National Library of Energy BETA

Sample records for methyl esters suitable

  1. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect (OSTI)

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  2. Low Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters in a Motored Engine Low Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters in a Motored Engine qThe alkyl chain ...

  3. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ

    Office of Scientific and Technical Information (OSTI)

    Transesterification: Laboratory Analytical Procedure (LAP) (Technical Report) | SciTech Connect Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP) Citation Details In-Document Search Title: Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP) This procedure is based on a whole biomass transesterification of lipids to fatty acid

  4. Thermochemistry of C-O, (CO)-O, and (CO)-C bond breaking in fatty acid methyl esters

    SciTech Connect (OSTI)

    Osmont, Antoine; Yahyaoui, Mohammed; Catoire, Laurent; Goekalp, Iskender; Swihart, Mark T.

    2008-10-15

    Density functional theory quantum chemical calculations corrected with empirical atomic increments have been used to examine C-O, (CO)-O, and (CO)-C bond scission enthalpies in gas-phase fatty acid methyl esters (FAMEs) present in biodiesel derived from rapeseed oil methyl ester and soybean oil methyl ester. Mechanistic information, currently not available elsewhere for these large species, is obtained based on thermochemical considerations and compared to thermochemical considerations reported for methyl butanoate, a small methyl ester sometimes used as a model for FAMEs. These results are compared to previously reported C-C and C-H bond scissions in these FAMEs, derived using this same protocol. (author)

  5. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    SciTech Connect (OSTI)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  6. Electron Affinity of Phenyl-C61-Butyric Acid Methyl Ester (PCBM)

    SciTech Connect (OSTI)

    Larson, Bryon W.; Whitaker, James B.; Wang, Xue B.; Popov, Alexey A.; Rumbles, Garry; Kopidakis, Nikos; Strauss, Steven H.; Boltalina, Olga V.

    2013-07-25

    The gas-phase electron affinity (EA) of phenyl-C61-butyric acid methyl ester (PCBM), one of the best-performing electron acceptors in organic photovoltaic devices, is measured by lowtemperature photoelectron spectroscopy for the first time. The obtained value of 2.63(1) eV is only ca. 0.05 eV lower than that of C60 (2.68(1) eV), compared to a 0.09 V difference in their E1/2 values measured in this work by cyclic voltammetry. Literature E(LUMO) values for PCBM that are typically estimated from cyclic voltammetry, and commonly used as a quantitative measure of acceptor properties, are dispersed over a wide range between -4.3 and -3.62 eV; the reasons for such a huge discrepancy are analyzed here, and the protocol for reliable and consistent estimations of relative fullerene-based acceptor strength in solution is proposed.

  7. Low Temperature Autoignition of C8H16O2 Ethyl and Methyl Esters in a Motored Engine

    Broader source: Energy.gov [DOE]

    The alkyl chain of fatty acid esters experience the typical paraffin-like low temperature oxidation sequence; the alkyl chain length of fatty acid esters has a crucial impact on the ignition behavior of fatty acid esters

  8. Effects of Turbulence on the Combustion Properties of Partially Premixed Flames of Canola Methyl Ester and Diesel Blends

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.

    2011-01-01

    Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore » for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less

  9. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]-phenyl-C{sub 61}-butyric acid methyl ester composite

    SciTech Connect (OSTI)

    Lafalce, E.; Toglia, P.; Jiang, X.; Zhang, C.

    2012-05-21

    A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P{sup +}/C{sub 60}{sup -} charge transfer complex was not completely ruled out. The large exciton binding energy (E{sub b} = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (

  10. Accurate and Reliable Quantification of Total Microalgal Fuel Potential as Fatty Acid Methyl Esters by in situ Transesterfication

    SciTech Connect (OSTI)

    Laurens, L. M. L.; Quinn, M.; Van Wychen, S.; Templeton, D. W.; Wolfrum, E. J.

    2012-04-01

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process.

  11. Preparation of Propylene Glycol Fatty Acid Ester or Other Glycol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and more specifically uses methyl esters of vegetable oils that are referred to as "biodiesel" fuels. One particularly useful biodiesel is soybean oil biodiesel (methyl soyate)...

  12. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  13. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    SciTech Connect (OSTI)

    Chauhan, A. K., E-mail: akchau@barc.gov.in, E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ?2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  14. An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion

    SciTech Connect (OSTI)

    Sarathy, S M; Thomson, M J; Pitz, W J; Lu, T

    2010-02-19

    Biodiesel is typically a mixture of long chain fatty acid methyl esters for use in compression ignition engines. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This research study presents new combustion data for methyl decanoate in an opposed-flow diffusion flame. An improved detailed chemical kinetic model for methyl decanoate combustion is developed, which serves as the basis for deriving a skeletal mechanism via the direct relation graph method. The novel skeletal mechanism consists of 648 species and 2998 reactions. This mechanism well predicts the methyl decanoate opposed-flow diffusion flame data. The results from the flame simulations indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

  15. Method of making alkyl esters

    DOE Patents [OSTI]

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  16. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Storage of samples should ideally be in an inert (nitrogen) atmosphere and at least at -20C. 10. Procedure 10.1 Preparation of the samples for transesterification 10.1.1 Label ...

  17. Methods of making alkyl esters

    DOE Patents [OSTI]

    Elliott, Brian

    2010-08-03

    A method comprising contacting an alcohol, a feed comprising one or more glycerides and equal to or greater than 2 wt % of one or more free fatty acids, and a solid acid catalyst, a nanostructured polymer catalyst, or a sulfated zirconia catalyst in one or more reactors, and recovering from the one or more reactors an effluent comprising equal to or greater than about 75 wt % alkyl ester and equal to or less than about 5 wt % glyceride.

  18. Method of making a cyanate ester foam

    DOE Patents [OSTI]

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  19. Process for the generation of .alpha., .beta.-unsaturated carboxylic acids and esters using niobium catalyst

    DOE Patents [OSTI]

    Gogate, Makarand Ratnakav; Spivey, James Jerome; Zoeller, Joseph Robert

    1999-01-01

    A process using a niobium catalyst includes the step of reacting an ester or carboxylic acid with oxygen and an alcohol in the presence a niobium catalyst to respectively produce an .alpha.,.beta.-unsaturated ester or carboxylic acid. Methanol may be used as the alcohol, and the ester or carboxylic acid may be passed over the niobium catalyst in a vapor stream containing oxygen and methanol. Alternatively, the process using a niobium catalyst may involve the step of reacting an ester and oxygen in the presence the niobium catalyst to produce an .alpha.,.beta.-unsaturated carboxylic acid. In this case the ester may be a methyl ester. In either case, niobium oxide may be used as the niobium catalyst with the niobium oxide being present on a support. The support may be an oxide selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide and mixtures thereof. The catalyst may be formed by reacting niobium fluoride with the oxide serving as the support. The niobium catalyst may contain elemental niobium within the range of 1 wt % to 70 wt %, and more preferably within the range of 10 wt % to 30 wt %. The process may be operated at a temperature from 150 to 450.degree. C. and preferably from 250 to 350.degree. C. The process may be operated at a pressure from 0.1 to 15 atm. absolute and preferably from 0.5-5 atm. absolute. The flow rate of reactants may be from 10 to 10,000 L/kg.sub.(cat) /h, and preferably from 100 to 1,000 L/kg.sub.(cat) /h.

  20. Process for the preparation of an energetic nitrate ester

    DOE Patents [OSTI]

    Chavez, David E; Naud, Darren L; Hiskey, Michael A

    2013-12-17

    A process for the preparation of an energetic nitrate ester compound and related intermediates is provided.

  1. Synthesis of a new energetic nitrate ester

    SciTech Connect (OSTI)

    Chavez, David E

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  2. Incorporating Amino Acid Esters into Catalysts for Hydrogen Oxidation: Steric and Electronic Effects and the Role of Water as a Base

    SciTech Connect (OSTI)

    Lense, Sheri; Ho, Ming-Hsun; Chen, Shentan; Jain, Avijita; Raugei, Simone; Linehan, John C.; Roberts, John A.; Appel, Aaron M.; Shaw, Wendy J.

    2012-10-08

    Four derivatives of a hydrogen oxidation catalyst, [Ni(PCy2NBn-R2)]2+ (Cy=cyclohexyl, Bn=benzyl, R= OMe, COOMe, CO-Alanine-methyl ester or CO-Phenylalanine-methyl ester), have been prepared to investigate steric and electronic effects on catalysis. Each complex was characterized spectroscopically and electrochemically, and thermodynamic data were determined. Crystal structures are also reported for the -OMe and -COOMe derivatives. All four catalysts were found to be active for H2 oxidation. The methyl ester (R = COOMe) and amino acid ester containing complexes (R = CO-Alanine-methyl ester or CO-Phenylalanine-methyl ester) had slower rates (4 s-1) than that of the parent complex (10 s-1), in which R = H, consistent with the lower amine pKa’s and less favorable GH2’s found for these electron-withdrawing substituents. Dynamic processes for the amino acid ester containing complexes were also investigated and found not to hinder catalysis. The electron-donating methoxy ether derivative (R = OMe) was prepared to compare electronic effects and has a similar catalytic rate as the parent complex. In the course of these studies, it was found that water could act as a weak base for H2 oxidation, although catalytic turnover requires a significantly higher potential and utilizes a different sequence of catalytic steps than when using a base with a higher pKa. Importantly, these catalysts provide a foundation upon which larger peptides can be attached to [Ni(PCy2NBn2)2]2+ hydrogen oxidation catalysts in order to more fully investigate and implement the effects of the outer-coordination sphere. This work was funded by the DOE Office of Science Early Career Research Program through the Office of Basic Energy Sciences (SL and WJS), by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (JR), and by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (AMA, AJ). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  3. Host cells and methods for producing 3-methyl-2-buten-1-ol, 3-methyl-3-buten-1-ol, and 3-methyl-butan-1-ol

    DOE Patents [OSTI]

    Chou, Howard H.; Keasling, Jay D.

    2011-07-26

    The invention provides for a method for producing a 5-carbon alcohol in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses a first enzyme capable of catalyzing the dephosphorylation of an isopentenyl pyrophosphate (IPP) or dimethylallyl diphosphate (DMAPP), such as a Bacillus subtilis phosphatase (YhfR), under a suitable condition so that 5-carbon alcohol is 3-methyl-2-buten-1-ol and/or 3-methyl-3-buten-1-ol is produced. Optionally, the host cell may further comprise a second enzyme capable of reducing a 3-methyl-2-buten-1-ol to 3-methyl-butan-1-ol, such as a reductase.

  4. Experimental study of the oxidation of methyl oleate in a jet-stirred reactor

    SciTech Connect (OSTI)

    Bax, Sarah; Hakka, Mohammed Hichem; Glaude, Pierre-Alexandre; Herbinet, Olivier; Battin-Leclerc, Frederique

    2010-06-15

    The experimental study of the oxidation of a blend containing n-decane and a large unsaturated ester, methyl oleate, was performed in a jet-stirred reactor over a wide range of temperature covering both low and high temperature regions (550-1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (n-decane and methyl oleate inlet mole fractions of 1.48 x 10{sup -3} and 5.2 x 10{sup -4}) and under stoichiometric conditions. The formation of numerous reaction products was observed. At low and intermediate temperatures, the oxidation of the blend led to the formation of species containing oxygen atoms like cyclic ethers, aldehydes and ketones deriving from n-decane and methyl oleate. At higher temperature, these species were not formed anymore and the presence of unsaturated species was observed. Because of the presence of the double bond in the middle of the alkyl chain of methyl oleate, the formation of some specific products was observed. These species are dienes and esters with two double bonds produced from the decomposition paths of methyl oleate and some species obtained from the addition of H-atoms, OH and HO{sub 2} radicals to the double bond. Experimental results were compared with former results of the oxidation of a blend of n-decane and methyl palmitate performed under similar conditions. This comparison allowed highlighting the similarities and the differences in the reactivity and in the distribution of the reaction products for the oxidation of large saturated and unsaturated esters. (author)

  5. Microbial production of wax esters from highly branched alkanes

    DOE Patents [OSTI]

    Bogan, William W.; Sullivan, Wendy R.; Paterek, James R.

    2005-02-01

    A microbial culture and method for producing wax esters using highly branched alkanes. In accordance with one embodiment, the highly branched alkane is squalane.

  6. Effect of Unburned Methyl Esters on the NOx Conversion of Fe-Zeolite SCR Catalyst

    SciTech Connect (OSTI)

    Williams, A.; Ratcliff, M.; Pedersen, D.; McCormick, R.; Cavataio, G.; Ura, J.

    2010-03-01

    Engine and flow reactor experiments were conducted to determine the impact of biodiesel relative to ultra-low-sulfur diesel (ULSD) on inhibition of the selective catalytic reduction (SCR) reaction over an Fe-zeolite catalyst. Fe-zeolite SCR catalysts have the ability to adsorb and store unburned hydrocarbons (HC) at temperatures below 300 C. These stored HCs inhibit or block NO{sub x}-ammonia reaction sites at low temperatures. Although biodiesel is not a hydrocarbon, similar effects are anticipated for unburned biodiesel and its organic combustion products. Flow reactor experiments indicate that in the absence of exposure to HC or B100, NO{sub x} conversion begins at between 100 and 200 C. When exposure to unburned fuel occurs at higher temperatures (250-400 C), the catalyst is able to adsorb a greater mass of biodiesel than of ULSD. Experiments show that when the catalyst is masked with ULSD, NO{sub x} conversion is inhibited until it is heated to 400 C. However, when masked with biodiesel, NO{sub x} conversion is observed to begin at temperatures as low as 200 C. Engine test results also show low-temperature recovery from HC storage. Engine tests indicate that, overall, the SCR system has a faster recovery from HC masking with biodiesel. This is at least partially due to a reduction in exhaust HCs, and thus total HC exposure with biodiesel.

  7. Preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters

    DOE Patents [OSTI]

    Gogate, Makarand Ratnakar; Spivey, James Jerry; Zoeller, Joseph Robert

    1998-01-01

    Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  8. Preparation of {alpha},{beta}-unsaturated carboxylic acids and esters

    DOE Patents [OSTI]

    Gogate, M.R.; Spivey, J.J.; Zoeller, J.R.

    1998-09-15

    Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and esters thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic acid, ester or anhydride in the presence of a catalyst comprising an oxide of niobium.

  9. Suitability of Varicose Veins for Endovenous Treatments

    SciTech Connect (OSTI)

    Goode, S. D.; Kuhan, G.; Altaf, N.; Simpson, R.; Beech, A.; Richards, T.; MacSweeney, S. T.; Braithwaite, B. D.

    2009-09-15

    The aim of the study was to assess the suitability of radiofrequency ablation (RFA), endovenous laser ablation (EVLA), and foam sclerotherapy (FS) for patients with symptomatic varicose veins (VVs). The study comprised 403 consecutive patients with symptomatic VVs. Data on 577 legs from 403 consecutive patients with symptomatic VVs were collected for the year 2006. Median patient age was 55 years (interquartile range 45-66), and 62% patients were women. A set of criteria based on duplex ultrasonography was used to select patients for each procedure. Great saphenous vein (GSV) reflux was present in 77% (446 of 577) of legs. Overall, 328 (73%) of the legs were suitable for at least one of the endovenous options. Of the 114 legs with recurrent GSV reflux disease, 83 (73%) were suitable to receive endovenous therapy. Patients with increasing age were less likely to be suitable for endovenous therapy (P = 0.03). Seventy-three percent of patients with VVs caused by GSV incompetence are suitable for endovenous therapy.

  10. Distributions of methyl group rotational barriers in polycrystalline organic solids

    SciTech Connect (OSTI)

    Beckmann, Peter A. E-mail: wangxianlong@uestc.edu.cn; Conn, Kathleen G.; Division of Education and Human Services, Neumann University, One Neumann Drive, Aston, Pennsylvania 19014-1298 ; Mallory, Clelia W.; Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 ; Mallory, Frank B.; Rheingold, Arnold L.; Rotkina, Lolita; Wang, Xianlong E-mail: wangxianlong@uestc.edu.cn

    2013-11-28

    We bring together solid state {sup 1}H spin-lattice relaxation rate measurements, scanning electron microscopy, single crystal X-ray diffraction, and electronic structure calculations for two methyl substituted organic compounds to investigate methyl group (CH{sub 3}) rotational dynamics in the solid state. Methyl group rotational barrier heights are computed using electronic structure calculations, both in isolated molecules and in molecular clusters mimicking a perfect single crystal environment. The calculations are performed on suitable clusters built from the X-ray diffraction studies. These calculations allow for an estimate of the intramolecular and the intermolecular contributions to the barrier heights. The {sup 1}H relaxation measurements, on the other hand, are performed with polycrystalline samples which have been investigated with scanning electron microscopy. The {sup 1}H relaxation measurements are best fitted with a distribution of activation energies for methyl group rotation and we propose, based on the scanning electron microscopy images, that this distribution arises from molecules near crystallite surfaces or near other crystal imperfections (vacancies, dislocations, etc.). An activation energy characterizing this distribution is compared with a barrier height determined from the electronic structure calculations and a consistent model for methyl group rotation is developed. The compounds are 1,6-dimethylphenanthrene and 1,8-dimethylphenanthrene and the methyl group barriers being discussed and compared are in the 212 kJ?mol{sup ?1} range.

  11. Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Nonpremixed Flows

    SciTech Connect (OSTI)

    Seshadri, K; Lu, T; Herbinet, O; Humer, S; Niemann, U; Pitz, W J; Law, C K

    2008-01-09

    Methyl decanoate is a large methyl ester that can be used as a surrogate for biodiesel. In this experimental and computational study, the combustion of methyl decanoate is investigated in nonpremixed, nonuniform flows. Experiments are performed employing the counterflow configuration with a fuel stream made up of vaporized methyl decanoate and nitrogen, and an oxidizer stream of air. The mass fraction of fuel in the fuel stream is measured as a function of the strain rate at extinction, and critical conditions of ignition are measured in terms of the temperature of the oxidizer stream as a function of the strain rate. It is not possible to use a fully detailed mechanism for methyl decanoate to simulate the counterflow flames because the number of species and reactions is too large to employ with current flame codes and computer resources. Therefore a skeletal mechanism was deduced from a detailed mechanism of 8555 elementary reactions and 3036 species using 'directed relation graph' method. This skeletal mechanism has only 713 elementary reactions and 125 species. Critical conditions of ignition were calculated using this skeletal mechanism and are found to agree well with experimental data. The predicted strain rate at extinction is found to be lower than the measurements. In general, the methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  12. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Patents [OSTI]

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  13. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Patents [OSTI]

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  14. Rheinische Bio Ester GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    Rheinische Bio Ester GmbH Co KG Jump to: navigation, search Name: Rheinische Bio Ester GmbH & Co.KG Place: Neuss, North Rhine-Westphalia, Germany Zip: 41460 Product: Rheinische Bio...

  15. ESTER, Enel integrated System for TEsts on stoRage (Smart Grid...

    Open Energy Info (EERE)

    ESTER, Enel integrated System for TEsts on stoRage (Smart Grid Project) Jump to: navigation, search Project Name ESTER, Enel integrated System for TEsts on stoRage Country Italy...

  16. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sherkhanov, Saken; Korman, Tyler P.; Clarke, Steven G.; Bowie, James U.

    2016-04-07

    Here, most biodiesel currently in use consists of fatty acid methyl esters (FAMEs) produced by transesterification of plant oils with methanol. To reduce competition with food supplies, it would be desirable to directly produce biodiesel in microorganisms. To date, the most effective pathway for the production of biodiesel in bacteria yields fatty acid ethyl esters (FAEEs) at up to ~1.5 g/L. A much simpler route to biodiesel produces FAMEs by direct S-adenosyl-L-methionine (SAM) dependent methylation of free fatty acids, but FAME production by this route has been limited to only ~16 mg/L. Here we employ an alternative, broad spectrum methyltransferase,more » Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). By introducing DmJHAMT in E. coli engineered to produce medium chain fatty acids and overproduce SAM, we obtain medium chain FAMEs at titers of 0.56 g/L, a 35-fold increase over titers previously achieved. Although considerable improvements will be needed for viable bacterial production of FAMEs and FAEEs for biofuels, it may be easier to optimize and transport the FAME production pathway to other microorganisms because it involves fewer enzymes.« less

  17. Agronomic Suitability of Bioenergy Crops in Mississippi

    SciTech Connect (OSTI)

    Lemus, Rocky; Baldwin, Brian; Lang, David

    2011-10-01

    In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: • Which areas in the state are best for bioenergy crop production? • How much could these areas produce sustainably? • How can bioenergy crops impact carbon sequestration and carbon credits? • How will these crops affect fertilizer use and water quality? • What kind of water management is needed to maintain a productive crop? The answers to these questions will help supporting institutions across the state to improve land assessment and agronomic management practices for biomass production. In the last decade, energy supply has become a worldwide problem. Bioenergy crops could supply energy in the future. Bioenergy crops are plants, usually perennial grasses and trees, that produce a lot of biomass that can be converted into energy. Bioenergy crops can be grown for two energy markets: power generation, such as heat and electricity, or liquid fuel, such as cellulosic ethanol. These resources could reduce petroleum dependency and greenhouse gas production. Woody plants and herbaceous warm-season grasses, such as switchgrass, giant miscanthus,energy cane, and high yielding sorghums, could be major sources of biomass in Mississippi.

  18. Ether and ester derivatives of the perborate icosahedron

    DOE Patents [OSTI]

    Hawthorne, M. Frederick; Peymann, Toralf; Maderna, Andreas

    2003-12-16

    New boron icosahedral ethers and esters formed from Cs.sub.2 [closo-B.sub.12 (OH).sub.12 ],; Cs[closo-1-H-1-CB.sub.11 (OH).sub.11 ]; and closo-1,12-H.sub.2 -1,12-C.sub.2 B.sub.10 (OH).sub.10 are disclosed. Also set forth are their preparation by reacting the icosahedral boranes [closo-B.sub.12 H.sub.12 ].sup.2-, [closo-1-CB.sub.11 H.sub.12 ].sup.- and closo-1,12-(CH.sub.2 OH).sub.2 -1,12-C.sub.2 B.sub.10 H.sub.10 with an acid anhdride or acid chloride to form the ester or an alkylating agent to form the ether.

  19. Kinetic Model Development for the Combustion of Particulate Matter from Conventional and Soy Methyl Ester Diesel Fuels

    SciTech Connect (OSTI)

    Strzelec, Andrea

    2009-12-01

    The primary objective of this research has been to investigate how the oxidation characteristics of diesel particulate matter (PM) are affected by blending soy-based biodiesel fuel with conventional ultra low sulfur diesel (ULSD) fuel. PM produced in a light duty engine from different biodiesel-conventional fuel blends was subjected to a range of physical and chemical measurements in order to better understand the mechanisms by which fuel-related changes to oxidation reactivity are brought about. These observations were then incorporated into a kinetic model to predict PM oxidation. Nanostructure of the fixed carbon was investigated by HR-TEM and showed that particulates from biodiesel had a more open structure than particulates generated from conventional diesel fuel, which was confirmed by BET surface area measurements. Surface area evolution with extent of oxidation reaction was measured for PM from ULSD and biodiesel. Biodiesel particulate has a significantly larger surface area for the first 40% of conversion, at which point the samples become quite similar. Oxidation characteristics of nascent PM and the fixed carbon portion were measured by temperature programmed oxidation (TPO) and it was noted that increased biodiesel blending lowered the light-off temperature as well as the temperature where the peak rate of oxidation occurred. A shift in the oxidation profiles of all fuels was seen when the mobile carbon fraction was removed, leaving only the fixed carbon, however the trend in temperature advantage of the biofuel blending remained. The mobile carbon fraction was measured by temperature programmed desorption found to generally increase with increasing biodiesel blend level. The relative change in the light-off temperatures for the nascent and fixed carbon samples was found to be related to the fraction of mobile carbon. Effective Arrhenius parameters for fixed carbon oxidation were directly measured with isothermal, differential oxidation experiments. Normalizing the reaction rate to the total carbon surface area available for reaction allowed for the definition of a single reaction rate with constant activation energy (112.5 {+-} 5.8 kJ/mol) for the oxidation of PM, independent of its fuel source. A kinetic model incorporating the surface area dependence of fixed carbon oxidation rate and the impact of the mobile carbon fraction was constructed and validated against experimental data.

  20. Solid Lithium Ion Conducting Electrolytes Suitable for Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Ion Conducting Electrolytes Suitable for Manufacturing Processes Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThe lithium ...

  1. AMO Requests Technical Topics Suitable for a Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute AMO Requests Technical Topics Suitable for a Manufacturing Innovation Institute April 17, 2014 - 12:23pm Addthis The Advanced Manufacturing Office...

  2. High elastic modulus polymer electrolytes suitable for preventing...

    Office of Scientific and Technical Information (OSTI)

    in lithium batteries Citation Details In-Document Search Title: High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries A polymer ...

  3. Suitability, Position Sensitivity Designations, and Related Personnel Matters

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-12-19

    The order identifies the interrelationships among suitability, security and access authorizations; to establish guidance and policy regarding position sensitivity designations, certain background investigations, and suitability determinations; and to establish the policies and procedures regarding waivers of pre-employment investigations. Chg 1, dated 7-8-92 supersedes DOE 3731.1.

  4. Combustion characterization of methylal in reciprocating engines

    SciTech Connect (OSTI)

    Dodge, L.; Naegeli, D.

    1994-06-01

    Methylal, CH{sub 3}OCH{sub 2}OCH{sub 3}, also known as dimethoxy-methane, is unique among oxygenates in that it has a low autoignition temperature, no carbon-carbon bonds, and is soluble in middle distillate fuels. Because of these properties, methylal has been shown to be a favorable fuel additive for reducing smoke in diesel engines. Recent measurements of ignition delay times indicate that methylal has a cetane number in the range of 45-50, which is compatible with diesel fuels. Engine tests have shown that adding methylal to diesel fuel significantly reduces smoke emissions. Gaseous emissions and combustion efficiencies obtained with methylal/diesel fuel blends remain essentially the same as those measured using neat diesel fuel. Lubricity measurements of methylal/diesel fuel blends with a ball on cylinder lubrication evaluator (BOCLE) show that methylal improves the lubricity of diesel fuel. Even though additions of methylal lower the fuel viscosity, the results of the BOCLE tests indicate that the methylal/diesel fuel blends cause less pump wear than neat diesel fuel. The one drawback is that methylal has a low boiling point (42{degrees}C) and a relatively high vapor pressure. As a result, it lowers the flash point of diesel fuel and causes a potential fuel tank flammability hazard. One solution to this increased volatility is to make polyoxymethylenes with the general formula of CH{sub 3}O(CH{sub 2}O){sub x}CH{sub 3} where x > 2. The molecules are similar to methylal, but have higher molecular weights and thus higher viscosities and substantially lower vapor pressures. Therefore, their flash points will be compatible with regular diesel fuel. The polyoxymethylenes are expected to have combustion properties similar to methylal. It is theorized that by analogy with hydrocarbons, the ignition quality (i.e., cetane number) of the polyoxymethylenes will be better than that of methylal.

  5. Transesterification process to manufacture ethyl ester of rape oil

    SciTech Connect (OSTI)

    Korus, R.A.; Hoffman, D.S.; Bam, N.; Peterson, C.L.; Drown, D.C.

    1993-12-31

    A process for the production of the ethyl ester of winter rape [EEWR] for use as a biodiesel fuel has been studied. The essential part of the process is the transesterification of rape oil with ethanol, in the presence of a catalyst, to yield the ethyl ester of rape oil as a product and glycerin as a by-product. Experiments have been performed to determine the optimum conditions for the preparation of EEWR. The process variables were: (1) temperature, (2) catalyst, (3) rate of agitation, (4) water content of the alcohol used, and (5) the amount of excess alcohol used. The optimum conditions were: (1) room temperature, (2) 0.5% sodium methoxide or 1% potassium hydroxide catalyst by weight of rapeseed oil, (3) extremely vigorous agitation with some splashing during the initial phase of the reaction and agitation was not necessary after the reaction mixture became homogeneous, (4) absolute ethanol was necessary for high conversion, and (5) 50% excess ethanol with NaOCH{sub 3} or 100% excess with KOH gave a maximum conversion. Viscosity, cloud point and pour point of the EEWR were measured. A preliminary break-even cost for the commercial production of EEWR was found to be $0.55/liter [$2.08/US gallon].

  6. EXTRACTION OF TETRAVALENT PLUTONIUM VALUES WITH METHYL ETHYL KETONE, METHYL ISOBUTYL KETONE ACETOPHENONE OR MENTHONE

    DOE Patents [OSTI]

    Seaborg, G.T.

    1961-08-01

    A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)

  7. METAL ALLOY SUITABLE FOR CONTROLLING THERMAL NEUTRON REACTORS

    DOE Patents [OSTI]

    Schier, R.J.

    1963-11-26

    A homogeneous arc-melted alloy suitable for nuclear reactor control material consisting essentially of titanium and up to about 8 wt% gadolinium as gadolinium oxide is described. (AEC)

  8. Assessment of Small Modular Reactor Suitability for Use On or...

    Broader source: Energy.gov (indexed) [DOE]

    This report assesses the suitability of using US-developed light water SMR technology to provide energy for Schriever Air Force Base, CO and Clear Air Force Station, AK, as well as ...

  9. High elastic modulus polymer electrolytes suitable for preventing thermal

    Office of Scientific and Technical Information (OSTI)

    runaway in lithium batteries (Patent) | SciTech Connect electrolytes suitable for preventing thermal runaway in lithium batteries Citation Details In-Document Search Title: High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not

  10. Mapping suitability areas for concentrated solar power plants using remote

    Office of Scientific and Technical Information (OSTI)

    sensing data (Journal Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Mapping suitability areas for concentrated solar power plants using remote sensing data Title: Mapping suitability areas for concentrated solar power plants using remote sensing data The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering,

  11. Request for Information (RFI): Clean Energy Manufacturing Topics Suitable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for a Manufacturing Innovation Institute | Department of Energy Clean Energy Manufacturing Topics Suitable for a Manufacturing Innovation Institute Request for Information (RFI): Clean Energy Manufacturing Topics Suitable for a Manufacturing Innovation Institute April 17, 2014 - 11:04am Addthis Funding: This RFI is not a Funding Opportunity Announcement (FOA); therefore, EERE is not accepting applications at this time. Open Date: 04/17/2014 Close Date: 05/20/2014 Funding Organization: The

  12. Homogeneous Hydrogenation of CO? to Methyl Formate Utilizing Switchable Ionic Liquids

    SciTech Connect (OSTI)

    Yadav, Mahendra; Linehan, John C.; Karkamkar, Abhijeet J.; Van Der Eide, Edwin F.; Heldebrant, David J.

    2014-09-15

    Capture of CO? and subsequent hydrogenation allows for base/alcohol-catalyzed conversion of CO? to methylformate in one pot. The conversion of CO? proceeds via alkylcarbonates, to formate salts and then formate esters, which can be catalyzed by base and alcohol with the only byproduct being water. The system operates at mild conditions (300 psi H?, 140 C). Reactivity is strongly influenced by temperature and choice of solvent. In the presence of excess of base (DBU) formate is predominant product while in excess of methanol methyl formate is major product. 110 C yields formate salts, 140 C promotes methylformate. The authors acknowledge internal Laboratory Directed Re-search and Development (LDRD) funding from Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.

  13. Structural Interactions within Lithium Salt Solvates: Cyclic Carbonates and Esters

    SciTech Connect (OSTI)

    Seo, D. M.; Afroz, Taliman; Allen, Joshua L.; Boyle, Paul D.; Trulove, Paul C.; De Long, Hugh C.; Henderson, Wesley A.

    2014-11-13

    Only limited information is available regarding the manner in which cyclic carbonate and ester solvents coordinate Li+ cations in electrolyte solutions for lithium batteries. One approach to gleaning significant insight into these interactions is to examine crystalline solvate structures. To this end, eight new solvate structures are reported with ethylene carbonate, ?-butyrolactone and ?-valerolactone: (EC)3:LiClO4, (EC)2:LiClO4, (EC)2:LiBF4, (GBL)4:LiPF6, (GBL)1:LiClO4, (GVL)1:LiClO4, (GBL)1:LiBF4 and (GBL)1:LiCF3SO3. The crystal structure of (EC)1:LiCF3SO3 is also re-reported for comparison. These structures enable the factors which govern the manner in which the ions are coordinated and the ion/solvent packingin the solid-stateto be scrutinized in detail.

  14. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect (OSTI)

    Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert; Gershman, Sophia

    2014-08-01

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  15. Comparison of Prime Movers Suitable for USMC Expeditionary Power Sources

    SciTech Connect (OSTI)

    Theiss, T.J.

    2000-04-18

    This report documents the results of the ORNL investigation into prime movers that would be desirable for the construction of a power system suitable for the United States Marine Corps (USMC) expeditionary forces under Operational Maneuvers From The Sea (OMFTS) doctrine. Discrete power levels of {approx}1, 5, 15, and 30 kW are considered. The only requirement is that the prime mover consumes diesel fuel. A brief description is given for the prime movers to describe their basic scientific foundations and relative advantages and disadvantages. A list of key attributes developed by ORNL has been weighted by the USMC to indicate the level of importance. A total of 14 different prime movers were scored by ORNL personnel in four size ranges (1,5, 15, & 30 kW) for their relative strength in each attribute area. The resulting weighted analysis was used to indicate which prime movers are likely to be suitable for USMC needs. No single engine or prime mover emerged as the clear-cut favorite but several engines scored as well or better than the diesel engine. At the higher load levels (15 & 30 kW), the results indicate that the open Brayton (gas turbine) is a relatively mature technology and likely a suitable choice to meet USMC needs. At the lower power levels, the situation is more difficult and the market alone is not likely to provide an optimum solution in the time frame desired (2010). Several prime movers should be considered for future developments and may be satisfactory; specifically, the Atkinson cycle, the open Brayton cycle (gas turbine), the 2-stroke diesel. The rotary diesel and the solid oxide fuel cell should be backup candidates. Of all these prime movers, the Atkinson cycle may well be the most suitable for this application but is an immature technology. Additional demonstrations of this engine will be conducted at ORNL. If this analysis is positive, then the performance of a generator set using this engine, the open Brayton and the 2-stroke diesel should be estimated to evaluate its potential suitability for expeditionary forces. The overriding conclusion of this effort is that we feel a suitable prime mover can be found but that the development will be technically challenging and trade-offs will be made before an optimum solution is found.

  16. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate

    SciTech Connect (OSTI)

    Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava; Svoboda, Jan; Zima, Vítězslav

    2013-06-15

    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparation of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate. - Graphical abstract: Ester and amide derivatives of layered titanium carboxymethylphosphonate were prepared by solvothermal treatment of amorphous solid with alkanol or alkylamine. - Highlights: • Ester and amide derivatives of titanium carboxymethylphosphonate. • Solvothermal treatment of amorphous solid with alkanol or alkylamine. • Ester and amide formation confirmed by IR spectroscopy.

  17. Corrosion resistant coatings suitable for elevated temperature application

    DOE Patents [OSTI]

    Chan, Kwai S.; Cheruvu, Narayana Sastry; Liang, Wuwei

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  18. Suitable thin shell structural configurations for earth sheltered housing

    SciTech Connect (OSTI)

    Behr, R.A.

    1982-01-01

    An earth sheltered house is one whose building envelope is substantially in contact with soil, without necessarily being totally underground. Hence, it can provide the commonly sought attributes of a residence, including natural light, exterior views, and curb appeal. It also exhibits strong energy performance, lower maintenance, and good storm protection. Despite the longer-term life cycle cost advantages of earth sheltered buildings, a current hindrance to the mass market acceptance of earth sheltered housing is higher initial cost which is caused, in part, by the inability of conventional rectilinear structural systems to support economically the massive soil loads imposed on earth covered buildings. In deference to the premise that technical suitability is no guarantee of innovation acceptance in the housing industry, a survey of the nontechnical impediments to housing innovation was first undertaken. These impediment areas include: market inhibition; builder trepidations; industry constraints; and financing problems. As a result of an architectural design program written under contract for the Department of Energy, it was possible to include a rather extensive (but necessarily subjective) evaluation of the architectural potential for earth sheltered shell structures. Engineering suitability dimensions included structural effectiveness, constructability, and economy of construction for single- and double-curvature thin shell structures. Overall engineering suitability and architectural potential are deemed to be adequate, although non-engineering impediments to housing innovation appear to raise significant questions regarding the potential for mass market implementation of thin shell stuctures in earth sheltered housing.

  19. Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters

    SciTech Connect (OSTI)

    Afroz, Taliman; Seo, D. M.; Han, Sang D.; Boyle, Paul D.; Henderson, Wesley A.

    2015-03-06

    Solvate crystal structures serve as useful models for the molecular-level interactions within the diverse solvates present in liquid electrolytes. Although acyclic carbonate solvents are widely used for Li-ion battery electrolytes, only three solvate crystal structures with lithium salts are known for these and related solvents. The present work, therefore, reports six lithium salt solvate structures with dimethyl and diethyl carbonate: (DMC)2:LiPF6, (DMC)1:LiCF3SO3, (DMC)1/4:LiBF4, (DEC)2:LiClO4, (DEC)1:LiClO4 and (DEC)1:LiCF3SO3 and four with the structurally related methyl and ethyl acetate: (MA)2:LiClO4, (MA)1:LiBF4, (EA)1:LiClO4 and (EA)1:LiBF4.

  20. Methylal and Methylal-Diesel Blended Fuels from Use In Compression-Ignition Engines

    SciTech Connect (OSTI)

    Keith D. Vertin; James M. Ohi; David W. Naegeli; Kenneth H. Childress; Gary P. Hagen; Chris I. McCarthy; Adelbert S. Cheng; Robert W. Dibble

    1999-05-05

    Gas-to-liquids catalytic conversion technologies show promise for liberating stranded natural gas reserves and for achieving energy diversity worldwide. Some gas-to-liquids products are used as transportation fuels and as blendstocks for upgrading crude derived fuels. Methylal (CH{sub 3}-O-CH{sub 2}-O-CH{sub 3}) also known as dimethoxymethane or DMM, is a gas-to-liquid chemical that has been evaluated for use as a diesel fuel component. Methylal contains 42% oxygen by weight and is soluble in diesel fuel. The physical and chemical properties of neat methylal and for blends of methylal in conventional diesel fuel are presented. Methylal was found to be more volatile than diesel fuel, and special precautions for distribution and fuel tank storage are discussed. Steady state engine tests were also performed using an unmodified Cummins 85.9 turbocharged diesel engine to examine the effect of methylal blend concentration on performance and emissions. Substantial reductions of particulate matter emissions h ave been demonstrated 3r IO to 30% blends of methylal in diesel fuel. This research indicates that methylal may be an effective blendstock for diesel fuel provided design changes are made to vehicle fuel handling systems.

  1. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    SciTech Connect (OSTI)

    Lawler, Katherine

    2009-08-05

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanosized alumina particle suspensions. The addition of dispersants can change the particle interactions and hence reduce the suspension viscosity. This was demonstrated with saccharides in the aqueous system and with benzoic acid in suspensions with BECy.

  2. Lubricant return comparison of naphthenic and polyol ester oils in R-134a household refrigeration applications

    SciTech Connect (OSTI)

    Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R.

    1996-12-31

    This paper presents mineral oils and polyol esters as possible lubricant options for domestic refrigeration applications employing R-134a as the heat exchange fluid. A performance comparison, based on data presented, is made between the mineral oils and polyol esters evaluated. To more closely examine lubricant return with N-70 and R-134a and ensure that the oil is not contributing to any deterioration in efficiency due to its accumulation in evaporators, a special test unit was designed with a difficult oil return configuration and its performance carefully monitored. Oil return with a hydrofluorocarbon-miscible polyol ester, R-133-O was also evaluated in this setup and its performance results compared to those obtained with the naphthenic refrigeration oil.

  3. Low temperature synthesis of methyl formate

    DOE Patents [OSTI]

    Mahajan, Devinder; Slegeir, William A.; Sapienza, Richard S.; O'Hare, Thomas E.

    1986-01-01

    A gas reaction process for the preferential production of methyl formate over the co-production of methanol wherein the reactant ratio of CO/H.sub.2 is upgraded and this reaction takes place at low temperatures of 50.degree.-150.degree. C. and moderate pressures of .gtoreq.100 psi.

  4. Modulation of histone methylation and MLH1 gene silencing by...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 60 APPLIED LIFE SCIENCES; ARGININE; CARCINOGENS; CHROMIUM; DNA DAMAGES; GENES; HUMAN POPULATIONS; LUNGS; LYSINE; METHYLATION; NEOPLASMS; OCCUPATIONAL EXPOSURE; PROMOTERS ...

  5. Insights antifibrotic mechanism of methyl palmitate: Impact on nuclear factor kappa B and proinflammatory cytokines

    SciTech Connect (OSTI)

    Mantawy, Eman M.; Tadros, Mariane G.; Awad, Azza S.; Hassan, Dina A.A.; El-Demerdash, Ebtehal

    2012-01-01

    Fibrosis accompanies most chronic liver disorders and is a major factor contributing to hepatic failure. Therefore, the need for an effective treatment is evident. The present study was designed to assess the potential antifibrotic effect of MP and whether MP can attenuate the severity of oxidative stress and inflammatory response in chronic liver injury. Male albino rats were treated with either CCl{sub 4} (1 ml/kg, twice a week) and/or MP (300 mg/kg, three times a week) for six weeks. CCl{sub 4}-intoxication significantly increased liver weight, serum aminotransferases, total cholesterol and triglycerides while decreased albumin level and these effects were prevented by co-treatment with MP. As indicators of oxidative stress, CCl{sub 4}-intoxication caused significant glutathione depletion and lipid peroxidation while MP co-treatment preserved them within normal values. As markers of fibrosis, hydroxyproline content and ?-SMA expression increased markedly in the CCl{sub 4} group and MP prevented these alterations. Histopathological examination by both light and electron microscope further confirmed the protective efficacy of MP. To elucidate the antifibrotic mechanisms of MP, the expression of NF-?B, iNOS and COX-2 and the tissue levels of TNF-? and nitric oxide were assessed; CCl{sub 4} increased the expression of NF-?B and all downstream inflammatory cascade while MP co-treatment inhibited them. Collectively these findings indicate that MP possesses a potent antifibrotic effect which may be partly a consequence of its antioxidant and anti-inflammatory properties. -- Highlights: ? Methyl palmitate is free fatty acid methyl ester. ? It possesses a strong antifibrotic effect. ? It inhibits NF-?B and the consequent proinflammatory and oxidative stress response.

