, based on the New York composite price, was $300 million. Salient

  9. (Data in metric tons of tungsten content, unless noted) Domestic Production and Use: In 1995, one mine in California produced tungsten concentrate. The mine operated

    E-Print Network [OSTI]

    , concentrate 21 38 63 44 -- Government stockpile shipments, concentrate -- -- -- -- -- Consumption: Reported and equipment, 77%; electrical and electronic machinery and equipment and transportation, 10%; lamps, mine shipments W W W W W Imports for consumption, concentrate 7,800 2,500 1,700 3,000 5,500 Exports

  10. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and

    E-Print Network [OSTI]

    and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, and the United the recycling of lithium batteries. Import Sources (2005-08): Chile, 63%; Argentina, 35%; China, 1%; and other in 2009. Many claims in Nevada, as well as in Argentina, Australia, Bolivia, and Canada, have been leased

  11. (Data in metric tons of lithium content unless otherwise noted) Domestic Production and Use: Chile was the leading lithium chemical producer in the world; Argentina, China,

    E-Print Network [OSTI]

    and Use: Chile was the leading lithium chemical producer in the world; Argentina, China, Russia batteries. Import Sources (2003-06): Chile, 69%; Argentina, 29%; and other, 2%. Tariff: Item Number Normal operations in Chile dominate the world market; a facility at a brine deposit in Argentina produced lithium

  12. (Data in thousand metric tons of copper content, unless noted) Domestic Production and Use: Domestic mine production in 1995 continued its upward trend, begun in 1984, rising

    E-Print Network [OSTI]

    , Arizona, Utah, New Mexico, Montana, and Michigan, accounted for 97% of domestic production; copper in building construction, 42%; electric and electronic products, 22%; industrial machinery and equipment, 13, refined5 132 205 153 119 135 Employment, mine and mill, thousands 13.7 13.6 13.3 13.2 13.3 Net import

  13. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1997, 13 companies operated 22 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    , 26%; building, 16%; electrical, 8%; consumer durables, 8%; and other, 10%. Salient Statistics, yearend 168 16 14 12 10 Employment, primary reduction, number 18,800 17,800 17,800 18,200 18,000 Net%; Venezuela, 5%; Mexico, 3%; and other, 12%. Tariff: Item Number Most favored nation (MFN) Non-MFN4 12

  14. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production, which had remained unchanged in 1995, resumed the

    E-Print Network [OSTI]

    States, in descending order, Arizona, Utah, New Mexico, Nevada, and Montana, accounted for 98 alloy products were consumed in1 building construction, 40%; electric and electronic products, 25.3 13.1 13.8 14.0 Net import reliance as a percent of6 apparent consumption 2 7 13 7 13 Recycling: Old

  15. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1998, 13 companies operated 23 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    %; building, 14%; electrical, 8%; consumer durables, 7%; and other, 10%. Salient Statistics--United States, yearend 16 14 12 ( ) --2 Employment, primary reduction, number 17,800 17,800 18,200 18,000 18,300 Net%; Venezuela, 6%; Mexico, 3%; and other, 12%. Tariff: Item Number Normal Trade Relations (NTR) Non-NTR5 12

  16. (Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2000. Domestically

    E-Print Network [OSTI]

    Statistics--United States: 1996 1997 1998 1999 2000e Production, refinery -- -- -- -- -- Imports fluctuations. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves2 Reserve

  17. (Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2002. Domestically

    E-Print Network [OSTI]

    Statistics--United States: 1998 1999 2000 2001 2002e Production, refinery -- -- -- -- -- Imports. World Refinery Production, Reserves, and Reserve Base: Refinery productione Reserves3 Reserve base3 2001

  18. (Data in metric tons, unless noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1995. Domestic indium

    E-Print Network [OSTI]

    , refinery NA NA NA NA -- Imports for consumption 36.3 36.3 73.4 70.2 73.0 Exports NA NA NA NA NA marketed through a U.S. company. World Refinery Production, Reserves, and Reserve Base: Refinery

  19. (Data in metric tons, unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2001. Domestically

    E-Print Network [OSTI]

    --United States: 1997 1998 1999 2000 2001e Production, refinery -- -- -- -- -- Imports for consumption 85.5 75 77 fluctuations caused by economic uncertainties. World Refinery Production, Reserves, and Reserve Base: Refinery

  20. (Data in metric tons, unless otherwise noted) Domestic Production and Use: No indium was recovered from ores in the United States in 1997. Domestically

    E-Print Network [OSTI]

    --United States: 1993 1994 1995 1996 1997e Production, refinery -- -- -- -- -- Imports for consumption 73.4 70 for the indium market remains promising. World Refinery Production, Reserves, and Reserve Base: Refinery

  1. (Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor-and solar-

    E-Print Network [OSTI]

    Production and Use: Estimated value of silicon alloys and metal (excluding semiconductor- and solar- grade silicon) produced in the United States in 2009 was $470 million. Four companies produced silicon materials in six plants. Of those companies, three produced ferrosilicon in four plants. Metallurgical

  2. Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the

    E-Print Network [OSTI]

    Toohey, Darin W.

    to their high cellulose diet and their lack of the special enzyme that breaks down cellulose. Instead they rely on the bacteria that can be found in their stomach. This bacteria uses non-protein nitrogen in order to create short chain fatty acids or proteins. The cow regurgitates and chews its food further in order

  3. By Joseph Gambogi Titanium comprises about 0.62% of the Earth's crust and At yearend, only 267 metric tons of rutile were left in the NDS

    E-Print Network [OSTI]

    1 TITANIUM By Joseph Gambogi Titanium comprises about 0.62% of the Earth's crust and At yearend, ilmenite, as uncommitted inventory. None of the titanium sponge in the leucoxene, perovskite, rutile, and sphene. Elemental titanium, NDS was authorized for disposal. The NDS inventory of Ti, is a lightweight

  4. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    and Use: In 2002, 11 companies operated 16 primary aluminum reduction plants; 6 smelters were temporarily idled. The 11 smelters east of the Mississippi River accounted for 75% of the production; whereas the remaining 11 smelters, which included the 9 Pacific Northwest smelters, accounted for only 25%. Based upon

  5. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2009, 6 companies operated 13 primary aluminum smelters; 4 smelters were

    E-Print Network [OSTI]

    and Use: In 2009, 6 companies operated 13 primary aluminum smelters; 4 smelters were closed the entire year, and demolition of 1 smelter that had been idle since 2000 was completed in 2009. Of the operating smelters, three were temporarily idled and parts of four others were temporarily closed in 2009. Based

  6. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2008, 6 companies operated 14 primary aluminum smelters; 4 smelters were

    E-Print Network [OSTI]

    and Use: In 2008, 6 companies operated 14 primary aluminum smelters; 4 smelters were temporarily idled primary aluminum production increased substantially owing to smelter restarts after new power contracts, production was curtailed at two smelters owing to high electricity prices, power supply issues, and a sharp

  7. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2000, based on contained zinc recoverable from

    E-Print Network [OSTI]

    three-fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined 92 Employment: Mine and mill, numbere 2,700 2,500 2,400 2,500 2,600 Smelter primary, numbere 1,000 1 production of zinc concentrate by about 3% in 2000. U.S. mine production greatly exceeded smelter capacity

  8. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2012, 5 companies operated 10 primary aluminum smelters; 4 smelters were

    E-Print Network [OSTI]

    and Use: In 2012, 5 companies operated 10 primary aluminum smelters; 4 smelters were closed temporarily quarter of 2012, the leading U.S. aluminum producer announced that its smelter in Alcoa, TN, which had potlines at its Rockdale, TX, smelter also would be permanently closed. Failure to obtain favorable power

  9. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 1999, based on contained zinc recoverable from

    E-Print Network [OSTI]

    %. Three primary and eight secondary smelters refined zinc metal of commercial grade in 1999. Of zinc metal,500 Smelter primary, numbere 1,000 1,000 1,000 1,000 1,000 Net import reliance3 as a percent of apparent. The planned tripling of refinery capacity at the Clarksville, TN, smelter was suspended by Pasminco Ltd

  10. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2000, 12 companies operated 23 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    , and Issues: Domestic primary aluminum production decreased owing in large part to the smelter production cutbacks caused by increased energy costs, particularly in the Pacific Northwest. Domestic smelters aluminum smelter in Hawesville, KY. The acquisition was subject to the completion of a labor agreement

  11. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were

    E-Print Network [OSTI]

    and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were temporarily idled. Domestic smelters operated at about 62% of rated or engineered capacity. Imports for consumption increased Smelter Production and Capacity: Production Yearend capacity 2005 2006e 2005 2006e United States 2,481 2

  12. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters

    E-Print Network [OSTI]

    and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed the entire year. Demolition of two smelters that had been idle for several years was started in 2010. Based: During the first half of 2010, production from domestic primary aluminum smelters had stabilized after

  13. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2007, 6 companies operated 14 primary aluminum smelters; 5 smelters were

    E-Print Network [OSTI]

    and Use: In 2007, 6 companies operated 14 primary aluminum smelters; 5 smelters were temporarily idled primary aluminum production increased substantially owing to smelter restarts after new power contracts were obtained by producers. Domestic smelters operated at about 69% of rated or engineered capacity

