National Library of Energy BETA

Sample records for metric tons carbon

  1. "(Million Metric Tons Carbon Dioxide)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: International Energy Outlook 2010" "Report #: DOE/EIA-0484(2010)" "application/vnd.ms-excel" "U.S. history values from this report" "U.S. projections from AEO2011, early release" "Table 4. World energy-related carbon dioxide emissions and shares by region, 1990-2035",,,,,,,,,,,,,,"Additional data for analysis" "(Million Metric Tons Carbon Dioxide)"

  2. In Milestone, Energy Department Projects Safely and Permanently Store 10 Million Metric Tons of Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Carbon Capture and Storage projects supported by the Department reached a milestone of 10 million tons of carbon dioxide.

  3. Table 11.1 Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal 3 Natural Gas 4 Petroleum Total 2,9 Biomass 2 Aviation Gasoline Distillate Fuel Oil 5 Jet Fuel Kero- sene LPG 6 Lubri- cants Motor Gasoline 7 Petroleum Coke Residual Fuel Oil Other 8 Total Wood 10 Waste 11 Fuel Ethanol 12 Bio- diesel Total 1949 1,118 270 12 140 NA 42 13 7 329 8 244 25 820 2,207 145 NA NA NA 145 1950 1,152 313 14 168 NA 48 16 9 357 8 273 26 918 2,382 147 NA NA

  4. Table 11.2a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene Liquefied Petroleum Gases Total Wood 6 Total 6 1949 121 55 51 21 7 80 66 321 99 99 1950 120 66 61 25 9 95 69 350 94 94 1951 111 81 68 27 10 105 78 374 90 90 1952 103 89 70 27 10 108 85 385 84 84 1953 92 93 71 26 11 108 94 387 78 78 1954 82 104 79 27 12 118 99 404 75 75

  5. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  6. Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7 14 35 NA (s) 5 332 95 481 6 640 NA NA NA 1951 129 11 18 42 NA (s) 6 360 102 529 7 675 NA NA NA

  7. Energy Department Project Captures and Stores One Million Metric Tons of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon | Department of Energy One Million Metric Tons of Carbon Energy Department Project Captures and Stores One Million Metric Tons of Carbon January 8, 2015 - 11:18am Addthis News Media Contact 202-586-4940 Energy Department Project Captures and Stores One Million Metric Tons of Carbon Project Achieves Major Milestone by Successfully Injecting Carbon into Saline Formation WASHINGTON - As part of President Obama's all-of-the-above energy strategy, the Department of Energy announced today

  8. Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66 63 297 2 NA NA 2 1951 125 25 21 4 3 8 NA 34 70 69 289 2 NA NA 2 1952 112 28 22 4 3 8 NA 35 71 73

  9. Table 11.2e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Geo- thermal Non- Biomass Waste 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Petroleum Coke Residual Fuel Oil Total Wood 6 Waste 7 Total 1949 187 30 2 NA 30 33 NA NA 250 1 NA 1 1950 206 35 2 NA 35 37 NA NA 278 1 NA 1 1951 235 42 2 NA 29 31 NA NA 308 1 NA 1 1952 240 50 2 NA 31 33 NA NA 323 1 NA 1 1953 260 57 3 NA 38 40 NA NA 358 (s) NA (s)

  10. 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This carbon dioxide (CO2) has been injected in the United States as part of DOEs Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the...

  11. 11,202,720 Metric Tons of CO2 Injected as of October 14, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is ...

  12. Energy Department Sponsored Project Captures One Millionth Metric Ton of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CO2 | Department of Energy Sponsored Project Captures One Millionth Metric Ton of CO2 Energy Department Sponsored Project Captures One Millionth Metric Ton of CO2 June 27, 2014 - 11:09am Addthis An aerial view of Air Products’ steam methane reforming facility at Port Arthur, Texas. | Photo courtesy of Air Products and Chemicals Inc. An aerial view of Air Products' steam methane reforming facility at Port Arthur, Texas. | Photo courtesy of Air Products and Chemicals Inc. Allison Lantero

  13. U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S.

  14. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for

    National Nuclear Security Administration (NNSA)

    Civilian Reactors | National Nuclear Security Administration Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for Civi Washington, DC Secretary Abraham announced that DOE will dispose of 34 metric tons of surplus weapons grade plutonium by turning the material into mixed oxide fuel (MOX) for use in nuclear reactors. The decision follows an exhaustive Administration review of

  15. Taking the One-Metric-Ton Challenge | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taking the One-Metric-Ton ... Taking the One-Metric-Ton Challenge Posted: January 13, 2016 - 4:46pm NNSA Uranium Program Manager Tim Driscoll speaks with the One-Metric-Ton Challenge team in Building 9212. The team has undertaken an extensive dedicated maintenance effort to improve metal production equipment reliability and reduce unexpected down time, with an end goal of significantly increasing purified metal production by fiscal year 2017. Last year, NNSA Uranium Program Manager Tim Driscoll

  16. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weapons Stockpile | Department of Energy to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will

  17. Common Carbon Metric | Open Energy Information

    Open Energy Info (EERE)

    Common Carbon Metric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Common Carbon Metric AgencyCompany Organization: United Nations Environment Programme, World...

  18. Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614 1983 71 43 114

  19. Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of Methane)

    U.S. Energy Information Administration (EIA) Indexed Site

    Methane Emissions, 1980-2009 (Million Metric Tons of Methane) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 9 Total 5 Coal Mining Natural Gas Systems 1 Petroleum Systems 2 Mobile Com- bustion 3 Stationary Com- bustion 4 Total 5 Landfills Waste- water Treatment 6 Total 5 Enteric Fermen- tation 7 Animal Waste 8 Rice Cultivation Crop Residue Burning Total 5 1980 3.06 4.42 NA 0.28 0.45 8.20 10.52 0.52 11.04 5.47 2.87 0.48 0.04 8.86 0.17 28.27 1981 2.81 5.02 NA .27

  20. 10,422,136 Metric Tons of CO2 Injected as of August 21, 2015...

    Broader source: Energy.gov (indexed) [DOE]

    The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program and the Major Demonstration Program are detailed below. Regional Carbon...

  1. Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,573,566,415 218,383,703 145,398,976 363,247 5,590,014 1,943,302,355 14,468,564 1,059 984,406

  2. Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,520,229,870 169,653,294 133,545,718 363,247 4,365,768 1,828,157,897 13,815,263 832 809,873 6,874

  3. Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8<//td> 1989 2,319,630 1,542,083 637,423 [ –] 803,754 5,302,890 37,398 4

  4. DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

    Broader source: Energy.gov [DOE]

    Building on an initial injection project of 10,000 metric tons of carbon dioxide into a Michigan geologic formation, a U.S. Department of Energy team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change.

  5. Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrics Metrics Los Alamos expands its innovation network by engaging in sponsored research and licensing across technical disciplines. These agreements are the basis of a working relationship with industry and other research institutions and highlight the diversity of our collaborations. Los Alamos has a remarkable 70-year legacy of creating entirely new technologies that have revolutionized the country's understanding of science and engineering. Collaborations Data from Fiscal Year 2014. FY14

  6. Table 5. Per capita energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Per capita energy-related carbon dioxide emissions by State (2000-2011)" "metric tons of carbon dioxide per person" ,,,"Change" ,,,"2000 to 2011"...

  7. Table 2. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by fuel " ,"million metric tons of carbon dioxide",,,,,"shares" "State","Coal","Petroleum","Natural Gas ","Total",,"Coal","Petrol...

  8. Table 3. 2011 State energy-related carbon dioxide emissions by...

    U.S. Energy Information Administration (EIA) Indexed Site

    2011 State energy-related carbon dioxide emissions by sector " "million metric tons of carbon dioxide" "State","Commercial","Electric Power","Residential","Industrial","Transportat...

  9. Table 1. State energy-related carbon dioxide emissions by year...

    U.S. Energy Information Administration (EIA) Indexed Site

    State energy-related carbon dioxide emissions by year (2000-2011)" "million metric tons of carbon dioxide" ,,,"Change" ,,,"2000 to 2011" "State",2000,2001,2002,...

  10. Table 8. Carbon intensity of the economy by State (2000-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon intensity of the economy by State (2000-2011)" "metric tons energy-related carbon dioxide per million dollars of GDP" ,,,"Change" ,,,"2000 to 2011"...

  11. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  12. DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metric Tons of U.S. CO2 Storage Resource | Department of Energy Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource DOE's Carbon Utilization and Storage Atlas Estimates at Least 2,400 Billion Metric Tons of U.S. CO2 Storage Resource December 19, 2012 - 12:00pm Addthis Washington, DC - The United States has at least 2,400 billion metric tons of possible carbon dioxide (CO2) storage resource in saline formations, oil and gas

  13. Carbon Capture and Storage from Industrial Sources

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, according to data from...

  14. Energy-Related Carbon Dioxide Emissions at the State Level, 2000...

    U.S. Energy Information Administration (EIA) Indexed Site

    20 Table 8. Carbon intensity of the economy by state (2000-2013) metric tons of energy-related carbon dioxide per million chained 2009 dollars of GDP Change (2000-2013) State 2000 ...

  15. Energy Department Project Captures and Stores more than One Million Metric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tons of CO2 | Department of Energy more than One Million Metric Tons of CO2 Energy Department Project Captures and Stores more than One Million Metric Tons of CO2 June 26, 2014 - 11:30am Addthis Aerial view of Air Products’ existing steam methane reforming facility at Port Arthur, Texas, with new carbon-capture units and central co-gen and CO2 product compressor. | Photo courtesy of Air Products and Chemicals Inc. Aerial view of Air Products' existing steam methane reforming facility at

  16. Carbon Capture and Storage from Industrial Sources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 2009, the industrial sector accounted for slightly more than one-quarter of total U.S. carbon dioxide (CO2) emissions of 5,405 million metric tons from energy consumption, ...

  17. NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Atlas V), which shows prospective carbon dioxide (CO2) storage resources of at least 2,600 billion metric tons - an increase over the findings of the 2012 Atlas. Atlas V is a ...

  18. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    SciTech Connect (OSTI)

    Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick; Lee, Mark W.; Jalistegi, Satish S.

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have demonstrated the predicted increase in binding energy experimentally, currently at ~10 kJ/mol. The synthetic route for incorporation of boron at the outset is to create appropriately designed copoly- mers, with a boron-free and a boron-carrying monomer, followed by pyrolysis of the polymer, yielding a bo- ron-substituted carbon scaffold in which boron atoms are bonded to carbon atoms by synthesis. This is in contrast to a second route (funded by DE-FG36-08GO18142) in which first high-surface area carbon is cre- ated and doped by surface vapor deposition of boron, with incorporation of the boron into the lattice the final step of the fabrication. The challenge in the first route is to create high surface areas without compromising sp2 boron-carbon bonds. The challenge in the second route is to create sp2 boron-carbon bonds without com- promising high surface areas.

  19. New Energy Efficiency Standards for Electric Motors and Walk-in Coolers and Freezers to Save on Energy Bills and Reduce Carbon Pollution

    Broader source: Energy.gov [DOE]

    These standards combined will help reduce harmful carbon pollution by up to 158 million metric tons – equivalent to the annual electricity use of more than 21 million homes – and save businesses $26 billion on utility bills through 2030.

  20. Transportation system benefits of early deployment of a 75-ton multipurpose canister system

    SciTech Connect (OSTI)

    Wankerl, M.W.; Schmid, S.P.

    1995-12-31

    In 1993 the US Civilian Radioactive Waste Management System (CRWMS) began developing two multipurpose canister (MPC) systems to provide a standardized method for interim storage and transportation of spent nuclear fuel (SNF) at commercial nuclear power plants. One is a 75-ton concept with an estimated payload of about 6 metric tons (t) of SNF, and the other is a 125-ton concept with an estimated payload of nearly 11 t of SNF. These payloads are two to three times the payloads of the largest currently certified US rail transport casks, the IF-300. Although is it recognized that a fully developed 125-ton MPC system is likely to provide a greater cost benefit, and radiation exposure benefit than the lower-capacity 75-ton MPC, the authors of this paper suggest that development and deployment of the 75-ton MPC prior to developing and deploying a 125-ton MPC is a desirable strategy. Reasons that support this are discussed in this paper.

  1. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2

    Broader source: Energy.gov [DOE]

    A large-scale carbon dioxide storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected.

  2. STAR METRICS

    Broader source: Energy.gov [DOE]

    Energy continues to define Phase II of the STAR METRICS program, a collaborative initiative to track Research and Development expenditures and their outcomes. Visit the STAR METRICS website for...

  3. E TON Solar Tech | Open Energy Information

    Open Energy Info (EERE)

    Solar Tech Jump to: navigation, search Name: E-TON Solar Tech Place: Tainan, Taiwan Zip: 709 Product: Taiwan-based manufacturer of PV cells. Coordinates: 22.99721, 120.180862...

  4. Bioenergy Impacts … Billion Dry Tons

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 2030 at least one billion dry tons of non-food biomass resources, yielding up to 60 billion gallons of biofuels, as well as bio- based chemicals, products, and electricity. ...

  5. Metric Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MODERN GRID S T R A T E G Y Smart Grid Metrics Monitoring our Progress Smart Grid Implementation Workshop Joe Miller - Modern Grid Team June 19, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Many are working on the Smart Grid FERC DOE-OE Grid 2030 GridWise Alliance EEI NERC (FM) DOE/NETL Modern Grid

  6. NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential | Department of Energy NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential NETL's 2015 Carbon Storage Atlas Shows Increase in U.S. CO2 Storage Potential September 28, 2015 - 9:49am Addthis The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) today released the fifth edition of the Carbon Storage Atlas (Atlas V), which shows prospective carbon dioxide (CO2) storage resources of at least 2,600 billion metric tons - an increase

  7. Billion Ton Study-A Historical Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Billion Ton Study-A Historical Perspective Billion Ton Study-A Historical Perspective Breakout Session 1A: Biomass Feedstocks for the Bioeconomy Billion Ton Study-A Historical Perspective Bryce Stokes, Senior Advisor, CNJV PDF icon stokes_bioenergy_2015.pdf More Documents & Publications Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs WEBINAR: A CHANGING MARKET FOR BIOFUELS AND BIOPRODUCTS U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts

  8. 10,651,176 Metric Tons of CO2 Injected as of September 16, 2015...

    Broader source: Energy.gov (indexed) [DOE]

    Products has successfully retrofitted its two Port Arthur SMRs with a vacuum swing adsorption system to separate the CO2 from the process gas stream, followed by compression and...

  9. NNSA Eliminates 100 Metric Tons Of Weapons-Grade Nuclear Material...

    National Nuclear Security Administration (NNSA)

    secure and less expensive nuclear weapons complex. ... sale of LEU for safe use in power and research reactors around the world. ... NNSA maintains and enhances the safety, security, ...

  10. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, ... Approximately 20 MT will be reserved for space and research reactors that currently use ...

  11. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...

    National Nuclear Security Administration (NNSA)

    Administration review of non-proliferation programs, including alternative technologies to dispose of surplus plutonium to meet the non-proliferation goals agreed to by the United ...

  12. 11,970,363 Metric Tons of CO2 Injected as of February 23, 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Air Products has successfully retrofitted its two Port Arthur SMRs with a vacuum swing adsorption system to separate the CO2 from the process gas stream, followed by compression ...

  13. 11,970,363 Metric Tons of CO2 Injected as of February 23, 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The network of seven RCSPs are currently conducting field tests which involve integrated system testing and validation of geologic storage, simulation and risk assessment, and ...

  14. "Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO

  15. New Energy Efficiency Standards for Furnace Fans to Reduce Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by 340 million metric tons through 2030," said Energy Secretary Ernest Moniz. "These standards help Americans save money by saving energy while also protecting the environment. ...

  16. ARM - 2008 Performance Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Performance Metrics Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate...

  17. ARM - 2006 Performance Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Performance Metrics Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate...

  18. ARM - 2009 Performance Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Performance Metrics Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate...

  19. Webinar: Building the Billion Ton Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building the Billion Ton Bioeconomy Webinar: Building the Billion Ton Bioeconomy May 5, 2016 2:00PM to 4:00PM EDT Online Join the Biomass Research and Development (R&D) Board Operations Committee at a bioeconomy listening session on Thursday, May 5, 2 p.m.-4 p.m. Eastern Time. During the listening session, titled "Building a Billion Ton Bioeconomy in the United States," we encourage attendees to provide their thoughts and comments and to ask questions about the potential to grow

  20. Picture of the Week: The 100-Ton Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 The 100-Ton Test Before the historic Trinity test on July 16th, 1945, Los Alamos scientists conducted a host of other experiments designed to ensure that they would be ready to...

  1. Surveillance metrics sensitivity study.

    SciTech Connect (OSTI)

    Hamada, Michael S.; Bierbaum, Rene Lynn; Robertson, Alix A.

    2011-09-01

    In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

  2. Table 10 U.S. Carbon Dioxide Emissions from Industrial Sector Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Industrial Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Petroleum" " Motor Gasoline",,13.19,13.779,13.882,12.707,13.56,14.091,14.108,14.93,14.057,10.664,10.555,20.734,21.724,22.677,26,24.788,26.141,21.23,16.982,16.857 "

  3. Table 6 U.S. Carbon Dioxide Emissions from Energy and Industry, 1990-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Energy and Industry, 1990-2009" " (Million Metric Tons Carbon Dioxide )" ,,,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 "Energy Consumption" " Petroleum",,,,2186.572,2133.958,2179.897,2184.16,2221.028,2207.112,2290.191,2312.879,2357.929,2416.523,2460.593,2473.32,2471.581,2518.36,2608.579,2627.641,2602.51,2603.153,2443.536,2318.839 " Coal

  4. Table 8 U.S. Carbon Dioxide Emissions from Residential Sector Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Residential Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Diioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Petroleum" " LPG",,22.21,23.85,23.299,24.571,24.199,24.901,29.564,28.685,26.735,33.175,34.998,33.156,33.879,34.341,32.277,32.346,28.1,30.505,34.861,36.5 " Distillate

  5. Table 9 U.S. Carbon Dioxide Emissions from Commercial Sector Energy Consumption,

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Carbon Dioxide Emissions from Commercial Sector Energy Consumption, 1990-2009" " (Million Metric Tons of Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Petroleum" " Motor Gasoline",,7.919,6.063,5.688,2.095,1.777,1.276,1.873,3.011,2.746,1.998,3.129,2.631,3.172,4.193,3.122,3.185,3.382,4.242,3.106,3.083 "

  6. Metric Construction | Open Energy Information

    Open Energy Info (EERE)

    Metric Construction Jump to: navigation, search Name: Metric Construction Place: Boston, MA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test...

  7. Table 7. U.S. Energy-Related Carbon Dioxide Emissions by End-Use Sector, 1990-20

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy-Related Carbon Dioxide Emissions by End-Use Sector, 1990-2009" " (Million Metric Tons Carbon Dioxide)" ,,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 " Residential",,963.38,980.093,981.418,1039.553,1032.275,1039.099,1099.143,1089.835,1097.465,1121.649,1185.104,1171.525,1203.666,1230.086,1227.758,1261.459,1192.007,1242.002,1228.992,1162.154 "

  8. Cyber threat metrics.

    SciTech Connect (OSTI)

    Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott

    2012-03-01

    Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.

  9. Defining a Standard Metric for Electricity Savings

    SciTech Connect (OSTI)

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

  10. THERMAL MODELING ANALYSIS OF SRS 70 TON CASK

    SciTech Connect (OSTI)

    Lee, S.; Jordan, J.; Hensel, S.

    2011-03-08

    The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

  11. Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual Projected (million metric tons) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 5060 5130 5185 5240 5287 5335 5379 5438 5482 5529 5599 5658 5694 5738 5797 5874 5925 5984 AEO 1995 5137 5174 5188 5262 5309 5361 5394 5441 5489 5551 5621 5680 5727 5775 5841 5889 5944 AEO 1996 5182 5224 5295 5355 5417 5464 5525 5589 5660 5735 5812 5879 5925 5981 6030 6087 6142 6203

  12. Metrics for Energy Resilience

    SciTech Connect (OSTI)

    Paul E. Roege; Zachary A. Collier; James Mancillas; John A. McDonagh; Igor Linkov

    2014-09-01

    Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today?s energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system?s energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth.

  13. Sheet1 Water Availability Metric (Acre-Feet/Yr) Water Cost Metric ($/Acre-Foot)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sheet1 Water Availability Metric (Acre-Feet/Yr) Water Cost Metric ($/Acre-Foot) Current Water Use (Acre-Feet/Yr) Projected Use in 2030 (Acre-Feet/Yr) HUC_8 STATE BASIN SUBBASIN UNAPPROPRIATED SURFACE WATER METRIC UNAPPROPRIATED GROUNDWATER METRIC APPROPRIATED WATER METRIC BRACKISH GROUNDWATER METRIC WASTEWATER METRIC UNAPPROPRIATED GROUNDWATER COST METRIC APPROPRIATED WATER COST METRIC BRACKISH GROUNDWATER COST METRIC WASTEWATER COST METRIC M&I_2012 AG_2012 ENVIRONMENT 2012 THERMOELECTIC

  14. Module 6 - Metrics, Performance Measurements and Forecasting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 - Metrics, Performance Measurements and Forecasting Module 6 - Metrics, Performance Measurements and Forecasting This module focuses on the metrics and performance measurement ...

  15. Furnace Standard Analysis Discussion Document

    Office of Environmental Management (EM)

    heating systems could have on overall energy usage, cost, and carbon emissions outcomes. ... Tons 4.5 Metric Tons 3.5 Metric Tons Annual Cost 1,119 1,029 1,806 714 544 ...

  16. Ames Laboratory Metrics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrics Document Number: NA Effective Date: 01/2016 File (public): PDF icon ameslab_metrics_01-14-16

  17. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save 1 Billion, 11 Million Tons of CO2 through Energy...

  18. Neutrino physics with multi-ton scale liquid xenon detectors

    SciTech Connect (OSTI)

    Baudis, L.; Ferella, A.; Kish, A.; Manalaysay, A.; Undagoitia, T. Marrodn; Schumann, M., E-mail: laura.baudis@physik.uzh.ch, E-mail: alfredo.ferella@lngs.infn.it, E-mail: alexkish@physik.uzh.ch, E-mail: aaronm@ucdavis.edu, E-mail: marrodan@mpi-hd.mpg.de, E-mail: marc.schumann@lhep.unibe.ch [Physik Institut, University of Zrich, Winterthurerstrasse 190, Zrich, CH-8057 (Switzerland)

    2014-01-01

    We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 230 keV, where the sensitivity to solar pp and {sup 7}Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ? 2 10{sup ?48} cm{sup 2} and WIMP masses around 50 GeV?c{sup ?2}, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ? 6 GeV?c{sup ?2} to cross sections above ? 4 10{sup ?45}cm{sup 2}. DARWIN could reach a competitive half-life sensitivity of 5.6 10{sup 26} y to the neutrinoless double beta decay of {sup 136}Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.

  19. Daylight metrics and energy savings

    SciTech Connect (OSTI)

    Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

    2009-12-31

    The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

  20. Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Heat Pumps (5.4 >=< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER -

  1. U.S. Billion-Ton Update. Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    none,

    2011-08-01

    This report is an update to the 2005 Billion-Ton Study that addresses shotcomings and questions that arose from the original report..

  2. Disposal Facility Reaches 15-Million-Ton Milestone | Department of Energy

    Office of Environmental Management (EM)

    Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone July 30, 2013 - 12:00pm Addthis Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the

  3. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    Broader source: Energy.gov [DOE]

    An update to the 2005 report, "Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply"

  4. Removal of 1,082-Ton Reactor Among Richland Operations Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from groundwater across the site ahead of schedule and pumped a record volume of water through treatment facilities to remove contamination, with more than 130 tons of...

  5. List of SEP Reporting Metrics

    Broader source: Energy.gov [DOE]

    DOE State Energy Program List of Reporting Metrics, which was produced by the Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program for SEP and the Energy Efficiency and Conservation Block Grants (EECBG) programs.