  6. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect (OSTI)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  7. On the Suitability of MPI as a PGAS Runtime

    SciTech Connect (OSTI)

    Daily, Jeffrey A.; Vishnu, Abhinav; Palmer, Bruce J.; van Dam, Hubertus JJ; Kerbyson, Darren J.

    2014-12-18

    Partitioned Global Address Space (PGAS) models are emerging as a popular alternative to MPI models for designing scalable applications. At the same time, MPI remains a ubiquitous communication subsystem due to its standardization, high performance, and availability on leading platforms. In this paper, we explore the suitability of using MPI as a scalable PGAS communication subsystem. We focus on the Remote Memory Access (RMA) communication in PGAS models which typically includes {\\em get, put,} and {\\em atomic memory operations}. We perform an in-depth exploration of design alternatives based on MPI. These alternatives include using a semantically-matching interface such as MPI-RMA, as well as not-so-intuitive interfaces such as MPI two-sided with a combination of multi-threading and dynamic process management. With an in-depth exploration of these alternatives and their shortcomings, we propose a novel design which is facilitated by the data-centric view in PGAS models. This design leverages a combination of highly tuned MPI two-sided semantics and an automatic, user-transparent split of MPI communicators to provide asynchronous progress. We implement the asynchronous progress ranks approach and other approaches within the Communication Runtime for Exascale which is a communication subsystem for Global Arrays. Our performance evaluation spans pure communication benchmarks, graph community detection and sparse matrix-vector multiplication kernels, and a computational chemistry application. The utility of our proposed PR-based approach is demonstrated by a 2.17x speed-up on 1008 processors over the other MPI-based designs.

  8. Identifying suitable "piercement" salt domes for nuclear waste storage sites

    SciTech Connect (OSTI)

    Kehle, R.

    1980-08-01

    Piercement salt domes of the northern interior salt basins of the Gulf of Mexico are being considered as permanent storage sites for both nuclear and chemically toxic wastes. The suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths far below the level to which erosion will penetrate during the prescribed storage period and are not subject to possible future reactivation. The salt cores of these domes are themselves impermeable, permitting neither the entry nor exit of ground water or other unwanted materials. In part, a stable dome may be recognized by its present geometric configuration, but conclusive proof depends on establishing its evolutionary state. The evolutionary state of a dome is obtained by reconstructing the growth history of the dome as revealed by the configuration of sedimentary strata in a large area (commonly 3,000 square miles or more) surrounding the dome. A high quality, multifold CDP reflection seismic profile across a candidate dome will provide much of the necessary information when integrated with available subsurface control. Additional seismic profiles may be required to confirm an apparent configuration of the surrounding strata and an interpreted evolutionary history. High frequency seismic data collected in the near vicinity of a dome are also needed as a supplement to the CDP data to permit accurate depiction of the configuration of shallow strata. Such data must be tied to shallow drill hole control to confirm the geologic age at which dome growth ceased. If it is determined that a dome reached a terminal configuration many millions of years ago, such a dome is incapable of reactivation and thus constitutes a stable storage site for nuclear wastes.

  9. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    SciTech Connect (OSTI)

    Saeed, Noha M.; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M.; Algandaby, Mardi M.; Al-Abbasi, Fahad A.; Abdel-Naim, Ashraf B.

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6). MP and EP decreased NF-?B expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ? Efficacy of MP and EP in combating inflammation was displayed in several models. ? MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ? MP and EP decreased TNF-? and IL-6 levels in experimental endotoxemia. ? MP and EP reduced NF-?B expression and histological changes in rat liver and lung. ? MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  10. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  11. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  12. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  13. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    SciTech Connect (OSTI)

    Wilber Yaote Lio

    2009-12-19

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.

  14. Conversion of Levulinic Acid to Methyl Tetrahydrofuran - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acid is a highly desirable renewable chemical platform, which, using this process, can be converted into Methyl Tetrahydrofuran (Me-THF) with reasonable yield. The...

  15. Lithium Methyl Carbonate as a Reaction Product of Metallic Lithiumand...

    Office of Scientific and Technical Information (OSTI)

    Lithium methyl carbonate is only one of the components, the others being lithium oxalate and lithium methoxide. Authors: Zhuang, Guorong V. ; Yang, Hui ; Ross Jr., Philip N. ; Xu, ...

  16. Theoretical spectroscopic characterization at low temperatures of S-methyl thioformate and O-methyl thioformate

    SciTech Connect (OSTI)

    Senent, M. L.; Puzzarini, C.; Hochlaf, M.; Domínguez-Gómez, R.; Carvajal, M.

    2014-09-14

    Highly correlated ab initio methods are employed to determine spectroscopic properties at low temperatures of two S-analogs of methyl formate: S-methyl thioformate CH{sub 3}-S-CHO (MSCHO) and O-methyl thioformate CH{sub 3}-O-CHS (MOCHS). Both species are detectable and they are expected to play an important role in Astrochemistry. Molecular properties are compared with those of the O-analog, methyl formate. Both isomers present two conformers cis and trans. cis-CH{sub 3}-S-CHO represents the most stable structure lying 4372.2 cm{sup −1} below cis-CH{sub 3}-O-CHS. The energy difference between the cis and trans forms is drastically lower for MSCHO (1134 cm{sup −1}) than for MOCHS (1963.6 cm{sup −1}). Harmonic and anharmonic fundamentals and the corresponding intensities, as well as the rotational constants for the ground vibrational and first excited torsional states and the centrifugal distortions constants, are provided. Low torsional energy levels have been obtained by solving variationally a two dimensional Hamiltonian expressed in terms of the two torsional degrees of freedom. The corresponding 2D potential energy surfaces have been computed at the CCSD(T)/aug-cc-pVTZ level of theory. The methyl torsional barriers V{sub 3}(cis) are determined to be 139.7 cm{sup −1} (CH{sub 3}-S-CHO) and 670.4 cm{sup −1} (CH{sub 3}-O-CHS). The A/E splitting of ground torsional state has been estimated to be 0.438 cm{sup −1} for CH{sub 3}-S-CHO and negligible for CH{sub 3}-O-CHS.

  17. Production of methyl-vinyl ketone from levulinic acid

    DOE Patents [OSTI]

    Dumesic, James A.; West; Ryan M.

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  18. The use of novel biodegradable, optically active and nanostructured poly(amide-ester-imide) as a polymer matrix for preparation of modified ZnO based bionanocomposites

    SciTech Connect (OSTI)

    Abdolmaleki, Amir; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran ; Mallakpour, Shadpour; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran ; Borandeh, Sedigheh

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable and nanostructured PAEI based on two amino acids, was synthesized. Black-Right-Pointing-Pointer ZnO nanoparticles were modified via two different silane coupling agents. Black-Right-Pointing-Pointer PAEI/modified ZnO BNCs were synthesized through ultrasound irradiation. Black-Right-Pointing-Pointer ZnO particles were dispersed homogeneously in PAEI matrix on nanoscale. Black-Right-Pointing-Pointer The effect of ZnO nanoparticles on the properties of synthesized polymer was examined. -- Abstract: A novel biodegradable and nanostructured poly(amide-ester-imide) (PAEI) based on two different amino acids, was synthesized via direct polycondensation of biodegradable N,N Prime -bis[2-(methyl-3-(4-hydroxyphenyl)propanoate)]isophthaldiamide and N,N Prime -(pyromellitoyl)-bis-L-phenylalanine diacid. The resulting polymer was characterized by FT-IR, {sup 1}H NMR, specific rotation, elemental analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized polymer showed good thermal stability with nano and sphere structure. Then PAEI/ZnO bionanocomposites (BNCs) were fabricated via interaction of pure PAEI and ZnO nanoparticles. The surface of ZnO was modified with two different silane coupling agents. PAEI/ZnO BNCs were studied and characterized by FT-IR, XRD, UV/vis, FE-SEM and TEM. The TEM and FE-SEM results indicated that the nanoparticles were dispersed homogeneously in PAEI matrix on nanoscale. Furthermore the effect of ZnO nanoparticle on the thermal stability of the polymer was investigated with TGA and DSC technique.

  19. Role of methyl groups in dynamics and evolution of biomolecules

    SciTech Connect (OSTI)

    Nickels, Jonathan D [ORNL; Curtis, J. E. [National Institute of Standards and Technology (NIST), Gaithersburg, MD; Oneill, Hugh [Oak Ridge National Laboratory (ORNL); Sokolov, Alexei P [ORNL

    2012-01-01

    Recent studies have discovered strong differences between the dynamics of nucleic acids (RNA and DNA) and proteins, especially at low hydration and low temperatures. This difference is caused primarily by dynamics of methyl groups that are abundant in proteins, but are absent or very rare in RNA and DNA. In this paper, we present a hypothesis regarding the role of methyl groups as intrinsic plasticizers in proteins and their evolutionary selection to facilitate protein dynamics and activity. We demonstrate the profound effect methyl groups have on protein dynamics relative to nucleic acid dynamics, and note the apparent correlation of methyl group content in protein classes and their need for molecular flexibility. Moreover, we note the fastest methyl groups of some enzymes appear around dynamical centers such as hinges or active sites. Methyl groups are also of tremendous importance from a ydrophobicity/folding/entropy perspective. These significant roles, however, complement our hypothesis rather than preclude the recognition of methyl groups in the dynamics and evolution of biomolecules.

  20. Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum

    SciTech Connect (OSTI)

    Guss, Adam M; Olson, Daniel G.; Caiazza, Nicky; Lynd, Lee R

    2012-01-01

    BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than the similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.

  1. Integrated process of distillation with side reactors for synthesis of organic acid esters

    DOE Patents [OSTI]

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  2. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect (OSTI)

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  3. Assessment of Small Modular Reactor Suitability for Use On or Near Air

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Force Space Command Installations SAND 2016-2600 | Department of Energy Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600 Assessment of Small Modular Reactor Suitability for Use On or Near Air Force Space Command Installations SAND 2016-2600 This report assesses the suitability of using US-developed light water SMR technology to provide energy for Schriever Air Force Base, CO and Clear Air Force Station, AK, as well as broader SMR

  4. Substantial improvements in methyl ketone production in E. coli and

    Office of Scientific and Technical Information (OSTI)

    insights on the pathway from in vitro studies (Journal Article) | SciTech Connect Journal Article: Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies Citation Details In-Document Search Title: Substantial improvements in methyl ketone production in E. coli and insights on the pathway from in vitro studies Authors: Goh, Ee-Been ; Baidoo, Edward E.K. ; Burd, Helcio ; Lee, Taek Soon ; Keasling, Jay D. ; Beller, Harry R. Publication

  5. Rare-earth tantalates and niobates suitable for use as nanophosphors

    DOE Patents [OSTI]

    Nyman, May D; Rohwer, Lauren E.S& gt

    2013-11-19

    A family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  6. Phytoremediation of ionic and methyl mercury pollution

    SciTech Connect (OSTI)

    Meagher, R.B.

    1998-06-01

    'The long-term objective of the research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants. The authors are focused on mercury pollution as a case study of this plant genetic engineering approach. The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will: (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The results from the research are so positive that the technology will undoubtedly be applied in the very near future to cleaning large mercury contaminates sites. Many such sites were not remediable previously due to the excessive costs and the negative environmental impact of conventional mechanical-chemical technologies. At the time this grant was awarded 20 months ago, the authors had successfully engineered a small model plant, Arabidopsis thaliana, to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to much less toxic and volatile metallic Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. At that time, the authors had no information on expression of merA in any other plant species, nor had the authors tested merB in any plant. However, the results were so startlingly positive and well received that they clearly presaged a paradigm shift in the field of environmental remediation.'

  7. Properties of some ionic liquids based on1-methyl-3-octylimidazolium and 4-methyl-N-butylpyridinium cations.

    SciTech Connect (OSTI)

    Papaiconomou, Nicolas; Yakelis, Neal; Salminen, Justin; Bergman,Robert; Prausnitz, John M.

    2005-09-29

    Syntheses are reported for ionic liquids containing 1-methyl-3octylimidazolium and 4-methyl-N-butylpyridinium cations, and trifluoromethansulfonate, dicyanamide, bis(trifluoromethylsulfonyl)imide, and nonafluorobutanesulfonate anions. Densities, melting points and glass transition points, solubility in water as well as polarities have been measured. Ionic liquids based on pyridinium cations exhibit higher melting points, lower solubility in water, and higher polarity than those based on imidazolium cations.

  8. Selection of a suitable reactor type for water desalination and power generation in Saudi Arabia

    SciTech Connect (OSTI)

    Hussein, F.M.

    1988-03-01

    Selection of a reactor type suitable for water desalination and power generation is a complex process that involves the evaluation of many criteria and requires the professional judgment of many experts in different fields. A reactor type that is suitable for one country might not be suitable for another. This is especially true in the case of Saudi Arabia because of its strategic location, the nature of its land and people, and its moderate technological situation. A detailed study using a computer code based on Saaty's mathematical pairwise comparison technique and developed in a previous study was carried out to find the most suitable reactor for water desalination and power generation in Saudi Arabia from among five potential types: boiling water reactors (BWRs), pressurized water reactors, CANDU heavy water reactors (HWRs), steam-generating heavy water reactors (SGHWRs), and high-temperature gas-cooled reactors. It was concluded that the CANDU HWR is the most suitable type for this purpose followed first by the BWR, then the SGHWR.

  9. Nested methylation-specific polymerase chain reaction cancer detection method

    DOE Patents [OSTI]

    Belinsky, Steven A.; Palmisano, William A.

    2007-05-08

    A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.

  10. Geometric and Electronic Structures of the Ni(I) and Methyl-Ni(III)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediates of Methyl-Coenzyme M Reductase 9 Geometric and Electronic Structures of the Ni(I) and Methyl-Ni(III) Intermediates of Methyl-Coenzyme M Reductase Methyl-coenzyme M reductase (MCR) from methanogenic archaea catalyzes the terminal step in biological methane synthesis. Using coenzyme B (CoBSH) as the two-electron donor, MCR reduces methyl-coenzyme M (methyl-SCoM) to form methane and the heterodisulfide product, CoBS-SCoM. MCR contains an essential redox active nickel tetrapyrrolic

  11. Methods for detection of methyl-CpG dinucleotides

    DOE Patents [OSTI]

    Dunn, John J.

    2013-01-29

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  12. Methods for detection of methyl-CpG dinucleotides

    DOE Patents [OSTI]

    Dunn, John J.

    2012-09-11

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  13. Methods for detection of methyl-CpG dinucleotides

    DOE Patents [OSTI]

    Dunn, John J

    2013-11-26

    The invention provides methods for enriching methyl-CpG sequences from a DNA sample. The method makes use of conversion of cytosine residues to uracil under conditions in which methyl-cytosine residues are preserved. Additional methods of the invention enable to preservation of the context of me-CpG dinucleotides. The invention also provides a recombinant, full length and substantially pure McrA protein (rMcrA) for binding and isolation of DNA fragments containing the sequence 5'-C.sup.MeCpGG-3'. Methods for making and using the rMcrA protein, and derivatives thereof are provided.

  14. Mapping Suitability Areas for Concentrated Solar Power Plants Using Remote Sensing Data

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Singh, Nagendra; Bhaduri, Budhendra L

    2015-01-01

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. We present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  15. Mapping suitability areas for concentrated solar power plants using remote sensing data

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A.; Singh, Nagendra; Bhaduri, Budhendra L.

    2015-05-14

    The political push to increase power generation from renewable sources such as solar energy requires knowing the best places to site new solar power plants with respect to the applicable regulatory, operational, engineering, environmental, and socioeconomic criteria. Therefore, in this paper, we present applications of remote sensing data for mapping suitability areas for concentrated solar power plants. Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic Mission (SRTM) at a resolution of 3 arc second (approx. 90m resolution) for estimating global solar radiation for the study area. Then, we develop a computational model built on a Geographic Information System (GIS) platform that divides the study area into a grid of cells and estimates site suitability value for each cell by computing a list of metrics based on applicable siting requirements using GIS data. The computed metrics include population density, solar energy potential, federal lands, and hazardous facilities. Overall, some 30 GIS data are used to compute eight metrics. The site suitability value for each cell is computed as an algebraic sum of all metrics for the cell with the assumption that all metrics have equal weight. Finally, we color each cell according to its suitability value. Furthermore, we present results for concentrated solar power that drives a stream turbine and parabolic mirror connected to a Stirling Engine.

  16. Infant sex-specific placental cadmium and DNA methylation associations

    SciTech Connect (OSTI)

    Mohanty, April F.; Farin, Fred M.; Bammler, Theo K.; MacDonald, James W.; Afsharinejad, Zahra; Burbacher, Thomas M.; Siscovick, David S.; and others

    2015-04-15

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively. Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these findings. Such investigations may further our understanding of epigenetic mechanisms underlying maternal Cd burden with suboptimal fetal growth associations. - Highlights: • We examine sex-specific placental-Cd and -genome-wide DNA methylation associations. • In females, associated sites were at/near genes involved in cell damage response. • In males, associated sites were at/near angiogenesis and organ development genes. • Our study supports infant sex-specific placental Cd-DNA methylation associations.

  17. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect (OSTI)

    Nick Soelberg; Tony Watson

    2014-08-01

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that are soluble in NaOH scrubbing solution for iodine analysis. But when NOx and H2O are not present, then the majority of the uncaptured iodine exiting iodine-laden sorbent is in the form of methyl iodide. Methyl iodide adsorption efficiencies have been high enough so that initial DFs exceed 1,000 to 10,000. The methyl iodide mass transfer zone depths are estimated at 4-8 inches, possibly deeper than mass transfer zone depths estimated for I2 adsorption on AgZ. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  18. PERFORMANCE ENHANCEMENT OF COMPRESSION MOLDED KENAF FIBER REINFORCED VINYL ESTER COMPOSITES THROUGH RESIN ADDITIVE

    SciTech Connect (OSTI)

    Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-05-17

    Plant-based bio-fiber has the potential to achieve weight and cost savings over glass fiber in automotive polymer composites if moisture stability and fiber-resin compatibility issues can be solved. This paper describes the compression molding of 50vol% 2 inch random nonwoven mat kenaf fiber vinyl ester composites with and without chemical resin additives intended to improve moisture stability and resin compatibility. The 2wt% addition of n-undecanoyl chloride or 10-undecenoyl chloride to the styrene-based resin prior to molding of the kenaf composites was observed to decrease the 24hr, 25oC moisture uptake of the molded panels by more than 50%. The tensile stiffness and flexural stiffness of the soaked panels containing these additives were seen to increase by more than 30% and 70%, respectively, relative to panels made with no additives. While dry panel (50% relative humidity at 25oC) strengths did not significantly change in the presence of the additives, tensile strength was observed to increase by more than 40% and flexural strength more than doubled for the soaked panels.

  19. Mild partial deoxygenation of esters catalyzed by an oxazolinylborate-coordinated rhodium silylene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Songchen; Boschen, Jeffery S.; Biswas, Abhranil; Kobayashi, Takeshi; Pruski, Marek; Windus, Theresa L.; Sadow, Aaron D.

    2015-08-17

    An electrophilic, coordinatively unsaturated rhodium complex supported by borate-linked oxazoline, oxazoline-coordinated silylene, and N-heterocyclic carbene donors [{κ³-N,Si,C-PhB(OxMe²)(OxMe²SiHPh)ImMes}Rh(H)CO][HB(C₆F₅)₃] (2, OxMe² = 4,4-dimethyl-2-oxazoline; ImMes = 1-mesitylimidazole) is synthesized from the neutral rhodium silyl {PhB(OxMe²)₂ImMes}RhH(SiH2Ph)CO (1) and B(C6F5)3. The unusual oxazoline-coordinated silylene structure in 2 is proposed to form by rearrangement of an unobserved isomeric cationic rhodium silylene species [{PhB(OxMe²)₂ImMes}RhH(SiHPh)CO][HB(C₆F₅)₃] generated by H abstraction. Complex 2 catalyzes reductions of organic carbonyl compounds with silanes to give hydrosilylation products or deoxygenation products. The pathway to these reactions is primarily influenced by the degree of substitution of the organosilane. Reactions with primary silanes give deoxygenationmore » of esters to ethers, amides to amines, and ketones and aldehydes to hydrocarbons, whereas tertiary silanes react to give 1,2-hydrosilylation of the carbonyl functionality. In contrast, the strong Lewis acid B(C₆F₅)₃ catalyzes the complete deoxygenation of carbonyl compounds to hydrocarbons with PhSiH₃ as the reducing agent.« less

  20. Landfarming of phthalate ester-contaminated soil: Two years of bioremediation results

    SciTech Connect (OSTI)

    Kunze, C.M.; Yu, J.; Wilson, S.; Rezin, J.L.; Andronico, A.

    1995-12-31

    Biorem Technologies Inc. collaborated with Regal Plastics Corporation over 2 years to clean up approximately 600 cubic yards of soil contaminated with di-2-ethylhexyl phthalate ester (DEHP) and No. 2 fuel oil using a landfarming bioremediation process. The contaminated soils consisted of sandy backfill material which had been excavated during the removal of two underground storage tanks (USTs). In 1994, the initial average DEHP concentration was 4,551 ppm while the TPH concentration was 7,252 ppm. In 1995, the initial DEHP concentration was 1067 ppm while TPH was 3,733 ppm. Prior to the implementation of the project, Biorem Technologies completed a laboratory biofeasibility study to demonstrate that a bacterial culture isolated from the site had the capacity to efficiently degrade DEBP in the soil. It was determined during this study that nitrogen and phosphorus nutrient amendments were needed to promote the bioremediation process. In 1994, the soils were loaded on to a lined treatment bed to a depth of 14--16 in. The bed was covered with a greenhouse structure to eliminate stormwater runoff concerns associated with the contaminated soil. To optimize biodegradation, soil moisture and nutrient levels were adjusted. In 1995, a windrow turner replaced the 1994 tilling system. Tarps were used to cover the piles in place of the greenhouse. A leachate collection system was implemented to contain stormwater and leachate.

  1. Estimating Rooftop Suitability for PV: A Review of Methods, Patents, and Validation Techniques

    SciTech Connect (OSTI)

    Melius, J.; Margolis, R.; Ong, S.

    2013-12-01

    A number of methods have been developed using remote sensing data to estimate rooftop area suitable for the installation of photovoltaics (PV) at various geospatial resolutions. This report reviews the literature and patents on methods for estimating rooftop-area appropriate for PV, including constant-value methods, manual selection methods, and GIS-based methods. This report also presents NREL's proposed method for estimating suitable rooftop area for PV using Light Detection and Ranging (LiDAR) data in conjunction with a GIS model to predict areas with appropriate slope, orientation, and sunlight. NREL's method is validated against solar installation data from New Jersey, Colorado, and California to compare modeled results to actual on-the-ground measurements.

  2. Chemically induced Parkinson's disease: intermediates in the oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl-pyridinium ion

    SciTech Connect (OSTI)

    Chacon, J.N.; Chedekel, M.R.; Land, E.J.; Truscott, T.G.

    1987-04-29

    Various unstable intermediate oxidation states have been postulated in the metabolic activation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl pyridinium ion. We now report the first direct observation of these free radical intermediates by pulse radiolysis and flash photolysis. Studies are described of various reactions of such species, in particular with dopamine whose autoxidation to dopamine quinone is reported to be potentiated by 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine.

  3. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect (OSTI)

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi; Samuel S. Tam

    1999-04-21

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (January-March/99), in-situ formaldehyde generation and condensation with methyl propionate were tested over various catalysts and reaction conditions. The patent application is in preparation and the results are retained for future reports.

  4. Tropospheric oxidation mechanism of dimethyl ether and methyl formate

    SciTech Connect (OSTI)

    Good, D.A.; Francisco, J.S.

    2000-02-17

    The oxidation mechanism of dimethyl ether is investigated using ab initio methods. The structure and energetics of reactants, products, and transition structures are determined for all pathways involved in the oxidation mechanism. The detailed pathways leading to the experimentally observed products of dimethyl ether oxidation are presented. The energetics of over 50 species and transition structures involved in the oxidation process are calculated with G2 and G2(MP2) energies. The principal pathway following the initial attack of dimethyl ether (CH{sub 3}OCH{sub 3}) by the OH radical is the formation of the methoxymethyl radical (CH{sub 2}OCH{sub 3}). Oxidation steps lead to the formation of methyl formate, which is consistent with the experimentally observed products. Oxidation pathways of methyl formate are also considered.

  5. Synthesis of 6-Methyl-9-n-propyldibenzothiophene-4-ol

    SciTech Connect (OSTI)

    Not Available

    1991-10-28

    The material presented here has been described to some extent in Status Reports 12, 13, and 14 and covers the progress toward the synthesis of the modified target molecules 9-isopropyl-4-methoxy-6-methyldibenzothiophene (13) and 9-isopropyl-6-methyldibenzothiophene-4-ol (14). It is divided into three parts: (a) Dehydrogenation experiments On tetrahydrodibenzothiophene 12. (b) methoxyl methyl cleavage of 13 to 14 using boron tribromide. (c) isolation and purification of methoxydibenzothiophene 13.

  6. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect (OSTI)

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  7. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOE Patents [OSTI]

    Ray, S.P.; Rapp, R.A.

    1984-06-12

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  8. Evaluation of Suitability of Selected Set of Coal Plant Sites for Repowering with Small Modular Reactors

    SciTech Connect (OSTI)

    Belles, Randy; Copinger, Donald A; Mays, Gary T; Omitaomu, Olufemi A; Poore III, Willis P

    2013-03-01

    This report summarizes the approach that ORNL developed for screening a sample set of small coal stations for possible repowering with SMRs; the methodology employed, including spatial modeling; and initial results for these sample plants. The objective in conducting this type of siting evaluation is to demonstrate the capability to characterize specific sample coal plant sites to identify any particular issues associated with repowering existing coal stations with SMRs using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

  9. Development of a Habitat Suitability Index Model for the Sage Sparrow on the Hanford Site

    SciTech Connect (OSTI)

    Duberstein, Corey A.; Simmons, Mary Ann; Sackschewsky, Michael R.; Becker, James M.

    2008-01-01

    Mitigation threshold guidelines for the Hanford Site are based on habitat requirements of the sage sparrow (Amphispiza belli) and only apply to areas with a mature sagebrush (Artemisia tridentata) overstory and a native understory. The sage sparrow habitat requirements are based on literature values and are not specific to the Hanford Site. To refine these guidelines for the Site, a multi-year study was undertaken to quantify habitat characteristics of sage sparrow territories. These characteristics were then used to develop a habitat suitability index (HSI) model which can be used to estimate the habitat value of specific locations on the Site.

  10. Researching Fe catalyst suitable for CO{sub 2}-containing syngas for Fischer-Tropsch synthesis

    SciTech Connect (OSTI)

    Wensheng Ning; Naoto Koizumi; Muneyoshi Yamada

    2009-09-15

    Fischer-Tropsch (FT) synthesis is a technology to produce liquid fuels from coal, natural gas, and biomass as an alternate to crude oil. However, the quantity of emitted CO{sub 2} from the FT process consisting of syngas preparation, FT synthesis, and product workup is one of the serious disadvantages of FT process. The conversion of CO{sub 2} into hydrocarbons is one of the promising methods to decrease CO{sub 2} emissions. Effects of promoter addition on the activity of precipitated Fe catalysts for the conversion of CO{sub 2} were studied using pure CO{sub 2} and CO{sub 2}-containing syngas feeds. The results suggested that CO{sub 2} can be activated by suitable promoter(s) for hydrocarbon synthesis at low temperature. Low K content is suitable for increasing hydrocarbon yield. The Fe catalysts promoted by equal Zn and Cu have higher CO and CO{sub 2} conversion and decreased CH{sub 4} selectivity. 36 refs., 7 figs., 3 tabs.

  11. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, Luc

    1999-01-01

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  12. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, L.

    1999-05-25

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  13. Suitability of Silica Gel to Process INEEL Sodium Bearing Waste - Letter Report

    SciTech Connect (OSTI)

    Kirkham, Robert John; Herbst, Alan Keith

    2000-09-01

    The suitability of using the silica gel process for Idaho National Engineering and Environmental Laboratory (INEEL) sodium bearing waste was investigated during fiscal year 2000. The study was co-funded by the Tanks Focus Area as part of TTP No. ID-77WT-31 and the High Level Waste Program. The task also included the investigation of possible other absorbents. Scoping tests and examination of past work showed that the silica gel absorption/adsorption and drying method was the most promising; thus only silica gel was studied and not other absorbents. The documentation on the Russian silica gel process provided much of the needed information but did not provide some of the processing detail so these facts had to be inferred or gleaned from the literature.

  14. Suitability of epitaxial GaAs for x-ray imaging

    SciTech Connect (OSTI)

    Sun, G.C.; Talbi, N.; Verdeil, C.; Bourgoin, J.C.

    2004-09-20

    Because the rate of indirect photon-electron conversion for scintillator materials coupled with arrays of photodiodes is at least 25 times smaller than the rate of direct conversion, we examine the conditions to be fulfilled by semiconductors undergoing such direct conversion to be applied to x-ray imaging. Bulk grown materials are not well suited to this application, because large defect concentrations give rise to strongly nonuniform electronic properties. We argue that only epitaxial layers are suitable for use as imaging devices and we illustrate our argument using the case of thick epitaxial GaAs layers. Detectors made with such layers exhibit a good energy resolution, a charge collection efficiency which approaches 1, linearity over more than three orders of amplitude, no afterglow (a response time shorter than 20 {mu}s), and no charge-induced polarization effects.

  15. Methyl aryl ethers from coal liquids as gasoline extenders and octane improvers

    SciTech Connect (OSTI)

    Singerman, G.M.

    1980-11-01

    A mixture of methyl aryl ethers derived from the phenols present in direct liquefaction coal liquids shows considerable promise as a gasoline blending agent and octane improver. The mixture of methyl aryl ethers was blended at five volume percent with a commercial, unleaded gasoline. The properties and performance of the blend in a variety of laboratory and automotive tests is reported. The tests show that the mixture of methyl aryl ethers improves gasoline octane without degrading other gasoline properties.

  16. Multifunctional Properties of Cyanate Ester Composites with SiO2 Coated Fe3O4 Fillers

    SciTech Connect (OSTI)

    Sun, Weixing; Sun, Wuzhu; Kessler, Michael R.; Bowler, Nicola; Dennis, Kevin W.; McCallum, R. William; Li, Qi; Tan, Xiaoli

    2013-02-22

    SiO2 coated Fe3O4 submicrometer spherical particles (a conducting core/insulating shell configuration) are fabricated using a hydrothermal method and are loaded at 10 and 20 vol % into a bisphenol E cyanate ester matrix for synthesis of multifunctional composites. The dielectric constant of the resulting composites is found to be enhanced over a wide frequency and temperature range while the low dielectric loss tangent of the neat cyanate ester polymer is largely preserved up to 160 ?C due to the insulating SiO2 coating on individual conductive Fe3O4 submicrometer spheres. These composites also demonstrate high dielectric breakdown strengths at room temperature. Dynamic mechanical analysis indicates that the storage modulus of the composite with a 20 vol % filler loading is twice as high as that of neat resin, but the glass transition temperature considerably decreases with increasing filler content. Magnetic measurements reveal a large saturation magnetization and negligibly low coercivity and remanent magnetization in these composites.

  17. The Structural Basis for Tight Control of PP2A Methylation and Function by

    Office of Scientific and Technical Information (OSTI)

    LCMT-1 (Journal Article) | SciTech Connect The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1 Citation Details In-Document Search Title: The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1 Proper formation of protein phosphatase 2A (PP2A) holoenzymes is essential for the fitness of all eukaryotic cells. Carboxyl methylation of the PP2A catalytic subunit plays a critical role in regulating holoenzyme assembly; methylation is

  18. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    SciTech Connect (OSTI)

    Sivaraman, B.; Nair, B. G.; Mason, N. J.; Lo, J.-I.; Cheng, B.-M.; Kundu, S.; Davis, D.; Prabhudesai, V.; Krishnakumar, E.; Raja Sekhar, B. N.

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  19. Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1

    SciTech Connect (OSTI)

    Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.; Blow, Matthew; Korlach, Jonas; Deutschbauer, Adam; Malmstrom, Rex

    2013-08-30

    We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns. However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.

  20. Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report

    SciTech Connect (OSTI)

    Bruce G. Schnitzler

    2012-01-01

    Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as open loop systems for direct nuclear thermal propulsion. Although a number of fast spectrum reactor and engine designs suitable for direct nuclear thermal propulsion were proposed and designed, none were built. This report summarizes status results of evaluations of small nuclear reactor designs suitable for direct nuclear thermal propulsion.

  1. Search for Suitable ICRF Operation Window for the Shaped H-mode Operation of KSTAR

    SciTech Connect (OSTI)

    Park, B. H.; Kim, J. Y.

    2009-11-26

    KSTAR will try to achieve its 1st shaped H-mode plasma in 2010 campaign. The available power is limited by our plan for auxiliary heating system. Up to 2010, NBI with 1 MW, LHCD 0.5 MW, and ECH with 0.5 MW power will be prepared. To accomplish high beta plasma, TF magnetic field will be reduced to 2 T from rated field of 3.5 T. In this case the ECH contribution to H-mode power threshold requirement is ignorant because the 84 GHz frequency does not meet neither fundamental nor second harmonic resonance in the discharge area. Therefore the ICRF heating should carry out important roll to reach power threshold. The ICRF system of tunable frequency from 30 to 60 MHz will come with 1 MW power in 2010. To maximize the ICRF heating efficiency for H-mode purpose, we try to find suitable condition of ICRF heating parameters through the simulation using by TORIC code. Optimizations of RF frequency, toroidal modes controllable by 4 current straps, and the minority concentration are performed. Possibilities of second harmonic heating of minority and the mode converted heating near resonance layer are also studied.

  2. Preparation of powders suitable for conversion to useful .beta.-aluminas

    DOE Patents [OSTI]

    Morgan, Peter E. D.

    1982-01-01

    A process for forming a precursor powder which, when suitably pressed and sintered forms highly pure, densified .beta.- or .beta."-alumina, comprising the steps of: (1) forming a suspension (or slurry) of Bayer-derived Al(OH).sub.3 in a water-miscible solvent; (2) adding an aqueous solution of a Mg compound, a Li compound, a Na compound or mixtures thereof to the Bayer-derived Al(OH).sub.3 suspension while agitating the mixture formed thereby, to produce a gel; (3) drying the gel at a temperature above the normal boiling point of water to produce a powder material; (4) lightly ball milling and sieving said powder material; and (5) heating the ball-milled and sieved powder material at a temperature of between 350.degree. to 900.degree. C. to form the .beta.- or .beta."-alumina precursor powder. The precursor powder, thus formed, may be subsequently isopressed at a high pressure and sintered at an elevated temperature to produce .beta.- or .beta."-alumina. BACKGROUND OF THE INVENTION

  3. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    SciTech Connect (OSTI)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  4. Unexpected methyl migrations of ethanol dimer under synchrotron VUV radiation

    SciTech Connect (OSTI)

    Xiao, Weizhan; Hu, Yongjun E-mail: lssheng@ustc.edu.cn; Li, Weixing; Guan, Jiwen; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi E-mail: lssheng@ustc.edu.cn

    2015-01-14

    While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C{sub 2}H{sub 5}OH) ⋅ H{sup +} (m/z = 47) and the β-carbon-carbon bond cleavage fragment CH{sub 2}O ⋅ (C{sub 2}H{sub 5}OH)H{sup +} (m/z = 77), the measured mass spectra revealed that a new fragment (C{sub 2}H{sub 5}OH) ⋅ (CH{sub 3}){sup +} (m/z = 61) appeared at the photon energy of 12.1 and 15.0 eV, where the neutral dimer could be vertically ionized to higher ionic state. Thereafter, the generated carbonium ions are followed by a Wagner-Meerwein rearrangement and then dissociate to produce this new fragment, which is considered to generate after surmounting a few barriers including intra- and inter-molecular methyl migrations by the aid of theoretical calculations. The appearance energy of this new fragment is measured as 11.55 ± 0.05 eV by scanning photoionization efficiency curve. While the signal intensity of fragment m/z = 61 starts to increase, the fragments m/z = 47 and 77 tend to slowly incline around 11.55 eV photon energy. This suggests that the additional fragment channels other than (C{sub 2}H{sub 5}OH) ⋅ H{sup +} and CH{sub 2}O ⋅ (C{sub 2}H{sub 5}OH)H{sup +} have also been opened, which consume some dimer cations. The present report provides a clear description of the photoionization and dissociation processes of the ethanol dimer in the range of the photon energy 12-15 eV.

  5. Guiding optimal biofuels : a comparative analysis of the biochemical production of ethanol and fatty acid ethyl esters from switchgrass.

    SciTech Connect (OSTI)

    Paap, Scott M.; West, Todd H.; Manley, Dawn Kataoka; Dibble, Dean C.; Simmons, Blake Alexander; Steen, Eric J.; Beller, Harry R.; Keasling, Jay D.; Chang, Shiyan

    2013-01-01

    In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricity demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.

  6. Cell-free synthesis system suitable for disulfide-containing proteins

    SciTech Connect (OSTI)

    Matsuda, Takayoshi; Cell-Free Technology Application Laboratory, RIKEN Innovation Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 ; Watanabe, Satoru; Kigawa, Takanori; Cell-Free Technology Application Laboratory, RIKEN Innovation Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045; Department of Computational Intelligence and Systems Science, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502

    2013-02-08

    Highlights: ? Cell-free synthesis system suitable for disulfide-containing proteins is proposed. ? Disulfide bond formation was facilitated by the use of glutathione buffer. ? DsbC catalyzed the efficient shuffling of incorrectly formed disulfide bonds. ? Milligram quantities of functional {sup 15}N-labeled BPTI and lysozyme C were obtained. ? Synthesized proteins were both catalytically functional and properly folded. -- Abstract: Many important therapeutic targets are secreted proteins with multiple disulfide bonds, such as antibodies, cytokines, hormones, and proteases. The preparation of these proteins for structural and functional analyses using cell-based expression systems still suffers from several issues, such as inefficiency, low yield, and difficulty in stable-isotope labeling. The cell-free (or in vitro) protein synthesis system has become a useful protein production method. The openness of the cell-free system allows direct control of the reaction environment to promote protein folding, making it well suited for the synthesis of disulfide-containing proteins. In this study, we developed the Escherichia coli (E. coli) cell lysate-based cell-free synthesis system for disulfide-containing proteins, which can produce sufficient amounts of functional proteins for NMR analyses. Disulfide bond formation was facilitated by the use of glutathione buffer. In addition, disulfide isomerase, DsbC, catalyzed the efficient shuffling of incorrectly formed disulfide bonds during the protein synthesis reaction. We successfully synthesized milligram quantities of functional {sup 15}N-labeled higher eukaryotic proteins, bovine pancreatic trypsin inhibitor (BPTI) and human lysozyme C (LYZ). The NMR spectra and functional analyses indicated that the synthesized proteins are both catalytically functional and properly folded. Thus, the cell-free system is useful for the synthesis of disulfide-containing proteins for structural and functional analyses.

  7. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-02-18

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  8. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect (OSTI)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  9. Methyl-CpG island-associated genome signature tags

    DOE Patents [OSTI]

    Dunn, John J

    2014-05-20

    Disclosed is a method for analyzing the organismic complexity of a sample through analysis of the nucleic acid in the sample. In the disclosed method, through a series of steps, including digestion with a type II restriction enzyme, ligation of capture adapters and linkers and digestion with a type IIS restriction enzyme, genome signature tags are produced. The sequences of a statistically significant number of the signature tags are determined and the sequences are used to identify and quantify the organisms in the sample. Various embodiments of the invention described herein include methods for using single point genome signature tags to analyze the related families present in a sample, methods for analyzing sequences associated with hyper- and hypo-methylated CpG islands, methods for visualizing organismic complexity change in a sampling location over time and methods for generating the genome signature tag profile of a sample of fragmented DNA.

  10. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  11. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    SciTech Connect (OSTI)

    Podar, Mircea; Gilmour, C C; Brandt, Craig C; Bullock, Allyson L; Brown, Steven D; Crable, Bryan R; Palumbo, Anthony Vito; Somenahally, Anil C; Elias, Dwayne A

    2015-01-01

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones , soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.

  12. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    SciTech Connect (OSTI)

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony Vito; Somenahally, Anil C.; Elias, Dwayne A.

    2015-01-01

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.

  13. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect (OSTI)

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1999-01-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(Oct.-Dec./98), we have investigated the condensation between methyl propionate and formaldehyde (MP/HCHO=4.5/1) at various reaction temperatures(280-360EC) over 5%, 10%, and 20% Nb O /SiO catalysts. The conversion of HCHO increases with reaction 2 5 2 temperature and niobium loading. MMA+MAA selectivity goes through a maximum with the temperature over both 10% and 20% Nb O /SiO . The selectivities to MMA+MAA are 67.2%, 2 5 2 72.3%and 58.1% at 320EC over 5%, 10%, 20% Nb O /SiO , respectively. However, the 2 5 2 conversion of formaldehyde decreases rapidly with time on stream. The results suggest that silica supported niobium catalysts are active and selective for condensation of MP with HCHO, but deactivation needs to be minimized for the consideration of commercial application. We have preliminarily investigated the partial oxidation of dimethyl ether(DME) over 5% Nb O /SiO catalyst. Reactant gas mixture of 0.1% DME, 0.1% O and balance nitrogen is 2 5 2 2 studied with temperature ranging from 200°C to 500°C. The conversion of DME first increases with temperature reaching an maximum at 400°C then decreases. The selectivity to HCHO also increases with reaction temperature first. But the selectivity to HCHO decreases at temperature above 350°C accompanied by the increasing selectivity to CO . The results suggest that silica 2 supported niobium catalysts are active for partial oxidation of DME to HCHO. Best temperatures for partial oxidation are between 300 and 400°C. A short paper submitted to the ACS National Meeting at Anaheim(March 1999) was accepted for oral presentation. The title is �Catalytic Synthesis of Methacrylates over Silica Supported Niobium Catalysts� and will appear in the ACS preprints.

