National Library of Energy BETA

Sample records for metric conversions table

  1. Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrics Metrics Los Alamos expands its innovation network by engaging in sponsored research and licensing across technical disciplines. These agreements are the basis of a working relationship with industry and other research institutions and highlight the diversity of our collaborations. Los Alamos has a remarkable 70-year legacy of creating entirely new technologies that have revolutionized the country's understanding of science and engineering. Collaborations Data from Fiscal Year 2014. FY14

  2. Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2010-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2010-2014 See footnotes at end of table. Number of Wells Producing at End of Year 487,627 514,637 482,822 R 484,994 514,786 Production (million cubic meters) Gross Withdrawals From Gas Wells 375,127 348,044 354,080 R 304,676 294,045 From Oil Wells 165,220 167,294 140,617 R 153,044 167,695 From Coalbed Wells 54,277 50,377 43,591 R 40,374 36,392 From Shale Gas Wells 164,723 240,721 298,257 R 337,891 389,474

  3. Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614 1983 71 43 114

  4. Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of Methane)

    U.S. Energy Information Administration (EIA) Indexed Site

    Methane Emissions, 1980-2009 (Million Metric Tons of Methane) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 9 Total 5 Coal Mining Natural Gas Systems 1 Petroleum Systems 2 Mobile Com- bustion 3 Stationary Com- bustion 4 Total 5 Landfills Waste- water Treatment 6 Total 5 Enteric Fermen- tation 7 Animal Waste 8 Rice Cultivation Crop Residue Burning Total 5 1980 3.06 4.42 NA 0.28 0.45 8.20 10.52 0.52 11.04 5.47 2.87 0.48 0.04 8.86 0.17 28.27 1981 2.81 5.02 NA .27

  5. Table 11.5a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Total (All Sectors), 1989-2010 (Sum of Tables 11.5b and 11.5c; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,573,566,415 218,383,703 145,398,976 363,247 5,590,014 1,943,302,355 14,468,564 1,059 984,406

  6. Table 11.5b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Electric Power Sector, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total 1989 1,520,229,870 169,653,294 133,545,718 363,247 4,365,768 1,828,157,897 13,815,263 832 809,873 6,874

  7. Table 11.5c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Emissions From Energy Consumption for Electricity Generation and Useful Thermal Output: Commercial and Industrial Sectors, 1989-2010 (Subset of Table 11.5a; Metric Tons of Gas) Year Carbon Dioxide 1 Sulfur Dioxide Nitrogen Oxides Coal 2 Natural Gas 3 Petroleum 4 Geo- thermal 5 Non- Biomass Waste 6 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Coal 2 Natural Gas 3 Petroleum 4 Other 7 Total Commercial Sector 8<//td> 1989 2,319,630 1,542,083 637,423 [ –] 803,754 5,302,890 37,398 4

  8. Resilience Metrics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of good metrics - Comprehensive - Understandable - Practical - Non-redundant - Minimal The above create defensible, transparent and repeatable metrics Metrics for ...

  9. Instructions for EM Corporate Performance Metrics | Department of Energy

    Energy Savers [EERE]

    Instructions for EM Corporate Performance Metrics Instructions for EM Corporate Performance Metrics Quality Program Criteria PDF icon Instructions for EM Corporate Performance Metrics More Documents & Publications EM Corporate QA Performance Metrics CPMS Tables QA Corporate Board Meeting - July 2008

  10. CPMS Tables | Department of Energy

    Energy Savers [EERE]

    Program Management » Quality Assurance » CPMS Tables CPMS Tables EM Quality Assurance Corporate Performance Metrics table. PDF icon CPMS Tables More Documents & Publications EM Corporate QA Performance Metrics QA Corporate Board Meeting - July 2008 QA Corporate Board Meeting - November 2008

  11. Process Design and Economics for the Conversion of Algal Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... advances the state of technology in biomass production, conversion, and sustainability. ... by tracking environmental sustainability metrics for the modeled conversion ...

  12. Table 11.1 Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    Carbon Dioxide Emissions From Energy Consumption by Source, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal 3 Natural Gas 4 Petroleum Total 2,9 Biomass 2 Aviation Gasoline Distillate Fuel Oil 5 Jet Fuel Kero- sene LPG 6 Lubri- cants Motor Gasoline 7 Petroleum Coke Residual Fuel Oil Other 8 Total Wood 10 Waste 11 Fuel Ethanol 12 Bio- diesel Total 1949 1,118 270 12 140 NA 42 13 7 329 8 244 25 820 2,207 145 NA NA NA 145 1950 1,152 313 14 168 NA 48 16 9 357 8 273 26 918 2,382 147 NA NA

  13. Table 11.2a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    a Carbon Dioxide Emissions From Energy Consumption: Residential Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene Liquefied Petroleum Gases Total Wood 6 Total 6 1949 121 55 51 21 7 80 66 321 99 99 1950 120 66 61 25 9 95 69 350 94 94 1951 111 81 68 27 10 105 78 374 90 90 1952 103 89 70 27 10 108 85 385 84 84 1953 92 93 71 26 11 108 94 387 78 78 1954 82 104 79 27 12 118 99 404 75 75

  14. Table 11.2c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    c Carbon Dioxide Emissions From Energy Consumption: Industrial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Coal Coke Net Imports Natural Gas 3 Petroleum Retail Elec- tricity 8 Total 2 Biomass 2 Distillate Fuel Oil 4 Kero- sene LPG 5 Lubri- cants Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Other 7 Total Wood 9 Waste 10 Fuel Ethanol 11 Total 1949 500 -1 166 41 18 3 3 16 8 95 25 209 120 995 44 NA NA 44 1950 531 (s) 184 51 20 4 3 18 8 110 26 239 140 1,095 50 NA NA 50

  15. Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7 14 35 NA (s) 5 332 95 481 6 640 NA NA NA 1951 129 11 18 42 NA (s) 6 360 102 529 7 675 NA NA NA

  16. Table 11.2b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    b Carbon Dioxide Emissions From Energy Consumption: Commercial Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Electricity 7 Total 2 Biomass 2 Distillate Fuel Oil 4 Kerosene LPG 5 Motor Gasoline 6 Petroleum Coke Residual Fuel Oil Total Wood 8 Waste 9 Fuel Ethanol 10 Total 1949 148 19 16 3 2 7 NA 28 55 58 280 2 NA NA 2 1950 147 21 19 3 2 7 NA 33 66 63 297 2 NA NA 2 1951 125 25 21 4 3 8 NA 34 70 69 289 2 NA NA 2 1952 112 28 22 4 3 8 NA 35 71 73

  17. Table 11.2e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    e Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Geo- thermal Non- Biomass Waste 5 Total 2 Biomass 2 Distillate Fuel Oil 4 Petroleum Coke Residual Fuel Oil Total Wood 6 Waste 7 Total 1949 187 30 2 NA 30 33 NA NA 250 1 NA 1 1950 206 35 2 NA 35 37 NA NA 278 1 NA 1 1951 235 42 2 NA 29 31 NA NA 308 1 NA 1 1952 240 50 2 NA 31 33 NA NA 323 1 NA 1 1953 260 57 3 NA 38 40 NA NA 358 (s) NA (s)

  18. Appendix B: Technical Projection Tables, Bioenergy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Tables B-2 Last updated: November 2014 Table B-2: Terrestrial Feedstock Supply and Logistics Costs to Supply Feedstock to a Pyrolysis Conversion Process Processing Area Cost...

  19. Resilience Metrics

    Broader source: Energy.gov (indexed) [DOE]

    Dr. Julia Phillips and Angeli Tompkins Infrastructure Assurance Center Prepared for Quadrennial Energy Review Technical Workshop on Resilience Metrics for Energy Transmission and Distribution Infrastructure April 28, 2014 Infrastructure Assurance Center  Started as a follow on to work on the PCCIP in late 90s - Focused on critical infrastructure protection initially - Morphed into focus on resilience  ECIP program and RRAP  Center for Integrated Resilience Analysis - The CIRA vision is

  20. Annex A Metrics for the Smart Grid System Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annex A Metrics for the Smart Grid System Report A.iii Table of Contents Introduction ........................................................................................................................................... A.1 Metric #1: The Fraction of Customers and Total Load Served by Real-Time Pricing, Critical Peak Pricing, and Time-of-Use Pricing ........................................................................................ A.2 Metric #2: Real-Time System Operations Data

  1. Metric Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MODERN GRID S T R A T E G Y Smart Grid Metrics Monitoring our Progress Smart Grid Implementation Workshop Joe Miller - Modern Grid Team June 19, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability 2 Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y Many are working on the Smart Grid FERC DOE-OE Grid 2030 GridWise Alliance EEI NERC (FM) DOE/NETL Modern Grid

  2. DOE Technical Targets for Hydrogen Production from Microbial Biomass Conversion

    Broader source: Energy.gov [DOE]

    This table lists the U.S. Department of Energy (DOE) technical targets for hydrogen production from microbial biomass conversion.

  3. ARM - 2007 Performance Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Performance Metrics Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) 2007 Performance Metrics A Single

  4. ARM - 2008 Performance Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Performance Metrics Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate...

  5. ARM - 2006 Performance Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Performance Metrics Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate...

  6. ARM - 2009 Performance Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Performance Metrics Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate...

  7. Surveillance metrics sensitivity study.

    SciTech Connect (OSTI)

    Hamada, Michael S.; Bierbaum, Rene Lynn; Robertson, Alix A.

    2011-09-01

    In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the NNSA nuclear weapon surveillance program. The purpose of the metrics was to develop a more quantitative and/or qualitative metric(s) describing the results of realized or non-realized surveillance activities on our confidence in reporting reliability and assessing the stockpile. As a part of this effort, a statistical sub-team investigated various techniques and developed a complementary set of statistical metrics that could serve as a foundation for characterizing aspects of meeting the surveillance program objectives. The metrics are a combination of tolerance limit calculations and power calculations, intending to answer level-of-confidence type questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, margin insufficiency defects, and deviations from a model). Note that the metrics are not intended to gauge product performance but instead the adequacy of surveillance. This report gives a short description of four metrics types that were explored and the results of a sensitivity study conducted to investigate their behavior for various inputs. The results of the sensitivity study can be used to set the risk parameters that specify the level of stockpile problem that the surveillance program should be addressing.

  8. STAR METRICS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STAR METRICS STAR METRICS May 4, 2011 - 4:47pm Addthis Energy continues to define Phase II of the STAR METRICS program, a collaborative initiative to track Research and Development...

  9. Metric Construction | Open Energy Information

    Open Energy Info (EERE)

    Metric Construction Jump to: navigation, search Name: Metric Construction Place: Boston, MA Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test...

  10. General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Tables The General Tables for the most recent TUNL evaluation of "Energy Levels of Light Nuclei, A = 8, 9, 10" published in Nuclear Physics A745 (2004) p.155 and "Energy Levels of Light Nuclei, A = 5, 6, 7" published in Nuclear Physics A708 (2002) p.3 are available below. Beginning with the A = 5, 6, 7 nuclei, the General Tables will no longer be included in the publications of "Energy Levels of Light Nuclei" in Nuclear Physics A. The tables will be placed

  11. Cyber threat metrics.

    SciTech Connect (OSTI)

    Frye, Jason Neal; Veitch, Cynthia K.; Mateski, Mark Elliot; Michalski, John T.; Harris, James Mark; Trevino, Cassandra M.; Maruoka, Scott

    2012-03-01

    Threats are generally much easier to list than to describe, and much easier to describe than to measure. As a result, many organizations list threats. Fewer describe them in useful terms, and still fewer measure them in meaningful ways. This is particularly true in the dynamic and nebulous domain of cyber threats - a domain that tends to resist easy measurement and, in some cases, appears to defy any measurement. We believe the problem is tractable. In this report we describe threat metrics and models for characterizing threats consistently and unambiguously. The purpose of this report is to support the Operational Threat Assessment (OTA) phase of risk and vulnerability assessment. To this end, we focus on the task of characterizing cyber threats using consistent threat metrics and models. In particular, we address threat metrics and models for describing malicious cyber threats to US FCEB agencies and systems.

  12. EERE Portfolio. Primary Benefits Metrics for FY09

    SciTech Connect (OSTI)

    none,

    2011-11-01

    This collection of data tables shows the benefits metrics related to energy security, environmental impacts, and economic impacts for both the entire EERE portfolio of renewable energy technologies as well as the individual technologies. Data are presented for the years 2015, 2020, 2030, and 2050, for both the NEMS and MARKAL models.

  13. NIF Target Shot Metrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Target Shot Metrics Exp Cap - Experimental Capability Natl Sec Appl - National Security Applications DS - Discovery Science SSP_ICF - SSP Inertial Confinement Fusion SSP_HED - SSP High Energy Density SSP - Stockpile Stewardship Program For internal LLNL firewall viewing - if the page is blank, please open www.google.com to flush out BCB

  14. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    112 70 83 98 99 117 150 5.89 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

  15. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    125 43 101 95 99 130 149 8.25 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

  16. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    125 69 112 131 137 158 7.36 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

  17. Metrics for Energy Resilience

    SciTech Connect (OSTI)

    Paul E. Roege; Zachary A. Collier; James Mancillas; John A. McDonagh; Igor Linkov

    2014-09-01

    Energy lies at the backbone of any advanced society and constitutes an essential prerequisite for economic growth, social order and national defense. However there is an Achilles heel to today?s energy and technology relationship; namely a precarious intimacy between energy and the fiscal, social, and technical systems it supports. Recently, widespread and persistent disruptions in energy systems have highlighted the extent of this dependence and the vulnerability of increasingly optimized systems to changing conditions. Resilience is an emerging concept that offers to reconcile considerations of performance under dynamic environments and across multiple time frames by supplementing traditionally static system performance measures to consider behaviors under changing conditions and complex interactions among physical, information and human domains. This paper identifies metrics useful to implement guidance for energy-related planning, design, investment, and operation. Recommendations are presented using a matrix format to provide a structured and comprehensive framework of metrics relevant to a system?s energy resilience. The study synthesizes previously proposed metrics and emergent resilience literature to provide a multi-dimensional model intended for use by leaders and practitioners as they transform our energy posture from one of stasis and reaction to one that is proactive and which fosters sustainable growth.

  18. Sheet1 Water Availability Metric (Acre-Feet/Yr) Water Cost Metric ($/Acre-Foot)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sheet1 Water Availability Metric (Acre-Feet/Yr) Water Cost Metric ($/Acre-Foot) Current Water Use (Acre-Feet/Yr) Projected Use in 2030 (Acre-Feet/Yr) HUC_8 STATE BASIN SUBBASIN UNAPPROPRIATED SURFACE WATER METRIC UNAPPROPRIATED GROUNDWATER METRIC APPROPRIATED WATER METRIC BRACKISH GROUNDWATER METRIC WASTEWATER METRIC UNAPPROPRIATED GROUNDWATER COST METRIC APPROPRIATED WATER COST METRIC BRACKISH GROUNDWATER COST METRIC WASTEWATER COST METRIC M&I_2012 AG_2012 ENVIRONMENT 2012 THERMOELECTIC

  19. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    10.8 0.3 0.8 1.6 2.0 2.2 4.0 11.94 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

  20. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    10.8 0.9 2.9 1.9 2.8 2.3 9.84 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

  1. Table 4

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 0.8 0.6 1.4 2.3 1.9 2.5 12.69 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

  2. A = 5 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 General Tables The General Table for 5H is subdivided into the following categories: Cluster Model Hypernuclei Model Calculations Photodisintegration Pions The General Table for...

  3. Ames Laboratory Metrics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrics Document Number: NA Effective Date: 01/2016 File (public): PDF icon ameslab_metrics_01-14-16

  4. FY 2014 Metric Summary | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    4 Q1 Metric Summary.pdf PDF icon FY 2014 Q2 Metric Summary.pdf PDF icon FY 2014 Q3 Metric Summary.pdf PDF icon FY 2014 Q4 Metric Summary.pdf More Documents & Publications FY 2014 Q3 Metric Summary FY 2015 METRIC SUMMARY

  5. FY 2015 METRIC SUMMARY | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    5 Q1 Metrics Summary.pdf PDF icon FY 2015 Q2 Metrics Summary.pdf PDF icon FY 2015 Q3 Metrics Summary.pdf PDF icon FY 2015 Q4 Metrics Summary.pdf More Documents & Publications FY 2014 Q3 Metric Summary FY 2014 Metric Summary

  6. Table 7

    Gasoline and Diesel Fuel Update (EIA)

    1 Table 7 Created on: 2/24/2016 8:11:36 AM Table 7. Marketed production of natural gas in selected states and the Federal Gulf of Mexico, 2010-2015 (million cubic feet) Year and Month Alaska Arkansas California Colorado Kansas Louisiana Montana New Mexico North Dakota Ohio 2010 Total 374,226 926,639 286,841 1,578,379 324,720 2,210,099 87,539 1,292,185 81,837 78,122 2011 Total 356,225 1,072,212 250,177 1,637,576 309,124 3,029,206 74,624 1,237,303 97,102 78,858 2012 Total 351,259 1,146,168 246,822

  7. 8C General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C General Tables The General Table for 8C is subdivided into the following categories: Reviews Other Theoretical Work

  8. 1999 CBECS Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999...

  9. 6Be General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6Be General Table The General Table for 6Be is subdivided into the following categories: Cluster Model Model Calculations...

  10. A=18 Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (1959) Adobe Reader Download Tables from (1995TI07): Introductory Table 3 in PS or PDF. Table 18.1 in PS or PDF. Table 18.2 in PS or PDF. Table 18.3 in PS or PDF. Table 18.4...

  11. A=19 Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (1959) Adobe Reader Download Tables from (1995TI07): Introductory Table 3 in PS or PDF. Table 19.1 in PS or PDF. Table 19.2 in PS or PDF. Table 19.3 in PS or PDF. Table 19.4...

  12. A=20 Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (1959) Adobe Reader Download Tables from (1998TI06): Introductory Table 3 in PS or PDF. Table 20.1 in PS or PDF. Table 20.2 in PS or PDF. Table 20.3 in PS or PDF. Table 20.4...

  13. FY 2013 Metric Summary | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    3 Q1 Metric Summary_0.pdf PDF icon FY 2013 Q2 Metric Summary.pdf PDF icon FY 2013 Q3 Metric Summary.pdf PDF icon FY 2013 Q4 Metric Summary (Final).pdf More Documents & Publications FY 2012 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2014 Metric Summary FY 2011 Overall Contract and Project Management Improvement Performance Metrics and Targets

  14. TABLE 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ATTACHMENT 1 - FEHB PROGRAM TABLE 1 PLANS LEAVING THE FEHB PROGRAM Enrollees in the terminating FEHB plans who do not change their health plan by enrolling in another FEHB plan during Open Season will not have health benefits for 2016. State FEHB Plan Name 2015 Enrollment Codes General Location Florida Coventry Health Plan of Florida 5E1, 5E2, 5E4, 5E5, J41, J42 South Florida Indiana Physicians Health Plan of Northern Indiana DQ1, DQ2, DQ4, DQ5 Northeast Indiana Louisiana Coventry Health Care

  15. Thermochemical Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermochemical Conversion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  16. Daylight metrics and energy savings

    SciTech Connect (OSTI)

    Mardaljevic, John; Heschong, Lisa; Lee, Eleanor

    2009-12-31

    The drive towards sustainable, low-energy buildings has increased the need for simple, yet accurate methods to evaluate whether a daylit building meets minimum standards for energy and human comfort performance. Current metrics do not account for the temporal and spatial aspects of daylight, nor of occupants comfort or interventions. This paper reviews the historical basis of current compliance methods for achieving daylit buildings, proposes a technical basis for development of better metrics, and provides two case study examples to stimulate dialogue on how metrics can be applied in a practical, real-world context.