  6. Performance Metrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metrics Performance Metrics RCA & CAP Documents RCA/CAP Closure Report 2011 - This RCA/CAP Closure Report presents a status of the Department's initiatives to address the most significant issues and their corresponding root causes and officially closes out most of the issues and root causes Root Cause Analysis Report (RCA) 2008 - The Root Cause Analysis report identifies the key elements necessary to make the meaningful changes required to consistently deliver projects within cost and

  7. Energy Department Finalizes $1.2 Billion Loan Guarantee to Support California Solar Generation

    Broader source: Energy.gov [DOE]

    Project funds more than 350 jobs and avoids more than 425,000 metric tons of carbon dioxide annually

  8. Buildings Performance Metrics Terminology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Metrics Terminology Buildings Performance Metrics Terminology This document provides the terms and definitions used in the Department of Energys Performance Metrics Research Project. PDF icon metrics_terminology_20090203.pdf More Documents & Publications Procuring Architectural and Engineering Services for Energy Efficiency and Sustainability Transmittal Letter for the Statewide Benchmarking Process Evaluation Guide for Benchmarking Residential Energy Efficiency Program

  9. Criticality safety review of 2 1/2 -, 10-, and 14-ton UF sub 6 cylinders

    SciTech Connect (OSTI)

    Broadhead, B.L.

    1991-01-01

    The US regulations governing the packaging and transportation of UF{sub 6} cylinders are contained in the publication 10CFR71. Under the current 10CFR71 regulations, packages are classified according to Fissile Class I, II, or III and a corresponding transport index (TI). UF{sub 6} cylinders designed to contain 2{1/2}-tons of UF{sub 6} are classified as Fissile Class II packages with a TI of 5 for the purpose of transportation. The 10-ton UF{sub 6} cylinders are classified as Fissile Class I with no TI assigned for transportation. The 14-ton cylinders are not certified for transport with enrichments greater than 1 wt % since they have no approved overpack. This work reviews the suitability of 2{1/2}-ton UF{sub 6} packages for reclassification as Fissile Class I with a maximum {sup 235}U enrichment of 5 wt %. Additionally, the 10- and 14-ton cylinders are reviewed to address a change in maximum {sup 235}U enrichment from 4.5 to 5 wt %. Based on this evaluation, the 2{1/2}-ton UF{sub 6} cylinders meet the 10CFR71 criteria for Fissile Class I packages, and no TI is needed for criticality safety purposes. Similarly, the 10- and 14-ton UF{sub 6} packages appear suitable for a maximum enrichment rating change to 5 wt % {sup 235}U. 6 refs., 4 figs., 1 tab.

  10. Why did they blow up 100 tons of TNT before the Trinity Test?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why did they blow up 100 tons of TNT before the Trinity Test? At the Bradbury Latest Issue:May 2016 all issues All Issues » submit Why did they blow up 100 tons of TNT before the Trinity Test? Science question of the month May 1, 2016 Sometimes people ask us a question and we try to answer them How do you calibrate instruments for a test that's never been done before? Great question. The 100-ton test was performed before the Trinity test to calibrate instruments prepared to explore the expected

  11. Photo of the Week: Smashing Atoms with 80-ton Magnets | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Smashing Atoms with 80-ton Magnets Photo of the Week: Smashing Atoms with 80-ton Magnets April 11, 2014 - 1:32pm Addthis The cyclotron, invented by Ernest Lawrence in the 1930s, is a unique circular particle accelerator, which Lawrence himself referred to as a "proton merry-go-round." In reality, the cyclotron specialized in smashing atoms. Part of this atom-smashing process requires very large, very heavy magnets -- sometimes weighing up to 220 tons. In this photo, workers

  12. Billion-Ton Update: Home-Grown Energy Resources Across the Nation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation August 11, 2011 - 3:59pm Addthis Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from

  13. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds

    Broader source: Energy.gov [DOE]

    The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of...

  14. Hanford Landfill Reaches 15 Million Tons Disposed- Waste Disposal Mark Shows Success Cleaning Up River Corridor

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996.

  15. DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings

    Broader source: Energy.gov [DOE]

    (Grand Junction, CO) ― The U.S. Department of Energy (DOE) has safely moved another million tons of uranium mill tailings from the Moab site in Utah under the Uranium Mill Tailings Remedial Action Project.

  16. Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of Commercial Trucking; A Key Enabler of Expanded U.S. Trade and Economic Growth Poster presentation at the 2007 Diesel ...

  17. DOE Announces Webinars on Building a Billion Ton Bioeconomy and an

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity in Innovative Sensors | Department of Energy Building a Billion Ton Bioeconomy and an Opportunity in Innovative Sensors DOE Announces Webinars on Building a Billion Ton Bioeconomy and an Opportunity in Innovative Sensors May 5, 2016 - 9:06am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is

  18. U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Investments | Department of Energy Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments September 25, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's efforts to double energy productivity by 2030 and help businesses save money and energy, the Energy Department today recognized more than

  19. 1,153-ton Waste Vault Removed from 300 Area - Vault held waste tanks with

    Energy Savers [EERE]

    contamination from Hanford's former laboratory facilities | Department of Energy 1,153-ton Waste Vault Removed from 300 Area - Vault held waste tanks with contamination from Hanford's former laboratory facilities 1,153-ton Waste Vault Removed from 300 Area - Vault held waste tanks with contamination from Hanford's former laboratory facilities February 14, 2014 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE 509-376-5365, Cameron.Hardy@rl.doe.gov Mark McKenna, Washington Closure

  20. Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accomplishes Milestone While Doing it Safely | Department of Energy Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145

  1. SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory

    Office of Scientific and Technical Information (OSTI)

    Iron Reduction by Shewanella oneidensis Strain MR-1 (Journal Article) | SciTech Connect Journal Article: SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1 Citation Details In-Document Search Title: SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1 Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron

  2. Development of Technology Readiness Level (TRL) Metrics and Risk Measures

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Anderson, K. K.; Sivaramakrishnan, Chandrika; Lansing, Carina

    2012-10-01

    This is an internal project milestone report to document the CCSI Element 7 team's progress on developing Technology Readiness Level (TRL) metrics and risk measures. In this report, we provide a brief overview of the current technology readiness assessment research, document the development of technology readiness levels (TRLs) specific to carbon capture technologies, describe the risk measures and uncertainty quantification approaches used in our research, and conclude by discussing the next steps that the CCSI Task 7 team aims to accomplish.

  3. Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?

    SciTech Connect (OSTI)

    Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

    2007-07-01

    China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

  4. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shows the volume taken up by one metric ton of carbon dioxide. In 2013, the United States emitted the equivalent of 6.7 billion metric tons. By tracking how much greenhouse...

  5. Definition of GPRA08 benefits metrics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Background information for the FY 2007 GPRA methodology review on the definitions of GPRA08 benefits metrics.

  6. Module 6- Metrics, Performance Measurements and Forecasting

    Broader source: Energy.gov [DOE]

    This module reviews metrics such as cost and schedule variance along with cost and schedule performance indices.

  7. EECBG SEP Attachment 1 - Process metric list

    Energy Savers [EERE]

    EECBG 10-07B/SEP 10-006A Attachment 1: Process Metrics List Metric Area Metric Primary or Optional Metric Item(s) to Report On 1. Building Retrofits 1a. Buildings retrofitted, by sector Number of buildings retrofitted Square footage of buildings retrofitted 1b. Energy management systems installed, by sector Number of energy management systems installed Square footage of buildings under management 1c. Building roofs retrofitted, by sector Number of building roofs retrofitted Square footage of

  8. Multi-Metric Sustainability Analysis

    SciTech Connect (OSTI)

    Cowlin, S.; Heimiller, D.; Macknick, J.; Mann, M.; Pless, J.; Munoz, D.

    2014-12-01

    A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.

  9. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",101093,13 " Nitrogen oxide (short tons)",23993,32 " Carbon dioxide (thousand metric tons)",24037,33 " Sulfur dioxide (lbsMWh)",3.7,5 " Nitrogen oxide (lbsMWh)",0.9,37 ...

  10. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",332396,3 " Nitrogen oxide (short tons)",133412,3 " Carbon dioxide (thousand metric tons)",103391,3 " Sulfur dioxide (lbsMWh)",5.8,1 " Nitrogen oxide (lbsMWh)",2.3,8 ...

  11. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",31550,29 " Nitrogen oxide (short tons)",29014,29 " Carbon dioxide (thousand metric tons)",31794,29 " Sulfur dioxide (lbsMWh)",1.3,29 " Nitrogen oxide (lbs...

  12. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",14426,34 " Nitrogen oxide (short tons)",20538,36 " Carbon dioxide (thousand metric tons)",17678,36 " Sulfur dioxide (lbsMWh)",1,34 " Nitrogen oxide (lbsMWh)",1.4,21 ...

  13. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",10990,38 " Nitrogen oxide (short tons)",8622,46 " Carbon dioxide (thousand metric tons)",3298,46 " Sulfur dioxide (lbsMWh)",1.7,25 " Nitrogen oxide (lbsMWh)",1.3,23 ...

  14. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",3842005 " Nitrogen oxide (short tons)",2400375 " Carbon dioxide (thousand metric tons)",2160342 " Sulfur dioxide (lbsMWh)",1.9 " Nitrogen oxide (lbsMWh)",1.2 " ...

  15. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",22597,32 " Nitrogen oxide (short tons)",56726,17 " Carbon dioxide (thousand metric tons)",53684,16 " Sulfur dioxide (lbsMWh)",0.4,41 " Nitrogen oxide (lbsMWh)",1,33 ...

  16. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",28453,30 " Nitrogen oxide (short tons)",44349,24 " Carbon dioxide (thousand metric tons)",38474,22 " Sulfur dioxide (lbsMWh)",1.1,32 " Nitrogen oxide (lbs...

  17. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",31878,28 " Nitrogen oxide (short tons)",46971,21 " Carbon dioxide (thousand metric tons)",33240,26 " Sulfur dioxide (lbsMWh)",0.5,39 " Nitrogen oxide (lbs...

  18. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",10229,40 " Nitrogen oxide (short tons)",18606,39 " Carbon dioxide (thousand metric tons)",16222,37 " Sulfur dioxide (lbsMWh)",0.6,38 " Nitrogen oxide (lbsMWh)",1,32 ...

  19. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",23646,31 " Nitrogen oxide (short tons)",57944,16 " Carbon dioxide (thousand metric tons)",35179,24 " Sulfur dioxide (lbsMWh)",1.1,31 " Nitrogen oxide (lbsMWh)",2.6,7 ...

  20. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",824,48 " Nitrogen oxide (short tons)",2836,48 " Carbon dioxide (thousand metric tons)",4276,43 " Sulfur dioxide (lbsMWh)",0.2,45 " Nitrogen oxide (lbsMWh)",0.7,40 ...

  1. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",173521,7 " Nitrogen oxide (short tons)",77950,9 " Carbon dioxide (thousand metric tons)",64062,11 " Sulfur dioxide (lbsMWh)",3.2,7 " Nitrogen oxide (lbsMWh)",1.5,19 ...

  2. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",5777,42 " Nitrogen oxide (short tons)",20301,37 " Carbon dioxide (thousand metric tons)",1492,49 " Sulfur dioxide (lbsMWh)",0.8,36 " Nitrogen oxide (lbsMWh)",2.7,5 ...

  3. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",204873,5 " Nitrogen oxide (short tons)",89253,7 " Carbon dioxide (thousand metric tons)",85795,7 " Sulfur dioxide (lbsMWh)",4.5,3 " Nitrogen oxide (lbsMWh)",2,10 " ...

  4. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",96240,14 " Nitrogen oxide (short tons)",83112,8 " Carbon dioxide (thousand metric tons)",57137,15 " Sulfur dioxide (lbsMWh)",1.8,21 " Nitrogen oxide (lbsMWh)",1.6,15 ...

  5. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",63994,22 " Nitrogen oxide (short tons)",27045,30 " Carbon dioxide (thousand metric tons)",26348,31 " Sulfur dioxide (lbsMWh)",3.2,8 " Nitrogen oxide (lbsMWh)",1.4,20 ...

  6. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",74422,19 " Nitrogen oxide (short tons)",41793,25 " Carbon dioxide (thousand metric tons)",39312,21 " Sulfur dioxide (lbsMWh)",2.6,13 " Nitrogen oxide (lbs...

  7. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",41370,26 " Nitrogen oxide (short tons)",20626,35 " Carbon dioxide (thousand metric tons)",20414,34 " Sulfur dioxide (lbsMWh)",2.2,18 " Nitrogen oxide (lbs...

  8. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",355108,1 " Nitrogen oxide (short tons)",105688,4 " Carbon dioxide (thousand metric tons)",98650,5 " Sulfur dioxide (lbsMWh)",5.3,2 " Nitrogen oxide (lbsMWh)",1.6,16 ...

  9. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",6748,41 " Nitrogen oxide (short tons)",13831,43 " Carbon dioxide (thousand metric tons)",12231,39 " Sulfur dioxide (lbsMWh)",0.4,40 " Nitrogen oxide (lbs...

  10. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",21670,33 " Nitrogen oxide (short tons)",26928,31 " Carbon dioxide (thousand metric tons)",7313,42 " Sulfur dioxide (lbsMWh)",4.2,4 " Nitrogen oxide (lbsMWh)",5.3,2 ...

  11. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",297598,4 " Nitrogen oxide (short tons)",141486,2 " Carbon dioxide (thousand metric tons)",101361,4 " Sulfur dioxide (lbsMWh)",2.7,11 " Nitrogen oxide (lbs...

  12. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",10595,39 " Nitrogen oxide (short tons)",14313,42 " Carbon dioxide (thousand metric tons)",8334,40 " Sulfur dioxide (lbsMWh)",0.4,42 " Nitrogen oxide (lbsMWh)",0.5,45 ...

  13. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",349245,2 " Nitrogen oxide (short tons)",229580,1 " Carbon dioxide (thousand metric tons)",254488,1 " Sulfur dioxide (lbsMWh)",1.6,26 " Nitrogen oxide (lbsMWh)",1,31 ...

  14. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",149842,9 " Nitrogen oxide (short tons)",77749,10 " Carbon dioxide (thousand metric tons)",75735,8 " Sulfur dioxide (lbsMWh)",3.4,6 " Nitrogen oxide (lbsMWh)",1.8,13 ...

  15. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",89357,16 " Nitrogen oxide (short tons)",23913,33 " Carbon dioxide (thousand metric tons)",41405,20 " Sulfur dioxide (lbsMWh)",2.2,16 " Nitrogen oxide (lbs...

  16. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",0,51 " Nitrogen oxide (short tons)",147,51 " Carbon dioxide (thousand metric tons)",48,50 " Sulfur dioxide (lbsMWh)",0,51 " Nitrogen oxide (lbsMWh)",4.3,3 " ...

  17. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",52716,23 " Nitrogen oxide (short tons)",48711,19 " Carbon dioxide (thousand metric tons)",30420,30 " Sulfur dioxide (lbsMWh)",2.9,10 " Nitrogen oxide (lbsMWh)",2.7,6 ...

  18. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",100,49 " Nitrogen oxide (short tons)",1224,49 " Carbon dioxide (thousand metric tons)",2566,48 " Sulfur dioxide (lbsMWh)",0,48 " Nitrogen oxide (lbsMWh)",0.4,49 ...

  19. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",64168,21 " Nitrogen oxide (short tons)",67534,12 " Carbon dioxide (thousand metric tons)",58578,13 " Sulfur dioxide (lbsMWh)",1,33 " Nitrogen oxide (lbsMWh)",1.1,30 ...

  20. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",126600,10 " Nitrogen oxide (short tons)",91356,6 " Carbon dioxide (thousand metric tons)",111549,2 " Sulfur dioxide (lbsMWh)",1.1,30 " Nitrogen oxide (lbsMWh)",0.8,39 ...

  1. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    (short tons)",3102,46 " Nitrogen oxide (short tons)",98348,5 " Carbon dioxide (thousand metric tons)",57223,14 " Sulfur dioxide (lbsMWh)",0,49 " Nitrogen oxide (lbsMWh)",1,34 " ...

  2. "Sources: U.S. Energy Information Administration, Form EIA-860...

    U.S. Energy Information Administration (EIA) Indexed Site

    tons)",105998,11 " Nitrogen oxide (short tons)",58144,14 " Carbon dioxide (thousand metric tons)",62516,12 " Sulfur dioxide (lbsMWh)",1.7,24 " Nitrogen oxide (lbs...

  3. Western Resource Adequacy: Challenges - Approaches - Metrics | Department

    Energy Savers [EERE]

    of Energy Resource Adequacy: Challenges - Approaches - Metrics Western Resource Adequacy: Challenges - Approaches - Metrics West-Wide Resource Assessment Team. Committee on Regional Electric Power Cooperation. March 25, 2004 San Francisco, California PDF icon Western Resource Adequacy: Challenges - Approaches - Metrics More Documents & Publications Eastern Wind Integration and Transmission Study (EWITS) (Revised) Estimating the Benefits and Costs of Distributed Energy Technologies

  4. Deep Energy Retrofit Performance Metric Comparison: Eight California Case Studies

    SciTech Connect (OSTI)

    Walker, Iain; Fisher, Jeremy; Less, Brennan

    2014-06-01

    In this paper we will present the results of monitored annual energy use data from eight residential Deep Energy Retrofit (DER) case studies using a variety of performance metrics. For each home, the details of the retrofits were analyzed, diagnostic tests to characterize the home were performed and the homes were monitored for total and individual end-use energy consumption for approximately one year. Annual performance in site and source energy, as well as carbon dioxide equivalent (CO{sub 2}e) emissions were determined on a per house, per person and per square foot basis to examine the sensitivity to these different metrics. All eight DERs showed consistent success in achieving substantial site energy and CO{sub 2}e reductions, but some projects achieved very little, if any source energy reduction. This problem emerged in those homes that switched from natural gas to electricity for heating and hot water, resulting in energy consumption dominated by electricity use. This demonstrates the crucial importance of selecting an appropriate metric to be used in guiding retrofit decisions. Also, due to the dynamic nature of DERs, with changes in occupancy, size, layout, and comfort, several performance metrics might be necessary to understand a project’s success.

  5. Instructions for EM Corporate Performance Metrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instructions for EM Corporate Performance Metrics Instructions for EM Corporate Performance Metrics Quality Program Criteria PDF icon Instructions for EM Corporate Performance Metrics More Documents & Publications EM Corporate QA Performance Metrics CPMS Tables QA Corporate Board Meeting - July 2008

  6. Comparing Resource Adequacy Metrics: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-09-01

    As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.

  7. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect (OSTI)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  8. Y-12's rough roads smoothed over with 23,000 tons of recycled asphalt |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Home / Blog Y-12's rough roads smoothed over with 23,000 tons of recycled asphalt Tuesday, December 29, 2015 - 12:00am NNSA Blog Some 23,000 tons of asphalt removed during this summer's UPF site work have been put to use throughout the site. Potholes and gravel roads are now "paved" with the recycled asphalt that has been ground into a material called base course. Unlike gravel, the material tends to rebind into a solid form as it is packed

  9. President Obama Announces Commitments and Executive Actions to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    create jobs and cut carbon pollution by advancing solar deployment and energy efficiency. ... smarter appliances that will cut carbon pollution by more than 380 million metric tons - ...

  10. About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science, people, technologies close Raising the bar on carbon capture In the United States, industry produces more than 3 billion metric tons of carbon dioxide each year, around...

  11. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

  12. Technical Workshop: Resilience Metrics for Energy Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Henry H. Willis Presentation: Resilience Metrics for Energy Systems PDF icon Ross Guttromson Presentation: Energy Infrastructure Resilience: Framework and ...

  13. Efficient Synchronization Stability Metrics for Fault Clearing...

    Office of Scientific and Technical Information (OSTI)

    Title: Efficient Synchronization Stability Metrics for Fault Clearing Authors: Backhaus, Scott N. 1 ; Chertkov, Michael 1 ; Bent, Russell Whitford 1 ; Bienstock, Daniel 2...

  14. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of metrics for use in quantitative and qualitative analyses of transmission, distribution, ... leverage its efforts and resources to enable existing research to inform QER analysis. ...

  15. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... New Energy Resilience Metrics - Ross Guttromson, Electric Power Systems ... Events of concern are relatively low probability but with potentially high consequences. ...

  16. Planning for the 400,000 tons/year AISI ironmaking demonstration plant

    SciTech Connect (OSTI)

    Aukrust, E. . AISI Direct Steelmaking Program)

    1993-01-01

    The American Iron and Steel Institute (AISI) has formulated a four-year program to design, construct, and operate a 400,000 net ton per year ironmaking demonstration plant. The plant will employ the coal-based ironmaking process developed under a 1989 cooperative agreement with DOE. AISI will manage the design and construction to be completed in the first two years and operate the plant for the second two years with a variety or ores, coals, and fluxes. Campaigns of increasing length are planned to optimize operations. After successful operation, the plant will be taken over by the host company. Results of studies to date indicate that, on a commercial scale, the AISI process will use 27% less energy and have variable operating costs $10 per ton lower and capital costs of $160 per annual ton, compared to the $250 per annual ton rebuild cost for the coke oven-blast furnace process it will replace. The process will enable the domestic steel industry to become more competitive by reducing its capital and operating cost. Furthermore, by eliminating the pollution problems associated with coke production and by completely enclosing the smelting reactions, this process represents a major step towards an environmentally friendly steel industry.

  17. FY 2014 Q3 Metric Summary | Department of Energy

    Energy Savers [EERE]

    4 Q3 Metric Summary FY 2014 Q3 Metric Summary FY 2014 Q3 Metric Summary PDF icon FY 2014 Q3 Metric Summary.pdf More Documents & Publications FY 2014 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2015 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2016 Overall Contract and Project Management Improvement Performance Metrics and Targets

  18. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  19. How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry?

    SciTech Connect (OSTI)

    Akrami, Yashar; Savage, Christopher; Scott, Pat; Conrad, Jan; Edsj, Joakim E-mail: savage@fysik.su.se E-mail: conrad@fysik.su.se

    2011-04-01

    Weakly interacting massive particles (WIMPs) are amongst the most interesting dark matter (DM) candidates. Many DM candidates naturally arise in theories beyond the standard model (SM) of particle physics, like weak-scale supersymmetry (SUSY). Experiments aim to detect WIMPs by scattering, annihilation or direct production, and thereby determine the underlying theory to which they belong, along with its parameters. Here we examine the prospects for further constraining the Constrained Minimal Supersymmetric Standard Model (CMSSM) with future ton-scale direct detection experiments. We consider ton-scale extrapolations of three current experiments: CDMS, XENON and COUPP, with 1000 kg-years of raw exposure each. We assume energy resolutions, energy ranges and efficiencies similar to the current versions of the experiments, and include backgrounds at target levels. Our analysis is based on full likelihood constructions for the experiments. We also take into account present uncertainties on hadronic matrix elements for neutralino-quark couplings, and on halo model parameters. We generate synthetic data based on four benchmark points and scan over the CMSSM parameter space using nested sampling. We construct both Bayesian posterior PDFs and frequentist profile likelihoods for the model parameters, as well as the mass and various cross-sections of the lightest neutralino. Future ton-scale experiments will help substantially in constraining supersymmetry, especially when results of experiments primarily targeting spin-dependent nuclear scattering are combined with those directed more toward spin-independent interactions.

  20. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    SciTech Connect (OSTI)

    Robert Finley

    2005-09-30

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

  1. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the Cranfield site in Southwestern Mississippi. It is led by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven members of the Regional Carbon...

  2. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    SciTech Connect (OSTI)

    Lucchini, Jean-francois; Khaing, Hnin; Reed, Donald T

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

  3. Carbon emissions and sequestration in forests: Case studies from seven developing countries

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J. ); Fearnside, P.M. , Manaus, AM . Departmento de Ecologia)

    1992-08-01

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as committed carbon,'' or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil's use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  4. World's Largest Post-Combustion Carbon Capture Project Begins...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tons of carbon dioxide (CO2) annually from an existing coal-fired power plant in Texas. ... MW of generation at the Houston-area power plant, quadrupling the size of the capture ...

  5. DOE - Office of Legacy Management -- National Carbon Co - NY...

    Office of Legacy Management (LM)

    NY.48-1 - AEC Letter; Crenshaw to National Carbon Company (Attn.: Nolan); Purchase Order Request for 358 Tons of Graphite by E. I. DuPont de Nemours & Company; February 2, 1943 ...

  6. FE Carbon Capture and Storage News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide per year. June 16, 2010 Alabama Project Testing Potential for Combining CO2...