  14. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2011, 5 companies operated 10 primary aluminum smelters; 5 smelters were

    E-Print Network [OSTI]

    and Use: In 2011, 5 companies operated 10 primary aluminum smelters; 5 smelters were closed the entire year. One smelter that was closed in 2009 was reopened during the first quarter of 2011. Five potlines that were closed in late 2008 and early 2009 at four other smelters were also restarted in early 2011. Based

  15. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2001, based on contained zinc recoverable from

    E-Print Network [OSTI]

    -fourths of production. Three primary and 12 large- and medium-sized secondary smelters refined zinc metal of commercial,500 2,600 2,400 Smelter primary, numbere 1,000 1,000 1,000 1,000 900 Net import reliance3 greatly exceeded smelter capacity, necessitating exports of concentrate. More than one-third of all

  16. (Data in metric tons of contained lithium, unless noted) Domestic Production and Use: The United States was the largest producer and consumer of lithium minerals and

    E-Print Network [OSTI]

    by Joyce A. Ober, (703) 648-7717. #12;97 LITHIUM Events, Trends, and Issues: The Department of Energy (DOE produced lithium compounds for domestic consumption as well as for export to other countries. The use% of estimated domestic consumption. Other major end uses for lithium were in the manufacture of lubricants

  17. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2005, based on contained zinc recoverable from

    E-Print Network [OSTI]

    accounted for 86% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters Production: Mine, zinc in ore1 842 780 768 739 760 Primary slab zinc 203 182 187 189 250 Secondary slab zinc a major price recovery that started in the third quarter of 2004 and picked up renewed momentum

  18. (Data in metric tons unless otherwise noted) Domestic Production and Use: Indium was not recovered from ores in the United States in 2008. Indium-containing

    E-Print Network [OSTI]

    : Data on the quantity of secondary indium recovered from scrap were not available. Indium is most loop--from collection of scrap to production of secondary materials--now takes less than 30 days. ITO to dissolve the ITO, from which the indium is recovered. Indium recovery from tailings was thought to have

  19. Office of HC Strategy Budget and Performance Metrics (HC-50)...

    Energy Savers [EERE]

    Strategy Budget and Performance Metrics (HC-50) Office of HC Strategy Budget and Performance Metrics (HC-50) Mission Statement and Function Statement The Office of Human Capital...

  20. Design and Development of Performance Metrics for Elite Runners

    E-Print Network [OSTI]

    Mittal, Nikhil R.

    2012-01-01T23:59:59.000Z

    Loss (CDEL) CDEL is another important metric for analyzing runningLoss (CDEL) CDEL is another important metric for analyzing running

  1. Integration of the EM Corporate QA Performance Metrics With Performanc...

    Office of Environmental Management (EM)

    Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process...

  2. Metrics for border management systems.

    SciTech Connect (OSTI)

    Duggan, Ruth Ann

    2009-07-01T23:59:59.000Z

    There are as many unique and disparate manifestations of border systems as there are borders to protect. Border Security is a highly complex system analysis problem with global, regional, national, sector, and border element dimensions for land, water, and air domains. The complexity increases with the multiple, and sometimes conflicting, missions for regulating the flow of people and goods across borders, while securing them for national security. These systems include frontier border surveillance, immigration management and customs functions that must operate in a variety of weather, terrain, operational conditions, cultural constraints, and geopolitical contexts. As part of a Laboratory Directed Research and Development Project 08-684 (Year 1), the team developed a reference framework to decompose this complex system into international/regional, national, and border elements levels covering customs, immigration, and border policing functions. This generalized architecture is relevant to both domestic and international borders. As part of year two of this project (09-1204), the team determined relevant relative measures to better understand border management performance. This paper describes those relative metrics and how they can be used to improve border management systems.

  3. Energy-Momentum Distribution in Weyl Metrics

    E-Print Network [OSTI]

    M. Sharif; Tasnim Fatima

    2005-07-16T23:59:59.000Z

    In this paper, we evaluate energy and momentum density distributions for the Weyl metric by using the well-known prescriptions of Einstein, Landau-Lifshitz, Papaterou and M$\\ddot{o}$ller. The metric under consideration is the static axisymmetric vacuum solution to the Einstein field equations and one of the field equations represents the Laplace equation. Curzon metric is the special case of this spacetime. We find that the energy density is different for each prescription. However, momentum turns out to be constant in each case.

  4. Invariant torsion and G_2-metrics

    E-Print Network [OSTI]

    Diego Conti; Thomas Bruun Madsen

    2014-10-22T23:59:59.000Z

    We introduce and study a notion of invariant intrinsic torsion geometry which appears, for instance, in connection with the Bryant-Salamon metric on the spinor bundle over S^3. This space is foliated by six-dimensional hypersurfaces, each of which carries a particular type of SO(3)-structure; the intrinsic torsion is invariant under SO(3). The last condition is sufficient to imply local homogeneity of such geometries, and this allows us to give a classification. We close the circle by showing that the Bryant-Salamon metric is the unique complete metric with holonomy G_2 that arises from SO(3)-structures with invariant intrinsic torsion.

  5. A Specification Logic for Termination Reasoning Ton-Chanh Le, Cristian Gherghina, Aquinas Hobor, and Wei-Ngan Chin

    E-Print Network [OSTI]

    Hobor, Aquinas

    A Specification Logic for Termination Reasoning Ton-Chanh Le, Cristian Gherghina, Aquinas Hobor a logical framework for specifying and proving asser- tions about program termination. Although termination. Here we propose to integrate termination requirements directly into our specification logic

  6. The Scale of the Energy Challenge 22,000 gallons of fuel oil 150 tons of coal

    E-Print Network [OSTI]

    Hochberg, Michael

    and rooftops in the United States. The total land area required by nuclear power plants is small! Ã? 20 15The Scale of the Energy Challenge Biomass Wind Nuclear Solar 22,000 gallons of fuel oil 150 tons

  7. Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit

    SciTech Connect (OSTI)

    Muro, Mark; Rothwell, Jonathan

    2012-11-15T23:59:59.000Z

    The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nation’s finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nation’s balance sheet, and stimulate job-creation and economic renewal.

  8. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Energy-Related Carbon Dioxide Emissions by End Use" " (million metric tons carbon dioxide equivalent, unless otherwise noted)" ,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015...

  9. U.S. Energy Information Administration (EIA) - Pub

    Gasoline and Diesel Fuel Update (EIA)

    increases to 20metric ton (2012 dollars) in 2040 2. EVA and ICF include a carbon pollution standard for new plants. ICF also includes a carbon cap-and-trade program beginning...

  10. Clean Cities Annual Metrics Report 2009 (Revised)

    SciTech Connect (OSTI)

    Johnson, C.

    2011-08-01T23:59:59.000Z

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  11. Thermodynamic motivations of spherically symmetric static metrics

    E-Print Network [OSTI]

    H. Moradpour; S. Nasirimoghadam

    2015-06-14T23:59:59.000Z

    Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.

  12. Thermodynamic motivations of spherically symmetric static metrics

    E-Print Network [OSTI]

    Moradpour, H

    2015-01-01T23:59:59.000Z

    Bearing the thermodynamic arguments together with the two definitions of mass in mind, we try to find metrics with spherical symmetry. We consider the adiabatic condition along with the Gong-Wang mass, and evaluate the $g_{rr}$ element which points to a null hypersurface. In addition, we generalize the thermodynamics laws to this hypersurface to find its temperature and thus the corresponding surface gravity which enables us to get a relation for the $g_{tt}$ element. Finally, we investigate the mathematical and physical properties of the discovered metric in the Einstein relativity framework which shows that the primary mentioned null hypersurface is an event horizon. We also show that if one considers the Misner-Sharp mass in the calculations, the Schwarzschild metric will be got. The relationship between the two mass definitions in each metric is studied. The results of considering the geometrical surface gravity are also addressed.

  13. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Broader source: Energy.gov (indexed) [DOE]

    their progress to-date on developing a long-term roadmap on resilience metrics for electric power, gas, and oil infrastructure and their proposed uses. Location The session...

  14. Contributions to Metric Number Technical Report

    E-Print Network [OSTI]

    Dent, Alexander W.

    Contributions to Metric Number Theory Paul Rowe Technical Report RHUL­MA­2002­2 5 December 2002, Professor Glyn Harman, for sug- gestions of problems to attempt, helpful advice on methods and help

  15. Clean Cities 2011 Annual Metrics Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities 2011 Annual Metrics Report Caley Johnson National Renewable Energy Laboratory Technical Report NRELTP-7A30-56091 December 2012 NREL is a national laboratory of the...

  16. Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovemberiMid-LevelMoab Marks 6-Million-Ton CleanupAccomplishes

  17. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  18. Product Concept Metrics: a Preliminary Study Working Paper

    E-Print Network [OSTI]

    Takala, Roope

    Metrics for product concept evaluation and screening is a relatively unstudied topic of product development.