  17. List of SEP Reporting Metrics

    Broader source: Energy.gov [DOE]

    DOE State Energy Program List of Reporting Metrics, which was produced by the Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program for SEP and the Energy Efficiency and Conservation Block Grants (EECBG) programs.

  18. Module 6 - Metrics, Performance Measurements and Forecasting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This module focuses on the metrics and performance measurement tools used in Earned Value. This module reviews metrics such as cost and schedule variance along with cost and ...

  19. Common Carbon Metric | Open Energy Information

    Open Energy Info (EERE)

    Common Carbon Metric Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Common Carbon Metric AgencyCompany Organization: United Nations Environment Programme, World...

  20. 7He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He General Table The General Table for 7He is subdivided into the following categories: Experimental Theoretical Model Calculations Hypernuclei and Mesons Pions

  1. 9He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He General Table The General Table for 9He is subdivided into the following categories: Shell Model Other Model Calculations Theoretical

  2. 5He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He General Table The General Table for 5He is subdivided into the following categories: Ground State Properties Theoretical Special States Model Discussions Shell Model Cluster...

  3. 6He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He General Table The General Table for 6He is subdivided into the following categories: Ground State Properties Theoretical Special States Shell Model Cluster and alpha-particle...

  4. A = 10 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Table for 10He is subdivided into the following categories: Theoretical Shell Model Cluster Model Other Models Special States Electromagnetic Transitions The General Table for...

  5. 5H General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H General Table The General Table for 5H is subdivided into the following categories: Cluster Model Hypernuclei Model Calculations Photodisintegration Pions...

  6. 10He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General Table The General Table for 10He is subdivided into the following categories: Theoretical Shell Model Cluster Model Other Models Special States Electromagnetic Transitions...

  7. 1995 Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey > Detailed Tables 1995 Detailed Tables Data from the 1995 Commercial Buildings Energy Consumption...

  8. FY 2005 Statistical Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration

  9. Buildings Performance Metrics Terminology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Performance Metrics Terminology Buildings Performance Metrics Terminology This document provides the terms and definitions used in the Department of Energys Performance Metrics Research Project. PDF icon metrics_terminology_20090203.pdf More Documents & Publications Procuring Architectural and Engineering Services for Energy Efficiency and Sustainability Transmittal Letter for the Statewide Benchmarking Process Evaluation Guide for Benchmarking Residential Energy Efficiency

  10. Practical Diagnostics for Evaluating Residential Commissioning Metrics

    SciTech Connect (OSTI)

    Wray, Craig; Walker, Iain; Siegel, Jeff; Sherman, Max

    2002-06-11

    In this report, we identify and describe 24 practical diagnostics that are ready now to evaluate residential commissioning metrics, and that we expect to include in the commissioning guide. Our discussion in the main body of this report is limited to existing diagnostics in areas of particular concern with significant interactions: envelope and HVAC systems. These areas include insulation quality, windows, airtightness, envelope moisture, fan and duct system airflows, duct leakage, cooling equipment charge, and combustion appliance backdrafting with spillage. Appendix C describes the 83 other diagnostics that we have examined in the course of this project, but that are not ready or are inappropriate for residential commissioning. Combined with Appendix B, Table 1 in the main body of the report summarizes the advantages and disadvantages of all 107 diagnostics. We first describe what residential commissioning is, its characteristic elements, and how one might structure its process. Our intent in this discussion is to formulate and clarify these issues, but is largely preliminary because such a practice does not yet exist. Subsequent sections of the report describe metrics one can use in residential commissioning, along with the consolidated set of 24 practical diagnostics that the building industry can use now to evaluate them. Where possible, we also discuss the accuracy and usability of diagnostics, based on recent laboratory work and field studies by LBNL staff and others in more than 100 houses. These studies concentrate on evaluating diagnostics in the following four areas: the DeltaQ duct leakage test, air-handler airflow tests, supply and return grille airflow tests, and refrigerant charge tests. Appendix A describes those efforts in detail. In addition, where possible, we identify the costs to purchase diagnostic equipment and the amount of time required to conduct the diagnostics. Table 1 summarizes these data. Individual equipment costs for the 24 practical diagnostics range from a few hundred dollars to many thousands of dollars. The higher costs are associated with infrared thermography and state-of-the-art automated diagnostic systems. Most tests can be performed in one hour or less, using equipment priced toward the lower end of the cost spectrum.

  11. Performance Metrics Tiers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings » Performance Metrics Tiers Performance Metrics Tiers The performance metrics defined by the Commercial Buildings Integration Program offer different tiers of information to address the needs of various users. On this page you will find information about the various goals users are trying to achieve by using performance metrics and the tiers of metrics. Goals in Measuring Performance Many individuals and groups are involved with a building over its lifetime, and all have

  12. CBECS Buildings Characteristics --Revised Tables

    Gasoline and Diesel Fuel Update (EIA)

    Energy Sources and End Use Tables (27 pages, 152 kb) CONTENTS PAGES Table 18. Energy Sources, Number of Buildings, 1995 Table 19. Energy Sources, Floorspace, 1995 Table 20. Energy End Uses, Number of Buildings and Floorspace, 1995 Table 21. Space-Heating Energy Sources, Number of Buildings, 1995 Table 22. Space-Heating Energy Sources, Floorspace, 1995 Table 23. Primary Space-Heating Energy Sources, Number of Buildings, 1995 Table 24. Primary Space-Heating Energy Sources, Floorspace, 1995 Table

  13. CBECS Buildings Characteristics --Revised Tables

    Gasoline and Diesel Fuel Update (EIA)

    End-Use Equipment Tables (27 pages, 151 kb) CONTENTS PAGES Table 33. Heating Equipment, Number of Buildings, 1995 Table 34. Heating Equipment, Floorspace, 1995 Table 35. Cooling Equipment,Number of Buildings, 1995 Table 36. Cooling Equipment, Floorspace, 1995 Table 37. Refrigeration Equipment, Number of Buildings and Floorspace, 1995 Table 38. Water-Heating Equipment, Number of Buildings and Floorspace, 1995 Table 39. Lighting Equipment, Number of Buildings, 1995 Table 40. Lighting Equipment,

  14. 8Be General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Be General Tables The General Table for 8Be is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Models Photodisintegration Fission and Fusion Astrophysical b-decay Hypernuclei

  15. 9B General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B General Table The General Table for 9B is subdivided into the following categories: Shell Model Cluster Model Theoretical Other Model Calculations Complex Reactions Beta-Decay Pions Light-ion and Neutron Induced Reactions Hypernuclei

  16. 9C General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C General Table The General Table for 9C is subdivided into the following categories: Shell Model Cluster Model Other Models Theoretical Beta-Decay Light-ion and Neutron Induced Reactions Astrophysical

  17. 6Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 6Li is subdivided into the following categories: Ground State Properties of 6Li Special States Theoretical Shell Model Cluster Models Complex...

  18. EECBG SEP Attachment 1 - Process metric list

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... IT systems or software packages purchased Number of energy efficient outdoor area lights purchased 2 EECBG 10-07BSEP 10-006A Attachment 1: Process Metrics List Metric Area ...

  19. FY 2005 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers

  20. FY 2005 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The

  1. Multi-Metric Sustainability Analysis

    SciTech Connect (OSTI)

    Cowlin, S.; Heimiller, D.; Macknick, J.; Mann, M.; Pless, J.; Munoz, D.

    2014-12-01

    A readily accessible framework that allows for evaluating impacts and comparing tradeoffs among factors in energy policy, expansion planning, and investment decision making is lacking. Recognizing this, the Joint Institute for Strategic Energy Analysis (JISEA) funded an exploration of multi-metric sustainability analysis (MMSA) to provide energy decision makers with a means to make more comprehensive comparisons of energy technologies. The resulting MMSA tool lets decision makers simultaneously compare technologies and potential deployment locations.

  2. Definition of GPRA08 benefits metrics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Background information for the FY 2007 GPRA methodology review on the definitions of GPRA08 benefits metrics.

  3. EECBG SEP Attachment 1 - Process metric list

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10-07B/SEP 10-006A Attachment 1: Process Metrics List Metric Area Metric Primary or Optional Metric Item(s) to Report On 1. Building Retrofits 1a. Buildings retrofitted, by sector Number of buildings retrofitted Square footage of buildings retrofitted 1b. Energy management systems installed, by sector Number of energy management systems installed Square footage of buildings under management 1c. Building roofs retrofitted, by sector Number of building roofs retrofitted Square footage of building

  4. A = 7 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 General Tables The General Table for 7He is subdivided into the following categories: Experimental Theoretical Model Calculations Hypernuclei and Mesons Pions The General Table for 7Li is subdivided into the following categories: Reviews Ground State Properties Shell Model Cluster Model Other Theoretical Work Model Calculations Photodisintegration Polarization Fission and Fusion Elastic and Inelastic Scattering Projectile Fragmentation and Multifragmentation Astrophysical Hyperfine Structure

  5. Hot cell examination table

    DOE Patents [OSTI]

    Gaal, Peter S. (Monroeville, PA); Ebejer, Lino P. (Weston, MA); Kareis, James H. (Slickville, PA); Schlegel, Gary L. (McKeesport, PA)

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  6. Comparing Resource Adequacy Metrics: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Milligan, M.

    2014-09-01

    As the penetration of variable generation (wind and solar) increases around the world, there is an accompanying growing interest and importance in accurately assessing the contribution that these resources can make toward planning reserve. This contribution, also known as the capacity credit or capacity value of the resource, is best quantified by using a probabilistic measure of overall resource adequacy. In recognizing the variable nature of these renewable resources, there has been interest in exploring the use of reliability metrics other than loss of load expectation. In this paper, we undertake some comparisons using data from the Western Electricity Coordinating Council in the western United States.

  7. 10Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Li General Table The General Table for 10Li is subdivided into the following categories: Reviews Theoretical Ground State Properties Shell Model Cluster Model Other Models Special States Astrophysical Electromagnetic Transitions Hypernuclei Photodisintegration Light-Ion and Neutron Induced Reactions These General Tables correspond to the 2003 preliminary evaluation of ``Energy Levels of Light Nuclei, A = 10''. The prepublication version of A = 10 is available on this website in PDF format: A =

  8. CBECS Buildings Characteristics --Revised Tables

    Gasoline and Diesel Fuel Update (EIA)

    Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the

  9. Description of Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    for the 1999 Commercial Buildings Energy Consumption Survey (CBECS) consists of building characteristics tables B1 through B39, which contain the number of buildings and...

  10. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table 1 Waste Surface Level Decrease Trends for Tanks B-203 and B-204 ... These two SSTs with decreasing waste surface level (SL) data trends were recommended for ...

  11. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table 1 Waste Surface Level Decrease Trends for Tank TY-105 ......and interstitial liquid level (ILL) data trends and was recommended for level decrease ...

  12. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table 1 Waste Surface Level Decrease Trends for Tanks T-203 and T-204 ... These two SSTs with decreasing waste surface level (SL) data trends were recommended for ...

  13. Table of Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TABLE OF CONTENTS INTRODUCTION J. B. Natowitz, Director SECTION I: NUCLEAR STRUCTURE, FUNDAMENTAL INTERACTIONS AND ASTROPHYSICS SECTION II: HEAVY ION REACTIONS SECTION III: NUCLEAR...

  14. A = 9 General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The General Table for 9Li is subdivided into the following categories: Shell Model Cluster Model Theoretical Ground State Properties Special States Other Model Calculations...

  15. 5Li General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Table for 5Li is subdivided into the folowing categories: Ground State Properties Cluster Model Shell Model Special States Model Calculations Model Discussions Complex...

  16. 10N General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subdivided into the following categories: Reviews Ground-State Properties Shell Model Cluster Model Other Theoretical Work These General Tables correspond to "Energy Levels of...

  17. SEP Program Transition Tables

    Broader source: Energy.gov [DOE]

    The Program Transition Tables provide information concerning the level of effort required to move from a traditional, industrial incentive program to Strategic Energy Management, ISO 50001, or SEP.

  18. Efficient Synchronization Stability Metrics for Fault Clearing...

    Office of Scientific and Technical Information (OSTI)

    Title: Efficient Synchronization Stability Metrics for Fault Clearing Authors: Backhaus, Scott N. 1 ; Chertkov, Michael 1 ; Bent, Russell Whitford 1 ; Bienstock, Daniel 2...

  19. 7Be General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Be General Table The General Table for 7Be is subdivided into the following categories: Reviews Experimental Work Shell Model Cluster Model Other Theoretical Work Model Calculations Projectile Fragmentation and Multifragmentation Astrophysical b Decay Astrophysical Neutrinos Hypernuclei, Mesons and Other Exotic Particles Applications

  20. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Oil Tables (10 pages, 58 kb) CONTENTS PAGES Table 26. Total Fuel Oil Consumption and Expenditures, 1995 Table 27. Fuel Oil Consumption and Expenditure Intensities, 1995 Table...

  1. FY 2014 Q3 Metric Summary | Department of Energy

    Office of Environmental Management (EM)

    4 Q3 Metric Summary FY 2014 Q3 Metric Summary FY 2014 Q3 Metric Summary PDF icon FY 2014 Q3 Metric Summary.pdf More Documents & Publications FY 2014 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2015 Overall Contract and Project Management Improvement Performance Metrics and Targets FY 2016 Overall Contract and Project Management Improvement Performance Metrics and Targets

  2. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  3. All Consumption Tables.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004...

  4. table11.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 14.1 NA 17.9 18.3 19.6 20.1 Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon) Survey Years Page A-1 of A-5 1983 1985 1988...

  5. 8He General Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Table for 8He is subdivided into the following categories: Reviews Ground-state Properties Shell Model Cluster Model Other Theoretical Work Elastic and Inelastic Scattering b-decay...

  6. TABLE OF CONTENTS

    Energy Savers [EERE]

    008 High Temperature Superconductivity for Electric Systems Peer Review Final Report i TABLE OF CONTENTS High Temperature Superconductivity for Electric Systems Program Overview ...... 1 The Peer Review................................................................................................................ 3 Review Criteria ................................................................................................................. 5 Guidelines

  7. Table_of_Contents

    Energy Savers [EERE]

    Table of Contents 1. Physical Security .............................................................................................................................. 1-1 101. Headquarters Security Badges ........................................................................................ 101-1 102. HSPD-12 Badges and the PIV Process ........................................................................... 102-1 103. Prohibited Articles

  8. Tables of Energy Levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Levels The Image Map below will direct you to the table of energy levels PDF format only for that particular nuclide from the most recent publication found within...

  9. FY 2006 Laboratory Table

    Energy Savers [EERE]

    Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals,

  10. FY 2006 State Table

    Energy Savers [EERE]

    State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or

  11. FY 2008 Laboratory Table

    Energy Savers [EERE]

    Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other

  12. FY 2008 State Table

    Energy Savers [EERE]

    State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments

  13. FY 2009 State Table

    Energy Savers [EERE]

    State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE

  14. FY 2011 Laboratory Table

    Energy Savers [EERE]

    Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments

  15. FY 2011 State Table

    Energy Savers [EERE]

    State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated

  16. FY 2012 State Table

    Energy Savers [EERE]

    6 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0066 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and

  17. ARM - Instrument Location Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation ENA NSA SGP AMF C1 C1 EF BF CF EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements

  18. FY 2013 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Department of Energy FY 2013 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0079 Department of Energy FY 2013 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and

  19. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... DOE should be made aware of, you should begin thinking about how your work on resilience metrics could be used to assess energy infrastructure within the context of the QER goals. ...

  20. Clean Cities Annual Metrics Report 2009 (Revised)

    SciTech Connect (OSTI)

    Johnson, C.

    2011-08-01

    Document provides Clean Cities coalition metrics about the use of alternative fuels; the deployment of alternative fuel vehicles, hybrid electric vehicles (HEVs), and idle reduction initiatives; fuel economy activities; and programs to reduce vehicle miles driven.

  1. Technical Workshop: Resilience Metrics for Energy Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon April 29, 2014 Agenda PDF icon April 29, 2014 Meeting Notes PDF icon April 29, 2014 Attendee List PDF icon April 29, 2014 Summary of Proposed Metrics PDF icon Henry H. ...

  2. Microsoft Word - QER Resilience Metrics - Technical Workshp ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Financial devastation) 10:15 - 10:30 am Break 10:30 - 12:00 pm (1.5 hours) Presentation of Electricity Resilience Metrics in a Use-Case Context - Dr. Jean-Paul Watson, Information ...

  3. Conceptual Framework for Developing Resilience Metrics for the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States Conceptual Framework for Developing Resilience Metrics for the ...

  4. Label-invariant Mesh Quality Metrics. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Label-invariant Mesh Quality Metrics. Citation Details In-Document Search Title: Label-invariant Mesh Quality Metrics. Abstract not provided. Authors: Knupp, Patrick Publication...

  5. CBECS Buildings Characteristics --Revised Tables

    Gasoline and Diesel Fuel Update (EIA)

    Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial

  6. Appendix G: Conversion factors

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Table G1. Heat contents Fuel Units Approximate heat content Coal 1 Production ... million Btu per short ton 20.142 Consumption...