  7. Clean Cities Annual Metrics Report 2009 (Revised)

    SciTech Connect (OSTI)

    Johnson, C.

    2011-08-01

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  8. Label-invariant Mesh Quality Metrics. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Label-invariant Mesh Quality Metrics. Citation Details In-Document Search Title: Label-invariant Mesh Quality Metrics. Abstract not provided. Authors: Knupp, Patrick Publication ...

  9. Measuring solar reflectance Part I: Defining a metric that accurately...

    Office of Scientific and Technical Information (OSTI)

    I: Defining a metric that accurately predicts solar heat gain Citation Details In-Document Search Title: Measuring solar reflectance Part I: Defining a metric that accurately ...

  10. Business Metrics for High-Performance Homes: A Colorado Springs...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Business Metrics for High-Performance Homes: A Colorado Springs Case Study Citation Details In-Document Search Title: Business Metrics for High-Performance Homes: ...

  11. Criticality Safety Review of 2 1/2-, 10-, and 14-Ton UF(Sub 6) Cylinders

    SciTech Connect (OSTI)

    Broadhead, B.L.

    1991-01-01

    Currently, UF{sub 6} cylinders designed to contain 2 1/2 tons of UF{sub 6} are classified as Fissile Class II packages with a transport index (TI) of 5 for the purpose of transportation. The 10-ton UF{sub 6} cylinders are classified as Fissile Class I with no TI assigned for transportation. The 14-ton cylinders, although not certified for transport with enrichments greater than 1 wt % because they have no approved overpack, can be used in on-site operations for enrichments greater than 1 wt %. The maximum 235U enrichments for these cylinders are 5.0 wt % for the 2 1/2-ton cylinder and 4.5 wt % for the 10- and 14-ton cylinders. This work reviews the suitability for reclassification of the 2 1/2-ton UF{sub 6} packages as Fissile Class I with a maximum {sup 235}U enrichment of 5 wt %. Additionally, the 10- and 14-ton cylinders are reviewed to address a change in maximum {sup 235}U enrichment from 4.5 to 5 wt %. Based on this evaluation, the 2 1/2-ton UF{sub 6} cylinders meet the 10 CFR.71 criteria for Fissile Class I packages, and no TI is needed for criticality safety purposes; however, a TI may be required based on radiation from the packages. Similarly, the 10- and 14-ton UF{sub 6} packages appear acceptable for a maximum enrichment rating change to 5 wt % {sup 235}U.

  12. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry

    SciTech Connect (OSTI)

    Downing, Mark; Eaton, Laurence M; Graham, Robin Lambert; Langholtz, Matthew H; Perlack, Robert D; Turhollow Jr, Anthony F; Stokes, Bryce; Brandt, Craig C

    2011-08-01

    The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil prices topped $70 per barrel (bbl) and catastrophic hurricanes in the Gulf Coast shut down a significant fraction of U.S. refinery capacity. The following year, oil approached $80 per bbl due to supply concerns, as well as continued political tensions in the Middle East. The Energy Independence and Security Act of 2007 (EISA) was enacted in December of that year. By the end of December 2007, oil prices surpassed $100 per bbl for the first time, and by mid-summer 2008, prices approached $150 per bbl because of supply concerns, speculation, and weakness of the U.S. dollar. As fast as they skyrocketed, oil prices fell, and by the end of 2008, oil prices dropped below $50 per bbl, falling even more a month later due to the global economic recession. In 2009 and 2010, oil prices began to increase again as a result of a weak U.S. dollar and the rebounding of world economies.

  13. Occidental Chemical's Energy From Waste facility: 3,000,000 tons later

    SciTech Connect (OSTI)

    Blasins, G.F. )

    1988-01-01

    Occidental Chemical's Energy From Waste's cogeneration facility continues to be one of the most successful RDF plants in the U.S. The facility began operation in 1980 and was an operational success after a lengthy 2-1/2 year start-up and redesign, utilizing the air classification technology to produce RDF. In 1984, the plant was converted to a simplified shred and burn concept, significantly improving overall economics and viability of the operation. After processing 3.0 million tons the facility is a mature operation with a well developed experience base in long range operation and maintenance of the equipment utilized for processing and incinerating municipal solid waste.

  14. An ounce of prevention, a ton of cure | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An ounce of prevention, a ... An ounce of prevention, a ton of cure Posted: June 24, 2015 - 3:11pm Aaron Spoon of Power Operations performs maintenance on 13.8 kV transformers 145 and 145A. Photo by Scott Fraker Y-12 recently saved time, taxpayer dollars, effort and potential injuries by taking a 72-hour planned simultaneous outage of power, steam and air systems. The weekend outage allowed a small army of Y-12 infrastructure, facilities and utilities workers to make repairs and perform

  15. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  16. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  17. Metrics for comparison of crystallographic maps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-10-01

    Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less

  18. EECBG SEP Attachment 1 - Process metric list | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP Attachment 1 - Process metric list EECBG SEP Attachment 1 - Process metric list Reporting Guidance Process Metric List PDF icon eecbg_10_07b_sep__10_006a_attachment1_process_metric_list.pdf More Documents & Publications EECBG 10-07C/SEP 10-006B Attachment 1: Process Metrics List EECBG Program Notice 10-07A DOE Recovery Act Reporting Requirements for the State Energy Program

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants 2004 through 2014 (Thousand Metric Tons) Year Carbon Dioxide (CO2) Sulfur ...

  20. National Renewable Energy Laboratory Environmental Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    apparatus, product, or process ...yr Million metrics tons of carbon per year NEPA National Environmental Policy Act NESHAPs ... 30 4.4 Sustainability and the ...

  1. Energy Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    will show a lower growth trajectory Source: EIA, International Energy Outlook 2013 carbon dioxide emissions billion metric tons 6 CSIS | Energy Markets Outlook November 16,...

  2. Building Technologies Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    furnaces will save businesses 167 billion on their utility bills and reduce carbon pollution by 885 million metric tons. Read more DOE Releases Funding Opportunity for Emerging...

  3. City of Painesville, Ohio Vanadium Redox Battery Demonstration...

    Office of Environmental Management (EM)

    with an additional 212 created by 2016 Energy costs will be reduced Power quality will be improved Carbon emissions will be reduced by 24,000 metric tons ...

  4. Two Colorado-Based Electric Cooperatives Selected as 2014 Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    jobs across the country, provides cost- competitive energy, and eliminates more than 115 electric metric tons of carbon dioxide emissions which is equal to removing 20 million...

  5. Appendix A: Reference case

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration Annual Energy Outlook 2014 Table A18. Energy-related carbon dioxide emissions by sector and source (million metric tons, unless otherwise noted)...

  6. IVANPAH | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    year and prevent 500,000 metric tons of carbon dioxide emissions annually. PROJECT STATISTICS: IVANPAH PROJECT SUMMARY OWNERS BrightSource Energy, NRG Energy & Google ...

  7. GRANITE RELIABLE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It will prevent 130,000 metric tons of carbon dioxide emissions annually. PROJECT STATISTICS: GRANITE RELIABLE PROJECT SUMMARY OWNERS BAIF Granite Holdings & Freshet Wind ...

  8. SHEPHERDS FLAT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It is expected to prevent 1,000,000 metric tons of carbon dioxide emissions annually. PROJECT STATISTICS: SHEPHERDS FLAT PROJECT SUMMARY OWNER Caithness Energy, LLC LOCATIONS ...

  9. Table 4.8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Coal Demonstrated Reserve Base, January 1, 2011 (Billion Short Tons) Region and State Anthracite Bituminous Coal Subbituminous Coal Lignite Total Underground Surface Underground Surface Underground Surface Surface 1 Underground Surface Total Appalachian 4.0 3.3 68.2 21.9 0.0 0.0 1.1 72.1 26.3 98.4 Alabama .0 .0 .9 2.1 .0 .0 1.1 .9 3.1 4.0 Kentucky, Eastern .0 .0 .8 9.1 .0 .0 .0 .8 9.1 9.8 Ohio .0 .0 17.4 5.7 .0 .0 .0 17.4 5.7 23.1 Pennsylvania 3.8 3.3 18.9 .8 .0 .0 .0 22.7 4.2 26.9 Virginia .1

  10. Table 7.2 Coal Production, 1949-2011 (Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Production, 1949-2011 (Short Tons) Year Rank Mining Method Location Total 1 Bituminous Coal 1 Subbituminous Coal Lignite Anthracite 1 Underground Surface 1 East of the Mississippi 1 West of the Mississippi 1 1949 437,868,000 [2] [2] 42,702,000 358,854,000 121,716,000 444,199,000 36,371,000 480,570,000 1950 516,311,000 [2] [2] 44,077,000 421,000,000 139,388,000 524,374,000 36,014,000 560,388,000 1951 533,665,000 [2] [2] 42,670,000 442,184,000 134,151,000 541,703,000 34,632,000 576,335,000

  11. Table 7.4 Coal Imports by Country of Origin, 2000-2011 (Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Imports by Country of Origin, 2000-2011 (Short Tons) Year Australia New Zealand Canada Mexico Colombia Venezuela China India Indonesia Europe South Africa Other Total Norway Poland Russia Ukraine United Kingdom Other Total 2000 167,595 0 1,923,434 6,671 7,636,614 2,038,774 19,646 205 718,149 0 0 1,212 0 238 0 1,450 0 85 12,512,623 2001 315,870 24,178 2,571,415 8,325 11,176,191 3,335,258 109,877 1,169 882,455 15,933 514,166 219,077 0 75,704 12 824,892 440,408 97,261 19,787,299 2002 821,280 0

  12. Table 7.5 Coal Exports by Country of Destination, 1960-2011 (Thousand Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Exports by Country of Destination, 1960-2011 (Thousand Short Tons) Year Canada Brazil Europe Japan Other 3 Total Belgium 1 Denmark France Germany 2 Italy Nether- lands Spain Turkey United Kingdom Other 3 Total 1960 12,843 1,067 1,116 130 794 4,566 4,899 2,837 331 NA – 2,440 17,113 5,617 1,341 37,981 1961 12,135 994 971 80 708 4,326 4,797 2,552 228 NA – 2,026 15,688 6,614 974 36,405 1962 12,302 1,327 1,289 38 851 5,056 5,978 3,320 766 NA 2 1,848 19,148 6,465 973 40,215 1963 14,557 1,161

  13. Table 7.7 Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour )

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Mining Productivity, 1949-2011 (Short Tons per Employee Hour 1) Year Mining Method Location Total 2 Underground Surface 2 East of the Mississippi West of the Mississippi Underground Surface 2 Total 2 Underground Surface 2 Total 2 1949 0.68 [3] 1.92 [3] NA NA NA NA NA NA 0.72 1950 .72 [3] 1.96 [3] NA NA NA NA NA NA .76 1951 .76 [3] 2.00 [3] NA NA NA NA NA NA .80 1952 .80 [3] 2.10 [3] NA NA NA NA NA NA .84 1953 .88 [3] 2.22 [3] NA NA NA NA NA NA .93 1954 1.00 [3] 2.48 [3] NA NA NA NA NA NA

  14. Table 7.8 Coke Overview, 1949-2011 (Thousand Short Tons)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke Overview, 1949-2011 (Thousand Short Tons) Year Production Trade Stock Change 2 Consumption 3 Imports Exports Net Imports 1 1949 63,637 279 548 -269 176 63,192 1950 72,718 438 398 40 -659 73,417 1951 79,331 162 1,027 -865 372 78,094 1952 68,254 313 792 -479 419 67,356 1953 78,837 157 520 -363 778 77,696 1954 59,662 116 388 -272 269 59,121 1955 75,302 126 531 -405 -1,248 76,145 1956 74,483 131 656 -525 634 73,324 1957 75,951 118 822 -704 814 74,433 1958 53,604 122 393 -271 675 52,658 1959

  15. Table 7.9 Coal Prices, 1949-2011 (Dollars per Short Ton)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Prices, 1949-2011 (Dollars per Short Ton) Year Bituminous Coal Subbituminous Coal Lignite 1 Anthracite Total Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 Nominal 2 Real 3 1949 4.90 [4] 33.80 [4,R] [4] [4] 2.37 16.35 [R] 8.90 61.38 [R] 5.24 36.14 [R] 1950 4.86 [4] 33.16 [4,R] [4] [4] 2.41 16.44 [R] 9.34 63.73 [R] 5.19 35.41 [R] 1951 4.94 [4] 31.44 [4,R] [4] [4] 2.44 15.53 [R] 9.94 63.26 [R] 5.29 33.67 [R] 1952 4.92 [4] 30.78 [4,R] [4] [4] 2.39 14.95 [R] 9.58 59.94 [R]

  16. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E.

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  17. Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller

    SciTech Connect (OSTI)

    Borst, R.R.; Wood, B.D.

    1985-05-01

    The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

  18. Clean Cities 2011 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-12-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  19. Clean Cities 2010 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-10-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  20. Performance Metrics Research Project - Final Report

    SciTech Connect (OSTI)

    Deru, M.; Torcellini, P.

    2005-10-01

    NREL began work for DOE on this project to standardize the measurement and characterization of building energy performance. NREL's primary research objectives were to determine which performance metrics have greatest value for determining energy performance and to develop standard definitions and methods of measuring and reporting that performance.

  1. The potential role of a carbon tax in U.S. fiscal reform

    SciTech Connect (OSTI)

    McKibbin, Warwick; Morris, Adele; Wilcoxen, Peter; Cai, Yiyong

    2012-07-24

    This paper examines fiscal reform options in the United States with an intertemporal computable general equilibrium model of the world economy called G-Cubed. Six policy scenarios explore two overarching issues: (1) the effects of a carbon tax under alternative assumptions about the use of the resulting revenue, and (2) the effects of alternative measures that could be used to reduce the budget deficit. We examine a simple excise tax on the carbon content of fossil fuels in the U.S. energy sector starting immediately at $15 per metric ton of carbon dioxide (CO2) and rising at 4 percent above inflation each year through 2050. We investigate policies that allow the revenue from the illustrative carbon tax to reduce the long run federal budget deficit or the marginal tax rates on labor and capital income. We also compare the carbon tax to other means of reducing the deficit by the same amount. We find that the carbon tax will raise considerable revenue: $80 billion at the outset, rising to $170 billion in 2030 and $310 billion by 2050. It also significantly reduces U.S. CO2 emissions by an amount that is largely independent of the use of the revenue. By 2050, annual CO2 emissions fall by 2.5 billion metric tons (BMT), or 34 percent, relative to baseline, and cumulative emissions fall by 40 BMT through 2050. The use of the revenue affects both broad economic impacts and the composition of GDP across consumption, investment and net exports. In most scenarios, the carbon tax lowers GDP slightly, reduces investment and exports, and increases imports. The effect on consumption varies across policies and can be positive if households receive the revenue as a lump sum transfer. Using the revenue for a capital tax cut, however, is significantly different than the other policies. In that case, investment booms, employment rises, consumption declines slightly, imports increase, and overall GDP rises significantly relative to baseline through about 2040. Thus, a tax reform that uses a carbon tax to reduce capital taxes would achieve two goals: reducing CO2 emissions significantly and expanding short-run employment and the economy. We examine three ways to reduce the deficit by an equal amount. We find that raising marginal tax rates on labor income has advantages over raising tax rates on capital income or establishing a carbon tax. A labor tax increase leaves GDP close to its baseline, reduces consumption very slightly and expands net exports slightly. Investment remains essentially unchanged. In contrast, a capital tax increase causes a significant and persistent drop in investment and much larger reductions in GDP. A carbon tax falls between the two: it lowers GDP more than a labor tax increase because it reduces investment. However, its effects on investment and GDP are more moderate than the capital tax increase, and it also significantly reduces CO2 emissions. A carbon tax thus offers a way to help reduce the deficit and improve the environment, and do so with minimal disturbance to overall economic activity.

  2. CARBON DIOXIDE AS A FEEDSTOCK.

    SciTech Connect (OSTI)

    CREUTZ,C.; FUJITA,E.

    2000-12-09

    This report is an overview on the subject of carbon dioxide as a starting material for organic syntheses of potential commercial interest and the utilization of carbon dioxide as a substrate for fuel production. It draws extensively on literature sources, particularly on the report of a 1999 Workshop on the subject of catalysis in carbon dioxide utilization, but with emphasis on systems of most interest to us. Atmospheric carbon dioxide is an abundant (750 billion tons in atmosphere), but dilute source of carbon (only 0.036 % by volume), so technologies for utilization at the production source are crucial for both sequestration and utilization. Sequestration--such as pumping CO{sub 2} into sea or the earth--is beyond the scope of this report, except where it overlaps utilization, for example in converting CO{sub 2} to polymers. But sequestration dominates current thinking on short term solutions to global warming, as should be clear from reports from this and other workshops. The 3500 million tons estimated to be added to the atmosphere annually at present can be compared to the 110 million tons used to produce chemicals, chiefly urea (75 million tons), salicylic acid, cyclic carbonates and polycarbonates. Increased utilization of CO{sub 2} as a starting material is, however, highly desirable, because it is an inexpensive, non-toxic starting material. There are ongoing efforts to replace phosgene as a starting material. Creation of new materials and markets for them will increase this utilization, producing an increasingly positive, albeit small impact on global CO{sub 2} levels. The other uses of interest are utilization as a solvent and for fuel production and these will be discussed in turn.

  3. Widget:CrazyEggMetrics | Open Energy Information

    Open Energy Info (EERE)

    CrazyEggMetrics Jump to: navigation, search This widget runs javascript code for the Crazy Egg user experience metrics. This should not be on all pages, but on select pages...

  4. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS

    SciTech Connect (OSTI)

    P. UNKEFER; M. EBINGER; ET AL

    2001-02-01

    Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies. A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation ({approximately}560 GigaTons), the principal focus of terrestrial sequestration efforts is to increase soil carbon. But soil carbon ultimately derives from vegetation and therefore must be managed indirectly through aboveground management of vegetation and nutrients. Hence, the response of whole ecosystems must be considered in terrestrial carbon sequestration strategies.

  5. Return to 1990: The cost of mitigating United States carbon emissions in the post-2000 period

    SciTech Connect (OSTI)

    Edmonds, J.A.; Kim, S.H.; MacCracken, C.N.; Sands, R.D.; Wise, M.A.

    1997-10-01

    The Second Generation Model (SGM) is employed to examine four hypothetical agreements to reduce emissions in Annex 1 nations (OECD nations plus most of the nations of Eastern Europe and the former Soviet Union) to levels in the neighborhood of those which existed in 1990, with obligations taking effect in the year 2010. The authors estimate the cost to the US of complying with such agreements under three distinct conditions: no trading of emissions rights, trading of emissions rights only among Annex 1 nations, and a fully global trading regime. The authors find that the marginal cost of returning to 1990 emissions levels in the US in the absence of trading opportunities is approximately $108 per metric ton carbon in 2010. The total cost in that year is approximately 0.2% of GDP. International trade in emissions permits lowers the cost of achieving any mitigation objective by equalizing the marginal cost of carbon mitigation among countries. For the four mitigation scenarios in this study, economic costs to the US remain below 1% of GDP through at least the year 2020.

  6. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Table 1. State energy-related carbon dioxide emissions by year (2000-2013) million metric tons carbon dioxide Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 142.1 133.5 138.3 139.1 141.3 142.9 145.1 146.5 138.9 119.4 131.8 128.9 122.2 119.8 -15.7% -22.3 Alaska 44.3 43.4 43.5 43.6 46.7 48.0 45.7 43.9 39.3 37.7 38.5 38.4 37.8 36.1 -18.5% -8.2 Arizona 86.0 88.3 87.6 89.4 96.2 96.3 99.2 100.9 101.2 92.2 93.9 91.9 89.9 93.8

  7. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table 2. 2013 state energy-related carbon dioxide emissions by fuel million metric tons of carbon dioxide Shares State Coal Petroleum Natural Gas Total Coal Petroleum Natural Gas Alabama 53.3 33.2 33.4 119.8 44.5% 27.7% 27.8% Alaska 1.4 17.1 17.7 36.1 3.9% 47.2% 48.9% Arizona 43.0 32.8 18.1 93.8 45.8% 34.9% 19.3% Arkansas 30.9 21.6 15.3 67.8 45.5% 31.9% 22.5% California 3.6 217.7 131.8 353.1 1.0% 61.7% 37.3% Colorado 34.3 30.6 25.6 90.5 37.9% 33.8% 28.2% Connecticut 0.7 20.8 12.7 34.3 2.1%

  8. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Table 3. 2013 state energy-related carbon dioxide emissions by sector million metric tons carbon dioxide State Commercial Electric Power Residential Industrial Transportation Total Alabama 1.8 64.2 2.2 21.3 30.3 119.8 Alaska 2.4 2.6 1.6 17.5 12.0 36.1 Arizona 2.4 54.7 2.4 4.5 29.8 93.8 Arkansas 2.8 35.5 2.2 9.3 18.0 67.8 California 16.0 45.7 27.7 72.9 190.8 353.1 Colorado 3.7 38.6 8.2 13.9 26.3 90.5 Connecticut 3.6 6.8 7.2 2.3 14.4 34.3 Delaware 0.8 4.1 0.9 3.7 3.9 13.4 District of Columbia

  9. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Table 5. Per capita energy-related carbon dioxide emissions by state (2000-2013) metric tons carbon dioxide per person Change (2000-2013) State 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 percent Absolute Alabama 31.9 29.9 30.9 30.9 31.2 31.3 31.3 31.4 29.4 25.1 27.5 26.9 25.4 24.8 -22.4% -7.1 Alaska 70.6 68.4 67.8 67.3 70.9 72.0 67.7 64.6 57.2 53.9 53.9 53.1 51.8 49.0 -30.6% -21.6 Arizona 16.7 16.7 16.2 16.2 17.0 16.5 16.5 16.4 16.1 14.5 14.6 14.2 13.7 14.1 -15.2%

  10. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  11. Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models

    SciTech Connect (OSTI)

    Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.

    2013-08-24

    Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.

  12. Performance Metrics and Budget Division (HC-51) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Metrics and Budget Division (HC-51) Performance Metrics and Budget Division (HC-51) MISSION: The mission of the Performance Metrics and Budget Division (HC-51) is to support the effective and efficient implementation of the Department of Energy's human capital initiatives and functions through the strategic integration of corporate human capital performance metrics and the budget of the Office of the Chief Human Capital Officer (HC). FUNCTIONS: Human capital performance measurement

  13. Financial Metrics Data Collection Protocol, Version 1.0

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Gorrissen, Willy J.; Wang, Na

    2010-04-30

    Brief description of data collection process and plan that will be used to collect financial metrics associated with sustainable design.

  14. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  15. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 2, Greenhouse gas emissions from deforestration in the Brazilian Amazon

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J.; Fearnside, P.M.

    1992-08-01

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  16. Performance and results of the LBNE 35 ton membrane cryostat prototype

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the puritymore » requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.« less

  17. High temperature experiments on a 4 tons UF6 container TENERIFE program

    SciTech Connect (OSTI)

    Casselman, C.; Duret, B.; Seiler, J.M.; Ringot, C.; Warniez, P.

    1991-12-31

    The paper presents an experimental program (called TENERIFE) whose aim is to investigate the behaviour of a cylinder containing UF{sub 6} when exposed to a high temperature fire for model validation. Taking into account the experiments performed in the past, the modelization needs further information in order to be able to predict the behaviour of a real size cylinder when engulfed in a 800{degrees}C fire, as specified in the regulation. The main unknowns are related to (1) the UF{sub 6} behaviour beyond the critical point, (2) the relationship between temperature field and internal pressure and (3) the equivalent conductivity of the solid UF{sub 6}. In order to investigate these phenomena in a representative way it is foreseen to perform experiments with a cylinder of real diameter, but reduced length, containing 4 tons of UF{sub 6}. This cylinder will be placed in an electrically heated furnace. A confinement vessel prevents any dispersion of UF{sub 6}. The heat flux delivered by the furnace will be calibrated by specific tests. The cylinder will be changed for each test.