  14. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect (OSTI)

    Makarand R. Gogate; James J. Spivey; Joseph R. Zoeller; Richard D. Colberg; Gerald N. Choi

    1999-07-19

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. The research team has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, we are currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. During the April-June quarter(04-06/99) the first in-situ formaldehyde generation from DME and condensation with methyl propionate is demonstrated and the results are summarized. The supported niobium catalyst shows better condensation activity, but supported tungsten catalyst has higher formaldehyde selectivity. The project team has also completed a 200-hour long term test of PA-HCHO condensation over 30% Nb{sub 2}O{sub 5}/SiO{sub 2}. Three activity cycles and two regeneration cycles were carried out. 30% Nb{sub 2}O{sub 5}/SiO{sub 2} showed similar MAA yields as 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. However, the deactivation appears to be slower with 30% Nb{sub 2}O{sub 5}/SiO{sub 2} than 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. An detailed economic analysis of PA-HCHO condensation process for a 250 million lb/yr MMA plant is currently studied by Bechtel. Using the Amoco data-based azeotropic distillation model as the basis, an ASPEN flow sheet model was constructed to simulate the formaldehyde and propionic acid condensation processing section based on RTI's design data. The RTI MAA effluent azeotropic distillation column was found to be much more difficult to converge. The presence of non-condensible gases along with the byproduct DEK (both of which were not presented in Amoco's data) appear to the culprits.

  15. Using FEP's List and a PA Methodology for Evaluating Suitable Areas for the LLW Repository in Italy

    SciTech Connect (OSTI)

    Risoluti, P.; Ciabatti, P.; Mingrone, G.

    2002-02-26

    In Italy following a referendum held in 1987, nuclear energy has been phased out. Since 1998, a general site selection process covering the whole Italian territory has been under way. A GIS (Geographic Information System) methodology was implemented in three steps using the ESRI Arc/Info and Arc/View platforms. The screening identified approximately 0.8% of the Italian territory as suitable for locating the LLW Repository. 200 areas have been identified as suitable for the location of the LLW Repository, using a multiple exclusion criteria procedure (1:500,000), regional scale (1:100.000) and local scale (1:25,000-1:10,000). A methodology for evaluating these areas has been developed allowing, along with the evaluation of the long term efficiency of the engineered barrier system (EBS), the characterization of the selected areas in terms of physical and safety factors and planning factors. The first step was to identify, on a referenced FEPs list, a group of geomorphological, geological, hydrogeological, climatic and human behavior caused process and/or events, which were considered of importance for the site evaluation, taking into account the Italian situation. A site evaluation system was established ascribing weighted scores to each of these processes and events, which were identified as parameters of the new evaluation system. The score of each parameter is ranging from 1 (low suitability) to 3 (high suitability). The corresponding weight is calculated considering the effect of the parameter in terms of total dose to the critical group, using an upgraded AMBER model for PA calculation. At the end of the process an index obtained by a score weighted sum gives the degree of suitability of the selected areas for the LLW Repository location. The application of the methodology to two selected sites is given in the paper.

  16. Synthesis of Methyl Methacrylate from Coal-Derived Syngas

    SciTech Connect (OSTI)

    Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Makarand R. Gogate; Richard D. Colberg; Samuel S. Tam

    1998-04-17

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last month, RTI has finalized the design of a fixed-bed microreactor system for DME partial oxidation reactions. RTI incorporated some design changes to the feed blending system, so as to be able to blend varying proportions of DME and oxygen. RTI has also examined the flammability limits of DME-air mixtures. Since the lower flammability limit of DME in air is 3.6 volume percent, RTI will use a nominal feed composition of 1.6 percent in air, which is less than half the lower explosion limit for DME-air mixtures. This nominal feed composition is thus considered operationally safe, for DME partial oxidation reactions. RTI is also currently developing an analytical system for DME partial oxidation reaction system.

  17. Optimized End-Stacking Provides Specificity of N-Methyl Mesoporphyrin...

    Office of Scientific and Technical Information (OSTI)

    Optimized End-Stacking Provides Specificity of N-Methyl Mesoporphyrin IX for Human Telomeric G-Quadruplex DNA Citation Details In-Document Search Title: Optimized End-Stacking ...

  18. The Structural Basis for Tight Control of PP2A Methylation and...

    Office of Scientific and Technical Information (OSTI)

    The Structural Basis for Tight Control of PP2A Methylation and Function by LCMT-1 Citation Details In-Document Search Title: The Structural Basis for Tight Control of PP2A ...

  19. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Effects of nickel, chromate, and arsenite on histone 3 lysine methylation Citation Details In-Document Search Title: Effects of nickel, chromate, and arsenite on histone 3 lysine methylation Occupational exposure to nickel (Ni), chromium (Cr), and arsenic (As) containing compounds has been associated with lung cancer and other adverse health effects. Their carcinogenic properties may be attributable in part, to activation and/or repression of gene

  20. Modulation of histone methylation and MLH1 gene silencing by hexavalent

    Office of Scientific and Technical Information (OSTI)

    chromium (Journal Article) | SciTech Connect Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium Citation Details In-Document Search Title: Modulation of histone methylation and MLH1 gene silencing by hexavalent chromium Hexavalent chromium [Cr(VI)] is a mutagen and carcinogen, and occupational exposure can lead to lung cancers and other adverse health effects. Genetic changes resulting from DNA damage have been proposed as an important mechanism that mediates

  1. State Restrictions on Methyl Tertiary Butyl Ether (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    By the end of 2005, 25 states had barred, or passed laws banning, any more than trace levels of methyl tertiary butyl ether (MTBE) in their gasoline supplies, and legislation to ban MTBE was pending in 4 others. Some state laws address only MTBE; others also address ethers such as ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME). Annual Energy Outlook 2006 assumes that all state MTBE bans prohibit the use of all ethers for gasoline blending.

  2. Optimized End-Stacking Provides Specificity of N-Methyl Mesoporphyrin IX

    Office of Scientific and Technical Information (OSTI)

    for Human Telomeric G-Quadruplex DNA (Journal Article) | SciTech Connect Optimized End-Stacking Provides Specificity of N-Methyl Mesoporphyrin IX for Human Telomeric G-Quadruplex DNA Citation Details In-Document Search Title: Optimized End-Stacking Provides Specificity of N-Methyl Mesoporphyrin IX for Human Telomeric G-Quadruplex DNA Authors: Nicoludis, John M. ; Miller, Stephen T. ; Jeffrey, Philip D. ; Barrett, Steven P. ; Rablen, Paul R. ; Lawton, Thomas J. ; Yatsunyk, Liliya A. [1] ;

  3. Radio-methyl vorozole and methods for making and using the same

    DOE Patents [OSTI]

    Kim, Sung Won; Biegon, Anat; Fowler, Joanna S.

    2014-08-05

    Radiotracer vorozole compounds for in vivo and in vitro assaying, studying and imaging cytochrome P450 aromatase enzymes in humans, animals, and tissues and methods for making and using the same are provided. [N-radio-methyl] vorozole substantially separated from an N-3 radio-methyl isomer of vorozole is provided. Separation is accomplished through use of chromatography resins providing multiple mechanisms of selectivity.

  4. Radio-methyl vorozole and methods for making and using the same

    DOE Patents [OSTI]

    Kim, Sung Won; Biegon, Anat; Fowler, Joanna S.

    2014-08-12

    Radiotracer vorozole compounds for in vivo and in vitro assaying, studying and imaging cytochrome P450 aromatase enzymes in humans, animals, and tissues and methods for making and using the same are provided. [N-radio-methyl] vorozole substantially separated from an N-3 radio-methyl isomer of vorozole is provided. Separation is accomplished through use of chromatography resins providing multiple mechanisms of selectivity.

  5. Synthesis of Methyl Methacrylate From Coal-Derived Syngas

    SciTech Connect (OSTI)

    Ben W.-L. Jang; Gerald N. Choi; James J. Spivey; Jospeh R. Zoeller; Richard D. Colberg; Samuel S. Tam

    1998-07-27

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter(April-June, 1998), RTI has modified the reactor system including a new preheater and new temperature settings for the preheater. Continuous condensation of formaldehyde with propionic acid were carried out over 10% Nb O /SiO at 300°C without 2 5 2 interruption. Five activity and four regeneration cycles have been completed without plugging or material balance problems. The results show that 10% Nb O /SiO deactivates slowly with time 2 5 2 but can be regenerated, at least four times, to 100% of its original activity with 2% O in nitrogen 2 at 400°C. The cycles continue with consistent 90-95% of carbon balance. The reaction is scheduled to complete with 6 activity cycles and 5 regenerations. Used catalysts will be analyzed with TGA and XPS to determine bulk and surface coke content and coke properties. RTI will start the investigation of effects of propionic acid/formaldehyde ratio on reaction activity and product selectivity over 20% Nb O /SiO catalysts.

  6. Vapor pressures of methyl tert-butyl ether, ethyl tert-butyl ether, isopropyl tert-butyl ether, tert-amyl methyl ether, and tert-amyl ethyl ether

    SciTech Connect (OSTI)

    Kraehenbuehl, M.A.; Gmehling, J. . Technische Chemie)

    1994-10-01

    The vapor pressures of methyl tert-butyl ether, ethyl tert-butyl ether, isopropyl tert-butyl ether, tert-amyl methyl ether, and tert-amyl ethyl ether were measured by ebulliometry or the static method in the pressure ranges 14--102 and 3--835 kPa (methyl tert-butyl ether), respectively. The data were correlated using the Antoine and Wagner equations. The experimental data of methyl tert-butyl ether and ethyl tert-butyl ether were compared with data available in the literature.

  7. SYNTHESIS OF METHYL METHACRYLATE FROM COAL-DERIVED SYNGAS

    SciTech Connect (OSTI)

    BEN W.-L. JANG; GERALD N. CHOI; JAMES J. SPIVEY; JOSPEH R. ZOELLER; RICHARD D. COLBERG

    1998-10-20

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel three-step process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of the steps of synthesis of a propionate, its condensation with formaldehyde to form methacrylic acid (MAA), and esterification of MAA with methanol to produce MMA. RTI has completed the research on the three-step methanol-based route to MMA. Under an extension to the original contract, RTI is currently evaluating a new DME-based process for MMA. The key research need for DME route is to develop catalysts for DME partial oxidation reactions and DME condensation reactions. Over the last quarter (July-September, 1998), the project team has completed the continuous condensation of formaldehyde with propionic acid over 10% Nb{sub 2}O{sub 5}/SiO{sub 2} at 300 C. Six activity and five regeneration cycles have been completed. The results show that 10% Nb{sub 2}O{sub 5}/SiO{sub 2} deactivates slowly with time but can be regenerated to its original activity with 2% O{sub 2} in nitrogen over night at 400 C. We have investigated the effects of regeneration, propionic acid/formaldehyde ratio (PA/HCHO = 4.5/1 to 1.5/1) and reaction temperature(280-300 C) on reaction activity and product selectivity over 20% Nb{sub 2}O{sub 5}/SiO{sub 2} catalysts. The regeneration effect on 20% Nb{sub 2}O{sub 5}/SiO{sub 2} is similar to the effect on 10% Nb{sub 2}O{sub 5}/SiO{sub 2}. The regeneration can bring the deactivated catalyst to its original activity. However, the selectivity to MAA decreases with regeneration while the selectivity to DEK and CO{sub 2} increases. When PA/HCHO ratio is decreased from 4.5/1 to 2.25/1 then to 1.5/1 at 300 C the MAA yield decreases but the MAA selectivity first increases then decreases. Decreasing the reaction temperature from 300 C to 280 C decreases the MAA yield from 39.5% to 30.7% but increases the MAA selectivity from 73.7% to 82.2%. The results indicate that both temperature and PA/HCHO ratio are important parameters to optimize the economic of the condensation between propionic acid and formaldehyde.

  8. Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

    Broader source: Energy.gov [DOE]

    Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

  9. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOE Patents [OSTI]

    Ray, S.P.; Rapp, R.A.

    1986-04-22

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  10. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOE Patents [OSTI]

    Ray, Siba P. (Pittsburgh, PA); Rapp, Robert A. (Columbus, OH)

    1986-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  11. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOE Patents [OSTI]

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  12. Polylactide?Poly(6-methyl-[espilson]-caprolactone)?Polylactide Thermoplastic Elastomers

    SciTech Connect (OSTI)

    Martello, Mark T.; Hillmyer, Marc A.

    2012-11-14

    Amorphous ABA type block aliphatic polyesters can be useful as degradable and biorenewable thermoplastic elastomers. These materials can be prepared by sequential ring-opening transesterification polymerization (ROTEP) reactions and can exhibit a range of physical properties and morphologies. In this work a set of amorphous polylactide-poly(6-methyl-{epsilon}-caprolactone)-polylactide aliphatic polyester ABA triblock copolymers were prepared by consecutive controlled ring-opening polymerizations. Ring-opening polymerization of neat 6-methyl-{epsilon}-caprolactone in the presence of 1,4-benzenedimethanol and tin(II) octoate afforded {alpha},{omega}-hydroxyl-terminated poly(6-methyl-{epsilon}-caprolactone). High conversions of 6-methyl-{epsilon}-caprolactone (>96%) afforded polymers with molar masses ranging from 12 to 98 kg mol{sup -1}, depending on monomer-to-initiator ratios, polymers with narrow, monomodal molecular weight distributions. An array of polylactide-poly(6-methyl-{epsilon}-caprolactone)-polylactide triblock copolymers with controlled molecular weights and narrow molecular weight distributions were synthesized using the telechelic poly(6-methyl-{epsilon}-caprolactone) samples as macroinitiators for the ring-opening polymerization of D,L-lactide. The morphological, thermal, and mechanical behaviors of these materials were explored. Several triblocks adopted well-ordered microphase-separated morphologies, and both hexagonally packed cylindrical and lamellar structures were observed. The Flory-Huggins interaction parameter was determined, x(T) = 61.2 T{sup -1} - 0.1, based on the order-to-disorder transition temperatures of two symmetric triblocks using the calculated mean field theory result. The elastomeric mechanical behavior of two high molecular weight triblocks was characterized by tensile and elastic recovery experiments.

  13. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    SciTech Connect (OSTI)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including ?-globin, ?-globin, ?-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including ?-globin, ?-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ? Catechol enhanced hemin-induced hemoglobin accumulation. ? Exposure to catechol resulted in up-regulated expression of erythroid genes. ? Catechol reduced methylation levels at some CpG sites in erythroid genes.

  14. Crystal structure of 1-methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea

    SciTech Connect (OSTI)

    Habibi, A. Ghorbani, H. S.; Bruno, G.; Rudbari, H. A.; Valizadeh, Y.

    2013-12-15

    The crystal structure of 1-Methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea (C{sub 9}H{sub 12}N{sub 2}O{sub 5}) has been determined by single crystal X-ray diffraction analysis. The crystals are monoclinic, a = 5.3179(2), b = 18.6394(6), c =10.8124(3) , ? = 100.015(2), Z = 4, sp. gr. P2{sub 1}/c, R = 0.0381 for 2537 reflections with I > 2?(I). Except for C(CH{sub 3}){sub 2} group, the molecule is planar. The structure is stabilized by inter- and intramolecular N-H...O hydrogen bonds and weak C-H...O interactions.

  15. Acute environmental toxicity and persistence of methyl salicylate: A chemical agent simulant. Final report

    SciTech Connect (OSTI)

    Cataldo, D.A.; Ligotke, M.W.; Harvey, S.D.; Fellows, R.J.; Li, S.W.

    1994-06-01

    The interactions of methyl salicylate with plant foliage and soils were assessed using aerosol/vapor exposure methods. Measurements of deposition velocity and residence times for soils and foliar surfaces are reported. Severe plant contact toxicity was observed at foliar mass-loading levels above 4 {mu}g/cm{sup 2} leaf; however, recovery was noted after four to fourteen days. Methyl salicylate has a short-term effect on soil dehydrogenase activity, but not phosphatase activity. Results of the earthworm bioassay indicated only minimal effects on survival.

  16. Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation

    SciTech Connect (OSTI)

    Sahay, R.; Sundaramurthy, J.; Suresh Kumar, P.; Thavasi, V.; Mhaisalkar, S.G.; Ramakrishna, S.

    2012-02-15

    Electrospun copper based composite nanofibers were synthesized using the copper acetate/polyvinyl alcohol/water solution as starting material. Synthesized composite nanofibers were sintered at 500 Degree-Sign C to obtain CuO nanofibers. XRD, FTIR and XPS techniques were used to confirm the presence of pure CuO nanostructures. The effect of annealing cycle on the crystalline structure of the CuO nanofibers was analyzed and observed that the decrease in crystallite size with an increase in the dwelling time improved the orientation of the CuO crystallite. The blue-shift in the band-gap energies of CuO nanofibers was observed as a result of quantum confinement from bulk CuO (1.2 eV) to one dimensional (1D) nanostructures ({approx}1.746 eV). The catalytic activity of the CuO fibers for the degradation of methyl orange was carried out and as a blocking layer in ZnO based DSSC was fabricated and observed a {approx}25% increase in the current density. - Graphical abstract: The study on the suitability of highly crystalline CuO nanofibers as the blocking layer in ZnO based DSSC was demonstrated and fabricated with possible energy applications. Highlights: Black-Right-Pointing-Pointer CuO nanofibers were successfully synthesized by using electrospinning technique. Black-Right-Pointing-Pointer The effect of the dwelling time of the annealing cycle for the formation of the crystallite CuO nanofibers was analyzed. Black-Right-Pointing-Pointer A 25% increase in the current density was observed with the application of CuO as blocking layer.

  17. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1983-03-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C[sub 4] hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether. 1 fig.

  18. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1983-01-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C.sub.4 hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether.

  19. Hydrogen-terminated silicon nanowire photocatalysis: Benzene oxidation and methyl red decomposition

    SciTech Connect (OSTI)

    Lian, Suoyuan; School of Chemical Engineering and Materials, Dalian Polytechnic University, Dalian 116034 ; Tsang, Chi Him A.; Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong ; Kang, Zhenhui; Liu, Yang; Wong, Ningbew; Lee, Shuit-Tong; Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong

    2011-12-15

    Graphical abstract: H-SiNWs can catalyze hydroxylation of benzene and degradation of methyl red under visible light irradiation. Highlights: Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were active photocatalyst in the hydroxylation of benzene under light. Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were also effective in the decomposition of methyl red dye. Black-Right-Pointing-Pointer The Si/SiO{sub x} core-shell structure is the main reason of the obtained high selectivity during the hydroxylation. -- Abstract: Hydrogen-terminated silicon nanowires (H-SiNWs) were used as heterogeneous photocatalysts for the hydroxylation of benzene and for the decomposition of methyl red under visible light irradiation. The above reactions were monitored by GC-MS and UV-Vis spectrophotometry, respectively, which shows 100% selectivity for the transformation of benzene to phenol. A complete decomposition of a 2 Multiplication-Sign 10{sup -4} M methyl red solution was achieved within 30 min. The high selectivity for the hydroxylation of benzene and the photodecomposition demonstrate the catalytic activity of ultrafine H-SiNWs during nanocatalysis.

  20. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Poly(etherimide) and poly(ether-ester-amide) membranes

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream's composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  1. Evaluation of inter-laminar shear strength of GFRP composed of bonded glass/polyimide tapes and cyanate-ester/epoxy blended resin for ITER TF coils

    SciTech Connect (OSTI)

    Hemmi, T.; Matsui, K.; Koizumi, N. [Japan Atomic Energy Agency, Fusion Research and Development Directorate 801-1 Mukoyama, Naka, Ibaraki, 311-0193 (Japan); Nishimura, A. [National Institute for Fusion Science, Fusion Engineering Research Center 322-6 Oroshi-cho, Toki, Gifu, 509-5292 (Japan); Nishijima, S. [Osaka University, Division of Sustainable Energy and Environmental Engineering 1-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Shikama, T. [Tohoku University, Institute for Materials Research 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 (Japan)

    2014-01-27

    The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 10{sup 22} n/m{sup 2} during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricated using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.

  2. Impaired methylation as a novel mechanism for proteasome suppression in liver cells

    SciTech Connect (OSTI)

    Osna, Natalia A.; White, Ronda L.; Donohue, Terrence M.; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105 ; Beard, Michael R.; Tuma, Dean J.; Kharbanda, Kusum K.; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105

    2010-01-08

    The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.

  3. Spectroscopic investigation of the vibrational quasi-continuum arising from internal rotation of a methyl group

    SciTech Connect (OSTI)

    Hougen, J.T.

    1993-12-01

    The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.

  4. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    SciTech Connect (OSTI)

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GA down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.

  5. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore » down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less

  6. Activation of water soluble amines by halogens for trapping methyl radioactive iodine from air streams

    DOE Patents [OSTI]

    Deitz, Victor R.; Blachly, Charles H.

    1977-01-01

    Gas adsorbent charcoals impregnated with an aqueous solution of the reaction product of a tertiary amine and elemental iodine or bromine are better than 99 per cent efficient in trapping methyl iodine.sup.131. The chemical addition of iodine or bromine to the tertiary amine molecule increases the efficiency of the impregnated charcoal as a trapping agent, and in conjunction with the high flash point of the tertiary amine raises the ignition temperature of the impregnated charcoal.

  7. Method of recycling lithium borate to lithium borohydride through methyl borate

    DOE Patents [OSTI]

    Filby, Evan E.

    1977-01-01

    This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a methyl borate intermediate to complete the recycle scheme.

  8. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Technology (Revised) (Presentation)

    SciTech Connect (OSTI)

    Miller, D. C.; Carloni, J. D.; Pankow, J. W.; Gjersing, E. L.; To, B.; Packard, C. E.; Kennedy, C. E.; Kurtz, S. R.

    2012-01-01

    Concentrating photovoltaic (CPV) technology recently gained interest based on its expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems employ Fresnel lenses composed of poly(methyl methacrylate) (PMMA) to obtain a high optical flux density on the cell. The optical and mechanical durability of these lenses, however, is not well established relative to the desired surface life of 30 years. Our research aims to quantify the expected lifetime of PMMA in key market locations (FL, AZ, and CO).

  9. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2, 4-pentanediol

    SciTech Connect (OSTI)

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Crystallization of lysozyme with (R)-2-methyl-2, 4-pentanediol produces more ordered crystals and a higher resolution protein structure than crystallization with (S)-2-methyl-2, 4-pentanediol. The results suggest that chiral interactions with chiral additives are important in protein crystal formation. Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2, 4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.

  10. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1.

    SciTech Connect (OSTI)

    Avvakumov, George V.; Walker, John R.; Xue, Sheng; Li, Yanjun; Duan, Shili; Bronner, Christian; Arrowsmith, Cheryl H.; Dhe-Paganon, Sirano

    2008-11-17

    Epigenetic inheritance in mammals is characterized by high-fidelity replication of CpG methylation patterns during development. UHRF1 (also known as ICBP90 in humans and Np95 in mouse) is an E3 ligase important for the maintenance of global and local DNA methylation in vivo. The preferential affinity of UHRF1 for hemi-methylated DNA over symmetrically methylated DNA by means of its SET and RING-associated (SRA) domain and its association with the maintenance DNA methyltransferase 1 (DNMT1) suggests a role in replication of the epigenetic code. Here we report the 1.7 {angstrom} crystal structure of the apo SRA domain of human UHRF1 and a 2.2 {angstrom} structure of its complex with hemi-methylated DNA, revealing a previously unknown reading mechanism for methylated CpG sites (mCpG). The SRA-DNA complex has several notable structural features including a binding pocket that accommodates the 5-methylcytosine that is flipped out of the duplex DNA. Two specialized loops reach through the resulting gap in the DNA from both the major and the minor grooves to read the other three bases of the CpG duplex. The major groove loop confers both specificity for the CpG dinucleotide and discrimination against methylation of deoxycytidine of the complementary strand. The structure, along with mutagenesis data, suggests how UHRF1 acts as a key factor for DNMT1 maintenance methylation through recognition of a fundamental unit of epigenetic inheritance, mCpG.

  11. Spatial and Functional Relationships Among Pol V-Associated loci, Pol IV-Dependent siRNAs, and Cytosine Methylation in the Arabidopsis Epigenome

    SciTech Connect (OSTI)

    Wierzbicki, A. T.; Cocklin, Ross; Mayampurath, Anoop; Lister, Ryan; Rowley, M. J.; Gregory, Brian D.; Ecker, Joseph R.; Tang, Haixu; Pikaard, Craig S.

    2012-08-15

    Multisubunit RNA polymerases IV and V (Pols IV and V) mediate RNA-directed DNA methylation and transcriptional silencing of retrotransposons and heterochromatic repeats in plants. We identified genomic sites of Pol V occupancy in parallel with siRNA deep sequencing and methylcytosine mapping, comparing wild-type plants with mutants defective for Pol IV, Pol V, or both Pols IV and V. Approximately 60% of Pol V-associated regions encompass regions of 24-nucleotide (nt) siRNA complementarity and cytosine methylation, consistent with cytosine methylation being guided by base-pairing of Pol IV-dependent siRNAs with Pol V transcripts. However, 27% of Pol V peaks do not overlap sites of 24-nt siRNA biogenesis or cytosine methylation, indicating that Pol V alone does not specify sites of cytosine methylation. Surprisingly, the number of methylated CHH motifs, a hallmark of RNA-directed de novo methylation, is similar in wild-type plants and Pol IV or Pol V mutants. In the mutants, methylation is lost at 50%-60% of the CHH sites that are methylated in the wild type but is gained at new CHH positions, primarily in pericentromeric regions. These results indicate that Pol IV and Pol V are not required for cytosine methyltransferase activity but shape the epigenome by guiding CHH methylation to specific genomic sites.

  12. The interaction of organic adsorbate vibrations with substrate lattice waves in methyl-Si(111)-(1??1)

    SciTech Connect (OSTI)

    Brown, Ryan D.; Hund, Zachary M.; Sibener, S. J.; Campi, Davide; Bernasconi, M.; OLeary, Leslie E.; Lewis, Nathan S.; Benedek, G.

    2014-07-14

    A combined helium atom scattering and density functional perturbation theory study has been performed to elucidate the surface phonon dispersion relations for both the CH{sub 3}-Si(111)-(1??1) and CD{sub 3}-Si(111)-(1??1) surfaces. The combination of experimental and theoretical methods has allowed characterization of the interactions between the low energy vibrations of the adsorbate and the lattice waves of the underlying substrate, as well as characterization of the interactions between neighboring methyl groups, across the entire wavevector resolved vibrational energy spectrum of each system. The Rayleigh wave was found to hybridize with the surface rocking libration near the surface Brillouin zone edge at both the M{sup }-point and K{sup }-point. The calculations indicated that the range of possible energies for the potential barrier to the methyl rotation about the Si-C axis is sufficient to prevent the free rotation of the methyl groups at a room temperature interface. The density functional perturbation theory calculations revealed several other surface phonons that experienced mode-splitting arising from the mutual interaction of adjacent methyl groups. The theory identified a Lucas pair that exists just below the silicon optical bands. For both the CH{sub 3}- and CD{sub 3}-terminated Si(111) surfaces, the deformations of the methyl groups were examined and compared to previous experimental and theoretical work on the nature of the surface vibrations. The calculations indicated a splitting of the asymmetric deformation of the methyl group near the zone edges due to steric interactions of adjacent methyl groups. The observed shifts in vibrational energies of the -CD{sub 3} groups were consistent with the expected effect of isotopic substitution in this system.

  13. Low-lying excited states and nonradiative processes of 9-methyl-2-aminopurine

    SciTech Connect (OSTI)

    Trachsel, Maria A.; Lobsiger, Simon; Schr, Tobias; Leutwyler, Samuel

    2014-01-28

    The UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm{sup ?1} resolution in a supersonic jet. The electronic origin at 32252 cm{sup ?1} exhibits methyl torsional subbands that originate from the 0A{sub 1}{sup ??} (l = 0) and 1E{sup ?} (l = 1) torsional levels. These and further torsional bands that appear up to 0{sub 0}{sup 0}+230 cm{sup ?1} allow to fit the threefold (V{sub 3}) barriers of the torsional potentials as |V{sub 3}{sup ??}|=50 cm{sup ?1} in the S{sub 0} and |V{sub 3}{sup ?}|=126 cm{sup ?1} in the S{sub 1} state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V{sub 3}{sup ??}=20 cm{sup ?1} and V{sub 3}{sup ?}=115 cm{sup ?1}. The 0{sub 0}{sup 0} rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis {sup 1}??{sup *} excitation. The residual 25% c-axis polarization may indicate coupling of the {sup 1}??{sup *} to the close-lying {sup 1}n?{sup *} state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated {sup 1}n? oscillator strength is only 6% of that of the {sup 1}??{sup *} transition. The {sup 1}??{sup *} vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm{sup ?1}. The methyl torsion and the low-frequency out-of-plane ?{sub 1}{sup ?} and ?{sub 2}{sup ?} vibrations are strongly coupled in the {sup 1}??{sup *} state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the {sup 1}??{sup *} spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys. 134, 114307 (2011)]. From the Lorentzian broadening needed to fit the 0{sub 0}{sup 0} contour of 9M-2AP, the {sup 1}??{sup *} lifetime is ? ? 120 ps, reflecting a rapid nonradiative transition.

  14. Lithium cycling performance in improved lithium hexafluoroarsenate/2-Methyl tetrahydrofuran electrolytes

    SciTech Connect (OSTI)

    Desjardins, C.D.; Cadge, T.G.; Casey, E.J.; Donaldson, G.; Salter, R.S.

    1985-03-01

    Lithium hexafluoroarsenate/2-methyl tetrahydrofuran electrolytes have been prepared, purified, and evaluated using half-cell galvanostatic lithium cycling, cyclic voltammetry, plus colorimetric, gas chromatographic, and UV absorption techniques. Superior electrolytes have been prepared yielding reproducible cycling efficiencies in excess of 97%. Static aging trials at ambient temperature clearly demonstrate deterioration in cycling performance with time. This decline in performance is related to electrolyte degradation, possibly arising from the formation of peroxides. However, studies of various battery testing regimes on 1M LiAsF/sub 6//2Me-THF electrolyte support the system' battery potential with respect to both rate capability and shelf-life characteristics.

  15. Continuous realtime radioiodine monitor employing on-line methyl iodide conversion

    SciTech Connect (OSTI)

    Fernandez, S.J.; Motes, B.G.

    1980-01-01

    An integrated /sup 14/C, /sup 129/I, and /sup 85/Kr monitor was proposed by Fernandez, et al. that separates /sup 129/I from /sup 85/Kr by selective permeation across thin silicone rubber membranes. Subsequent studies of the permeation of CH/sub 3/I and I/sub 2/ through silicone rubber membranes demonstrated that I/sub 2/ transport across the membranes is too slow to be useful in a realtime monitor. Transport of methyl iodide, however, is rapid and gives a separation factor of greater than 100 from /sup 85/Kr.

  16. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation

    SciTech Connect (OSTI)

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T.; Roy, Soumya Singha; Brown, Richard C. D.; Pileio, Giuseppe; Levitt, Malcolm H.

    2015-01-28

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T{sub 1}. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in {sup 13}CH{sub 3} groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.

  17. In-tube heat transfer and pressure drop of R-134a and ester lubricant mixtures in a smooth tube and a micro-fin tube. Part 1: Evaporation

    SciTech Connect (OSTI)

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1994-12-31

    In-tube heat transfer coefficients and pressure drops during evaporation are reported for mixtures of refrigerant R-134a and a penta erythritol ester mixed-acid lubricant. The ester lubricant was tested at viscosities of 169 SUS and 369 SUS over a lubricant concentration range of 0% to 5% in both a smooth tube and a micro-fine tube. The average saturation temperature used was 1 C (33.8 F). Measurements were taken for the refrigerant-lubricant mixture over a mass flux range of 85 kg/m{sup 2}{center_dot}s (62,700 lb/ft{sup 2}{center_dot}h) to 375 kg/m{sup 2}{center_dot}s (276,640 lb/ft{sup 2}{center_dot}h) in test tubes with an outer diameter of 9.52 mm (3/8 in.). Heat transfer coefficients during evaporation increased at low concentrations of the 169-SUS ester lubricant and then dropped off at high lubricant concentrations in both the smooth tube and the micro-fin tube. The higher viscosity 369-SUS lubricant decreased the heat transfer coefficients in both tubes over the range of lubricant concentrations tested. Pressure drops during evaporation increased in both the smooth tube and the micro-fin tube with the addition of ester lubricant of either viscosity. The heat transfer coefficients for the micro-fin tube were 100% to 50% higher than those for the smooth tube, with the higher values occurring at low mass fluxes. Pressure drops in the micro-fin tube were 10% to 20% higher than those in the smooth tube.

  18. Heat transfer coefficients and pressure drops for R-134a and an ester lubricant mixture in a smooth tube and a micro-fin tube

    SciTech Connect (OSTI)

    Eckels, S.J.; Doerr, T.M.; Pate, M.B.

    1998-10-01

    This paper reports average heat transfer coefficients and pressure drops during the evaporation and condensation of mixtures of R-134a and a 150 SUS penta erythritol ester branched-acid lubricant. The smooth tube and micro-fin tube tested in this study had outer diameters of 9.52 mm (3/8 in.). The micro-fin tube had 60 fins, a fin height of 0.2 mm (0.008 in), and a spiral angle of 18{degree}. The objective of this study is to evaluate the effectiveness of the micro-fin tube with R-134a and to determine the effect of circulating lubricant. The experimental results show that the micro-fin tube has distinct performance advantages over the smooth tube. For example, the average heat transfer coefficients during evaporation and condensation in the micro-fin tube were 50--200% higher than those for the smooth tube, while the average pressure drops were on average only 10--50% higher. The experimental results indicate that the presence of a lubricant degrades the average heat transfer coefficients during both evaporation and condensation at high lubricant concentrations. Pressure drops during evaporation increased with the addition of a lubricant in both tubes. For condensation, pressure drops were unaffected by the addition of a lubricant.

  19. Low-temperature oxidative degradation of PBX 9501 and its components determined via molecular weight analysis of the poly [ester urethane] binder

    SciTech Connect (OSTI)

    Kress, Joel D

    2008-01-01

    The results of following the oxidative degradation of a plastic-bonded explosive (PBX 9501) are reported. Into over 1100 sealed containers were placed samples of PBX 9501 and combinations of its components and aged at relatively low temperatures to induce oxidative degradation of the samples. One of the components of the explosive is a poly(ester urethane) polymer and the oxidative degradation of the samples were following by measuring the molecular weight change of the polymer by gel permeation chromatography (coupled with both differential refractive index and multiangle laser light scattering detectors). Multiple temperatures between 40 and 64 {sup o}C were used to accelerate the aging of the samples. Interesting induction period behavior, along with both molecular weight increasing (crosslinking) and decreasing (chain scissioning) processes, were found at these relatively mild conditions. The molecular weight growth rates were fit to a random crosslinking model for all the combinations of components. The fit rate coefficients show Arrhenius behavior and activation energies and frequency factors were obtained. The kinetics of molecular weight growth shows a compensatory effect between the Arrhenius prefactors and activation energies, suggesting a common degradation process between PBX 9501 and the various combinations of its constituents. An oxidative chemical mechanism of the polymer is postulated, consistent with previous experimental results, that involves a competition between urethane radical crosslinking and carbonyl formation.

  20. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    SciTech Connect (OSTI)

    Kim, Hyung Gyun; Han, Eun Hee; Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo; Jeong, Hye Gwang

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  1. Autoignition measurements and a validated kinetic model for the biodiesel surrogate, methyl butanoate

    SciTech Connect (OSTI)

    Dooley, S.; Curran, H.J.; Simmie, J.M.

    2008-04-15

    The autoignition of methyl butanoate has been studied at 1 and 4 atm in a shock tube over the temperature range 1250-1760 K at equivalence ratios of 1.5, 1.0, 0.5, and 0.25 at fuel concentrations of 1.0 and 1.5%. These measurements are complemented by autoignition data from a rapid compression machine over the temperature range 640-949 K at compressed gas pressures of 10, 20, and 40 atm and at varying equivalence ratios of 1.0, 0.5, and 0.33 using fuel concentrations of 1.59 and 3.13%. The autoignition of methyl butanoate is observed to follow Arrhenius-like temperature dependence over all conditions studied. These data, together with speciation data reported in the literature in a flow reactor, a jet-stirred reactor, and an opposed-flow diffusion flame, were used to produce a detailed chemical kinetic model. It was found that the model correctly simulated the effect of change in equivalence ratio, fuel fraction, and pressure for shock tube ignition delays. The agreement with rapid compression machine ignition delays is less accurate, although the qualitative agreement is reasonable. The model reproduces most speciation data with good accuracy. In addition, the important reaction pathways over each regime have been elucidated by both sensitivity and flux analyses. (author)

  2. Arbuzov rearrangement in alkoxy derivatives and chloro derivatives of methyl phosphonites

    SciTech Connect (OSTI)

    Livantsov, M.V.; Prishchenko, A.A.; Lutsenko, I.F.

    1987-10-20

    In a series of alkoxy- and chloro-substituted methyl phosphonites, the Arbuzov reaction is a preparative method for the synthesis of new types of functionally substituted methyl phosphinates. The Arbuzov reaction takes a new pathway in the case of dialkoxymethyl phosphonites, in which the phosphorus-carbon bond is ruptured at the stage where a quasiphosphonium compound forms, producing alkoxycarbonyl phosphonites that have not been available before. The IR spectra were obtained on UR-20 and IKS-22 instruments in a thin layer (NaCL). The PMR spectra were taken on a Tesla BS-497 spectrometer (100 MHz) in C/sub 6/D/sub 6/ and CDCl/sub 3/ solutions (20 to 30% concn.), with TMS as standard. The /sup 13/C NMR spectrum of phosphonite (XI) was obtained on a Varian FT-80A spectrometer (20 MHz) in an 80% solution in C/sub 6/D/sub 6/ and with TMS as standard. The /sup 31/P NMR spectra were obtained on JEOL 6-50OHL (24.3 MHz), Varian FT-80A (32.2 MHz), and JOEL FX-100 (42 MHz) spectrometers with an 85% solution of H/sub 3/PO/sub 4/ in D/sub 2/O as standard.

  3. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    SciTech Connect (OSTI)

    Przepioski, Joshua

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH3NH3PbI3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.

  4. Covalent Coupling of Organophosphorus Hydrolase Loaded Quantum Dots to Carbon Nanotube/Au Nanocomposite for Enhanced Detection of Methyl Parathion

    SciTech Connect (OSTI)

    Du, Dan; Chen, Wenjuan; Zhang, Weiying; Liu, Deli; Li, Haibing; Lin, Yuehe

    2010-02-15

    An amperometric biosensor for highly selective and sensitive determination of methyl parathion (MP) was developed based on dual signal amplification: (1) a large amount of introduced enzyme on the electrode surface and (2) synergistic effects of nanoparticles towards enzymatic catalysis. The fabrication process includes (1) electrochemical deposition of gold nanoparticles by a multi-potential step technique at multiwalled carbon nanotube (MWCNT) film pre-cast on a glassy carbon electrode and (2) immobilization of methyl parathion degrading enzyme (MPDE) onto a modified electrode through CdTe quantum dots (CdTe QDs) covalent attachment. The introduced MWCNT and gold nanoparticles significantly increased the surface area and exhibited synergistic effects towards enzymatic catalysis. CdTe QDs are further used as carriers to load a large amount of enzyme. As a result of these two important enhancement factors, the proposed biosensor exhibited extremely sensitive, perfectly selective, and rapid response to methyl parathion in the absence of a mediator.

  5. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric α-Cr2O3(0001)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; Mullins, David R.; Cox, David F.

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric α-Cr2O3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo β-H elimination to produce ethylene. Themore » liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr3+ cations.« less

  6. Reactions of methyl groups on a non-reducible metal oxide: The reaction of iodomethane on stoichiometric ?-Cr2O3(0001)

    SciTech Connect (OSTI)

    Dong, Yujung; Brooks, John D.; Chen, Tsung-Liang; Mullins, David R.; Cox, David F.

    2015-06-10

    The reaction of iodomethane on the nearly stoichiometric ?-Cr2O3(0001) surface produces gas phase ethylene, methane, and surface iodine adatoms. The reaction is first initiated by the dissociation of iodomethane into surface methyl fragments, -CH3, and iodine adatoms. Methyl fragments bound at surface Cr cation sites undergo a rate-limiting dehydrogenation reaction to methylene, =CH2. The methylene intermediates formed from methyl dehydrogenation can then undergo coupling reactions to produce ethylene via two principle reaction pathways: (1) direct coupling of methylene and (2) methylene insertion into the methyl surface bond to form surface ethyl groups which undergo ?-H elimination to produce ethylene. The liberated hydrogen also combines with methyl groups to form methane. Iodine adatoms from the dissociation of iodomethane deactivate the surface by simple site blocking of the surface Cr3+ cations.

  7. Generation kinetics of color centers in irradiated poly(4-methyl-1-pentene)

    SciTech Connect (OSTI)

    Peng, J. S.; Li, C. L.; Lee, Sanboh; Chou, K. F.

    2011-09-15

    The transient absorbance of poly(4-methyl-1-pentene) (PMP) irradiated with gamma rays at elevated temperatures has been investigated. The absorbance in the ultraviolet and visible range increases with gamma ray dose. A bathochromic shift in transmission spectra emerges significantly upon irradiation. A first-order generation model is proposed to analyze the kinetics of color centers during annealing. The activation energy of the color center increases with increasing gamma ray dose. The equilibrium behavior of color centers in PMP is similar to that of vacancies in metals, and the formation energy of color centers in PMP decreases with increasing gamma ray dose. However, annealable color centers are not observed in this study.

  8. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study

    SciTech Connect (OSTI)

    Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B; Luebke, David R.; Damodaran, Krishnan

    2013-04-24

    Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]{sup +}[TCB]{sup -}). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]{sup +}[TCB]{sup -} ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.

  9. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    DOE Patents [OSTI]

    Ramprasad, D.; Waller, F.J.

    1999-04-06

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  10. Interfacial hydrothermal synthesis of SnO{sub 2} nanorods towards photocatalytic degradation of methyl orange

    SciTech Connect (OSTI)

    Hou, L.R. Lian, L.; Zhou, L.; Zhang, L.H.; Yuan, C.Z.