  7. Uranium Mining, Conversion, and Enrichment Industries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Potential Impacts of Uranium Transfers on the Domestic Uranium Mining, Conversion, and Enrichment Industries May 1, 2015 ii EXECUTIVE SUMMARY: The Department of Energy ("Department" or "DOE") plans to transfer the equivalent of up to 2,100 metric tons ("MTU") of natural uranium per year (with a higher total for calendar year 2015, mainly because of transfers already executed or under way before today's determination). These transfers would include 1,600

  8. Microsoft Word - table_B2.doc

    Gasoline and Diesel Fuel Update (EIA)

    00 Table B2. Thermal conversion factors and data, 2010-2014 Conversion Factor (Btu per cubic foot) Production Marketed 1,098 1,142 1,091 R 1,101 1,116 NGPL Production 2,598 2,550 2,383 2,417 2,462 Total Dry Production 1,023 1,022 1,024 1,027 1,032 Supply Dry Production 1,023 1,022 1,024 1,027 1,032 Receipts at U.S. Borders Imports 1,025 1,025 1,025 1,025 1,025 Intransit Receipts 1,025 1,025 1,025 1,025 1,025 Withdrawals from Storage Underground Storage 1,023 1,022 1,024 1,027 1,032 LNG Storage

  9. Microsoft Word - table_01

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Energy Information Administration | Natural Gas Monthly 3 Table 1 Table 1. Summary of natural gas supply and disposition in the United States, 2010-2015 (billion cubic feet) Year and Month Gross Withdrawals Marketed Production NGPL Production a Dry Gas Production b Supplemental Gaseous Fuels c Net Imports Net Storage Withdrawals d Balancing Item e Consumption f 2010 Total 26,816 22,382 1,066 21,316 65 2,604 -13 115 24,087 2011 Total 28,479 24,036 1,134 22,902 60 1,963 -354 -94 24,477 2012

  10. FY 2012 Laboratory Table

    Energy Savers [EERE]

    5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider

  11. FY 2013 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider

  12. BETO Conversion Program

    Broader source: Energy.gov [DOE]

    Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing BETO Conversion Program Bryna Berendzen, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy

  13. EM Corporate QA Performance Metrics | Department of Energy

    Energy Savers [EERE]

    Corporate QA Performance Metrics EM Corporate QA Performance Metrics Quality Program Criteria Summary PDF icon EM Corporate QA Performance Metrics More Documents & Publications QA Corporate Board Meeting - November 2008 Instructions for EM Corporate Performance Metrics FY 2015 SENIOR EXECUTIVE SERVICE (SES) AND SENIOR PROFESSIONAL (SP) PERFORMANCE APPRAISAL CYCLE - CLOSEOUT GUIDANCE

  14. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  15. FY 2006 Statistical Table

    Energy Savers [EERE]

    Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2004 FY 2005 FY 2006 Comparable Comparable Request to FY 2006 vs. FY 2005 Approp Approp Congress Discretionary Summary By Appropriation Energy And Water Development Appropriation Summary: Energy Programs Energy supply Operation and maintenance................................................. 787,941 909,903 862,499 -47,404 -5.2% Construction......................................................................... 6,956

  16. FY 2007 Statistical Table

    Energy Savers [EERE]

    Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2005 FY 2006 FY 2007 Current Current Congressional Approp. Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance............................................ 1,779,399 1,791,372 1,917,331 +125,959 +7.0%

  17. FY 2008 Statistical Table

    Energy Savers [EERE]

    Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2006 FY 2007 FY 2008 Current Congressional Congressional Approp. Request Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance........................................... 1,781,242 1,917,331 2,187,943 +270,612 +14.1%

  18. Table of Contents

    Energy Savers [EERE]

    COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary.......................................................... 1 a. Overview of Smart Grid Benefits and Communications Needs................. 2 b. Summary of Recommendations .................................................................... 5 II. Federal Government Smart Grid Initiatives ................................................ 7 a. DOE Request for Information

  19. FY 2013 Statistical Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2011 FY 2012 FY 2013 Current Enacted Congressional Approp. Approp. * Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy........................................ 1,771,721 1,809,638 2,337,000 +527,362 +29.1% Electricity delivery and energy reliability.........................................

  20. TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    AC05-00OR22800 TABLE OF CONTENTS Contents Page # TOC - i SECTION A - SOLICITATION/OFFER AND AWARD ......................................................................... A-i SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ........................................................ B-i B.1 SERVICES BEING ACQUIRED ....................................................................................B-2 B.2 TRANSITION COST, ESTIMATED COST, MAXIMUM AVAILABLE FEE, AND AVAILABLE FEE (Modification 295,

  1. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Tables (35 pages, 218 kb) CONTENTS PAGES Table 9. Total Electricity Consumption and Expenditures, 1995 Table 10. Electricity Consumption and Expenditure Intensities,...

  2. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    kb) CONTENTS PAGES Table 1. Total Energy Consumption by Major Fuel, 1995 Table 9. Total Electricity Consumption and Expenditures, 1995 Table 20. Total Natural Gas Consumption and...

  3. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    pages, 95 kb) CONTENTS PAGES Table 3. Consumption for Sum of Major Fuels, 1995 Table 10. Electricity Consumption and Expenditure Intensities, 1995 Table 21. Natural Gas...

  4. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    kb) CONTENTS PAGES Table 2. Total Energy Expenditures by Major Fuel, 1995 Table 9. Total Electricity Consumption and Expenditures, 1995 Table 20. Total Natural Gas Consumption and...

  5. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    pages, 95 kb) CONTENTS PAGES Table 4. Expenditures for Sum of Major Fuels, 1995 Table10. Electricity Consumption and Expenditure Intensities, 1995 Table 21. Natural Gas...

  6. Continuous Learning Points Credit Assignment Table | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuous Learning Points Credit Assignment Table Continuous Learning Points Credit Assignment Table PDF icon Microsoft Word - CLPCreditAssignmentTable More Documents &...

  7. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsTara...

  8. Metrics for comparison of crystallographic maps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-10-01

    Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less

  9. EECBG SEP Attachment 1 - Process metric list | Department of Energy

    Energy Savers [EERE]

    SEP Attachment 1 - Process metric list EECBG SEP Attachment 1 - Process metric list Reporting Guidance Process Metric List PDF icon eecbg_10_07b_sep__10_006a_attachment1_process_metric_list.pdf More Documents & Publications EECBG 10-07C/SEP 10-006B Attachment 1: Process Metrics List EECBG Program Notice 10-07A DOE Recovery Act Reporting Requirements for the State Energy Program

  10. Usage by Job Size Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage by Job Size Table Usage by Job Size Table page loading animation Usage Query Interface System All Hopper Edison Cori Carver Planck Matgen Franklin Hopper 1 Magellan Dirac...

  11. FY 2008 Overall Contract and Project Management Improvement Performance Metrics and Targets

    Broader source: Energy.gov [DOE]

    FY 2008 4th Quarter Metrics Final -- Overall Contract and Project Management Performance Metrics and Targets.

  12. Energy.gov Data Tables

    Broader source: Energy.gov [DOE]

    Follow these guidelines for creating Section 508-compliant data tables in the Energy.gov Drupal environment.

  13. Advanced Vehicle Technologies Awards Table

    Broader source: Energy.gov [DOE]

    The table contains a listing of the applicants, their locations, the amounts of the awards, and description of each project.

  14. 2003 CBECS Detailed Tables: Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    c32.pdf c32.xls c32.html Fuel Oil (Tables C33-C36) set12-pdf Table C33. Total Fuel Oil Consumption and Expenditures c33-pdf c33.xls c33.html Table C34. Fuel Oil Consumption...

  15. Table 4.xls

    Gasoline and Diesel Fuel Update (EIA)

    Emission Reductions and Sequestration Reported at Project and Entity Levels, Data Year 2005 (Metric Tons Carbon Dioxide Equivalent) Report Name Sector Reduction Type Project Level Entity Level A&N Electric Cooperative Electric Providers Indirect 6,243 AES Hawaii, Inc. Electric Providers Sequestration 1,540,000 1,540,000 AES SeaWest, Inc. Electric Providers Direct 16 Indirect 220,420 AES Shady Point, LLC Electric Providers Sequestration 4,150,000 4,150,000 AES Thames, LLC Electric Providers

  16. Description of Energy Intensity Tables (12)

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Description of Energy Intensity Data Tables There are 12 data tables used as references for this report. Specifically, these tables are categorized as tables 1 and 2 present...

  17. FY 2009 Statistical Table

    Energy Savers [EERE]

    Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2007 FY 2008 FY 2009 Current Current Congressional Op. Plan Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy.......................... -- 1,722,407 1,255,393 -467,014 -27.1% Electricity delivery and energy reliability........................... -- 138,556 134,000 -4,556 -3.3% Nuclear

  18. Clean Cities 2011 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-12-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2011. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  19. Clean Cities 2010 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.

    2012-10-01

    This report details the petroleum savings and vehicle emissions reductions achieved by the U.S. Department of Energy's Clean Cities program in 2010. The report also details other performance metrics, including the number of stakeholders in Clean Cities coalitions, outreach activities by coalitions and national laboratories, and alternative fuel vehicles deployed.

  20. Performance Metrics Research Project - Final Report

    SciTech Connect (OSTI)

    Deru, M.; Torcellini, P.

    2005-10-01

    NREL began work for DOE on this project to standardize the measurement and characterization of building energy performance. NREL's primary research objectives were to determine which performance metrics have greatest value for determining energy performance and to develop standard definitions and methods of measuring and reporting that performance.

  1. Western Resource Adequacy: Challenges - Approaches - Metrics | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy West-Wide Resource Assessment Team. Committee on Regional Electric Power Cooperation. March 25, 2004 San Francisco, California PDF icon Western Resource Adequacy: Challenges - Approaches - Metrics More Documents & Publications Eastern Wind Integration and Transmission Study (EWITS) (Revised) Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Day 1 Presentations Congestion Analysis of the Eastern Interconnection: Simulation Results

  2. Advanced Conversion Roadmap Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Deliverable: Roadmap for public dissemination which will guide Biomass program out-year R&D directions Workshop Objective Advanced Conversion Technology Roadmap Energy ...

  3. QTR table of respondents | Department of Energy

    Energy Savers [EERE]

    table of respondents QTR table of respondents PDF icon QTR_RFI_Comments_Table _V2.pdf More Documents & Publications Table of QTR comments in response to Federal Register RFI Table of QTR comments in response to Federal Register RFI Table of QTR comments in response to Federal Register RFI

  4. Table G3

    Gasoline and Diesel Fuel Update (EIA)

    1905-0194 Expiration Date: 07/31/2013 May 28, 2010 Voluntary Reporting of Greenhouse Gases 14 Table G3. Decision Chart for a Start Year Report for a Large Emitter Intending To Register Reductions Report Characteristics Reporting Requirements Schedule I Schedule II (For Each Subentity) Schedule III Schedule IV Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 1 Sec. 2 & Add. A Sec. 3 Sec. 1 Sec. 2 Sec. 1 Sec. 2 Part A Part B Part C Part D Part E Part A Part B Part C Independent Verification? All A- or

  5. Widget:CrazyEggMetrics | Open Energy Information

    Open Energy Info (EERE)

    CrazyEggMetrics Jump to: navigation, search This widget runs javascript code for the Crazy Egg user experience metrics. This should not be on all pages, but on select pages...

  6. Non-minimal derivative couplings of the composite metric (Journal...

    Office of Scientific and Technical Information (OSTI)

    Non-minimal derivative couplings of the composite metric Citation Details In-Document Search Title: Non-minimal derivative couplings of the composite metric In the context of ...

  7. Table 2.xls

    Gasoline and Diesel Fuel Update (EIA)

    Project-level Reductions and Sequestration Reported, Data Year 2005 (Metric Tons Carbon Dioxide Equivalent) 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Indirect 1 85 621 699 3,129 3,411 4,120 3,850 5,988 4,211 6,193 4,890 4,102 6,243 Sequestration 1,540,000 1,540,000 1,540,000 1,540,000 1,540,000 1,540,000 1,540,000 1,540,000 1,540,000 1,540,000 1,540,000 1,540,000 1,540,000 1,540,000 Direct 16 Indirect 16,191 14,656 17,745 17,748 17,859 19,897 18,925 21,070 85,711

  8. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  9. Performance Metrics and Budget Division (HC-51) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Metrics and Budget Division (HC-51) Performance Metrics and Budget Division (HC-51) MISSION: The mission of the Performance Metrics and Budget Division (HC-51) is to support the effective and efficient implementation of the Department of Energy's human capital initiatives and functions through the strategic integration of corporate human capital performance metrics and the budget of the Office of the Chief Human Capital Officer (HC). FUNCTIONS: Human capital performance measurement

  10. Module 6 - Metrics, Performance Measurements and Forecasting | Department

    Energy Savers [EERE]

    of Energy 6 - Metrics, Performance Measurements and Forecasting Module 6 - Metrics, Performance Measurements and Forecasting This module focuses on the metrics and performance measurement tools used in Earned Value. This module reviews metrics such as cost and schedule variance along with cost and schedule performance indices. In addition, this module will outline forecasting tools such as estimate to complete (ETC) and estimate at completion (EAC)

  11. Financial Metrics Data Collection Protocol, Version 1.0

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Gorrissen, Willy J.; Wang, Na

    2010-04-30

    Brief description of data collection process and plan that will be used to collect financial metrics associated with sustainable design.

  12. CBECS Buildings Characteristics --Revised Tables

    Gasoline and Diesel Fuel Update (EIA)

    Summary Tables (12 pages, 59 kb) CONTENTS PAGES 1. Summary Table: Totals and Means of Floorspace, Number of Workers, and Hours of Operation, 1995 2. Summary Table: Totals and Medians of Floorspace, Number of Workers, Hours of Operation, and Age of Building, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of

  13. MECS 1991 Publications and Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Capability To Switch Fuels Appendices Appendix A. Detailed Tables Appendix B. Survey Design, Implementation, and Estimates (file size 141,211 bytes) pages: 22. Appendix C....

  14. Table 1. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    from Table 24. Refiner acquisition costs -- Energy Information Administration, Form FEA-P110-M-1, "Refiners' Monthly Cost Allocation Report," January 1978 through June 1978;...

  15. Health Care Buildings: Subcategories Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Subcategories Table Selected Data by Type of Health Care Building Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet) Percent of Floorspace Square...

  16. Health Care Buildings: Equipment Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Equipment Table Buildings, Size and Age Data by Equipment Types for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million square feet)...

  17. Biochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Biochemical Conversion This area focuses on the research, development and demonstration of biological processes that convert biomass to biofuels, chemicals, and power. Biochemical processes also complement thermochemical conversion by providing residual materials for further processing. Biochemical conversion will advance in the future by enhancing fuel yields in integrated biorefineries which combine conversion types with heat and power efficiencies to produce fuel and products.

  18. Solid Fuels Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid Fuels Conversion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  19. Algal Biomass Conversion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO 2015 Project Peer Review Algal Biomass Conversion WBS 1.3.4.201 Philip T. Pienkos National Renewable Energy Laboratory March 24 th , 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Goal Statement Reduce algal biofuel production cost by developing advanced process options for the conversion of algal biomass into biofuels and bioproducts based on the three major biomass components: lipids, carbohydrates, and proteins. 3 Quad Chart

  20. power conversion efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power conversion efficiency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  1. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermal energy power conversion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  2. Energy Conversion Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion Efficiency - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  3. Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  4. IL conversion technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  5. Structured luminescence conversion layer

    DOE Patents [OSTI]

    Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

    2012-12-11

    An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

  6. Table of Contents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U U . . S S . . D D E E P P A A R R T T M M E E N N T T O O F F E E N N E E R R G G Y Y O O F F F F I I C C E E O O F F I I N N S S P P E E C C T T O O R R G G E E N N E E R R A A L L Semiannual Report toCongress DOE/IG-0065 April 1 - September 30, 2013 TABLE OF CONTENTS From the Desk of the Inspector General ..................................................... 2 Impacts Key Accomplishments ............................................................................................... 3

  7. Sandia Energy - Solid Fuels Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid Fuels Conversion Home Transportation Energy Predictive Simulation of Engines Clean FuelsPower Solid Fuels Conversion Solid Fuels ConversionAshley Otero2015-10-28T02:40:48+00...

  8. Metrics For Comparing Plasma Mass Filters

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2012-08-15

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter. __________________________________________________

  9. Metrics for comparing plasma mass filters

    SciTech Connect (OSTI)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-10-15

    High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.

  10. Clean Cities 2013 Annual Metrics Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    3 Annual Metrics Report Caley Johnson and Mark Singer National Renewable Energy Laboratory Technical Report NREL/TP-5400-62838 October 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013

  11. Clean Cities 2014 Annual Metrics Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    4 Annual Metrics Report Caley Johnson and Mark Singer National Renewable Energy Laboratory Technical Report NREL/TP-5400-65265 December 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013

  12. 1999 Commercial Building Characteristics--Detailed Tables--Principal...

    U.S. Energy Information Administration (EIA) Indexed Site

    Principal Building Activities > Detailed Tables-Principal Building Activities Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Principal Building Activities Table B1....

  13. 1999 Commercial Building Characteristics--Detailed Tables--Year...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Constructed > Detailed Tables-Year Constructed Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Year Constructed Table B8. Year Constructed, Number of Buildings...

  14. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates...

  15. Defining a Standard Metric for Electricity Savings

    SciTech Connect (OSTI)

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

  16. Commerial Buildings Characteristics, 1995 (Table of Contents...

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Buildings and Relative Standard Errors, 1995 Table I.2. Participation in Energy Conservation Programs, Floorspace and Relative Standard Errors, 1995 Table J.1....

  17. Trends in Commercial Buildings--Table

    U.S. Energy Information Administration (EIA) Indexed Site

    Home > Trends in Commercial Buildings > Energy Consumption - Part 1> Site Energy Consumption Tables Table 1. Total site energy consumption, relative standard errors, and 95%...

  18. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Category (6 pages, 36 kb) CONTENTS PAGES Table 17. Peak Electricity Demand Category, Number of Buildings, 1995 Table 18. Peak Electricity Demand Category, Floorspace, 1995 These...

  19. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Level Intensities (percentile) (6 pages, 39 kb) CONTENTS PAGES Table 10. Electricity Consumption and Expenditure Intensities, 1995 Table 21. Natural Gas Consumption and...

  20. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Gross Energy Intensity by Census Region for Sum of Major Fuels, 1995 Table 11. Electricity Consumption and Conditional Energy Intensity by Census Region, 1995 Table 22....

  1. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Gross Energy Intensity by Year Constructed for Sum of Major Fuels, 1995 Table 14. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1995 Table...

  2. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    and Gross Energy Intensity by Building Size for Sum of Major Fuels, 1995 Table13. Electricity Consumption and Conditional Energy Intensity by Building Size, 1995 Table 24....

  3. Precision Flow Table | Open Energy Information

    Open Energy Info (EERE)

    Table Jump to: navigation, search Basic Specifications Facility Name Flow Table Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility...

  4. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  5. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, D.K.; Rankin, R.A.

    1988-07-19

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

  6. Digital optical conversion module

    DOE Patents [OSTI]

    Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

    1991-02-26

    A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

  7. Annual Energy Outlook (AEO) 2006 - Supplemental Tables - All Tables

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing regional energy consumption and prices by sector; residential, commercial, and industrial demand sector data; transportation demand sector; electricity and renewable fuel; and petroleum, natural gas, and coal data.

  8. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  9. Table of tables: A database design tool for SYBASE

    SciTech Connect (OSTI)

    Brown, B.C.; Coulter, K.; Glass, H.D.; Glosson, R.; Hanft, R.W.; Harding, D.J.; Trombly-Freytag, K.; Walbridge, D.G.C.; Wallis, D.B. ); Allen, M.E. )

    1991-01-04

    The Table of Tables' application system captures in a set of SYBASE tables the basic design specification for a database schema. Specification of tables, columns (including the related defaults and rules for the stored values) and keys is provided. The feature which makes this application specifically useful for SYBASE is the ability to automatically generate SYBASE triggers. A description field is provided for each database object. Based on the data stored, SQL scripts for creating complete schema including the tables, their defaults and rules, their indexes, and their SYBASE triggers, are written by TOT. Insert, update and delete triggers are generated from TOT to guarantee integrity of data relations when tables are connected by single column foreign keys. The application is written in SYBASE's APT-SQL and includes a forms based data entry system. Using the features of TOT we can create a complete database schema for which the data integrity specified by our design is guaranteed by the SYBASE triggers generated by TOT. 3 refs.