  18. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    SciTech Connect (OSTI)

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  19. Performance and results of the LBNE 35 ton membrane cryostat prototype

    SciTech Connect (OSTI)

    Montanari, David; Adamowski, Mark; Hahn, Alan; Norris, Barry; Reichenbacher, Juergen; Rucinski, Russell; Stewart, Jim; Tope, Terry

    2015-07-15

    We report on the performance and commissioning of the first membrane cryostat to be used for scientific application. The Long Baseline Neutrino Experiment (LBNE) has designed and fabricated a membrane cryostat prototype in collaboration with Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). LBNE has designed and fabricated the supporting cryogenic system infrastructure and successfully commissioned and operated the first membrane cryostat. Original goals of the prototype are: to demonstrate the membrane cryostat technology in terms of thermal performance, feasibility for liquid argon and leak tightness; to demonstrate that we can remove all the impurities from the vessel and achieve the purity requirements in a membrane cryostat without evacuation; to demonstrate that we can achieve and maintain the purity requirements of the liquid argon using mol sieve and copper filters. The purity requirements of a large liquid argon detector such as LBNE are contaminants below 200 parts per trillion (ppt) oxygen equivalent. LBNE is planning the design and construction of a large liquid argon detector. This presentation will present requirements, design and construction of the LBNE 35 ton membrane cryostat prototype, and detail the commissioning and performance. The experience and results of this prototype are extremely important for the development of the LBNE detector.

  20. Novel Carbon Capture Solvent Begins Pilot-Scale Testing for Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for economically capturing carbon dioxide (CO2) from flue gas has begun at the National ... nominal 1-megawatt-electric (MWe) pilot plant expected to capture 30 tons of CO2 per day. ...

  1. Petra Nova Project Breaks Ground on World’s Largest Post-Combustion Carbon Capture Project

    Broader source: Energy.gov [DOE]

    The Houston-area Petra Nova project is designed to capture 1.4 million tons of CO2 per year -- making it the world's largest post-combustion carbon capture facility.

  2. A Proposal for a Ton Scale Bubble Chamber for Dark Matter Detection

    SciTech Connect (OSTI)

    Collar, Juan; Dahl, C.Eric; Fustin, Drew; Robinson, Alan; Behnke, Ed; Behnke, Joshua; Breznau, William; Connor, Austin; Kuehnemund, Emily Grace; Levine, Ilan; Moan, Timothy; /Indiana U., South Bend /Fermilab

    2010-10-07

    The nature of non-baryonic dark matter is one of the most intriguing questions for particle physics at the start of the 21st century. There is ample evidence for its existence, but almost nothing is known of its properties. WIMPs are a very appealing candidate particle and several experimental campaigns are underway around the world to search for these particles via the nuclear recoils that they should induce. The COUPP series of bubble chambers has played a significant role in the WIMP search. Through a sequence of detectors of increasing size, a number of R&D issues have arisen and been solved, and the technology has now been advanced to the point where the construction of large chambers requires a modest research effort, some development, but mostly just engineering. It is within this context that we propose to build the next COUPP detector - COUPP-500, a ton scale device to be built over the next three years at Fermilab and then deployed deep underground at SNOLAB. The primary advantages of the COUPP approach over other technologies are: (1) The ability to reject electron and gamma backgrounds by arranging the chamber thermodynamics such that these particles do not even trigger the detector. (2) The ability to suppress neutron backgrounds by having the radioactively impure detection elements far from the active volume and by using the self-shielding of a large device and the high granularity to identify multiple bubbles. (3) The ability to build large chambers cheaply and with a choice of target fluids. (4) The ability to increase the size of the chambers without changing the size or complexity of the data acquisition. (5) Sensitivity to spin-dependent and spin-independent WIMP couplings. These key advantages should enable the goal of one background event in a ton-year of exposure to be achieved. The conceptual design of COUPP-500 is scaled from the preceding devices. In many cases all that is needed is a simple scaling up of components previously used. Calibration and R&D are still needed on some aspects of the system. We know we have the ability to distinguish alpha-induced events from nuclear recoils, but we do not yet know whether the combination of material purity and rejection are good enough to run for a year with no alpha background. We also need to have more detailed measurements of the detector threshold and a better understanding of its high gamma rejection. In addition, there are important checks to make on the longevity of the detector components in the hydraulic fluid and on the chemistry of the active fluid. The 2009 PASAG report explicitly supported the construction of the COUPP-500 device in all funding scenarios. The NSF has shown similar enthusiasm. It awarded one of its DUSEL S4 grants to assist in the engineering needed to build COUPP-500. The currently estimated cost of COUPP-500 is $8M, about half the $15M-$20M price tag expected by the PASAG report for a next generation dark matter search experiment. The COUPP-500 device will have a spin independent WIMP-nucleus cross-section sensitivity of 6 x 10{sup -47} cm{sup 2} after a background-free year of running. This device should then provide the benchmark against which all other WIMP searches are measured.

  3. Metrics For Comparing Plasma Mass Filters

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2012-08-15

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter. __________________________________________________

  4. Metrics for comparing plasma mass filters

    SciTech Connect (OSTI)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-10-15

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  5. Metric redefinitions in Einstein-Aether theory

    SciTech Connect (OSTI)

    Foster, Brendan Z.

    2005-08-15

    'Einstein-Aether' theory, in which gravity couples to a dynamical, timelike, unit-norm vector field, provides a means for studying Lorentz violation in a generally covariant setting. Demonstrated here is the effect of a redefinition of the metric and 'aether' fields in terms of the original fields and two free parameters. The net effect is a change of the coupling constants appearing in the action. Using such a redefinition, one of the coupling constants can be set to zero, simplifying studies of solutions of the theory.

  6. Clean Cities 2013 Annual Metrics Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    3 Annual Metrics Report Caley Johnson and Mark Singer National Renewable Energy Laboratory Technical Report NREL/TP-5400-62838 October 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013

  7. Clean Cities 2014 Annual Metrics Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    4 Annual Metrics Report Caley Johnson and Mark Singer National Renewable Energy Laboratory Technical Report NREL/TP-5400-65265 December 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013

  8. Metrics for Measuring Progress Toward Implementation of the Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (June 2008) | Department of Energy Metrics for Measuring Progress Toward Implementation of the Smart Grid (June 2008) Metrics for Measuring Progress Toward Implementation of the Smart Grid (June 2008) Results of the breakout session discussions at the Smart Grid Implementation Workshop, June 19-20, 2008 PDF icon Metrics for Measuring Progress Toward Implementation of the Smart Grid More Documents & Publications 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004

  9. Integration of the EM Corporate QA Performance Metrics With Performance

    Energy Savers [EERE]

    Analysis Process | Department of Energy the EM Corporate QA Performance Metrics With Performance Analysis Process Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process August 2009 Presenter: Robert Hinds, Savannah River Remediation, LLC Track 9-12 Topics Covered: Implementing CPMS for QA Corporate QA Performance Metrics Contractor Performance Analysis Contractor Assessment Programs Assessment Program Structure CPMS Integration with P/A Process Validating

  10. Technical Workshop: Resilience Metrics for Energy Transmission and

    Energy Savers [EERE]

    Distribution Infrastructure | Department of Energy Technical Workshop: Resilience Metrics for Energy Transmission and Distribution Infrastructure Technical Workshop: Resilience Metrics for Energy Transmission and Distribution Infrastructure During this workshop, EPSA invited technical experts from industry, national laboratories, academia, and NGOs to discuss the state of play of and need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures.

  11. EM Corporate QA Performance Metrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    QA Corporate Board Meeting - November 2008 Instructions for EM Corporate Performance Metrics FY 2015 SENIOR EXECUTIVE SERVICE (SES) AND SENIOR PROFESSIONAL (SP) PERFORMANCE ...

  12. Conceptual Framework for Developing Resilience Metrics for the...

    Office of Environmental Management (EM)

    Metrics for the Electricity, Oil, and Gas Sectors in the United States (September ... Reliability to support the Office of Energy Policy and Systems Analysis in their writing ...

  13. Exploration Cost and Time Metric | Open Energy Information

    Open Energy Info (EERE)

    lt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English Exploration Cost and Time Metric Screenshot References: Conference Paper1...

  14. Integration of the EM Corporate QA Performance Metrics With Performanc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process ... Assessment Program Structure CPMS Integration with PA Process Validating The Process ...

  15. DOE Announces Webinars on Solar Forecasting Metrics, the DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Solar Forecasting Metrics, the DOE ... from adopting the latest energy efficiency and renewable ... to liquids technology, advantages of using natural gas, ...

  16. Wave Energy Converter System Requirements and Performance Metrics

    Broader source: Energy.gov [DOE]

    The Energy Department and Wave Energy Scotland are holding a joint workshop on wave energy converter (WEC) system requirements and performance metrics on Friday, February 26.

  17. Metrics correlation and analysis service (MCAS)

    SciTech Connect (OSTI)

    Baranovski, Andrew; Dykstra, Dave; Garzoglio, Gabriele; Hesselroth, Ted; Mhashilkar, Parag; Levshina, Tanya; /Fermilab

    2009-05-01

    The complexity of Grid workflow activities and their associated software stacks inevitably involves multiple organizations, ownership, and deployment domains. In this setting, important and common tasks such as the correlation and display of metrics and debugging information (fundamental ingredients of troubleshooting) are challenged by the informational entropy inherent to independently maintained and operated software components. Because such an information 'pond' is disorganized, it a difficult environment for business intelligence analysis i.e. troubleshooting, incident investigation and trend spotting. The mission of the MCAS project is to deliver a software solution to help with adaptation, retrieval, correlation, and display of workflow-driven data and of type-agnostic events, generated by disjoint middleware.

  18. Clean Cities 2014 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, Caley; Singer, Mark

    2015-12-22

    Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2014 Annual Metrics Report.

  19. Clean Cities 2013 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.; Singer, M.

    2014-10-01

    Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2013 Annual Metrics Report.

  20. Big Sky Carbon Sequestration Partnership

    SciTech Connect (OSTI)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration reflect this concern. Research in Phase I has identified and validated best management practices for soil C in the Partnership region, and outlined a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. This is the basis for the integrative analysis that will be undertaken in Phase II to work with industry, state and local governments and with the pilot demonstration projects to quantify the economic costs and risks associated with all opportunities for carbon storage in the Big Sky region. Scientifically sound MMV is critical for public acceptance of these technologies.

  1. Buildings Energy Data Book: 6.4 Electric and Generic Quad Carbon Emissions

    Buildings Energy Data Book [EERE]

    1 Emissions of Carbon Dioxide from Electric Utilities (Million Metric Tons) 1990 1,831 1991 1,830 1992 1,843 1993 1,919 1994 1,944 1995 1,960 1996 2,033 1997 2,101 1998 2,192 1999 2,204 2000 2,310 2001 2,273 2002 2,288 2003 2,319 2004 2,352 2005 2,417 2006 2,359 2007 2,426 2008 2,374 2009 2,160 2010 2,271 2011 2,240 2012 2,140 2013 2,094 2014 2,059 2015 2,039 2016 2,053 2017 2,088 2018 2,108 2019 2,130 2020 2,136 2021 2,148 2022 2,165 2023 2,189 2024 2,203 2025 2,234 2026 2,250 2027 2,270 2028

  2. Buildings Energy Data Book: 6.4 Electric and Generic Quad Carbon Emissions

    Buildings Energy Data Book [EERE]

    2 Electric Quad Average Carbon Dioxide Emissions with Average Utility Fuel Mix (Million Metric Tons) (1) Petroleum Natural Gas Coal Nuclear Renewable Total 2010 0.83 10.14 46.45 0.00 0.30 57.72 2011 0.00 0.21 0.00 0.00 0.00 0.21 2012 0.00 0.65 0.00 0.00 0.00 0.65 2013 0.00 0.16 0.00 0.00 0.00 0.16 2014 0.00 0.61 0.00 0.00 0.00 0.61 2015 0.00 1.04 0.00 0.00 0.00 1.04 2016 0.00 0.83 0.00 0.00 0.00 0.83 2017 0.00 0.58 0.00 0.00 0.00 0.58 2018 0.00 0.62 0.00 0.00 0.00 0.62 2019 0.00 0.70 0.00 0.00

  3. Metrics for Evaluating Conventional and Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Mann, M. K.

    2013-01-01

    With numerous options for the future of natural gas, how do we know we're going down the right path? How do we designate a metric to measure and demonstrate change and progress, and how does that metric incorporate all stakeholders and scenarios?

  4. Practical Diagnostics for Evaluating Residential Commissioning Metrics

    SciTech Connect (OSTI)

    Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

    2002-06-11

    In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24 practical diagnostics range from a few hundred dollars to many thousands of dollars. The higher costs are associated with infrared thermography and state-of-the-art automated diagnostic systems. Most tests can be performed in one hour or less, using equipment priced toward the lower end of the cost spectrum.

  5. Self-benchmarking Guide for Data Centers: Metrics, Benchmarks, Actions

    SciTech Connect (OSTI)

    Mathew, Paul; Ganguly, Srirupa; Greenberg, Steve; Sartor, Dale

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in data centers. This guide is primarily intended for personnel who have responsibility for managing energy use in existing data centers - including facilities managers, energy managers, and their engineering consultants. Additionally, data center designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior data center benchmarking studies supported by the California Energy Commission. Much of the benchmarking data are drawn from the LBNL data center benchmarking database that was developed from these studies. Additional benchmark data were obtained from engineering experts including facility designers and energy managers. This guide also builds on recent research supported by the U.S. Department of Energy's Save Energy Now program.

  6. Self-benchmarking Guide for Cleanrooms: Metrics, Benchmarks, Actions

    SciTech Connect (OSTI)

    Mathew, Paul; Sartor, Dale; Tschudi, William

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  7. Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions

    SciTech Connect (OSTI)

    Mathew, Paul; Greenberg, Steve; Sartor, Dale

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  8. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 12.6 Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector (Million Metric Tons of Carbon Dioxide a ) Coal Natural Gas b Petroleum Geo- thermal Non- Biomass ...

  9. Word Pro - S12

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table 12.6 Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector (Million Metric Tons of Carbon Dioxide a ) Coal Natural Gas b Petroleum Geo- thermal Non- Biomass ...

  10. DOE Awards Cooperative Agreement for Post-Combustion Carbon Capture Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy has awarded a cooperative agreement to American Electric Power Service Corporation for the Mountaineer Commercial Scale Carbon Capture and Storage Project to design, construct, and operate a system that will capture and store approximately 1.5 million tons per year of carbon dioxide.

  11. ARM - Evaluation Product - AERI Data Quality Metric (AERI-QC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : AERI Data Quality Metric (AERI-QC) Ancillary NetCDF file to be used with the...

  12. Microsoft Word - followup to Fin Risk Metrics workshop.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 21, 2008 PurposeSubject: Follow-up to Financial Risk Metrics Workshop Page 1 of 1 Differences in Cash Flow between Net Billing and Direct Pay for Energy Northwest Attached...

  13. A Graph Analytic Metric for Mitigating Advanced Persistent Threat

    SciTech Connect (OSTI)

    Johnson, John R.; Hogan, Emilie A.

    2013-06-04

    This paper introduces a novel graph analytic metric that can be used to measure the potential vulnerability of a cyber network to specific types of attacks that use lateral movement and privilege escalation such as the well known Pass The Hash, (PTH). The metric is computed from an oriented subgraph of the underlying cyber network induced by selecting only those edges for which a given property holds between the two vertices of the edge. The metric with respect to a select node on the subgraph is defined as the likelihood that the select node is reachable from another arbitrary node in the graph. This metric can be calculated dynamically from the authorization and auditing layers during the network security authorization phase and will potentially enable predictive deterrence against attacks such as PTH.

  14. ARM - Evaluation Product - Barrow Radiation Data (2009 metric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Barrow Radiation Data (2009 metric) Observations from a suite of radiometers including...

  15. Integration of Sustainability Metrics into Design Cases and State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office (BETO) 2015 Project Peer Review Integration of Sustainability Metrics into Design Cases and State of Technology Assessments 2.1.0.1002.1.0.302 NREL ...

  16. Resilient Control Systems Practical Metrics Basis for Defining Mission Impact

    SciTech Connect (OSTI)

    Craig G. Rieger

    2014-08-01

    "Resilience” describes how systems operate at an acceptable level of normalcy despite disturbances or threats. In this paper we first consider the cognitive, cyber-physical interdependencies inherent in critical infrastructure systems and how resilience differs from reliability to mitigate these risks. Terminology and metrics basis are provided to integrate the cognitive, cyber-physical aspects that should be considered when defining solutions for resilience. A practical approach is taken to roll this metrics basis up to system integrity and business case metrics that establish “proper operation” and “impact.” A notional chemical processing plant is the use case for demonstrating how the system integrity metrics can be applied to establish performance, and

  17. Measuring solar reflectance Part I: Defining a metric that accurately...

    Office of Scientific and Technical Information (OSTI)

    A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool ...

  18. EVMS Training Snippet: 3.2 Schedule Health Metrics

    Broader source: Energy.gov [DOE]

    This EVMS Training Snippet sponsored by the Office of Project Management (PM) focuses on ‘what’ the metrics are, ‘why’ they are important, and what they tell us about the schedule health. This...

  19. Analysis of Solar Cell Quality Using Voltage Metrics: Preprint

    SciTech Connect (OSTI)

    Toberer, E. S.; Tamboli, A. C.; Steiner, M.; Kurtz, S.

    2012-06-01

    The highest efficiency solar cells provide both excellent voltage and current. Of these, the open-circuit voltage (Voc) is more frequently viewed as an indicator of the material quality. However, since the Voc also depends on the band gap of the material, the difference between the band gap and the Voc is a better metric for comparing material quality of unlike materials. To take this one step further, since Voc also depends on the shape of the absorption edge, we propose to use the ultimate metric: the difference between the measured Voc and the Voc calculated from the external quantum efficiency using a detailed balance approach. This metric is less sensitive to changes in cell design and definition of band gap. The paper defines how to implement this metric and demonstrates how it can be useful in tracking improvements in Voc, especially as Voc approaches its theoretical maximum.

  20. Conceptual Framework for Developing Resilience Metrics for the Electricity,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil, and Gas Sectors in the United States (September 2015) | Department of Energy Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States (September 2015) Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States (September 2015) This report has been written for the Department of Energy's Office of Electricity Delivery and Energy Reliability to support the Office of

  1. New IEC Specifications Help Define Wind Plant Performance Reporting Metrics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy IEC Specifications Help Define Wind Plant Performance Reporting Metrics New IEC Specifications Help Define Wind Plant Performance Reporting Metrics January 6, 2014 - 10:00am Addthis This is an excerpt from the Fourth Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy Wind Program and Sandia National Laboratories have been working with the International Electrotechnical Commission (IEC) Committee on wind turbine availability to

  2. Weatherization Assistance Program Goals and Metrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Goals and Metrics Weatherization Assistance Program Goals and Metrics UT - Bettelle - Oak Ridge National Laboratory Logo The U.S. Department of Energy (DOE) Weatherization Assistance Program (WAP) regularly reviews the work of states and grant recipients for effectiveness and for meeting program goals. DOE's Oak Ridge National Laboratory provides technical support to the program and conducts the evaluations. Goals The overall goal of WAP is to reduce the burden of energy prices on the

  3. DOE Signs Cooperative Agreement for Carbon Capture Project

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has signed a cooperative agreement with NRG Energy Inc. for the Parish Post-Combustion CO2 Capture and Sequestration Project to design, construct, and operate a system that will capture and store approximately 400,000 tons of carbon dioxide per year.

  4. Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

    1996-10-01

    Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

  5. World's Largest Post-Combustion Carbon Capture Project Begins

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction | Department of Energy World's Largest Post-Combustion Carbon Capture Project Begins Construction World's Largest Post-Combustion Carbon Capture Project Begins Construction July 15, 2014 - 9:55am Addthis News Media Contact 202-586-4940 Department of Energy Supported Project Will Capture 1.4 Million Tons of CO2 Annually Washington, D.C. - Today, the Department of Energy - in partnership with NRG Energy Inc. and JX Nippon - announced that construction has begun on the first

  6. Metrics Evolution in an Energy Research & Development Program

    SciTech Connect (OSTI)

    Brent Dixon

    2011-08-01

    All technology programs progress through three phases: Discovery, Definition, and Deployment. The form and application of program metrics needs to evolve with each phase. During the discovery phase, the program determines what is achievable. A set of tools is needed to define program goals, to analyze credible technical options, and to ensure that the options are compatible and meet the program objectives. A metrics system that scores the potential performance of technical options is part of this system of tools, supporting screening of concepts and aiding in the overall definition of objectives. During the definition phase, the program defines what specifically is wanted. What is achievable is translated into specific systems and specific technical options are selected and optimized. A metrics system can help with the identification of options for optimization and the selection of the option for deployment. During the deployment phase, the program shows that the selected system works. Demonstration projects are established and classical systems engineering is employed. During this phase, the metrics communicate system performance. This paper discusses an approach to metrics evolution within the Department of Energy's Nuclear Fuel Cycle R&D Program, which is working to improve the sustainability of nuclear energy.

  7. DOE Completes Large-Scale Carbon Sequestration Project Awards | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Large-Scale Carbon Sequestration Project Awards DOE Completes Large-Scale Carbon Sequestration Project Awards November 17, 2008 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of 2 Million Tons of CO2 at Wyoming Site WASHINGTON, DC - Completing a series of awards through its Regional Carbon Sequestration Partnership Program, the U.S. Department of Energy (DOE) today awarded $66.9 million to the Big Sky Regional Carbon Sequestration Partnership for the

  8. Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit

    SciTech Connect (OSTI)

    Muro, Mark; Rothwell, Jonathan

    2012-11-15

    The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nation’s finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nation’s balance sheet, and stimulate job-creation and economic renewal.

  9. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  10. Non-minimal derivative couplings of the composite metric

    SciTech Connect (OSTI)

    Heisenberg, Lavinia

    2015-11-04

    In the context of massive gravity, bi-gravity and multi-gravity non-minimal matter couplings via a specific composite effective metric were investigated recently. Even if these couplings generically reintroduce the Boulware-Deser ghost, this composite metric is unique in the sense that the ghost reemerges only beyond the decoupling limit and the matter quantum loop corrections do not detune the potential interactions. We consider non-minimal derivative couplings of the composite metric to matter fields for a specific subclass of Horndeski scalar-tensor interactions. We first explore these couplings in the mini-superspace and investigate in which scenario the ghost remains absent. We further study these non-minimal derivative couplings in the decoupling-limit of the theory and show that the equation of motion for the helicity-0 mode remains second order in derivatives. Finally, we discuss preliminary implications for cosmology.

  11. Calabi-Yau metrics for quotients and complete intersections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Braun, Volker; Brelidze, Tamaz; Douglas, Michael R.; Ovrut, Burt A.

    2008-05-22

    We extend previous computations of Calabi-Yau metrics on projective hypersurfaces to free quotients, complete intersections, and free quotients of complete intersections. In particular, we construct these metrics on generic quintics, four-generation quotients of the quintic, Schoen Calabi-Yau complete intersections and the quotient of a Schoen manifold with Z₃ x Z₃ fundamental group that was previously used to construct a heterotic standard model. Various numerical investigations into the dependence of Donaldson's algorithm on the integration scheme, as well as on the Kähler and complex structure moduli, are also performed.

  12. Primer Control System Cyber Security Framework and Technical Metrics

    SciTech Connect (OSTI)

    Wayne F. Boyer; Miles A. McQueen

    2008-05-01

    The Department of Homeland Security National Cyber Security Division supported development of a control system cyber security framework and a set of technical metrics to aid owner-operators in tracking control systems security. The framework defines seven relevant cyber security dimensions and provides the foundation for thinking about control system security. Based on the developed security framework, a set of ten technical metrics are recommended that allow control systems owner-operators to track improvements or degradations in their individual control systems security posture.

  13. Culture, and a Metrics Methodology for Biological Countermeasure Scenarios

    SciTech Connect (OSTI)

    Simpson, Mary J.