    2014-12-15

    Highlights: Efficient interfacial hydrothermal strategy was developed. 1D SnO{sub 2} nanorods as an advanced photocatalyst. SnO{sub 2} nanorods exhibit photocatalytic degradation of the MO. - Abstract: One-dimensional (1D) SnO{sub 2} nanorods (NRs) have been successfully synthesized by means of an efficient interfacial hydrothermal strategy. The resulting product was physically characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscope, etc. The as-fabricated SnO{sub 2} NRs exhibited excellent photocatalytic degradation of the methyl orange with high degradation efficiency of 99.3% with only 60 min ultra violet light irradiation. Meanwhile, the 1D SnO{sub 2} NRs exhibited intriguing photostability after four recycles.

  11. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylindermore » chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.« less

  12. Investigation of methyl decanoate combustion in an optical direct-injection diesel engine

    SciTech Connect (OSTI)

    Cheng, A. S.; Dumitrescu, Cosmin E.; Mueller, Charles J.

    2014-11-24

    In this study, an optically accessible heavy-duty diesel engine was used to investigate the impact of methyl decanoate (MD) on combustion and emissions. A specific goal of the study was to determine if MD could enable soot-free leaner-lifted flame combustion (LLFC) – a mode of mixing-controlled combustion associated with fuel-air equivalence ratios below approximately two. An ultra-low sulfur diesel certification fuel (CF) was used as the baseline fuel, and experiments were conducted at two fuel-injection pressures with three levels of charge-gas dilution. In addition to conventional pressure-based and engine-out emissions measurements, exhaust laser-induced incandescence, in-cylinder natural luminosity (NL), and in-cylinder chemiluminescence (CL) diagnostics were used to provide detailed insight into combustion processes.

  13. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozymemore » and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.« less

  14. Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams.

    SciTech Connect (OSTI)

    Schroen, Diana Grace; Flicker, Dawn G.; Haill, Thomas A.; Root, Seth; Mattsson, Thomas Kjell Rene

    2011-06-01

    Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.

  15. Heterogeneous catalyst for the production of acetic anhydride from methyl acetate

    DOE Patents [OSTI]

    Ramprasad, Dorai (Allentown, PA); Waller, Francis Joseph (Allentown, PA)

    1999-01-01

    This invention relates to a process for producing acetic anhydride by the reaction of methyl acetate, carbon monoxide, and hydrogen at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that contains an insoluble polymer having pendant quaternized phosphine groups, some of which phosphine groups are ionically bonded to anionic Group VIII metal complexes, the remainder of the phosphine groups being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for consecutive runs without loss in activity. Bifunctional catalysts for use in carbonylating dimethyl ether are also provided.

  16. Methyl Chloride from Direct Methane Partial Oxidation: A High-Temperature Shilov-Like Catalytic System

    SciTech Connect (OSTI)

    Yongchun Tang; John Ma

    2012-03-23

    The intention of this study is to demonstrate and evaluate the scientific and economic feasibility of using special solvents to improve the thermal stability of Pt-catalyst in the Shilov system, such that a high reaction temperature could be achieved. The higher conversion rate (near 100%) of methyl chloride from partial oxidation of methane under the high temperature ({approx} 200 C) without significant Pt0 precipitation has been achieved. High concentration of the Cl- ion has been identified as the key for the stabilization of the Pt-catalysts. H/D exchange measurements indicated that the over oxidation will occur at the elevated temperature, developments of the effective product separation processes will be necessary in order to rationalize the industry-visible CH4 to CH3Cl conversion.

  17. LRD-22, a novel dual dithiocarbamatic acid ester, inhibits Aurora-A kinase and induces apoptosis and cell cycle arrest in HepG2 cells

    SciTech Connect (OSTI)

    Wang, Huiling; Li, Ridong; Li, Li; Ge, Zemei; Zhou, Rouli; Li, Runtao

    2015-02-27

    In this study we investigated the antitumor activity of the novel dual dithiocarbamatic acid ester LRD-22 in vitro and in vivo. Several cancer cell lines were employed to determine the effect of LRD-22 on cell growth, and the MTT assay showed there was a significant decrease in viable tumor cell numbers in the presence of LRD-22, especially in the HepG2 cell line. Colony formation assay also showed LRD-22 strongly inhibits HepG2 cell growth. Evaluation of the mechanism involved showed that inhibitory effects of LRD-22 on cell growth are due to induction of apoptosis and G2/M arrest. LRD-22 inhibited Aurora-A phosphorylation at Thr{sub 288} and subsequently impaired p53 phosphorylation at Ser{sub 315} which was associated with the proteasome degradation pathway. Tumor suppressor protein p53 is stabilized by this mechanism and accumulates through inhibition of Aurora-A kinase activity via treatment with LRD-22. In vivo study of HepG2 xenograft in nude mice also shows LRD-22 suppresses tumor growth at a concentration of 5 mg/kg without animals suffering loss of body weight. In conclusion, our results demonstrate LRD-22 acts as an Aurora-A kinase inhibitor to induce apoptosis and inhibit proliferation in HepG2 cells, and should be considered as a promising targeting agent for HCC therapy. - Highlights: • LRD-22 significantly inhibits cancer cell growth, especially in the HepG2 cell line. • The inhibitory effect of LRD-22 is due to induction of apoptosis and cell cycle arrest. • LRD-22 inhibits Aurora-A phosphorylation which results in subsequent impairment of the p53 pathway. • LRD-22 suppresses tumor growth in xenograft mice without body weight loss.

  18. Enantioselective hydrogenation. III. Methyl pyruvate hydrogenation catalyzed by alkaloid-modified iridium

    SciTech Connect (OSTI)

    Simons, K.E.; Johnston, P.; Plum, H.; Wells, P.B.; Ibbotson, A.

    1994-12-01

    Enantioselective hydrogenation of methyl pyruvate, MeCOCOOMe to methyl lactate, MeCH(OH)COOMe, is catalyzed in solution at room temperature by supported iridium catalysts modified with cinchona alkaloids. Modification with cinchonidine or quinine yields R-lactate in excess, whereas modification with cinchonine or quinidine favors S-lactate formation. Ir/SiO{sub 2} catalysts (20%) calcined at 393 to 573 K and reduced at 523 to 593 K were highly active for racemic hydrogenation in the absence of a modifier (rates typically 1.8 mol h{sup -1} g{sub cat}{sup -1}) and were comparably active when modified with cinchonidine but gave an enantiomeric excess of about 30%. Use of higher calcination or reduction temperatures led to substantially inferior activity and selectivity. The high rates recorded for both racemic and enantioselective reactions are dependent on the catalysts being activated before use by a procedure involving exposure of the catalyst to air after the initial reduction. Use of a Cl-free precursor gave an Ir/SiO{sub 2} catalyst (20%) of superior activity but inferior enantioselectivity. Ir/CaCO{sub 3} (5%) was more active for racemic hydrogenation than for enantioselective hydrogenation, but provided the highest value of the enantiomeric excess 39%. Kinematics of reaction are reported. Exchange of H for D in 10,11-dihydrocinchonidine at room temperature over Ir/CaCO{sub 3} occurred in the quinoline moiety but not in the quinuclidine ring system, indicating that the alkaloid was adsorbed to the Ir surface via the interaction of its {pi}-electron system. For both silica-supported and calcium carbonate-supported Ir, the presence of chloride ion in the catalyst was advantageous for the achievement of enantioselectivity. 25 refs., 2 figs., 3 tabs.

  19. NMR Analysis of Methyl Groups at 100-500 kDa: Model Systems and Arp2/3 Complex

    SciTech Connect (OSTI)

    Kreishman-Deitrick, Mara; Egile, Coumaran; Hoyt, David W.; Ford, Joseph J.; Rong, Li; Rosen, Michael K.

    2003-07-01

    Large macromolecular machines are among the most important and challenging targets for structural and mechanistic analyses. Consequently, there is great interest in development of NMR methods for the study of multicomponent systems in the 50-500 kDa range. Biochemical methods also must be developed in concert to produce such systems in selectively labeled form. Here, we present 1H/13C-HSQC spectra of protonated methyl groups in a model system that mimics molecular weights up to ~560 kDa. Signals from side chain methyl groups of Ile, Leu, and Val residues are clearly detectable at correlation times up to ~330 ns. We have also developed a biochemical procedure to produce the 240 kDa, heteroheptameric Arp2/3 actin nucleation complex selectively labeled at one subunit and obtained 1H/13C-HSQC spectra of this assembly. Sensitivity in spectra of both the Arp2/3 complex and the model system indicate that methyl groups will be useful sources of information in nonsymmetric systems with molecular weights greater than 600 kDa at concentrations less than 100 μM. Methyl analyses will complement TROSY and CRINEPT analyses of amides in NMR studies of structure and molecular interactions of extremely large macromolecules and assemblies.

  20. Stereotactic Body Radiotherapy: A Promising Treatment Option for the Boost of Oropharyngeal Cancers Not Suitable for Brachytherapy: A Single-Institutional Experience

    SciTech Connect (OSTI)

    Al-Mamgani, Abrahim; Tans, Lisa; Teguh, David N.; Rooij, Peter van; Zwijnenburg, Ellen M.; Levendag, Peter C.

    2012-03-15

    Purpose: To prospectively assess the outcome and toxicity of frameless stereotactic body radiotherapy (SBRT) as a treatment option for boosting primary oropharyngeal cancers (OPC) in patients who not suitable for the standard brachytherapy boost (BTB). Methods and Materials: Between 2005 and 2010, 51 patients with Stage I to IV biopsy-proven OPC who were not suitable for BTB received boosts by means of SBRT (3 times 5.5 Gy, prescribed to the 80% isodose line), after 46 Gy of IMRT to the primary tumor and neck (when indicated). Endpoints of the study were local control (LC), disease-free survival (DFS), overall survival (OS), and acute and late toxicity. Results: After a median follow-up of 18 months (range, 6-65 months), the 2-year actuarial rates of LC, DFS, and OS were 86%, 80%, and 82%, respectively, and the 3-year rates were 70%, 66%, and 54%, respectively. The treatment was well tolerated, as there were no treatment breaks and no Grade 4 or 5 toxicity reported, either acute or chronic. The overall 2-year cumulative incidence of Grade {>=}2 late toxicity was 28%. Of the patients with 2 years with no evidence of disease (n = 20), only 1 patient was still feeding tube dependent and 2 patients had Grade 3 xerostomia. Conclusions: According to our knowledge, this study is the first report of patients with primary OPC who received boosts by means of SBRT. Patients with OPC who are not suitable for the standard BTB can safely and effectively receive boosts by SBRT. With this radiation technique, an excellent outcome was achieved. Furthermore, the SBRT boost did not have a negative impact regarding acute and late side effects.

  1. Evaluation of Suitability of Selected Set of Department of Defense Military Bases and Department of Energy Facilities for Siting a Small Modular Reactor

    SciTech Connect (OSTI)

    Poore III, Willis P; Belles, Randy; Mays, Gary T; Omitaomu, Olufemi A

    2013-03-01

    This report summarizes the approach that ORNL developed for screening a sample set of US Department of Defense (DOD) military base sites and DOE sites for possible powering with an SMR; the methodology employed, including spatial modeling; and initial results for several sample sites. The objective in conducting this type of siting evaluation is demonstrate the capability to characterize specific DOD and DOE sites to identify any particular issues associated with powering the sites with an SMR using OR-SAGE; it is not intended to be a definitive assessment per se as to the absolute suitability of any particular site.

  2. Photoimaging of the multiple filamentation of femtosecond laser pulses in poly(methyl methacrylate) doped with 2,2-difluoro-4-(9-anthracyl)-6-methyl-1,3,2-dioxaborine

    SciTech Connect (OSTI)

    Kulchin, Yu N; Vitrik, O B; Chekhlenok, A A; Zhizhchenko, A Yu; Proschenko, D Yu; Mirochnik, A G; Lyu Guohui

    2013-12-31

    We have studied the filamentation of femtosecond laser pulses (? = 800 nm, ?42 fs pulse duration) in poly(methyl methacrylate) doped with 2,2-difluoro-4-(9-anthracyl)-6-methyl-1,3,2- dioxaborine and the associated photomodification of the material. The results demonstrate that multiple filamentation occurs at pulse energies above 5 ?J. At a pulse energy of 1.5 mJ, it is accompanied by supercontinuum generation. The average filament length in PMMA is 9 mm and the filament diameter is ?10 ?m. An incident power density of ?10{sup 12} W cm{sup -2} ensures inscription of the filament pattern owing to two-photon photochemical processes. Preliminary exposure to continuous light at ? = 400 nm enables an ordered filament pattern to be written. (interaction of laser radiation with matter)

  3. 33rd International Symposium on Combustion Hottel Lecture Application...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kinetics database using shock tubelaser absorption methods Leading to: * Improved ... methyl esters 2 3 Stanford Shock Tube & Laser Facilities Driver Section Shock Tube ...

  4. Transesterification: Laboratory Analytical Procedure (LAP) Van...

    Office of Scientific and Technical Information (OSTI)

    Wychen, S.; Laurens, L. M. L. 09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES BIOMASS; ALGAE; LABORATORY ANALYTICAL PROCEDURES; LAPS; TOTAL LIPIDS; FATTY ACID METHYL ESTERS; FAME;...

  5. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Bioenergy Technologies Office","09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES BIOMASS; ALGAE; LABORATORY ANALYTICAL PROCEDURES; LAPS; TOTAL LIPIDS; FATTY ACID METHYL ESTERS; FAME;...

  6. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    LAP Van Wychen S Laurens L M L BIOMASS FUELS BASIC BIOLOGICAL SCIENCES BIOMASS ALGAE LABORATORY ANALYTICAL PROCEDURES LAPS TOTAL LIPIDS FATTY ACID METHYL ESTERS FAME...

  7. Slide 0

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compensate for the effects of different injection sizes and sample concentration *The peak ... of Fatty Acid Methyl Esters (FAMEs) Methanol content * The methanol content of the ...

  8. Synthesis and properties of poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid)/PbS hybrid composite

    SciTech Connect (OSTI)

    Preda, N.; Rusen, E.; Musuc, A.; Enculescu, M.; Matei, E.; Marculescu, B.; Fruth, V.; Enculescu, I.

    2010-08-15

    The synthesis of a new hybrid composite based on PbS nanoparticles and poly(methyl methacrylate-2-acrylamido-2-methylpropane sulfonic acid) [P(MMA-AMPSA)] copolymer is reported. The chemical synthesis consists in two steps: (i) a surfactant-free emulsion copolymerization between methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid and (ii) the generation of PbS particles in the presence of the P(MMA-AMPSA) latex, from the reaction between lead nitrate and thiourea. The composite was studied by scanning electron microscopy (SEM), X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The microstructure observed using SEM proves that the PbS nanoparticles are well dispersed in the copolymer matrix. The X-ray diffraction measurements demonstrate that the PbS nanoparticles have a cubic rock salt structure. It was also found that the inorganic semiconductor nanoparticles improve the thermal stability of the copolymer matrix.

  9. On the role of chemical reactions in initiating ultraviolet laser ablation in poly(methyl methacrylate)

    SciTech Connect (OSTI)

    Prasad, Manish; Conforti, Patrick F.; Garrison, Barbara J.

    2007-05-15

    The role of chemical reactions is investigated versus the thermal and mechanical processes occurring in a polymer substrate during irradiation by a laser pulse and subsequent ablation. Molecular dynamics simulations with an embedded Monte Carlo based reaction scheme were used to study ultraviolet ablation of poly(methyl methacrylate) at 157 nm. We discuss the onset of ablation, the mechanisms leading to ablation, and the role of stress relaxation of the polymer matrix during ablation. Laser induced heating and chemical decomposition of the polymer substrate are considered as ablation pathways. It is shown that heating the substrate can set off ablation via mechanical failure of the material only for very short laser pulses. For longer pulses, the mechanism of ejection is thermally driven limited by the critical number of bonds broken in the substrate. Alternatively, if the photon energy goes towards direct bond breaking, it initiates chemical reactions, polymer unzipping, and formation of gaseous products, leading to a nearly complete decomposition of the top layers of substrates. The ejection of small molecules has a hollowing out effect on the weakly connected substrates which can lead to lift-off of larger chunks. Excessive pressure buildup upon the creation of gaseous molecules does not lead to enhanced yield. The larger clusters are thermally ejected, and an entrainment of larger polymer fragments in gaseous molecules is not observed.

  10. Phosphorylation and Methylation of Proteasomal Proteins of the HaloarcheonHaloferax volcanii

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Humbard, Matthew A.; Reuter, Christopher J.; Zuobi-Hasona, Kheir; Zhou, Guangyin; Maupin-Furlow, Julie A.

    2010-01-01

    Proteasomes are composed of 20S core particles (CPs) of?- and?-type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeonHaloferax volcaniias a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of?1and?2were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including?1Thr147,?2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to?1, thus, revealing amorenew type of proteasomal modification. Probing the biological role of?1and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for?1variants including Thr147Ala, Thr158Ala and Ser58Ala. AnH. volcaniiRio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to?1. The?1variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.less

  11. Synthesis of methyl methacrylate from coal-derived syngas: Quarterly report,, October 1-December 31, 1997

    SciTech Connect (OSTI)

    1998-09-01

    Research Triangle Institute (RTI), Eastman Chemical Company, and Bechtel collectively are developing a novel process for the synthesis of methyl methacrylate (MMA) from coal-derived syngas that consists of three steps of synthesis of a propionate, its condensation with formaldehyde, and esterification of resulting methacrylic acid (MAA) with methanol to produce MMA. Over the last quarter, Eastman developed two new processes which have resulted in two new invention reports. One process deals with carbonylation of benzyl ether which represents a model for coal liquefaction and the second focuses on the acceleration of carbonylation rates for propionic acid synthesis, via use of polar aprotic solvents. These two inventions are major improvements in the novel Mo-catalyzed homogeneous process for propionic acid synthesis technology, developed by Eastman. Over the last quarter, RTI completed three reaction cycles and two regeneration cycles as a part of long-term reaction regeneration cycle study on a 10% Nb{sub 2}O{sub 5}/Si0{sub 2} catalyst, for vapor phase condensation reaction of formaldehyde with propionic acid.

  12. Durability of Poly(Methyl Methacrylate) Lenses Used in Concentrating Photovoltaic Modules: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Gedvilas, L. M.; To, B.; Kennedy, C. E.; Kurtz, S. R.

    2010-08-01

    Concentrating photovoltaic (CPV) technology has recently gained interest based on their expected low levelized cost of electricity, high efficiency, and scalability. Many CPV systems use Fresnel lenses made of poly(methyl methacrylate)(PMMA) to obtain a high optical flux density. The optical and mechanical durability of such components, however, are not well established relative to the desired service life of 30 years. Specific reliability issues may include: reduced optical transmittance, discoloration, hazing, surface erosion, embrittlement, crack growth, physical aging, shape setting (warpage), and soiling. The initial results for contemporary lens- and material-specimens aged cumulatively to 6 months are presented. The study here uses an environmental chamber equipped with a xenon-arc lamp to age specimens at least 8x the nominal field rate. A broad range in the affected characteristics (including optical transmittance, yellowness index, mass loss, and contact angle) has been observed to date, depending on the formulation of PMMA used. The most affected specimens are further examined in terms of their visual appearance, surface roughness (examined via atomic force microscopy), and molecular structure (via Fourier transform infrared spectroscopy).

  13. Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon Haloferax volcanii

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Humbard, Matthew A.; Reuter, Christopher J.; Zuobi-Hasona, Kheir; Zhou, Guangyin; Maupin-Furlow, Julie A.

    2010-01-01

    Promore » teasomes are composed of 20S core particles (CPs) of α - and β -type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeon Haloferax volcanii as a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of α 1 and α 2 were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including α 1 Thr147, α 2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to α 1 , thus, revealing a new type of proteasomal modification.bing the biological role of α 1 and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for α 1 variants including Thr147Ala, Thr158Ala and Ser58Ala. An H. volcanii Rio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to α 1 . The α 1 variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation.« less

  14. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

  15. Nonpremixed ignition, laminar flame propagation, and mechanism reduction of n-butanol, iso-butanol, and methyl butanoate

    SciTech Connect (OSTI)

    Lu, Wei; Kelley, A. P.; Law, C. K.

    2011-01-01

    The non-premixed ignition temperature of n-butanol (CH{sub 3}CH{sub 2}CH{sub 2}CH{sub 2}OH), iso-butanol ((CH{sub 3}){sub 2}CHCH{sub 2}OH) and methyl butanoate (CH{sub 3}CH{sub 2}CH{sub 2}COOCH{sub 3}) was measured in a liquid pool assembly by heated oxidizer in a stagnation flow for system pressures of 1 and 3 atm. In addition, the stretch-corrected laminar flame speeds of mixtures of airn-butanol/iso-butanol/methyl butanoate were determined from the outwardly propagating spherical flame at initial pressures of up to 2 atm, for an extensive range of equivalence ratio. The ignition temperature and laminar flame speeds of n-butanol and methyl butanoate were computationally simulated with three recently developed kinetic mechanisms in the literature. Dominant reaction pathways to ignition and flame propagation were identified and discussed through a chemical explosive mode analysis (CEMA) and sensitivity analysis. The detailed models were further reduced through a series of systematic strategies. The reduced mechanisms provided excellent agreement in both homogeneous and diffusive combustion environments and greatly improved the computation efficiency.

  16. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Michele Pavone : NSF, A*STAR, DOE-BES See Victor Oyeyemi's poster today Common biodiesel derived from rapeseed oil and soybeans: Methyl esters (R(CO)OCH 3 ): methyl...

  17. Phytoremediation of ionic and methyl mercury pollution. 1997 annual progress report

    SciTech Connect (OSTI)

    Meagher, R.B.

    1997-01-01

    'The long-term goal of this research is to manipulate single-gene traits into plants, enabling them to process heavy metals and remediate heavy-metal pollution by resistance, sequestration, removal, and management of these contaminants (Meagher and Rugh, 1996; Meagher et al., 1997). The working hypothesis behind this proposal was that transgenic plants expressing both the bacterial organo mercury lyase (merB) and the mercuric ion reductase gene (merA) will (A) remove the mercury from polluted sites and (B) prevent methyl mercury from entering the food chain. The authors have had a very successful first year either testing aspects of this hypothesis directly or preparing material needed for future experiments. The results are outlined below under goals A and B, which are explicit in this hypothesis. There were less than 10% of the funds remaining in any category as projected in the first 12 month budget at the end of the first year, with the exception of the equipment category which had 25% of the funds remaining ({approximately} $8,000). Much of this remaining equipment money is being spent this week on a mercury vapor analyzer. It might be useful to remember that at the time this grant was awarded, the authors had successfully engineered a small model plant, Arabidopsis thalianat to use a highly modified bacterial mercuric ion reductase gene, merA9, to detoxify ionic mercury (Hg(II)), reducing it to Hg(0) (Rugh et al., 1996). Seeds from these plants germinate, grow, and set seed at normal growth rates on levels of Hg(II) that are lethal to normal plants. In assays on transgenic seedlings suspended in a solution of Hg(II), 10 ng of Hg(0) was evolved per min per mg wet weight of plant tissue. However, at that time, they had no information on expression of merA in any other plant species, nor had they expressed merB in any plant.'

  18. Methyl-parathion decreases sperm function and fertilization capacity after targeting spermatocytes and maturing spermatozoa

    SciTech Connect (OSTI)

    Pina-Guzman, Belem; Sanchez-Gutierrez, M.; Marchetti, Francesco; Hernandez-Ochoa, I.; Solis-Heredia, M.J .; Quintanilla-Vega, B.

    2009-05-03

    Paternal germline exposure to organophosphorous pesticides (OP) has been associated with reproductive failures and adverse effects in the offspring. Methyl parathion (Me-Pa), a worldwide-used OP, has reproductive adverse effects and is genotoxic to sperm. Oxidative damage has been involved in the genotoxic and reproductive effects of OP. The purpose of this study was to determine the effects of Me-Pa on spermatozoa function and ability to fertilize. Male mice were exposed to Me-Pa (20 mg/kg bw, i.p.) and spermatozoa from epididymis-vas deferens were collected at 7 or 28 days post-treatment (dpt) to assess the effects on maturing spermatozoa and spermatocytes, respectively. DNA damage was evaluated by nick translation (NT-positive cells) and SCSA (percentDFI); lipoperoxidation (LPO) by malondialdehyde production; sperm function by spontaneous- and induced-acrosome reactions (AR); mitochondrial membrane potential (MMP) by using the JC-1 flurochrome; and, fertilization ability by an in vitro assay and in vivo mating. Results showed alterations in DNA integrity (percentDFI and NT-positive cells) at 7 and 28 dpt, in addition to decreased sperm quality and a decrease in induced-AR; reduced MMP and LPO was observed only at 7 dpt. We found negative correlations between LPO and all sperm alterations. Altered sperm functional parameters were associated with reduced fertilization rates at both times, evaluated either in vitro or in vivo. These results show that Me-Pa exposure of maturing spermatozoa and spermatocytes affects many sperm functional parameters that result in a decreased fertilizing capacity. Oxidative stress seems to be a likely mechanism ofthe detrimental effects of Me-Pa in male germ cells.

  19. Methyl chloride via oxyhydrochlorination of methane. Quarterly technical progress report No. 13, October--December 1994

    SciTech Connect (OSTI)

    1995-02-01

    The purpose of this contract is to develop a process for converting light alkane gases to methyl chloride via oxyhydrochlorination using highly selective, stable catalysts in fixed-bed reactors designed to remove the large amount of heat generated, so as to control the reaction temperature. Further, the objective is to obtain the engineering data base necessary for developing a commercially feasible process and to evaluate t economics of the process. Significant progress was made in six different technical areas during this quarter. These key highlights are: (1) Evaluation of catalyst samples from UCI led to the ordering of the OHC PDU catalyst batch. This catalyst batch arrived, was screened and found to be defective, and was reordered. (2) Natural gas containing higher hydrocarbons was used as a methane source. The reactant mixture formed oxygenates at temperatures lower than observed in the past. Burning at such low temperatures seems to create a product stream containing very little CH{sub 2}Cl{sub 2}. (3) Although it has not been decided if the PDU will use natural gas from the plant or methane or natural gas from cylinders as a methane feed source, it was concluded that an adsorption unit to remove sulfur and higher hydrocarbons is not necessary at this time. (4) PDU construction was completed in December. The bulk of insulation work was completed at the end of November. Much effort has been put into pressure testing the PDU`s systems. The startup team has become adept at finding and correcting such leaks. (5) SOP writing for the PDU was completed this quarter with communication with the software programmer to insure agreement between the software and SOP.

  20. Methyl Formate Oxidation: Speciation Data, Laminar Burning Velocities, Ignition Delay Times and a Validated Chemical Kinetic Model

    SciTech Connect (OSTI)

    Dooley, S.; Burke, M. P.; Chaos, M.; Stein, Y.; Dryer, F. L.; Zhukov, V. P.; Finch, O.; Simmie, J. M.; Curran, H. J.

    2010-07-16

    The oxidation of methyl formate (CH{sub 3}OCHO) has been studied in three experimental environments over a range of applied combustion relevant conditions: 1. A variable-pressure flow reactor has been used to quantify reactant, major intermediate and product species as a function of residence time at 3 atm and 0.5% fuel concentration for oxygen/fuel stoichiometries of 0.5, 1.0, and 1.5 at 900 K, and for pyrolysis at 975 K. 2. Shock tube ignition delays have been determined for CH{sub 3}OCHO/O{sub 2}/Ar mixtures at pressures of ? 2.7, 5.4, and 9.2 atm and temperatures of 12751935 K for mixture compositions of 0.5% fuel (at equivalence ratios of 1.0, 2.0, and 0.5) and 2.5% fuel (at an equivalence ratio of 1.0). 3. Laminar burning velocities of outwardly propagating spherical CH{sub 3}OCHO/air flames have been determined for stoichiometries ranging from 0.81.6, at atmospheric pressure using a pressure-release-type high-pressure chamber. A detailed chemical kinetic model has been constructed, validated against, and used to interpret these experimental data. The kinetic model shows that methyl formate oxidation proceeds through concerted elimination reactions, principally forming methanol and carbon monoxide as well as through bimolecular hydrogen abstraction reactions. The relative importance of elimination versus abstraction was found to depend on the particular environment. In general, methyl formate is consumed exclusively through molecular decomposition in shock tube environments, while at flow reactor and freely propagating premixed flame conditions, there is significant competition between hydrogen abstraction and concerted elimination channels. It is suspected that in diffusion flame configurations the elimination channels contribute more significantly than in premixed environments.

  1. Using the apparent diffusion coefficient to identifying MGMT promoter methylation status early in glioblastoma: importance of analytical method

    SciTech Connect (OSTI)

    Rundle-Thiele, Dayle; Day, Bryan; Stringer, Brett; Fay, Michael; Martin, Jennifer; Jeffree, Rosalind L; Thomas, Paul; Bell, Christopher; Salvado, Olivier; Gal, Yaniv; Coulthard, Alan; Crozier, Stuart; Rose, Stephen

    2015-06-15

    Accurate knowledge of O{sup 6}-methylguanine methyltransferase (MGMT) gene promoter subtype in patients with glioblastoma (GBM) is important for treatment. However, this test is not always available. Pre-operative diffusion MRI (dMRI) can be used to probe tumour biology using the apparent diffusion coefficient (ADC); however, its ability to act as a surrogate to predict MGMT status has shown mixed results. We investigated whether this was due to variations in the method used to analyse ADC. We undertook a retrospective study of 32 patients with GBM who had MGMT status measured. Matching pre-operative MRI data were used to calculate the ADC within contrast enhancing regions of tumour. The relationship between ADC and MGMT was examined using two published ADC methods. A strong trend between a measure of ‘minimum ADC’ and methylation status was seen. An elevated minimum ADC was more likely in the methylated compared to the unmethylated MGMT group (U = 56, P = 0.0561). In contrast, utilising a two-mixture model histogram approach, a significant reduction in mean measure of the ‘low ADC’ component within the histogram was associated with an MGMT promoter methylation subtype (P < 0.0246). This study shows that within the same patient cohort, the method selected to analyse ADC measures has a significant bearing on the use of that metric as a surrogate marker of MGMT status. Thus for dMRI data to be clinically useful, consistent methods of data analysis need to be established prior to establishing any relationship with genetic or epigenetic profiling.

  2. Separation of Dimethyl Ether from Syn-Gas Components by Poly(dimethylsiloxane) and Poly(4-methyl-1-pentene) Membranes

    SciTech Connect (OSTI)

    Christopher J. Orme; Frederick F. Stewart

    2011-05-01

    Permeability and selectivity in gas transport through poly(4-methyl-1-pentene) (TPX) and poly(dimethylsiloxane) (PDMS) using variable temperature mixed gas experiments is reported. Selected gases include H2, CO, CH4, CO2, and dimethyl ether (DME). The DME data is the first to be reported through these membranes. In this paper, the chosen polymers reflect both rubbery and crystalline materials. Rubbery polymers tend to be weakly size sieving, which, in this work, has resulted in larger permeabilities, lower separation factors, and lower activation energies of permeation (Ep). Conversely, the crystalline TPX membranes showed much greater sensitivity to penetrant size; although the gas condensability also played a role in transport.

  3. Evaluating the Suitability for CO2 Storage at the FutureGen 2.0 Site, Morgan County, Illinois, USA

    SciTech Connect (OSTI)

    Bonneville, Alain; Gilmore, Tyler J.; Sullivan, E. C.; Vermeul, Vincent R.; Kelley, Mark E.; White, Signe K.; Appriou, Delphine; Bjornstad, Bruce N.; Gerst, Jacqueline L.; Gupta, Neeraj; Horner, Jacob A.; McNeil, Caitlin; Moody, Mark A.; Rike, William M.; Spane, Frank A.; Thorne, Paul D.; Zeller, Evan R.; Zhang, Z. F.; Hoffman, Jeffrey; Humphreys, Kenneth K.

    2013-08-05

    FutureGen 2.0 site will be the first near-zero emission power plant with fully integrated long-term storage in a deep, non-potable saline aquifer in the United States. The proposed FutureGen 2.0 CO2 storage site is located in northeast Morgan County, Illinois, U.S.A., forty-eight kilometres from the Meredosia Energy Center where a large-scale oxy-combustion demonstration will be conducted. The demonstration will involve > 90% carbon capture, which will produce more than one million metric tons (MMT) of CO2 per year. The CO2 will be compressed at the power plant and transported via pipeline to the storage site. To examine CO2 storage potential of the site, a 1,467m characterization well (FGA#1) was completed in December 2011. The target reservoir for CO2 storage is the Mt. Simon Sandstone and Elmhurst Sandstone Member of the lower Eau Claire Formation for a combined thickness of 176 m. Confining beds of the overlying Lombard and Proviso Members (upper Eau Claire Formation) reach a thickness of 126 m. Characterization of the target injection zone and the overlying confining zone was based on wellbore data, cores, and geophysical logs, along with surface geophysical (2-D seismic profiles, magnetic and gravity), and structural data collected during the initial stage of the project . Based on this geological model, 3D simulations of CO2 injection and redistribution were conducted using STOMP-CO2, a multiphase flow and transport simulator. After this characterization stage, it appears that the injection site is a suitable geologic system for CO2 sequestration and that the injection zone is sufficient to receive up to 33 MMT of CO2 at a rate of 1.1 MMT/yr. GHGT-11 conference

  4. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOE Patents [OSTI]

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  5. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate.

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2009-07-21

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines.

  6. Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate

    SciTech Connect (OSTI)

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2010-05-15

    Detailed chemical kinetic mechanisms were developed and used to study the oxidation of two large unsaturated esters: methyl-5-decenoate and methyl-9-decenoate. These models were built from a previous methyl decanoate mechanism and were compared with rapeseed oil methyl esters oxidation experiments in a jet-stirred reactor. A comparative study of the reactivity of these three oxygenated compounds was performed and the differences in the distribution of the products of the reaction were highlighted showing the influence of the presence and the position of a double bond in the chain. Blend surrogates, containing methyl decanoate, methyl-5-decenoate, methyl-9-decenoate and n-alkanes, were tested against rapeseed oil methyl esters and methyl palmitate/n-decane experiments. These surrogate models are realistic kinetic tools allowing the study of the combustion of biodiesel fuels in diesel and homogeneous charge compression ignition engines. (author)

  7. Accuracy of the electron transport in mcnp5 and its suitability for ionization chamber response simulations: A comparison with the egsnrc and penelope codes

    SciTech Connect (OSTI)

    Koivunoro, Hanna; Siiskonen, Teemu; Kotiluoto, Petri; Auterinen, Iiro; Hippelaeinen, Eero; Savolainen, Sauli

    2012-03-15

    Purpose: In this work, accuracy of the mcnp5 code in the electron transport calculations and its suitability for ionization chamber (IC) response simulations in photon beams are studied in comparison to egsnrc and penelope codes. Methods: The electron transport is studied by comparing the depth dose distributions in a water phantom subdivided into thin layers using incident energies (0.05, 0.1, 1, and 10 MeV) for the broad parallel electron beams. The IC response simulations are studied in water phantom in three dosimetric gas materials (air, argon, and methane based tissue equivalent gas) for photon beams ({sup 60}Co source, 6 MV linear medical accelerator, and mono-energetic 2 MeV photon source). Two optional electron transport models of mcnp5 are evaluated: the ITS-based electron energy indexing (mcnp5{sub ITS}) and the new detailed electron energy-loss straggling logic (mcnp5{sub new}). The electron substep length (ESTEP parameter) dependency in mcnp5 is investigated as well. Results: For the electron beam studies, large discrepancies (>3%) are observed between the mcnp5 dose distributions and the reference codes at 1 MeV and lower energies. The discrepancy is especially notable for 0.1 and 0.05 MeV electron beams. The boundary crossing artifacts, which are well known for the mcnp5{sub ITS}, are observed for the mcnp5{sub new} only at 0.1 and 0.05 MeV beam energies. If the excessive boundary crossing is eliminated by using single scoring cells, the mcnp5{sub ITS} provides dose distributions that agree better with the reference codes than mcnp5{sub new}. The mcnp5 dose estimates for the gas cavity agree within 1% with the reference codes, if the mcnp5{sub ITS} is applied or electron substep length is set adequately for the gas in the cavity using the mcnp5{sub new}. The mcnp5{sub new} results are found highly dependent on the chosen electron substep length and might lead up to 15% underestimation of the absorbed dose. Conclusions: Since the mcnp5 electron transport calculations are not accurate at all energies and in every medium by general clinical standards, caution is needed, if mcnp5 is used with the current electron transport models for dosimetric applications.

  8. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    SciTech Connect (OSTI)

    Chun, Young Tea; Chu, Daping; Neeves, Matthew; Placido, Frank; Smithwick, Quinn

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2?cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470?nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  9. (E)-2-[(2-Bromophenylimino)methyl]-5-methoxyphenol: X-ray and DFT-calculated structures

    SciTech Connect (OSTI)

    Kosar, B. Albayrak, C.; Odabasoglu, M.; Bueyuekguengoer, O.

    2010-12-15

    The crystal structure of (E)-2-[(2-Bromophenylimino)methyl]-5-methoxyphenol is determined by using X-ray diffraction and then the molecular structure is investigated with density functional theory (DFT). X-Ray study shows that the title compound has a strong intramolecular O-H-N hydrogen bond and three dimensional crystal structure is primarily determined by C-H-{pi} and weak van der Waals interactions. The strong O-H-N bond is an evidence of the preference for the phenol-imine tautomeric form in the solid state. Optimized molecular geometry is calculated with DFT at the B3LYP/6-31G(d,p) level. The IR spectra of compound were recorded experimentally and calculated to compare with each other. The results from both experiment and theoretical calculations are compared in this study.

  10. Sub-5 nm Domains in Ordered Poly(cyclohexylethylene)-block-poly(methyl methacrylate) Block Polymers for Lithography.

    SciTech Connect (OSTI)

    Kennemur, Justin; Yao, Li; Bates, Frank Stephen; Hillmyer, Marc

    2014-01-01

    A series of poly(cyclohexylethylene)-block-poly- (methyl methacrylate) (PCHE PMMA) diblock copolymers with varying molar mass (4.9 kg/mol Mn 30.6 kg/mol) and narrow molar mass distribution were synthesized through a combination of anionic and atom transfer radical polymerization (ATRP) techniques. Heterogeneous catalytic hydrogenation of -(hydroxy)polystyrene (PS-OH) yielded -(hydroxy)poly(cyclohexylethylene) (PCHEOH) with little loss of hydroxyl functionality. PCHE-OH was reacted with -bromoisobutyryl bromide (BiBB) to produce an ATRP macroinitiator used for the polymerization of methyl methacrylate. PCHE PMMA is a glassy, thermally stable material with a large effective segment segment interaction parameter, eff = (144.4 6.2)/T (0.162 0.013), determined by meanfield analysis of order-to-disorder transition temperatures (TODT) measured by dynamic mechanical analysis and differential scanning calorimetry. Ordered lamellar domain pitches (9 D 33 nm) were identified by small-angle X-ray scattering from neat BCPs containing 43 52 vol % PCHE ( f PCHE). Atomic force microscopy was used to show 7.5 nm lamellar features (D = 14.8 nm) which are some of the smallest observed to date. The lowest molar mass sample (Mn = 4.9 kg/mol, f PCHE = 0.46) is characterized by TODT = 173 3 C and sub-5 nm nanodomains, which together with the sacrificial properties of PMMA and the high overall thermal stability place this material at the forefront of high- systems for advanced nanopatterning applications.

  11. Differences in volatile methyl siloxane (VMS) profiles in biogas from landfills and anaerobic digesters and energetics of VMS transformations

    SciTech Connect (OSTI)

    Tansel, Berrin Surita, Sharon C.

    2014-11-15

    Highlights: • In the digester gas, D4 and D5 comprised the 62% and 27% if siloxanes, respectively. • In landfill gas, the bulk of siloxanes were TMSOH (58%) followed by D4 (17%). • Methane utilization may be a possible mechanism for TMSOH formation in the landfills. • The geometric configurations of D4 and D5 molecules make them very stable. - Abstract: The objectives of this study were to compare the types and levels of volatile methyl siloxanes (VMS) present in biogas generated in the anaerobic digesters and landfills, evaluate the energetics of siloxane transformations under anaerobic conditions, compare the conditions in anaerobic digesters and municipal solid waste (MSW) landfills which result in differences in siloxane compositions. Biogas samples were collected at the South District Wastewater Treatment Plant and South Dade Landfill in Miami, Florida. In the digester gas, D4 and D5 comprised the bulk of total siloxanes (62% and 27%, respectively) whereas in the landfill gas, the bulk of siloxanes were trimethylsilanol (TMSOH) (58%) followed by D4 (17%). Presence of high levels of TMSOH in the landfill gas indicates that methane utilization may be a possible reaction mechanism for TMSOH formation. The free energy change for transformation of D5 and D4 to TMSOH either by hydrogen or methane utilization are thermodynamically favorable. Either hydrogen or methane should be present at relatively high concentrations for TMSOH formation which explains the high levels present in the landfill gas. The high bond energy and bond distance of the Si–O bond, in view of the atomic sizes of Si and O atoms, indicate that Si atoms can provide a barrier, making it difficult to break the Si–O bonds especially for molecules with specific geometric configurations such as D4 and D5 where oxygen atoms are positioned inside the frame formed by the large Si atoms which are surrounded by the methyl groups.

  12. Supramolecular organization of calix[4]pyrrole with a methyl-trialkylammonium anion exchanger leads to remarkable reversal of selectivity for sulfate extraction vs. nitrate

    SciTech Connect (OSTI)

    Borman, Christopher J; Custelcean, Radu; Hay, Benjamin; Bill, Nathan; Sessler, Jonathan L.; Moyer, Bruce A

    2011-01-01

    meso-Octamethylcalix[4]pyrrole (C4P) enhances sulfate selectivity in solvent extraction by Aliquat 336N, an effect ascribed to the supramolecular preorganization and thermodynamic stability imparted by insertion of the methyl group of the Aliquat cation into the cup of C4P in its cone conformation.

  13. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    SciTech Connect (OSTI)

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the miR-200c/141 CpG island is closely linked to their inappropriate silencing in cancer cells. Since the miR-200c cluster plays a significant role in EMT, our results suggest an important role for DNA methylation in the control of phenotypic conversions in normal cells.

  14. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    SciTech Connect (OSTI)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada) [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montral, Qubec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada)] [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada) [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montral, Qubec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montral, Qubec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 ?g/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.514.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ? Gestational DES changes cardiac SERCA2a and CASQ2 expression. ? Echocardiography identified systolic dysfunction and increased diastolic relaxation. ? DES increased DNMT3a expression and increased CpG DNA methylation. ? DES impacts fetal heart reducing cardiac reserve on challenge in adulthood. ? Fetal heart can be re-programmed by a non-steroidal estrogen.