  10. Toward a new metric for ranking high performance computing systems.

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Toward a new metric for ranking high performance computing systems. Citation Details In-Document Search Title: Toward a new metric for ranking high performance computing systems. The High Performance Linpack (HPL), or Top 500, benchmark [1] is the most widely recognized and discussed metric for ranking high performance computing systems. However, HPL is increasingly unreliable as a true measure of system performance for a growing collection of important

  11. Metrics for Measuring Progress Toward Implementation of the Smart Grid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (June 2008) | Department of Energy Metrics for Measuring Progress Toward Implementation of the Smart Grid (June 2008) Metrics for Measuring Progress Toward Implementation of the Smart Grid (June 2008) Results of the breakout session discussions at the Smart Grid Implementation Workshop, June 19-20, 2008 PDF icon Metrics for Measuring Progress Toward Implementation of the Smart Grid More Documents & Publications 5th Annual CHP Roadmap Workshop Breakout Group Results, September 2004

  12. Technical Workshop: Resilience Metrics for Energy Transmission and

    Energy Savers [EERE]

    Distribution Infrastructure | Department of Energy Technical Workshop: Resilience Metrics for Energy Transmission and Distribution Infrastructure Technical Workshop: Resilience Metrics for Energy Transmission and Distribution Infrastructure During this workshop, EPSA invited technical experts from industry, national laboratories, academia, and NGOs to discuss the state of play of and need for resilience metrics and how they vary by natural gas, liquid fuels and electric grid infrastructures.

  13. Integration of the EM Corporate QA Performance Metrics With Performance

    Energy Savers [EERE]

    Analysis Process | Department of Energy the EM Corporate QA Performance Metrics With Performance Analysis Process Integration of the EM Corporate QA Performance Metrics With Performance Analysis Process August 2009 Presenter: Robert Hinds, Savannah River Remediation, LLC Track 9-12 Topics Covered: Implementing CPMS for QA Corporate QA Performance Metrics Contractor Performance Analysis Contractor Assessment Programs Assessment Program Structure CPMS Integration with P/A Process Validating

  14. Microsoft Word - table_26.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    Fueled Vehicles"; state agencies; Form EIA-23, "Annual Survey of Domestic Oil and Gas Reserves"; PointLogic Energy; DI; Ventyz; and EIA estimates based on historical data. Table 27...

  15. Microsoft Word - table_19.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 19. Natural gas delivered to industrial consumers for the account of others by state, 2010-2014 (volumes in million cubic feet) Alabama 109,031 75.2 117,277 76.5 133,765...

  16. Health Care Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  17. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  18. 2012 NISE Awards Summary Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards » 2012 NISE Summary Table 2012 NISE Awards Summary Table Investigator NERSC repo Hours awarded DOE Office Project Title Gilbert Compo, University of Colorado at Boulder m958 10,000,000 BER Climate Research Ocean-Atmosphere Reanalysis for Climate Applications (OARCA) 1850-2013 Silvia Crivelli, Lawrence Berkeley National Laboratory m1532 1,550,000 BER Biological Systems Science WeFold: A collaborative effort for protein structure prediction Thomas Hamill, National Oceanic & Atmospheric

  19. 2013 NISE Awards Summary Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards » 2013 NISE Summary Table 2013 NISE Awards Summary Table Investigator NERSC repo Hours awarded DOE Office Project Title Katie Antypas, Lawrence Berkeley National Laboratory m1759 250,000 ASCR Applied Mathematical Sciences NERSC Application Readiness for Future Architectures Inez Fung, University of California Berkeley m189 750,000 BER Climate and Environmental Sciences Carbon Data Assimilation with a Coupled Ensemble Kalman Filter Thomas Hamill, National Oceanic & Atmospheric

  20. Clean Cities 2013 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, C.; Singer, M.

    2014-10-01

    Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2013 Annual Metrics Report.

  1. Clean Cities 2014 Annual Metrics Report

    SciTech Connect (OSTI)

    Johnson, Caley; Singer, Mark

    2015-12-22

    Each year, the U.S. Department of Energy asks its Clean Cities program coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction (IR) initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this 2014 Annual Metrics Report.

  2. Wave Energy Converter System Requirements and Performance Metrics

    Broader source: Energy.gov [DOE]

    The Energy Department and Wave Energy Scotland are holding a joint workshop on wave energy converter (WEC) system requirements and performance metrics on Friday, February 26.

  3. Resilient Control Systems Practical Metrics Basis for Defining Mission Impact

    SciTech Connect (OSTI)

    Craig G. Rieger

    2014-08-01

    "Resilience describes how systems operate at an acceptable level of normalcy despite disturbances or threats. In this paper we first consider the cognitive, cyber-physical interdependencies inherent in critical infrastructure systems and how resilience differs from reliability to mitigate these risks. Terminology and metrics basis are provided to integrate the cognitive, cyber-physical aspects that should be considered when defining solutions for resilience. A practical approach is taken to roll this metrics basis up to system integrity and business case metrics that establish proper operation and impact. A notional chemical processing plant is the use case for demonstrating how the system integrity metrics can be applied to establish performance, and

  4. Exploration Cost and Time Metric | Open Energy Information

    Open Energy Info (EERE)

    lt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Language: English Exploration Cost and Time Metric Screenshot References: Conference Paper1...

  5. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  6. Metrics for Evaluating Conventional and Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Mann, M. K.

    2013-01-01

    With numerous options for the future of natural gas, how do we know we're going down the right path? How do we designate a metric to measure and demonstrate change and progress, and how does that metric incorporate all stakeholders and scenarios?

  7. Conversion of Questionnaire Data

    SciTech Connect (OSTI)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

  8. Thermochemical Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Thermochemical Conversion The Bioenergy Technologies Office conducts research on heat-, pressure-, and catalyst-based conversion of various biomass feedstocks to biofuels, chemicals, and power. These conversion processes, most notably fast pyrolysis (as well as other forms of direct liquefaction) and gasification, are described in detail in the links on the left. The Thermochemical Platform aims to efficiently produce biobased fuels and co-products via liquefaction and pyrolysis,

  9. 2011 NISE Awards Summary Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards » 2011 NISE Summary Table 2011 NISE Awards Summary Table Investigator NERSC Repo Hours Awarded DOE Office Project Title Dmitri Babikov, Marquette University m409 1,450,000 BES Chemistry New potential energy surface for ozone molecule Connor Balance, Auburn University m41 600,000 Fusion Energy Hybrid OpenMP/MPI approach to R-matrix scattering Amitava Bhattacharjee, University of New Hampshire m148 1,000,000 Fusion Energy Global Effects on the Dynamics of Plasmoids and Flux Ropes during

  10. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  11. Zinc phosphate conversion coatings

    DOE Patents [OSTI]

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  12. "RSE Table N13.1. Relative Standard Errors for Table N13.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Energy Consumption Survey.'" X-Input-Content-Type: applicationvnd.ms-excel X-Translator-Status: translating "RSE Table N13.1. Relative Standard Errors for Table...

  13. Self-benchmarking Guide for Data Centers: Metrics, Benchmarks, Actions

    SciTech Connect (OSTI)

    Mathew, Paul; Ganguly, Srirupa; Greenberg, Steve; Sartor, Dale

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in data centers. This guide is primarily intended for personnel who have responsibility for managing energy use in existing data centers - including facilities managers, energy managers, and their engineering consultants. Additionally, data center designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior data center benchmarking studies supported by the California Energy Commission. Much of the benchmarking data are drawn from the LBNL data center benchmarking database that was developed from these studies. Additional benchmark data were obtained from engineering experts including facility designers and energy managers. This guide also builds on recent research supported by the U.S. Department of Energy's Save Energy Now program.

  14. Self-benchmarking Guide for Cleanrooms: Metrics, Benchmarks, Actions

    SciTech Connect (OSTI)

    Mathew, Paul; Sartor, Dale; Tschudi, William

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  15. Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions

    SciTech Connect (OSTI)

    Mathew, Paul; Greenberg, Steve; Sartor, Dale

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  16. Atlantic Biomass Conversions Inc | Open Energy Information

    Open Energy Info (EERE)

    Biomass Conversions Inc Jump to: navigation, search Name: Atlantic Biomass Conversions Inc Place: Frederick, Maryland Sector: Biomass Product: Atlantic Biomass Conversions is...

  17. Energy conversion system

    DOE Patents [OSTI]

    Murphy, L.M.

    1985-09-16

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

  18. Energy conversion system

    DOE Patents [OSTI]

    Murphy, Lawrence M.

    1987-01-01

    The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

  19. Microsoft Word - table_23.doc

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    6 Table 23. Average citygate price of natural gas in the United States, 2010- 2014 (dollars per thousand cubic feet) Alabama 6.46 5.80 5.18 4.65 4.93 Alaska 6.67 6.53 6.14 6.02...

  20. Table 2a. Electricity Consumption and Electricity Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity...

  1. CBECS 1992 - Building Characteristics, Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row...

  2. TableHC2.11.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Below Poverty Line Eligible for Federal Assistance 1 Table HC7.11 Home Electronics ... Below Poverty Line Eligible for Federal Assistance 1 Table HC7.11 Home Electronics ...

  3. Efficient electrochemical CO2 conversion powered by renewable energy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond tomore » conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.« less

  4. Microsoft Word - QER Resilience Metrics - Technical Workshp Agenda_Final

    Broader source: Energy.gov (indexed) [DOE]

    Quadrennial Energy Review Technical Workshop on Resilience Metrics for Energy Transmission and Distribution Infrastructure April, 29th, 2014 777 North Capitol St NE Ste 300, Washington, DC Contents Purpose .......................................................................................................................... 1 Background ................................................................................................................... 1 Technical Workshop Process

  5. A Graph Analytic Metric for Mitigating Advanced Persistent Threat

    SciTech Connect (OSTI)

    Johnson, John R.; Hogan, Emilie A.

    2013-06-04

    This paper introduces a novel graph analytic metric that can be used to measure the potential vulnerability of a cyber network to specific types of attacks that use lateral movement and privilege escalation such as the well known Pass The Hash, (PTH). The metric is computed from an oriented subgraph of the underlying cyber network induced by selecting only those edges for which a given property holds between the two vertices of the edge. The metric with respect to a select node on the subgraph is defined as the likelihood that the select node is reachable from another arbitrary node in the graph. This metric can be calculated dynamically from the authorization and auditing layers during the network security authorization phase and will potentially enable predictive deterrence against attacks such as PTH.

  6. DOE Announces Webinars on Solar Forecasting Metrics, the DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department will present a live webinar titled "Solar Forecasting Metrics" on Thursday, February 13, from 3:00 p.m. to 5:00 p.m. Eastern Standard Time. During this ...

  7. Analysis of Solar Cell Quality Using Voltage Metrics: Preprint

    SciTech Connect (OSTI)

    Toberer, E. S.; Tamboli, A. C.; Steiner, M.; Kurtz, S.

    2012-06-01

    The highest efficiency solar cells provide both excellent voltage and current. Of these, the open-circuit voltage (Voc) is more frequently viewed as an indicator of the material quality. However, since the Voc also depends on the band gap of the material, the difference between the band gap and the Voc is a better metric for comparing material quality of unlike materials. To take this one step further, since Voc also depends on the shape of the absorption edge, we propose to use the ultimate metric: the difference between the measured Voc and the Voc calculated from the external quantum efficiency using a detailed balance approach. This metric is less sensitive to changes in cell design and definition of band gap. The paper defines how to implement this metric and demonstrates how it can be useful in tracking improvements in Voc, especially as Voc approaches its theoretical maximum.

  8. Microsoft Word - followup to Fin Risk Metrics workshop.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 21, 2008 PurposeSubject: Follow-up to Financial Risk Metrics Workshop Page 1 of 1 Differences in Cash Flow between Net Billing and Direct Pay for Energy Northwest Attached...

  9. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J.L.; LaPointe, M.A.; Ganguly, A.K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); LaPointe, M.A. [Yale University, New Haven, Connecticut 06511 (United States)

    1999-05-01

    Generation of high power microwaves has been observed in experiments where a 250{endash}350 kV, 20{endash}30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself. {copyright} {ital 1999 American Institute of Physics.}

  10. Gyroharmonic conversion experiments

    SciTech Connect (OSTI)

    Hirshfield, J. L.; LaPointe, M. A. [Omega-P, Inc., New Haven, Connecticut 06520 (United States); Yale University, New Haven, Connecticut 06511 (United States); Ganguly, A. K. [Omega-P, Inc., New Haven, Connecticut 06520 (United States)

    1999-05-07

    Generation of high power microwaves has been observed in experiments where a 250-350 kV, 20-30 A electron beam accelerated in a cyclotron autoresonance accelerator (CARA) passes through a cavity tuned gyroharmonic) and at 8.6 GHz (3rd harmonic) will be described. Theory indicates that high conversion efficiency can be obtained for a high quality beam injected into CARA, and when mode competition can be controlled. Comparisons will be made between the experiments and theory. Planned 7th harmonic experiments will also be described, in which phase matching between the TE-72 mode at 20 GHz, and the TE-11 mode at 2.86 GHz, allows efficient 20 GHz co-generation within the CARA waveguide itself.

  11. ARM - Evaluation Product - Barrow Radiation Data (2009 metric)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsBarrow Radiation Data (2009 metric) ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Barrow Radiation Data (2009 metric) Observations from a suite of radiometers including Precision Spectral Pyranometers (PSPs), Precision Infrared Radiometers (PIRs), and a Normal Incident Pyrheliometer (NIP) are

  12. New IEC Specifications Help Define Wind Plant Performance Reporting Metrics

    Energy Savers [EERE]

    | Department of Energy IEC Specifications Help Define Wind Plant Performance Reporting Metrics New IEC Specifications Help Define Wind Plant Performance Reporting Metrics January 6, 2014 - 10:00am Addthis This is an excerpt from the Fourth Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy Wind Program and Sandia National Laboratories have been working with the International Electrotechnical Commission (IEC) Committee on wind turbine availability to

  13. Conceptual Framework for Developing Resilience Metrics for the Electricity,

    Office of Environmental Management (EM)

    Oil, and Gas Sectors in the United States | Department of Energy Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States This study assessed five potential methane reduction scenarios from natural gas transmission, storage, and distribution (TS&D) infrastructure using published literature on the costs and the

  14. Weatherization Assistance Program Goals and Metrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Goals and Metrics Weatherization Assistance Program Goals and Metrics UT - Bettelle - Oak Ridge National Laboratory Logo The U.S. Department of Energy (DOE) Weatherization Assistance Program (WAP) regularly reviews the work of states and grant recipients for effectiveness and for meeting program goals. DOE's Oak Ridge National Laboratory provides technical support to the program and conducts the evaluations. Goals The overall goal of WAP is to reduce the burden of energy prices on the

  15. National Targets Table | Department of Energy

    Energy Savers [EERE]

    National Targets Table National Targets Table PDF icon National Targets Table More Documents & Publications Commercial Building Energy Asset Rating Workshop Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings

  16. Conversion Technologies for Advanced Biofuels - Carbohydrates...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for...

  17. Solar Thermoelectric Energy Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion Efficiencies of different types of solar thermoelectric generators were predicted using theoretical ...

  18. Measures of agreement between computation and experiment:validation metrics.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; Oberkampf, William Louis

    2005-08-01

    With the increasing role of computational modeling in engineering design, performance estimation, and safety assessment, improved methods are needed for comparing computational results and experimental measurements. Traditional methods of graphically comparing computational and experimental results, though valuable, are essentially qualitative. Computable measures are needed that can quantitatively compare computational and experimental results over a range of input, or control, variables and sharpen assessment of computational accuracy. This type of measure has been recently referred to as a validation metric. We discuss various features that we believe should be incorporated in a validation metric and also features that should be excluded. We develop a new validation metric that is based on the statistical concept of confidence intervals. Using this fundamental concept, we construct two specific metrics: one that requires interpolation of experimental data and one that requires regression (curve fitting) of experimental data. We apply the metrics to three example problems: thermal decomposition of a polyurethane foam, a turbulent buoyant plume of helium, and compressibility effects on the growth rate of a turbulent free-shear layer. We discuss how the present metrics are easily interpretable for assessing computational model accuracy, as well as the impact of experimental measurement uncertainty on the accuracy assessment.