    2007-03-15

    Outcome Metrics Methodology defines a way to evaluate outcome metrics associated with scenario analyses related to biological countermeasures. Previous work developed a schema to allow evaluation of common elements of impacts across a wide range of potential threats and scenarios. Classes of metrics were identified that could be used by decision makers to differentiate the common bases among disparate scenarios. Typical impact metrics used in risk calculations include the anticipated number of deaths, casualties, and the direct economic costs should a given event occur. There are less obvious metrics that are often as important and require more intensive initial work to be incorporated. This study defines a methodology for quantifying, evaluating, and ranking metrics other than direct health and economic impacts. As has been observed with the consequences of Hurricane Katrina, impacts to the culture of specific sectors of society are less obvious on an immediate basis but equally important over the ensuing and long term. Culture is used as the example class of metrics within which • requirements for a methodology are explored • likely methodologies are examined • underlying assumptions for the respective methodologies are discussed • the basis for recommending a specific methodology is demonstrated. Culture, as a class of metrics, is shown to consist of political, sociological, and psychological elements that are highly valued by decision makers. In addition, cultural practices, dimensions, and kinds of knowledge offer complementary sets of information that contribute to the context within which experts can provide input. The quantification and evaluation of sociopolitical, socio-economic, and sociotechnical impacts depend predominantly on subjective, expert judgment. Epidemiological data is limited, resulting in samples with statistical limits. Dose response assessments and curves depend on the quality of data and its relevance to human modes of exposure. With uncertain data and limited common units, the aggregation of results is not inherently obvious. Candidate methodologies discussed include statistical, analytical, and expert-based numerical approaches. Most statistical methods require large amounts of data with a random distribution of values for validity. Analytical methods predominate wherein structured data or patterns are evident and randomness is low. The analytical hierarchy process is shown to satisfy all requirements and provide a detailed method for measurement that depends on expert judgment by decision makers.

  14. Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy 66.7 Million for Large-Scale Carbon Sequestration Project Energy Department Awards $66.7 Million for Large-Scale Carbon Sequestration Project December 18, 2007 - 4:58pm Addthis Regional Partner to Demonstrate Safe and Permanent Storage of One Million Tons of CO2 at Illinois Site WASHINGTON, DC - Following closely on the heels of three recent awards through the Department of Energy's (DOE) Regional Carbon Sequestration Partnership Program, DOE today awarded

  15. Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder

    SciTech Connect (OSTI)

    Rothman, A.B.

    1996-02-01

    Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

  16. EERE Portfolio. Primary Benefits Metrics for FY09

    SciTech Connect (OSTI)

    none,

    2011-11-01

    This collection of data tables shows the benefits metrics related to energy security, environmental impacts, and economic impacts for both the entire EERE portfolio of renewable energy technologies as well as the individual technologies. Data are presented for the years 2015, 2020, 2030, and 2050, for both the NEMS and MARKAL models.

  17. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    SciTech Connect (OSTI)

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-06-01

    Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) was asked to provide technical assistance to the California Energy Commission (Energy Commission) related to the Registry in three areas: (1) assessing the availability and usefulness of industry-specific metrics, (2) evaluating various methods for establishing baselines for calculating GHG emissions reductions related to specific actions taken by Registry participants, and (3) establishing methods for calculating electricity CO2 emission factors. The third area of research was completed in 2002 and is documented in Estimating Carbon Dioxide Emissions Factors for the California Electric Power Sector (Marnay et al., 2002). This report documents our findings related to the first areas of research. For the first area of research, the overall objective was to evaluate the metrics, such as emissions per economic unit or emissions per unit of production that can be used to report GHG emissions trends for potential Registry participants. This research began with an effort to identify methodologies, benchmarking programs, inventories, protocols, and registries that u se industry-specific metrics to track trends in energy use or GHG emissions in order to determine what types of metrics have already been developed. The next step in developing industry-specific metrics was to assess the availability of data needed to determine metric development priorities. Berkeley Lab also determined the relative importance of different potential Registry participant categories in order to asses s the availability of sectoral or industry-specific metrics and then identified industry-specific metrics in use around the world. While a plethora of metrics was identified, no one metric that adequately tracks trends in GHG emissions while maintaining confidentiality of data was identified. As a result of this review, Berkeley Lab recommends the development of a GHG intensity index as a new metric for reporting and tracking GHG emissions trends.Such an index could provide an industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes while protecting proprietary data. This GHG intensity index would provide Registry participants with a means for demonstrating improvements in their energy and GHG emissions per unit of production without divulging specific values. For the second research area, Berkeley Lab evaluated various methods used to calculate baselines for documentation of energy consumption or GHG emissions reductions, noting those that use industry-specific metrics. Accounting for actions to reduce GHGs can be done on a project-by-project basis or on an entity basis. Establishing project-related baselines for mitigation efforts has been widely discussed in the context of two of the so-called ''flexible mechanisms'' of the Kyoto Protocol to the United Nations Framework Convention on Climate Change (Kyoto Protocol) Joint Implementation (JI) and the Clean Development Mechanism (CDM).

  18. Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders

    SciTech Connect (OSTI)

    Lykins, M.L.

    1995-08-01

    A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

  19. Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and...

    Office of Scientific and Technical Information (OSTI)

    Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics Citation Details In-Document Search Title: Modified Anti-de-Sitter Metric, Light-Front...

  20. On the existence of certain axisymmetric interior metrics

    SciTech Connect (OSTI)

    Angulo Santacruz, C.; Batic, D.; Nowakowski, M.

    2010-08-15

    One of the effects of noncommutative coordinate operators is that the delta function connected to the quantum mechanical amplitude between states sharp to the position operator gets smeared by a Gaussian distribution. Although this is not the full account of the effects of noncommutativity, this effect is, in particular, important as it removes the point singularities of Schwarzschild and Reissner-Nordstroem solutions. In this context, it seems to be of some importance to probe also into ringlike singularities which appear in the Kerr case. In particular, starting with an anisotropic energy-momentum tensor and a general axisymmetric ansatz of the metric together with an arbitrary mass distribution (e.g., Gaussian), we derive the full set of Einstein equations that the noncommutative geometry inspired Kerr solution should satisfy. Using these equations we prove two theorems regarding the existence of certain Kerr metrics inspired by noncommutative geometry.

  1. 11-1370.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy 11,970,363 Metric Tons of CO2 Injected as of February 23, 2016 11,970,363 Metric Tons of CO2 Injected as of February 23, 2016 This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is equivalent to the annual greenhouse gas emissions from 210,526 passenger vehicles. The projects currently injecting CO2 within DOE's Regional Carbon Sequestration Partnership Program

  2. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply

    SciTech Connect (OSTI)

    Perlack, R.D.

    2005-12-15

    The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  3. FY 2013 Overall Contract and Project Management Improvement Performance Metrics and Targets

    Broader source: Energy.gov [DOE]

    Overall Contract and Project Management Performance Metrics and Targets for FY 2013, first quarter through fourth quarter.

  4. Guidebook for ARRA Smart Grid Program Metrics and Benefits | Department of

    Energy Savers [EERE]

    Energy Guidebook for ARRA Smart Grid Program Metrics and Benefits Guidebook for ARRA Smart Grid Program Metrics and Benefits The Guidebook for American Recovery and Reinvestment Act (ARRA) Smart Grid Program Metrics and Benefits describes the type of information to be collected from each of the Project Teams and how it will be used by the Department of Energy to communicate overall conclusions to the public. PDF icon Guidebook for ARRA Smart Grid Program Metrics and Benefits More Documents

  5. Office of HC Strategy Budget and Performance Metrics (HC-50) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Strategy Budget and Performance Metrics (HC-50) Office of HC Strategy Budget and Performance Metrics (HC-50) Mission Statement and Function Statement The Office of Human Capital Strategy, Budget, and Performance Metrics provides strategic direction and advice to its stakeholders through the integration of budget analysis, workforce projections, and performance metrics in support of the goals and missions of the Department of Energy. Functions: Promotes business partnerships with

  6. Optimal recovery of linear operators in non-Euclidean metrics

    SciTech Connect (OSTI)

    Osipenko, K Yu

    2014-10-31

    The paper looks at problems concerning the recovery of operators from noisy information in non-Euclidean metrics. Anumber of general theorems are proved and applied to recovery problems for functions and their derivatives from the noisy Fourier transform. In some cases, afamily of optimal methods is found, from which the methods requiring the least amount of original information are singled out. Bibliography: 25 titles.

  7. The Clean Energy Economy in Three Charts | Department of Energy

    Office of Environmental Management (EM)

    ... When the standards take full effect in 2025, they will reduce oil imports by 2.2 million barrels per day and cut carbon pollution by 6 billion metric tons, which is roughly ...

  8. Largest Federally-Owned Wind Farm Breaks Ground at U.S. Weapons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    megawatt project will power more than 60 percent of the plant with clean, renewable wind energy and reduce carbon emissions by over 35,000 metric tons per year - equivalent to...

  9. U.S. Energy Department, Pay-Television Industry and Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The standards will also avoid more than five million metric tons of carbon dioxide emissions each year. As consumer demand for digital video recorders and high-definition set-top ...

  10. DOE Withdraws Proposed Rulemaking (Test Procedure) and Proposed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The standards will also avoid more than five million metric tons of carbon dioxide emissions each year. As consumer demand for digital video recorders and high-definition set-top ...

  11. GENESIS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLIMATE BENEFIT Genesis is expected to generate 605,000 megawatt-hours of clean energy and prevent 322,000 metric tons of carbon dioxide emissions annually. PROJECT STATISTICS: ...

  12. KAHUKU | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It is expected to prevent 39,000 metric tons of carbon dioxide emissions annually. PROJECT STATISTICS: KAHUKU PROJECT SUMMARY OWNER First Wind LOCATION Kahuku, Hawai'i FINANCIAL ...

  13. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, April 2005

    SciTech Connect (OSTI)

    2005-04-01

    The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country’s present petroleum consumption – the goal set by the Biomass R&D Technical Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

  14. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    6 Reference case Table A19. Energy-related carbon dioxide emissions by end use (million metric tons) Energy Information Administration / Annual Energy Outlook 2015 Table A19. Energy-related carbon dioxide emissions by end use (million metric tons) Sector and end use Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Residential Space heating ........................................................ 228 293 248 236 228 218 207 -1.3% Space cooling

  15. Effect of CNG start - gasoline run on emissions from a 3/4 ton pick-up truck

    SciTech Connect (OSTI)

    Springer, K.J.; Smith, L.R.; Dickinson, A.G.

    1994-10-01

    This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start - gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The results was a reductiopn in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

  16. Energy Department Project Captures and Stores One Million Metric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "This milestone is an important step towards the widespread deployment of carbon capture ... approximately 7,000 feet below the surface into the Mount Simon Sandstone formation. ...

  17. CARBON FIBER COMPOSITES IN HIGH VOLUME

    SciTech Connect (OSTI)

    Warren, Charles David; Das, Sujit; Jeon, Dr. Saeil

    2014-01-01

    Vehicle lightweighting represents one of several design approaches that automotive and heavy truck manufacturers are currently evaluating to improve fuel economy, lower emissions, and improve freight efficiency (tons-miles per gallon of fuel). With changes in fuel efficiency and environmental regulations in the area of transportation, the next decade will likely see considerable vehicle lightweighting throughout the ground transportation industry. Greater use of carbon fiber composites and light metals is a key component of that strategy. This paper examines the competition between candidate materials for lightweighting of heavy vehicles and passenger cars. A 53-component, 25 % mass reduction, body-in-white cost analysis is presented for each material class, highlighting the potential cost penalty for each kilogram of mass reduction and then comparing the various material options. Lastly, as the cost of carbon fiber is a major component of the elevated cost of carbon fiber composites, a brief look at the factors that influence that cost is presented.

  18. First-of-its-Kind Carbon Capture and Conversion Demonstration Technology Opening in Texas

    Broader source: Energy.gov [DOE]

    WASHINGTON D.C. — Today, the Department of Energy and Skyonic Corporation marked the opening of a major project demonstration for converting carbon dioxide (CO2) into commercial products. This new plant will use a first-of-its-kind process to capture 75,000 tons of CO2 from a San Antonio, Texas, cement plant and convert the greenhouse gas into other products, including sodium carbonate and sodium bicarbonate, hydrochloric acid and bleach.

  19. Metrics for the National SCADA Test Bed Program

    SciTech Connect (OSTI)

    Craig, Philip A.; Mortensen, J.; Dagle, Jeffery E.

    2008-12-05

    The U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) National SCADA Test Bed (NSTB) Program is providing valuable inputs into the electric industry by performing topical research and development (R&D) to secure next generation and legacy control systems. In addition, the program conducts vulnerability and risk analysis, develops tools, and performs industry liaison, outreach and awareness activities. These activities will enhance the secure and reliable delivery of energy for the United States. This report will describe metrics that could be utilized to provide feedback to help enhance the effectiveness of the NSTB Program.

  20. User's Guide to the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Koran, William

    2012-02-28

    The intent of this user guide is to provide a brief description of the functionality of the Energy Charting and Metrics (ECAM) tool, including the expanded building re-tuning functionality developed for Pacific Northwest National laboratory (PNNL). This document describes the tool's general functions and features, and offers detailed instructions for PNNL building re-tuning charts, a feature in ECAM intended to help building owners and operators look at trend data (recommended 15-minute time intervals) in a series of charts (both time series and scatter) to analyze air-handler, zone, and central plant information gathered from a building automation system (BAS).

  1. Effect of CNG start-gasoline run on emissions from a 3/4 ton pick-up truck

    SciTech Connect (OSTI)

    Springer, K.J.; Smith, L.R.; Dickinson, A.G.

    1994-10-01

    This paper describes experiments to determine the effect on exhaust emissions of starting on compressed natural gas (CNG) and then switching to gasoline once the catalyst reaches operating temperature. Carbon monoxide, oxides of nitrogen, and detailed exhaust hydrocarbon speciation data were obtained for dedicated CNG, then unleaded gasoline, and finally CNG start-gasoline run using the Federal Test Procedure at 24{degree}C and at -7{degree}C. The result was a reduction in emissions from the gasoline baseline, especially at -7{degree}C. It was estimated that CNG start - gasoline run resulted in a 71 percent reduction in potential ozone formation per mile. 3 refs., 6 figs., 11 tabs.

  2. Assessment of Reusing 14-ton, Thin-Wall, Depleted UF{sub 6} Cylinders as LLW Disposal Containers

    SciTech Connect (OSTI)

    O'Connor, D.G.

    2000-11-30

    Approximately 700,000 MT of DUF{sub 6} is stored, or will be produced under a current agreement with the USEC, at the Paducah site in Kentucky, Portsmouth site in Ohio, and ETTP site in Tennessee. On July 21, 1998, the 105th Congress approved Public Law 105-204 (Ref; 1), which directed that facilities be built at the Kentucky and Ohio sites to convert DUF{sub 6} to a stable form for disposition. On July 6, 1999, the Department of Energy (DOE) issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as Required by Public Law 105-204 (Ref. 2), in which DOE committed to develop a Depleted Uranium Hexafluoride Materials Use Roadmap''. On September 1, 2000, DOE issued the Draft Depleted Uranium Hexafluoride Materials Use Roadmap (Ref. 3) (Roadmap), which provides alternate paths for the long-term storage, beneficial use, and eventual disposition of each product form and material that will result from the DUF{sub 6} conversion activity. One of the paths being considered for DUF{sub 6} cylinders is to reuse the empty cylinders as containers to transport and dispose of LLW, including the converted DU. The Roadmap provides results of the many alternate uses and disposal paths for conversion products and the empty DUF{sub 6} storage cylinders. As a part of the Roadmap, evaluations were conducted of cost savings, technical maturity, barriers to implementation, and other impacts. Results of these evaluations indicate that using the DUF{sub 6} storage cylinders as LLW disposal containers could provide moderate cost savings due to the avoided cost of purchasing LLW packages and the avoided cost of disposing of the cylinders. No significant technical or institutional issues were identified that would make using cylinders as LLW packages less effective than other disposition paths. Over 58,000 cylinders have been used, or will be used, to store DUF{sub 6}. Over 51,000 of those cylinders are 14TTW cylinders with a nominal wall thickness of 5/16-m (0.79 cm). These- 14TTW cylinders, which have a nominal diameter of 48 inches and nominally contain 14 tons (12.7 MT) of DUF{sub 6}, were originally designed and fabricated for temporary storage of DUF{sub 6}. They were fabricated from pressure-vessel-grade steels according to the provisions of the ASME Boiler and Pressure Vessel Code (Ref. 4). Cylinders are stored in open yards at the three sites and, due to historical storage techniques, were subject to corrosion. Roughly 10,000 of the 14TTW cylinders are considered substandard (Ref. 5) due to corrosion and other structural anomalies caused by mishandling. This means that approximately 40,000 14TTW cylinders could be made available as containers for LLW disposal In order to demonstrate the use of 14TTW cylinders as LLW disposal containers, several qualifying tasks need to be performed. Two demonstrations are being considered using 14TTW cylinders--one demonstration using contaminated soil and one demonstration using U{sub 3}O{sub 8}. The objective of this report are to determine how much information is known that could be used to support the demonstrations, and how much additional work will need to be done in order to conduct the demonstrations. Information associated with the following four qualifying tasks are evaluated in this report. (1) Perform a review of structural assessments that have been conducted for 14TTW. (2) Develop a procedure for filling 14TTW cylinders with LLW that have been previously washed. (3) Evaluate the transportation requirements for shipping 14TTW cylinders containing LLW. (4) Evaluate the WAC that will be imposed by the NTS. Two assumptions are made to facilitate this evaluation of using DUF{sub 6} cylinders as LLW disposal containers. (1) Only 14TTW cylinders will be considered for use as LLW containers, and (2) The NTS will be the LLW disposal site.

  3. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  4. Carbon Smackdown: Carbon Capture

    SciTech Connect (OSTI)

    Jeffrey Long

    2010-07-12

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  5. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}

    SciTech Connect (OSTI)

    Newvahner, R.L.; Pryor, W.A.

    1991-12-31

    Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

  6. ENHANCEMENT OF TERRESTRIAL CARBON SINKS THROUGH RECLAMATION OF ABANDONED MINE LANDS IN THE APPALACHIAN REGION

    SciTech Connect (OSTI)

    Gary D. Kronrad

    2002-12-01

    The U.S.D.I. Office of Surface Mining (OSM) estimates that there are approximately 1 million acres of abandoned mine land (AML) in the Appalachian region. AML lands are classified as areas that were inadequately reclaimed or were left unreclaimed prior to the passage of the 1977 Surface Mining Control and Reclamation Act, and where no federal or state laws require any further reclamation responsibility to any company or individual. Reclamation and afforestation of these sites have the potential to provide landowners with cyclical timber revenues, generate environmental benefits to surrounding communities, and sequester carbon in the terrestrial ecosystem. Through a memorandum of understanding, the OSM and the U.S. Department of Energy (DOE) have decided to investigate reclaiming and afforesting these lands for the purpose of mitigating the negative effects of anthropogenic carbon dioxide in the atmosphere. This study determined the carbon sequestration potential of northern red oak (Quercus rubra L.), one of the major reclamation as well as commercial species, planted on West Virginia AML sites. Analyses were conducted to (1) calculate the total number of tons that can be stored, (2) determine the cost per ton to store carbon, and (3) calculate the profitability of managing these forests for timber production alone and for timber production and carbon storage together. The Forest Management Optimizer (FORMOP) was used to simulate growth data on diameter, height, and volume for northern red oak. Variables used in this study included site indices ranging from 40 to 80 (base age 50), thinning frequencies of 0, 1, and 2, thinning percentages of 20, 25, 30, 35, and 40, and a maximum rotation length of 100 years. Real alternative rates of return (ARR) ranging from 0.5% to 12.5% were chosen for the economic analyses. A total of 769,248 thinning and harvesting combinations, net present worths, and soil expectation values were calculated in this study. Results indicate that the cost per ton to sequester carbon ranges from $6.54 on site index 80 land at a 12.5% ARR to $36.68 on site index 40 land at an ARR of 0.5%. Results also indicate that the amount of carbon stored during one rotation ranges between 38 tons per acre on site index 40 land to 58 tons per acre on site index 80 land. The profitability of afforestation on these AML sites in West Virginia increases as the market price for carbon increases from $0 to $100 per ton.

  7. Conceptual Soundness, Metric Development, Benchmarking, and Targeting for PATH Subprogram Evaluation

    SciTech Connect (OSTI)

    Mosey. G.; Doris, E.; Coggeshall, C.; Antes, M.; Ruch, J.; Mortensen, J.

    2009-01-01

    The objective of this study is to evaluate the conceptual soundness of the U.S. Department of Housing and Urban Development (HUD) Partnership for Advancing Technology in Housing (PATH) program's revised goals and establish and apply a framework to identify and recommend metrics that are the most useful for measuring PATH's progress. This report provides an evaluative review of PATH's revised goals, outlines a structured method for identifying and selecting metrics, proposes metrics and benchmarks for a sampling of individual PATH programs, and discusses other metrics that potentially could be developed that may add value to the evaluation process. The framework and individual program metrics can be used for ongoing management improvement efforts and to inform broader program-level metrics for government reporting requirements.

  8. International Energy Outlook 2016-Energy-related CO2 emissions - Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration 9. Energy-related CO2 emissions Overview Because anthropogenic emissions of carbon dioxide (CO2) result primarily from the combustion of fossil fuels, energy consumption is at the center of the climate change debate. In the International Energy Outlook 2016 (IEO2016) Reference case, world energy-related CO2 emissions [331] increase from 32.3 billion metric tons in 2012 to 35.6 billion metric tons in 2020 and to 43.2 billion metric tons in 2040. The Reference case

  9. EECBG 10-07C/SEP 10-006B Attachment 1: Process Metrics List |

    Energy Savers [EERE]

    Department of Energy 10-07C/SEP 10-006B Attachment 1: Process Metrics List EECBG 10-07C/SEP 10-006B Attachment 1: Process Metrics List PDF icon eecbg_sep_reporting_guidance_attachment_06242011.pdf More Documents & Publications EECBG SEP Attachment 1 - Process metric list EECBG Program Notice 10-07A DOE Recovery Act Reporting Requirements for the State Energy Program

  10. Big Sky Carbon Sequestration Partnership--Phase I

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2006-01-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework (referred to below as the Advanced Concepts component of the Phase I efforts); and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration reflect this concern. Research in Phase I has identified and validated best management practices for soil C in the Partnership region, and outlined a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. This is the basis for the integrative analysis that will be undertaken in Phase II to work with industry, state and local governments and with the pilot demonstration projects to quantify the economic costs and risks associated with all opportunities for carbon storage in the Big Sky region. Scientifically sound MMV is critical for public acceptance of these technologies.

  11. Big Sky Carbon Sequestration Partnership--Phase I

    SciTech Connect (OSTI)

    Susan M. Capalbo

    2005-10-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework (referred to below as the Advanced Concepts component of the Phase I efforts); and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration reflect this concern. Research in Phase I has identified and validated best management practices for soil C in the Partnership region, and outlined a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. This is the basis for the integrative analysis that will be undertaken in Phase II to work with industry, state and local governments and with the pilot demonstration projects to quantify the economic costs and risks associated with all opportunities for carbon storage in the Big Sky region. Scientifically sound MMV is critical for public acceptance of these technologies.

  12. Microsoft PowerPoint - Snippet 3.2 Schedule Health Metrics 20140713...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... available software. These metrics can be quickly reviewed each month to identify any schedule health risks on your project, whether you are the contractor or the customer. ...

  13. New Selection Metric for Design of Thin-Film Solar Cell Absorber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Selection Metric for Design of Thin-Film Solar Cell Absorber Materials Research Details * SLME account s for the physics of absorption, emission, and recombination by directly ...

  14. GPRA 2003 quality metrics methodology and results: Office of Industrial Technologies

    SciTech Connect (OSTI)

    None, None

    2002-04-19

    This report describes the results, calculations, and assumptions underlying the GPRA 2003 Quality Metrics results for all Planning Units withing the Office of Industrial Technologies.

  15. Building Cost and Performance Metrics: Data Collection Protocol, Revision 1.0

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Solana, Amy E.; Spees, Kathleen L.

    2005-09-29

    This technical report describes the process for selecting and applying the building cost and performance metrics for measuring sustainably designed buildings in comparison to traditionally designed buildings.