  19. Identifying Metrical and Temporal Structure with an Autocorrelation Phase Matrix

    E-Print Network [OSTI]

    Eck, Doug

    - odic and metrical structure in digital audio. Oscillator models (Large and Kolen, 1994; Eck, 2002) have

  20. The dynamics of metric-affine gravity

    SciTech Connect (OSTI)

    Vitagliano, Vincenzo, E-mail: vitaglia@sissa.it [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sez. di Trieste, Via Valerio 2, 34127 Trieste (Italy); Sotiriou, Thomas P., E-mail: T.Sotiriou@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Liberati, Stefano, E-mail: liberati@sissa.it [SISSA-International School for Advanced Studies, Via Bonomea 265, 34136 Trieste (Italy); INFN, Sez. di Trieste, Via Valerio 2, 34127 Trieste (Italy)

    2011-05-15T23:59:59.000Z

    Highlights: > The role and the dynamics of the connection in metric-affine theories is explored. > The most general second order action does not lead to a dynamical connection. > Including higher order invariants excites new degrees of freedom in the connection. > f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy theories to study the properties of metric-affine gravity.

  1. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1997 was essentially unchanged at 1.9 million metric

    E-Print Network [OSTI]

    Mexico, Nevada, and Montana, accounted for 98% of domestic production; copper was also recovered at mines in building construction, 43%; electric and electronic products, 24%; industrial1 machinery and equipment, 12 119 163 146 2505 Employment, mine and mill, thousands 13.3 13.1 13.8 13.2 13.3 Net import reliance

  2. Implementing the Data Center Energy Productivity Metric

    SciTech Connect (OSTI)

    Sego, Landon H.; Marquez, Andres; Rawson, Andrew; Cader, Tahir; Fox, Kevin M.; Gustafson, William I.; Mundy, Christopher J.

    2012-10-01T23:59:59.000Z

    As data centers proliferate in both size and number, their energy efficiency is becoming increasingly important. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented, high performance computing data center. We found that DCeP was successful in clearly distinguishing between different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve (or even maximize) energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and among data centers.

  3. Metric Cubes in Some Music of Brahms

    E-Print Network [OSTI]

    Murphy, Scott

    2009-01-01T23:59:59.000Z

    Pl ea se n ot e th at t hi s is a n au th or -p ro du ce d PD F of a n ar ti cl e ac ce pt ed fo r pu bl ic at io n fo llo w in g pe er r ev ie w . T he p ub lis he r ve rs io n is a va ila bl e on it s si te . [This...: Murphy, Scott. “Metric Cubes in Some Music of Brahms,” Journal of Music Theory 53/1 (Spring, 2009): 1-56. DOI:10.1215/00222909-2009-020. Abstract: The metric cube is a kind of graph of meters proposed as a complement to the types of metric spaces...

  4. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01T23:59:59.000Z

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  5. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

    1991-12-31T23:59:59.000Z

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  6. Metrics for a Sustainable Produced By

    E-Print Network [OSTI]

    Levinson, David M.

    Metrics for a Sustainable EcoVillage #12;2 Produced By: Nam Nguyen Master of Urban and Regional Project Manager Project for Pride in Living (PPL) Jeffrey Skrenes Housing Director Hawthorne Neighborhood Council Photo source: Unless otherwise noted, photos are provided by People for Pride in Living

  7. Clean Cities 2010 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-10-01T23:59:59.000Z

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  8. Einstein Product Metrics in Diverse Dimensions

    E-Print Network [OSTI]

    K. R. Koehler

    2006-01-27T23:59:59.000Z

    We use direct products of Einstein Metrics to construct new solutions to Einstein's Equations with cosmological constant. We illustrate the technique with three families of solutions having the geometries Kerr/de Sitter X de Sitter, Kerr/anti-de Sitter X anti-de Sitter and Kerr X Kerr.

  9. Einstein Metrics on Rational Homology 7-Spheres

    E-Print Network [OSTI]

    Einstein Metrics on Rational Homology 7-Spheres Charles P. Boyer Krzysztof Galicki Michael Nakamaye Abstract: In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2-connected rational homology 7-spheres. These appear to be the #12;rst non-regular examples of Sasakian-Einstein

  10. An Attack Surface Metric Pratyusa K. Manadhata

    E-Print Network [OSTI]

    K. Manadhata This research was sponsored in part by the Defense Advanced Research Project Agency by the National Science Foundation under grants no. CCR-0121547 and CNS-0433540, SAP Labs, LLC under award no metrics has recently become more pressing. In this thesis, we introduce the measure of a software system

  11. Fourier Transform, Riemann Surfaces and Indefinite Metric

    E-Print Network [OSTI]

    Fominov, Yakov

    Fourier Transform, Riemann Surfaces and Indefinite Metric P. G. Grinevich, S.P.Novikov Zakharov Park, College Park, USA #12;What is Fourier Transform in Riemann Surfaces? Which Problems need it? Discrete Analog of The Fourier/Laurent bases in Riemann Sur- faces was constructed by Krichever-Novikov (KN

  12. Performance Metrics Research Project - Final Report

    SciTech Connect (OSTI)

    Deru, M.; Torcellini, P.

    2005-10-01T23:59:59.000Z

    NREL began work for DOE on this project to standardize the measurement and characterization of building energy performance. NREL's primary research objectives were to determine which performance metrics have greatest value for determining energy performance and to develop standard definitions and methods of measuring and reporting that performance.

  13. Clean Cities 2011 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-12-01T23:59:59.000Z

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  14. Evaluation Criteria for Human-Automation Performance Metrics

    E-Print Network [OSTI]

    Pina, Patricia Elena

    Previous research has identified broad metric classes for human-automation performance to facilitate metric selection, as well as understanding and comparison of research results. However, there is still lack of an objective ...

  15. Ideal Based Cyber Security Technical Metrics for Control Systems

    SciTech Connect (OSTI)

    W. F. Boyer; M. A. McQueen

    2007-10-01T23:59:59.000Z

    Much of the world's critical infrastructure is at risk from attack through electronic networks connected to control systems. Security metrics are important because they provide the basis for management decisions that affect the protection of the infrastructure. A cyber security technical metric is the security relevant output from an explicit mathematical model that makes use of objective measurements of a technical object. A specific set of technical security metrics are proposed for use by the operators of control systems. Our proposed metrics are based on seven security ideals associated with seven corresponding abstract dimensions of security. We have defined at least one metric for each of the seven ideals. Each metric is a measure of how nearly the associated ideal has been achieved. These seven ideals provide a useful structure for further metrics development. A case study shows how the proposed metrics can be applied to an operational control system.

  16. Metrics and Benchmarks for Energy Efficiency in Laboratories

    E-Print Network [OSTI]

    Mathew, Paul

    2007-01-01T23:59:59.000Z

    tons/gsf), boiler efficiency (%), pump- ing efficiency (hp/F W/gpm H7 Reheat Energy Use Factor Boiler Rated EfficiencyBoiler Part Load Efficiency Energy Recovery System

  17. Financial Metrics Data Collection Protocol, Version 1.0

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Gorrissen, Willy J.; Wang, Na

    2010-04-30T23:59:59.000Z

    Brief description of data collection process and plan that will be used to collect financial metrics associated with sustainable design.

  18. Complex Systems--Goals & Metrics Long-term Objective

    E-Print Network [OSTI]

    Hayden, Nancy J.

    ://www.uvm.edu/cmplxsys/. Moving forward--Goals, Metrics, and Resources: Approach: Kaizen. Measurability is ke

  19. Federal Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold

    2011-04-11T23:59:59.000Z

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  20. 26The Frequency of Large Meteor Impacts On February 14, 2013 a 10,000 ton meteor

    E-Print Network [OSTI]

    over the town of Chelyabinsk and the explosion caused major damage to the town injuring 1,000 people `discovered' for many decades afterwards, the Chelyabinsk Meteor was extensively videoed by hundreds explodes with an energy of 4.2x109 Joules. How many tons of TNT did the Chelyabinsk Meteor yield

  1. Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,

    E-Print Network [OSTI]

    Columbia University

    analyses the global waste market, with particular reference to municipal solid waste (MSW). Key NoteGlobal MSW Generation in 2007 estimated at two billion tons Global Waste Management Market between growth in wealth and increase in waste -- the more affluent a society becomes, the more waste

  2. The Nature of Faint Blue Stars in the PHL and Ton Catalogues based on Digital Sky Surveys

    E-Print Network [OSTI]

    Andernach, H; W., W Copo Cordova; Santiago-Bautista, I del C

    2015-01-01T23:59:59.000Z

    We determined accurate positions for 3000 of the "faint blue stars" in the PHL (Palomar-Haro-Luyten) and Ton/TonS catalogues. These were published from 1957 to 1962, and, aimed at finding new white dwarfs, provide approximate positions for about 10750 blue stellar objects. Some of these "stars" had become known as quasars, a type of objects unheard-of before 1963. We derived subarcsec positions from a comparison of published finding charts with images from the first-epoch Digitized Sky Survey. Numerous objects are now well known, but unfortunately neither their PHL or Ton numbers, nor their discoverers, are recognized in current databases. A comparison with modern radio, IR, UV and X-ray surveys leads us to suggest that the fraction of extragalactic objects in the PHL and Ton catalogues is at least 15 per cent. However, because we failed to locate the original PHL plates or finding charts, it may be impossible to correctly identify the remaining 7726 PHL objects.