  19. Prod_Tables_2013.indd

    Gasoline and Diesel Fuel Update (EIA)

    State Energy Production Estimates 1960 Through 2013 2013 Summary Tables U.S. Energy Information Administration | State Energy Data 2013: Production 1 Table P1. Energy Production Estimates in Physical Units, 2013 Alabama 18,628 196,326 10,391 0 Alaska 1,632 338,182 187,954 0 Arizona 7,603 72 60 0 Arkansas 59 1,139,654 6,640 0 California 0 252,310 198,928 3,997 Colorado 24,236 1,604,860 65,394 3,042 Connecticut 0 0 0 0 Delaware 0 0 0 0 District of Columbia 0 0 0 0 Florida 0 292 2,174 0 Georgia 0 0

  20. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",32353,9 "Electric utilities",23419,7 "IPP & CHP",8934,11 "Net generation (megawatthours)",150572924,6 "Electric utilities",115027021,3 "IPP & CHP",35545903,11 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",144568,9 "Nitrogen oxide

  1. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14786,29 "Electric utilities",11559,23 "IPP & CHP",3227,31 "Net generation (megawatthours)",60322492,25 "Electric utilities",46547772,21 "IPP & CHP",13774720,27 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",88811,16 "Nitrogen oxide

  2. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",58781,3 "Electric utilities",50967,1 "IPP & CHP",7813,15 "Net generation (megawatthours)",222398924,3 "Electric utilities",202527297,1 "IPP & CHP",19871627,18 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",117797,12 "Nitrogen

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",38210,7 "Electric utilities",28875,2 "IPP & CHP",9335,10 "Net generation (megawatthours)",120953734,10 "Electric utilities",107082884,4 "IPP & CHP",13870850,26 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",123735,10 "Nitrogen

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "Item","Value","Rank" "Primary energy source","Petroleum", "Net summer capacity (megawatts)",2757,47 "Electric utilities",1821,40 "IPP & CHP",937,45 "Net generation (megawatthours)",10267052,45 "Electric utilities",5748256,40 "IPP & CHP",4518796,40 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",20710,33 "Nitrogen oxide

  5. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",4924,42 "Electric utilities",3394,37 "IPP & CHP",1530,39 "Net generation (megawatthours)",15186128,43 "Electric utilities",9600216,36 "IPP & CHP",5585912,39 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",6565,42 "Nitrogen oxide

  6. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",44950,4 "Electric utilities",5269,35 "IPP & CHP",39681,4 "Net generation (megawatthours)",203004919,4 "Electric utilities",11571734,35 "IPP & CHP",191433185,3 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",203951,6 "Nitrogen oxide

  7. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",27196,14 "Electric utilities",23309,8 "IPP & CHP",3888,24 "Net generation (megawatthours)",110403477,13 "Electric utilities",96047678,7 "IPP & CHP",14355799,23 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",273718,4 "Nitrogen oxide

  8. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",15929,25 "Electric utilities",12092,21 "IPP & CHP",3837,26 "Net generation (megawatthours)",56670757,27 "Electric utilities",41932708,26 "IPP & CHP",14738048,22 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",106879,14 "Nitrogen oxide

  9. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14244,31 "Electric utilities",11485,24 "IPP & CHP",2759,33 "Net generation (megawatthours)",48472581,32 "Electric utilities",39808763,28 "IPP & CHP",8663819,32 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",30027,30 "Nitrogen oxide

  10. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",21004,21 "Electric utilities",19599,16 "IPP & CHP",1405,40 "Net generation (megawatthours)",89741021,18 "Electric utilities",89098127,11 "IPP & CHP",642894,50 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",190782,7 "Nitrogen oxide

  11. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",26228,15 "Electric utilities",17297,17 "IPP & CHP",8931,12 "Net generation (megawatthours)",102010177,15 "Electric utilities",56226016,17 "IPP & CHP",45784161,8 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",122578,11

  12. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",4499,43 "Electric utilities",14,49 "IPP & CHP",4485,21 "Net generation (megawatthours)",14030038,44 "Electric utilities",597,49 "IPP & CHP",14029441,25 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",13365,38 "Nitrogen oxide (short

  13. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts" "Item","Value","Rank" "Primary energy source","Natural Gas", "Net summer capacity (megawatts)",13678,32 "Electric utilities",969,42 "IPP & CHP",12709,7 "Net generation (megawatthours)",32885021,40 "Electric utilities",611320,44 "IPP & CHP",32273700,12 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",12339,40 "Nitrogen

  14. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",30128,11 "Electric utilities",22148,9 "IPP & CHP",7981,14 "Net generation (megawatthours)",105417801,14 "Electric utilities",83171310,13 "IPP & CHP",22246490,14 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",237091,5 "Nitrogen oxide

  15. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",15561,28 "Electric utilities",12842,20 "IPP & CHP",2719,35 "Net generation (megawatthours)",52810264,29 "Electric utilities",45413403,23 "IPP & CHP",7396861,35 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",87718,17

  16. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",21801,19 "Electric utilities",20562,15 "IPP & CHP",1239,42 "Net generation (megawatthours)",91626593,17 "Electric utilities",89217205,10 "IPP & CHP",2409387,46 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",157488,8 "Nitrogen oxide

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",6329,41 "Electric utilities",2568,38 "IPP & CHP",3761,27 "Net generation (megawatthours)",27687326,41 "Electric utilities",7361898,38 "IPP & CHP",20325428,16 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",16865,36 "Nitrogen oxide

  18. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8449,36 "Electric utilities",7911,30 "IPP & CHP",538,49 "Net generation (megawatthours)",37104628,34 "Electric utilities",35170167,30 "IPP & CHP",1934461,48 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",66884,22 "Nitrogen oxide

  19. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",10652,34 "Electric utilities",7915,29 "IPP & CHP",2737,34 "Net generation (megawatthours)",36443874,35 "Electric utilities",27888008,34 "IPP & CHP",8555866,33 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",7436,41 "Nitrogen oxide

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",4413,44 "Electric utilities",1121,41 "IPP & CHP",3292,30 "Net generation (megawatthours)",19778520,42 "Electric utilities",2266903,41 "IPP & CHP",17511617,20 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",3733,44 "Nitrogen oxide

  1. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",18997,22 "Electric utilities",544,43 "IPP & CHP",18452,6 "Net generation (megawatthours)",64750942,24 "Electric utilities",-122674,50 "IPP & CHP",64873616,6 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",3196,46 "Nitrogen oxide

  2. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",7938,38 "Electric utilities",5912,33 "IPP & CHP",2026,36 "Net generation (megawatthours)",35870965,36 "Electric utilities",29833095,33 "IPP & CHP",6037870,37 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",17735,34 "Nitrogen oxide (short

  3. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    York" "Item","Value","Rank" "Primary energy source","Natural Gas", "Net summer capacity (megawatts)",39918,6 "Electric utilities",10736,26 "IPP & CHP",29182,5 "Net generation (megawatthours)",136116830,8 "Electric utilities",33860490,31 "IPP & CHP",102256340,5 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",30947,29 "Nitrogen oxide

  4. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",30048,12 "Electric utilities",26706,6 "IPP & CHP",3342,29 "Net generation (megawatthours)",125936293,9 "Electric utilities",116317050,2 "IPP & CHP",9619243,31 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",71293,20 "Nitrogen oxide

  5. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",6566,40 "Electric utilities",5292,34 "IPP & CHP",1274,41 "Net generation (megawatthours)",35021673,39 "Electric utilities",31044374,32 "IPP & CHP",3977299,42 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",56854,23 "Nitrogen oxide (short

  6. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",32482,8 "Electric utilities",20779,11 "IPP & CHP",11703,9 "Net generation (megawatthours)",137284189,7 "Electric utilities",88763825,12 "IPP & CHP",48520364,7 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",346873,2 "Nitrogen oxide (short

  7. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Item","Value","Rank" "Primary energy source","Natural Gas", "Net summer capacity (megawatts)",23300,17 "Electric utilities",16951,18 "IPP & CHP",6349,17 "Net generation (megawatthours)",73673680,22 "Electric utilities",53348841,18 "IPP & CHP",20324839,17 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",80418,19 "Nitrogen

  8. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",15662,27 "Electric utilities",10973,25 "IPP & CHP",4689,19 "Net generation (megawatthours)",59895515,26 "Electric utilities",43254167,24 "IPP & CHP",16641348,21 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",17511,35 "Nitrogen

  9. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",43040,5 "Electric utilities",455,44 "IPP & CHP",42584,3 "Net generation (megawatthours)",226785630,2 "Electric utilities",1105740,42 "IPP & CHP",225679890,2 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",276851,3 "Nitrogen oxide

  10. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",1809,49 "Electric utilities",8,50 "IPP & CHP",1802,38 "Net generation (megawatthours)",6246807,50 "Electric utilities",10659,48 "IPP & CHP",6236148,36 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",1271,49 "Nitrogen oxide

  11. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",23017,18 "Electric utilities",21039,10 "IPP & CHP",1978,37 "Net generation (megawatthours)",95249894,16 "Electric utilities",91795732,9 "IPP & CHP",3454162,44 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",47671,25 "Nitrogen oxide

  12. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",4109,45 "Electric utilities",3480,36 "IPP & CHP",629,48 "Net generation (megawatthours)",10108887,46 "Electric utilities",8030545,37 "IPP & CHP",2078342,47 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",15347,37 "Nitrogen oxide

  13. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",21326,20 "Electric utilities",20635,13 "IPP & CHP",690,47 "Net generation (megawatthours)",79651619,19 "Electric utilities",75988871,15 "IPP & CHP",3662748,43 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",86204,18 "Nitrogen oxide

  14. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",109584,1 "Electric utilities",28705,3 "IPP & CHP",80879,1 "Net generation (megawatthours)",433380166,1 "Electric utilities",96131888,6 "IPP & CHP",337248278,1 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",383728,1 "Nitrogen oxide

  15. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",7698,39 "Electric utilities",6669,32 "IPP & CHP",1029,44 "Net generation (megawatthours)",42516751,33 "Electric utilities",39526881,29 "IPP & CHP",2989870,45 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",23670,32 "Nitrogen oxide (short

  16. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",1255,50 "Electric utilities",329,45 "IPP & CHP",925,46 "Net generation (megawatthours)",6884910,48 "Electric utilities",872238,43 "IPP & CHP",6012672,38 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",71,50 "Nitrogen oxide (short

  17. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",24828,16 "Electric utilities",20601,14 "IPP & CHP",4227,22 "Net generation (megawatthours)",76896565,20 "Electric utilities",63724860,16 "IPP & CHP",13171706,28 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",68077,21 "Nitrogen

  18. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "Item","Value","Rank" "Primary energy source","Hydroelectric", "Net summer capacity (megawatts)",30656,10 "Electric utilities",27070,5 "IPP & CHP",3586,28 "Net generation (megawatthours)",114172916,11 "Electric utilities",100013661,5 "IPP & CHP",14159255,24 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",13259,39

  19. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",16282,24 "Electric utilities",10625,27 "IPP & CHP",5657,18 "Net generation (megawatthours)",75863067,21 "Electric utilities",46351104,22 "IPP & CHP",29511963,13 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",93888,15 "Nitrogen

  20. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",17342,23 "Electric utilities",13358,19 "IPP & CHP",3984,23 "Net generation (megawatthours)",65962792,23 "Electric utilities",47027455,20 "IPP & CHP",18935337,19 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",108306,13 "Nitrogen oxide

  1. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",8381,37 "Electric utilities",7279,31 "IPP & CHP",1102,43 "Net generation (megawatthours)",52483065,30 "Electric utilities",48089178,19 "IPP & CHP",4393887,41 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",49587,24 "Nitrogen oxide

  2. Table 1. 2013 Summary Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Item","Value" "Primary energy source","Coal" "Net summer capacity (megawatts)",1060064 "Electric utilities",616799 "IPP & CHP",443264 "Net generation (megawatthours)",4065964067 "Electric utilities",2388058409 "IPP & CHP",1677905658 "Emissions (thousand metric tons)", "Sulfur dioxide (short tons)",3978753 "Nitrogen oxide (short

  3. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",2384,48 "Electric utilities",2205,39 "IPP & CHP",179,50 "Net generation (megawatthours)",6496822,49 "Electric utilities",5851727,39 "IPP & CHP",645095,49 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",4202,43 "Nitrogen oxide

  4. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",27910,13 "Electric utilities",20668,12 "IPP & CHP",7242,16 "Net generation (megawatthours)",113325986,12 "Electric utilities",92740582,8 "IPP & CHP",20585405,15 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",23716,31 "Nitrogen oxide

  5. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",73772,2 "Electric utilities",28165,4 "IPP & CHP",45607,2 "Net generation (megawatthours)",200077115,5 "Electric utilities",78407643,14 "IPP & CHP",121669472,4 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",2109,48 "Nitrogen

  6. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",14769,30 "Electric utilities",10238,28 "IPP & CHP",4531,20 "Net generation (megawatthours)",52937436,28 "Electric utilities",42508826,25 "IPP & CHP",10428610,29 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",40012,27 "Nitrogen oxide

  7. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" "Item","Value","Rank" "Primary energy source","Nuclear", "Net summer capacity (megawatts)",8769,35 "Electric utilities",152,46 "IPP & CHP",8617,13 "Net generation (megawatthours)",35610789,38 "Electric utilities",50273,45 "IPP & CHP",35560516,10 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",3512,45 "Nitrogen oxide

  8. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",3246,46 "Electric utilities",102,47 "IPP & CHP",3144,32 "Net generation (megawatthours)",7760861,47 "Electric utilities",25986,47 "IPP & CHP",7734875,34 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",2241,47 "Nitrogen oxide

  9. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" "Item","Value","Rank" "Primary energy source","Natural gas", "Net summer capacity (megawatts)",9,51 "Electric utilities",, "IPP & CHP",9,51 "Net generation (megawatthours)",65852,51 "Electric utilities",, "IPP & CHP",65852,51 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",0,51 "Nitrogen oxide (short

  10. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",12339,33 "Electric utilities",85,48 "IPP & CHP",12254,8 "Net generation (megawatthours)",35850812,37 "Electric utilities",30205,46 "IPP & CHP",35820607,9 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",41539,26 "Nitrogen oxide (short

  11. Table 1. 2013 Summary statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "Item","Value","Rank" "Primary energy source","Coal", "Net summer capacity (megawatts)",15758,26 "Electric utilities",11901,22 "IPP & CHP",3858,25 "Net generation (megawatthours)",51296988,31 "Electric utilities",41155904,27 "IPP & CHP",10141084,30 "Emissions (thousand metric tons)",, "Sulfur dioxide (short tons)",35625,28 "Nitrogen oxide

  12. 1999 Commercial Building Characteristics--Detailed Tables--Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Region > Detailed Tables-Census Region Complete Set of 1999 CBECS Detailed Tables Detailed Tables-Census Region Table B3. Census Region, Number of Buildings and Floorspace...

  13. FY 2014 Budget Request Laboratory Table | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Table FY 2014 Budget Request Laboratory Table PDF icon Lab Table FY2014.pdf More Documents & Publications FY 2014 Budget Request State Table Fiscal Year 2013 President's Budget Request Fiscal Year 2013 President's

  14. FY 2014 Budget Request State Table | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Table FY 2014 Budget Request State Table PDF icon State Table FY2014.pdf More Documents & Publications FY 2014 Budget Request Laboratory Table FY 2007 Congressional Budget Request FY 2007 Congressional

  15. COST AND QUALITY TABLES 95

    Gasoline and Diesel Fuel Update (EIA)

    5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost

  16. SECTION J - TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    Conformed to Mod 0108 DE-NA0000622 Section J Page i PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J LIST OF APPENDICES TABLE OF CONTENTS Appendix A Statement of Work (Replaced by Mod 002; Modified Mod 016; Replaced Mod 029) Appendix B Performance Evaluation Plan (Replaced by Mods 002, 016, 020, 029, 0084) Appendix C Contractor's Transition Plan Appendix D Sensitive Foreign Nations Control Appendix E Performance Guarantee Agreement(s) Appendix F National Work Breakdown

  17. TableBuster V1.0

    Energy Science and Technology Software Center (OSTI)

    2003-06-06

    Brief Description:TableBuster enables Telelogic DOORS users to export tables with split merged cells from Microsoft Word into DOORS. Practical Application: Users of Telelogic DOORS will be more easily able to track and manage requirements that are initally defined in Microsoft Word tables containing split or merged cells. Method of Solution: TableSplitter contains two procedures. The Setup subroutine unlinks all Word fields in the active Word document. It next counts all the tables in the documentmore » and then calls the SplitCells subroutine. SplitCells splits the appropriate cells for each table, so a n row by m column table actually has n by m cells that DOORS can import.« less

  18. PDB to AMPL Conversion

    Energy Science and Technology Software Center (OSTI)

    2002-09-01

    PDB to AMPL Conversion was written to convert protein data base files to AMPL files. The protein data bases on the internet contain a wealth of information about the structue and makeup of proteins. Each file contains information derived by one or more experiments and contains information on how the experiment waw performed, the amino acid building blocks of each chain, and often the three-dimensional structure of the protein extracted from the experiments. The waymore » a protein folds determines much about its function. Thus, studying the three-dimensional structure of the protein is of great interest. Analysing the contact maps is one way to examine the structure. A contact map is a graph which has a linear back bone of amino acids for nodes (i.e., adjacent amino acids are always connected) and vertices between non-adjacent nodes if they are close enough to be considered in contact. If the graphs are similar then the folds of the protein and their function should also be similar. This software extracts the contact maps from a protein data base file and puts in into AMPL data format. This format is designed for use in AMPL, a programming language for simplifying linear programming formulations.« less

  19. Static Scale Conversion (SSC)

    Energy Science and Technology Software Center (OSTI)

    2007-01-19

    The Static Scale Conversion (SSC) software is a unique enhancement to the AIMVEE system. It enables a SSC to weigh and measure vehicles and cargo dynamically (i.e., as they pass over the large scale. Included in the software is the AIMVEE computer code base. The SSC and AIMVEE computer system electronically continue to retrieve deployment information, identify vehicle automatically and determine total weight, individual axle weights, axle spacing and center-of-balance for any wheeled vehicle inmore » motion. The AIMVEE computer code system can also perform these functions statically for both wheel vehicles and cargo with information. The AIMVEE computer code system incorporates digital images and applies cubing algorithms to determine length, width, height for cubic dimensions of both vehicle and cargo. Once all this information is stored, it electronically links to data collection and dissemination systems to provide “actual” weight and measurement information for planning, deployment, and in-transit visibility.« less

  20. 1999 Commercial Buildings Energy Consumption Survey Detailed Tables

    Gasoline and Diesel Fuel Update (EIA)

    Consumption and Expenditures Tables Table C1. Total Energy Consumption by Major Fuel ............................................... 124 Table C2. Total Energy Expenditures by Major Fuel................................................ 130 Table C3. Consumption for Sum of Major Fuels ...................................................... 135 Table C4. Expenditures for Sum of Major Fuels....................................................... 140 Table C5. Consumption and Gross Energy Intensity by

  1. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from (2012KE01): Energy Levels of 11 Li E x (MeV ± keV) J π ; T T 1 2 or Γ Decay Reactions g.s. 3 2 - ; 5 2 T 1 2 = 8.75 ± 0.14 ms β - 1, 2, 4, 5, 6, 8, 9 1.220 ± 40 Γ = 0.53 ± 0.15 MeV n 2, 6, 7, 9, 10 2.420 ± 50 Γ = 1.26 ± 0.30 MeV n 2, 4, 6, 7, 9, 10 3.700 ± 130 Γ < 200 keV n 7 4.860 ± 60 Γ < 100 keV n 2, 4, 9 6.230 ± 60 Γ < 100 keV n 2, 4, 9 11.300 n 2 1

  2. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 from (2012KE01): Energy levels of 11 Be E x (MeV ± keV) J π ; T T 1 2 or Γ c.m. (keV) Decay Reactions 0 1 2 + ; 3 2 T 1 2 = 13.76 ± 0.07 s β - 1, 3, 4, 5, 6, 8, 9, 10, 12, 14, 16, 17, 19, 23, 24, 25, 26, 27, 28, 30, 31, 32 0.32004 ± 0.1 1 2 - T 1 2 = 115 ± 10 fs γ 4, 5, 6, 8, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 26, 28, 29, 30, 33 1.783 ± 4 5 2 + Γ = 100 ± 10 n 4, 5, 6, 9, 10, 14, 23, 26, 28 2.654 ± 10 3 2 - a 206 ± 8 n 5, 6, 9, 10, 15, 16, 21, 22, 23, 28, 29 3.40 ± 6 ( 3 2 - ,

  3. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 from (2012KE01): Energy levels of 11 B E x J π ; T Γ cm (keV) Decay Reactions (MeV ± keV) 0 3 2 - ; 1 2 stable 2, 3, 7, 8, 11, 15, 16, 17, 18, 19, 22, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 67, 68, 69, 70, 71, 72, 73, 74 2.124693 ± 0.027 1 2 - 0.117 ± 0.004 eV γ 2, 7, 8, 11, 15, 16, 17, 18, 19, 26, 27, 28, 30, 32, 33, 35, 36, 37, 39, 40, 42, 44, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 67, 68, 69,

  4. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 from (2012KE01): Energy levels of 11 N E res (MeV ± keV) E x (MeV ± keV) J π ; T Γ (keV) Decay Reactions 1.49 ± 60 0 1 2 + ; 3 2 830 ± 30 p 1, 2, 3, 6 2.22 ± 30 0.73 ± 70 1 2 - 600 ± 100 p 1, 2, 3, 5, 6 3.06 ± 80 (1.57 ± 80) < 100 p 3 3.69 ± 30 2.20 ± 70 5 2 + 540 ± 40 p 1, 3, 5, 6 4.35 ± 30 2.86 ± 70 3 2 - 340 ± 40 p 1, 3, 5, 6 5.12 ± 80 (3.63 ± 100) ( 5 2 - ) < 220 p 5 5.91 ± 30 4.42 ± 70 ( 5 2 - ) p 3, 5, 6 6.57 ± 100 5.08 ± 120 ( 3 2 - ) 100 ± 60 p 3, 6 1

  5. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.0 fs 5, 7, 9, 14, 15, 19, 20, 23, 24, 25 5.2409 0.3 5 2 + 3.25 0.30 ps 4, 5, 6, 7, 9, 14, 15, 18, 19, 20, 23, 24, 25, 27 g +0.248 0.026 6.1763 1.7 3 2 -...