  16. Variable-metric diffraction crystals for x-ray optics

    SciTech Connect (OSTI)

    Smither, R.K.; Fernandez, P.B. )

    1992-02-01

    A variable-metric (VM) crystal is one in which the spacing between the crystalline planes changes with position in the crystal. This variation can be either parallel to the crystalline planes or perpendicular to the crystalline planes of interest and can be produced by either introducing a thermal gradient in the crystal or by growing a crystal made of two or more elements and changing the relative percentages of the two elements as the crystal is grown. A series of experiments were performed in the laboratory to demonstrate the principle of the variable-metric crystal and its potential use in synchrotron beam lines. One of the most useful applications of the VM crystal is to increase the number of photons per unit bandwidth in a diffracted beam without losing any of the overall intensity. In a normal synchrotron beam line that uses a two-crystal monochromator, the bandwidth of the diffracted photon beam is determined by the vertical opening angle of the beam which is typically 0.10--0.30 mrad or 20--60 arcsec. When the VM crystal approach is applied, the bandwidth of the beam can be made as narrow as the rocking curve of the diffracting crystal, which is typically 0.005--0.050 mrad or 1--10 arcsec. Thus a very large increase of photons per unit bandwidth (or per unit energy) can be achieved through the use of VM crystals. When the VM principle is used with bent crystals, new kinds of x-ray optical elements can be generated that can focus and defocus x-ray beams much like simple lenses where the focal length of the lens can be changed to match its application. Thus both large magnifications and large demagnifications can be achieved as well as parallel beams with narrow bandwidths.

  17. Metrics for Assessment of Smart Grid Data Integrity Attacks

    SciTech Connect (OSTI)

    Annarita Giani; Miles McQueen; Russell Bent; Kameshwar Poolla; Mark Hinrichs

    2012-07-01

    There is an emerging consensus that the nation’s electricity grid is vulnerable to cyber attacks. This vulnerability arises from the increasing reliance on using remote measurements, transmitting them over legacy data networks to system operators who make critical decisions based on available data. Data integrity attacks are a class of cyber attacks that involve a compromise of information that is processed by the grid operator. This information can include meter readings of injected power at remote generators, power flows on transmission lines, and relay states. These data integrity attacks have consequences only when the system operator responds to compromised data by redispatching generation under normal or contingency protocols. These consequences include (a) financial losses from sub-optimal economic dispatch to service loads, (b) robustness/resiliency losses from placing the grid at operating points that are at greater risk from contingencies, and (c) systemic losses resulting from cascading failures induced by poor operational choices. This paper is focused on understanding the connections between grid operational procedures and cyber attacks. We first offer two examples to illustrate how data integrity attacks can cause economic and physical damage by misleading operators into taking inappropriate decisions. We then focus on unobservable data integrity attacks involving power meter data. These are coordinated attacks where the compromised data are consistent with the physics of power flow, and are therefore passed by any bad data detection algorithm. We develop metrics to assess the economic impact of these attacks under re-dispatch decisions using optimal power flow methods. These metrics can be use to prioritize the adoption of appropriate countermeasures including PMU placement, encryption, hardware upgrades, and advance attack detection algorithms.

  18. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  19. SECTION C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... tons (2,100 metric tons) of spent nuclear fuel, 11.5 tons (10.5 metric tons) of ... and treat Hanford's tank waste and close the Tank Farms to protect the Columbia River. ...

  20. Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Fact Sheet Research Team Members Key Contacts Carbon Storage Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO2. NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are: By 2015, develop technologies

  1. Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report

    SciTech Connect (OSTI)

    Lori Braase

    2013-01-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), in collaboration with the nuclear industry, has been conducting research and development (R&D) activities on advanced Light Water Reactor (LWR) fuels for the last few years. The emphasis for these activities was on improving the fuel performance in terms of increased burnup for waste minimization and increased power density for power upgrades, as well as collaborating with industry on fuel reliability. After the events at the Fukushima Nuclear Power Plant in Japan in March 2011, enhancing the accident tolerance of LWRs became a topic of serious discussion. In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the U.S. Congress directed DOE-NE to: • Give “priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools.” • Give “special technical emphasis and funding priority…to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of light water reactors.” • Report “to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown-resistant fuels leading to reactor testing and utilization by 2020.” Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, and operational transients, as well as design-basis and beyond design-basis events. The overall draft strategy for development and demonstration is comprised of three phases: Feasibility Assessment and Down-selection; Development and Qualification; and Commercialization. The activities performed during the feasibility assessment phase include laboratory scale experiments; fuel performance code updates; and analytical assessment of economic, operational, safety, fuel cycle, and environmental impacts of the new concepts. The development and qualification stage will consist of fuel fabrication and large scale irradiation and safety basis testing, leading to qualification and ultimate NRC licensing of the new fuel. The commercialization phase initiates technology transfer to industry for implementation. Attributes for fuels with enhanced accident tolerance include improved reaction kinetics with steam and slower hydrogen generation rate, while maintaining acceptable cladding thermo-mechanical properties; fuel thermo-mechanical properties; fuel-clad interactions; and fission-product behavior. These attributes provide a qualitative guidance for parameters that must be considered in the development of fuels and cladding with enhanced accident tolerance. However, quantitative metrics must be developed for these attributes. To initiate the quantitative metrics development, a Light Water Reactor Enhanced Accident Tolerant Fuels Metrics Development Workshop was held October 10-11, 2012, in Germantown, Maryland. This document summarizes the structure and outcome of the two-day workshop. Questions regarding the content can be directed to Lori Braase, 208-526-7763, lori.braase@inl.gov.

  2. Description of the Sandia National Laboratories science, technology & engineering metrics process.

    SciTech Connect (OSTI)

    Jordan, Gretchen B.; Watkins, Randall D.; Trucano, Timothy Guy; Burns, Alan Richard; Oelschlaeger, Peter

    2010-04-01

    There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will help ST&E Managers plan, implement, and track strategies and work in order to support the critical success factors of nurturing core science and enabling laboratory missions. The purpose of this SAND report is to provide a guide for those who want to understand the ST&E SMU metrics process. This report provides an overview of why the ST&E SMU wants a dashboard of metrics, some background on metrics for ST&E programs from existing literature and past Sandia metrics efforts, a summary of work completed to date, specifics on the portfolio of metrics that have been chosen and the implementation process that has been followed, and plans for the coming year to improve the ST&E SMU metrics process.

  3. Impact of Different Economic Performance Metrics on the Perceived Value of Solar Photovoltaics

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2011-10-01

    Photovoltaic (PV) systems are installed by several types of market participants, ranging from residential customers to large-scale project developers and utilities. Each type of market participant frequently uses a different economic performance metric to characterize PV value because they are looking for different types of returns from a PV investment. This report finds that different economic performance metrics frequently show different price thresholds for when a PV investment becomes profitable or attractive. Several project parameters, such as financing terms, can have a significant impact on some metrics [e.g., internal rate of return (IRR), net present value (NPV), and benefit-to-cost (B/C) ratio] while having a minimal impact on other metrics (e.g., simple payback time). As such, the choice of economic performance metric by different customer types can significantly shape each customer's perception of PV investment value and ultimately their adoption decision.

  4. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    SciTech Connect (OSTI)

    1996-03-01

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

  5. Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor

    SciTech Connect (OSTI)

    Kisholoy Goswami

    2005-10-11

    The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

  6. Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation

    SciTech Connect (OSTI)

    Doughty, C.

    2009-04-01

    The hydrodynamic behavior of carbon dioxide (CO{sub 2}) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO{sub 2} plume stabilization. A numerical model of the subsurface at a proposed power plant with CO{sub 2} capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO{sub 2} is injected over a four-year period, and the subsequent evolution of the CO{sub 2} plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO{sub 2} between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO{sub 2} plume is effectively immobilized at 25 years. At that time, 38% of the CO{sub 2} is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO{sub 2} saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.

  7. Sensitivity of Multi-gas Climate Policy to Emission Metrics

    SciTech Connect (OSTI)

    Smith, Steven J.; Karas, Joseph F.; Edmonds, James A.; Eom, Jiyong; Mizrahi, Andrew H.

    2013-04-01

    Multi-gas greenhouse emission targets require that different emissions be combined into an aggregate total. The Global Warming Potential (GWP) index is currently used for this purpose, despite various criticisms of the underlying concept. It is not possible to uniquely define a single metric that perfectly captures the different impacts of emissions of substances with widely disparate atmospheric lifetimes, which leads to a wide range of possible index values. We examine the sensitivity of emissions and climate outcomes to the value of the index used to aggregate methane emissions using a technologically detailed integrated assessment model. We find that the sensitivity to index value is of order 4-14% in terms of methane emissions and 2% in terms of total radiative forcing, using index values between 4 and 70 for methane, with larger regional differences in some cases. The sensitivity to index value is much higher in economic terms, with total 2-gas mitigation cost decreasing 4-5% for a lower index and increasing 10-13% for a larger index, with even larger changes if the emissions reduction targets are small. The sensitivity to index value also depends on the assumed maximum amount of mitigation available in each sector. Evaluation of the maximum mitigation potential for major sources of non-CO2 greenhouse gases would greatly aid analysis

  8. EA-1835: Midwest Regional Carbon Sequestration Partnership (MRCSP) Phase II Michigan Basin Project in Chester Township, Michigan

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide approximately $65.5 million in financial assistance in a cost-sharing arrangement with the project proponent, MRCSP. MRCSP's proposed project would use CO2 captured from an existing natural gas processing plant in Chester Township, pipe it approximately 1 mile to an injection well, and inject it into a deep saline aquifer for geologic sequestration. This project would demonstrate the geologic sequestration of 1,000,000 metric tons of CO2 over a 4-year period. The project and EA are on hold.

  9. Federal Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold

    2011-04-11

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­‐burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­‐fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  10. SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION

    SciTech Connect (OSTI)

    Brian McPherson

    2004-04-01

    The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential gaps in monitoring and verification approaches needed to validate long-term storage efforts.

  11. DOE Partnership Completes Successful CO2 Injection Test in the Mount Simon Sandstone

    Broader source: Energy.gov [DOE]

    The Midwest Regional Carbon Sequestration Partnership, one of seven partnerships in the U.S. Department of Energy's Regional Carbon Sequestration Partnerships program, has successfully injected 1,000 metric tons of carbon dioxide (CO2) into the Mount Simon Sandstone, a deep saline formation that is widespread across much of the Midwest.

  12. Enclosure - FY 2016 Q1 Metrics Report 2016-02-11.xlsx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ContractProject Management Performance Metrics FY 2016 Target No. 2 3 4 5 6 7 Comment FY 2016 Forecast Certified Contracting Staff: By the end of FY 2011, 85% of the 1102 ...

  13. Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and...

    Office of Scientific and Technical Information (OSTI)

    Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics Dosch, Hans Gunter; U. Heidelberg, ITP; Brodsky, Stanley J.; SLAC; de Teramond, Guy F.;...

  14. EAC Presentation: Metrics and Benefits Analysis for the ARRA Smart Grid Programs- March 10, 2011

    Broader source: Energy.gov [DOE]

    PowerPoint presentation by Joe Paladino from the Office of Electricity Delivery and Energy Reliability before the Electricity Advisory Committee (EAC) on metrics and benefits analysis for the...

  15. Metrics for Developing an Endorsed Set of Radiographic Threat Surrogates for JINII/CAARS

    SciTech Connect (OSTI)

    Wurtz, R; Walston, S; Dietrich, D; Martz, H

    2009-02-11

    CAARS (Cargo Advanced Automated Radiography System) is developing x-ray dual energy and x-ray backscatter methods to automatically detect materials that are greater than Z=72 (hafnium). This works well for simple geometry materials, where most of the radiographic path is through one material. However, this is usually not the case. Instead, the radiographic path includes many materials of different lengths. Single energy can be used to compute {mu}y{sub l} which is related to areal density (mass per unit area) while dual energy yields more information. This report describes a set of metrics suitable and sufficient for characterizing the appearance of assemblies as detected by x-ray radiographic imaging systems, such as those being tested by Joint Integrated Non-Intrusive Inspection (JINII) or developed under CAARS. These metrics will be simulated both for threat assemblies and surrogate threat assemblies (such as are found in Roney et al. 2007) using geometrical and compositional information of the assemblies. The imaging systems are intended to distinguish assemblies containing high-Z material from those containing low-Z material, regardless of thickness, density, or compounds and mixtures. The systems in question operate on the principle of comparing images obtained by using two different x-ray end-point energies--so-called 'dual energy' imaging systems. At the direction of the DHS JINII sponsor, this report does not cover metrics that implement scattering, in the form of either forward-scattered radiation or high-Z detection systems operating on the principle of backscatter detection. Such methods and effects will be covered in a later report. The metrics described here are to be used to compare assemblies and not x-ray radiography systems. We intend to use these metrics to determine whether two assemblies do or do not look the same. We are tasked to develop a set of assemblies whose appearance using this class of detection systems is indistinguishable from the real threats. To check such an indistinguishability, we must define metrics that are broad enough to cover systems of different source spectra and detector spectral response; in other words, the best metrics should capture physical properties of the assemblies and not the source and detectors employed. In fact, one requirement for the metrics is that, as the detection circumstances change, the similarity or difference of the metrics of two assemblies should be maintained. This report describes the set of two simple 'dual energy' metrics that we have selected. A second report (Wurtz, et al. 2009) goes on to demonstrate several characteristics of the metrics, including how sensitive they are (or are not) to changes in the detection systems, shielding, etc.

  16. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    SciTech Connect (OSTI)

    Mickalonis, J. I.

    2015-08-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33% was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  17. CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON

    SciTech Connect (OSTI)

    Mickalonis, J.

    2014-06-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  18. Corrosion of aluminum clad spent nuclear fuel in the 70 ton cask during transfer from L area to H-canyon

    SciTech Connect (OSTI)

    Mickalonis, J. I.

    2015-08-31

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 263 °C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 °C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  19. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    SciTech Connect (OSTI)

    Robert Finley

    2012-12-01

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern Indiana, and an immiscible CO{sub 2} flood pilot was conducted in the Jackson sandstone (Mississippian System Big Clifty Sandstone Member) at the Sugar Creek Field in Hopkins County, western Kentucky. Up to 12% incremental oil recovery was estimated based on these pilots. A CO{sub 2} huff ‘n’ puff (HNP) pilot project was conducted in the Cypress Sandstone in the Loudon Field. This pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model. A pilot project at the Tanquary Farms site in Wabash County, southeastern Illinois, tested the potential storage of CO{sub 2} in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} storage and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot results from all four sites showed that CO{sub 2} could be injected into the subsurface without adversely affecting groundwater. Additionally, hydrocarbon production was enhanced, giving further evidence that CO{sub 2} storage in oil reservoirs and coal beds offers an economic advantage. Results from the MVA program at each site indicated that injected CO{sub 2} did not leave the injection zone. Topical reports were completed on the Middle and Late Devonian New Albany Shale and Basin CO{sub 2} emissions. The efficacy of the New Albany Shale as a storage sink could be substantial if low injectivity concerns can be alleviated. CO{sub 2} emissions in the Illinois Basin were projected to be dominated by coal-fired power plants.

  20. Implementing the Data Center Energy Productivity Metric in a High Performance Computing Data Center

    SciTech Connect (OSTI)

    Sego, Landon H.; Marquez, Andres; Rawson, Andrew; Cader, Tahir; Fox, Kevin M.; Gustafson, William I.; Mundy, Christopher J.

    2013-06-30

    As data centers proliferate in size and number, the improvement of their energy efficiency and productivity has become an economic and environmental imperative. Making these improvements requires metrics that are robust, interpretable, and practical. We discuss the properties of a number of the proposed metrics of energy efficiency and productivity. In particular, we focus on the Data Center Energy Productivity (DCeP) metric, which is the ratio of useful work produced by the data center to the energy consumed performing that work. We describe our approach for using DCeP as the principal outcome of a designed experiment using a highly instrumented, high-performance computing data center. We found that DCeP was successful in clearly distinguishing different operational states in the data center, thereby validating its utility as a metric for identifying configurations of hardware and software that would improve energy productivity. We also discuss some of the challenges and benefits associated with implementing the DCeP metric, and we examine the efficacy of the metric in making comparisons within a data center and between data centers.

  1. Carbon Sequestration

    SciTech Connect (OSTI)

    2013-05-06

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  2. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  3. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  4. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Fact Sheet Research Team Members Key Contacts Carbon Capture Research & Development Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in atmospheric CO2 concentrations, but capturing substantial amounts of CO2 using current technology would result in a prohibitive rise in the cost of producing energy. The National Energy Technology Laboratory, in collaboration with researchers from regional

  5. Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Capture Carbon capture involves the separation of CO2 from coal-based power plant flue gas or syngas. Commercially available first-generation CO2 capture technologies are currently being used in various industrial applications. However, in their current state of development, these technologies are not ready for implementation on coal-based power plants because they have not been demonstrated at appropriate scale, require approximately one-third of the plant's steam and power to operate,

  6. Greenhouse Gas Laser Imaging Tomography Experiment (GreenLITE): Evaluation of a new method to look at high resolution spatial/temporal distributions of carbon over key sub km sites

    SciTech Connect (OSTI)

    Dobler, Jeremy; Zaccheo, T. Scott; Blume, Nathan; Braun, Michael; Perninit, Timothy; McGregor, Doug; Botos, Chris; Dobeck, Laura

    2015-01-01

    Recently a new laser based approach for measuring area with potential for producing 2D estimates of the concentration spatial distribution has been developed through a cooperative agreement with the National Energy and Technology Laboratory of the Department of Energy, Exelis Inc. and AER Inc. The new approach is based on a pair of continuous wave intensity modulated laser absorption spectrometer transceivers, combined with a series of retro reflectors located around the perimeter of the area being monitored. The main goal of this cooperative agreement is monitoring, reporting and verification for ground carbon capture and storage projects. The system was recently tested at the Zero Emission Research and Technology site in Bozeman, MT, with underground leak rates ranging from 0.1 – 0.3 metric ton per day (T/d), as well as a 0.8 T/d surface release. Over 200 hours of data were collected over a rectangular grid 180m x 200m between August 18th and September 9th. In addition, multiple days of in situ data were acquired for the same site, using a Licor gas analyzer systems. Initial comparisons between the laser-based system and the in situ agree very well. The system is designed to operate remotely and transmit the data via a 3G/4G connection along with weather data for the site. An all web-based system ingests the data, populates a database, performs the inversion to ppm CO2 using the Line-by-Line Radiative Transfer Model (LBLRTM), and displays plots and statistics for the retrieved data. We will present an overview of the GreenLITE measurement system, outline the retrieval and reconstruction approach, and discuss results from extensive field testing.

  7. H. R. 1086: A Bill to amend the Internal Revenue code of 1986 to reduce emissions of carbon dioxide by imposing a tax on certain fuels based on their carbon content, introduced in the House of Representatives, One Hundred Second Congress, First Session, February 21, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    A new subchapter would be added to the Internal Revenue Code entitled Carbon Tax on Primary Fossil Fuels. The tax is imposed on coal, petroleum, and natural gas, and is phased in over five years beginning in 1992. The tax on coal is $3.60 per ton in 1992 and climbs to $18.00 per ton in 1996. The tax on petroleum begins at $0.78 per barrel and climbs to $3.90 per barrel in 1996. Natural gas is taxed at $0.096 per MCF in 1992 and $0.48 per MCF in 1996. The bill also describes inflation adjustments.

  8. Carbon particles

    DOE Patents [OSTI]

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  9. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  10. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  11. Carbon | Open Energy Information

    Open Energy Info (EERE)

    Carbon Jump to: navigation, search TODO: Add description Related Links List of Companies in Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960...

  12. State and Regional Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold; Durrant, Marie

    2011-03-31

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-­‐three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­‐and-­‐trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  13. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture

    SciTech Connect (OSTI)

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hancu, Dan; Chen, Wei

    2014-07-01

    This report presents system and economicanalysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO₂ capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. Forcomparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO₂ for the aminosilicone-based carbon-capture process is $46.04/ton of CO₂ as compared to $60.25/ton of CO₂ when MEA is used. The aminosilicone- based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO₂ decreases to $44.12/ton. The aminosilicone-based solvent has a higherthermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lowervapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lowerheat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages overconventional systems using MEA.

  14. Microsoft Word - 2014-1-1 RCA Qtr 1 Metrics Attachment_R1

    Energy Savers [EERE]

    4 First Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics 1 Contract/Project Management Performance Metric FY 2014 Target FY 2014 Projected FY 2014 Pre- & Post-CAP* Projected Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90% 75% Construction 81% Cleanup 67% 67% Pre-CAP 75% Post-CAP Based on 3-year rolling period (FY12 to FY14) TPC is Total Project Cost. Contract/Project

  15. Microsoft Word - 2014-5-27 RCA Qtr 2 Metrics Attachment_R1

    Energy Savers [EERE]

    Second Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics 1 Contract/Project Management Performance Metric FY 2014 Target FY 2014 Projected FY 2014 Pre- & Post-CAP* Projected Comment Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90% 75% Construction 81% Cleanup 67% 67% Pre-CAP 75% Post-CAP Based on 3-year rolling period (FY12 to FY14) TPC is Total Project Cost. Contract/Project

  16. FY 2014 Q3 RCA CAP Performance Metrics Report 2014-09-05.xlsx

    Energy Savers [EERE]

    Third Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics No. Contract/Project Management Performance Metrics FY 2014 Target FY 2014 Pre- & Post- CAP* Projected Comment 1 Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90% 67% Pre-CAP 75% Post-CAP Based on 3-year rolling period (FY12 to FY14). TPC is Total Project Cost. No. FY 2014 Target FY 2014 3rd Qtr Actual 2 95% 92% 3 95% 90% 4

  17. FY 2014 Q4 Metrics Report 2014-11-06.xlsx

    Energy Savers [EERE]

    Fourth Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics No. Contract/Project Management Performance Metrics FY 2014 Target FY 2014 Pre- & Post- CAP* Actual Comment 1 Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90% 67% Pre-CAP 76% Post-CAP Based on 3-year rolling period (FY12 to FY14). TPC is Total Project Cost. No. FY 2014 Target FY 2014 4th Qtr Actual 2 95% 89% 3 95% 94% 4 90%

  18. Enclosure - FY 2015 Q4 Metrics Report 2015-11-02.xlsx

    Energy Savers [EERE]

    Fourth Quarter Overall Root Cause Analysis (RCA)/Corrective Action Plan (CAP) Performance Metrics No. Contract/Project Management Performance Metrics FY 2015 Target Comment No. 2 3 4 5 6 7 1 Capital Asset Project Success: Complete 90% of capital asset projects at original scope and within 110% of CD-2 TPC. 90% FY13-FY15: 40 completions through 4th Qtr. CD-4: Critical Decision-4, Approve Start of Operations/Project Completion. FY13-FY15: 4 completions through 4th Qtr. Based on 3-year rolling

  19. Table 1. U.S. emissions of greenhouse gases, based on global warming potential,

    U.S. Energy Information Administration (EIA) Indexed Site

    emissions of greenhouse gases, based on global warming potential, 1990-2009" " (Million Metric Tons of Carbon Dioxide Equivalent)" " Greenhouse Gas",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009 "Carbon

  20. Multidimensional metrics for estimating phage abundance, distribution, gene density, and sequence coverage in metagenomes

    SciTech Connect (OSTI)

    Aziz, Ramy K.; Dwivedi, Bhakti; Akhter, Sajia; Breitbart, Mya; Edwards, Robert A.

    2015-05-08

    Phages are the most abundant biological entities on Earth and play major ecological roles, yet the current sequenced phage genomes do not adequately represent their diversity, and little is known about the abundance and distribution of these sequenced genomes in nature. Although the study of phage ecology has benefited tremendously from the emergence of metagenomic sequencing, a systematic survey of phage genes and genomes in various ecosystems is still lacking, and fundamental questions about phage biology, lifestyle, and ecology remain unanswered. To address these questions and improve comparative analysis of phages in different metagenomes, we screened a core set of publicly available metagenomic samples for sequences related to completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted and deployed an array of mathematical and statistical metrics for a multidimensional estimation of the abundance and distribution of phage genes and genomes in various ecosystems. Experiments using those metrics individually showed their usefulness in emphasizing the pervasive, yet uneven, distribution of known phage sequences in environmental metagenomes. Using these metrics in combination allowed us to resolve phage genomes into clusters that correlated with their genotypes and taxonomic classes as well as their ecological properties. By adding this set of metrics to current metaviromic analysis pipelines, where they can provide insight regarding phage mosaicism, habitat specificity, and evolution.

  1. Multidimensional metrics for estimating phage abundance, distribution, gene density, and sequence coverage in metagenomes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aziz, Ramy K.; Dwivedi, Bhakti; Akhter, Sajia; Breitbart, Mya; Edwards, Robert A.