  3. Metrics Are Fitness Functions Too Mark Harman John Clark

    E-Print Network [OSTI]

    Singer, Jeremy

    that there is an alternative, complementary, view of a metric: as a fitness function, used to guide a search for optimal' (MAFF) approach offers a number of additional benefits to metrics research and practice because systems. It describes the properties of a metric which make it a good fitness function and explains

  4. Metrics for measuring distances in configuration spaces

    SciTech Connect (OSTI)

    Sadeghi, Ali, E-mail: ali.sadeghi@unibas.ch; Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland)] [Department of Physics, Universität Basel, Klingelbergstr. 82, 4056 Basel (Switzerland); Lill, Markus A. [Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907 (United States)] [Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907 (United States)

    2013-11-14T23:59:59.000Z

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices.

  5. Metric perturbation theory of quantum dynamics

    E-Print Network [OSTI]

    Antony L Tambyrajah

    2006-10-06T23:59:59.000Z

    A theory of quantum dynamics based on a discrete structure underlying the space time manifold is developed for single particles. It is shown that at the micro domain the interaction of particles with the underlying discrete structure results in the quantum space time manifold. Regarding the resulting quantum space-time as perturbation from the Lorentz metric it is shown it is possible to discuss the dynamics of particles in the quantum domain.

  6. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01T23:59:59.000Z

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  7. Optical metrics and birefringence of anisotropic media

    E-Print Network [OSTI]

    Alexander B. Balakin; Winfried Zimdahl

    2005-04-12T23:59:59.000Z

    The material tensor of linear response in electrodynamics is constructed out of products of two symmetric second rank tensor fields which in the approximation of geometrical optics and for uniaxial symmetry reduce to "optical" metrics, describing the phenomenon of birefringence. This representation is interpreted in the context of an underlying internal geometrical structure according to which the symmetric tensor fields are vectorial elements of an associated two-dimensional space.

  8. Variable metric methods for automatic history matching

    E-Print Network [OSTI]

    Armasu, Razvan

    1985-01-01T23:59:59.000Z

    . Automatic history matching codes presently in use employ steepest descent with optimal control, and although they were proven superior to others, their performance is not entirely satisfactory due to the poor rate of convergence as the performance index... rates of convergence when compared to the steepest descent They can be made to start out as steepest descent and end up as a second order algorithm, using functional and gradient information only, In this work several variable metric algorithms...

  9. High temperature experiments on a 4 tons UF6 container TENERIFE program

    SciTech Connect (OSTI)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31T23:59:59.000Z

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  10. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-06-01T23:59:59.000Z

    Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes

  11. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01T23:59:59.000Z

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  12. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    SciTech Connect (OSTI)

    Gary D. Kronrad

    2002-12-01T23:59:59.000Z

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that the cost per ton to sequester carbon ranges from $6.54 on site index 80 land at a 12.5% ARR to $36.68 on site index 40 land at an ARR of 0.5%. Results also indicate that the amount of carbon stored during one rotation ranges between 38 tons per acre on site index 40 land to 58 tons per acre on site index 80 land. The profitability of afforestation on these AML sites in West Virginia increases as the market price for carbon increases from $0 to $100 per ton.

  13. Microsoft Word - 2014 Small-Scale - Intro.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (injection of less than 500,000 metric tons of CO 2 per year) separate from the Regional Carbon Sequestration Partnership efforts to explore and characterize CO 2 storage...

  14. Nationwide: New Efficiency Standards for Power Supplies Anticipate...

    Office of Environmental Management (EM)

    energy bills of U.S. families and businesses by nearly 4 billion, and reduce carbon emissions by nearly 47 million metric tons (equivalent to the emissions produced by the annual...

  15. U.S. Energy Information Administration (EIA) - Source

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    impact is similar to that of an emissions fee of 15 per metric ton of carbon dioxide (CO2) when investing in a new coal plant without CCS, similar to the costs used by utilities...

  16. A Proposal for a Ton Scale Bubble Chamber for Dark Matter Detection

    SciTech Connect (OSTI)

    Collar, Juan; Dahl, C.Eric; Fustin, Drew; Robinson, Alan; /Chicago U.; Behnke, Ed; Behnke, Joshua; Breznau, William; Connor, Austin; Kuehnemund, Emily Grace; Levine, Ilan; Moan, Timothy; /Indiana U., South Bend /Fermilab

    2010-10-07T23:59:59.000Z

    The nature of non-baryonic dark matter is one of the most intriguing questions for particle physics at the start of the 21st century. There is ample evidence for its existence, but almost nothing is known of its properties. WIMPs are a very appealing candidate particle and several experimental campaigns are underway around the world to search for these particles via the nuclear recoils that they should induce. The COUPP series of bubble chambers has played a significant role in the WIMP search. Through a sequence of detectors of increasing size, a number of R&D issues have arisen and been solved, and the technology has now been advanced to the point where the construction of large chambers requires a modest research effort, some development, but mostly just engineering. It is within this context that we propose to build the next COUPP detector - COUPP-500, a ton scale device to be built over the next three years at Fermilab and then deployed deep underground at SNOLAB. The primary advantages of the COUPP approach over other technologies are: (1) The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector. (2) The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles. (3) The ability to build large chambers cheaply and with a choice of target fluids. (4) The ability to increase the size of the chambers without changing the size or complexity of the data acquisition. (5) Sensitivity to spin-dependent and spin-independent WIMP couplings. These key advantages should enable the goal of one background event in a ton-year of exposure to be achieved. The conceptual design of COUPP-500 is scaled from the preceding devices. In many cases all that is needed is a simple scaling up of components previously used. Calibration and R&D are still needed on some aspects of the system. We know we have the ability to distinguish alpha-induced events from nuclear recoils, but we do not yet know whether the combination of material purity and rejection are good enough to run for a year with no alpha background. We also need to have more detailed measurements of the detector threshold and a better understanding of its high gamma rejection. In addition, there are important checks to make on the longevity of the detector components in the hydraulic fluid and on the chemistry of the active fluid. The 2009 PASAG report explicitly supported the construction of the COUPP-500 device in all funding scenarios. The NSF has shown similar enthusiasm. It awarded one of its DUSEL S4 grants to assist in the engineering needed to build COUPP-500. The currently estimated cost of COUPP-500 is $8M, about half the $15M-$20M price tag expected by the PASAG report for a next generation dark matter search experiment. The COUPP-500 device will have a spin independent WIMP-nucleus cross-section sensitivity of 6 x 10{sup -47} cm{sup 2} after a background-free year of running. This device should then provide the benchmark against which all other WIMP searches are measured.

  17. Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System

    SciTech Connect (OSTI)

    Oliveira Neto, Francisco Moraes [ORNL] [ORNL; Chin, Shih-Miao [ORNL] [ORNL; Hwang, Ho-Ling [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

  18. Status of ArDM-1t: First observations from operation with a full ton-scale liquid argon target

    E-Print Network [OSTI]

    ArDM Collaboration; J. Calvo; C. Cantini; M. Daniel; U. Degunda; S. Di Luise; L. Epprecht; A. Gendotti; S. Horikawa; L. Knecht; B. Montes; W. Mu; M. Munoz; S. Murphy; G. Natterer; K. Nguyen; K. Nikolics; L. Periale; C. Regenfus; L. Romero; A. Rubbia; R. Santorelli; F. Sergiampietri; D. Sgalaberna; T. Viant; S. Wu

    2015-05-10T23:59:59.000Z

    ArDM-1t is the first operating ton-scale liquid argon detector for direct search of Dark Matter particles. Developed at CERN as Recognized Experiment RE18, the experiment has been approved in 2010 to be installed in the Spanish underground site LSC (Laboratorio Subterraneo de Canfranc). Under the label of LSC EXP-08-2010 the ArDM detector underwent an intensive period of technical completion and safety approval until the recent filling of the target vessel with almost 2 ton of liquid argon. This report describes the experimental achievements during commissioning of ArDM and the transition into a stage of first physics data taking in single phase operational mode. We present preliminary observations from this run. A first indication for the background discrimination power of LAr detectors at the ton-scale is shown. We present an outlook for completing the detector with the electric drift field and upgrade of the scintillation light readout system with novel detector modules based on SiPMs in order to improve the light yield.