  15. Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO{sub 2} composites

    SciTech Connect (OSTI)

    Da Dalt, S.; Alves, A.K.; Bergmann, C.P.

    2013-05-15

    Highlights: ? MWCNTs/TiO{sub 2} composites were obtained to degrade organic dyes in water. ? MWCNT/TiO{sub 2} composites were analyzed by photocatalysis and structural characterization. ? The photocatalytic shows efficient method for the degradation of dyes from aqueous effluents. - Abstract: The textile and dyestuff industries are the primary sources of the release of synthetic dyes into the environment and usually there are major pollutants in dye wastewaters. Because of their toxicity and slow degradation, these dyes are categorized as environmentally hazardous materials. In this context, carbon nanotubes/TiO{sub 2} (CNTs/TiO{sub 2}) composites were prepared using multi-walled CNTs (MWCNTs), titanium (IV) propoxide and commercial TiO{sub 2} (P25{sup }) as titanium oxide sources, to degrade the methyl orange dye in solution through photocatalyst activity using UV irradiation. The composites were prepared by solution processing followed by thermal treatment at 400, 500 and 600 C. The heterojunction between nanotubes and TiO{sub 2} was confirmed by XRD, specific surface area. The coating morphology was observed with SEM and TEM.

  16. Hydrothermal synthesis of Mn vanadate nanosheets and visible-light photocatalytic performance for the degradation of methyl blue

    SciTech Connect (OSTI)

    Pei, L.Z. Xie, Y.K.; Pei, Y.Q.; Jiang, Y.X.; Yu, H.Y.; Cai, Z.Y.

    2013-07-15

    Graphical abstract: - Highlights: Mn vanadate nanosheets have been synthesized by simple hydrothermal process. The formation of Mn vanadate nanosheets can be controlled by growth conditions. Mn vanadate nanosheets exhibit good photocatalytic activities for methyl blue. - Abstract: Mn vanadate nanosheets have been synthesized via a facile hydrothermal route using ammonium metavanadate and Mn acetate as the raw materials, polyvinyl pyrrolidone (PVP) as the surfactant. X-ray diffraction (XRD) shows that the Mn vanadate nanosheets are composed of monoclinic MnV{sub 2}O{sub 6} phase. Scanning electron microscopy (SEM) observation indicates that the nanosheets have the average thickness of about 50 nm, length of 210 ?m and width of 800 nm to 2 ?m. The growth process of the Mn vanadate nanosheets has also been discussed based on the analysis of the roles of the growth conditions on the formation of the Mn vanadate nanosheets. The nanosheets show good photocatalytic activities for the degradation of methylene blue (MB) under visible light irradiation. About 72.96% MB can be degraded after visible light irradiation for 1 h over 10 mg Mn vanadate nanosheets in 10 mL MB solution with the concentration of 10 mg L{sup ?1}.

  17. Synthesis of 6-Methyl-9-n-propyldibenzothiophene-4-ol. Quarterly technical progress report No. 5, July 28--October 28, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-28

    The material presented here has been described to some extent in Status Reports 12, 13, and 14 and covers the progress toward the synthesis of the modified target molecules 9-isopropyl-4-methoxy-6-methyldibenzothiophene (13) and 9-isopropyl-6-methyldibenzothiophene-4-ol (14). It is divided into three parts: (a) Dehydrogenation experiments On tetrahydrodibenzothiophene 12. (b) methoxyl methyl cleavage of 13 to 14 using boron tribromide. (c) isolation and purification of methoxydibenzothiophene 13.

  18. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    SciTech Connect (OSTI)

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.; Cheng, Xiaodong

    2015-04-06

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify a DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.

  19. Solgel auto combustion synthesis of CoFe{sub 2}O{sub 4}/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: Its magnetic characterization

    SciTech Connect (OSTI)

    Topkaya, R.; Kurtan, U.; Junejo, Y.; Baykal, A.

    2013-09-01

    Graphical abstract: - Highlights: CoFe{sub 2}O{sub 4} was generated by solgel autocombustion using 1-methyl-2-pyrrolidone and ethylene glycol. The presence of spin-disordered surface layer on magnetic core was established. A linear dependence of the coercivity on temperature was fitted to Kneller's law. - Abstract: Magnetic nanoparticles were generated by solgel auto combustion synthesis of metal salts in the presence of 1-methyl-2-pyrrolidone, a functional solvent and ethylene glycol as usual solvent. The average crystallite size was obtained by using line profile fitting as 11 5 nm. The saturation magnetization value decreases with usage of the ethylene glycol in synthesis. The observed exchange bias effect further confirms the existence of the magnetically ordered core surrounded by spin-disordered surface layer and the ethylene glycol. Square-root temperature dependence of coercivity can be fitted to Kneller's law in the temperature range of 10400 K. The reduced remanent magnetization values lower than the theoretical value of 0.5 for non-interacting single domain particles indicate the CoFe{sub 2}O{sub 4}-1-methyl-2-pyrrolidone nanocomposite to have uniaxial anisotropy instead of the expected cubic anisotropy according to the StonerWohlfarth model.

  20. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: Potential implications for methylation-independent transcriptional repression

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Horton, John R.; Zhang, Xing; Blumenthal, Robert M.; Cheng, Xiaodong

    2015-04-06

    DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify amore » DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). All together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.« less

  1. The Vital Function of Fe3O4@Au nanocomposites for Hydrolase Biosensor Design and Its Application in Detection of Methyl Parathion

    SciTech Connect (OSTI)

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-02-04

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SHNH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of PS containing pesticides and provides a promising strategy to construct a robust biosensor.

  2. A CHRONIC INHALATION STUDY OF METHYL BROMIDE TOXICITY IN B6C3F1 MICE. (FINAL REPORT TO THE NATIONAL TOXICOLOGY PROGRAM)

    SciTech Connect (OSTI)

    HABER, S.B.

    1987-06-26

    This report provides a detailed account of a two year chronic inhalation study of methyl bromide toxicity in B6C3Fl mice conducted for the National Toxicology Program. Mice were randomized into three dose groups (10, 33 and 100 ppm methyl bromide) and one control group (0 ppm) per sex and exposed 5 days/week, 6 hours/day, for a total of 103 weeks. Endpoints included body weight; clinical signs and mortality, and at 6, 15 and 24 months of exposure, animals were sacrificed for organ weights, hematology and histopathology. In addition, a subgroup of animals in each dosage group was monitored for neurobehavioral and neuropathological changes. After only 20 weeks of exposure, 48% of the males and 12% of the females in the 100 ppm group had died. Exposures were terminated in that group and the surviving mice were observed for the duration of the study. Exposure of B6C3Fl mice to methyl bromide, even for only 20 weeks, produced significant changes in growth rate, mortality, organ weights and neurobehavioral functioning. These changes occurred in both males and females, but were more pronounced in males.

  3. Structural and biochemical insights into 2′-O-methylation at the 3′-terminal nucleotide of RNA by Hen1

    SciTech Connect (OSTI)

    Chan, Chio Mui; Zhou, Chun; Brunzelle, Joseph S.; Huang, Raven H.

    2010-01-28

    Small RNAs of {approx}20-30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3'-terminal nucleotides via 2'-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3' terminus is vital for biological functions of these small RNAs. Here, we report four crystal structures of the MTase domain of a bacterial homolog of Hen1 from Clostridium thermocellum and Anabaena variabilis, which are enzymatically indistinguishable from the eukaryotic Hen1 in their ability to methylate small single-stranded RNAs. The structures reveal that, in addition to the core fold of the MTase domain shared by other RNA and DNA MTases, the MTase domain of Hen1 possesses a motif and a domain that are highly conserved and are unique to Hen1. The unique motif and domain are likely to be involved in RNA substrate recognition and catalysis. The structures allowed us to construct a docking model of an RNA substrate bound to the MTase domain of bacterial Hen1, which is likely similar to that of the eukaryotic counterpart. The model, supported by mutational studies, provides insight into RNA substrate specificity and catalytic mechanism of Hen1.

  4. {sup 13}C-METHYL FORMATE: OBSERVATIONS OF A SAMPLE OF HIGH-MASS STAR-FORMING REGIONS INCLUDING ORION-KL AND SPECTROSCOPIC CHARACTERIZATION

    SciTech Connect (OSTI)

    Favre, Ccile; Bergin, Edwin A.; Crockett, Nathan R.; Neill, Justin L.; Carvajal, Miguel; Field, David; Jrgensen, Jes K.; Bisschop, Suzanne E.; Brouillet, Nathalie; Despois, Didier; Baudry, Alain; Kleiner, Isabelle; Marguls, Laurent; Huet, Thrse R.; Demaison, Jean E-mail: miguel.carvajal@dfa.uhu.es

    2015-01-01

    We have surveyed a sample of massive star-forming regions located over a range of distances from the Galactic center for methyl formate, HCOOCH{sub 3}, and its isotopologues H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}. The observations were carried out with the APEX telescope in the frequency range 283.4-287.4GHz. Based on the APEX observations, we report tentative detections of the {sup 13}C-methyl formate isotopologue HCOO{sup 13}CH{sub 3} toward the following four massive star-forming regions: Sgr B2(N-LMH), NGC6334 IRS 1, W51 e2, and G19.61-0.23. In addition, we have used the 1mm ALMA science verification observations of Orion-KL and confirm the detection of the {sup 13}C-methyl formate species in Orion-KL and image its spatial distribution. Our analysis shows that the {sup 12}C/{sup 13}C isotope ratio in methyl formate toward the Orion-KL Compact Ridge and Hot Core-SW components (68.4 10.1 and 71.4 7.8, respectively) are, for both the {sup 13}C-methyl formate isotopologues, commensurate with the average {sup 12}C/{sup 13}C ratio of CO derived toward Orion-KL. Likewise, regarding the other sources, our results are consistent with the {sup 12}C/{sup 13}C in CO. We also report the spectroscopic characterization, which includes a complete partition function, of the complex H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3} species. New spectroscopic data for both isotopomers H{sup 13}COOCH{sub 3} and HCOO{sup 13}CH{sub 3}, presented in this study, have made it possible to measure this fundamentally important isotope ratio in a large organic molecule for the first time.

  5. Nickel aluminide alloy suitable for structural applications

    DOE Patents [OSTI]

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  6. Nickel aluminide alloy suitable for structural applications

    DOE Patents [OSTI]

    Liu, Chain T. (Oak Ridge, TN)

    1998-01-01

    Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.

  7. Using physiologically based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate.

    SciTech Connect (OSTI)

    Kirman, C R.; Sweeney, Lisa M.; Corley, Rick A.; Gargas, M L.

    2005-04-01

    Reference values, including an oral reference dose (RfD) and an inhalation reference concentration (RfC), were derived for propylene glycol methyl ether (PGME), and an oral RfD was derived for its acetate (PGMEA). These values were based upon transient sedation observed in F344 rats and B6C3F1 mice during a two-year inhalation study. The dose-response relationship for sedation was characterized using internal dose measures as predicted by a physiologically based pharmacokinetic (PBPK) model for PGME and its acetate. PBPK modeling was used to account for changes in rodent physiology and metabolism due to aging and adaptation, based on data collected during weeks 1, 2, 26, 52, and 78 of a chronic inhalation study. The peak concentration of PGME in richly perfused tissues was selected as the most appropriate internal dose measure based upon a consideration of the mode of action for sedation and similarities in tissue partitioning between brain and other richly perfused tissues. Internal doses (peak tissue concentrations of PGME) were designated as either no-observed-adverse-effect levels (NOAELs) or lowest-observed-adverse-effect levels (LOAELs) based upon the presence or absence of sedation at each time-point, species, and sex in the two year study. Distributions of the NOAEL and LOAEL values expressed in terms of internal dose were characterized using an arithmetic mean and standard deviation, with the mean internal NOAEL serving as the basis for the reference values, which was then divided by appropriate uncertainty factors. Where data were permitting, chemical-specific adjustment factors were derived to replace default uncertainty factor values of ten. Nonlinear kinetics are were predicted by the model in all species at PGME concentrations exceeding 100 ppm, which complicates interspecies and low-dose extrapolations. To address this complication, reference values were derived using two approaches which differ with respect to the order in which these extrapolations were performed: (1) uncertainty factor application followed by interspecies extrapolation (PBPK modeling); and (2) interspecies extrapolation followed by uncertainty factor application. The resulting reference values for these two approaches are substantially different, with values from the former approach being 7-fold higher than those from the latter approach. Such a striking difference between the two approaches reveals an underlying issue that has received little attention in the literature regarding the application of uncertainty factors and interspecies extrapolations to compounds where saturable kinetics occur in the range of the NOAEL. Until such discussions have taken place, reference values based on the latter approach are recommended for risk assessments involving human exposures to PGME and PGMEA.

  8. Controlling DNA Methylation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Induced DNA bending. Primary Citation Sawaya, M. R. Zhu, Z., Mersha, F., Chan, S-h., ... restriction-modification system control element C.BclI and mapping of its binding site. ...

  9. Analytical Methodologies for Detection of Gamma-Valerolactone, Delta-Valerolactone, Acephate and Azinphos Methyl and Their Associated Metabolites in Complex Biological Matrices

    SciTech Connect (OSTI)

    Zink, E.; Clark, R.; Grant, K.; Campbell, J.; Hoppe, E.

    2005-01-01

    Non-invasive biomonitoring for chemicals of interest in law enforcement and similar monitoring of pesticides, together with their metabolites, can not only save money but can lead to faster medical attention for individuals exposed to these chemicals. This study describes methods developed for the analysis of gamma-valerolactone (GVL), delta-valerolactone (DVL), acephate, and azinphos methyl in saliva and serum. Liquid chromatography/mass spectrometry (LC/MS) operated in the negative and positive ion mode and gas chromatography/mass spectrometry (GC/MS) were used to analyze GVL and DVL. Although both analytical techniques worked well, lower detection limits were obtained with GC/MS. The lactones and their corresponding sodium salts were spiked into both saliva and serum. The lactones were isolated from saliva or serum using newly developed extraction techniques and then subsequently analyzed using GC/MS. The sodium salts of the lactones are nonvolatile and require derivatization prior to analysis by this method. N-methyl-N-(t-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) was ultimately selected as the reagent for derivatization because the acidic conditions required for reactions with diazomethane caused the salts to undergo intramolecular cyclization to the corresponding lactones. In vitro studies were conducted using rat liver microsomes to determine other metabolites associated with these compounds. Azinphos methyl and acephate are classified as organophosphate pesticides, and are known to be cholinesterase inhibitors in humans and insects, causing neurotoxicity. For this reason they have both exposure and environmental impact implications. These compounds were spiked into serum and saliva and prepared for analysis by GC/MS. Continuation of this research would include analysis by GC/MS under positive ion mode to determine the parent ions of the unknown metabolites. Further research is planned through an in vivo analysis of the lactones and pesticides. These methodologies could be extended for further analysis of other similar compounds.

  10. Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres

    SciTech Connect (OSTI)

    Mthethwa, T.P.; Moloto, M.J.; De Vries, A.; Matabola, K.P.

    2011-04-15

    Graphical abstract: SEM images of CdS/PMMA showing coiling as loading of CdS nanoparticles is increased. Thermal stability is increased with increase in %loading of both CdS and CdSe nanoparticles. Research highlights: {yields} TOPO-capped CdS and HDA-capped CdSe nanoparticles were synthesized and fully characterized. {yields} The nanoparticles were mixed with the polymer, PMMA using electrospinning technique using 2, 5 and 10% weight loadings. {yields} The mixture was spun to produce fibres with optical and thermal properties showing significant change and also the increase in loading causing bending or spiraling. {yields} Both TEM images for nanoparticles and SEM for fibres shows the morphology and sizes of the particles. -- Abstract: Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the polymer fibres at low concentration of quantum dots however at higher concentrations some interactions were observed which shows that QDs were present on the surfaces of the fibres.

  11. Manipulation of the HIF–Vegf pathway rescues methyl tert-butyl ether (MTBE)-induced vascular lesions

    SciTech Connect (OSTI)

    Bonventre, Josephine A.; Kung, Tiffany S.; White, Lori A.; Cooper, Keith R.

    2013-12-15

    Methyl tert-butyl ether (MTBE) has been shown to be specifically anti-angiogenic in piscine and mammalian model systems at concentrations that appear non-toxic in other organ systems. The mechanism by which MTBE targets developing vascular structures is unknown. A global transcriptome analysis of zebrafish embryos developmentally exposed to 0.00625–5 mM MTBE suggested that hypoxia inducible factor (HIF)-regulated pathways were affected. HIF-driven angiogenesis via vascular endothelial growth factor (vegf) is essential to the developing vasculature of an embryo. Three rescue studies were designed to rescue MTBE-induced vascular lesions: pooled blood in the common cardinal vein (CCV), cranial hemorrhages (CH), and abnormal intersegmental vessels (ISV), and test the hypothesis that MTBE toxicity was HIF–Vegf dependent. First, zebrafish vegf-a over-expression via plasmid injection, resulted in significantly fewer CH and ISV lesions, 46 and 35% respectively, in embryos exposed to 10 mM MTBE. Then HIF degradation was inhibited in two ways. Chemical rescue by N-oxaloylglycine significantly reduced CCV and CH lesions by 30 and 32% in 10 mM exposed embryos, and ISV lesions were reduced 24% in 5 mM exposed zebrafish. Finally, a morpholino designed to knock-down ubiquitin associated von Hippel–Lindau protein, significantly reduced CCV lesions by 35% in 10 mM exposed embryos. In addition, expression of some angiogenesis related genes altered by MTBE exposure were rescued. These studies demonstrated that MTBE vascular toxicity is mediated by a down regulation of HIF–Vegf driven angiogenesis. The selective toxicity of MTBE toward developing vasculature makes it a potentially useful chemical in the designing of new drugs or in elucidating roles for specific angiogenic proteins in future studies of vascular development. - Highlights: • Global gene expression of MTBE exposed zebrafish suggested altered HIF1 signaling. • Over expression of zebrafish vegf-a rescues MTBE-induced vascular lesions. • Inhibiting PHD or knocking down VHL rescues MTBE-induced vascular lesions. • HIF1-Vegf driven angiogenesis is a target for MTBE vascular toxicity.

  12. Analysis of methyl neodecanamide in lake water by reversed-phase high performance liquid chromatography and gas chromatography-mass spectrometry

    SciTech Connect (OSTI)

    Rasmussen, H.T.; Friedman, S.K.; Mustilli, A.J.; McDonough, R.; McPherson, B.P. )

    1994-01-01

    Methyl Neodecanamide (MNDA) has been quantified in lake water at levels of 0.1 to 1,000 ppm. Total recoveries from spiked placebos were 99.8 [+-] 2.3% at the 1,000 ppm level and 98.3 [+-] 4.3% at the 0.1 ppm level (based on 54 determinations at each level). Plots of actual concentrations vs. determined concentrations were linear from 0.07--0.13 and 700--1,300 ppm (r > 0.999). Stability of MNDA in lake water was verified by determining the composition by GC/MS immediately after dissolution and after 3 days.

  13. Synthesis of 6-Methyl-9-propyldibenzothiophene-4-ol amended to 9-isopropyl-6-methyldibenzothiophene-4-ol. Final technical report, July 25, 1991--January 25, 1993

    SciTech Connect (OSTI)

    Eisenbraun, E.J.

    1992-02-17

    This is a draft final technical report on Task 1 of a contract to synthesize 6-Methyl-9-propyldibenzothiophene-4-ol, as amended to 9- isopropyl-6-methyldibenzothiophene-4-ol. This report is a compilation of data presented in earlier reports. The first annual report dealt with an attempted synthesis of 4-methoxy-6-methyl-9- propyldibenzothiophene (the original target compound), the successful synthesis and delivery of 200 grams of the sulfide 1,4-diethyl-2- [(2{prime}-methoxyphenyl)-thio]benzene, and initial work on a new synthesis route for the preparation of the new target compound 9- isopropyl-6-methyldibenzothiophene-4-ol. The change to the new target compound and the new synthesis route became necessary when it was learned that the sulfide mixture could not be cyclized to the substituted dibenzothiophene mixture. The second annual report described the successful preparation of 45 g of the new target compound using the new synthesis route. Subsequently funds were provided to synthesize an additional 45 g of the new target using the same reaction scheme. This task was recently completed.

  14. INSIGHTS INTO SURFACE HYDROGENATION IN THE INTERSTELLAR MEDIUM: OBSERVATIONS OF METHANIMINE AND METHYL AMINE IN Sgr B2(N)

    SciTech Connect (OSTI)

    Halfen, D. T.; Ziurys, L. M.; Ilyushin, V. V. E-mail: lziurys@as.arizona.edu

    2013-04-10

    Multiple observations of methanimine (CH{sub 2}NH) and methyl amine (CH{sub 3}NH{sub 2}) have been performed toward Sgr B2(N) at 1, 2, and 3 mm using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory. In the frequency range 68-280 GHz, 23 transitions of CH{sub 2}NH and 170 lines of CH{sub 3}NH{sub 2} have been observed as individual, distinguishable features, although some are partially blended with other lines. For CH{sub 2}NH, the line profiles indicate V{sub LSR} = 64.2 {+-} 1.4 km s{sup -1} and {Delta}V{sub 1/2} = 13.8 {+-} 2.8 km s{sup -1}, while V{sub LSR} = 63.7 {+-} 1.6 km s{sup -1} and {Delta}V{sub 1/2} = 15.1 {+-} 3.0 km s{sup -1} for CH{sub 3}NH{sub 2}, parameters that are very similar to those of other organic species in Sgr B2(N). From these data, rotational diagrams were constructed for both species. In the case of CH{sub 2}NH, a rotational temperature of T{sub rot} = 44 {+-} 13 K and a column density of N{sub tot} = (9.1 {+-} 4.4) Multiplication-Sign 10{sup 14} cm{sup -2} were determined from the analysis. For CH{sub 3}NH{sub 2}, T{sub rot} = 159 {+-} 30 K and N{sub tot} = (5.0 {+-} 0.9) Multiplication-Sign 10{sup 15} cm{sup -2}, indicating that this species is present in much warmer gas than CH{sub 2}NH. The fractional abundances for CH{sub 2}NH and CH{sub 3}NH{sub 2} were established to be f (H{sub 2}) Almost-Equal-To 3.0 Multiplication-Sign 10{sup -10} and f (H{sub 2}) Almost-Equal-To 1.7 Multiplication-Sign 10{sup -9}, respectively. It has been proposed that CH{sub 2}NH is formed on grains via hydrogenation of HCN; further hydrogenation of CH{sub 2}NH on surfaces leads to CH{sub 3}NH{sub 2}. However, given the dissimilarity between the rotational temperatures and distributions of CH{sub 2}NH and CH{sub 3}NH{sub 2} in Sgr B2, it is improbable that these species are closely related synthetically, at least in this source. Both CH{sub 2}NH and CH{sub 3}NH{sub 2} are more likely created by neutral-neutral processes in the gas phase.

  15. This Week In Petroleum Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2, 2009 (Next Release on April 29, 2009) Accounting for Biodiesel Methyl Esters? No, it is not the name of the lead in a John Waters film, or of some gun-toting moll from 1940s...

  16. Ultraviolet absorbing copolymers

    DOE Patents [OSTI]

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  17. On the correlation between the photoexcitation pathways and the critical energies required for ablation of poly(methyl methacrylate): A molecular dynamics study

    SciTech Connect (OSTI)

    Conforti, Patrick F.; Prasad, Manish; Garrison, Barbara J.

    2008-05-15

    The energetics initiating ablation in poly(methyl methacrylate) (PMMA) are studied using molecular dynamics (MD) simulation. The critical energy to initiate ablation in PMMA following the absorption of photons is investigated for two penetration depths along a range of fluences using a coarse-grained, hybrid Monte Carlo-MD scheme. Both heating and direct bond scission are simulated separately after photon absorption with additional transformation of material occurring via chemical reactions following the photochemical bond cleavage. For a given type of absorption and reaction channel, a critical energy can well describe the amount of energy required to initiate ablation. The simulations show a decrease in the critical energy when a greater amount of photochemistry is introduced in the system. The simulations complement experimental studies and elucidate how enhanced photochemistry lowers ablation thresholds in polymer substrates.

  18. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    SciTech Connect (OSTI)

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.

  19. Synthesis ofN-(2-chloro-5-methylthiophenyl)-N'-(3-methyl-thiophenyl)-N'-[3H3]methylguanidine, l brace [3H3]CNS-5161 r brace

    SciTech Connect (OSTI)

    Gibbs, Andrew R.; Morimoto, Hiromi; VanBrocklin, Henry F.; Williams, Philip G.; Biegon, Anat

    2001-09-28

    The preparation of the title compound, [{sup 3}H{sub 3}]CNS-5161, was accomplished in three steps starting with the production of [{sup 3}H{sub 3}]iodomethane (CT{sub 3}I). The intermediate N-[{sup 3}H{sub 3}]methyl-3-(thiomethylphenyl)cyanamide was prepared in 77% yield by the addition of CT{sub 3}I to 3-(thiomethylphenyl)cyanamide, previously treated with sodium hydride. Reaction of this tritiated intermediate with 2-chloro-5-thiomethylaniline hydrochloride formed the guanidine compound [{sup 3}H{sub 3}]CNS-5161. Purification by HPLC gave the desired labeled product in an overall yield of 9% with greater than 96% radiochemical purity and a final specific activity of 66 Ci mmol{sup -1}.

  20. High-Performance All Air-Processed Polymer-Fullerene Bulk Heterojunction Solar Cells

    SciTech Connect (OSTI)

    Black, C.T.; Nam, C.-Y.; Su, D.

    2009-10-23

    High photovoltaic device performance is demonstrated in ambient-air-processed bulk heterojunction solar cells having an active blend layer of organic poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), with power conversion efficiencies as high as 4.1%, which is comparable to state-of-the-art bulk heterojunction devices fabricated in air-free environments. High-resolution transmission electron microscopy is combined with detailed analysis of electronic carrier transport in order to quantitatively understand the effects of oxygen exposure and different thermal treatments on electronic conduction through the highly nanostructured active blend network. Improvement in photovoltaic device performance by suitable post-fabrication thermal processing results from the reduced oxygen charge trap density in the active blend layer and is consistent with a corresponding slight increase in thickness of an {approx}4 nm aluminum oxide hole-blocking layer present at the electron-collecting contact interface.

  1. K20E, an oxidative-coupling compound of methyl caffeate, exhibits anti-angiogenic activities through down-regulations of VEGF and VEGF receptor-2

    SciTech Connect (OSTI)

    Pan, Chun-Hsu; Lin, Wen-Hsin; Chien, Yi-Chung; Liu, Fon-Chang; Sheu, Ming-Jyh; Kuo, Yueh-Hsiung; Wu, Chieh-Hsi

    2015-01-15

    Anti-angiogenesis is one of the most popular clinical interventions for cancer chemotherapy. A series of synthesized derivative of methyl caffeate were used to evaluate the anti-angiogenic activity and to investigate possible pharmacological mechanisms in the present study. The most potent anti-angiogenic compound was evaluated in the experiments of murine allograft tumor model and Matrigel plug assay as well as cell models in the human umbilical vascular endothelial cells (HUVECs) and the LLC1 lung cancer cells. Our results suggested that K20E suppressed the tumor growth in the allograft tumor model and exhibited anti-angiogenic activity in Matrigel plug assay. Besides, HUVEC viability was found to be significantly reduced by arresting cell cycle at G{sub 2}/M phase and apoptosis. Cell migration, invasion, and tube formation of the HUVECs were also markedly suppressed by K20E treatment. K20E largely down-regulated the intracellular and secreted vascular endothelial growth factor (VEGF) in the LLC1 cancer cells. Besides, VEGF receptor-2 (VEGFR-2) and its downstream signaling cascades (AKT-mTOR and MEK1/2-ERK1/2) as well as gelatinases were all evidently reduced in the HUVECs treated with K20E. Inversely, K20E can up-regulate the expression levels of p53 and p21 proteins in the HUVECs. Based on these results, our study suggested that K20E possessed inhibiting angiogenesis through regulation of VEGF/VEGFR-2 and its downstream signaling cascades in the vascular endothelial cells (VECs). - Highlights: • K20E is an oxidative-coupling compound of methyl caffeate. • K20E exhibits anti-tumor and anti-angiogenesis effects. • K20E suppresses the expressions of VEGF and VEGF receptor-2 (VEGFR-2) proteins. • K20E deactivates VEGFR-2-mediated downstream signaling pathways to inhibit angiogenesis. • K20E up-regulates p53-p21 pathway to induce apoptosis and cell arrest at G2/M phase.

  2. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOE Patents [OSTI]

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  3. Stereochemical effects in the gas-phase pinacol rearrangement. 2. Ring contraction versus methyl migration in cis- and trans-1,2-dimethylcyclohexane-1,2-diol

    SciTech Connect (OSTI)

    de Petris, G.; Giacomello, P.; Pizzabiocca, A.; Renzi, G.; Speranza, M.

    1988-02-17

    The gas-phase pinacol rearrangement of cis- and trans-1,2-dimethylcyclohexane-1,2-diols, promoted by D/sub 3//sup +/, CH/sub 5//sup +//C/sub 2/H/sub 5//sup +/ and t-C/sub 4/H/sub 9//sup +/ ions, was studied by mass spectrometric and radiolytic methods in the pressure range 0.5-760 Torr. When product isomerization is inhibited, by using N(CH/sub 3/)/sub 3/ as a trapping reagent at high pressure, mixtures of 2,2-dimethylcyclohexanone and 1-acetyl-1-methylcyclopentane were recovered from the reaction. In methane, the trend of the measured relative rates for ring contraction (k/sub 5/), methyl or hydroxyl group migration (k/sub 6/) versus the rearrangement rate of pincaol itself (k/sub p/), is k/sub 6/(trans) approx. k/sub 5/(trans) greater than or equal to k/sub 5/(cis) > k/sub 6/(cis) greater than or equal to k/sub p/. No evidence for the formation of an intermediate carbenium ion was found. Stereochemical aspects of the mechanism are discussed and compared with solution data.

  4. Molecular and crystal structures of 4'-hydroxy derivative of (3R,6R)-3-methyl-6-isopropyl-2-(4-phenylbenzylidene)cyclohexanone

    SciTech Connect (OSTI)

    Kutulya, L. A.; Kulishov, V. I.; Shishkina, S. V.; Tolochko, A. S.; Roshal', A. D.; Shishkin, O. V.

    2008-05-15

    The molecular and crystal structures of the 4-hydroxy derivative of (3R,6R)-3-methyl-6-isopropyl-2-(4-phenylbenzylidene)cyclohexanone are determined by X-ray diffraction analysis. Single crystals are orthorhombic, a = 9.147(2) A, b = 12.959(2) A, c = 15.695(5) A, V = 1860.4(7) A{sup 3}, Z = 4, and space group P2{sub 1}2{sub 1}2{sub 1}. The cyclohexanone ring in the crystal structure has an asymmetric chair conformation. The puckering parameters are as follows: the puckering amplitude S is 0.91, and the puckering angles {theta} and {psi} are equal to 20.2{sup o} and 10.4{sup o}, respectively. It is established that the enone fragment and the cyclohexanone ring in molecules are flattened considerably. In the crystal structure, the molecules are linked by the hydrogen bonds (bond length, 1.85 A). The structural features and the strength of the hydrogen bonds for the compound under investigation and its analogue with one benzene ring are compared using the X-ray diffraction and IR spectroscopic data.

  5. Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry

    SciTech Connect (OSTI)

    Elias, V.O.; Simoneit, B.R.T. ); Pereira, A.S.; Cardoso, J.N. ); Cabral, J.A. )

    1999-07-15

    High-temperature high-resolution gas chromatography (HTGC) is an established technique for the separation of complex mixtures of high molecular weight (HMW) compounds which do not elute when analyzed on conventional GC columns. The combination of this technique with mass spectrometry is not so common and application to aerosols is novel. The HTGC and HTGC-MS analyses of smoke samples taken by particle filtration from combustion of different species of plants provided the characterization of various classes of HMW compounds reported to occur for the first time in emissions from biomass burning. Among these components are a series of wax esters with up to 58 carbon numbers, aliphatic hydrocarbons, triglycerides, long chain methyl ketones, alkanols and a series of triterpenyl fatty acid esters which have been characterized as novel natural products. Long chain fatty acids with more than 32 carbon numbers are not present in the smoke samples analyzed. The HMW compounds in smoke samples from the burning of plants from Amazonia indicate the input of directly volatilized natural products in the original plants during their combustion. However, the major organic compounds extracted from smoke consist of a series of lower molecular weight polar components, which are not natural products but the result of the thermal breakdown of cellulose and lignin. In contrast, the HMW natural products may be suitable tracers for specific sources of vegetation combustion because they are emitted as particles without thermal alternation in the smoke and can thus be related directly to the original plant material.

  6. Synthesis of 2'-deoxy-2'-[.sup.18F]fluoro-5-methyl-1-B-D-arabinofuranosyluracil (.sup.18F-FMAU)

    DOE Patents [OSTI]

    Li, Zibo; Cai, Hancheng; Conti, Peter S

    2014-12-16

    The present invention relates to methods of synthesizing .sup.18F-FMAU. In particular, .sup.18F-FMAU is synthesized using one-pot reaction conditions in the presence of Friedel-Crafts catalysts. The one-pot reaction conditions are incorporated into a fully automated cGMP-compliant radiosynthesis module, which results in a reduction in synthesis time and simplifies reaction conditions. The one-pot reaction conditions are also suitable for the production of 5-substituted thymidine or cytidine analogs. The products from the one-pot reaction (e.g. the labeled thymidine or cytidine analogs) can be used as probes for imaging tumor proliferative activity. More specifically, these [.sup.18F]-labeled thymidine or cytidine analogs can be used as a PET tracer for certain medical conditions, including, but not limited to, cancer disease, autoimmunity inflammation, and bone marrow transplant.

  7. Biodiesel fuel from animal fat. Ancillary studies on transesterification of beef tallow

    SciTech Connect (OSTI)

    Ma, F.; Clements, L.D.; Hanna, M.A.

    1998-09-01

    Transesterification of beef tallow was investigated. The solubility of ethanol in beef tallow was much higher than that of methanol. At 100 C the solubility of methanol was 19% (w/w). The solubility of ethanol in beef tallow reached 100% (w/w) at about 68 C. For the distribution of methanol between beef tallow methyl esters (BTME) and glycerol, the percentage of total methanol in the glycerol phase was higher than that in the fatty acid methyl ester (FAME) phase in a simulated system at room temperature. At 65--80 C, however, the percentage of total methanol in FAME (60% (w/w)) was higher than that in glycerol (40% (w/w)) in a 90:10 (w/w) blend of FAME and glycerol. This coincided with the methanol distribution in the transesterified product. The process for making beef tallow methyl esters should recover methanol using vacuum distillation, separate the ester and glycerol phases, and then wash the beef tallow methyl esters with warm water. At neutral pH, the separation of ester and glycerol and water washing was easier because it reduced emulsion formation.

  8. "Seeing" Mercury Methylation in Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Wiener JG, Krabbgenhoft DP, Heinz GH, Scheuhammer AM (2003). Ecotoxicology of mercury. In Handbook of Ecotoxicology; Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr, Eds.; CRC ...

  9. Spatiotemporal temperature and density characterization of high-power atmospheric flashover discharges over inert poly(methyl methacrylate) and energetic pentaerythritol tetranitrate dielectric surfaces

    SciTech Connect (OSTI)

    Tang, V.; Grant, C. D.; McCarrick, J. F.; Zaug, J. M.; Glascoe, E. A.; Wang, H.

    2012-03-01

    A flashover arc source that delivered up to 200 mJ on the 100s-of-ns time-scale to the arc and a user-selected dielectric surface was characterized for studying high-explosive kinetics under plasma conditions. The flashover was driven over thin pentaerythritol tetranitrate (PETN) and poly(methyl methacrylate) (PMMA) dielectric films and the resultant plasma was characterized in detail. Time- and space-resolved temperatures and electron densities of the plasma were obtained using atomic emission spectroscopy. The hydrodynamics of the plasma was captured through fast, visible imaging. Fourier transform infrared spectroscopy (FTIR) was used to characterize the films pre- and post-shot for any chemical alterations. Time-resolved infrared spectroscopy (TRIR) provided PETN depletion data during the plasma discharge. For both types of films, temperatures of 1.6-1.7 eV and electron densities of {approx}7-8 x 10{sup 17}/cm{sup 3}{approx}570 ns after the start of the discharge were observed with temperatures of 0.6-0.7 eV persisting out to 15 {mu}s. At 1.2 {mu}s, spatial characterization showed flat temperature and density profiles of 1.1-1.3 eV and 2-2.8 x 10{sup 17}/cm{sup 3} for PETN and PMMA films, respectively. Images of the plasma showed an expanding hot kernel starting from radii of {approx}0.2 mm at {approx}50 ns and reaching {approx}1.1 mm at {approx}600 ns. The thin films ablated or reacted several hundred nm of material in response to the discharge. First TRIR data showing the in situ reaction or depletion of PETN in response to the flashover arc were successfully obtained, and a 2-{mu}s, 1/e decay constant was measured. Preliminary 1 D simulations compared reasonably well with the experimentally determined plasma radii and temperatures. These results complete the first steps to resolving arc-driven PETN reaction pathways and their associated kinetic rates using in situ spectroscopy techniques.

  10. Two new coordination polymers constructed by naphthalene-1,4-dicarboxylic acid and 2,4-diamino-6-methyl-triazine

    SciTech Connect (OSTI)

    Li, Yamin; Xiao, Changyu; Zhang, Xudong; Xu, Yanhui; Li, Junrui; Lun, Huijie; Chen, Qi

    2013-08-15

    Two new transition metal coordination complexes, ([MnO(nda)](H{sub 2}dmt)(H{sub 2}O)){sub n} (1), [Ag{sub 5}(nda){sub 2.5}(dmt)]{sub n} (2), (H{sub 2}nda=naphthalene-1,4-dicarboxylic acid, dmt=2,4-diamine-6-methyl-1,3,5-triazine) have been hydrothermally synthesized by the reactions of H{sub 2}nda and dmt with the homologous MnCl{sub 2}·4H{sub 2}O and AgNO{sub 3}, respectively, and characterized by single-crystal X-ray diffraction, IR spectra, elemental analysis, thermogravimetric analysis (TGA). The compound 1 exhibits a 3D network comprising 1D metal chain (MnO(CO{sub 2}){sub 2}){sub n} connected by the ligand nda{sup 2−}, featuring a four-connected uninodal diamond -like topology. In compound 2, it is firstly observed that decanuclear silver units as secondary building units to construct 3D network by the ligands dmt and nda{sup 2−}, with a rare 2-nodal (3,8)-connected tfz-d topology ((4{sup 3}){sub 2}(4{sup 6}.6{sup 18}.8{sup 4})). The interactions within each Mn(II)—Mn(II) pair of compound 1 are antiferromagnetic (g=2.07, J=−1.42(1) cm{sup −1}, zj′=−0.73(2) cm{sup −1}). In addition, compound 2 exhibits photoluminescent property at about 472 nm (λ{sub ex}=394 nm). - Graphical abstract: Two new transition metal coordination complexes 1–2 have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction, IR spectra, elemental analysis thermogravimetric analysis (TGA). Highlights: • The compound 1 exhibits a 3D network with four-connected uninodal diamond-like topology. • The first 3D network of 2 with a rare tfz-d topology consists of decanuclear silver clusters as secondary building units. • The magnetic measurement indicates the compound 1 shows antiferromagnetic interactions. • The photoluminescent property of 2 has been measured.

  11. Quercetin 3-O-methyl ether protects FL83B cells from copper induced oxidative stress through the PI3K/Akt and MAPK/Erk pathway

    SciTech Connect (OSTI)

    Tseng, Hsiao-Ling; Li, Chia-Jung; Huang, Lin-Huang; Chen, Chun-Yao; Tsai, Chun-Hao; Lin, Chun-Nan; Department of Biological Science and Technology, School of Medicine, China Medical University, Taichung, Taiwan ; Hsu, Hsue-Yin

    2012-10-01

    Quercetin is a bioflavonoid that exhibits several biological functions in vitro and in vivo. Quercetin 3-O-methyl ether (Q3) is a natural product reported to have pharmaceutical activities, including antioxidative and anticancer activities. However, little is known about the mechanism by which it protects cells from oxidative stress. This study was designed to investigate the mechanisms by which Q3 protects against Cu{sup 2+}-induced cytotoxicity. Exposure to Cu{sup 2+} resulted in the death of mouse liver FL83B cells, characterized by apparent apoptotic features, including DNA fragmentation and increased nuclear condensation. Q3 markedly suppressed Cu{sup 2+}-induced apoptosis and mitochondrial dysfunction, characterized by reduced mitochondrial membrane potential, caspase-3 activation, and PARP cleavage, in Cu{sup 2+}-exposed cells. The involvement of PI3K, Akt, Erk, FOXO3A, and Mn-superoxide dismutase (MnSOD) was shown to be critical to the survival of Q3-treated FL83B cells. The liver of both larval and adult zebrafish showed severe damage after exposure to Cu{sup 2+} at a concentration of 5 μM. Hepatic damage induced by Cu{sup 2+} was reduced by cotreatment with Q3. Survival of Cu{sup 2+}-exposed larval zebrafish was significantly increased by cotreatment with 15 μM Q3. Our results indicated that Cu{sup 2+}-induced apoptosis in FL83B cells occurred via the generation of ROS, upregulation and phosphorylation of Erk, overexpression of 14-3-3, inactivation of Akt, and the downregulation of FOXO3A and MnSOD. Hence, these results also demonstrated that Q3 plays a protective role against oxidative damage in zebrafish liver and remarked the potential of Q3 to be used as an antioxidant for hepatocytes. Highlights: ► Protective effects of Q3 on Cu{sup 2+}-induced oxidative stress in vitro and in vivo. ► Cu{sup 2+} induced apoptosis in FL83B cells via ROS and the activation of Erk. ► Q3 abolishes Cu{sup 2+}-induced apoptosis through the PI3K/Akt and MAPK/Erk pathway.

  12. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-17

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  13. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, O; Pitz, W J; Westbrook, C K

    2007-09-20

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  14. Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate

    SciTech Connect (OSTI)

    Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K.