    2015-05-08

    Phages are the most abundant biological entities on Earth and play major ecological roles, yet the current sequenced phage genomes do not adequately represent their diversity, and little is known about the abundance and distribution of these sequenced genomes in nature. Although the study of phage ecology has benefited tremendously from the emergence of metagenomic sequencing, a systematic survey of phage genes and genomes in various ecosystems is still lacking, and fundamental questions about phage biology, lifestyle, and ecology remain unanswered. To address these questions and improve comparative analysis of phages in different metagenomes, we screened a core set ofmore » publicly available metagenomic samples for sequences related to completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted and deployed an array of mathematical and statistical metrics for a multidimensional estimation of the abundance and distribution of phage genes and genomes in various ecosystems. Experiments using those metrics individually showed their usefulness in emphasizing the pervasive, yet uneven, distribution of known phage sequences in environmental metagenomes. Using these metrics in combination allowed us to resolve phage genomes into clusters that correlated with their genotypes and taxonomic classes as well as their ecological properties. By adding this set of metrics to current metaviromic analysis pipelines, where they can provide insight regarding phage mosaicism, habitat specificity, and evolution.« less

  2. Metrics of closed world of Friedmann, agitated by electric charge (towards a theory electromagnetic Friedmanns)

    SciTech Connect (OSTI)

    Markov, M.A.; Frolov, V.P.

    1986-06-10

    The generalization is considered of the well-known Tolman problem to the case of electrically charged dust-like matter of the central symmetrical system. The first integrals of the correspondent system of the Einstein-Maxwell equations are found. The problem is specificated in such a way that with the full charge of the system going to zero, the metrics of the closed Friedman world arises. Such a system is considered at the initial moment, that of maximal enlargement. With any nonvanishing but no-matter-how-small value of the electric charge, the metrics is unclosed. The metrics of the almost-Friedmanian part of the world allows the continuation through the narrow manhole (at the small charge) as the Nordstroem Reissner metrics with the parameters m/sub O/ sq rt (chi) = e/sub o/. The expression for the electric potential in the manhole phi/sub h/ = c-squared/sq rt chi does not depend upon the value of the electric charge. The radius of the manhole r/sub h/ = e/sub O/ sq. rt (chi)/ c-squared increases with the increase of the charge. The state of the manhole as given by the classical description appears as essentially unstable from the quantum-physics viewpoint. The production of various pairs in the enormous electric fields of the manhole gives rise to the polarisation of the latter up to effective charge Z < 137e irrespective of the initial (no matter how great) charge of the system.

  3. Development of new VOC exposure metrics and their relationship to ''Sick Building Syndrome'' symptoms

    SciTech Connect (OSTI)

    Ten Brinke, JoAnn

    1995-08-01

    Volatile organic compounds (VOCs) are suspected to contribute significantly to ''Sick Building Syndrome'' (SBS), a complex of subchronic symptoms that occurs during and in general decreases away from occupancy of the building in question. A new approach takes into account individual VOC potencies, as well as the highly correlated nature of the complex VOC mixtures found indoors. The new VOC metrics are statistically significant predictors of symptom outcomes from the California Healthy Buildings Study data. Multivariate logistic regression analyses were used to test the hypothesis that a summary measure of the VOC mixture, other risk factors, and covariates for each worker will lead to better prediction of symptom outcome. VOC metrics based on animal irritancy measures and principal component analysis had the most influence in the prediction of eye, dermal, and nasal symptoms. After adjustment, a water-based paints and solvents source was found to be associated with dermal and eye irritation. The more typical VOC exposure metrics used in prior analyses were not useful in symptom prediction in the adjusted model (total VOC (TVOC), or sum of individually identified VOCs ({Sigma}VOC{sub i})). Also not useful were three other VOC metrics that took into account potency, but did not adjust for the highly correlated nature of the data set, or the presence of VOCs that were not measured. High TVOC values (2--7 mg m{sup {minus}3}) due to the presence of liquid-process photocopiers observed in several study spaces significantly influenced symptoms. Analyses without the high TVOC values reduced, but did not eliminate the ability of the VOC exposure metric based on irritancy and principal component analysis to explain symptom outcome.

  4. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  5. Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation

    SciTech Connect (OSTI)

    Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

    2014-01-15

    Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

  6. Carbon investment funds

    SciTech Connect (OSTI)

    2007-01-15

    The report is a study of the development of funds to invest in the purchase of carbon credits. It takes a look at the growing market for carbon credits, the rise of carbon investment funds, and the current state of carbon investing. Topics covered in the report include: Overview of climate change, greenhouse gases, and the Kyoto Protocols. Analysis of the alternatives for reducing carbon emissions including nitrous oxide reduction, coal mine methane capture and carbon capture and storage; Discussion of the different types of carbon credits; Discussion of the basics of carbon trading; Evaluation of the current status of carbon investing; and Profiles of 37 major carbon investment funds worldwide.

  7. The International Safeguards Technology Base: How is the Patient Doing? An Exploration of Effective Metrics

    SciTech Connect (OSTI)

    Schanfein, Mark J; Gouveia, Fernando S

    2010-07-01

    The term “Technology Base” is commonly used but what does it mean? Is there a common understanding of the components that comprise a technology base? Does a formal process exist to assess the health of a given technology base? These are important questions the relevance of which is even more pressing given the USDOE/NNSA initiatives to strengthen the safeguards technology base through investments in research & development and human capital development. Accordingly, the authors will establish a high-level framework to define and understand what comprises a technology base. Potential goal-driven metrics to assess the health of a technology base will also be explored, such as linear demographics and resource availability, in the hope that they can be used to better understand and improve the health of the U.S. safeguards technology base. Finally, through the identification of such metrics, the authors will offer suggestions and highlight choices for addressing potential shortfalls.

  8. Carbon Capital | Open Energy Information

    Open Energy Info (EERE)

    Capital Jump to: navigation, search Name: Carbon Capital Place: United Kingdom Sector: Carbon Product: Manages a carbon fund specialised in forestry projects References: Carbon...

  9. Microsoft Word - McIntyre-Metrics Report SAND draft9-14.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2070P Unlimited Release September 2007 Security Metrics for Process Control Systems Annie McIntyre, Blair Becker, Ron Halbgewachs Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination

  10. Microsoft Word - McIntyre-Metrics Report SAND draft9-14.doc

    Energy Savers [EERE]

    2070P Unlimited Release September 2007 Security Metrics for Process Control Systems Annie McIntyre, Blair Becker, Ron Halbgewachs Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination

  11. Resilience Metrics

    Broader source: Energy.gov (indexed) [DOE]

    ... resilience picture - Developed first dependency dashboards - Used IAC developed ... discussions with stakeholders - Dependency curves - Report that synthesizes ...

  12. Metric Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y ...

  13. performance metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    people Our People NNSA has the best science, technology and engineering in the world, and we are fortunate to have dedicated professionals who are truly leaders in their fields working every day to promote our nuclear security mission. The people who make up the nuclear security enterprise are on the front lines... Working at NNSA A wide variety of career paths can help you find the type of job that suits your professional goals and lay the groundwork for personal development and career

  14. Performance metrics and life-cycle information management for building performance assurance

    SciTech Connect (OSTI)

    Hitchcock, R.J.; Piette, M.A.; Selkowitz, S.E.

    1998-06-01

    Commercial buildings account for over $85 billion per year in energy costs, which is far more energy than technically necessary. One of the primary reasons buildings do not perform as well as intended is that critical information is lost, through ineffective documentation and communication, leading to building systems that are often improperly installed and operated. A life-cycle perspective on the management of building information provides a framework for improving commercial building energy performance. This paper describes a project to develop strategies and techniques to provide decision-makers with information needed to assure the desired building performance across the complete life cycle of a building project. A key element in this effort is the development of explicit performance metrics that quantitatively represent performance objectives of interest to various building stakeholders. The paper begins with a discussion of key problems identified in current building industry practice, and ongoing work to address these problems. The paper then focuses on the concept of performance metrics and their use in improving building performance during design, commissioning, and on-going operations. The design of a Building Life-cycle Information System (BLISS) is presented. BLISS is intended to provide an information infrastructure capable of integrating a variety of building information technologies that support performance assurance. The use of performance metrics in case study building projects is explored to illustrate current best practice. The application of integrated information technology for improving current practice is discussed.

  15. Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems

    SciTech Connect (OSTI)

    Morrissey, Elmer; O'Donnell, James; Keane, Marcus; Bazjanac, Vladimir

    2004-03-29

    Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offering an accurate method of quantitatively assessing building performance.

  16. Pilot-Scale Silicone Process for Low-Cost Carbon Dioxide Capture Preliminary Techno-Economic Analysis

    SciTech Connect (OSTI)

    Singh, Surinder; Spiry, Irina; Wood, Benjamin; Hance, Dan; Chen, Wei; Kehmna, Mark; McDuffie, Dwayne

    2014-03-31

    This report presents system and economic analysis for a carbon-capture unit which uses an aminosilicone-based solvent for CO{sub 2} capture in a pulverized coal (PC) boiler. The aminosilicone solvent is a 60/40 wt/wt mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) with tri-ethylene glycol (TEG) as a co-solvent. For comparison purposes, the report also shows results for a carbon-capture unit based on a conventional approach using mono-ethanol amine (MEA). The first year removal cost of CO{sub 2} for the aminosilicone-based carbon-capture process is $46.04/ton of CO2 as compared to $60.25/ton of CO{sub 2} when MEA is used. The aminosilicone-based process has <77% of the CAPEX of a system using MEA solvent. The lower CAPEX is due to several factors, including the higher working capacity of the aminosilicone solvent compared the MEA, which reduces the solvent flow rate required, reducing equipment sizes. If it is determined that carbon steel can be used in the rich-lean heat exchanger in the carbon capture unit, the first year removal cost of CO{sub 2} decreases to $44.12/ton. The aminosilicone-based solvent has a higher thermal stability than MEA, allowing desorption to be conducted at higher temperatures and pressures, decreasing the number of compressor stages needed. The aminosilicone-based solvent also has a lower vapor pressure, allowing the desorption to be conducted in a continuous-stirred tank reactor versus a more expensive packed column. The aminosilicone-based solvent has a lower heat capacity, which decreases the heat load on the desorber. In summary, the amino-silicone solvent has significant advantages over conventional systems using MEA.

  17. Development and evaluation of aperture-based complexity metrics using film and EPID measurements of static MLC openings

    SciTech Connect (OSTI)

    Götstedt, Julia; Karlsson Hauer, Anna; Bäck, Anna

    2015-07-15

    Purpose: Complexity metrics have been suggested as a complement to measurement-based quality assurance for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). However, these metrics have not yet been sufficiently validated. This study develops and evaluates new aperture-based complexity metrics in the context of static multileaf collimator (MLC) openings and compares them to previously published metrics. Methods: This study develops the converted aperture metric and the edge area metric. The converted aperture metric is based on small and irregular parts within the MLC opening that are quantified as measured distances between MLC leaves. The edge area metric is based on the relative size of the region around the edges defined by the MLC. Another metric suggested in this study is the circumference/area ratio. Earlier defined aperture-based complexity metrics—the modulation complexity score, the edge metric, the ratio monitor units (MU)/Gy, the aperture area, and the aperture irregularity—are compared to the newly proposed metrics. A set of small and irregular static MLC openings are created which simulate individual IMRT/VMAT control points of various complexities. These are measured with both an amorphous silicon electronic portal imaging device and EBT3 film. The differences between calculated and measured dose distributions are evaluated using a pixel-by-pixel comparison with two global dose difference criteria of 3% and 5%. The extent of the dose differences, expressed in terms of pass rate, is used as a measure of the complexity of the MLC openings and used for the evaluation of the metrics compared in this study. The different complexity scores are calculated for each created static MLC opening. The correlation between the calculated complexity scores and the extent of the dose differences (pass rate) are analyzed in scatter plots and using Pearson’s r-values. Results: The complexity scores calculated by the edge area metric, converted aperture metric, circumference/area ratio, edge metric, and MU/Gy ratio show good linear correlation to the complexity of the MLC openings, expressed as the 5% dose difference pass rate, with Pearson’s r-values of −0.94, −0.88, −0.84, −0.89, and −0.82, respectively. The overall trends for the 3% and 5% dose difference evaluations are similar. Conclusions: New complexity metrics are developed. The calculated scores correlate to the complexity of the created static MLC openings. The complexity of the MLC opening is dependent on the penumbra region relative to the area of the opening. The aperture-based complexity metrics that combined either the distances between the MLC leaves or the MLC opening circumference with the aperture area show the best correlation with the complexity of the static MLC openings.

  18. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B.

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  19. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  20. Forest Carbon Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of carbon is the difference of two large fluxes: photosynthesis and respiration. Carbon fixation by photosynthesis is, to a large extent, a single process with theoretical...

  1. Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia

    SciTech Connect (OSTI)

    Andy Lacatell; David Shoch; Bill Stanley; Zoe Kant

    2007-03-01

    The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baseline changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs of from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic additionality of any carbon benefits produced via reforestation--these are outcomes over and above what is currently possible given existing market opportunities. This is reflected and further substantiated in the results of the forest cover change analysis, which demonstrated a decline in area of land in forest use in the study area for the 1987/88-2001 period. The project team collected data necessary to identify sites for reforestation in the study area, environmental data for the determining site suitability for a range of reforestation alternatives and has identified and addressed potential leakage and additionality issues associated with implementing a carbon sequestration project in the Chesapeake Rivers Conservation Area. Furthermore, carbon emissions reductions generated would have strong potential for recognition in existing reporting systems such as the U.S. Department of Energy 1605(b) voluntary reporting requirements and the Chicago Climate Exchange. The study identified 384,398 acres on which reforestation activities could potentially be sited. Of these candidate sites, sites totaling 26,105 acres are an appropriate size for management (> 100 acres) and located in priority conservation areas identified by The Nature Conservancy. Total carbon sequestration potential of reforestation in the study area, realized over a 100 year timeframe, ranges from 58 to 66 million tons of carbon dioxide equivalent, and on the priority sites alone, potential for carbon sequestration approaches or exceeds 4 million tons of carbon dioxide equivalent. In the absence of concerted reforestation efforts, coupled with policy strategies, the region will likely face continued declines in forest land.

  2. Light Water Reactor Sustainability Program Operator Performance Metrics for Control Room Modernization: A Practical Guide for Early Design Evaluation

    SciTech Connect (OSTI)

    Ronald Boring; Roger Lew; Thomas Ulrich; Jeffrey Joe

    2014-03-01

    As control rooms are modernized with new digital systems at nuclear power plants, it is necessary to evaluate the operator performance using these systems as part of a verification and validation process. There are no standard, predefined metrics available for assessing what is satisfactory operator interaction with new systems, especially during the early design stages of a new system. This report identifies the process and metrics for evaluating human system interfaces as part of control room modernization. The report includes background information on design and evaluation, a thorough discussion of human performance measures, and a practical example of how the process and metrics have been used as part of a turbine control system upgrade during the formative stages of design. The process and metrics are geared toward generalizability to other applications and serve as a template for utilities undertaking their own control room modernization activities.

  3. Genome Assembly Forensics: Metrics for Assessing Assembly Correctness (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema (OSTI)

    Pop, Mihai [University of Maryland

    2013-01-22

    University of Maryland's Mihai Pop on "Genome Assembly Forensics: Metrics for Assessing Assembly Correctness" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  5. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  6. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    SciTech Connect (OSTI)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  7. Stabilization Wedges and the Management of Global Carbon for the next 50 years

    ScienceCinema (OSTI)

    Socolow, Robert [Princeton University, Princeton, New Jersey, United States

    2009-09-01

    More than 40 years after receiving a Ph.D. in physics, I am still working on problems where conservation laws matter. In particular, for the problems I work on now, the conservation of the carbon atom matters. I will tell the saga of an annual flow of 8 billion tons of carbon associated with the global extraction of fossil fuels from underground. Until recently, it was taken for granted that virtually all of this carbon will move within weeks through engines of various kinds and then into the atmosphere. For compelling environmental reasons, I and many others are challenging this complacent view, asking whether the carbon might wisely be directed elsewhere. To frame this and similar discussions, Steve Pacala and I introduced the 'stabilization wedge' in 2004 as a useful unit for discussing climate stabilization. Updating the definition, a wedge is the reduction of CO2 emissions by one billion tons of carbon per year in 2057, achieved by any strategy generated as a result of deliberate attention to global carbon. Each strategy uses already commercialized technology, generally at much larger scale than today. Implementing seven wedges should enable the world to achieve the interim goal of emitting no more CO2 globally in 2057 than today. This would place humanity, approximately, on a path to stabilizing CO2 at less than double the pre-industrial concentration, and it would put those at the helm in the following 50 years in a position to drive CO2 emissions to a net of zero in the following 50 years. Arguably, the tasks of the two half-centuries are comparably difficult.

  8. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  9. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  12. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  13. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J.

    1999-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  14. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, Richard J.

    1998-01-01

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

  15. Carbon nanotube composite materials

    DOE Patents [OSTI]

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  16. Carbon Nanotube Based Sensors

    SciTech Connect (OSTI)

    Jiang, Mian; Lin, Yuehe

    2006-11-01

    This review article provides a comprehensive review on sensors and biosensors based on functionalized carbon nanotubes.

  17. Mesoporous carbon materials

    DOE Patents [OSTI]

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  18. Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity

    SciTech Connect (OSTI)

    Heinicke, Christian; Baekler, Peter; Hehl, Friedrich W.

    2005-07-15

    We show that the Einstein-aether theory of Jacobson and Mattingly (J and M) can be understood in the framework of the metric-affine (gauge theory of) gravity (MAG). We achieve this by relating the aether vector field of J and M to certain post-Riemannian nonmetricity pieces contained in an independent linear connection of spacetime. Then, for the aether, a corresponding geometrical curvature-square Lagrangian with a massive piece can be formulated straightforwardly. We find an exact spherically symmetric solution of our model.

  19. Comparing Resource Adequacy Metrics and Their Influence on Capacity Value: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-04-01

    Traditional probabilistic methods have been used to evaluate resource adequacy. The increasing presence of variable renewable generation in power systems presents a challenge to these methods because, unlike thermal units, variable renewable generation levels change over time because they are driven by meteorological events. Thus, capacity value calculations for these resources are often performed to simple rules of thumb. This paper follows the recommendations of the North American Electric Reliability Corporation?s Integration of Variable Generation Task Force to include variable generation in the calculation of resource adequacy and compares different reliability metrics. Examples are provided using the Western Interconnection footprint under different variable generation penetrations.

  20. Perfect fluid and scalar field in the Reissner-Nordstroem metric

    SciTech Connect (OSTI)

    Babichev, E. O.; Dokuchaev, V. I. Eroshenko, Yu. N.

    2011-05-15

    We describe the spherically symmetric steady-state accretion of perfect fluid in the Reissner-Nordstroem metric. We present analytic solutions for accretion of a fluid with linear equations of state and of the Chaplygin gas. We also show that under reasonable physical conditions, there is no steady-state accretion of a perfect fluid onto a Reissner-Nordstroem naked singularity. Instead, a static atmosphere of fluid is formed. We discuss a possibility of violation of the third law of black hole thermodynamics for a phantom fluid accretion.

  1. Ultrahard fluid and scalar field in the Kerr-Newman metric

    SciTech Connect (OSTI)

    Babichev, E.; Chernov, S.; Dokuchaev, V.; Eroshenko, Yu.

    2008-11-15

    An analytic solution for the accretion of ultrahard perfect fluid onto a moving Kerr-Newman black hole is found. This solution is a generalization of the previously known solution by Petrich, Shapiro, and Teukolsky for a Kerr black hole. We show that the found solution is applicable for the case of a nonextreme black hole, however it cannot describe the accretion onto an extreme black hole due to violation of the test fluid approximation. We also present a stationary solution for a massless scalar field in the metric of a Kerr-Newman naked singularity.

  2. Expansion of Michigan EOR Operations Using Advanced Amine Technology at a 600 MW Project Wolverine Carbon Capture and Storage Project

    SciTech Connect (OSTI)

    H Hoffman; Y kishinevsky; S. Wu; R. Pardini; E. Tripp; D. Barnes

    2010-06-16

    Wolverine Power Supply Cooperative Inc, a member owned cooperative utility based in Cadillac Michigan, proposes to demonstrate the capture, beneficial utilization and storage of CO{sub 2} in the expansion of existing Enhanced Oil Recovery operations. This project is being proposed in response to the US Department of Energy Solicitation DE-FOA-0000015 Section III D, 'Large Scale Industrial CCS projects from Industrial Sources' Technology Area 1. The project will remove 1,000 metric tons per day of CO{sub 2} from the Wolverine Clean Energy Venture 600 MW CFB power plant owned and operated by WPC. CO{sub 2} from the flue gas will be captured using Hitachi's CO{sub 2} capture system and advanced amine technology. The capture system with the advanced amine-based solvent supplied by Hitachi is expected to significantly reduce the cost and energy requirements of CO{sub 2} capture compared to current technologies. The captured CO{sub 2} will be compressed and transported for Enhanced Oil Recovery and CO{sub 2} storage purposes. Enhanced Oil Recovery is a proven concept, widely used to recover otherwise inaccessible petroleum reserves. While post-combustion CO{sub 2} capture technologies have been tested at the pilot scale on coal power plant flue gas, they have not yet been demonstrated at a commercial scale and integrated with EOR and storage operations. Amine-based CO{sub 2} capture is the leading technology expected to be available commercially within this decade to enable CCS for utility and industrial facilities firing coal and waste fuels such as petroleum coke. However, traditional CO{sub 2} capture process utilizing commercial amine solvents is very energy intensive for regeneration and is also susceptible to solvent degradation by oxygen as well as SOx and NO{sub 2} in the flue gas, resulting in large operating costs. The large volume of combustion flue gas with its low CO{sub 2} concentration requires large equipment sizes, which together with the highly corrosive nature of the typical amine-based separation process leads to high plant capital investment. According to recent DOE-NETL studies, MEA-based CCS will increase the cost of electricity of a new pulverized coal plant by 80-85% and reduce the net plant efficiency by about 30%. Non-power industrial facilities will incur similar production output and efficiency penalties when implementing conventional carbon capture systems. The proposed large scale demonstration project combining advanced amine CO{sub 2} capture integrated with commercial EOR operations significantly advances post-combustion technology development toward the DOE objectives of reducing the cost of energy production and improving the efficiency of CO{sub 2} Capture technologies. WPC has assembled a strong multidisciplinary team to meet the objectives of this project. WPC will provide the host site and Hitachi will provide the carbon capture technology and advanced solvent. Burns and Roe bring expertise in overall engineering integration and plant design to the team. Core Energy, an active EOR producer/operator in the State of Michigan, is committed to support the detailed design, construction and operation of the CO{sub 2} pipeline and storage component of the project. This team has developed a Front End Engineering Design and Cost Estimate as part of Phase 1 of DOE Award DE-FE0002477.

  3. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  5. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  6. Carbon fuel cells with carbon corrosion suppression

    DOE Patents [OSTI]

    Cooper, John F.

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  7. Derivation of a Levelized Cost of Coating (LCOC) metric for evaluation of solar selective absorber materials

    SciTech Connect (OSTI)

    Ho, C. K.; Pacheco, J. E.

    2015-06-05

    A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the cost of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.

  8. Derivation of a Levelized Cost of Coating (LCOC) metric for evaluation of solar selective absorber materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, C. K.; Pacheco, J. E.

    2015-06-05

    A new metric, the Levelized Cost of Coating (LCOC), is derived in this paper to evaluate and compare alternative solar selective absorber coatings against a baseline coating (Pyromark 2500). In contrast to previous metrics that focused only on the optical performance of the coating, the LCOC includes costs, durability, and optical performance for more comprehensive comparisons among candidate materials. The LCOC is defined as the annualized marginal cost of the coating to produce a baseline annual thermal energy production. Costs include the cost of materials and labor for initial application and reapplication of the coating, as well as the costmore » of additional or fewer heliostats to yield the same annual thermal energy production as the baseline coating. Results show that important factors impacting the LCOC include the initial solar absorptance, thermal emittance, reapplication interval, degradation rate, reapplication cost, and downtime during reapplication. The LCOC can also be used to determine the optimal reapplication interval to minimize the levelized cost of energy production. As a result, similar methods can be applied more generally to determine the levelized cost of component for other applications and systems.« less

  9. Methodology, Methods, and Metrics for Testing and Evaluating Augmented Cognition Systems

    SciTech Connect (OSTI)

    Greitzer, Frank L.