  19. Metrics For Comparing Plasma Mass Filters

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2012-08-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter. __________________________________________________

  20. Metrics for comparing plasma mass filters

    SciTech Connect (OSTI)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-10-15T23:59:59.000Z

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  1. Measurable Control System Security through Ideal Driven Technical Metrics

    SciTech Connect (OSTI)

    Miles McQueen; Wayne Boyer; Sean McBride; Marie Farrar; Zachary Tudor

    2008-01-01T23:59:59.000Z

    The Department of Homeland Security National Cyber Security Division supported development of a small set of security ideals as a framework to establish measurable control systems security. Based on these ideals, a draft set of proposed technical metrics was developed to allow control systems owner-operators to track improvements or degradations in their individual control systems security posture. The technical metrics development effort included review and evaluation of over thirty metrics-related documents. On the bases of complexity, ambiguity, or misleading and distorting effects the metrics identified during the reviews were determined to be weaker than necessary to aid defense against the myriad threats posed by cyber-terrorism to human safety, as well as to economic prosperity. Using the results of our metrics review and the set of security ideals as a starting point for metrics development, we identified thirteen potential technical metrics - with at least one metric supporting each ideal. Two case study applications of the ideals and thirteen metrics to control systems were then performed to establish potential difficulties in applying both the ideals and the metrics. The case studies resulted in no changes to the ideals, and only a few deletions and refinements to the thirteen potential metrics. This led to a final proposed set of ten core technical metrics. To further validate the security ideals, the modifications made to the original thirteen potential metrics, and the final proposed set of ten core metrics, seven separate control systems security assessments performed over the past three years were reviewed for findings and recommended mitigations. These findings and mitigations were then mapped to the security ideals and metrics to assess gaps in their coverage. The mappings indicated that there are no gaps in the security ideals and that the ten core technical metrics provide significant coverage of standard security issues with 87% coverage. Based on the two case studies and evaluation of the seven assessments, the security ideals demonstrated their value in guiding security thinking. Further, the final set of core technical metrics has been demonstrated to be both usable in the control system environment and provide significant coverage of standard security issues.

  2. Software Modeling of S-Metrics Visualizer: Synergetic Interactive Metrics Visualization Tool

    E-Print Network [OSTI]

    Dascalu, Sergiu

    utilization, earned-value cost and schedule performance) to provide enhanced management insight in a timely and visualization tool for Windows. Throughout the software development process managers must be aware problems that occur throughout the project's evolution. Software metrics help managers to better monitor

  3. A study on metrics for simulation programming languages

    E-Print Network [OSTI]

    Nallapati, Kumar V.

    1986-01-01T23:59:59.000Z

    proposes models for metrics specially designed for use in simulation modeling which can help in evaluating the performance and resource requirements of simulation programming languages. Certain existing software metrics for general purpose programming... GPSS and SIMAN. With these characteristics and the existing metrics, models were developed for evaluation of software and hardware requirements for a given simulation problem. ACKNOWLEDGEMENTS I thank Dr. Sallie Sheppard, Chairperson of my committee...

  4. Production Scale-Up or Activated Carbons for Ultracapacitors

    SciTech Connect (OSTI)

    Dr. Steven D. Dietz

    2007-01-10T23:59:59.000Z

    Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

  5. Spherically Symmetric, Metrically Static, Isolated Systems in Quasi-Metric Gravity

    E-Print Network [OSTI]

    Dag Østvang

    2014-05-09T23:59:59.000Z

    The gravitational field exterior respectively interior to a spherically symmetric, isolated body made of perfect fluid is examined within the quasi-metric framework (QMF). It is required that the gravitational field is "metrically static", meaning that it is static except for the effects of the global cosmic expansion on the spatial geometry. Dynamical equations for the gravitational field are set up and an exact solution is found for the exterior part. Besides, equations of motion applying to inertial test particles moving in the exterior gravitational field are set up. By construction the gravitational field of the system is not static with respect to the cosmic expansion. This means that the radius of the source increases and that distances between circular orbits of inertial test particles increase according to the Hubble law. Moreover it is shown that if this model of an expanding gravitational field is taken to represent the gravitational field of the Sun (or isolated planetary systems), this has no serious consequences for observational aspects of planetary motion. On the contrary some observational facts of the Earth-Moon system are naturally explained within the QMF. Finally the QMF predicts different secular increases for two different gravitational coupling parameters. But such secular changes are neither present in the Newtonian limit of the quasi-metric equations of motion nor in the Newtonian limit of the quasi-metric field equations valid inside metrically static sources. Thus standard interpretations of space experiments testing the secular variation of G are explicitly theory-dependent and do not apply to the QMF.

  6. Resilient Control Systems Practical Metrics Basis for Defining Mission Impact

    SciTech Connect (OSTI)

    Craig G. Rieger

    2014-08-01T23:59:59.000Z

    "Resilience” describes how systems operate at an acceptable level of normalcy despite disturbances or threats. In this paper we first consider the cognitive, cyber-physical interdependencies inherent in critical infrastructure systems and how resilience differs from reliability to mitigate these risks. Terminology and metrics basis are provided to integrate the cognitive, cyber-physical aspects that should be considered when defining solutions for resilience. A practical approach is taken to roll this metrics basis up to system integrity and business case metrics that establish “proper operation” and “impact.” A notional chemical processing plant is the use case for demonstrating how the system integrity metrics can be applied to establish performance, and

  7. Enterprise performance measurement system : metric design framework and tools

    E-Print Network [OSTI]

    Teo, Kai Siang

    2013-01-01T23:59:59.000Z

    Existing metric selection methodologies and performance measurement frameworks provide practicing managers with good checklists and tools to evaluate and design their enterprise performance measurement systems (EPMS) and ...

  8. On the Riemann Extension of the Schwarzschild Metric

    E-Print Network [OSTI]

    V. Dryuma

    2004-04-30T23:59:59.000Z

    Some solutions of the Einstein equations for the eight-dimensional Riemann extension of the classical four-dimensional Schwarzschild metric are considered.

  9. Hölder Metric Subregularity with Applications to Proximal Point Method

    E-Print Network [OSTI]

    2012-02-02T23:59:59.000Z

    Feb 2, 2012 ... analysis and generalized differentiation, we derive neighborhood and ...... failure of metric subregularity in the above very natural sense.

  10. Summary of Proposed Metrics - QER Technical Workshop on Energy...

    Energy Savers [EERE]

    resources available) to enable decisions - Prototype metrics - Use Cases created for electric power, oil, and natural gas systems o Applies common principles across energy...

  11. On isotropic metric of Schwarzschild solution of Einstein equation

    E-Print Network [OSTI]

    T. Mei

    2006-10-24T23:59:59.000Z

    The known static isotropic metric of Schwarzschild solution of Einstein equation cannot cover with the range of r<2MG, a new isotropic metric of Schwarzschild solution is obtained. The new isotropic metric has the characters: (1) It is dynamic and periodic. (2) It has infinite singularities of the spacetime. (3) It cannot cover with the range of 0metric.

  12. Conceptual Framework for Developing Resilience Metrics for the...

    Office of Environmental Management (EM)

    Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States (September 2014) Conceptual Framework for Developing...

  13. Einstein metrics and Brans-Dicke superfields

    SciTech Connect (OSTI)

    Marques, S.

    1988-01-01T23:59:59.000Z

    It is obtained here a space conformal to the Einstein space-time, making the transition from an internal bosonic space, constructed with the Majorana constant spinors in the Majorana representation, to a bosonic ''superspace,'' through the use of Einstein vierbeins. These spaces are related to a Grassmann space constructed with the Majorana spinors referred to above, where the ''metric'' is a function of internal bosonic coordinates. The conformal function is a scale factor in the zone of gravitational radiation. A conformal function dependent on space-time coordinates can be constructed in that region when we introduce Majorana spinors which are functions of those coordinates. With this we obtain a scalar field of Brans-Dicke type. 11 refs.

  14. Symplectic fusion rings and their metric

    E-Print Network [OSTI]

    D. Gepner; A. Schwimmer

    1992-04-08T23:59:59.000Z

    The fusion of fields in a rational conformal field theory gives rise to a ring structure which has a very particular form. All such rings studied so far were shown to arise from some potentials. In this paper the fusion rings of the WZW models based on the symplectic group are studied. It is shown that they indeed arise from potentials which are described. These potentials give rise to new massive perturbations of superconformal hermitian symmetric models. The metric of the perturbation is computed and is shown to be given by solutions of the sinh--gordon equation. The kink structure of the theories is described, and it is argued that these field theories are integrable. The $S$ matrices for the fusion theories are argued to be non--minimal extensions of the $G_k\\times G_1/ G_{k+1}$ $S$ matrices with the adjoint perturbation, in the case of $G=SU(N)$.

  15. Clean Cities 2013 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.; Singer, M.

    2014-10-01T23:59:59.000Z

    Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2013 Annual Metrics Report.

  16. Bi-metric Gravity and "Dark Matter"

    E-Print Network [OSTI]

    I. T. Drummond

    2000-08-18T23:59:59.000Z

    We present a bi-metric theory of gravity containing a length scale of galactic size. For distances less than this scale the theory satisfies the standard tests of General Relativity. For distances greater than this scale the theory yields an effective gravitational constant much larger than the locally observed value of Newton's constant. The transition from one regime to the other through the galactic scale can explain the observed rotation curves of galaxies and hence the effects normally attributed to the presence of dark matter. Phenomena on an extragalactic scale such as galactic clusters and the expansion of the universe are controlled by the enhanced gravitational coupling. This provides an explanation of the missing matter normally invoked to account for the observed value of Hubble's constant in relation to observed matter.