    2008-08-15

    A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet-stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels. (author)

  15. Mapping suitability areas for concentrated solar power plants...

    Office of Scientific and Technical Information (OSTI)

    Our approach uses digital elevation model derived from NASA s Shuttle Radar Topographic ... Subject: 14 SOLAR ENERGY; 29 ENERGY PLANNING, POLICY, AND ECONOMY concentrated solar ...

  16. Project Profile: Deep Eutectic Salt Formulations Suitable as...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    J.W. Raade and D. Padowitz, "Development of Molten Salt Heat Transfer Fluid with Low Melting Point and High Thermal Stability," Journal of Solar Energy Engineering, Vol. 133, No. ...

  17. Carbon nanostructures on silicon substrates suitable for nanolithography

    SciTech Connect (OSTI)

    Abdi, Y.; Mohajerzadeh, S.; Hoseinzadegan, H.; Koohsorkhi, J.

    2006-01-30

    We report the application of vertically grown carbon nanotubes (CNTs) for submicron and nanolithography. The growth of CNTs is performed on silicon substrates using a nickel-seeded plasma-enhanced chemical vapor deposition method at a temperature of 650 deg. C and with a mixture of C{sub 2}H{sub 2} and H{sub 2}. The grown CNTs are encapsulated by a titanium-dioxide film and then mechanically polished to expose the buried nanotubes, and a plasma ashing step finalizes the process. The emission of electrons from the encapsulated nanotubes is used to write patterns on a resist-coated substrate placed opposite to the main CNT holding one. Scanning electron microscope has been used to investigate the nanotubes and the formation of nano-metric lines. Also a novel approach is presented to create isolated nanotubes from a previously patterned cluster growth.

  18. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland; Boatner, Lynn A.

    1993-01-01

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  19. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOE Patents [OSTI]

    Ruka, R.J.

    1986-12-23

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25 C and about 1,200 C, capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments. 2 figs.

  20. New Metallization Technique Suitable for 6-MW Pilot Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this ...

  1. Validity of ELTB Equation for Suitable Description of BEC

    SciTech Connect (OSTI)

    Kim, Dooyoung; Kim, Jinguanghao; Yoon, Jin-Hee

    2005-10-17

    The Bose-Einstein condensation (BEC) has been found for various alkali-metal gases such as 7Li, 87Rb, Na, and H. For the description of atoms in this condensate state, the Gross-Pitaevskii (GP) equation has been widely used. However, the GP equation contains the nonlinear term, which makes this equation hard to solve. Therefore, physical quantities are usually obtained numerically, and sometimes it is difficult to extract a physical meaning from the calculated results. The nuclear theory group at Purdue University in the U.S. developed a new simple equation, the equivalent linear two-body (ELTB) equation, using the hyper-radius coordinates and tested it for one-dimensional BEC system. Their results are consistent with the numerical values from the GP equation within 4.5%.We test the validity of the ELTB equation for three-dimensional BEC system by calculating the energies per particle and the wave functions for 87Rb gas and for 7Li gas. We use the quantum-mechanical variational method for the BEC energy. Our result for 87Rb gas agrees with a numerical calculation based on the GP equation, with a relative error of 12% over a wide range of N from 100 to 10,000. The relative distances between particles for 7Li gas are consistent within a relative error of 17% for N {<=} 1300. The relatively simple form of the ELTB equation, compared with the GP equation, enables us to treat the N-body system easily and efficiently. We conclude that the ELTB equation is a powerful equation for describing BEC system because it is easy to treat.

  2. Subtilisin variants suitable for hydrolysis and synthesis in organic media

    DOE Patents [OSTI]

    Arnold, Frances H.; Chen, Keqin

    1994-05-31

    In accordance with the present invention, there are provided novel, modified subtilisin enzyme(s) having improved catalytic activity and/or stability in organic media.

  3. Triple inverter pierce oscillator circuit suitable for CMOS

    DOE Patents [OSTI]

    Wessendorf; Kurt O.

    2007-02-27

    An oscillator circuit is disclosed which can be formed using discrete field-effect transistors (FETs), or as a complementary metal-oxide-semiconductor (CMOS) integrated circuit. The oscillator circuit utilizes a Pierce oscillator design with three inverter stages connected in series. A feedback resistor provided in a feedback loop about a second inverter stage provides an almost ideal inverting transconductance thereby allowing high-Q operation at the resonator-controlled frequency while suppressing a parasitic oscillation frequency that is inherent in a Pierce configuration using a "standard" triple inverter for the sustaining amplifier. The oscillator circuit, which operates in a range of 10 50 MHz, has applications for use as a clock in a microprocessor and can also be used for sensor applications.

  4. Process Reform, Security and Suitability- December 17, 2008

    Broader source: Energy.gov [DOE]

    This is to report on the progress made to improve the timeliness and effectiveness of our hiring and clearing decisions and the specific plan to reform the process further, in accordance with our initial proposals made in April ofthis year.

  5. New Metallization Technique Suitable for 6-MW Pilot Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Kamel Ounadjela Dr. Alain Blosse 5d. PROJECT NUMBER NRELSR-520-48591 5e. TASK NUMBER PV10.2010 5f. WORK UNIT NUMBER 7. PERFORMING ...

  6. An Industrial Membrane System Suitable for Distributed Used Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    such as thermal and chemical stability, including waste oil re-refining, coal tar oil clean-up, and FCC slurry upgrading. * In parallel, use these applications and know-how ...

  7. AMO Requests Technical Topics Suitable for a Manufacturing Innovation Institute

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) seeks information on mid-Technology Readiness Level (TRL) research and development (R&D) needs, market challenges, supply chain challenges, and shared facility needs to address challenges associated with clean energy manufacturing.

  8. Recombinant hosts suitable for simultaneous saccharification and fermentation

    DOE Patents [OSTI]

    Ingram, Lonnie O'Neal; Zhou, Shengde

    2007-06-05

    The invention provides recombinant host cells containing at least one heterologous polynucleotide encoding a polysaccharase under the transcriptional control of a surrogate promoter capable of increasing the expression of the polysaccharase. In addition, the invention further provides such hosts with genes encoding secretory protein/s to facilitate the secretion of the expressed polysaccharase. Preferred hosts of the invention are ethanologenic and capable of carrying out simultaneous saccharification fermentation resulting in the production of ethanol from complex cellulose substrates.

  9. Multilayer capacitor suitable for substrate integration and multimegahertz filtering

    DOE Patents [OSTI]

    Ngo, Khai D. T.

    1990-01-01

    A multilayer capacitor comprises stacked, spaced-apart electrodes of sheet form, dielectric layers between the electrodes, and first and second groups of spaced-apart conductive vias extending transversely of the sheet-form electrodes and through aligned holes in the dielectric layers. Alternate electrodes are instantaneously positive, and the remaining electrodes are instantaneously negative. Each via of the first group is electrically connected to the positive electrodes and passes insulatingly through the negative electrodes. Similarly, each via of the second group is electrically connected to the negative electrodes and passes insulatingly through the positive electrodes. Each via has, in the plane of the electrodes, a cross-sectional form in the shape of an elongated rib of greater length than width. The elongated ribs of the first group are disposed in a first plurality of rows with their lengths in spaced-apart, aligned relationship, and the ribs of the second group are disposed in a second plurality of rows with their lengths in spaced-apart, aligned relationship. The first plurality of rows is disposed substantially orthogonally with respect to the second plurality of rows.

  10. Composition suitable for decontaminating a porous surface contaminated with cesium

    DOE Patents [OSTI]

    Kaminski, Michael D.; Finck, Martha R.; Mertz, Carol J.

    2010-06-15

    A method of decontaminating porous surfaces contaminated with water soluble radionuclides by contacting the contaminated porous surfaces with an ionic solution capable of solubilizing radionuclides present in the porous surfaces followed by contacting the solubilized radionuclides with a gel containing a radionuclide chelator to bind the radionuclides to the gel, and physically removing the gel from the porous surfaces. A dry mix is also disclosed of a cross-linked ionic polymer salt, a linear ionic polymer salt, a radionuclide chelator, and a gel formation controller present in the range of from 0% to about 40% by weight of the dry mix, wherein the ionic polymer salts are granular and the non cross-linked ionic polymer salt is present as a minor constituent.

  11. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    SciTech Connect (OSTI)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energys Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  12. Cobalt doped lanthanum chromite material suitable for high temperature use

    DOE Patents [OSTI]

    Ruka, Roswell J.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell, subject to thermal cycling temperatures of between about 25.degree. C. and about 1200.degree. C., capable of electronic interconnection to at least one other electrochemical cell and capable of operating in an environment containing oxygen and a fuel, is made; where the cell has a first and second electrode with solid electrolyte between them, where an improved interconnect material is applied along a portion of a supporting electrode; where the interconnect is made of a chemically modified lanthanum chromite, containing cobalt as the important additive, which interconnect allows for adjustment of the thermal expansion of the interconnect material to more nearly match that of other cell components, such as zirconia electrolyte, and is stable in oxygen containing atmospheres such as air and in fuel environments.

  13. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    SciTech Connect (OSTI)

    Wayne Moe

    2013-10-01

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license will be granted to construct and operate a nuclear facility. Examples of significant site-related concerns include area geotechnical and geological hazard properties, local climatology and meteorology, water resource availability, the vulnerability of surrounding populations and the environmental to adverse effects in the unlikely event of radionuclide release, the socioeconomic impacts of SMR plant installation and the effects it has on aesthetics, proximity to energy use customers, the topography and area infrastructure that affect plant constructability and security, and concerns related to the transport, installation, operation and decommissioning of major plant components.

  14. Nuclear Energy Infrastructure Database Fitness and Suitability Review

    SciTech Connect (OSTI)

    Heidrich, Brenden

    2015-03-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation (NE-4) initiated the Nuclear Energy-Infrastructure Management Project by tasking the Nuclear Science User Facilities (NSUF) to create a searchable and interactive database of all pertinent NE supported or related infrastructure. This database will be used for analyses to establish needs, redundancies, efficiencies, distributions, etc. in order to best understand the utility of NE’s infrastructure and inform the content of the infrastructure calls. The NSUF developed the database by utilizing data and policy direction from a wide variety of reports from the Department of Energy, the National Research Council, the International Atomic Energy Agency and various other federal and civilian resources. The NEID contains data on 802 R&D instruments housed in 377 facilities at 84 institutions in the US and abroad. A Database Review Panel (DRP) was formed to review and provide advice on the development, implementation and utilization of the NEID. The panel is comprised of five members with expertise in nuclear energy-associated research. It was intended that they represent the major constituencies associated with nuclear energy research: academia, industry, research reactor, national laboratory, and Department of Energy program management. The Nuclear Energy Infrastructure Database Review Panel concludes that the NSUF has succeeded in creating a capability and infrastructure database that identifies and documents the major nuclear energy research and development capabilities across the DOE complex. The effort to maintain and expand the database will be ongoing. Detailed information on many facilities must be gathered from associated institutions added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements.

  15. Electromechanical battery design suitable for back-up power applications

    DOE Patents [OSTI]

    Post, Richard F.

    2002-01-01

    The windings that couple energy into and out of the rotor of an electro-mechanical battery are modified. The normal stator windings of the generator/motor have been replaced by two orthogonal sets of windings. Because of their orthogonality, they are decoupled from each other electrically, though each can receive (or deliver) power flows from the rotating field produced by the array of permanent magnets. Due to the orthogonal design of the stator windings and the high mechanical inertia of the flywheel rotor, the resulting power delivered to the computer system is completely insensitive to any and all electrical transients and variabilities of the power from the main power source. This insensitivity includes complete failure for a period determined only by the amount of stored kinetic energy in the E-M battery modules that are supplied. Furthermore there is no need whatsoever for fast-acting, fractional-cycle switches, such as are employed in conventional systems, and which are complicated to implement.

  16. High elastic modulus polymer electrolytes suitable for preventing...

    Office of Scientific and Technical Information (OSTI)

    Authors: Mullin, Scott ; Panday, Ashoutosh ; Balsara, Nitash Pervez ; Singh, Mohit ; Eitouni, Hany Basam ; Gomez, Enrique Daniel Publication Date: 2014-04-22 OSTI Identifier: ...

  17. Perfluoro Aryl Boronic Esters as Chemical Shuttle Additives ...

    Broader source: Energy.gov (indexed) [DOE]

    es107hunt2011p.pdf More Documents & Publications Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & evaluate materials & additives that ...

  18. A review of chromatographic characterization techniques for biodiesel and biodiesel blends.

    SciTech Connect (OSTI)

    Pauls, R. E.

    2011-05-01

    This review surveys chromatographic technology that has been applied to the characterization of biodiesel and its blends. Typically, biodiesel consists of fatty acid methyl esters produced by transesterification of plant or animal derived triacylglycerols. Primary attention is given to the determination of trace impurities in biodiesel, such as methanol, glycerol, mono-, di-, and triacylglycerols, and sterol glucosides. The determination of the fatty acid methyl esters, trace impurities in biodiesel, and the determination of the biodiesel content of commercial blends of biodiesel in conventional diesel are also addressed.

  19. {gamma}-aminobutyric acid{sub A} (GABA{sub A}) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    SciTech Connect (OSTI)

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing Chen Jingyuan

    2009-04-15

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA{sub A} receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA{sub A} receptor {alpha}1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA{sub A} receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  20. Subcritical water extraction of lipids from wet algal biomass

    DOE Patents [OSTI]

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  1. Chemistry: Theory - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory Chemistry: Theory Presentations from 2010 CEFRC First Annual Conference MultireferenceCorrelated WavefunctionCalculations and Reaction Flux Analyses of Methyl Ester Combustion Emily A. Carter, Princeton University Constructing Accurate Combustion Chemistry Models William H. Green, MIT Theoretical Gas Phase Chemical Kinetics Stephen J. Klippenstein, Argonne National Laboratory Theoretical Chemical Kinetics and Combustion Modeling James A. Miller, Argonne National Laboratory Computation of

  2. Process for the synthesis of unsaturated alcohols

    DOE Patents [OSTI]

    Maughon, Bob R.; Burdett, Kenneth A.; Lysenko, Zenon

    2007-02-13

    A process of preparing an unsaturated alcohol (olefin alcohol), such as, a homo-allylic mono-alcohol or homo-allylic polyol, involving protecting a hydroxy-substituted unsaturated fatty acid or fatty acid ester, such as methyl ricinoleate, derived from a seed oil, to form a hydroxy-protected unsaturated fatty acid or fatty acid ester; homo-metathesizing or cross-metathesizing the hydroxy-protected unsaturated fatty acid or fatty acid ester to produce a product mixture containing a hydroxy-protected unsaturated metathesis product; and deprotecting the hydroxy-protected unsaturated metathesis product under conditions sufficient to prepare the unsaturated alcohol. Preferably, methyl ricinoleate is converted by cross-metathesis or homo-metathesis into the homo-allylic mono-alcohol 1-decene-4-ol or the homo-allylic polyol 9-octadecene-7,12-diol, respectively.

  3. THE SEARCH FOR A COMPLEX MOLECULE IN A SELECTED HOT CORE REGION: A RIGOROUS ATTEMPT TO CONFIRM TRANS-ETHYL METHYL ETHER TOWARD W51 e1/e2

    SciTech Connect (OSTI)

    Carroll, P. Brandon; McGuire, Brett A.; Blake, Geoffrey A.; Apponi, A. J.; Ziurys, L. M.; Remijan, Anthony

    2015-01-20

    An extensive search has been conducted to confirm transitions of trans-ethyl methyl ether (tEME, C{sub 2}H{sub 5}OCH{sub 3}), toward the high-mass star forming region W51 e1/e2 using the 12 m Telescope of the Arizona Radio Observatory at wavelengths from 2 mm and 3 mm. In short, we cannot confirm the detection of tEME toward W51 e1/e2 and our results call into question the initial identification of this species by Fuchs et al. Additionally, re-evaluation of the data from the original detection indicates that tEME is not present toward W51 e1/e2 in the abundance reported by Fuchs and colleagues. Typical peak-to-peak noise levels for the present observations of W51 e1/e2 were between 10 and 30 mK, yielding an upper limit of the tEME column density of ≤1.5 × 10{sup 15} cm{sup –2}. This would make tEME at least a factor of two times less abundant than dimethyl ether (CH{sub 3}OCH{sub 3}) toward W51 e1/e2. We also performed an extensive search for this species toward the high-mass star forming region Sgr B2(N-LMH) with the National Radio Astronomy Observatory 100 m Green Bank Telescope. No transitions of tEME were detected and we were able to set an upper limit to the tEME column density of ≤4 × 10{sup 14} cm{sup –2} toward this source. Thus, we are able to show that tEME is not a new molecular component of the interstellar medium and that an exacting assessment must be carried out when assigning transitions of new molecular species to astronomical spectra to support the identification of large organic interstellar molecules.

  4. Acute aquatic toxicity of biodiesel fuels

    SciTech Connect (OSTI)

    Wright, B.; Haws, R.; Little, D.; Reese, D.; Peterson, C.; Moeller, G.

    1995-12-31

    This study develops data on the acute aquatic toxicity of selected biodiesel fuels which may become subject to environmental effects test regulations under the US Toxic Substances Control Act (TSCA). The test substances are Rape Methyl Ester (RME), Rape Ethyl Ester (REE), Methyl Soyate (MS), a biodiesel mixture of 20% REE and 80% Diesel, a biodiesel mixture of 50% REE and diesel, and a reference substance of Phillips D-2 Reference Diesel. The test procedure follows the Daphnid Acute Toxicity Test outlined in 40 CFR {section} 797.1300 of the TSCA regulations. Daphnia Magna are exposed to the test substance in a flow-through system consisting of a mixing chamber, a proportional diluter, and duplicate test chambers. Novel system modifications are described that accommodate the testing of oil-based test substances with Daphnia. The acute aquatic toxicity is estimated by an EC50, an effective concentration producing immobility in 50% of the test specimen.

  5. Effect of Accelerated Aging Rate on the Capture of Fuel-Borne Metal Impurities by Emissions Control Devices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    INTRODUCTION Metallic fuel contaminants such as sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) may be introduced into diesel fuel through a number of different sources. As one example, biodiesel production relies on sodium hydroxide or potassium hydroxide to catalyze the reaction of vegetable oils with methanol to form methyl esters. In this process, residual amounts of Na or K can be left behind. In addition, small amounts of Ca or Mg can be added to the fuel from the purifcation

  6. Direct conversion of algal biomass to biofuel

    DOE Patents [OSTI]

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  7. 2010 1st Annual CEFRC Conference - Combustion Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center 0 1st Annual CEFRC Conference First Annual Conference, CEFRC Sept 23-24, 2010, Princeton, NJ SESSION CHAIRS: Wade Sisk, Department of Energy Chung K. Law, Combustion Energy Frontier Research Center (CEFRC) Announcements Overview of CEFRC Chemistry: Theory Multi-reference Correlated Wavefunction Calculations and Reaction Flux Analyses of Methyl Ester Combustion Emily A. Carter, Princeton University Computation of Accurate Thermochemical and Rate Parameters for Complex Combustion

  8. LLNL Chemical Kinetics Modeling Group

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  9. Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures

    DOE Patents [OSTI]

    Mayorga, Steven Gerard; Weigel, Scott Jeffrey; Gaffney, Thomas Richard; Brzozowski, Jeffrey Richard

    2001-01-01

    Adsorption of carbon dioxide from gas streams at temperatures in the range of 300 to 500.degree. C. is carried out with a solid adsorbent containing magnesium oxide, preferably promoted with an alkali metal carbonate or bicarbonate so that the atomic ratio of alkali metal to magnesium is in the range of 0.006 to 2.60. Preferred adsorbents are made from the precipitate formed on addition of alkali metal and carbonate ions to an aqueous solution of a magnesium salt. Atomic ratios of alkali metal to magnesium can be adjusted by washing the precipitate with water. Low surface area adsorbents can be made by dehydration and CO.sub.2 removal of magnesium hydroxycarbonate, with or without alkali metal promotion. The process is especially valuable in pressure swing adsorption operations.

  10. Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K

    SciTech Connect (OSTI)

    Du Zhixue; Amulele, George; Lee, Kanani K. M.; Miyagi, Lowell

    2013-02-15

    In order to generate homogeneous high temperatures at high pressures, a ring-shaped graphite heater has been developed to resistively heat diamond-anvil cell (DAC) samples up to 1300 K. By putting the heater in direct contact with the diamond anvils, this graphite heater design features the following advantages: (1) efficient heating: sample can be heated to 1300 K while the DAC body temperature remains less than 800 K, eliminating the requirement of a special alloy for the DAC; (2) compact design: the sample can be analyzed with in situ measurements, e.g., x-ray, optical, and electrical probes are possible. In particular, the side access of the heater allows for radial x-ray diffraction (XRD) measurements in addition to traditional axial XRD.

  11. Cell density signal protein suitable for treatment of connective tissue injuries and defects

    DOE Patents [OSTI]

    Schwarz, Richard I.

    2002-08-13

    Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.

  12. Digial Technology Qualification Task 2 - Suitability of Digital Alternatives to Analog Sensors and Actuators

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck

    2012-09-01

    The next generation reactors in the U.S. are an opportunity for vendors to build new reactor technology with advanced Instrumentation and Control Systems (control rooms, DCS, etc.). The advances made in the development of many current generation operating reactors in other parts of the world are being used in the design and construction of new plants. These new plants are expected to have fully integrated digital control rooms, computerized procedures, integrated surveillance testing with on-line monitoring and a major effort toward improving the O&M and fault survivability of the overall systems. In addition the designs are also incorporating major improvements in the man-machine interface based on lessons learned in nuclear and other industries. The above relates primarily to the scope of supply in instrumentation and control systems addressed by Chapter 7 of the Standard Review Plan (SRP) NUREG-0800 (Reference 9.5), and the associated Balance of Plant (BOP) I&C systems. This does not relate directly to the actuator and motor, breaker, initiation circuitry, valve position, etc. which is the subject of this report and normally outside of the traditional Distributed Control System (DCS), for both safety and non-safety systems. The recommendations presented in this report will be used as input to I&C research programming for the implementation of lessons learned during the early phases of new build both for large light water reactors (LWR) and also small modular reactors (SMR). This report is intended to support current research plans and provide user (vendor, owner-operator) input to the optimization of these research plans.

  13. Achieving clean epitaxial graphene surfaces suitable for device applications by improved lithographic process

    SciTech Connect (OSTI)

    Nath, A., E-mail: anath@gmu.edu; Rao, M. V. [George Mason University, 4400 University Dr., Fairfax, Virginia 22030 (United States); Koehler, A. D.; Jernigan, G. G.; Wheeler, V. D.; Hite, J. K.; Hernndez, S. C.; Robinson, Z. R.; Myers-Ward, R. L.; Eddy, C. R.; Gaskill, D. K. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, D.C. 20375 (United States); Garces, N. Y. [Sotera Defense Solutions, 2200 Defense Hwy. Suite 405, Crofton, Maryland 21114 (United States)

    2014-06-02

    It is well-known that the performance of graphene electronic devices is often limited by extrinsic scattering related to resist residue from transfer, lithography, and other processes. Here, we report a polymer-assisted fabrication procedure that produces a clean graphene surface following device fabrication by a standard lithography process. The effectiveness of this improved lithography process is demonstrated by examining the temperature dependence of epitaxial graphene-metal contact resistance using the transfer length method for Ti/Au (10?nm/50?nm) metallization. The Landauer-Buttiker model was used to explain carrier transport at the graphene-metal interface as a function of temperature. At room temperature, a contact resistance of 140 ?-?m was obtained after a thermal anneal at 523?K for 2?hr under vacuum, which is comparable to state-of-the-art values.

  14. A DES ASIC Suitable for Network Encryption at 10 Gbps and Beyond

    SciTech Connect (OSTI)

    Gass, Karl; Pierson, Lyndon G.; Robertson, Perry J.; Wilcox, D. Craig; Witzke, Edward L.

    1999-04-30

    The Sandia National Laboratories (SNL) Data Encryption Standard (DES) Application Specific Integrated Circuit (ASIC) is the fastest known implementation of the DES algorithm as defined in the Federal Information Processing Standards (FIPS) Publication 46-2. DES is used for protecting data by cryptographic means. The SNL DES ASIC, over 10 times faster than other currently available DES chips, is a high-speed, filly pipelined implementation offering encryption, decryption, unique key input, or algorithm bypassing on each clock cycle. Operating beyond 105 MHz on 64 bit words, this device is capable of data throughputs greater than 6.7 Billion bits per second (tester limited). Simulations predict proper operation up to 9.28 Billion bits per second. In low frequency, low data rate applications, the ASIC consumes less that one milliwatt of power. The device has features for passing control signals synchronized to throughput data. Three SNL DES ASICS may be easily cascaded to provide the much greater security of triple-key, triple-DES.

  15. Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    Broader source: Energy.gov [DOE]

    Halotechnics, under the Thermal Storage FOA, is conducting high-throughput, combinatorial research and development of salt formulations for use as highly efficient heat transfer fluids (HTFs).

  16. Assessment of Rooftop Area in Austin Energy's Service Territory Suitable for PV Development

    Broader source: Energy.gov [DOE]

    As part of the Solar America Cities program, Austin Energy proposed to perform an assessment of the rooftop area available for PV development within its service area. Austin Energy contracted with Clean Energy Associates (CEA) to perform the analysis. This report summarizes the project objectives, data sources and methodological approach employed, and results.

  17. Process for producing an aggregate suitable for inclusion into a radiation shielding product

    DOE Patents [OSTI]

    Lessing, Paul A.; Kong, Peter C.

    2000-01-01

    The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

  18. Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    Bruce G. Schnitzler; Stanley K. Borowski

    2012-07-01

    Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.

  19. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOE Patents [OSTI]

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  20. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    DOE Patents [OSTI]

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  1. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOE Patents [OSTI]

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  2. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOE Patents [OSTI]

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  3. Power System Planning: Emerging Practices Suitable for Evaluating the Impact of High-Penetration Photovoltaics

    SciTech Connect (OSTI)

    Bebic, J.

    2008-02-01

    This report explores the impact of high-penetration renewable generation on electric power system planning methodologies and outlines how these methodologies are evolving to enable effective integration of variable-output renewable generation sources.

  4. Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

    SciTech Connect (OSTI)

    Paul, Ryan; Naskar, Amit; Gallego, Nidia; Dai, Xuliang; Hausner, Andrew

    2015-04-17

    Lignin has been investigated as a carbon fiber precursor since the 1960s. Although there have been a number of reports of successful lignin-based carbon fiber production at the lab scale, lignin-based carbon fibers are not currently commercially available. This review will highlight some of the known challenges, and also the reported methods for purifying and modifying lignin to improve it as a precursor. Lignin can come from different sources (e.g. hardwood, softwood, grasses) and extraction methods (e.g. organosolv, kraft), meaning that lignin can be found with a diversity of purity and structure. The implication of these conditions on lignin as carbon fiber precursor is not comprehensively known, especially as the lignin landscape is evolving. The work presented in this review will help guide the direction of a project between GrafTech and ORNL to develop lignin carbon fiber technology, as part of a cooperative agreement with the DOE Advanced Manufacturing Office.

  5. Is space-time symmetry a suitable generalization of parity-time symmetry?

    SciTech Connect (OSTI)

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier

    2014-11-15

    We discuss space-time symmetric Hamiltonian operators of the form H=H{sub 0}+igH{sup ′}, where H{sub 0} is Hermitian and g real. H{sub 0} is invariant under the unitary operations of a point group G while H{sup ′} is invariant under transformation by elements of a subgroup G{sup ′} of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 00. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries. - Highlights: • Space-time symmetry is a generalization of PT symmetry. • The eigenvalues of a space-time Hamiltonian are either real or appear as pairs of complex conjugate numbers. • In some cases all the eigenvalues are real for some values of a potential-strength parameter g. • At some value of g space-time symmetry is broken and complex eigenvalues appear. • Some multidimensional oscillators exhibit broken space-time symmetry for all values of g.

  6. Advanced Biocatalytic Processing of Heterogeneous Lignocellulosic Feedstocks to a Platform Chemical Intermediate (Lactic acid Ester)

    SciTech Connect (OSTI)

    Dr. Sharon Shoemaker

    2004-09-03

    The development of commercial boi-based processes and products derived from agricultural waste biomass has the potential for significant impact on the economy and security of our nation. Adding value, rather than disposing of the waste of agriculture, can solve an environmental problem and reduce our dependence on foreign sources of fossil fuel for production of chemicals, materials and fuels.

  7. Electrochemical method for producing a biodiesel mixture comprising fatty acid alkyl esters and glycerol

    DOE Patents [OSTI]

    Lin, YuPo J; St. Martin, Edward J

    2013-08-13

    The present invention relates to an integrated method and system for the simultaneous production of biodiesel from free fatty acids (via esterification) and from triglycerides (via transesterification) within the same reaction chamber. More specifically, one preferred embodiment of the invention relates to a method and system for the production of biodiesel using an electrodeionization stack, wherein an ion exchange resin matrix acts as a heterogeneous catalyst for simultaneous esterification and transesterification reactions between a feedstock and a lower alcohol to produce biodiesel, wherein the feedstock contains significant levels of free fatty acid. In addition, because of the use of a heterogeneous catalyst, the glycerol and biodiesel have much lower salt concentrations than raw biodiesel produced by conventional transesterification processes. The present invention makes it much easier to purify glycerol and biodiesel.

  8. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  9. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect (OSTI)

    Davison, B.H.; Nghiem, J.

    2002-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  10. Thermodynamic properties and ideal-gas enthalpies of formation for butyl vinyl ether, 1,2-dimethoxyethane, methyl glycolate, bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol

    SciTech Connect (OSTI)

    Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Smith, N.K.

    1996-11-01

    Ideal-gas enthalpies of formation of butyl vinyl ether, 1,2-dimethoxyethane, methyl glycolate, bicyclo-[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol are reported. Enthalpies of fusion were determined for bicyclo[2.2.1]hept-2-ene and trans-azobenzene. Two-phase (solid + vapor) or (liquid + vapor) heat capacities were determined from 300 K to the critical region or earlier decomposition temperature for each compound studied. Liquid-phase densities along the saturation line were measured for bicyclo[2.2.1]hept-2-ene. For butyl vinyl ether and 1,2-dimethoxyethane, critical temperatures and critical densities were determined from the dsc results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, and di-tert-butyl ether. Group-additivity parameters or ring-correction terms useful in the application of the Benson group-contribution correlations were derived.

  11. Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M

    2009-03-30

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.

  12. Synthesis and crystal structure studies of ethyl 5-methyl-1,...

    Office of Scientific and Technical Information (OSTI)

    investigated by single crystal X-ray diffraction method. It crystallizes in monoclinic class under the space group P2sub 1c with cell parameters a 8.4593(4) , b15.6284(6)...

  13. Total and methyl mercury in selected Great Lakes tributaries

    SciTech Connect (OSTI)

    Hurley, J.P.; Cowell, S.E.; Shafer, M.M.

    1995-12-31

    Eleven Lake Michigan tributaries were chosen to investigate the effects of chemical and physical conditions in rivers on mercury partitioning and transport. Preliminary results from 1994 indicate that mean unfiltered Hg{sub T} ranged from about 1-2 ng L{sup -1} in the Manistique and Muskegon R. to 10-30 ng L{sup -1} in the St. Joseph and Fox R. Highest Hg{sub T} fluxes were generally associated with increased particle loads. Preliminary estimates from a subset of Lake Michigan tributaries also suggest that methylmercury loading from riverine inputs may be important. Additional work on 19 Lake Superior tributaries in Spring 1993 reveal that MeHg and DOC are correlated. Results from these tributaries are consistent with our {open_quotes}Background Trace Metals in Wisconsin Rivers{close_quotes} study, where greater yields of Hg{sub T} were observed with increased particle loading and elevated MeHg yields were observed from watersheds with significant forest and wetland regions.

  14. Lithium Methyl Carbonate as a Reaction Product of Metallic Lithiumand...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... Sponsoring Org: USDOE. Assistant Secretary for Energy Efficiency andRenewable Energy. ...

  15. Substantial improvements in methyl ketone production in E. coli...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 26; Journal Issue: C; Journal ID: ISSN 1096-7176 Publisher: Elsevier Sponsoring Org: USDOE Office of Science (SC), Biological and ...

  16. Synthesis of 6-Methyl-9-propyldibenzothiophene-4-ol

    SciTech Connect (OSTI)

    Eisenbraun, E.J.

    1991-02-15

    The synthesis route for preparing the title compound, has been carried out on a small scale for the preparation of a mixture of isomers. Alternative routes for the cyclization are being explored. (DLC)

  17. FLAME-SAMPLING PHOTOIONIZATION MASS SPECTROSCOPY - FINAL TECHNICAL REPORT

    SciTech Connect (OSTI)

    Hansen, Nils

    2013-02-12

    Research focused on detailed studies of the complex combustion chemistry of oxygenated, bio-derived fuels. In particular, studies were done of the flame chemistry of simple methyl and ethyl esters chosen as surrogates for the long-chain esters that are primary constituents of biodiesel fuels. The principal goals of these studies were: (1) show how fuel-specific structural differences including degree of unsaturation, linear vs. branched chain structures, and methoxy vs. ethoxy functions affect fueldestruction pathways, (2) understand the chemistry leading to potential increases in the emissions of hazardous air pollutants including aldehydes and ketones inherent in the use of biodiesel fuels, and (3) define the key chemical reaction mechanisms responsible for observed reductions in polycyclic aromatic hydrocarbons and particulate matter when oxygenated fuels are used as replacements for conventional fuels.

  18. Host cells and methods for producing isoprenyl alkanoates

    DOE Patents [OSTI]

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  19. Biodegradation of biodiesel fuels

    SciTech Connect (OSTI)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.

  20. Advanced membrane separation technology for biosolvents. Final CRADA report.

    SciTech Connect (OSTI)

    Snyder, S. W.; Energy Systems

    2010-02-08

    Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for production of ethyl lactate and other esters.

  1. Review of the State-of-the-Art in Power Electronics Suitable for 10-KW Military Power Systems

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-12-19

    The purpose of this report is to document the technological opportunities of integrating power electronics-based inverters into a TEP system, primarily in the 10-kW size range. The proposed enhancement offers potential advantages in weight reduction, improved efficiency, better performance in a wider range of generator operating conditions, greater versatility and adaptability, and adequate reliability. In order to obtain strong assurance of the availability of inverters that meet required performance and reliability levels, a market survey was performed. The survey obtained positive responses from several manufacturers in the motor drive and distributed generation industries. This study also includes technology reviews and assessments relating to circuit topologies, reliability issues, vulnerability to pulses of electromagnetic energy, potential improvements in semiconductor materials, and potential performance improvement through cryogenics.

  2. Suitability of Synthetic Driving Profiles from Traffic Micro-Simulation for Real-World Energy Analysis: Preprint

    SciTech Connect (OSTI)

    Hou, Yunfei; Wood, Eric; Burton, Evan; Gonder, Jeffrey

    2015-10-14

    A shift towards increased levels of driving automation is generally expected to result in improved safety and traffic congestion outcomes. However, little empirical data exists to estimate the impact that automated driving could have on energy consumption and greenhouse gas emissions. In the absence of empirical data on differences between drive cycles from present day vehicles (primarily operated by humans) and future vehicles (partially or fully operated by computers) one approach is to model both situations over identical traffic conditions. Such an exercise requires traffic micro-simulation to not only accurately model vehicle operation under high levels of automation, but also (and potentially more challenging) vehicle operation under present day human drivers. This work seeks to quantify the ability of a commercial traffic micro-simulation program to accurately model real-world drive cycles in vehicles operated primarily by humans in terms of driving speed, acceleration, and simulated fuel economy. Synthetic profiles from models of freeway and arterial facilities near Atlanta, Georgia, are compared to empirical data collected from real-world drivers on the same facilities. Empirical and synthetic drive cycles are then simulated in a powertrain efficiency model to enable comparison on the basis of fuel economy. Synthetic profiles from traffic micro-simulation were found to exhibit low levels of transient behavior relative to the empirical data. Even with these differences, the synthetic and empirical data in this study agree well in terms of driving speed and simulated fuel economy. The differences in transient behavior between simulated and empirical data suggest that larger stochastic contributions in traffic micro-simulation (relative to those present in the traffic micro-simulation tool used in this study) are required to fully capture the arbitrary elements of human driving. Interestingly, the lack of stochastic contributions from models of human drivers in this study did not result in a significant discrepancy between fuel economy simulations based on synthetic and empirical data; a finding with implications on the potential energy efficiency gains of automated vehicle technology.

  3. Distinctive plume formation in atmospheric Ar and He plasmas in microwave frequency band and suitability for biomedical applications

    SciTech Connect (OSTI)

    Lee, H. Wk.; Kang, S. K.; Won, I. H.; Kim, H. Y.; Kwon, H. C.; Sim, J. Y.; Lee, J. K.

    2013-12-15

    Distinctive discharge formation in atmospheric Ar and He plasmas was observed in the microwave frequency band using coaxial transmission line resonators. Ar plasmas formed a plasma plume whereas He formed only confined plasmas. As the frequency increased from 0.9 GHz to 2.45 GHz, the Ar plasma exhibited contraction and filamentation, and the He plasmas were constricted. Various powers and gas flow rates were applied to identify the effect of the electric field and gas flow rate on plasma plume formation. The He plasmas were more strongly affected by the electric field than the Ar plasmas. The breakdown and sustain powers yielded opposite results from those for low-frequency plasmas (?kHz). The phenomena could be explained by a change in the dominant ionization process with increasing frequency. Penning ionization and the contribution of secondary electrons in sheath region reduced as the frequency increased, leading to less efficient ionization of He because its ionization and excitation energies are higher than those of Ar. The emission spectra showed an increase in the NO and N{sub 2} second positive band in both the Ar and He plasmas with increasing frequency whereas the hydroxyl radical and atomic O peaks did not increase with increasing frequency but were highest at particular frequencies. Further, the frequency effect of properties such as the plasma impedance, electron density, and device efficiency were presented. The study is expected to be helpful for determining the optimal conditions of plasma systems for biomedical applications.

  4. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOE Patents [OSTI]

    Wilcox, R.B.

    1991-09-10

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.

  5. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOE Patents [OSTI]

    Wilcox, Russell B. (Oakland, CA)

    1991-01-01

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.

  6. SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT

    SciTech Connect (OSTI)

    Williams, K; Matthews, K

    2014-06-01

    Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placed within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.93.6 mGy.

  7. A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer

    SciTech Connect (OSTI)

    Sharma, S.; Gahan, D. Hopkins, M. B.; Kechkar, S.; Daniels, S.

    2014-04-15

    A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placed directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.

  8. Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste

    SciTech Connect (OSTI)

    1996-02-01

    This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

  9. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Maja Harfman-Todorovic; Ahmed Elasser; Robert L. Steigerwald; Juan A. Sabate; Song Chi; Adam J. McCann; Li Zhang; Frank Mueller

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  10. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2012-01-06

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies formore » motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.« less

  11. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between ?? stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  12. Effect of Aerosol Humidification on the Column Aerosol Optical Thickness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metallic fuel contaminants such as sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) may be introduced into diesel fuel through a number of different sources. As one example, biodiesel production relies on sodium hydroxide or potassium hydroxide to catalyze the reaction of vegetable oils with methanol to form methyl esters. In this process, residual amounts of Na or K can be left behind. In addition, small amounts of Ca or Mg can be added to the fuel from the purifcation process [1,2].

  13. Proceedings of the 1995 SAE alternative fuels conference. P-294

    SciTech Connect (OSTI)

    1995-12-31

    This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

  14. Enhanced performance of polymer:fullerene bulk heterojunction solar cells upon graphene addition

    SciTech Connect (OSTI)

    Robaeys, Pieter Dierckx, Wouter; Dexters, Wim; Spoltore, Donato; Drijkoningen, Jeroen; Bonaccorso, Francesco; Bourgeois, Emilie; D'Haen, Jan; Haenen, Ken; Manca, Jean V.; Nesladek, Milos; Liesenborgs, Jori; Van Reeth, Frank; Lombardo, Antonio; Ferrari, Andrea C.

    2014-08-25

    Graphene has potential for applications in solar cells. We show that the short circuit current density of P3HT (Poly(3-hexylthiophene-2,5-diyl):PCBM((6,6)-Phenyl C61 butyric acid methyl ester) solar cells is enhanced by 10% upon the addition of graphene, with a 15% increase in the photon to electric conversion efficiency. We discuss the performance enhancement by studying the crystallization of P3HT, as well as the electrical transport properties. We show that graphene improves the balance between electron and hole mobilities with respect to a standard P3HT:PCBM solar cell.

  15. Fabrication and characterization of inverted organic solar cells using shuttle cock-type metal phthalocyanine and PCBM:P3HT

    SciTech Connect (OSTI)

    Suzuki, Atsushi Furukawa, Ryo Akiyama, Tsuyoshi Oku, Takeo

    2015-02-27

    Inverted organic solar cells using shuttle cock-type phthalocyanine, semiconducting polymer and fullerenes were fabricated and characterized. Photovoltaic and optical properties of the solar cells with inverted structures were investigated by optical absorption, current density-voltage characteristics. The photovoltaic properties of the tandem organic solar cell using titanyl phthalocyanine, vanadyl phthalocyanine, poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were improved. Effect of annealing and solvent treatment on surface morphologies of the active layer was investigated. The photovoltaic mechanisms, energy levels and band gap of active layers were discussed for improvement of the photovoltaic performance.

  16. Tellurium-Containing Conjugated Materials for Solar Cells: From Sulfur to Tellurium

    SciTech Connect (OSTI)

    Park Y. S.; Kale, T.; Wu, Q.; Ocko, B.M.; Black, C.T., Grubbs, R.B.

    2013-04-03

    A series of diketopyrrolopyrrole(DPP)-based small molecules have been synthesized by palladium-catalyzed coupling reactions. Electron-donating moieties (benzothiophene, benzoselenophene, and benzotellurophene) are bridged by an electron-withdrawing DPP unit to generate donor-acceptor-donor (D-A-D) type molecules. We observe red-shifts in absorption spectra of these compounds by varying heteroatoms from sulfur to tellurium. In bulk heterojunction solar cells with [6,6]phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor, we obtain power conversion efficiencies of 2.4% (benzothiophene), 4.1% (benzoselenophene), and 3.0% (benzotellurophene), respectively.