  6. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transitions in A 18-19 nuclei a Nucleus E xi E xf J i J f b Mult. S (MeV) (eV) (W.u.) 18 O c 1.98 0 2 + 0 + (2.35 0.06) 10 -4 E2 3.32 ...

  7. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 17 a Nucleus E xi E xf J i (T i ) J f (T f ) (eV) Branching ratio Mult. S (W.u.) (MeV) (%) 16 N b 0.12 0 0 - (1) 2 - (1) (8.7 0.1) 10 -11 100 E2...

  8. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transitions in A 5 - 10 a Nucleus E xi E xf (MeV) J i J f b (eV) Mult. S (W.u.) 5 He 16.75 0 3 2 + 3 2 - 2.1 0.4 E1 (2.3 0.4) 10 -3 5 Li...

  9. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transitions in A 11 - 12 a Nucleus E xi E xf J i J f b Mult. S (MeV) (eV) (W.u.) 11 Be 0.32 0 1 2 - 1 2 + (3.97 0.36) 10 -3 E1 0.360...

  10. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transitions in A 20 nuclei a Nucleus E xi E xf J i J f b Mult. S (MeV) (eV) (W.u.) 20 O c 1.67 0 2 + 0 + (6.28 0.24) 10 -5 E2 1.80 ...

  11. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transitions in A 5 - 7 Nucleus E xi E xf J i J f a (eV) Mult. S (W.u.) b (MeV) 5 He 16.84 0 3 2 + 3 2 - 2.1 0.4 E1 (2.2 0.4) 10 -3...

  12. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in A 13 - 15 a Nucleus E xi E xf J i (T i ) J i (T f ) Mult. S (MeV) (eV) (W.u.) 13 C b 3.09 0 1 2 + 1 2 - 0.43 0.04 E1 (3.9 0.4) ...

  13. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transitions in A 18 - 20 a Nucleus E xi E xf J i J f b Mult. S (MeV) (eV) (W.u.) 18 O c 1.98 0 2 + 0 + (2.35 0.06) 10 -4 E2 3.32 ...

  14. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electromagnetic transitions in A 11 Nucleus E xi E xf J i J f Mult. W (MeV) (eV) (W.u.) 11 Be 0.32 0 1 2 - 1 2 + (3.97 0.35) 10 -3...

  15. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.4 from (1991AJ01): Energy levels of 15 N a E x J ; T m or Decay Reactions (MeV keV) c.m. (keV) 0 1 2 - ; 1 2 - stable 3, 4, 5, 6, 13, 14, 16, 17, 18, 19, 20, 24, 25,...

  16. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or m (keV) Decay Reactions 0 0 + ; 0 stable 5, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 30, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,...

  17. Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    keV) 0 3 2 - ; 1 2 T 1 2 20.364 0.014 min + 1, 2, 6, 7, 10, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44 2.0000 ...

  18. Alternative Fuels Data Center: Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More

  19. Alternative Fuels Data Center: Conversion Regulations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on

  20. Microsoft Word - table_15.doc

    Gasoline and Diesel Fuel Update (EIA)

    0 Table 15. Consumption of natural gas by state, 2010-2014 (million cubic feet) a Lease fuel quantities were estimated by assuming that the proportions of onsystem production used as lease fuel by respondents to the Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," were the same as the proportions of gross withdrawals as reported on Form EIA-895, "Annual Quantity and Value of Natural Gas Production Report," used as lease by all operators.

  1. Microsoft Word - table_21.doc

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 21. Number of natural gas commercial consumers by type of service and state, 2013-2014 R Revised data. Note: Totals may not equal sum of components due to independent rounding. Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Please see the cautionary note regarding the number of residential and commercial customers located on the second page of Appendix A of this report. Alabama 67,006 130

  2. Table-top job analysis

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The purpose of this Handbook is to establish general training program guidelines for training personnel in developing training for operation, maintenance, and technical support personnel at Department of Energy (DOE) nuclear facilities. TTJA is not the only method of job analysis; however, when conducted properly TTJA can be cost effective, efficient, and self-validating, and represents an effective method of defining job requirements. The table-top job analysis is suggested in the DOE Training Accreditation Program manuals as an acceptable alternative to traditional methods of analyzing job requirements. DOE 5480-20A strongly endorses and recommends it as the preferred method for analyzing jobs for positions addressed by the Order.

  3. EM International Program Action Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM INTERNATIONAL COOPERATIVE PROGRAM] October, 2012 E M I n t e r n a t i o n a l P r o g r a m s Page 1 ACTION TABLE Subject Lead Office Engaging Country Meeting Location Purpose Status Date of Event 3 rd US/German Workshop on Salt Repository Research, Design and Operations N. Buschman, EM-22 Germany Albuquerque & Carlsbad, NM Continue collaboration with Germans on salt repository research, design and operations. Draft agenda prepared. October 8-12, 2012 International Framework for Nuclear

  4. Non-minimal derivative couplings of the composite metric

    SciTech Connect (OSTI)

    Heisenberg, Lavinia

    2015-11-04

    In the context of massive gravity, bi-gravity and multi-gravity non-minimal matter couplings via a specific composite effective metric were investigated recently. Even if these couplings generically reintroduce the Boulware-Deser ghost, this composite metric is unique in the sense that the ghost reemerges only beyond the decoupling limit and the matter quantum loop corrections do not detune the potential interactions. We consider non-minimal derivative couplings of the composite metric to matter fields for a specific subclass of Horndeski scalar-tensor interactions. We first explore these couplings in the mini-superspace and investigate in which scenario the ghost remains absent. We further study these non-minimal derivative couplings in the decoupling-limit of the theory and show that the equation of motion for the helicity-0 mode remains second order in derivatives. Finally, we discuss preliminary implications for cosmology.

  5. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  6. Advanced Conversion Roadmap Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Conversion Roadmap Workshop Advanced Conversion Roadmap Workshop DOE introduction slides to the Advanced Conversion Roadmap Workshop webinar. PDF icon ctab_webinar_doe.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading Technology Pathway Selection Effort

  7. Primer Control System Cyber Security Framework and Technical Metrics

    SciTech Connect (OSTI)

    Wayne F. Boyer; Miles A. McQueen

    2008-05-01

    The Department of Homeland Security National Cyber Security Division supported development of a control system cyber security framework and a set of technical metrics to aid owner-operators in tracking control systems security. The framework defines seven relevant cyber security dimensions and provides the foundation for thinking about control system security. Based on the developed security framework, a set of ten technical metrics are recommended that allow control systems owner-operators to track improvements or degradations in their individual control systems security posture.

  8. Calabi-Yau metrics for quotients and complete intersections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Braun, Volker; Brelidze, Tamaz; Douglas, Michael R.; Ovrut, Burt A.

    2008-05-22

    We extend previous computations of Calabi-Yau metrics on projective hypersurfaces to free quotients, complete intersections, and free quotients of complete intersections. In particular, we construct these metrics on generic quintics, four-generation quotients of the quintic, Schoen Calabi-Yau complete intersections and the quotient of a Schoen manifold with Z₃ x Z₃ fundamental group that was previously used to construct a heterotic standard model. Various numerical investigations into the dependence of Donaldson's algorithm on the integration scheme, as well as on the Kähler and complex structure moduli, are also performed.

  9. ARM - Evaluation Product - AERI Data Quality Metric (AERI-QC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAERI Data Quality Metric (AERI-QC) Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : AERI Data Quality Metric (AERI-QC) Ancillary NetCDF file to be used with the regular AERI data files to document times when the data may not be correct. Data Details Contact David Turner National Oceanic and Atmospheric Administration

  10. Energy Department Sponsored Project Captures One Millionth Metric Ton of

    Office of Environmental Management (EM)

    CO2 | Department of Energy Sponsored Project Captures One Millionth Metric Ton of CO2 Energy Department Sponsored Project Captures One Millionth Metric Ton of CO2 June 27, 2014 - 11:09am Addthis An aerial view of Air Products’ steam methane reforming facility at Port Arthur, Texas. | Photo courtesy of Air Products and Chemicals Inc. An aerial view of Air Products' steam methane reforming facility at Port Arthur, Texas. | Photo courtesy of Air Products and Chemicals Inc. Allison Lantero

  11. Environmental Regulatory Update Table, November 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-12-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  12. Environmental regulatory update table, July 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-08-01

    This Environmental Regulatory Update Table (July 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  13. Environmental Regulatory Update Table, October 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-11-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  14. Environmental Regulatory Update Table, October 1990

    SciTech Connect (OSTI)

    Houlberg, L.M.; Noghrei-Nikbakht, P.A.; Salk, M.S.

    1990-11-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  15. Environmental regulatory update table, March 1989

    SciTech Connect (OSTI)

    Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1989-04-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  16. Environmental Regulatory Update Table, September 1991

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1991-10-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  17. Environmental Regulatory Update Table, August 1991

    SciTech Connect (OSTI)

    Houlberg, L.M., Hawkins, G.T.; Salk, M.S.

    1991-09-01

    This Environmental Regulatory Update Table (August 1991) provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  18. Environmental Regulatory Update Table, April 1989

    SciTech Connect (OSTI)

    Houlberg, L.; Langston, M.E.; Nikbakht, A.; Salk, M.S.

    1989-05-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  19. Environmental Regulatory Update Table, December 1989

    SciTech Connect (OSTI)

    Houlbert, L.M.; Langston, M.E. ); Nikbakht, A.; Salk, M.S. )

    1990-01-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated each month with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action.

  20. TableHC2.12.xls

    Gasoline and Diesel Fuel Update (EIA)

    Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electonics Usage Indicators Detached Attached 2 to 4 Units Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or

  1. Community Leaders Round Table | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Leaders Round Table The Round Table consists of citizens with regional constituencies, including elected officials on the village, city, township, county and state levels; leaders of school districts, environmental boards and other agencies; and officers of labor unions and home owners associations. The Argonne National Laboratory/U.S. Department of Energy Community Leaders Round Table provides an informal and convenient forum for sharing information about Argonne plans and activities

  2. ARM - Lesson Plans: Rainfall and Water Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rainfall and Water Table Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Rainfall and Water Table Objective The objective is to show how an increase of rainfall under climate change can affect the water table and soil salinity underground. Materials Each student or group of

  3. Public Notice Applicability Table | Open Energy Information

    Open Energy Info (EERE)

    http:crossref.org Citation Retrieved from "http:en.openei.orgwindex.php?titlePublicNoticeApplicabilityTable&oldid792160" Feedback Contact needs updating Image...

  4. TABLE11.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    (Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

  5. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  6. TABLE19.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  7. TABLE53.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 53. Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between July 2004 Crude Oil ... 0 383 0...

  8. TABLE54.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Administration (EIA) Forms EIA-812, "Monthly Product Pipeline Report," and EIA-813, Monthly Crude Oil Report." Table 54. Movements of Crude Oil and Petroleum Products by Pipeline...

  9. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    (3 pages, 20 kb) CONTENTS PAGES Table 19. Distribution of Peak Watts per Square Foot and Load Factors, 1995 These data are from the 1995 Commercial Buildings Energy...

  10. Action Codes Table | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA Blog Home About Us Our Programs Defense Nuclear Security Nuclear Materials Management & Safeguards System NMMSS Information, Reports & Forms Code Tables Action...

  11. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    15. Season of Peak Electricity Demand, Number of Buildings and Floorspace, 1995 Table 16. Electricity Consumption and Conditional Energy Intensity by Season of Peak Demand, 1995...

  12. TABLES1.CHP:Corel VENTURA

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Information AdministrationPetroleum Supply Monthly, September 2004 2 Table S1. Crude Oil and Petroleum Products Overview, 1988 - Present (Continued) (Thousand Barrels...

  13. Summary Statistics Table 1. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    from Table 24. Refiner acquisition costs -- Energy Information Administration, Form FEA-P110-M-1, "Refiners' Monthly Cost Allocation Report," January 1978 through June 1978;...

  14. 1995 CECS C&E Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    reported for fewer than 20 buildings. Notes: * To obtain the RSE percentage for any table cell, multiply the corresponding RSE column and RSE row factors. * See Glossary for...

  15. FY 2015 Summary Control Table by Appropriation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Control Table by Appropriation Page 1 FY 2015 ... +416,108 +21.9% Electricity delivery and energy ... -67,598 -11.3% Energy information administration......

  16. TableHC7.3.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Income Relative to Poverty Line Below 100 Percent...... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Table HC7.3 Household ...

  17. FY 2005 Control Table by Appropriation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 5 Uranium

  18. FY 2005 Control Table by Organization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organization (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 2 National Nuclear Security Administration..................................................... 3 Energy Efficiency and Renewable Energy.................................................... 4 Electric Transmission

  19. Health Care Buildings : Basic Characteristics Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Basic Characteristics Tables Buildings and Size Data by Basic Characteristics for Health Care Buildings Number of Buildings (thousand) Percent of Buildings Floorspace (million...

  20. Enzymes for improved biomass conversion

    DOE Patents [OSTI]

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  1. Start Your Energy Conversion Devices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Start Your Energy Conversion Devices "Start Your Energy Conversion Devices" Sunrayce 97 Begins Day 1 - Indianapolis to Terre Haute For more information contact: Patrick Booher, Program Manager Sunrayce 97 586-9275 Cathy Short 586-9302 Terre Haute, Ind., June 19, 1997 -- Manta GT, the Massachusetts Institute of Technology's entry in Sunrayce 97 made the quickest trip Thursday from the Indianapolis Motor Speedway to Terre Haute in the first leg North America's largest solar car event.

  2. EPA Redesigns Conversion Certification Policies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's

  3. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle

  4. Alternative Fuels Data Center: Vehicle Conversion Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle

  5. Conversation with Paul Brown | Open Energy Information

    Open Energy Info (EERE)

    Conversation with Paul Brown Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: Conversation with Paul Brown Author Paul Brown Recipient...

  6. Biological Conversion of Sugars To Hydrocarbons | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy PDF icon Biological Conversion of Sugars To Hydrocarbons More...

  7. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  8. Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and Chemicals Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make...

  9. Microsoft Word - table_03.doc

    Gasoline and Diesel Fuel Update (EIA)

    9 Table 3. Gross withdrawals and marketed production of natural gas by state and the Gulf of Mexico, 2010-2014 (million cubic feet) 2010 Total 13,247,498 5,834,703 1,916,762 5,817,122 26,816,085 3,431,587 165,928 836,698 22,381,873 1,066,366 21,315,507 2011 Total 12,291,070 5,907,919 1,779,055 8,500,983 28,479,026 3,365,313 209,439 867,922 24,036,352 1,134,473 22,901,879 2012 Total 12,504,227 4,965,833 1,539,395 10,532,858 29,542,313 3,277,588 212,848 768,598 25,283,278 1,250,012 24,033,266 2013

  10. Microsoft Word - table_04.doc

    Gasoline and Diesel Fuel Update (EIA)

    2 Table 4. Offshore gross withdrawals of natural gas by state and the Gulf of Mexico, 2010-2014 (million cubic feet) 2010 Total 234,236 341,365 575,601 1,701,665 598,679 2,300,344 2,875,945 Alabama 101,487 0 101,487 NA NA NA 101,487 Alaska 42,034 328,114 370,148 0 0 0 370,148 California 71 5,483 5,554 1,757 39,444 41,200 46,755 Gulf of Mexico 0 0 0 1,699,908 559,235 2,259,144 2,259,144 Louisiana 63,222 6,614 69,836 NA NA NA 69,836 Texas 27,421 1,153 28,574 NA NA NA 28,574 2011 Total 208,970

  11. Microsoft Word - table_08.doc

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 8. Summary of U.S. natural gas imports, 2010-2014 Imports Volume (million cubic feet) Pipeline Canada a 3,279,752 3,117,081 2,962,827 2,785,427 2,634,375 Mexico 29,995 2,672 314 1,069 1,426 Total Pipeline Imports 3,309,747 3,119,753 2,963,140 2,786,496 2,635,801 LNG by Truck Canada 0 0 0 555 132 LNG by Vessel Egypt 72,990 35,120 2,811 0 0 Nigeria 41,733 2,362 0 2,590 0 Norway 26,014 15,175 6,212 5,627 5,616 Peru 16,045 16,620 0 0 0 Qatar 45,583 90,972 33,823 7,320 0 Trinidad/Tobago

  12. Microsoft Word - table_09.doc

    Gasoline and Diesel Fuel Update (EIA)

    0 Table 10. Summary of U.S. natural gas exports, 2010-2014 Exports Volume (million cubic feet) Pipeline Canada 738,745 936,993 970,729 911,007 769,258 Mexico 333,251 498,657 619,802 658,368 728,513 Total Pipeline Exports 1,071,997 1,435,649 1,590,531 1,569,375 1,497,771 LNG Exports By Vessel China 0 1,127 0 0 0 Japan 30,100 15,271 9,342 0 13,310 By Truck Canada 0 0 2 71 99 Mexico 208 236 153 128 181 Re-Exports By Vessel Brazil 3,279 11,049 8,142 0 2,664 Chile 0 2,910 0 0 0 China 0 6,201 0 0 0

  13. Microsoft Word - table_13.doc

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 13. Additions to and withdrawals from gas storage by state, 2014 (million cubic feet) Alabama 34,286 28,683 5,603 1,664 1,869 -206 5,397 Alaska 11,675 6,523 5,152 0 0 0 5,152 Arkansas 3,398 3,866 -468 56 42 14 -453 California 280,516 235,181 45,335 83 82 1 45,336 Colorado 72,510 70,692 1,818 0 0 0 1,818 Connecticut 0 0 0 1,032 1,359 -327 -327 Delaware 0 0 0 157 128 29 29 Georgia 0 0 0 7,130 4,046 3,085 3,085 Idaho 0 0 0 64 740 -676 -676 Illinois 270,831 260,100 10,730 61 503 -442 10,288

  14. Microsoft Word - table_17.doc

    Gasoline and Diesel Fuel Update (EIA)