  17. Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor

    SciTech Connect (OSTI)

    Kisholoy Goswami

    2005-10-11T23:59:59.000Z

    The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

  18. Distance Metric Learning for Large Margin Nearest Neighbor Classification

    E-Print Network [OSTI]

    Weinberger, Kilian

    Distance Metric Learning for Large Margin Nearest Neighbor Classification Kilian Q. Weinberger}@cis.upenn.edu Abstract We show how to learn a Mahanalobis distance metric for k-nearest neigh- bor (kNN) classification in kNN classification--for example, achieving a test error rate of 1.3% on the MNIST handwritten digits

  19. Cortical Hemisphere Registration Via Large Deformation Diffeomorphic Metric Curve

    E-Print Network [OSTI]

    Qiu, Anqi

    on the relation between individual brains and the atlas. This is a powerful approach allowing us to study a largeCortical Hemisphere Registration Via Large Deformation Diffeomorphic Metric Curve Mapping Anqi Qiu1 Science, Johns Hopkins University Abstract. We present large deformation diffeomorphic metric curve

  20. Comparison of Distance Metrics for Hierarchical Data in Medical Databases

    E-Print Network [OSTI]

    Aickelin, Uwe

    sufficiently well in clustering the patient population using k-means clustering algorithm. I. INTRODUCTIONComparison of Distance Metrics for Hierarchical Data in Medical Databases Diman Hassan, Uwe of these metrics have been compared to other measures to find their efficiency. In [5], a comparison has been made

  1. Metrics for Evaluating Conventional and Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Mann, M. K.

    2013-01-01T23:59:59.000Z

    With numerous options for the future of natural gas, how do we know we're going down the right path? How do we designate a metric to measure and demonstrate change and progress, and how does that metric incorporate all stakeholders and scenarios?

  2. Estimation of Photovoltaic System Reliability and Performance Metrics

    E-Print Network [OSTI]

    Liberzon, Daniel

    1 Estimation of Photovoltaic System Reliability and Performance Metrics Sairaj V. Dhople, Student reliability and perfor- mance analysis of grid-tied photovoltaic (PV) systems is for- mulated using Markov and energy yield, and reliability metrics such as availability. The paper also provides an analytical method

  3. The Posterior metric and the Goodness of Gibbsianness

    E-Print Network [OSTI]

    Külske, Christof

    exhibit the minimal necessary structure for such double-layer systems. As- suming no a priori metric, specification, posterior metric. University of Groningen, Institute of Mathematics and Computing Science, Dobrushin uniqueness has a lot of advantages, being not very technical, but very general, requiring little

  4. advanced web metrics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    web metrics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A Survey of Web Metrics DEVANSHU DHYANI...

  5. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01T23:59:59.000Z

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  6. Assignment Carbon Footprints Name__Lachniet__ 1) See Figure 1.1a at the back of the assignment (from IPCC)

    E-Print Network [OSTI]

    Lachniet, Matthew S.

    Assignment Carbon Footprints Name__Lachniet__ 1) See Figure 1.1a at the back capita, relative to other countries. 3) Use the carbon footprint calculator at 1) http utility bill. Use the # of people living in your house. a) What is your carbon footprint, in metric

  7. DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrack graphics workDepartmentFollowing areofSiteMetric Tons

  8. Sustainable Energy Future in China's Building Sector

    E-Print Network [OSTI]

    Li, J.

    2007-01-01T23:59:59.000Z

    gases emission. Energy consumption in buildings could be reduced by 100-300 million tons of oil equivalent (mtoe) in 2030 compared to the business-as-usual (BAU) scenario, which means that 600-700 million metric tons of carbon dioxide (CO2) emissions...

  9. Practical Diagnostics for Evaluating Residential Commissioning Metrics

    SciTech Connect (OSTI)

    Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

    2002-06-11T23:59:59.000Z

    In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24 practical diagnostics range from a few hundred dollars to many thousands of dollars. The higher costs are associated with infrared thermography and state-of-the-art automated diagnostic systems. Most tests can be performed in one hour or less, using equipment priced toward the lower end of the cost spectrum.

  10. Weighting and Bayes Nets for Rollup of Surveillance Metrics

    SciTech Connect (OSTI)

    Henson, Kriste [Los Alamos National Laboratory; Sentz, Kari [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory

    2012-04-30T23:59:59.000Z

    The LANL IKE team proposes that the surveillance metrics for several data stream that are used to detect the same failure mode be weighted. Similarly, the failure mode metrics are weighted to obtain a subsystem metric. E.g., if there n data streams (nodes 1-n), the failure mode (node 0) metric is obtained as M{sub 0} = w{sub 1}M{sub 1} + {hor_ellipsis} + w{sub n}M{sub n}, where {Sigma}{sub i=1}{sup n} w{sub i} = 1. This proposal has been implemented with Bayes Nets using the Netica/IKE software by specifying an appropriate conditional probability table (CPT). This CPT is calculated using the same form as (1), where the data stream metrics for the true (T) and false (F) states are replaced by 1 and 0, respectively. Then using this CPT, the failure mode metric calculated by Netica/IKE equals (1). This result has two nice features. First, the rollup Bayes nets is doing can be easily explained. Second, because Bayes Nets can implement this rollup using Netica/IKE, then data marshalling (allocating next year's budget) can be studied. A proof that the claim 'failure mode metric calculated by Netica/IKE equals (1)' for n = 2 and n = 3 follows as well as the sketch of a proof by induction for general n.

  11. Transitive closure and metric inequality of weighted graphs: detecting protein interaction modules using cliques

    E-Print Network [OSTI]

    Ding, Chris; He, Xiaofeng; Xiong, Hui; Peng, Hanchuan; Holbrook, Stephen R.

    2006-01-01T23:59:59.000Z

    Closure and Metric Inequality of Weighted Graphs – Detectingleads to a transitivity inequality which is equivalentto ultra-metric inequality. This can be used to de?ne

  12. Schwarzschild-like metric and a quantum vacuum

    E-Print Network [OSTI]

    P. R. Silva

    2013-02-01T23:59:59.000Z

    A quantum vacuum, represented by a viscous fluid, is added to the Einstein vacuum, surrounding a spherical distribution of mass. This gives as a solution, in spherical coordinates, a Schwarzschild-like metric. The plot of g00 and g11 components of the metric, as a function of the radial coordinate, display the same qualitative behavior as that of the Schwarzschild metric. However, the temperature of the event horizon is equal to the Hawking temperature multiplied by a factor of two, while the entropy is equal to half of the Bekenstein one.

  13. SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson

    2004-04-01T23:59:59.000Z

    The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential gaps in monitoring and verification approaches needed to validate long-term storage efforts.

  14. Energy Department Project Captures and Stores One Million Metric...

    Broader source: Energy.gov (indexed) [DOE]

    formation. The project is part of the development phase of the Department's Regional Carbon Sequestration Partnerships initiative, which is helping develop and deploy carbon...

  15. Analysis of Solar Cell Quality Using Voltage Metrics: Preprint

    SciTech Connect (OSTI)

    Toberer, E. S.; Tamboli, A. C.; Steiner, M.; Kurtz, S.

    2012-06-01T23:59:59.000Z

    The highest efficiency solar cells provide both excellent voltage and current. Of these, the open-circuit voltage (Voc) is more frequently viewed as an indicator of the material quality. However, since the Voc also depends on the band gap of the material, the difference between the band gap and the Voc is a better metric for comparing material quality of unlike materials. To take this one step further, since Voc also depends on the shape of the absorption edge, we propose to use the ultimate metric: the difference between the measured Voc and the Voc calculated from the external quantum efficiency using a detailed balance approach. This metric is less sensitive to changes in cell design and definition of band gap. The paper defines how to implement this metric and demonstrates how it can be useful in tracking improvements in Voc, especially as Voc approaches its theoretical maximum.

  16. A Graph Analytic Metric for Mitigating Advanced Persistent Threat

    SciTech Connect (OSTI)

    Johnson, John R.; Hogan, Emilie A.

    2013-06-04T23:59:59.000Z

    This paper introduces a novel graph analytic metric that can be used to measure the potential vulnerability of a cyber network to specific types of attacks that use lateral movement and privilege escalation such as the well known Pass The Hash, (PTH). The metric is computed from an oriented subgraph of the underlying cyber network induced by selecting only those edges for which a given property holds between the two vertices of the edge. The metric with respect to a select node on the subgraph is defined as the likelihood that the select node is reachable from another arbitrary node in the graph. This metric can be calculated dynamically from the authorization and auditing layers during the network security authorization phase and will potentially enable predictive deterrence against attacks such as PTH.

  17. Momentum space metric, non-local operator, and topological insulators

    E-Print Network [OSTI]

    Shunji Matsuura; Shinsei Ryu

    2010-07-13T23:59:59.000Z

    Momentum space of a gapped quantum system is a metric space: it admits a notion of distance reflecting properties of its quantum ground state. By using this quantum metric, we investigate geometric properties of momentum space. In particular, we introduce a non-local operator which represents distance square in real space and show that this corresponds to the Laplacian in curved momentum space, and also derive its path integral representation in momentum space. The quantum metric itself measures the second cumulant of the position operator in real space, much like the Berry gauge potential measures the first cumulant or the electric polarization in real space. By using the non-local operator and the metric, we study some aspects of topological phases such as topological invariants, the cumulants and topological phase transitions. The effect of interactions to the momentum space geometry is also discussed.