  17. Recent progress in the morphology of bulk heterojunction photovoltaics

    SciTech Connect (OSTI)

    Brady, Michael A.; Su, Gregory M.; Chabinyc, Michael L.

    2011-10-06

    A review of current research in the characterization of the morphology of semiconducting polymer:fullerene bulk heterojunctions (BHJs) is presented. BHJs are complex blends of polymers and fullerenes with nanostructures that are highly dependent on materials, processing conditions, and post-treatments to films. Recent work on the study of the morphology of BHJs is surveyed. Emphasis is placed on emerging work on BHJs of poly(3-hexylthiophene), P3HT, and [6,6]-phenyl-C61-butyric acid methyl ester, PCBM, along with BHJs of donoracceptor polymers that have high power conversion efficiency.

  18. RECOVERY OF LACTIC ACID FROM AMERICAN CRYSTAL SUGAR COMPANY WASTEWATER

    SciTech Connect (OSTI)

    Daniel J. Stepan; Edwin S. Olson; Richard E. Shockey; Bradley G. Stevens; John R. Gallagher

    2001-04-30

    This project has shown that the recovery of several valuable lactic acid products is both technically feasible and economically viable. One of the original objectives of this project was to recover lactic acid. However, the presence of a variety of indigenous bacteria in the wastewater stream and technical issues related to recovery and purification have resulted in the production of lactic acid esters. These esters could by hydrolyzed to lactic acid, but only with unacceptable product losses that would be economically prohibitive. The developed process is projected to produce approximately 200,000 lb per day of lactate esters from wastewater at a single factory at costs that compete with conventional solvents. The lactate esters are good solvents for polymers and resins and could replace acetone, methyl ethyl ketone, MIBK, and other polar solvents used in the polymer industry. Because of their low volatility and viscosity-lowering properties, they will be especially useful for inks for jet printers, alkyl resins, and high-solid paints. Owing to their efficiency in dissolving salts and flux as well as oils and sealants, lactate esters can be used in cleaning circuit boards and machine and engine parts. Unlike conventional solvents, lactate esters exhibit low toxicity, are biodegradable, and are not hazardous air pollutants. Another application for lactate esters is in the production of plasticizers. Severe health problems have been attributed to widely used phthalate ester plasticizers. The U.S. Department of Agriculture showed that replacement of these with inexpensive lactate esters is feasible, owing to their superior polymer compatibility properties. A very large market is projected for polymers prepared from lactic acid. These are called polylactides and are a type of polyester. Thermoplastics of this type have a variety of uses, including moldings, fibers, films, and packaging of both manufactured goods and food products. Polylactides form tough, orientable, self-supporting thin films and have, therefore, been used for adhesives, safety glass, and finishes. If the bacterial culture produces the L-lactic acid enanatiomer form exclusively, the L-lactide prepared from this form can be used for making polymers with good fiber-forming properties. We have not currently achieved the exclusive production of L-lactate in our efforts. However, markets in films and structural shapes are available for polymers and copolymers prepared from the mixed D,L-lactide forms that result from processing the D,L-lactic acid obtained from fermentation such as that occurring naturally in sugar beet wastewater. These materials are slowly biodegraded to harmless compounds in the environment, and they burn with a clean blue flame when incinerated. These materials represent excellent opportunities for utilization of the D,L-lactic mixture produced from natural fermentation of the ACS flume water. Esters can be converted into a lactide, and the alcohol released from the ester can be recycled with no net consumption of the alcohol. Lactide intermediates could be produced locally and shipped to polymer producers elsewhere. The polymer and copolymer markets are extremely large, and the role of lactides in these markets is continuously expanding. The overall process can be readily integrated into existing factory wastewater operations. There are several environmental benefits that would be realized at the factories with incorporation of the lactate recovery process. The process reduces the organic loading to the existing wastewater treatment system that should result in enhanced operability with respect to both solids handling and treated-water quality. A higher-quality treated water will also help reduce odor levels from holding ponds. Several water reuse opportunities are probable, depending on the quality of treated water from the FT process.

  19. Catalytic Ionic Hydrogenation of Ketones by {[Cp*Ru(CO)2]2(? H)}+

    SciTech Connect (OSTI)

    Fagan, Paul J.; Voges, Mark H.; Bullock, R. Morris

    2010-02-22

    {[Cp*Ru(CO)2]2(? H)}+OTf functions as a homogeneous catalyst precursor for hydrogenation of ketones to alcohols, with hydrogenations at 1 mol % catalyst loading at 90 C under H2 (820 psi) proceeding to completion and providing >90% yields. Hydrogenation of methyl levulinate generates ?-valerolactone, presumably by ring-closing of the initially formed alcohol with the methyl ester. Experiments in neat Et2C=O show that the catalyst loading can be <0.1 mole %, and that at least 1200 turnovers of the catalyst can be obtained. These reactions are proposed to proceed by an ionic hydrogenation pathway, with the highly acidic dihydrogen complex [Cp*Ru(CO)2(?2-H2)]+OTf- being formed under the reaction conditions from reaction of H2 with {[Cp*Ru(CO)2]2(? H)}+OTf .

  20. Prediction of substrate removal rates of attached microorganisms and of relative contributions of attached and suspended communities at field sites

    SciTech Connect (OSTI)

    Lewis, D.L.; Gattie, D.K.

    1988-02-01

    A mathematical model composed of a direct proportionality relationship between bulk water velocities and field-determined second-order microbial transformation rate coefficients, and the relative rate coefficient of a benchmark chemical, was developed for estimating the substrate removal rates of rapidly degraded chemicals by attached microorganisms in shallow (less than 1 m deep) aquatic ecosystems. Data from 31 field experiments involving the addition of 2,4-dichlorophenoxyacetic acid methyl ester (2,4-DME) in nine field areas were used to determine a field-derived second-order rate coefficient for microbial transformation of the ester. By using 2,4-DME as a benchmark chemical, the model was used to predict microbial transformation rates of the butoxyethyl ester of 2,4-dichlorophenoxyacetic acid (2,4-DBE) at five other field sites. The predicted half-lives of 2,4-DBE varied 1500-fold and were within about a 3-fold range or less of the measured half-lives.

  1. Structureactivity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme

    SciTech Connect (OSTI)

    Charton, Julie; Dumont, Julie; Liang, Wenguang G.; Leroux, Florence; Deprez, Benoit

    2015-10-30

    Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid- and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid- clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role.

  2. Reconciling macro- with nano- carrier mobility measurements in organic photovoltaic blends

    SciTech Connect (OSTI)

    Omar, Yamila M.; Maragliano, Carlo; Chiesa, Matteo; Al Ghaferi, Amal; Stefancich, Marco

    2014-04-28

    Conductive atomic force microscopy (CAFM) is a valuable tool for electrical characterization of organic photovoltaics. However, the quantitative interpretation of the data is complicated by an apparent disagreement between the carrier mobilities calculated by CAFM and those determined by macroscopic measurements, with no apparent physical explanation for the discrepancy. In the present work, the space charge limited current model (specifically Mott-Gurney law) and its assumptions are assessed, and a physical model reconciling this discrepancy is proposed. Its applicability on the tip-sample system used in CAFM measurements is discussed, by accounting for the high electric fields arising around the tip of the CAFM probe and affecting carrier mobility. Charge carrier mobility is calculated from current-voltage curves obtained from conductive atomic force microscopy spectroscopy scans done on Poly(3-hexylthiophene-2,5-diyl): 95% PC{sub 70}BM ([6,6]-Phenyl-C71-butyric acid methyl ester)/5% PC{sub 60}BM ([6,6]-Phenyl-C61-butyric acid methyl ester) samples for different concentration ratios of donor and acceptor. We show that charge carrier mobilities obtained with this model are in satisfactory agreement with macroscopic measurements available in literature.

  3. Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass

    DOE Patents [OSTI]

    Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin

    2016-03-15

    Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.

  4. TECHNICAL REPORT

    SciTech Connect (OSTI)

    ADAMS, RICHARD D., PhD.

    2011-04-06

    Cadmium selenide nanoparticles and nanoclusters were prepared and added to polymer solar cells to improve their photon capture ability. These nanoparticles did exhibit some beneficial effects on the photon conversion efficiencies of selected polymer solar cells. Ternary bulk heterojunction systems based on composites of methyl viologen-doped, CdSe nanoparticles blended with poly (3-hexothiopene) (P3HT) and 6, 6-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were also tested. It was found that the devices with methyl viologen-doped CdSe nanoparticles do produce more photocurrent in a region surrounding the absorption peak of the particles (560 to 660nm) when compared to pristine P3HT:PCBM devices. Gold nanorods were also prepared and tested in some solar cells. These nanorods did produce a very small enhancement in photon absorbance, but the observed increase the photon conversion efficiency was not sufficient to make the effort worthwhile. Our goals were (1) to prepare cadmium sulfide and cadmium selenide clusters and nanoparticles to be tested as photon absorbers to enhance the photon conversion efficiency of polymer solar polymer solar cells and (2) to prepare gold and silver nanorods to be added to polymer solar cells to enhance their photon capture capability. The cadmium sulfide and cadmium selenide nanoparticles and some new nanoclusters were prepared. The cadmium selenide nanoparticles were also tested in solar cells and did exhibit some positive effects when they were combined with certain co-absorbing polymers. Due to solubility problems that were not solved in the available time, the new nanoclusters were not tested in solar cells. Ternary bulk heterojunction systems based on composites of methyl viologen doped, CdSe nanoparticles blended with poly (3-hexothiopene) (P3HT) and 6, 6-phenyl C61-butyric acid methyl ester (PCBM) have been examined in detail. The methyl viologen was added to promote charge separation of the initially formed excitons. It was found that the devices with CdSe produce more photocurrent in a region surrounding the absorption peak of the particles (560 to 660nm) when compared to a pristine P3HT:PCBM device. Gold nanorods were prepared and tested in some solar cells. These did show a very small enhancement in photon absorbance. However, the increase in short circuit current was negligible, which suggests that this antenna effect produces no significant increase in photocurrent generation. Efforts to synthesize niobium-doped zinc oxide nanoparticles for use in polymer solar polymer solar cells were also made. The nanoparticles were prepared, but they were not tested in the cells before the termination of the funding of the project.

  5. Developing New Alternative Energy in Virginia: Bio-Diesel from Algae

    SciTech Connect (OSTI)

    Hatcher, Patrick

    2012-03-29

    The overall objective of this study was to select chemical processing equipment, install and operate that equipment to directly convert algae to biodiesel via a reaction patented by Old Dominion University (Pat. No. US 8,080,679B2). This reaction is a high temperature (250- 330{degrees}C) methylation reaction utilizing tetramethylammonium hydroxide (TMAH) to produce biodiesel. As originally envisioned, algal biomass could be treated with TMAH in methanol without the need to separately extract triacylglycerides (TAG). The reactor temperature allows volatilization and condensation of the methyl esters whereas the spent algae solids can be utilized as a high-value fertilizer because they are minimally charred. During the course of this work and immediately prior to commencing, we discovered that glycerol, a major by-product of the conventional transesterification reaction for biofuels, is not formed but rather three methoxylated glycerol derivatives are produced. These derivatives are high-value specialty green chemicals that strongly upgrade the economics of the process, rendering this approach as one that now values the biofuel only as a by-product, the main value products being the methoxylated glycerols. A horizontal agitated thin-film evaporator (one square foot heat transfer area) proved effective as the primary reactor facilitating the reaction and vaporization of the products, and subsequent discharge of the spent algae solids that are suitable for supplementing petrochemicalbased fertilizers for agriculture. Because of the size chosen for the reactor, we encountered problems with delivery of the algal feed to the reaction zone, but envision that this problem could easily disappear upon scale-up or can be replaced economically by incorporating an extraction process. The objective for production of biodiesel from algae in quantities that could be tested could not be met, but we implemented use of soybean oil as a surrogate TAG feed to overcome this limitation. The positive economics of this process are influenced by the following: 1. the weight percent of dry algae in suspension that can be fed into the evaporator, 2. the alga species’ ability to produce a higher yield of biodiesel, 3. the isolation of valuable methoxylated by-products, 4. recycling and regeneration of methanol and TMAH, and 5. the market value of biodiesel, commercial agricultural fertilizer, and the three methoxylated by-products. The negative economics of the process are the following: 1. the cost of producing dried, ground algae, 2. the capital cost of the equipment required for feedstock mixing, reaction, separation and recovery of products, and reactant recycling, and 3. the electrical cost and other utilities. In this report, the economic factors and results are assembled to predict the commercialization cost and its viability. This direct conversion process and equipment discussed herein can be adapted for various feedstocks including: other algal species, vegetable oil, jatropha oil, peanut oil, sunflower oil, and other TAG containing raw materials as a renewable energy resource.

  6. Synthesis of 6-Methyl-9-n-propyldibenzothiophene-4-ol ammended to 6-Methyl-9-(1-methylethyl)-dibenzothiophene-4-ol

    SciTech Connect (OSTI)

    Not Available

    1992-02-28

    The material presented below is taken from Status Reports 15, 16 and 17 and covers the progress made toward the synthesis of the modified target molecules 9-isopropyl-4-methoxy-6 methyldibenzothiophene (13) and 9-isopropyl-6methyldibenzothiophene-4-ol (14).

  7. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  8. Fundamental Study of the Oxidation Characteristics and Pollutant Emissions of Model Biodiesel Fuels

    SciTech Connect (OSTI)

    Feng, Q.; Wang, Y. L.; Egolfopoulos, Fokion N.; Tsotsis, T. T.

    2010-07-18

    In this study, the oxidation characteristics of biodiesel fuels are investigated with the goal of contributing toward the fundamental understanding of their combustion characteristics and evaluating the effect of using these alternative fuels on engine performance as well as on the environment. The focus of the study is on pure fatty acid methyl-esters (FAME,) that can serve as surrogate compounds for real biodiesels. The experiments are conducted in the stagnation-flow configuration, which allows for the systematic evaluation of fundamental combustion and emission characteristics. In this paper, the focus is primarily on the pollutant emission characteristics of two C{sub 4} FAMEs, namely, methyl-butanoate and methyl-crotonate, whose behavior is compared with that of n-butane and n-pentane. To provide insight into the mechanisms of pollutant formation for these fuels, the experimental data are compared with computed results using a model with consistent C1-C4 oxidation and NOx formation kinetics.

  9. Are Al{sub 2}O{sub 3} and MgO tunnel barriers suitable for spin injection in graphene?

    SciTech Connect (OSTI)

    Dlubak, B.; Seneor, P.; Anane, A.; Barraud, C.; Deranlot, C.; Deneuve, D.; Mattana, R.; Petroff, F.; Fert, A.

    2010-08-30

    We report on the structural impact on graphene and multi-layers graphene of the growth by sputtering of tunnel barriers. Sputtered Al{sub 2}O{sub 3} and MgO barriers were chosen for their well-known efficiency as spin injectors in spintronics devices. The impact of the growth on the structure of graphene and up to 4-layer flakes was analyzed by Raman spectroscopy. This study reveals that for Al{sub 2}O{sub 3} growth, the impact is moderate for a monolayer and decreases sharply for bilayers and above. In the case of MgO all the flakes underwent a strong amorphization. Moreover, this reveals that while single layer graphene is believed to offer the best spin transport properties, the better robustness of multilayer graphene may ultimately make it a better choice for spintronics devices.

  10. Improved methods for achieving the equilibrium number of phases in mixtures suitable for use in battery electrodes e. g. , for lithiating FeS/sub 2/

    DOE Patents [OSTI]

    Guidotti, R.A.

    1986-06-10

    A method is disclosed for preparing lithiated, particulate FeS/sub 2/ useful as a catholyte material in a lithium thermal battery, whereby the latter's voltage regulation properties are improved. The method comprises admixing FeS/sub 2/ and an amount of a lithium-containing compound, whereby the resultant total composition falls in an invariant region of the metallurgical phase diagram of its constituent components. Said lithium-containing compound and FeS/sub 2/ are admixed together with a solid electrolyte compatible with said catholyte, and the mixture is heated at a temperature above the melting point of said electrolyte and at which said mixture reaches its thermodynamic equilibrium number of phases.

  11. New Metallization Technique Suitable for 6-MW Pilot Production of Efficient Multicrystalline Solar Cells Using Upgraded Metallurgical Silicon: Final Technical Progress Report, December 17, 2007-- June 16, 2009

    Broader source: Energy.gov [DOE]

    This report describes CaliSolar's work as a Photovoltaic Technology Incubator awardee within the U.S. Department of Energy's Solar Energy Technologies Program. The term of this subcontract with the National Renewable Energy Laboratory was two years. During this time, CaliSolar evolved from a handful of employees to over 100 scientists, engineers, technicians, and operators. On the technical side, the company transitioned from a proof-of-concept through pilot-scale to large-scale industrial production. A fully automated 60-megawatt manufacturing line was commissioned in Sunnyvale, California. The facility converts upgraded metallurgical-grade silicon feedstock to ingots, wafers, and high-efficiency multicrystalline solar cells.

  12. Application of modified direct denitration to support the ORNL coupled-end-to-end demonstration in production of mixed oxides suitable for pellet fabrication

    SciTech Connect (OSTI)

    Walker, E.A.; Vedder, R.J.; Felker, L.K.; Marschman, S.C.

    2007-07-01

    The current and future development of the Modified Direct Denitration (MDD) process is in support of Oak Ridge National Laboratory's (ORNL) Coupled End-to-End (CETE) research, development, and demonstration (R and D) of proposed advanced fuel reprocessing and fuel fabrication processes. This work will involve the co-conversion of the U/Pu/Np product streams from the UREX+3 separation flow sheet utilizing the existing MDD glove-box setup and the in-cell co-conversion of the U/Pu/Np/Am/Cm product streams from the UREX+1a flow sheet. Characterization equipment is being procured and installed. Oxide powder studies are being done on calcination/reduction variables, as well as pressing and sintering of pellets to permit metallographic examinations. (authors)

  13. Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes

    DOE Patents [OSTI]

    Kerr, John B.; Tian, Minmin

    2000-01-01

    A electrochemical cell is described comprising an anode, a cathode, a solid polymer electrolyte, and a redox shuttle additive to protect the cell against overcharging and a redox shuttle additive to protect the cell against overcharging selected from the group consisting of: (a) a substituted anisole having the general formula (in an uncharged state): ##STR1## where R.sub.1 is selected from the group consisting of H, OCH.sub.3, OCH.sub.2 CH.sub.3, and OCH.sub.2 phenyl, and R.sub.2 is selected from the group consisting of OCH.sub.3, OCH.sub.2 CH.sub.3, OCH.sub.2 phenyl, and O.sup.- Li.sup.+ ; and (b) a di-anisole compound having the general formula (in an uncharged state): ##STR2## where R is selected from the group consisting of -OCH.sub.3 and -CH.sub.3, m is either 1 or 0, n is either 1 or 0, and X is selected from the group consisting of -OCH.sub.3 (methoxy) or its lithium salt --O.sup.- Li.sup.+. The lithium salt of the di-anisole is the preferred form of the redox shuttle additive because the shuttle anion will then initially have a single negative charge, it loses two electrons when it is oxidized at the cathode, and then moves toward the anode as a single positively charged species where it is then reduced to a single negatively charged species by gaining back two electrons.

  14. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    SciTech Connect (OSTI)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

  15. Methods for achieving the equilibrium number of phases in mixtures suitable for use in battery electrodes, e.g., for lithiating FeS.sub.2

    DOE Patents [OSTI]

    Guidotti, Ronald A.

    1988-01-01

    In a method for preparing lithiated, particulate FeS.sub.2 useful as a catholyte material in a lithium thermal battery, whereby the latter's voltage regulation properties are improved, comprising admixing FeS.sub.2 and an amount of a lithium-containing compound whereby the resultant total composition falls in an invariant region of the metallurgical phase diagram of its constituent components, an improvement comprises admixing said lithium-containing compound and FeS.sub.2 together with a solid electrolyte compatible with said catholyte, and heating the mixture at a temperature above the melting point of said electrolyte and at which said mixture reaches its thermodynamic equilibrium number of phases.

  16. Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.

    SciTech Connect (OSTI)

    Ebert, W. E.

    2006-01-31

    The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass degradation model developed for use in repository licensing, and HLW glass can be used as a surrogate for both CWF and MWF in performance assessment calculations. Test results indicate that the radionuclide release from CWF and MWF is adequately described by other relevant performance assessment models, such as the models for the solution chemistries in breached waste packages, dissolved concentration limits, and the formation of radionuclide-bearing colloids.

  17. Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Katz, Michael J.; Moon, Su-Young; Mondloch, Joseph E.; Beyzavi, M. Hassan; Stephenson, Casey J.; Hupp, Joseph T.; Farha, Omar K.

    2015-02-24

    The hydrolysis of nerve agents is of primary concern due to the severe toxicity of these agents. Using a MOF-based catalyst (UiO-66), we have previously demonstrated that the hydrolysis can occur with relatively fast half-lives of 50 minutes. However, these rates are still prohibitively slow to be efficiently utilized for some practical applications (e.g., decontamination wipes used to clean exposed clothing/skin/vehicles). We thus turned our attention to derivatives of UiO-66 in order to probe the importance of functional groups on the hydrolysis rate. Three UiO-66 derivatives were explored; UiO-66-NO2 and UiO-66-(OH)2 showed little to no change in hydrolysis rate. However,more » UiO-66-NH2 showed a 20 fold increase in hydrolysis rate over the parent UiO-66 MOF. Half-lives of 1 minute were observed with this MOF. In order to probe the role of the amino moiety, we turned our attention to UiO-67, UiO-67-NMe2 and UiO-67-NH2. In these MOFs, the amino moiety is in close proximity to the zirconium node. We observed that UiO-67-NH2 is a faster catalyst than UiO-67 and UiO-67-NMe2. We conclude that the role of the amino moiety is to act as a proton-transfer agent during the catalytic cycle and not to hydrogen bond or to form a phosphorane intermediate.« less

  18. Aromatase imaging with [N-methyl-C-11]vorozole PET in healthy men and women

    SciTech Connect (OSTI)

    Biegon, Anat; Fowler, Joanna S.; Alexoff, David L.; Kim, Sung Won; Logan, Jean; Pareto, Deborah; Schlyer, David; Wang, Gene-Jack

    2015-02-19

    Aromatase, the last and obligatory enzyme catalyzing estrogen biosynthesis from androgenic precursors, can be labeled in vivo with C-vorozole. Aromatase inhibitors are widely used in breast cancer and other endocrine conditions. The present study aims to provide baseline information defining aromatase distribution in healthy men and women, against which its perturbation in pathological situations can be studied. Methods: C-vorozole (111-296 MBq/subject) was injected I.V in 13 men and 20 women (age range 23 to 67). PET data were acquired over a 90 minute period. Each subject had 4 scans, 2/day separated by 2-6 weeks, including brain and torso or pelvis scans. Young women were scanned at 2 discrete phases of the menstrual cycle (midcycle and late luteal). Men and postmenopausal women were also scanned following pretreatment with a clinical dose of the aromatase inhibitor letrozole (blocking studies). Time activity curves were obtained and standard uptake values (SUV) calculated for major organs including brain, heart, lungs, liver, kidneys, spleen, muscle, bone and male and female reproductive organs (penis, testes, uterus, ovaries). Organ and whole body radiation exposures were calculated using Olinda software. Results: Liver uptake was higher than all other organs, but was not blocked by pretreatment with letrozole. Mean SUVs in men were higher than in women, and brain uptake was blocked by letrozole. Male brain SUVs were also higher than all other organs (ranging from 0.480.05 in lungs to 1.50.13 in kidneys). Mean ovarian SUVs (3.080.7) were comparable to brain levels and higher than all other organs. Furthermore, ovarian SUVs In young women around the time of ovulation (midcycle) were significantly higher than those measured in the late luteal phase, while aging and cigarette smoking reduced C-vorozole uptake. Conclusions: PET with C-vorozole is useful for assessing physiological changes in estrogen synthesis capacity in the human body. Baseline levels in breasts, lungs and bones are low, supporting further investigation of this tracer as a new tool for detection of aromatase-overexpressing primary tumors or metastases in these organs and optimization of treatment in cancer and other disorders in which aromatase inhibitors are useful.

  19. Aromatase imaging with [N-methyl-C-11]vorozole PET in healthy men and women

    SciTech Connect (OSTI)

    Biegon, Anat; Fowler, Joanna S.; Alexoff, David L.; Kim, Sung Won; Logan, Jean; Pareto, Deborah; Schlyer, David; Wang, Gene-Jack

    2015-02-19

    Aromatase, the last and obligatory enzyme catalyzing estrogen biosynthesis from androgenic precursors, can be labeled in vivo with ¹¹C-vorozole. Aromatase inhibitors are widely used in breast cancer and other endocrine conditions. The present study aims to provide baseline information defining aromatase distribution in healthy men and women, against which its perturbation in pathological situations can be studied. Methods: ¹¹C-vorozole (111-296 MBq/subject) was injected I.V in 13 men and 20 women (age range 23 to 67). PET data were acquired over a 90 minute period. Each subject had 4 scans, 2/day separated by 2-6 weeks, including brain and torso or pelvis scans. Young women were scanned at 2 discrete phases of the menstrual cycle (midcycle and late luteal). Men and postmenopausal women were also scanned following pretreatment with a clinical dose of the aromatase inhibitor letrozole (“blocking” studies). Time activity curves were obtained and standard uptake values (SUV) calculated for major organs including brain, heart, lungs, liver, kidneys, spleen, muscle, bone and male and female reproductive organs (penis, testes, uterus, ovaries). Organ and whole body radiation exposures were calculated using Olinda software. Results: Liver uptake was higher than all other organs, but was not blocked by pretreatment with letrozole. Mean SUVs in men were higher than in women, and brain uptake was blocked by letrozole. Male brain SUVs were also higher than all other organs (ranging from 0.48±0.05 in lungs to 1.5±0.13 in kidneys). Mean ovarian SUVs (3.08±0.7) were comparable to brain levels and higher than all other organs. Furthermore, ovarian SUVs In young women around the time of ovulation (midcycle) were significantly higher than those measured in the late luteal phase, while aging and cigarette smoking reduced ¹¹C-vorozole uptake. Conclusions: PET with ¹¹C-vorozole is useful for assessing physiological changes in estrogen synthesis capacity in the human body. Baseline levels in breasts, lungs and bones are low, supporting further investigation of this tracer as a new tool for detection of aromatase-overexpressing primary tumors or metastases in these organs and optimization of treatment in cancer and other disorders in which aromatase inhibitors are useful.

  20. Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile

    SciTech Connect (OSTI)

    Melak, Dawit; Ferreccio, Catterina; Kalman, David; Parra, Roxana; Acevedo, Johanna; Pérez, Liliana; Cortés, Sandra; Smith, Allan H.; Yuan, Yan; Liaw, Jane; Steinmaus, Craig

    2014-01-15

    In humans, ingested inorganic arsenic is metabolized to monomethylarsenic (MMA) then to dimethylarsenic (DMA), although this process is not complete in most people. The trivalent form of MMA is highly toxic in vitro and previous studies have identified associations between the proportion of urinary arsenic as MMA (%MMA) and several arsenic-related diseases. To date, however, relatively little is known about its role in lung cancer, the most common cause of arsenic-related death, or about its impacts on people drinking water with lower arsenic concentrations (e.g., < 200 μg/L). In this study, urinary arsenic metabolites were measured in 94 lung and 117 bladder cancer cases and 347 population-based controls from areas in northern Chile with a wide range of drinking water arsenic concentrations. Lung cancer odds ratios adjusted for age, sex, and smoking by increasing tertiles of %MMA were 1.00, 1.91 (95% confidence interval (CI), 0.99–3.67), and 3.26 (1.76–6.04) (p-trend < 0.001). Corresponding odds ratios for bladder cancer were 1.00, 1.81 (1.06–3.11), and 2.02 (1.15–3.54) (p-trend < 0.001). In analyses confined to subjects only with arsenic water concentrations < 200 μg/L (median = 60 μg/L), lung and bladder cancer odds ratios for subjects in the upper tertile of %MMA compared to subjects in the lower two tertiles were 2.48 (1.08–5.68) and 2.37 (1.01–5.57), respectively. Overall, these findings provide evidence that inter-individual differences in arsenic metabolism may be an important risk factor for arsenic-related lung cancer, and may play a role in cancer risks among people exposed to relatively low arsenic water concentrations. - Highlights: • Urine arsenic metabolites were measured in cancer cases and controls from Chile. • Higher urine %MMA values were associated with increased lung and bladder cancer. • %MMA-cancer associations were seen at drinking water arsenic levels < 200 μg/L.

  1. Photodetachment and electron reactivity in 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethylsulfonyl)amide

    SciTech Connect (OSTI)

    Molins i Domenech, Francesc; FitzPatrick, Benjamin; Healy, Andrew T.; Blank, David A.

    2012-07-21

    The transient absorption spectrum in the range 500 nm-1000 nm was measured with ultrafast time resolution on a flowing neat, aliphatic, room-temperature ionic liquid following anion photodetachment. In this region the spectrum was shown to be a combination of absorption from the electron and the hole. Spectrally-resolved electron quenching determined a bimodal shape for the hole spectrum in agreement with recent computational predictions on a smaller aliphatic ionic liquid [Margulis et al., J. Am. Chem. Soc. 133, 20186 (2011)]. For time delays beyond 15 ps, spectral evolution qualitatively agrees with recent radiolysis experiments [Wishart et al., Faraday Discuss. 154, 353 (2012)]. However, the shape of the spectrum is different, reflecting the contrast in ionization energy between the two methods. Previously unobserved reactivity of the electron was found with a time constant of 300 fs. The results demonstrate solvent control of the rate coefficient for reaction between the electron and proton, with a rapid decline in the rate within the first picosecond.

  2. Type II restriction-modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOE Patents [OSTI]

    Lee, Brady D; Newby, Deborah T; Lacey, Jeffrey A; Thompson, David N; Thompson, Vicki S; Apel, William A; Roberto, Francisco F; Reed, David W

    2013-10-29

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  3. Type II restriction-modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOE Patents [OSTI]

    Lee, Brady D; Newby, Deborah T; Lacey, Jeffrey A; Thompson, David N; Thompson, Vicki S; Apel, William A; Roberto, Francisco F; Reed, David W

    2015-05-12

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  4. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Research on the capture of organic iodides has also been performed, but to a lesser extent Jubin 2012b. Several questions remain open regarding the capture of iodine bound in ...

  5. Aromatase imaging with [N-methyl-C-11]vorozole PET in healthy men and women

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Biegon, Anat; Fowler, Joanna S.; Alexoff, David L.; Kim, Sung Won; Logan, Jean; Pareto, Deborah; Schlyer, David; Wang, Gene-Jack

    2015-02-19

    Aromatase, the last and obligatory enzyme catalyzing estrogen biosynthesis from androgenic precursors, can be labeled in vivo with ¹¹C-vorozole. Aromatase inhibitors are widely used in breast cancer and other endocrine conditions. The present study aims to provide baseline information defining aromatase distribution in healthy men and women, against which its perturbation in pathological situations can be studied. Methods: ¹¹C-vorozole (111-296 MBq/subject) was injected I.V in 13 men and 20 women (age range 23 to 67). PET data were acquired over a 90 minute period. Each subject had 4 scans, 2/day separated by 2-6 weeks, including brain and torso or pelvismore » scans. Young women were scanned at 2 discrete phases of the menstrual cycle (midcycle and late luteal). Men and postmenopausal women were also scanned following pretreatment with a clinical dose of the aromatase inhibitor letrozole (“blocking” studies). Time activity curves were obtained and standard uptake values (SUV) calculated for major organs including brain, heart, lungs, liver, kidneys, spleen, muscle, bone and male and female reproductive organs (penis, testes, uterus, ovaries). Organ and whole body radiation exposures were calculated using Olinda software. Results: Liver uptake was higher than all other organs, but was not blocked by pretreatment with letrozole. Mean SUVs in men were higher than in women, and brain uptake was blocked by letrozole. Male brain SUVs were also higher than all other organs (ranging from 0.48±0.05 in lungs to 1.5±0.13 in kidneys). Mean ovarian SUVs (3.08±0.7) were comparable to brain levels and higher than all other organs. Furthermore, ovarian SUVs In young women around the time of ovulation (midcycle) were significantly higher than those measured in the late luteal phase, while aging and cigarette smoking reduced ¹¹C-vorozole uptake. Conclusions: PET with ¹¹C-vorozole is useful for assessing physiological changes in estrogen synthesis capacity in the human body. Baseline levels in breasts, lungs and bones are low, supporting further investigation of this tracer as a new tool for detection of aromatase-overexpressing primary tumors or metastases in these organs and optimization of treatment in cancer and other disorders in which aromatase inhibitors are useful.« less

  6. Electrochemical components employing polysiloxane-derived binders

    DOE Patents [OSTI]

    Delnick, Frank M.

    2013-06-11

    A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.

  7. Electrochromic salts, solutions, and devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  8. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  9. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  10. Electrodeposited cobalt sulfide hole collecting layer for polymer solar cells

    SciTech Connect (OSTI)

    Zampetti, Andrea; De Rossi, Francesca; Brunetti, Francesca; Reale, Andrea; Di Carlo, Aldo; Brown, Thomas M., E-mail: thomas.brown@uniroma2.it [CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)

    2014-08-11

    In polymer solar cells based on the blend of regioregular poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester, the hole collecting layer has to be endowed with its ionization potential close to or greater than that of P3HT (?5?eV). Conductive polymer blends such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and metal oxides such as vanadium pentoxide (V{sub 2}O{sub 5}) and molybdenum trioxide (MoO{sub 3}) satisfy this requirement and have been the most common materials used so far in bulk heterojunction structures. We report here cobalt sulfide (CoS) to be a promising hole collecting material deposited by convenient and room temperature electrodeposition. By simply tuning the CoS electrodeposition parameters, power conversion efficiencies similar (within 15%) to a reference structure with PEDOT:PSS were obtained.

  11. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  12. Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine

    SciTech Connect (OSTI)

    Strzelec, Andrea; Storey, John Morse; Lewis Sr, Samuel Arthur; Daw, C Stuart; Foster, Prof. Dave; Rutland, Prof. Christopher J.

    2010-01-01

    Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

  13. Effect of temperature on carrier formation efficiency in organic photovoltaic cells

    SciTech Connect (OSTI)

    Moritomo, Yutaka Yonezawa, Kouhei; Yasuda, Takeshi

    2014-08-18

    The internal quantum efficiency (?{sub IQ}) of an organic photovoltaic cell is governed by plural processes. Here, we propose that ?{sub IQ} can be experimentally decomposed into carrier formation (?{sub CF}) and carrier transfer (?{sub CT}) efficiencies. By combining femtosecond time-resolved and electrochemical spectroscopy, we clarified the effect of temperature on ?{sub CF} in a regioregular poly(3-hexylthiophene) (rr-P3HT)/[6,6]-phenyl C{sub 61}-butyric acid methyl ester blend film. We found that ?{sub CF}?(=0.55) at 80?K is the same as that (=0.55) at 300?K. The temperature insensitivity of ?{sub CF} indicates that the electron-hole pairs at the D/A interface are seldom subjected to coulombic binding energy.

  14. More stable hybrid organic solar cells deposited on amorphous Si electron transfer layer

    SciTech Connect (OSTI)

    Samiee, Mehran; Modtland, Brian; Dalal, Vikram L.; Aidarkhanov, Damir

    2014-05-26

    We report on defect densities, performance, and stability of organic/inorganic hybrid solar cells produced using n-doped inorganic amorphous silicon-carbide layers as the electron transport layer (ETL). The organic material was poly-3-hexyl-thiophene (P3HT) and heterojunction was formed using phenyl-C{sub 71}-Butyric-Acid-Methyl Ester (PCBM). For comparison, inverted solar cells fabricated using Cs{sub 2}CO{sub 3} as ETL were fabricated. Defect densities and subgap quantum efficiency curves were found to be nearly identical for both types of cells. The cells were subjected to 2xsun illumination and it was found that the cells produced using doped a-Si as ETL were much more stable than the cells produced using Cs{sub 2}CO{sub 3}.

  15. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  16. Photo-response of a P3HT:PCBM blend in metal-insulator-semiconductor capacitors

    SciTech Connect (OSTI)

    Devynck, M.; Rostirolla, B.; Watson, C. P.; Taylor, D. M.

    2014-11-03

    Metal-insulator-semiconductor capacitors are investigated, in which the insulator is cross-linked polyvinylphenol and the active layer a blend of poly(3-hexylthiophene), P3HT, and the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM). Admittance spectra and capacitance-voltage measurements obtained in the dark both display similar behaviour to those previously observed in P3HT-only devices. However, the photo-capacitance response is significantly enhanced in the P3HT:PCBM case, where exciton dissociation leads to electron transfer into the PCBM component. The results are consistent with a network of PCBM aggregates that is continuous through the film but with no lateral interconnection between the aggregates at or near the blend/insulator interface.

  17. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect (OSTI)

    Pitz, W J; Westbook, C K; Mehl, M

    2008-10-30

    Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  18. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    SciTech Connect (OSTI)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between ?? stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  19. Production of Biodiesel at Kinetic Limit Achieved in a Centrifugal Reactor/Separator

    SciTech Connect (OSTI)

    McFarlane, Joanna; Tsouris, Costas; Birdwell Jr, Joseph F; Lee, Denise L; Jennings, Hal L; Pahmer Boitrago, Amy M; Terpstra, Sarah M

    2010-01-01

    The kinetics of the transesterification of soybean oil has been investigated in a centrifugal reactor at temperatures from 45 to 80 C and pressures up to 2.6 bar using gas chromatography flame ionization detection (GC-FID) and infrared (IR) spectroscopy. The yields of product methyl esters were quantified using IR, proton Nuclear Magnetic Resonance (H1NMR), and viscosity measurements and were found to achieve 90% of the yield in 2 min; however, to meet ASTM specifications with one pass through the reactor, a 15 min residence time was needed. Performance was improved by sequential reactions, allowing separation of by-product glycerine and injection of additional small aliquots of methanol. The kinetics was modeled using a three-step mechanism of reversible reactions, which was used to predict performance at commercial scale. The mechanism correctly predicted the exponential decline in reaction rate as the concentration of the products allowed significant reverse reactions to occur.

  20. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    SciTech Connect (OSTI)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses might represent the ancestor for the presently existing floral genes which during evolution gained different expression profiles and encoded enzymes with the ability to accept structurally similar substrates.

  1. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim tomore » establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  2. Search | OpenEI Community

    Open Energy Info (EERE)

    Propane Propane Market Propane Market Forecast Propane Market Growth Propane Market Size Propane Market Trends Propionic Acid Ethyl Ester Market Propionic Acid Ethyl Ester Market...

  3. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuels

    SciTech Connect (OSTI)

    Matti Maricq, M.

    2011-01-15

    Data are presented to compare soot formation in both surrogate and practical fatty acid methyl ester biodiesel and petroleum fuel diffusion flames. The approach here uses differential mobility analysis to follow the size distributions and electrical charge of soot particles as they evolve in the flame, and laser ablation particle mass spectrometry to elucidate their composition. Qualitatively, these soot properties exhibit a remarkably similar development along the flames. The size distributions begin as a single mode of precursor nanoparticles, evolve through a bimodal phase marking the onset of aggregate formation, and end in a self preserving mode of fractal-like particles. Both biodiesel and hydrocarbon fuels yield a common soot composition dominated by C{sub x}H{sub y}{sup +} ions, stabilomer PAHs, and fullerenes in the positive ion mass spectrum, and C{sub x}{sup -} and C{sub 2x}H{sup -} in the negative ion spectrum. These ion intensities initially grow with height in the diffusion flames, but then decline during later stages, consistent with soot carbonization. There are important quantitative differences between fuels. The surrogate biodiesel fuel methyl butanoate substantially reduces soot levels, but soot formation and evolution in this flame are delayed relative to both soy and petroleum fuels. In contrast, soots from soy and hexadecane flames exhibit nearly quantitative agreement in their size distribution and composition profiles with height, suggesting similar soot precursor chemistry. (author)

  4. Catalytic Ionic Hydrogenation of Ketones by {[Cp*Ru(CO)2]2(-H)}+

    SciTech Connect (OSTI)

    Bullock, R.M.; Fagan, P.J.; Voges, M.H.

    2010-02-22

    {l_brace}[Cp*Ru(CO){sub 2}]{sub 2}({mu}-H){r_brace}{sup +}OTf{sup -} functions as a homogeneous catalyst precursor for hydrogenation of ketones to alcohols, with hydrogenations at 1 mol % catalyst loading at 90 C under H{sub 2} (820 psi) proceeding to completion and providing >90% yields. Hydrogenation of methyl levulinate generates {gamma}-valerolactone, presumably by ring-closing of the initially formed alcohol with the methyl ester. Experiments in neat Et{sub 2}C=O show that the catalyst loading can be <0.1 mol % and that at least 1200 turnovers of the catalyst can be obtained. These reactions are proposed to proceed by an ionic hydrogenation pathway, with the highly acidic dihydrogen complex [Cp*Ru(CO){sub 2}({eta}{sup 2}-H{sub 2})]{sup +}OTf{sup -} being formed under the reaction conditions from reaction of H2 with {l_brace}[Cp*Ru(CO){sub 2}]{sub 2}({mu}-H){r_brace}{sup +}OTf{sup -}.

  5. The Role of Comprehensive Detailed Chemical Kinetic Reaction Mechanisms in Combustion Research

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J; Mehl, M

    2008-07-16

    Recent developments by the authors in the field of comprehensive detailed chemical kinetic reaction mechanisms for hydrocarbon fuels are reviewed. Examples are given of how these mechanisms provide fundamental chemical insights into a range of combustion applications. Practical combustion consists primarily of chemical heat release from reactions between a fuel and an oxidizer, and computer simulations of practical combustion systems have become an essential tool of combustion research (Westbrook et al., 2005). At the heart of most combustion simulations, the chemical kinetic submodel frequently is the most detailed, complex and computationally costly part of a system model. Historically, the chemical submodel equations are solved using time-implicit numerical algorithms, due to the extreme stiffness of the coupled rate equations, with a computational cost that varies roughly with the cube of the number of chemical species in the model. While early mechanisms (c. 1980) for apparently simple fuels such as methane (Warnatz, 1980) or methanol (Westbrook and Dryer, 1979) included perhaps 25 species, current detailed mechanisms for much larger, more complex fuels such as hexadecane (Fournet et al., 2001; Ristori et al., 2001; Westbrook et al., 2008) or methyl ester methyl decanoate (Herbinet et al., 2008) have as many as 2000 or even 3000 species. Rapid growth in capabilities of modern computers has been an essential feature in this rapid growth in the size and complexity of chemical kinetic reaction mechanisms.