    2008-09-15

    The augmented cognition research community seeks cognitive neuroscience-based solutions to improve warfighter performance by applying and managing mitigation strategies to reduce workload and improve the throughput and quality of decisions. The focus of augmented cognition mitigation research is to define, demonstrate, and exploit neuroscience and behavioral measures that support inferences about the warfighters cognitive state that prescribe the nature and timing of mitigation. A research challenge is to develop valid evaluation methodologies, metrics and measures to assess the impact of augmented cognition mitigations. Two considerations are external validity, which is the extent to which the results apply to operational contexts; and internal validity, which reflects the reliability of performance measures and the conclusions based on analysis of results. The scientific rigor of the research methodology employed in conducting empirical investigations largely affects the validity of the findings. External validity requirements also compel us to demonstrate operational significance of mitigations. Thus it is important to demonstrate effectiveness of mitigations under specific conditions. This chapter reviews some cognitive science and methodological considerations in designing augmented cognition research studies and associated human performance metrics and analysis methods to assess the impact of augmented cognition mitigations.

  10. Assessing the Effects of Data Compression in Simulations Using Physically Motivated Metrics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laney, Daniel; Langer, Steven; Weber, Christopher; Lindstrom, Peter; Wegener, Al

    2014-01-01

    This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy to combat the expected data-movement bottleneck in future high performance computing architectures. We show that, for the codes and simulations we tested, compression levels of 3–5X can be applied without causing significant changes to important physical quantities. Rather than applying signal processing error metrics, we utilize physics-based metrics appropriate for each code to assess the impact of compression. We evaluate three different simulation codes: a Lagrangian shock-hydrodynamics code, an Eulerian higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. Wemore » compress relevant quantities after each time-step to approximate the effects of tightly coupled compression and study the compression rates to estimate memory and disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be carefully considered in the context of the underlying physics being modeled.« less

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Table 1. 2014 Summary statistics (Alabama) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 31,953 8 Electric utilities 23,050 8 IPP & CHP 8,903 11 Net generation (megawatthours) 149,340,447 6 Electric utilities 112,340,555 3 IPP & CHP 36,999,892 10 Emissions Sulfur dioxide (short tons) 152,225 8 Nitrogen oxide (short tons) 61,909 13 Carbon dioxide (thousand metric tons) 67,635 10 Sulfur dioxide (lbs/MWh) 2.0 19 Nitrogen oxide (lbs/MWh) 0.8 38

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Arkansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,754 30 Electric utilities 11,526 23 IPP & CHP 3,227 29 Net generation (megawatthours) 61,592,137 24 Electric utilities 48,752,895 18 IPP & CHP 12,839,241 28 Emissions Sulfur dioxide (short tons) 89,528 15 Nitrogen oxide (short tons) 47,048 20 Carbon dioxide (thousand metric tons) 37,289 23 Sulfur dioxide (lbs/MWh) 2.9 9 Nitrogen oxide

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington Electricity Profile 2014 Table 1. 2014 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,949 10 Electric utilities 27,376 5 IPP & CHP 3,573 26 Net generation (megawatthours) 116,334,363 11 Electric utilities 102,294,256 5 IPP & CHP 14,040,107 24 Emissions Sulfur Dioxide (short tons) 13,716 36 Nitrogen Oxide (short tons) 18,316 40 Carbon Dioxide (thousand metric tons) 12,427 398 Sulfur Dioxide (lbs/MWh) 0.2 44

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,276 25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide (short tons) 102,406 12 Nitrogen Oxide (short tons) 72,995 11 Carbon Dioxide (thousand metric tons) 73,606 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Electricity Profile 2014 Table 1. 2014 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP 4,627,201 41 Emissions Sulfur Dioxide (short tons) 45,704 24 Nitrogen Oxide (short tons) 49,638 18 Carbon Dioxide (thousand metric tons) 47,337 17 Sulfur Dioxide (lbs/MWh) 1.8 22 Nitrogen Oxide

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Arizona Electricity Profile 2014 Table 1. 2014 Summary statistics (Arizona) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 28,249 13 Electric utilities 21,311 11 IPP & CHP 6,938 17 Net generation (megawatthours) 112,257,187 13 Electric utilities 94,847,135 8 IPP & CHP 17,410,053 19 Emissions Sulfur dioxide (short tons) 22,597 32 Nitrogen oxide (short tons) 56,726 17 Carbon dioxide (thousand metric tons) 53,684 16 Sulfur dioxide (lbs/MWh) 0.4 41 Nitrogen oxide

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    California Electricity Profile 2014 Table 1. 2014 Summary statistics (California) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 74,646 2 Electric utilities 28,201 4 IPP & CHP 46,446 2 Net generation (megawatthours) 198,807,622 5 Electric utilities 71,037,135 14 IPP & CHP 127,770,487 4 Emissions Sulfur dioxide (short tons) 3,102 46 Nitrogen oxide (short tons) 98,348 5 Carbon dioxide (thousand metric tons) 57,223 14 Sulfur dioxide (lbs/MWh) 0.0 49

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Colorado Electricity Profile 2014 Table 1. 2014 Summary statistics (Colorado) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,933 29 Electric utilities 10,204 28 IPP & CHP 4,729 18 Net generation (megawatthours) 53,847,386 30 Electric utilities 43,239,615 26 IPP & CHP 10,607,771 30 Emissions Sulfur dioxide (short tons) 28,453 30 Nitrogen oxide (short tons) 44,349 24 Carbon dioxide (thousand metric tons) 38,474 22 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    District of Columbia Electricity Profile 2014 Table 1. 2014 Summary statistics (District of Columbia) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 67,612 51 Electric utilities IPP & CHP 67,612 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 147 51 Carbon dioxide (thousand metric tons) 48 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.3 3

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Florida Electricity Profile 2014 Table 1. 2014 Summary statistics (Florida) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 59,440 3 Electric utilities 51,775 1 IPP & CHP 7,665 15 Net generation (megawatthours) 230,015,937 2 Electric utilities 211,970,587 1 IPP & CHP 18,045,350 15 Emissions Sulfur dioxide (short tons) 126,600 10 Nitrogen oxide (short tons) 91,356 6 Carbon dioxide (thousand metric tons) 111,549 2 Sulfur dioxide (lbs/MWh) 1.1 30 Nitrogen

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Electricity Profile 2014 Table 1. 2014 Summary statistics (Hawaii) Item Value Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,672 47 Electric utilities 1,732 40 IPP & CHP 939 45 Net generation (megawatthours) 10,204,158 46 Electric utilities 5,517,389 39 IPP & CHP 4,686,769 40 Emissions Sulfur dioxide (short tons) 21,670 33 Nitrogen oxide (short tons) 26,928 31 Carbon dioxide (thousand metric tons) 7,313 42 Sulfur dioxide (lbs/MWh) 4.2 4 Nitrogen oxide

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Illinois Electricity Profile 2014 Table 1. 2014 Summary statistics (Illinois) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,727 4 Electric utilities 5,263 35 IPP & CHP 39,464 4 Net generation (megawatthours) 202,143,878 4 Electric utilities 10,457,398 36 IPP & CHP 191,686,480 3 Emissions Sulfur dioxide (short tons) 187,536 6 Nitrogen oxide (short tons) 58,076 15 Carbon dioxide (thousand metric tons) 96,624 6 Sulfur dioxide (lbs/MWh) 1.9 20 Nitrogen

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Iowa Electricity Profile 2014 Table 1. 2014 Summary statistics (Iowa) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,507 24 Electric utilities 12,655 20 IPP & CHP 3,852 25 Net generation (megawatthours) 56,853,282 28 Electric utilities 43,021,954 27 IPP & CHP 13,831,328 25 Emissions Sulfur dioxide (short tons) 74,422 19 Nitrogen oxide (short tons) 41,793 25 Carbon dioxide (thousand metric tons) 39,312 21 Sulfur dioxide (lbs/MWh) 2.6 13 Nitrogen oxide

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Kentucky Electricity Profile 2014 Table 1. 2014 Summary statistics (Kentucky) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,878 21 Electric utilities 19,473 15 IPP & CHP 1,405 40 Net generation (megawatthours) 90,896,435 17 Electric utilities 90,133,403 10 IPP & CHP 763,032 49 Emissions Sulfur dioxide (short tons) 204,873 5 Nitrogen oxide (short tons) 89,253 7 Carbon dioxide (thousand metric tons) 85,795 7 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Maine Electricity Profile 2014 Table 1. 2014 Summary statistics (Maine) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,470 43 Electric utilities 10 49 IPP & CHP 4,460 20 Net generation (megawatthours) 13,248,710 44 Electric utilities 523 49 IPP & CHP 13,248,187 27 Emissions Sulfur dioxide (short tons) 10,990 38 Nitrogen oxide (short tons) 8,622 46 Carbon dioxide (thousand metric tons) 3,298 46 Sulfur dioxide (lbs/MWh) 1.7 25 Nitrogen oxide (lbs/MWh)

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Maryland Electricity Profile 2014 Table 1. 2014 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,264 33 Electric utilities 85 47 IPP & CHP 12,179 8 Net generation (megawatthours) 37,833,652 35 Electric utilities 20,260 47 IPP & CHP 37,813,392 9 Emissions Sulfur dioxide (short tons) 41,370 26 Nitrogen oxide (short tons) 20,626 35 Carbon dioxide (thousand metric tons) 20,414 34 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi Electricity Profile 2014 Table 1. 2014 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 16,090 26 Electric utilities 13,494 19 IPP & CHP 2,597 34 Net generation (megawatthours) 55,127,092 29 Electric utilities 47,084,382 21 IPP & CHP 8,042,710 34 Emissions Sulfur dioxide (short tons) 101,093 13 Nitrogen oxide (short tons) 23,993 32 Carbon dioxide (thousand metric tons) 24,037 33 Sulfur dioxide (lbs/MWh) 3.7 5

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    York Electricity Profile 2014 Table 1. 2014 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 40,404 6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide (short tons) 31,878 28 Nitrogen oxide (short tons) 46,971 21 Carbon dioxide (thousand metric tons) 33,240 26 Sulfur dioxide (lbs/MWh) 0.5 39 Nitrogen oxide

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Rhode Island Electricity Profile 2014 Table 1. 2014 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,810 49 Electric utilities 8 50 IPP & CHP 1,803 38 Net generation (megawatthours) 6,281,748 49 Electric utilities 10,670 48 IPP & CHP 6,271,078 36 Emissions Sulfur dioxide (short tons) 100 49 Nitrogen oxide (short tons) 1,224 49 Carbon dioxide (thousand metric tons) 2,566 48 Sulfur dioxide (lbs/MWh) 0.0 48 Nitrogen oxide

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Electricity Profile 2014 Table 1. 2014 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 22,824 18 Electric utilities 20,836 12 IPP & CHP 1,988 36 Net generation (megawatthours) 97,158,465 16 Electric utilities 93,547,004 9 IPP & CHP 3,611,461 43 Emissions Sulfur dioxide (short tons) 43,659 25 Nitrogen oxide (short tons) 21,592 34 Carbon dioxide (thousand metric tons) 33,083 27 Sulfur dioxide (lbs/MWh) 0.9 35

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Tennessee Electricity Profile 2014 Table 1. 2014 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,998 20 Electric utilities 20,490 14 IPP & CHP 508 47 Net generation (megawatthours) 79,506,886 20 Electric utilities 76,986,629 13 IPP & CHP 2,520,257 47 Emissions Sulfur dioxide (short tons) 89,357 16 Nitrogen oxide (short tons) 23,913 33 Carbon dioxide (thousand metric tons) 41,405 20 Sulfur dioxide (lbs/MWh) 2.2 16 Nitrogen oxide

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Texas Electricity Profile 2014 Table 1. 2014 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 112,914 1 Electric utilities 29,113 2 IPP & CHP 83,800 1 Net generation (megawatthours) 437,629,668 1 Electric utilities 94,974,953 7 IPP & CHP 342,654,715 1 Emissions Sulfur Dioxide (short tons) 349,245 2 Nitrogen Oxide short tons) 229,580 1 Carbon Dioxide (thousand metric tons) 254,488 1 Sulfur Dioxide (lbs/MWh) 1.6 26 Nitrogen Oxide

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric utilities 616,632 IPP & CHP 451,791 Net generation (megawatthours) 4,093,606,005 Electric utilities 2,382,473,495 IPP & CHP 1,711,132,510 Emissions Sulfur Dioxide (short tons) 3,842,005 Nitrogen Oxide (short tons) 2,400,375 Carbon Dioxide (thousand metric tons) 2,160,342 Sulfur Dioxide (lbs/MWh) 1.9 Nitrogen Oxide

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Vermont Electricity Profile 2014 Table 1. 2014 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 650 50 Electric utilities 337 44 IPP & CHP 313 49 Net generation (megawatthours) 7,031,394 48 Electric utilities 868,079 42 IPP & CHP 6,163,315 37 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 737 50 Carbon Dioxide (thousand metric tons) 14 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 26,292 16 Electric utilities 22,062 10 IPP & CHP 4,231 22 Net generation (megawatthours) 77,137,438 21 Electric utilities 62,966,914 16 IPP & CHP 14,170,524 23 Emissions Sulfur Dioxide (short tons) 68,550 20 Nitrogen Oxide (short tons) 40,656 26 Carbon Dioxide (thousand metric tons) 33,295 25 Sulfur Dioxide (lbs/MWh) 1.8 23 Nitrogen

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,276 25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide (short tons) 102,406 12 Nitrogen Oxide (short tons) 72,995 11 Carbon Dioxide (thousand metric tons) 73,606 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming Electricity Profile 2014 Table 1. 2014 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP 4,627,201 41 Emissions Sulfur Dioxide (short tons) 45,704 24 Nitrogen Oxide (short tons) 49,638 18 Carbon Dioxide (thousand metric tons) 47,337 17 Sulfur Dioxide (lbs/MWh) 1.8 22 Nitrogen Oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2014 Table 1. 2014 Summary statistics (Alaska) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 2,464 48 Electric utilities 2,313 39 IPP & CHP 151 50 Net generation (megawatthours) 6,042,830 50 Electric utilities 5,509,991 40 IPP & CHP 532,839 50 Emissions Sulfur dioxide (short tons) 4,129 43 Nitrogen oxide (short tons) 19,281 38 Carbon dioxide (thousand metric tons) 3,558 44 Sulfur dioxide (lbs/MWh) 1.4 28 Nitrogen oxide

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Electricity Profile 2014 Table 1. 2014 Summary statistics (Arizona) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 28,249 13 Electric utilities 21,311 11 IPP & CHP 6,938 17 Net generation (megawatthours) 112,257,187 13 Electric utilities 94,847,135 8 IPP & CHP 17,410,053 19 Emissions Sulfur dioxide (short tons) 22,597 32 Nitrogen oxide (short tons) 56,726 17 Carbon dioxide (thousand metric tons) 53,684 16 Sulfur dioxide (lbs/MWh) 0.4 41 Nitrogen oxide

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Electricity Profile 2014 Table 1. 2014 Summary statistics (California) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 74,646 2 Electric utilities 28,201 4 IPP & CHP 46,446 2 Net generation (megawatthours) 198,807,622 5 Electric utilities 71,037,135 14 IPP & CHP 127,770,487 4 Emissions Sulfur dioxide (short tons) 3,102 46 Nitrogen oxide (short tons) 98,348 5 Carbon dioxide (thousand metric tons) 57,223 14 Sulfur dioxide (lbs/MWh) 0.0 49

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Electricity Profile 2014 Table 1. 2014 Summary statistics (Colorado) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,933 29 Electric utilities 10,204 28 IPP & CHP 4,729 18 Net generation (megawatthours) 53,847,386 30 Electric utilities 43,239,615 26 IPP & CHP 10,607,771 30 Emissions Sulfur dioxide (short tons) 28,453 30 Nitrogen oxide (short tons) 44,349 24 Carbon dioxide (thousand metric tons) 38,474 22 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Electricity Profile 2014 Table 1. 2014 Summary statistics (District of Columbia) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 67,612 51 Electric utilities IPP & CHP 67,612 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 147 51 Carbon dioxide (thousand metric tons) 48 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.3 3

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Electricity Profile 2014 Table 1. 2014 Summary statistics (Florida) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 59,440 3 Electric utilities 51,775 1 IPP & CHP 7,665 15 Net generation (megawatthours) 230,015,937 2 Electric utilities 211,970,587 1 IPP & CHP 18,045,350 15 Emissions Sulfur dioxide (short tons) 126,600 10 Nitrogen oxide (short tons) 91,356 6 Carbon dioxide (thousand metric tons) 111,549 2 Sulfur dioxide (lbs/MWh) 1.1 30 Nitrogen

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Electricity Profile 2014 Table 1. 2014 Summary statistics (Hawaii) Item Value Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,672 47 Electric utilities 1,732 40 IPP & CHP 939 45 Net generation (megawatthours) 10,204,158 46 Electric utilities 5,517,389 39 IPP & CHP 4,686,769 40 Emissions Sulfur dioxide (short tons) 21,670 33 Nitrogen oxide (short tons) 26,928 31 Carbon dioxide (thousand metric tons) 7,313 42 Sulfur dioxide (lbs/MWh) 4.2 4 Nitrogen oxide

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Electricity Profile 2014 Table 1. 2014 Summary statistics (Illinois) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,727 4 Electric utilities 5,263 35 IPP & CHP 39,464 4 Net generation (megawatthours) 202,143,878 4 Electric utilities 10,457,398 36 IPP & CHP 191,686,480 3 Emissions Sulfur dioxide (short tons) 187,536 6 Nitrogen oxide (short tons) 58,076 15 Carbon dioxide (thousand metric tons) 96,624 6 Sulfur dioxide (lbs/MWh) 1.9 20 Nitrogen

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Electricity Profile 2014 Table 1. 2014 Summary statistics (Iowa) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,507 24 Electric utilities 12,655 20 IPP & CHP 3,852 25 Net generation (megawatthours) 56,853,282 28 Electric utilities 43,021,954 27 IPP & CHP 13,831,328 25 Emissions Sulfur dioxide (short tons) 74,422 19 Nitrogen oxide (short tons) 41,793 25 Carbon dioxide (thousand metric tons) 39,312 21 Sulfur dioxide (lbs/MWh) 2.6 13 Nitrogen oxide

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Electricity Profile 2014 Table 1. 2014 Summary statistics (Kentucky) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,878 21 Electric utilities 19,473 15 IPP & CHP 1,405 40 Net generation (megawatthours) 90,896,435 17 Electric utilities 90,133,403 10 IPP & CHP 763,032 49 Emissions Sulfur dioxide (short tons) 204,873 5 Nitrogen oxide (short tons) 89,253 7 Carbon dioxide (thousand metric tons) 85,795 7 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Electricity Profile 2014 Table 1. 2014 Summary statistics (Maine) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,470 43 Electric utilities 10 49 IPP & CHP 4,460 20 Net generation (megawatthours) 13,248,710 44 Electric utilities 523 49 IPP & CHP 13,248,187 27 Emissions Sulfur dioxide (short tons) 10,990 38 Nitrogen oxide (short tons) 8,622 46 Carbon dioxide (thousand metric tons) 3,298 46 Sulfur dioxide (lbs/MWh) 1.7 25 Nitrogen oxide (lbs/MWh)

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Electricity Profile 2014 Table 1. 2014 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,264 33 Electric utilities 85 47 IPP & CHP 12,179 8 Net generation (megawatthours) 37,833,652 35 Electric utilities 20,260 47 IPP & CHP 37,813,392 9 Emissions Sulfur dioxide (short tons) 41,370 26 Nitrogen oxide (short tons) 20,626 35 Carbon dioxide (thousand metric tons) 20,414 34 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2014 Table 1. 2014 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 16,090 26 Electric utilities 13,494 19 IPP & CHP 2,597 34 Net generation (megawatthours) 55,127,092 29 Electric utilities 47,084,382 21 IPP & CHP 8,042,710 34 Emissions Sulfur dioxide (short tons) 101,093 13 Nitrogen oxide (short tons) 23,993 32 Carbon dioxide (thousand metric tons) 24,037 33 Sulfur dioxide (lbs/MWh) 3.7 5

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2014 Table 1. 2014 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 40,404 6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide (short tons) 31,878 28 Nitrogen oxide (short tons) 46,971 21 Carbon dioxide (thousand metric tons) 33,240 26 Sulfur dioxide (lbs/MWh) 0.5 39 Nitrogen oxide

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon Electricity Profile 2014 Table 1. 2014 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,884 27 Electric utilities 11,175 25 IPP & CHP 4,709 19 Net generation (megawatthours) 60,119,907 26 Electric utilities 44,565,239 24 IPP & CHP 15,554,668 21 Emissions Sulfur dioxide (short tons) 10,595 39 Nitrogen oxide (short tons) 14,313 42 Carbon dioxide (thousand metric tons) 8,334 40 Sulfur dioxide (lbs/MWh) 0.4 42 Nitrogen

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island Electricity Profile 2014 Table 1. 2014 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,810 49 Electric utilities 8 50 IPP & CHP 1,803 38 Net generation (megawatthours) 6,281,748 49 Electric utilities 10,670 48 IPP & CHP 6,271,078 36 Emissions Sulfur dioxide (short tons) 100 49 Nitrogen oxide (short tons) 1,224 49 Carbon dioxide (thousand metric tons) 2,566 48 Sulfur dioxide (lbs/MWh) 0.0 48 Nitrogen oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2014 Table 1. 2014 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 22,824 18 Electric utilities 20,836 12 IPP & CHP 1,988 36 Net generation (megawatthours) 97,158,465 16 Electric utilities 93,547,004 9 IPP & CHP 3,611,461 43 Emissions Sulfur dioxide (short tons) 43,659 25 Nitrogen oxide (short tons) 21,592 34 Carbon dioxide (thousand metric tons) 33,083 27 Sulfur dioxide (lbs/MWh) 0.9 35

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Electricity Profile 2014 Table 1. 2014 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 3,948 45 Electric utilities 3,450 36 IPP & CHP 499 48 Net generation (megawatthours) 10,995,240 45 Electric utilities 9,344,872 38 IPP & CHP 1,650,368 48 Emissions Sulfur dioxide (short tons) 13,852 35 Nitrogen oxide (short tons) 10,638 44 Carbon dioxide (thousand metric tons) 3,093 47 Sulfur dioxide (lbs/MWh) 2.5 15

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Electricity Profile 2014 Table 1. 2014 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,998 20 Electric utilities 20,490 14 IPP & CHP 508 47 Net generation (megawatthours) 79,506,886 20 Electric utilities 76,986,629 13 IPP & CHP 2,520,257 47 Emissions Sulfur dioxide (short tons) 89,357 16 Nitrogen oxide (short tons) 23,913 33 Carbon dioxide (thousand metric tons) 41,405 20 Sulfur dioxide (lbs/MWh) 2.2 16 Nitrogen oxide

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2014 Table 1. 2014 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 112,914 1 Electric utilities 29,113 2 IPP & CHP 83,800 1 Net generation (megawatthours) 437,629,668 1 Electric utilities 94,974,953 7 IPP & CHP 342,654,715 1 Emissions Sulfur Dioxide (short tons) 349,245 2 Nitrogen Oxide short tons) 229,580 1 Carbon Dioxide (thousand metric tons) 254,488 1 Sulfur Dioxide (lbs/MWh) 1.6 26 Nitrogen Oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Electricity Profile 2014 Table 1. 2014 Summary statistics (Utah) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,325 38 Electric utilities 7,296 31 IPP & CHP 1,029 44 Net generation (megawatthours) 43,784,526 33 Electric utilities 40,741,425 28 IPP & CHP 3,043,101 44 Emissions Sulfur Dioxide (short tons) 23,646 31 Nitrogen Oxide (short tons) 57,944 16 Carbon Dioxide (thousand metric tons) 35,179 24 Sulfur Dioxide (lbs/MWh) 1.1 31 Nitrogen Oxide (lbs/MWh)

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Electricity Profile 2014 Table 1. 2014 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 650 50 Electric utilities 337 44 IPP & CHP 313 49 Net generation (megawatthours) 7,031,394 48 Electric utilities 868,079 42 IPP & CHP 6,163,315 37 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 737 50 Carbon Dioxide (thousand metric tons) 14 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51