    4 Table 17. Natural gas delivered to residential consumers for the account of others by state, 2010-2014 (volumes in million cubic feet) Alabama 0 -- 0 -- 0 -- 0 -- 0 -- Alaska 0 -- 0 -- 0 -- 0 -- 0 -- Arizona 0 -- 2 < 2 < 3 < 2 < Arkansas 0 -- 0 -- 0 -- 0 -- 0 -- California 7,205 1.5 8,769 1.7 12,108 2.5 18,795 3.9 20,703 5.2 Colorado 21 < 18 < 16 < 19 < 18 < Connecticut 1,156 2.7 1,438 3.2 1,364 3.3 2,199 4.7 2,096 4.1 Delaware 0 -- 0 -- 0 -- 0 -- 0 -- District of

  15. Microsoft Word - table_20.doc

    Gasoline and Diesel Fuel Update (EIA)

    8 Table 20. Number of natural gas residential consumers by type of service and state, 2013-2014 Alabama 765,957 0 765,957 769,418 0 769,418 Alaska 124,411 0 124,411 126,416 0 126,416 Arizona 1,171,997 6 1,172,003 1,186,788 6 1,186,794 Arkansas R 549,764 0 R 549,764 549,034 0 549,034 California 10,471,814 283,094 10,754,908 10,372,973 408,747 10,781,720 Colorado 1,672,307 5 1,672,312 1,690,576 5 1,690,581 Connecticut 512,110 1,382 513,492 521,460 1,198 522,658 Delaware 155,627 0 155,627 158,502 0

  16. Microsoft Word - table_22.doc

    Gasoline and Diesel Fuel Update (EIA)

    0 Table 22. Number of natural gas industrial consumers by type of service and state, 2013-2014 Alabama 2,876 267 3,143 2,973 271 3,244 Alaska 2 1 3 1 0 1 Arizona 257 126 383 256 130 386 Arkansas 513 507 1,020 531 478 1,009 California 32,662 5,334 37,996 32,266 5,282 37,548 Colorado 946 6,347 7,293 986 6,837 7,823 Connecticut 3,360 1,094 4,454 3,340 877 4,217 Delaware 28 110 138 28 113 141 Florida 166 362 528 165 355 520 Georgia 984 1,258 2,242 887 1,594 2,481 Hawaii 22 0 22 23 0 23 Idaho 109 R

  17. Enterprise Assessments Targeted Review of the Paducah Depleted Uranium Hexafluoride Conversion Facility Fire Protection Program … September 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targeted Review of the Paducah Depleted Uranium Hexafluoride Conversion Facility Fire Protection Program September 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ..................................................................................................................................................... ii Executive Summary

  18. International Program Action Table - October 2012 | Department of Energy

    Energy Savers [EERE]

    Communication & Engagement » International Programs » International Program Action Table - October 2012 International Program Action Table - October 2012 International Program Action Table - October 2012 PDF icon EM International Program Action Table - October 2012 More Documents & Publications EM International Program Action Table - June 2014 Across the Pond Newsletter Issue 4 Across the Pond Newsletter Issue 6

  19. EM International Program Action Table - June 2014 | Department of Energy

    Energy Savers [EERE]

    Action Table - June 2014 EM International Program Action Table - June 2014 EM International Program Action Table - June 2014 PDF icon EM International Program Action Table - June 2014 More Documents & Publications International Program Action Table - October 2012 Across the Pond Newsletter Issue 9 Across the Pond Newsletter Issue 3

  20. FY 2014 Budget Request Summary Table | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Table FY 2014 Budget Request Summary Table PDF icon Summary Table by Appropriations PDF icon Summary Table by Organization More Documents & Publications FY 2014 Budget Request Statistical Table FY 2014 Budget Justification FY 2014 Department of Energy Budget Highlights

  1. Supplemental Tables to the Annual Energy Outlook

    Reports and Publications (EIA)

    2015-01-01

    The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

  2. 1999 Commercial Building Characteristics--Detailed Tables--Size...

    U.S. Energy Information Administration (EIA) Indexed Site

    Complete Set of 1999 CBECS Detailed Tables Detailed Tables- of Buildings Table B6. Building Size, Number of Buildings b6.pdf (PDF file), b6.xls (Excel spreadsheet file), b6.txt...

  3. 1999 Commercial Buildings Characteristics--Detailed Tables--Conservati...

    U.S. Energy Information Administration (EIA) Indexed Site

    as rowstubs in most detailed tables. Total buildings, total floorspace, and average building size for these categories are shown in Table B1. The PDF and spreadsheet data tables...

  4. 2007 CBECS Large Hospital Building List of Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Large Hospitals Table H4: Lighting and Window Features in Large Hospitals Table H5: Major Fuels Usage for Large Hospitals Table H6: Electricity Usage for Large Hospitals...

  5. FY 2014 Budget Request Statistical Table | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical Table FY 2014 Budget Request Statistical Table PDF icon Stats Table FY2014.pdf More Documents & Publications FY 2009 Environmental Management Budget Request to Congress Fiscal Year 2013 President's Budget Request Fiscal Year 2013 President's

  6. Biochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Conversion Technologies » Biochemical Conversion » Biochemical Conversion - Biorefinery Integration Biochemical Conversion - Biorefinery Integration One of the essential elements in the economical and efficient production of cellulosic biofuels is the development of biorefineries. Similar in concept to traditional petroleum refineries, biorefineries convert various types of biomass feedstock into marketable chemicals, fuels, and products. By taking advantage of

  7. Biomass Program 2007 Accomplishments - Biochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details accomplishments of the Biomass Program Biochemical Conversion Platform accomplishments in 2007.

  8. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  9. Biomass Program 2007 Accomplishments - Thermochemical Conversion Platform

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document details the accomplishments of the Biomass Program Thermochemical Conversion Platform in 2007.

  10. Conversion Technologies for Advanced Biofuels - Carbohydrates Production

    Office of Environmental Management (EM)

    | Department of Energy Production Conversion Technologies for Advanced Biofuels - Carbohydrates Production Purdue University report-out presentation at the CTAB webinar on Carbohydrates Production. PDF icon ctab_webinar_carbohydrates_production.pdf More Documents & Publications Advanced Conversion Roadmap Workshop Workshop on Conversion Technologies for Advanced Biofuels - Carbohydrates Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading

  11. Recirculation in multiple wave conversions

    SciTech Connect (OSTI)

    Kaufman, A. N.; Brizard, A.J.; Kaufman, A.N.; Tracy, E.R.

    2008-07-30

    A one-dimensional multiple wave-conversion model is constructed that allows energy recirculation in ray phase space. Using a modular eikonal approach, the connection coefficients for this model are calculated by ray phase-space methods. Analytical results (confirmed numerically) show that all connection coefficients exhibit interference effects that depend on an interference phase, calculated from the coupling constants and the area enclosed by the intersecting rays. This conceptual model, which focuses on the topology of intersecting rays in phase space, is used to investigate how mode conversion between primary and secondary waves is modified by the presence of a tertiary wave.

  12. DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline DOE Will Dispose of 34 Metric Tons ... DOE Will Dispose of 34 Metric Tons of ...

  13. Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and...

    Office of Scientific and Technical Information (OSTI)

    Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics Citation Details In-Document Search Title: Modified Anti-de-Sitter Metric, Light-Front...

  14. DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...

    Energy Savers [EERE]

    to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons ...

  15. On the existence of certain axisymmetric interior metrics

    SciTech Connect (OSTI)

    Angulo Santacruz, C.; Batic, D.; Nowakowski, M.

    2010-08-15

    One of the effects of noncommutative coordinate operators is that the delta function connected to the quantum mechanical amplitude between states sharp to the position operator gets smeared by a Gaussian distribution. Although this is not the full account of the effects of noncommutativity, this effect is, in particular, important as it removes the point singularities of Schwarzschild and Reissner-Nordstroem solutions. In this context, it seems to be of some importance to probe also into ringlike singularities which appear in the Kerr case. In particular, starting with an anisotropic energy-momentum tensor and a general axisymmetric ansatz of the metric together with an arbitrary mass distribution (e.g., Gaussian), we derive the full set of Einstein equations that the noncommutative geometry inspired Kerr solution should satisfy. Using these equations we prove two theorems regarding the existence of certain Kerr metrics inspired by noncommutative geometry.

  16. 1999 CBECS Summary Table for All Building Activities

    U.S. Energy Information Administration (EIA) Indexed Site

    Tables 1999 Commercial Buildings Consumption Survey SUMMARY TABLES FOR ALL PRINCIPAL BUILDING ACTIVITIES Number of Buildings (thousand) Floorspace (million square feet) Square...

  17. Energy Information Administration - Energy Efficiency-Table 3...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency > Iron and Steel Manufacturing Energy, 1998 and 2002 > Table 3 Page Last Modified: June 2010 Table 3. Offsite-Produced Fuel Consumption, 1998, 2002, and 2006...

  18. Headquarters Facilities Master Security Plan- Table of Contents

    Broader source: Energy.gov [DOE]

    2016 Headquarters Facilities Master Security Plan - Table of Contents Table of Contents for the 2016 Headquarters Facilities Master Security Plan (HQFMSP).

  19. EIA - Annual Energy Outlook (AEO) 2013 Data Tables

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 55.2. Electric Power Projections by Electricity Market Module Region - Florida Reliability Coordinating Council XLS Table 55.3. Electric Power Projections by Electricity...

  20. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43....

  1. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43....

  2. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration Petroleum Marketing Annual 1996 Table 31. Motor...

  3. Microsoft Word - table_05.doc

    Gasoline and Diesel Fuel Update (EIA)

    3 Table 5. Number of producing gas wells by state and the Gulf of Mexico, December 31, 2010-2014 Alabama 7,026 7,063 6,327 R 6,165 6,118 Alaska 269 277 185 R 159 170 Arizona 5 5 5 5 5 Arkansas 7,397 8,388 8,538 R 9,843 10,150 California 1,580 1,308 1,423 R 1,335 1,118 Colorado 28,813 30,101 32,000 R 32,468 38,346 Gulf of Mexico 1,852 1,559 1,474 R 1,146 1,400 Illinois 50 40 40 R 34 36 Indiana 620 914 819 R 921 895 Kansas 22,145 25,758 24,697 R 23,792 24,354 Kentucky 17,670 14,632 17,936 R 19,494

  4. Microsoft Word - table_14.doc

    Gasoline and Diesel Fuel Update (EIA)

    44 Table 14. Underground natural gas storage capacity by state, December 31, 2014 (million cubic feet) Alabama 1 21,950 30,100 0 0 0 1 11,200 13,500 2 33,150 43,600 Alaska 0 0 0 0 0 0 5 67,915 83,592 5 67,915 83,592 Arkansas 0 0 0 0 0 0 2 12,178 21,853 2 12,178 21,853 California 0 0 0 1 10,000 12,000 13 364,296 587,711 14 374,296 599,711 Colorado 0 0 0 0 0 0 10 63,774 130,186 10 63,774 130,186 Illinois 0 0 0 19 292,544 978,624 9 11,768 25,923 28 304,312 1,004,547 Indiana 0 0 0 12 19,215 80,746

  5. Microsoft Word - table_18.doc

    Gasoline and Diesel Fuel Update (EIA)

    5 Table 18. Natural gas delivered to commercial consumers for the account of others by state, 2010-2014 (volumes in million cubic feet) Alabama 5,494 20.3 5,313 21.1 5,126 23.8 5,935 23.4 5,941 21.6 Alaska 1,951 12.3 2,208 11.4 1,005 5.1 1,022 5.5 980 5.5 Arizona 3,605 11.3 3,988 12.2 4,213 13.4 4,772 14.5 4,743 15.6 Arkansas 17,862 44.4 19,402 48.5 24,772 59.8 26,797 56.3 27,604 54.5 California 113,903 45.9 112,448 45.7 126,571 50.0 127,588 50.1 122,637 51.6 Colorado 3,118 5.4 3,457 6.2 4,061

  6. Microsoft Word - table_24.doc

    Gasoline and Diesel Fuel Update (EIA)

    Table 24. Average price of natural gas delivered to consumers by state and sector, 2014 (dollars per thousand cubic feet) Alabama 14.59 100.0 11.92 78.4 5.49 23.3 4.74 Alaska 9.11 100.0 8.30 94.5 7.97 100.0 5.06 Arizona 17.20 100.0 10.34 84.4 7.52 12.8 5.30 Arkansas 10.39 100.0 7.88 45.5 6.99 1.8 W California 11.51 94.8 9.05 48.4 7.65 3.7 5.23 Colorado 8.89 100.0 8.15 94.5 6.84 7.7 5.49 Connecticut 14.13 95.9 10.24 67.2 8.07 39.4 6.82 Delaware 13.21 100.0 11.42 46.2 10.95 0.3 W District of

  7. Microsoft Word - table_27.doc

    Gasoline and Diesel Fuel Update (EIA)

    8 Table 28. Percent distribution of natural gas delivered to consumers by state, 2014 Alabama 0.8 0.8 2.5 0.6 4.2 Alaska 0.3 0.5 0.1 < 0.4 Arizona 0.6 0.9 0.3 5.8 2.5 Arkansas 0.7 1.5 1.2 0.1 0.9 California 7.8 6.9 10.3 47.0 10.1 Colorado 2.6 1.7 1.0 0.9 1.2 Connecticut 1.0 1.5 0.4 0.2 1.2 Delaware 0.2 0.3 0.4 < 0.6 District of Columbia 0.3 0.5 -- 2.9 -- Florida 0.3 1.8 1.2 0.6 12.9 Georgia 2.6 1.7 2.1 3.3 3.6 Hawaii < 0.1 < < -- Idaho 0.5 0.5 0.4 0.4 0.2 Illinois 9.4 7.1 3.9 1.0

  8. Optimal recovery of linear operators in non-Euclidean metrics

    SciTech Connect (OSTI)

    Osipenko, K Yu

    2014-10-31

    The paper looks at problems concerning the recovery of operators from noisy information in non-Euclidean metrics. Anumber of general theorems are proved and applied to recovery problems for functions and their derivatives from the noisy Fourier transform. In some cases, afamily of optimal methods is found, from which the methods requiring the least amount of original information are singled out. Bibliography: 25 titles.

  9. Development of Technology Readiness Level (TRL) Metrics and Risk Measures

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Anderson, K. K.; Sivaramakrishnan, Chandrika; Lansing, Carina

    2012-10-01

    This is an internal project milestone report to document the CCSI Element 7 team's progress on developing Technology Readiness Level (TRL) metrics and risk measures. In this report, we provide a brief overview of the current technology readiness assessment research, document the development of technology readiness levels (TRLs) specific to carbon capture technologies, describe the risk measures and uncertainty quantification approaches used in our research, and conclude by discussing the next steps that the CCSI Task 7 team aims to accomplish.

  10. Microsoft Word - DOE_ANNUAL_METRICS_2009Q3.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14404 Third Quarter 2009 Modeling Program Metric: Coupled model comparison with observations using improved dynamics at coarse resolution Quantifying the impact of a finite volume dynamical core in CCSM3 on simulated precipitation over major catchment areas July 2009 Peter J. Gleckler and Karl E. Taylor Lawrence Livermore National Laboratory Livermore, CA Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research 
 2
 Disclaimer This

  11. Summary of Proposed Metrics - QER Technical Workshop on Energy Sector Resilience

    Broader source: Energy.gov (indexed) [DOE]

    Summary of Proposed Metrics - QER Technical Workshop on Energy Sector Resilience Metrics (4/29/2014) Theory - RAND presentation  Guidelines for measuring resilience o Resilience describes the state of service from a system in response to a disruption (e.g., % service provided/time) o Best metrics depend on who is measuring resilience and why (systems, disruptions, responses, timescales) o Resilience metrics are used for many purposes and at may levels (supporting both strategic and

  12. FY 2010 Overall Contract and Project Management Improvement Performance Metrics and Targets

    Broader source: Energy.gov [DOE]

    Overall Contract and Project Management Performance Metrics and Targets for FY 2010, first quarter through fourth quarter.

  13. FY 2009 Overall Contract and Project Management Improvement Performance Metrics and Targets

    Broader source: Energy.gov [DOE]

    Overall Contract and Project Management Performance Metrics and Targets for FY 2009, first quarter through fourth quarter.

  14. FY 2012 Overall Contract and Project Management Improvement Performance Metrics and Targets

    Broader source: Energy.gov [DOE]

    Overall Contract and Project Management Performance Metrics and Targets for FY 2012, first quarter through fourth quarter.

  15. FY 2011 Overall Contract and Project Management Improvement Performance Metrics and Targets

    Broader source: Energy.gov [DOE]

    Overall Contract and Project Management Performance Metrics and Targets for FY 2011, first quarter through fourth quarter.

  16. Office of HC Strategy Budget and Performance Metrics (HC-50) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Strategy Budget and Performance Metrics (HC-50) Office of HC Strategy Budget and Performance Metrics (HC-50) Mission Statement and Function Statement The Office of Human Capital Strategy, Budget, and Performance Metrics provides strategic direction and advice to its stakeholders through the integration of budget analysis, workforce projections, and performance metrics in support of the goals and missions of the Department of Energy. Functions: Promotes business partnerships with

  17. Guidebook for ARRA Smart Grid Program Metrics and Benefits | Department of

    Office of Environmental Management (EM)

    Energy Guidebook for ARRA Smart Grid Program Metrics and Benefits Guidebook for ARRA Smart Grid Program Metrics and Benefits The Guidebook for American Recovery and Reinvestment Act (ARRA) Smart Grid Program Metrics and Benefits describes the type of information to be collected from each of the Project Teams and how it will be used by the Department of Energy to communicate overall conclusions to the public. PDF icon Guidebook for ARRA Smart Grid Program Metrics and Benefits More Documents

  18. Biofuel Conversion Basics | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the

  19. Biochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion » Biochemical Conversion Related Links Biochemical Conversion Related Links Further reading about current Bioenergy Technologies Office R&D in the Biochemical Platform can be found in this website's Information Resources section. Key publications will also be provided on this page. Using Fermentation and Catalysis to Make Fuels and Products: Biochemical Conversion (January 2011) Biochemical Conversion 2009 Peer Review Biochemical Production of Ethanol from Corn Stover: 2007 State

  20. Thermochemical Conversion Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion » Thermochemical Conversion Related Links Thermochemical Conversion Related Links Further reading about current Bioenergy Technologies Office R&D in the Thermochemical Platform can be found in this website's Information Resources section. Some key publications are: Using Heat and Chemistry to Make Fuel and Power: Thermochemical Conversion (January 2011) Thermochemical Conversion 2009 Peer Review Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast

  1. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  2. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  3. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect (OSTI)

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electronhole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electronhole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  4. TableHC9.13.xls

    Gasoline and Diesel Fuel Update (EIA)

    ... 0.3 Q Q Q Q Q Less than 4,000 HDD Housing Units (millions) Climate Zone 1 Table HC9.13 Lighting Usage Indicators by Climate Zone, 2005 Lighting Usage...

  5. TableHC7.13.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Table HC7.13 Lighting Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 Million U.S. Housing Units 2005 ...