  18. Analyses Of Two End-User Software Vulnerability Exposure Metrics

    SciTech Connect (OSTI)

    Jason L. Wright; Miles McQueen; Lawrence Wellman

    2012-08-01T23:59:59.000Z

    The risk due to software vulnerabilities will not be completely resolved in the near future. Instead, putting reliable vulnerability measures into the hands of end-users so that informed decisions can be made regarding the relative security exposure incurred by choosing one software package over another is of importance. To that end, we propose two new security metrics, average active vulnerabilities (AAV) and vulnerability free days (VFD). These metrics capture both the speed with which new vulnerabilities are reported to vendors and the rate at which software vendors fix them. We then examine how the metrics are computed using currently available datasets and demonstrate their estimation in a simulation experiment using four different browsers as a case study. Finally, we discuss how the metrics may be used by the various stakeholders of software and to software usage decisions.

  19. Directional Hölder metric subregularity and application to tangent ...

    E-Print Network [OSTI]

    2014-11-04T23:59:59.000Z

    When ? = 1, we write and say simply SCr1F(¯x, ¯y)(u) := SCrF(¯x, ¯y)(u) : the directional strict limit set critical for metric subregularity of F at (¯x, ¯y) in direction u.

  20. algorithm performance metrics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: New set of metrics for the computational performance of IS-ENES Earth System Models TRCMGC1473 U performance of Earth System Models is developed and used for an...

  1. An SMT-Selection Metric to Improve Multithreaded Applications' Performance

    E-Print Network [OSTI]

    Fedorova, Alexandra

    An SMT-Selection Metric to Improve Multithreaded Applications' Performance Justin R. Funston Simon Fraser University* Abstract--Simultaneous multithreading (SMT) increases CPU utilization- cation scalability or when there is significant contention for CPU resources. This paper describes an SMT

  2. Measures of agreement between computation and experiment:validation metrics.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; Oberkampf, William Louis

    2005-08-01T23:59:59.000Z

    With the increasing role of computational modeling in engineering design, performance estimation, and safety assessment, improved methods are needed for comparing computational results and experimental measurements. Traditional methods of graphically comparing computational and experimental results, though valuable, are essentially qualitative. Computable measures are needed that can quantitatively compare computational and experimental results over a range of input, or control, variables and sharpen assessment of computational accuracy. This type of measure has been recently referred to as a validation metric. We discuss various features that we believe should be incorporated in a validation metric and also features that should be excluded. We develop a new validation metric that is based on the statistical concept of confidence intervals. Using this fundamental concept, we construct two specific metrics: one that requires interpolation of experimental data and one that requires regression (curve fitting) of experimental data. We apply the metrics to three example problems: thermal decomposition of a polyurethane foam, a turbulent buoyant plume of helium, and compressibility effects on the growth rate of a turbulent free-shear layer. We discuss how the present metrics are easily interpretable for assessing computational model accuracy, as well as the impact of experimental measurement uncertainty on the accuracy assessment.

  3. A FLUKA Study of $\\beta$-delayed Neutron Emission for the Ton-size DarkSide Dark Matter Detector

    E-Print Network [OSTI]

    Empl, Anton

    2014-01-01T23:59:59.000Z

    In the published cosmogenic background study for a ton-sized DarkSide dark matter search, only prompt neutron backgrounds coincident with cosmogenic muons or muon induced showers were considered, although observation of the initiating particle(s) was not required. The present paper now reports an initial investigation of the magnitude of cosmogenic background from $\\beta$-delayed neutron emission produced by cosmogenic activity in DarkSide. The study finds a background rate for $\\beta$-delayed neutrons in the fiducial volume of the detector on the order of < 0.1 event/year. However, detailed studies are required to obtain more precise estimates. The result should be compared to a radiogenic background event rate from the PMTs inside the DarkSide liquid scintillator veto of 0.2 events/year.

  4. Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

    1996-10-01T23:59:59.000Z

    Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

  5. EINSTEIN METRICS ON RATIONAL HOMOLOGY SPHERES CHARLES P. BOYER AND KRZYSZTOF GALICKI

    E-Print Network [OSTI]

    EINSTEIN METRICS ON RATIONAL HOMOLOGY SPHERES CHARLES P. BOYER AND KRZYSZTOF GALICKI 1. Introduction In this paper we prove the existence of Einstein metrics, actually Sasakian- Einstein metrics is known about the existence of Einstein metrics on rational homology spheres, and the known ones

  6. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  7. Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2013-05-06T23:59:59.000Z

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  8. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  9. Chenli Zhang M.S. Candidate

    E-Print Network [OSTI]

    Gray, Matthew

    %) Other (23%) P1 (IPCC 2007) #12;11/4/13 2 } Carbon Dioxide Emissions Total U.S. carbon emissions & Wood Products - plus avoided emissions P3 Carbon storage over time under a no-harvest scenario compared from energy consumption peaked at about 6 billion metric tons in 2007. Projections for this year

  10. DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone

    Broader source: Energy.gov [DOE]

    The Midwest Regional Carbon Sequestration Partnership, one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest.

  11. SUPERCONDUCTING NON-SCALING FFAG GANTRY FOR CARBON-PROTON CANCER THERAPY

    SciTech Connect (OSTI)

    TRBOJEVIC,D.; GUPTA, R.; PARKER, B.; KEIL, E.; SESSLER, A.M.

    2007-06-25T23:59:59.000Z

    We report on improvements in the non-scaling Fixed Field Alternating Gradient (FFAG) gantry design. As we previously reported, a major challenge of the carbodproton cancer therapy facilities is isocentric gantry design. The weight of the isocentric gantry transport elements in the latest Heidelberg carbon/proton facility is 135 tons. In this report we detail improvements to the previous non-scaling gantry design. We estimate that this non-scaling FFAG gantry would be almost hundred times lighter than traditional heavy ion gantries. Very strong focusing with small dispersion permits passage of different energies of carbon beams through the gantry's fixed magnetic field.

  12. The rate of carbonic acid decomposition in sea water and its oceanographic significance

    E-Print Network [OSTI]

    Park, Kilho

    1957-01-01T23:59:59.000Z

    of boric acid) 22oC 8. 20 20. 1+ 1. 00 x I& 1. 08 x 10 2. 01 x 10 9 003 (Carbonate concentration) pK1 I pK2 1 pKB ZH3B03 (Total boron) T. A. (Titration alkalinity) C. A. (Carbonate all. alinity) 8. 70 3. 84 x 10 moles/liter -5 240. 1 x 10... III. EVIDENCE FOR THE UTILIZATION OF BICARBONATE ION BY MARII'Z PHYTOPI Ah%TON IN PHOTOSYNTHESIS General Consider tions Ihprt tl Materials and Apparatus . Procedures and Results . 43 46 Discussion SVMNARY AND CONC LOS IONS B I BI, IO GRAPHY...

  13. EA-1835: Midwest Regional Carbon Sequestration Partnership (MRCSP) Phase II Michigan Basin Project in Chester Township, Michigan

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide approximately $65.5 million in financial assistance in a cost-sharing arrangement with the project proponent, MRCSP. MRCSP's proposed project would use CO2 captured from an existing natural gas processing plant in Chester Township, pipe it approximately 1 mile to an injection well, and inject it into a deep saline aquifer for geologic sequestration. This project would demonstrate the geologic sequestration of 1,000,000 metric tons of CO2 over a 4-year period. The project and EA are on hold.

  14. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2004. Yttrium

    E-Print Network [OSTI]

    , trichromatic fluorescent lights, temperature sensors, and X-ray-intensifying screens. Yttrium also was used, seals and bearings, high-temperature refractories for continuous-casting nozzles, jet engine coatings in yttrium-aluminum garnet laser crystals used in industrial cutting and welding, medical and dental surgical

  15. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2003.

    E-Print Network [OSTI]

    , trichromatic fluorescent lights, temperature sensors, and X-ray-intensifying screens. Yttrium also was used, seals and bearings, high-temperature refractories for continuous-casting nozzles, jet engine coatings in yttrium-aluminum garnet laser crystals used in industrial cutting and welding, medical and dental surgical

  16. (Data in metric tons of yttrium oxide (Y2O3) content, unless noted) Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the

    E-Print Network [OSTI]

    in phosphors used in color televisions and computer monitors, trichromatic fluorescent lights, temperature-resistant and corrosion-resistant cutting tools, seals and bearings, high-temperature refractories for continuous casting was an important component in yttrium-aluminum garnets (YAG) laser crystals used in industrial cutting and welding

  17. [Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted] Domestic Production and Use: Rare earths were mined by one U.S. company in 2012. Bastnasite, a rare-earth

    E-Print Network [OSTI]

    communications, distance and temperature sensing, industrial cutting and welding, nonlinear optics televisions and computer monitors, temperature sensors, trichromatic fluorescent lights, and x-ray-intensifying screens. Yttria-stabilized zirconia was used in alumina-zirconia abrasives, bearings and seals, high-temperature

  18. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnsite

    E-Print Network [OSTI]

    televisions and computer monitors, trichromatic fluorescent lights, temperature sensors, and x-resistant and corrosion-resistant cutting tools, seals and bearings, high-temperature refractories for continuous was an important component in yttrium-aluminum garnet laser crystals used in industrial cutting and welding