  6. Table of Contents for Desk Guide

    Energy Savers [EERE]

    September, 2014 U. S. Department of Energy - Real Estate Desk Guide Revised 2014 Real Estate Desk Guide Table of Contents Chapter 1-- Purpose of Desk Guide............................................................................... 1 Chapter 2-- Introduction ................................................................................................. 3 Chapter 3-- Planning Policy ........................................................................................... 9 Chapter 4-- Real

  7. FY 2015 Statistical Table by Appropriation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Statistical Table by Appropriation Page 1 FY 2015 Congressional Request FY 2013 FY 2014 FY 2014 FY 2014 FY 2015 Current Enacted Adjustment Current Congressional Approp. Approp. Approp. Request Discretionary Summary By Appropriation Energy And Water Development And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy............................... 1,691,757 1,900,641 ---- 1,900,641

  8. FY 2015 Summary Control Table by Appropriation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Control Table by Appropriation (dollars in thousands - OMB Scoring) Summary Control Table by Appropriation Page 1 FY 2015 Congressional Request FY 2013 FY 2014 FY 2014 FY 2014 FY 2015 Current Enacted Adjustment Current Congressional Approp. Approp. Approp. Request Discretionary Summary By Appropriation Energy And Water Development And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy................................... 1,691,757 1,900,641 ----

  9. "RSE Table C12.1. Relative Standard Errors for Table C12.1;...

    U.S. Energy Information Administration (EIA) Indexed Site

    2.1. Relative Standard Errors for Table C12.1;" " Units: Percents." ,,"Approximate",,,"Approximate","Average" ,,"Enclosed Floorspace",,"Average","Number","Number" "NAICS"," ","of...

  10. Siting handbook for small wind energy conversion systems

    SciTech Connect (OSTI)

    Wegley, H.L.; Ramsdell, J.V.; Orgill, M.M.; Drake, R.L.

    1980-03-01

    This handbook was written to serve as a siting guide for individuals wishing to install small wind energy conversion systems (WECS); that is, machines having a rated capacity of less than 100 kilowatts. It incorporates half a century of siting experience gained by WECS owners and manufacturers, as well as recently developed siting techniques. The user needs no technical background in meteorology or engineering to understand and apply the siting principles discussed; he needs only a knowledge of basic arithmetic and the ability to understand simple graphs and tables. By properly using the siting techniques, an owner can select a site that will yield the most power at the least installation cost, the least maintenance cost, and the least risk of damage or accidental injury.

  11. Electrocatalysts for carbon dioxide conversion

    DOE Patents [OSTI]

    Masel, Richard I; Salehi-Khojin, Amin

    2015-04-21

    Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  12. Product Guide Product Guide Volumes Category Prices Table Crude...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 49 Product Guide Volumes Category Prices Table Energy Information Administration Petroleum...

  13. Product Guide Product Guide Volumes Category Prices Table Crude...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 49 Product Guide Volumes Category Prices Table Energy Information Administration Petroleum Marketing...

  14. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  15. The National Conversion Pilot Project

    SciTech Connect (OSTI)

    Roberts, A.V.

    1995-12-31

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

  16. Algal Polyculture Conversion & Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Polyculture Conversion & Analysis Ron Pate This presentation does not contain any proprietary, confidential, or otherwise restricted information 24 March 2015 Algae Technology Area DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. 2 | Bioenergy Technologies

  17. Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  18. Metrics for the National SCADA Test Bed Program

    SciTech Connect (OSTI)

    Craig, Philip A.; Mortensen, J.; Dagle, Jeffery E.

    2008-12-05

    The U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) National SCADA Test Bed (NSTB) Program is providing valuable inputs into the electric industry by performing topical research and development (R&D) to secure next generation and legacy control systems. In addition, the program conducts vulnerability and risk analysis, develops tools, and performs industry liaison, outreach and awareness activities. These activities will enhance the secure and reliable delivery of energy for the United States. This report will describe metrics that could be utilized to provide feedback to help enhance the effectiveness of the NSTB Program.

  19. User's Guide to the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Koran, William

    2012-02-28

    The intent of this user guide is to provide a brief description of the functionality of the Energy Charting and Metrics (ECAM) tool, including the expanded building re-tuning functionality developed for Pacific Northwest National laboratory (PNNL). This document describes the tool's general functions and features, and offers detailed instructions for PNNL building re-tuning charts, a feature in ECAM intended to help building owners and operators look at trend data (recommended 15-minute time intervals) in a series of charts (both time series and scatter) to analyze air-handler, zone, and central plant information gathered from a building automation system (BAS).

  20. Research Reactor Conversion | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Reactor Conversion | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  1. Processing and Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Processing and Conversion Processing and Conversion The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts and biopower. The diversity of the biomass resource requires the development of multiple conversion technologies that can efficiently deal with the broad range of feedstock materials, as well as their physical and

  2. Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading |

    Office of Environmental Management (EM)

    Department of Energy Upgrading Conversion Technologies for Advanced Biofuels - Carbohydrates Upgrading PNNL report-out presentation at the CTAB webinar on carbohydrates upgrading. PDF icon ctab_webinar_carbohydrates_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Carbohydrates Production Advanced Conversion Roadmap Workshop Innovative Topics for Advanced Biofuels

  3. Formation of alcohol conversion catalysts

    DOE Patents [OSTI]

    Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

    2001-01-01

    The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

  4. Conversion of raw carbonaceous fuels

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-07

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  5. High resolution A/D conversion based on piecewise conversion at lower resolution

    DOE Patents [OSTI]

    Terwilliger, Steve (Albuquerque, NM)

    2012-06-05

    Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

  6. Biomass thermochemical conversion program. 1985 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  7. Biomass Thermochemical Conversion Program: 1986 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1987-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

  8. Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants, May 2012

    Office of Environmental Management (EM)

    Assessment of the Portsmouth/Paducah Project Office Conduct of Operations Oversight of the Depleted Uranium Hexafluoride Conversion Plants May 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background

  9. Conceptual Soundness, Metric Development, Benchmarking, and Targeting for PATH Subprogram Evaluation

    SciTech Connect (OSTI)

    Mosey. G.; Doris, E.; Coggeshall, C.; Antes, M.; Ruch, J.; Mortensen, J.

    2009-01-01

    The objective of this study is to evaluate the conceptual soundness of the U.S. Department of Housing and Urban Development (HUD) Partnership for Advancing Technology in Housing (PATH) program's revised goals and establish and apply a framework to identify and recommend metrics that are the most useful for measuring PATH's progress. This report provides an evaluative review of PATH's revised goals, outlines a structured method for identifying and selecting metrics, proposes metrics and benchmarks for a sampling of individual PATH programs, and discusses other metrics that potentially could be developed that may add value to the evaluation process. The framework and individual program metrics can be used for ongoing management improvement efforts and to inform broader program-level metrics for government reporting requirements.

  10. Taking the One-Metric-Ton Challenge | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taking the One-Metric-Ton ... Taking the One-Metric-Ton Challenge Posted: January 13, 2016 - 4:46pm NNSA Uranium Program Manager Tim Driscoll speaks with the One-Metric-Ton Challenge team in Building 9212. The team has undertaken an extensive dedicated maintenance effort to improve metal production equipment reliability and reduce unexpected down time, with an end goal of significantly increasing purified metal production by fiscal year 2017. Last year, NNSA Uranium Program Manager Tim Driscoll

  11. U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S.

  12. EECBG 10-07C/SEP 10-006B Attachment 1: Process Metrics List |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 10-07C/SEP 10-006B Attachment 1: Process Metrics List EECBG 10-07C/SEP 10-006B Attachment 1: Process Metrics List PDF icon eecbg_sep_reporting_guidance_attachment_06242011.pdf More Documents & Publications EECBG SEP Attachment 1 - Process metric list EECBG Program Notice 10-07A DOE Recovery Act Reporting Requirements for the State Energy Program

  13. EAC Presentation: Metrics and Benefits Analysis for the ARRA Smart Grid

    Office of Environmental Management (EM)

    Programs - March 10, 2011 | Department of Energy Presentation: Metrics and Benefits Analysis for the ARRA Smart Grid Programs - March 10, 2011 EAC Presentation: Metrics and Benefits Analysis for the ARRA Smart Grid Programs - March 10, 2011 PowerPoint presentation by Joe Paladino from the Office of Electricity Delivery and Energy Reliability before the Electricity Advisory Committee (EAC) on metrics and benefits analysis for the American Recovery and Reinvestment Act smart grid programs

  14. SimTable key tool for preparing, responding to wildfire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SimTable key tool for preparing, responding to wildfire SimTable key tool for preparing, responding to wildfire Camera tracks movement and objects and project them onto a sand table. May 30, 2012 SimTable: Stephen Guerin (L) and Chip Garner (R) with SimTable, a Santa Fe company helping firefighters model and predict where a fire is most likely to spread, received support for their business through Lab economic development programs: VAF, NMSBA, Springboard. SimTable: Stephen Guerin (L) and Chip

  15. New Selection Metric for Design of Thin-Film Solar Cell Absorber...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guidance for the experimental synthesis. New Selection Metric for Design of Thin-Film Solar Cell Absorber Materials Research Details * SLME account s for the physics of...

  16. GPRA 2003 quality metrics methodology and results: Office of Industrial Technologies

    SciTech Connect (OSTI)

    None, None

    2002-04-19

    This report describes the results, calculations, and assumptions underlying the GPRA 2003 Quality Metrics results for all Planning Units withing the Office of Industrial Technologies.

  17. Building Cost and Performance Metrics: Data Collection Protocol, Revision 1.0

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Solana, Amy E.; Spees, Kathleen L.

    2005-09-29

    This technical report describes the process for selecting and applying the building cost and performance metrics for measuring sustainably designed buildings in comparison to traditionally designed buildings.

  18. EVMS Training Snippet: 3.2 Schedule Health Metrics | Department of Energy

    Office of Environmental Management (EM)

    2 Schedule Health Metrics EVMS Training Snippet: 3.2 Schedule Health Metrics This EVMS Training Snippet sponsored by the Office of Project Management (PM) focuses on 'what' the metrics are, 'why' they are important, and what they tell us about the schedule health. This Snippet does not focus on the 'how' the metrics are calculated, other than to provide a basic understanding of what is being calculated. Link to Video Presentation | Prior Snippet (3.1B) | Next Snippet (3.3) | Return to Index PDF

  19. Variable-metric diffraction crystals for x-ray optics

    SciTech Connect (OSTI)

    Smither, R.K.; Fernandez, P.B. )

    1992-02-01

    A variable-metric (VM) crystal is one in which the spacing between the crystalline planes changes with position in the crystal. This variation can be either parallel to the crystalline planes or perpendicular to the crystalline planes of interest and can be produced by either introducing a thermal gradient in the crystal or by growing a crystal made of two or more elements and changing the relative percentages of the two elements as the crystal is grown. A series of experiments were performed in the laboratory to demonstrate the principle of the variable-metric crystal and its potential use in synchrotron beam lines. One of the most useful applications of the VM crystal is to increase the number of photons per unit bandwidth in a diffracted beam without losing any of the overall intensity. In a normal synchrotron beam line that uses a two-crystal monochromator, the bandwidth of the diffracted photon beam is determined by the vertical opening angle of the beam which is typically 0.10--0.30 mrad or 20--60 arcsec. When the VM crystal approach is applied, the bandwidth of the beam can be made as narrow as the rocking curve of the diffracting crystal, which is typically 0.005--0.050 mrad or 1--10 arcsec. Thus a very large increase of photons per unit bandwidth (or per unit energy) can be achieved through the use of VM crystals. When the VM principle is used with bent crystals, new kinds of x-ray optical elements can be generated that can focus and defocus x-ray beams much like simple lenses where the focal length of the lens can be changed to match its application. Thus both large magnifications and large demagnifications can be achieved as well as parallel beams with narrow bandwidths.

  20. Metrics for Assessment of Smart Grid Data Integrity Attacks

    SciTech Connect (OSTI)

    Annarita Giani; Miles McQueen; Russell Bent; Kameshwar Poolla; Mark Hinrichs

    2012-07-01

    There is an emerging consensus that the nation’s electricity grid is vulnerable to cyber attacks. This vulnerability arises from the increasing reliance on using remote measurements, transmitting them over legacy data networks to system operators who make critical decisions based on available data. Data integrity attacks are a class of cyber attacks that involve a compromise of information that is processed by the grid operator. This information can include meter readings of injected power at remote generators, power flows on transmission lines, and relay states. These data integrity attacks have consequences only when the system operator responds to compromised data by redispatching generation under normal or contingency protocols. These consequences include (a) financial losses from sub-optimal economic dispatch to service loads, (b) robustness/resiliency losses from placing the grid at operating points that are at greater risk from contingencies, and (c) systemic losses resulting from cascading failures induced by poor operational choices. This paper is focused on understanding the connections between grid operational procedures and cyber attacks. We first offer two examples to illustrate how data integrity attacks can cause economic and physical damage by misleading operators into taking inappropriate decisions. We then focus on unobservable data integrity attacks involving power meter data. These are coordinated attacks where the compromised data are consistent with the physics of power flow, and are therefore passed by any bad data detection algorithm. We develop metrics to assess the economic impact of these attacks under re-dispatch decisions using optimal power flow methods. These metrics can be use to prioritize the adoption of appropriate countermeasures including PMU placement, encryption, hardware upgrades, and advance attack detection algorithms.

  1. FY 2008 Control Table by Appriopriation

    Energy Savers [EERE]

    Control Table by Appropriation (dollars in thousands - OMB Scoring) FY 2006 FY 2007 FY 2008 Current Congressional Congressional Approp. Request Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and Conservation..................................... 1,812,397 1,923,361 2,187,943 +264,582 +13.8% Fossil energy programs Clean coal technology...................................................

  2. Table of Contents for Desk Guide

    Energy Savers [EERE]

    May, 2013 U. S. Department of Energy - Real Estate Desk Guide Revised 2013 Real Estate Desk Guide Table of Contents Chapter 1-- Purpose of Desk Guide ........................................................................ 1 Chapter 2-- Introduction ......................................................................................... 3 Chapter 3-- Planning Policy .................................................................................... 7 Chapter 4-- Real Estate Function

  3. Help:Tables | Open Energy Information

    Open Energy Info (EERE)

    on tables 3.2 Attributes on cells 3.3 Attributes on rows 3.4 HTML colspan and rowspan 3.5 With HTML attributes and CSS styles 4 Caveats 4.1 Negative numbers 4.2 CSS vs Attributes...

  4. FY 2015 Summary Control Table by Organization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Summary Control Table by Organization (dollars in thousands - OMB Scoring) Summary Control by Organization Page 1 FY 2015 Congressional Request FY 2013 FY 2014 FY 2014 FY 2014 FY 2015 Current Enacted Adjustments Current Congressional Approp. Approp. Approp. Request Discretionary Summary By Organization Department Of Energy By Organization National Nuclear Security Administration Weapons Activities............................................................................. 6,966,855 7,781,000

  5. Efficient electrochemical CO2 conversion powered by renewable energy

    SciTech Connect (OSTI)

    Kauffman, Douglas R.; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R.; Zeng, Chenjie; Jin, Rongchao

    2015-06-29

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8–1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 106 mol CO2 molcatalyst–1 during a multiday (36 hours total hours) CO2electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 106 and 4 × 106 molCO2 molcatalyst–1 were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient to power larger-scale, tonne per day CO2 conversion systems.

  6. Power conversion apparatus and method

    DOE Patents [OSTI]

    Su, Gui-Jia (Knoxville, TN)

    2012-02-07

    A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

  7. EIA Energy Efficiency-Table 1a. Table 1a. Consumption of Site...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a Page Last Modified: May 2010 Table 1a. Consumption of Energy (Site Energy) for All Purposes (First Use) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey...

  8. Microsoft Word - Appendix_B_2013.docx

    Gasoline and Diesel Fuel Update (EIA)

    2013 U.S. Energy Information Administration | Natural Gas Annual 197 Appendix B Metric and Thermal Conversion Tables Metric Conversions Table B1 presents Summary Statistics for Natural Gas in the United States for 2009 through 2013 in metric units of measure. Volumes are shown in cubic meters instead of cubic feet. Prices are shown in nominal dollars per thousand cubic meters instead of dollars per thousand cubic feet. The data in this table have been converted from the data that appear in Table

  9. Workshop on Conversion Technologies for Advanced Biofuels - Bio...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil...

  10. CBECS - Buildings and Energy in the 1980's, Table Titles

    U.S. Energy Information Administration (EIA) Indexed Site

    for primary or site energy ("p" or "s"). For example, Table R8.90p, shows primary energy data for residential buildings for the 1990 survey year. The tables are arranged into...

  11. Widget:UtilityRateEntryHelperTable | Open Energy Information

    Open Energy Info (EERE)

    UtilityRateEntryHelperTable Jump to: navigation, search This widget displays the utility rate database form. For example: Widget:UtilityRateEntryHelperTable Retrieved from...

  12. Plasma-Hydrocarbon conversion - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrocarbon conversion Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Hydrocarbon Conversion process enables conversion of heavy hydrocarbons, such as heavy crude oil and hydrocarbon gases like natural gas, into lighter hydrocarbon materials (e.g. synthetic light oil). Description It can convert hydrocarbon gases to liquid fuels/chemicals. The dielectric barrier discharge plasma process that adds carbon and hydrogen simultaneously to heavy

  13. Environmental Regulatory Update Table, January/February 1992

    SciTech Connect (OSTI)

    Houlberg, L.M.; Hawkins, G.T.; Salk, M.S.

    1992-03-01

    The Environmental Regulatory Update Table provides information on regulatory initiatives of interest to DOE operations and contractor staff with environmental management responsibilities. The table is updated bi-monthly with information from the Federal Register and other sources, including direct contact with regulatory agencies. Each table entry provides a chronological record of the rulemaking process for that initiative with an abstract and a projection of further action. This table is for January/February 1992.

  14. Minimum Efficiency Requirements Tables for Heating and Cooling Product

    Energy Savers [EERE]

    Categories | Department of Energy Minimum Efficiency Requirements Tables for Heating and Cooling Product Categories Minimum Efficiency Requirements Tables for Heating and Cooling Product Categories The Federal Energy Management Program (FEMP) created tables that mirror American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013 tables, which include minimum efficiency requirements for FEMP-designated and ENERGY STAR-qualified heating and cooling product

  15. Table IV: Technical Targets for Membranes: Stationary | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy IV: Technical Targets for Membranes: Stationary Table IV: Technical Targets for Membranes: Stationary "Technical targets for fuel cell membranes in stationary applications defined by the High Temperature Working Group (February 2003). " PDF icon technical_targets_membr_stat.pdf More Documents & Publications Table II: Technical Targets for Membranes: Automotive Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary Table I: Technical Targets for

  16. Energy Conversion Devices | Open Energy Information

    Open Energy Info (EERE)

    Type Test & Evaluation Partner Partnering Center within NREL National Center for Photovoltaics Partnership Year 2003 Energy Conversion Devices is a company located in Rochester...

  17. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report You are accessing a document from the Department of Energy's (DOE)...

  18. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report In this Quarter, the research was focused continually on the...

  19. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 The research was...

  20. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 You are accessing a...