  19. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral

    E-Print Network [OSTI]

    and computer monitors, trichromatic fluorescent lights, temperature sensors, and X-ray-intensifying screens, seals and bearings, high- temperature refractories for continuous-casting nozzles, jet engine coatings in yttrium-aluminum garnet laser crystals used in industrial cutting and welding, medical and dental surgical

  20. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2010. All

    E-Print Network [OSTI]

    communications, distance and temperature sensing, industrial cutting and welding, nonlinear optics televisions and computer monitors, temperature sensors, trichromatic fluorescent lights, and x-ray-intensifying screens. Yttria-stabilized zirconia was used in alumina-zirconia abrasives, bearings and seals, high-temperature

  1. (Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the

    E-Print Network [OSTI]

    , temperature sensors, and X-ray intensifying screens. As a stabilizer in zirconia, yttrium was used in wear-resistant and corrosion-resistant cutting tools, seals and bearings, high- temperature refractories for continuous was an important component in yttrium-aluminum garnet laser crystals used in industrial cutting and welding

  2. (Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined by one company as a constituent of the

    E-Print Network [OSTI]

    , temperature sensors, and X-ray intensifying screens. As a stabilizer in zirconia, yttrium was used in wear-resistant and corrosion-resistant cutting tools, seals and bearings, high-temperature refractories for continuous was an important component in yttrium-aluminum garnet laser crystals used in industrial cutting and welding

  3. [Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted] Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2010. All

    E-Print Network [OSTI]

    communications, distance and temperature sensing, industrial cutting and welding, nonlinear optics televisions and computer monitors, temperature sensors, trichromatic fluorescent lights, and x-ray-intensifying screens. Yttria-stabilized zirconia was used in alumina-zirconia abrasives, bearings and seals, high-temperature

  4. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnasite,

    E-Print Network [OSTI]

    and computer monitors, trichromatic fluorescent lights, temperature sensors, and X-ray-intensifying screens, seals and bearings, high- temperature refractories for continuous-casting nozzles, jet engine coatings in yttrium-aluminum garnet laser crystals used in industrial cutting and welding, medical and dental surgical

  5. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2005. All

    E-Print Network [OSTI]

    televisions and computer monitors, trichromatic fluorescent lights, temperature sensors, and X-resistant and corrosion-resistant cutting tools, seals and bearings, high-temperature refractories for continuous was an important component in yttrium-aluminum garnet laser crystals used in industrial cutting and welding

  6. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2007. All

    E-Print Network [OSTI]

    televisions and computer monitors, trichromatic fluorescent lights, temperature sensors, and X-resistant and corrosion- resistant cutting tools, seals and bearings, high-temperature refractories for continuous was an important component in yttrium- aluminum garnet laser crystals used in industrial cutting and welding

  7. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2006. All

    E-Print Network [OSTI]

    televisions and computer monitors, trichromatic fluorescent lights, temperature sensors, and X-resistant and corrosion- resistant cutting tools, seals and bearings, high-temperature refractories for continuous was an important component in yttrium- aluminum garnet laser crystals used in industrial cutting and welding

  8. (Data in metric tons of yttrium oxide (Y O ) content, unless otherwise noted)2 3 Domestic Production and Use: The rare-earth element, yttrium, was mined as a constituent of the mineral bastnasite,

    E-Print Network [OSTI]

    used in color televisions and computer monitors, trichromatic fluorescent lights, temperature sensors-resistant and corrosion-resistant cutting tools, seals and bearings, high-temperature refractories for continuous was an important component in yttrium-aluminum garnet laser crystals used in industrial cutting and welding

  9. (Data in metric tons of yttrium oxide (Y2O3) content unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was not mined in the United States in 2009. All

    E-Print Network [OSTI]

    communications, distance and temperature sensing, industrial cutting and welding, nonlinear optics televisions and computer monitors, temperature sensors, trichromatic fluorescent lights, and x-ray-intensifying screens. Yttria-stabilized zirconia was used in alumina-zirconia abrasives, bearings and seals, high-temperature

  10. (Data in metric tons of yttrium oxide (Y2O3) content, unless otherwise noted) Domestic Production and Use: The rare-earth element yttrium was mined as a constituent of the mineral bastnasite

    E-Print Network [OSTI]

    and computer monitors, trichromatic fluorescent lights, temperature sensors, and x-ray-intensifying screens, seals and bearings, high- temperature refractories for continuous-casting nozzles, jet engine coatings in yttrium-aluminum garnet laser crystals used in industrial cutting and welding, medical and dental surgical

  11. (Data in thousand metric tons of boric oxide (B O ), unless otherwise noted)2 3 Domestic Production and Use: The estimated value of boric oxide contained in minerals and compounds produced in

    E-Print Network [OSTI]

    to reduce debt. The company leased the facilities for a term of 15 years. Electricity and steam produced), 14% (Foreign). Government Stockpile: None. Prepared by Phyllis A. Lyday, (703) 648-7713 [Fax: (703, insulating and reinforcing fiberglass, and agriculture. One company sold its electric and steam generating

  12. (Data in metric tons of contained lithium, unless otherwise noted) Domestic Production and Use: For the first time in history, Chile surpassed the United States as the largest producer

    E-Print Network [OSTI]

    . Reprocessed lithium salts from battery recycling and lithium hydroxide monohydrate from former Department apparent consumption E E E E E Recycling: Insignificant, but growing through the recycling of lithium batteries. Import Sources (1993-96): Chile, 97%; and other, 3%. Tariff: Item Number Most favored nation (MFN

  13. (Data in metric tons of tin content unless otherwise noted) Domestic Production and Use: Tin has not been mined or smelted in the United States since 1993 and 1989,

    E-Print Network [OSTI]

    ,410 9,800 3,170 5,630 6,200 Shipments from Government stockpile excesses 4,540 60 -- -- -- Consumption: electrical, 29%; cans and containers, 18%; construction, 13%; transportation, 12%; and other, 28 as follows: primary metal consumed, $980 million; imports for consumption, refined tin, $1.36 billion

  14. (Data in metric tons of silver content, unless otherwise noted)1 Domestic Production and Use: Silver, produced by about 76 mines in 16 States, had an estimated value of $338

    E-Print Network [OSTI]

    ,8002 Shipments from Government stockpile excesses 186 220 232 109 250 Consumption, apparent NA NA NA 4,980 5 and technical uses. Industrial and technical uses include photographic materials, electrical products, catalysts NA 1,360 1,700 Imports for consumption 2,600 3,250 3,010 2,540 2,6002 Exports 967 2,890 2,950 3,080 3

  15. (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: In 2001, no tin was mined domestically. Production of tin at the only U.S. tin smelter,

    E-Print Network [OSTI]

    ,770 6,640 6,800 Shipments from Government stockpile excesses 11,700 12,200 765 12,000 12,000 Consumption: cans and containers, 30%; electrical, 20%; construction, 10%; transportation, 10%; and other, 30: primary metal consumed, $278 million; imports for consumption, refined tin, $326 million; and secondary

  16. (Data in metric tons of tin content, unless otherwise noted) Domestic Production and Use: In 2000, no tin was mined domestically. Production of tin at the only U.S. tin

    E-Print Network [OSTI]

    ,020 6,770 7,000 Shipments from Government stockpile excesses 11,800 11,700 12,200 765 12,000 Consumption: cans and containers, 30%; electrical, 20%; construction, 10%; transportation, 10%; and other, 30: primary metal consumed, $318 million; imports for consumption, refined tin, $391 million; and secondary

  17. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2009, based on zinc contained in concentrate, was about

    E-Print Network [OSTI]

    and mill, number3 1,620 1,680 2,290 2,520 1,540 Smelter primary, number 600 246 264 250 230 Net import materials--mainly electric arc furnace dust, as well as galvanizing residues. Import Sources (2005-08): Ore and concentrate: Peru, 68%; Ireland, 15%; Mexico, 14%; Canada, 2%; and other, 1%. Metal: Canada, 70%; Mexico, 15

  18. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2013, based on zinc contained in concentrate, was about

    E-Print Network [OSTI]

    , number 248 255 244 252 252 Net import reliance 5 as a percentage of apparent consumption (refined zinc materials included galvanizing residues and crude zinc oxide processed from electric arc furnace dust. Import Sources (2009­12): Ore and concentrate: Peru, 76%; Ireland, 8%; Mexico, 8%; Canada, 7%; and other

  19. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million

    E-Print Network [OSTI]

    --Arizona, Utah, Nevada, New Mexico, and Montana--accounted for more than 99% of domestic production; copper also, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 49%; electric and mill, thousands 8.4 9.7 11.9 8.3 8.7 Net import reliance 4 as a percentage of apparent consumption 38

  20. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2010, based on zinc contained in concentrate, was about

    E-Print Network [OSTI]

    : Mine and mill, number 3 1,680 2,290 2,520 1,580 1,740 Smelter primary, number 246 264 250 248 250 Net secondary materials--mainly electric arc furnace dust, as well as galvanizing residues. Import Sources (2006­09): Ore and concentrate: Peru, 69%; Ireland, 16%; Mexico, 13%; and Canada, 2%. Metal: Canada, 73%; Mexico