  6. Synthesis of 6-Methyl-9-n-propyldibenzo thiophene-4-ol ammended to 6-Methyl-9-(1-methylethyl)-dibenzo thiophene-4-ol. Quarterly technical progress report No. 6, October 28, 1991--January 26, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-02-28

    The material presented below is taken from Status Reports 15, 16 and 17 and covers the progress made toward the synthesis of the modified target molecules 9-isopropyl-4-methoxy-6 methyldibenzothiophene (13) and 9-isopropyl-6methyldibenzothiophene-4-ol (14).

  7. Methyl tert-butyl ether and ethyl tert-butyl ether: A comparison of properties, synthesis techniques, and operating conditions

    SciTech Connect (OSTI)

    Sneesby, M.G.; Tade, M.O.; Datta, R.

    1996-12-31

    MTBE is currently the most industrially significant oxygenate but some of the properties of ETBE and the EPA ethanol mandate suggest that ETBE could become a viable competitor. Similar synthesis techniques are used for both ethers but the phase behaviour of the ETBE system requires slightly different operating conditions and creates some alternatives for product recovery. The process control strategy for both systems must address some unusual challenges. 9 refs., 1 tab.

  8. Structure of trans-methyl 2-phenylhexahydro-2H-isoxazolo (2,3-a)-pyridine-3-carboxylate

    SciTech Connect (OSTI)

    Ul-Haque, M.; Horne, W.; Ali, S.A. )

    1993-02-01

    The title compound, a 1,3-dipolar cycloaddition product, crystallizes in the monoclinic space group P2[sub 1]/c, with a = 8.199(3), b = 16.908(1), c = 10.248(2) [angstrom],[beta] = 93.58(2)[degrees] and Z = 4. The structure was solved by direct methods and refined by full matrix least squares methods to R = 0.038 for 1687 observed reflections. The stereochemistry of this compound was found to have the [open quotes]ee[close quotes] conformation in the solid state as well as in solution. The piperidine ring in the molecule is in the chair form and the isoxazolidine ring adopts an envelope conformation.

  9. Translational and internal energy distributions of methyl and hydroxyl radicals produced by 157 nm photodissociation of amorphous solid methanol

    SciTech Connect (OSTI)

    Hama, Tetsuya; Yokoyama, Masaaki; Yabushita, Akihiro; Kawasaki, Masahiro; Wickramasinghe, Piyumie; Guo Wei; Loock, Hans-Peter; Ashfold, Michael N. R.; Western, Colin M.

    2009-12-14

    Methanol is typically observed within water-rich interstellar ices and is a source of interstellar organic species. Following the 157 nm photoexcitation of solid methanol at 90 K, desorbed CH{sub 3}(v=0) and OH(v=0,1) radicals have been observed in situ, near the solid surface, using resonance-enhanced multiphoton ionization (REMPI) detection methods. Time-of-flight and rotationally resolved REMPI spectra of the desorbed species were measured, and the respective fragment internal energy and kinetic energy distributions were obtained. Photoproduction mechanisms for CH{sub 3} and OH radicals from solid methanol are discussed. The formation of O({sup 1}D and {sup 3}P) atoms and H{sub 2}O was investigated, but the yield of these species was found to be negligible. CH{sub 3} products arising following the photoexcitation of water-methanol mixed ice showed similar kinetic and internal energy distributions to those from neat methanol ice.

  10. Multiply Methyl-Branched Fatty Acids and Diacids in the Polar Lipids of a Microaerophilic Subsurface Microbial Community

    SciTech Connect (OSTI)

    Hedrick, David B.; Peacock, Aaron D.; Long, Philip E.; White, David C.

    2008-09-01

    A previously unreported series of di- and trimethylated fatty acids, as well as saturated and monounsaturated diacids were identified in polar lipids isolated from environmental subsurface sediment samples. Mechanisms are proposed for their formation, but their origin and role in cell membranes remains unknown.

  11. Initial Effects of NOx on Idodine and Methyl Iodine Loading of AgZ and Aerogels

    SciTech Connect (OSTI)

    Bruffey, Stephanie H.; Jubin, Robert Thomas

    2015-03-31

    This initial evaluation provides insight into the effect of NO on the adsorption of both I2 and CH3I onto reduced silver-exchanged mordenite (Ag0Z). It was determined that adsorption of CH3I onto Ag0Z occurs at approximately 50% of the rate of I2 adsorption onto Ag0Z, although total iodine capacities are comparable. Addition of 1% NO to the simulated off-gas stream results in very similar loading behaviors and iodine capacities for both iodine species. This is most likely an effect of CH3I oxidation to I2 by NO prior to contact with the sorbent bed. Completion of tests including NO2 in the simulated off-gas stream was delayed due to vendor NO2 production schedules. A statistically designed test matrix is partially completed, and upon conclusion of the suggested experiments, the effects of temperature, NO, NO2, and water vapor on the sorption of CH3I and I2 onto Ag0Z will be able to be statistically resolved. This work represents progress towards that aim.

  12. Synthesis of 6-Methyl-9-propyldibenzothiophene-4-ol. Technical progress report No. 2, October 25, 1990--January 25, 1991

    SciTech Connect (OSTI)

    Eisenbraun, E.J.

    1991-02-15

    The synthesis route for preparing the title compound, has been carried out on a small scale for the preparation of a mixture of isomers. Alternative routes for the cyclization are being explored. (DLC)

  13. Synthesis and crystal structure studies of ethyl 5-methyl-1, 3-diphenyl-1H-pyrazole-4-carboxylate

    SciTech Connect (OSTI)

    Chandra,; Babu, E. A. Jithesh; Mahendra, M.; Srikantamurthy, N.; Umesha, K. B.

    2014-04-24

    The title compound, C{sub 19}H{sub 18}N{sub 2}O{sub 2}, was investigated by single crystal X-ray diffraction method. It crystallizes in monoclinic class under the space group P2{sub 1}/c with cell parameters a= 8.4593(4) Å, b=15.6284(6) Å, c=12.4579(5) Å, α=90°, β=98.241(3)°, γ=90° and Z=2. The ethoxycarbonyl group is slightly twisted from the pyrazole ring, and adopts syn-periplanar conformation. The crystal structure is stabilized by intermolecular C-H….O hydrogen bonds, which help in stabilizing the crystal structure.

  14. EA-1157: Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas, Carrollton, Kentucky

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to advance Oxyhydrochlorination technology to an integrated engineering-scale process.

  15. Method for cold stable biojet fuel

    DOE Patents [OSTI]

    Seames, Wayne S.; Aulich, Ted

    2015-12-08

    Plant or animal oils are processed to produce a fuel that operates at very cold temperatures and is suitable as an aviation turbine fuel, a diesel fuel, a fuel blendstock, or any fuel having a low cloud point, pour point or freeze point. The process is based on the cracking of plant or animal oils or their associated esters, known as biodiesel, to generate lighter chemical compounds that have substantially lower cloud, pour, and/or freeze points than the original oil or biodiesel. Cracked oil is processed using separation steps together with analysis to collect fractions with desired low temperature properties by removing undesirable compounds that do not possess the desired temperature properties.

  16. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    SciTech Connect (OSTI)

    Dr. Brian Dixon

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation??s family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  17. Inverse antagonist activities of parabens on human oestrogen-related receptor ? (ERR?): In vitro and in silico studies

    SciTech Connect (OSTI)

    Zhang, Zhaobin; Sun, Libei; Hu, Ying; Jiao, Jian; Hu, Jianying

    2013-07-01

    Parabens are p-hydroxybenzoic acid esters that have been used extensively as preservatives in foods, cosmetics, drugs and toiletries. These intact esters are commonly detected in human breast cancer tissues and other human samples, thus arousing concern about the involvement of parabens in human breast cancer. In this study, an in vitro nuclear receptor coactivator recruiting assay was developed and used to evaluate the binding activities of parabens, salicylates and benzoates via antagonist competitive binding on the human oestrogen-related receptor ? (ERR?), which is known as both a diagnostic biomarker and a treatment target of breast cancer. The results showed that all of the test parabens (methyl-, ethyl-, propyl-, butyl- and benzylparaben) possessed clear inverse antagonist activities on ERR?, with a lowest observed effect level (LOEL) of 10{sup ?7} M and the 50% relative effective concentrations (REC50) varying from 3.09 10{sup ?7} to 5.88 10{sup ?7} M, whereas the salicylates possessed much lower activities and the benzoates showed no obvious activity. In silico molecular docking analyses showed that parabens fitted well into the active site of ERR?, with hydrogen bonds forming between the p-hydroxyl group of parabens and the Glu275/Arg316 of ERR?. As the paraben levels reported in breast cancer tissues are commonly higher than the LOELs observed in this study, parabens may play some role via ERR? in the carcinogenesis of human breast cancer. In addition, parabens may have significant effects on breast cancer patients who are taking tamoxifen, as ERR? is regarded as a treatment target for tamoxifen. - Highlights: An oestrogen-related receptor ? coactivator recruiting assay was developed. Strong binding activities of parabens with oestrogen-related receptor ? were found. The paraben levels reported in breast cancer tissues were higher than their LOELs. Parabens may play some role via ERR? in the carcinogenesis of human breast cancer. Parabens may have significant effects in breast cancer patients taking tamoxifen.

  18. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  19. Rotary engine

    SciTech Connect (OSTI)

    Leas, A. M.; Leas, L. E.

    1985-02-12

    Disclosed are an engine system suitable for use with methyl alcohol and hydrogen and a rotary engine particularly suited for use in the engine system. The rotary engine comprises a stator housing having a plurality of radially directed chamber dividers, a principal rotor, a plurality of subordinate rotors each having an involute gear in its periphery mounted on the principal rotor, and means for rotating the subordinate rotors so that their involute gears accept the radially directed dividers as the subordinate rotors move past them.

  20. N-(N-[2-(3,5-Difluorophenyl)acetyl]-(S)-alanyl)-(S)-phenylglycine tert-butyl ester (DAPT): an inhibitor of γ-secretase, revealing fine electronic and hydrogen-bonding features

    SciTech Connect (OSTI)

    Czerwinski, Andrzej; Valenzuela, Francisco; Afonine, Pavel; Dauter, Miroslawa; Dauter, Zbigniew

    2010-12-01

    The title compound, C{sub 23}H{sub 26}F{sub 2}N{sub 2}O{sub 4}, is a dipeptidic inhibitor of γ-secretase, one of the enzymes involved in Alzheimer’s dis@@ease. The mol@@ecule adopts a compact conformation, without intra@@molecular hydrogen bonds. In the crystal structure, one of the amide N atoms forms the only inter@@molecular N—H⋯O hydrogen bond; the second amide N atom does not form hydrogen bonds. High-resolution synchrotron diffraction data permitted the unequivocal location and refinement without restraints of all H atoms, and the identification of the characteristic shift of the amide H atom engaged in the hydrogen bond from its ideal position, resulting in a more linear hydrogen bond. Significant residual densities for bonding electrons were revealed after the usual SHELXL refinement, and modeling of these features as additional inter@@atomic scatterers (IAS) using the program PHENIX led to a significant decrease in the R factor from 0.0411 to 0.0325 and diminished the r.m.s. deviation level of noise in the final difference Fourier map from 0.063 to 0.037 e Å{sup −3}.

  1. Synthesis of N-formyl-3,4-di-t-butoxycarbonyloxy-6-(trimethylstannyl)-L-phenylalanine ethyl ester and its regioselective radiofluorodestannylation to 6-[.sup.18 F]fluoro-L-dopa

    DOE Patents [OSTI]

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Bishop, Allyson J.; Namavari, Mohammad

    1995-01-01

    A protected 6-trimethylstannyl dopa derivative has been synthesized for the as a precursor for the preparation of 6-[.sup.18 F]fluoro-L-dopa. The tin derivative readily reacts with electrophilic radiofluorinating agents such as [.sup.18 F]F.sub.2, [.sup.18 F]OF.sub.2 and [.sup.18 F]AcOF. The [.sup.18 F]fluoro intermediate was easily hydrolyzed with HBr and the product 6-[.sup.18 F]fluoro-L-dopa was isolated after HPLC purification in a maximum radiochemical yield of 23%, ready for human use.

  2. Synthesis of N-formyl-3,4-di-t-butoxycarbonyloxy-6-(trimethylstannyl)-L-phenylalanine ethyl ester and its regioselective radiofluorodestannylation to 6- .sup.18 F!fluoro-1-dopa

    DOE Patents [OSTI]

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Bishop, Allyson J.; Namavari, Mohammad; Bida, Gerald T.

    1996-01-01

    A process for forming a 6-fluoro derivative of compounds in the L-Dopa family comprising the steps of protecting the groups attached to the benzene ring in the compound followed by serially reacting the protected compound with (a) iodine and silver trifluoroacetic acid; (b) Bb.sub.3 ; (c) dit-butyldicarbonate; (d) hexamethyltin; (e) a fluoro compound; (f) hydrobromic acid; and (g) raising the pH to .ltoreq.7.

  3. Synthesis of N-formyl-3,4-di-t-butoxycarbonyloxy-6(trimethylstannyl)-L-phenylalanine ethyl ester and its regioselective radiofluorodestannylation to 6-[{sup 18}F]fluoro-1-dopa

    DOE Patents [OSTI]

    Satyamurthy, N.; Barrio, J.R.; Bishop, A.J.; Namavari, M.; Bida, G.T.

    1996-04-23

    A process is revealed for forming a 6-fluoro derivative of compounds in the L-Dopa family comprising the steps of protecting the groups attached to the benzene ring in the compound followed by serially reacting the protected compound with (a) iodine and silver trifluoroacetic acid; (b) Bb{sub 3}; (c) dit-butyldicarbonate; (d) hexamethyltin; (e) a fluoro compound; (f) hydrobromic acid; and (g) raising the pH to {<=}7. 1 fig.

  4. Synthesis of N-formyl-3,4-di-t-butoxycarbonyloxy-6(trimethylstannyl)-L-phenylalanine ethyl ester and its regioselective radiofluorodestannylation to 6-[{sup 18}F]fluoro-L-dopa

    DOE Patents [OSTI]

    Satyamurthy, N.; Barrio, J.R.; Bishop, A.J.; Namavari, M.

    1995-02-28

    A protected 6-trimethylstannyl dopa derivative has been synthesized for the as a precursor for the preparation of 6-[{sup 18}F]fluoro-L-dopa. The tin derivative readily reacts with electrophilic radiofluorinating agents such as [{sup 18}F]F{sub 2}, [{sup 18}F]OF{sub 2} and [{sup 18}F]AcOF. The [{sup 18}F]fluoro intermediate was easily hydrolyzed with HBr and the product 6-[{sup 18}F]fluoro-L-dopa was isolated after HPLC purification in a maximum radiochemical yield of 23%, ready for human use. 1 fig.

  5. Phosphine nickel complex as catalyst in reactions of organic bromides RBr with {alpha},{beta}-unsaturated ketones, nitriles, and esters. Conjugate addition of R group and H atom across the C=C bond

    SciTech Connect (OSTI)

    Lebedev, S.A.; Lopatina, V.S.; Petrov, E.S.

    1995-09-10

    Reactions of organic bromides, particularly of secondary and tertiary alkyl bromides, with {alpha},{beta}-unsaturated carbonyl compounds and acrylonitrile in the presence of the catalytic system nickel complex-zinc. The products correspond to the conjugate addition of the organic moiety of the bromide and a hydrogen atom across the C=C double bond of the unsaturated substrate. 9 refs., 1 tab.

  6. Direct esterification of ammonium salts of carboxylic acids

    DOE Patents [OSTI]

    Halpern, Yuval

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  7. Characterization of Biodiesel Oxidation and Oxidation Products

    SciTech Connect (OSTI)

    Not Available

    2005-08-01

    Features a literature review of 130 technical references pertaining to fatty oil and fatty ester stability chemistry in biodiesel fuels.

  8. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect (OSTI)

    Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H.

    2014-01-15

    Highlights: Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. Investigated the effects of main parameters on pyrolysis products distribution. Determined the suitable conditions for the production of the maximum of bio-oil. Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 C and a heating rate of 5 C/min. The chemical (GCMS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compoundsetc.), carboxylic acids, aldehydes, ketones, esters,etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  9. Genome analysis and physiological comparison of Alicycliphilus denitrificans strains BC and K601T

    SciTech Connect (OSTI)

    Oosterkamp, Margreet J.; Veuskens, Teun; Saia, Flavia Talarico; Weelink, Sander A.B.; Goodwin, Lynne A.; Daligault, Hajnalka E.; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Land, Miriam L; Hauser, Loren John; Langenhoff, A. M.; Gerritse, Jan; Van Berkel, Willem J. H.; Pieper, Dietmar; Junca, Howard; Smidt, Hauke; Schraa, Gosse; Davids, Mark; Schaap, Peter J; Plugge, Caroline M.; Stams, Alfons J. M.

    2013-01-01

    The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.

  10. Determination of photocarrier density under continuous photoirradiation using spectroscopic techniques as applied to polymer: Fullerene blend films

    SciTech Connect (OSTI)

    Kanemoto, Katsuichi Nakatani, Hitomi; Domoto, Shinya

    2014-10-28

    We propose a method to determine the density of photocarrier under continuous photoirradiation in conjugated polymers using spectroscopic signals obtained by photoinduced absorption (PIA) measurements. The bleaching signals in the PIA measurements of polymer films and the steady-state absorption signals of oxidized polymer solution are employed to determine the photocarrier density. The method is applied to photocarriers of poly (3-hexylthiophene) (P3HT) in a blended film consisting of P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The photocarrier density under continuous photoirradiation of 580 mW/cm{sup 2} is determined to be 3.5 × 10{sup 16 }cm{sup −3}. Using a trend of the carrier density increasing in proportion to the square root of photo-excitation intensity, we provide a general formula to estimate the photocarrier density under simulated 1 sun solar irradiation for the P3HT: PCBM film of an arbitrary thickness. We emphasize that the method proposed in this study enables an estimate of carrier density without measuring a current and can be applied to films with no electrodes as well as to devices.

  11. A simple method for enzymatic synthesis of unlabeled and radiolabeled Hydroxycinnamate-CoA

    SciTech Connect (OSTI)

    Rautergarten, Carsten; Baidoo, Edward; Keasling, Jay; Vibe Scheller, Henrik

    2011-07-20

    Hydroxycinnamate coenzyme A (CoA) thioesters are substrates for biosynthesis of lignin and hydroxycinna- mate esters of polysaccharides and other polymers. Hence, a supply of these substrates is essential for investigation of cell wall biosynthesis. In this study, three recombinant enzymes, caffeic acid 3-O-methyltransferase, 4-coumarate- CoA ligase 1, and 4-coumarate-CoA ligase 5, were cloned from wheat, tobacco, and Arabidopsis, respectively, and were used to synthesize {sup 14}C-feruloyl-CoA, caffeoyl-CoA, p-coumaroyl-CoA, feruloyl-CoA, and sinapoyl-CoA. The corresponding hydroxycinnamoyl-CoA thioesters were high-performance liquid chromatography purified, the only extraction/purification step necessary, with total yields between 88-95%. Radiolabeled {sup 14}C-feruloyl-CoA was generated from caffeic acid and S-adenosyl-{sup 14}C-methionine under the combined action of caffeic acid 3-O-methyltransferase and 4-coumarate-CoA ligase 1. About 70% of {sup 14}C-methyl groups from S-adenosyl methionine were incorporated into the final product. The methods presented are simple, fast, and efficient for the preparation of the hydroxycinnamate thioesters.

  12. A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices

    SciTech Connect (OSTI)

    Welch, Gregory C; Perez, Louis A.; Hoven, Corey V.; Zhang, Yuan; Dang, Xuan-Dung; Sharenko, Alexander; Toney, Michael F.; Kramer, Edward J.; Nguyen, Thuc-Quyen; Bazan, Guillermo C.

    2011-01-01

    We report on the design, synthesis and characterization of light harvesting small molecules for use in solution-processed small molecule bulk heterojunction (SM-BHJ) solar cell devices. These molecular materials are based upon an acceptor/donor/acceptor (A/D/A) core with donor endcapping units. Utilization of a dithieno(3,2-b;2',3'-d)silole (DTS) donor and pyridal[2,1,3]thiadiazole (PT) acceptor leads to strong charge transfer characteristics, resulting in broad optical absorption spectra extending well beyond 700 nm. SM-BHJ solar cell devices fabricated with the specific example 5,5'-bis{7-(4-(5-hexylthiophen-2-yl)thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine}-3,3'-di-2-ethylhexylsilylene-2,2'-bithiophene (6) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor component showed short circuit currents above -10 mA cm-2 and power conversion efficiencies (PCEs) over 3%. Thermal processing is a critical factor in obtaining favorable active layer morphologies and high PCE values. A combination of UV-visible spectroscopy, conductive and photo-conductive atomic force microscopies, dynamic secondary mass ion spectrometry (DSIMS), and grazing incident wide angle X-ray scattering (GIWAXS) experiments were carried out to characterize how thermal treatment influences the active layer structure and organization.

  13. Polydimethylsiloxane as a Macromolecular Additive for Enhanced Performance of Molecular Bulk Heterojunction Organic Solar Cells

    SciTech Connect (OSTI)

    Graham, Kenneth R.; Mei, Jianguo; Stalder, Romain; Shim, Jae Won; Cheun, Hyeunseok; Steffy, Fred; So, Franky; Kippelen, Bernard; Reynolds, John R.

    2011-03-15

    The effect of the macromolecular additive, polydimethylsiloxane (PDMS), on the performance of solution processed molecular bulk heterojunction solar cells is investigated, and the addition of PDMS is shown to improve device power conversion efficiency by ~70% and significantly reduce cell-to-cell variation, from a power conversion efficiency of 1.25 0.37% with no PDMS to 2.16 0.09% upon the addition of 0.1 mg/mL PDMS to the casting solution. The cells are based on a thiophene and isoindigo containing oligomer as the electron donor and [6,6]-phenyl-C61 butyric acid methyl ester (PC61BM) as the electron acceptor. PDMS is shown to have a strong influence on film morphology, with a significant decrease in film roughness and feature size observed. The morphology change leads to improved performance parameters, most notably an increase in the short circuit current density from 4.3 to 6.8 mA/cm2 upon addition of 0.1 mg/mL PDMS. The use of PDMS is of particular interest, as this additive appears frequently as a lubricant in plastic syringes commonly used in device fabrication; therefore, PDMS may unintentionally be incorporated into device active layers.

  14. Process Intensification in Base-Catalyzed Biodiesel Production

    SciTech Connect (OSTI)

    McFarlane, Joanna; Birdwell Jr, Joseph F; Tsouris, Costas; Jennings, Hal L

    2008-01-01

    Biodiesel is considered a means to diversify our supply of transportation fuel, addressing the goal of reducing our dependence on oil. Recent interest has resulted in biodiesel manufacture becoming more widely undertaken by commercial enterprises that are interested in minimizing the cost of feedstock materials and waste production, as well as maximizing the efficiency of production. Various means to accelerate batch processing have been investigated. Oak Ridge National Laboratory has experience in developing process intensification methods for nuclear separations, and this paper will discuss how technologies developed for very different applications have been modified for continuous reaction/separation of biodiesel. In collaboration with an industrial partner, this work addresses the aspect of base-catalyzed biodiesel production that limits it to a slow batch process. In particular, we have found that interfacial mass transfer and phase separation control the transesterification process and have developed a continuous two-phase reactor for online production of a methyl ester and glycerol. Enhancing the mass transfer has additional benefits such as being able to use an alcohol-to-oil phase ratio closer to stoichiometric than in conventional processing, hence minimizing the amount of solvent that has to be recycled and reducing post-processing clean up costs. Various technical issues associated with the application of process intensification technology will be discussed, including scale-up from the laboratory to a pilot-scale undertaking.

  15. Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels

    SciTech Connect (OSTI)

    Naik, C V; Westbrook, C K

    2009-04-08

    Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

  16. Quenching of Excitons by Holes in Poly(3-hexylthiophene) Films

    SciTech Connect (OSTI)

    Ferguson, A. J .; Kopidakis, N.; Shaheen, S. E.; Rumbles, G.

    2008-01-01

    The generation of excitons and their interaction with holes in films of neat regioregular poly(3-hexylthiophene) and the polymer blended with 1 wt% of the electron-acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) have been studied using flash-photolysis time-resolved microwave conductivity. The sublinear relationship between the photogenerated hole density and the incident light intensity, in both the neat polymer and the donor-acceptor blend, can be attributed to the quenching of excitons by holes, at a rate characterized by a second-order rate constant ({gamma}{sub 2}) of 3 x 10{sup -8} cm{sup 3}/s. This value is larger than that found for other, luminescent conjugated polymers; the difference may be attributed to a greater collision probability, due to the higher mobility of the interacting species, or to an enhancement of the quenching rate once they are in close proximity. The phenomenon has consequences for the ultimate efficiency of organic photovoltaic solar cells that are based on the simple polymer:PCBM bulk heterojunction, especially under conditions of solar concentration.

  17. Oriented Growth of Al2O3:ZnO Nanolaminates for Use as Electron-Selective Electrodes in Inverted Polymer Solar Cells

    SciTech Connect (OSTI)

    Cheun, H.; Fuentes-Hernandez, C.; Shim, J.; Fang, Y.; Cai, Y.; Li, H.; Sigdel, A. K.; Meyer, J.; Maibach, J.; Dindar, A.; Zhou, Y.; Berry, J. J.; Bredas, J. L.; Kahn, A.; Sandhage, K. H.; Kippelen, B.

    2012-04-10

    Atomic layer deposition is used to synthesize Al{sub 2}O{sub 3}:ZnO(1:x) nanolaminates with the number of deposition cycles, x, ranging from 5 to 30 for evaluation as optically transparent, electron-selective electrodes in polymer-based inverted solar cells. Al{sub 2}O{sub 3}:ZnO(1:20) nanolaminates are found to exhibit the highest values of electrical conductivity (1.2 x 10{sup 3} S cm{sup 01}; more than six times higher than for neat ZnO films), while retaining a high optical transmittance ({>=}80% in the visible region) and a low work function (4.0 eV). Such attractive performance is attributed to the structure (ZnO crystal size and crystal alignment) and doping level of this intermediate Al{sub 2}O{sub 3}:ZnO film composition. Polymer-based inverted solar cells using poly(3-hexylthiophene) (P3HT):phenyl-C{sub 61}-butyric acid methyl ester (PCBM) mixtures in the active layer and Al{sub 2}O{sub 3}:ZnO(1:20) nanolaminates as transparent electron-selective electrodes exhibit a power conversion efficiency of 3% under simulated AM 1.5 G, 100 mW cm{sup -2} illumination.

  18. Invasive plant species as potential bioenergy producers and carbon contributors.

    SciTech Connect (OSTI)

    Young, S.; Gopalakrishnan, G.; Keshwani, D.

    2011-03-01

    Current cellulosic bioenergy sources in the United States are being investigated in an effort to reduce dependence on foreign oil and the associated risks to national security and climate change (Koh and Ghazoul 2008; Demirbas 2007; Berndes et al. 2003). Multiple sources of renewable plant-based material have been identified and include agricultural and forestry residues, municipal solid waste, industrial waste, and specifically grown bioenergy crops (Demirbas et al. 2009; Gronowska et al. 2009). These sources are most commonly converted to energy through direct burning, conversion to gas, or conversion to ethanol. Annual crops, such as corn (Zea Mays L.) and sorghum grain, can be converted to ethanol through fermentation, while soybean and canola are transformed into fatty acid methyl esters (biodiesel) by reaction with an alcohol (Demirbas 2007). Perennial grasses are one of the more viable sources for bioenergy due to their continuous growth habit, noncrop status, and multiple use products (Lewandowski el al. 2003). In addition, a few perennial grass species have very high water and nutrient use efficiencies producing large quantities of biomass on an annual basis (Dohleman et al. 2009; Grantz and Vu 2009).

  19. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    SciTech Connect (OSTI)

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-12-31

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO{sub 2} and by observing the disappearance of test substance with gas chromatography. Additional BOD{sub 5} and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population.

  20. Reduction of aspirin-induced fecal blood loss with low-dose misoprostol tablets in man

    SciTech Connect (OSTI)

    Cohen, M.M.; Clark, L.; Armstrong, L.; D'Souza, J.

    1985-07-01

    Misoprostol (SC-29333), a synthetic prostaglandin E1 methyl ester analog, was given simultaneously with acetylsalicylic acid in a double-blind, placebo-controlled randomized prospective study of 32 healthy human male subjects. Fecal blood loss was measured for eight days using the /sup 51/Cr-labeled red blood cell technique. Aspirin (650 mg qid) and misoprostol (25 micrograms qid) or placebo were given during days 3, 4, and 5. There was a significant (P less than 0.05) increase in median blood loss (modified Friedman test) from 0.81 to 6.05 ml/day in the aspirin with placebo group (N = 16). Median blood loss was increased (from 0.75 to 3.75 ml/day) in the aspirin with misoprostol group (N = 16), but this was significantly less (Mann-Whitney U test, P less than 0.01) than the placebo group. Mean serum salicylate concentrations in the placebo and misoprostol groups were similar (7.8 and 6.8 micrograms/ml, respectively). There were no significant changes in laboratory values in any of the subjects studied, nor were any major side-effects encountered. This study demonstrates that oral misoprostol reduces aspirin-induced gastrointestinal bleeding even when administered simultaneously and at a dose level below its threshold for significant acid inhibition. This indicates a potential role for misoprostol in the prevention of gastric mucosal damage in selected patients.

  1. Dramatic enhancement of fullerene anion formation in polymer solar cells by thermal annealing: Direct observation by electron spin resonance

    SciTech Connect (OSTI)

    Liu, Dong; Nagamori, Tatsuya; Yabusaki, Masaki; Yasuda, Takeshi; Han, Liyuan; Marumoto, Kazuhiro

    2014-06-16

    Using electron spin resonance (ESR), we clarified the origin of the efficiency degradation of polymer solar cells containing a lithium-fluoride (LiF) buffer layer created by a thermal annealing process after the deposition of an Al electrode (post-annealing). The device structure was indium-tin-oxide/ poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/poly (3-hexylthiophene):phenyl-C{sub 61}-butyric acid methyl ester (P3HT:PCBM)/LiF/Al. Three samples consisting of quartz/P3HT:PCBM/LiF/Al, quartz/P3HT:PCBM/Al, and quartz/PCBM/LiF/Al were investigated and compared. A clear ESR signal from radical anions on the PCBM was observed after LiF/Al was deposited onto a P3HT:PCBM layer because of charge transfer at the interface between the PCBM and the LiF/Al, which indicated the formation of PCBM{sup −}Li{sup +} complexes. The number of radical anions on the PCBM was enhanced remarkably by the post-annealing process; this enhancement was caused by the surface segregation of PCBM and by the dissociation of LiF at the Al interface by the post-annealing process. The formation of a greater number of anions enhanced the electron scattering, decreased the electron-transport properties of the PCBM molecules, and caused an energy-level shift at the interface. These effects led to degradation in the device performance.

  2. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  3. Optical investigation of the combustion behaviour inside the engine operating in HCCI mode and using alternative diesel fuel

    SciTech Connect (OSTI)

    Mancaruso, E.; Vaglieco, B.M.

    2010-04-15

    In order to understand the effect of both the new homogeneous charge compression ignition (HCCI) combustion process and the use of biofuel, optical measurements were carried out into a transparent CR diesel engine. Rape seed methyl ester was used and tests with several injection pressures were performed. OH and HCO radical were detected and their evolutions were analyzed during the whole combustion. Moreover, soot concentration was measured by means the two colour pyrometry method. The reduction of particulate emission with biodiesel as compared to the diesel fuel was noted. Moreover, this effect resulted higher increasing the injection pressure. In the case of RME the oxidation of soot depends mainly from O{sub 2} content of fuel and OH is responsible of the NO formation in the chamber as it was observed for NO{sub x} exhaust emission. Moreover, it was investigated the evolution of HCO and CO into the cylinder. HCO was detected at the start of combustion. During the combustion, HCO oxidizes due to the increasing temperature and it produces CO. Both fuels have similar trend, the highest concentrations are detected for low injection pressure. This effect is more evident for the RME fuel. (author)

  4. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina

    SciTech Connect (OSTI)

    Van Wagenen, Jonathan M.; Miller, Tyler W.; Hobbs, Samuel J.; Hook, Paul W.; Crowe, Braden J.; Huesemann, Michael H.

    2012-03-12

    Accurate prediction of algal biofuel yield will require empirical determination of physiological responses to the climate, particularly light and temperature. One strain of interest, Nannochloropsis salina, was subjected to ranges of light intensity (5-850 {mu}mol m{sup -2} s{sup -1}) and temperature (13-40 C); exponential growth rate, total fatty acids (TFA) and fatty acid composition were measured. The maximum acclimated growth rate was 1.3 day{sup -1} at 23 C and 250 {mu}mol m{sup -2} s{sup -1}. Fatty acids were detected by gas chromatography with flame ionization detection (GC-FID) after transesterification to corresponding fatty acid methyl esters (FAME). A sharp increase in TFA containing elevated palmitic acid (C16:0) and palmitoleic acid (C16:1) during exponential growth at high light was observed, indicating likely triacylglycerol accumulation due to photo-oxidative stress. Lower light resulted in increases in the relative abundance of unsaturated fatty acids; in thin cultures, increases were observed in palmitoleic and eicosapentaenoeic acids (C20:5{omega}3). As cultures aged and the effective light intensity per cell converged to very low levels, fatty acid profiles became more similar and there was a notable increase of oleic acid (C18:1{omega}9). The amount of unsaturated fatty acids was inversely proportional to temperature, demonstrating physiological adaptations to increase membrane fluidity. This data will improve prediction of fatty acid characteristics and yields relevant to biofuel production.

  5. Oil Production by a Consortium of Oleaginous Microorganisms grown on primary effluent wastewater

    SciTech Connect (OSTI)

    Hall, Jacqueline; Hetrick, Mary; French, Todd; Hernandez, Rafael; Donaldson, Janet; Mondala, Andro; Holmes, William

    2011-01-01

    Municipal wastewater could be a potential growth medium that has not been considered for cultivating oleaginous microorganisms. This study is designed to determine if a consortium of oleaginous microorganism can successfully compete for carbon and other nutrients with the indigenous microorganisms contained in primary effluent wastewater. RESULTS: The oleaginous consortium inoculated with indigenous microorganisms reached stationary phase within 24 h, reaching a maximum cell concentration of 0.58 g L -1. Water quality post-oleaginous consortium growth reached a maximum chemical oxygen demand (COD) reduction of approximately 81%, supporting the consumption of the glucose within 8 h. The oleaginous consortium increased the amount of oil produced per gram by 13% compared with indigenous microorganisms in raw wastewater. Quantitative polymerase chain reaction (qPCR) results show a substantial population increase in bacteria within the first 24 h when the consortium is inoculated into raw wastewater. This result, along with the fatty acid methyl esters (FAMEs) results, suggests that conditions tested were not sufficient for the oleaginous consortium to compete with the indigenous microorganisms.

  6. Photovoltaic properties and morphology of organic solar cells based on liquid-crystal semiconducting polymer with additive

    SciTech Connect (OSTI)

    Suzuki, Atsushi; Zushi, Masahito; Suzuki, Hisato; Ogahara, Shinichi; Akiyama, Tsuyoshi; Oku, Takeo

    2014-02-20

    Bulk heterojunction organic solar cell based on liquid crystal semiconducting polymers of poly[9,9-dioctylfluorene-co-bithiophene] (F8T2) as p-type semiconductors and fullerenes (C{sub 60}) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as electron donor and acceptor has been fabricated and characterized for improving photovoltaic and optical properties. The photovoltaic performance including current voltage curves in the dark and illumination of the F8T2/C{sub 60} conventional and inverted bulk heterojunction solar cells were investigated. Relationship between the photovoltaic properties and morphological behavior was focused on tuning for optimization of photo-voltaic performance under annealing condition near glass transition temperature. Additive-effect of diiodooctane (DIO) and poly(3-hexylthiophene-2,5-diyl) (P3HT) on the photovoltaic performance and optical properties was investigated. Mechanism of the photovoltaic properties of the conventional and inverted solar cells will be discussed by the experimental results.

  7. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    SciTech Connect (OSTI)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Erickson, Michael Jason

    2015-04-21

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the salt in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.

  8. Investigation of Oxidative Degradation in Polymers Using (17)O NMR Spectroscopy

    SciTech Connect (OSTI)

    Alam, Todd M.; Celina, Mathew; Assink, Roger A.; Clough, Roger L.; Gillen, Kenneth T.; Wheeler David R.

    1999-07-20

    The thermal oxidation of pentacontane (C{sub 50}H{sub 102}), and of the homopolymer polyisoprene, has been investigated using {sup 17}O NMR spectroscopy. By performing the oxidation using {sup 17}O labeled O{sub 2} gas, it is possible to easily identify degradation products, even at relatively low concentrations. It is demonstrated that details of the degradation mechanism can be obtained from analysis of the {sup 17}O NMR spectra as a function of total oxidation. Pentacontane reveals the widest variety of reaction products, and exhibits changes in the relative product distributions with increasing O{sub 2} consumption. At low levels of oxygen incorporation, peroxides are the major oxidation product, while at later stages of degradation these species are replaced by increasing concentrations of ketones, alcohols, carboxylic acids and esters. Analyzing the product distribution can help in identification of the different free-radical decomposition pathways of hydroperoxides, including recombination, proton abstraction and chain scission, as well as secondary reactions. The {sup 17}O NMR spectra of thermally oxidized polyisoprene reveal fewer degradation functionalities, but exhibit an increased complexity in the type of observed degradation species due to structural features such as unsaturation and methyl branching. Alcohols and ethers formed from hydrogen abstraction and free radical termination.

  9. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    SciTech Connect (OSTI)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  10. Oligomeric Dithienopyrrole-Thienopyrroledione (DTP-TPD) Donor-Acceptor Copolymer for Organic Photovoltaics

    SciTech Connect (OSTI)

    Hammond, S. R.; Braunecker, W.; Garcia, A.; Larsen, R.; Owczarczyk, Z.; Olson, D.; Ginley, D.

    2011-01-01

    A new donor-acceptor copolymer system based upon a dithienopyrrole (DTP) donor moiety and a thienopyrrolodione (TPD) accepting moiety has been designed and synthesized for organic photovoltaic (OPV) applications. The TPD accepting moiety has recently gained significant attention in the OPV community and is being incorporated into a number of different polymer systems. In contrast, the DTP donor moiety has received only limited attention, likely due in part to synthetic difficulties relating to the monomer. In our hands, the bis(trimethyltin)-DTP monomer was indelibly contaminated with {approx}5% of the mono-destannylated DTP, which limited the Stille polymerization with the dibromo-TPD monomer (>;99% pure) to produce material with M{sub n} {approx} 4130 g/mol (PDI = 1.10), corresponding to around eight repeat units. Despite this limitation, UV-visible absorption spectroscopy demonstrates strong absorption for this material with a band gap of {approx}1.6 eV. Cyclic voltammetry indicates a highest occupied molecular orbital (HOMO) energy level of -5.3 eV, which is much lower than calculations predicted. Initial bulk heterojunction OPV devices fabricated with the fullerene acceptor phenyl C61 butyric acid methyl ester (PCBM) exhibit V{sub oc} {approx} 700 mV, which supports the deep HOMO value obtained from CV. These results suggest the promise of this copolymer system.

  11. P3HT/PCBM Bulk Heterojunction Organic Photovoltaics. Correlating Efficiency and Morphology

    SciTech Connect (OSTI)

    Chen, Dian; Nakahara, Atsuhiro; Wei, Dongguang; Nordlund, Dennis; Russell, Thomas P.

    2010-12-21

    Controlling thin film morphology is key in optimizing the efficiency of polymer-based photovoltaic (PV) devices. We show that morphology and interfacial behavior of the multicomponent active layers confined between electrodes are strongly influenced by the preparation conditions. Here, we provide detailed descriptions of the morphologies and interfacial behavior in thin film mixtures of regioregular poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM), a typical active layer in a polymer-based PV device, in contact with an anode layer of PEDOT-PSS and either unconfined or confined by an Al cathode during thermal treatment. Small angle neutron scattering and electron microscopy show that a nanoscopic, bicontinuous morphology develops within seconds of annealing at 150 C and coarsens slightly with further annealing. P3HT and PCBM are shown to be highly miscible, to exhibit a rapid, unusual interdiffusion, and to display a preferential segregation of one component to the electrode interfaces. The ultimate morphology is related to device efficiency.

  12. Performance limits of plasmon-enhanced organic photovoltaics

    SciTech Connect (OSTI)

    Karatay, Durmus U.; Ginger, David S.; Salvador, Michael; Yao, Kai; Jen, Alex K.-Y.

    2014-07-21

    We use a combination of experiment and modeling to explore the promise and limitations of using plasmon-resonant metal nanoparticles to enhance the device performance of organic photovoltaics (OPVs). We focus on optical properties typical of the current generation of low-bandgap donor polymers blended with the fullerene (6,6)-phenyl C{sub 71}-butyric acid methyl ester (PC{sub 71}BM) and use the polymer poly(indacenodithiophene-co-phenanthro[9,10-b]quinoxaline) (PIDT-PhanQ) as our test case. We model the optical properties and performance of these devices both in the presence and absence of a variety of colloidal silver nanoparticles. We show that for these materials, device performance is sensitive to the relative z-position and the density of nanoparticles inside the active layer. Using conservative estimates of the internal quantum efficiency for the PIDT-PhanQ/PC{sub 71}BM blend, we calculate that optimally placed silver nanoparticles could yield an enhancement in short-circuit current density of over 31% when used with???80-nm-thick active layers, resulting in an absolute increase in power conversion efficiency of up to ?2% for the device based on optical engineering.

  13. Overcoming Degradation in Organic Photovoltaics: Illuminating the Role of Fullerene Functionalization

    SciTech Connect (OSTI)

    Lloyd, M. T.; Garcia, A.; Berry, J. J.; Reese, M. O.; Ginley, D. S.; Olson, D. C.

    2011-01-01

    Photobleaching rates are investigated for thin films of poly(3-hexylthiophene) (P3HT) blends employing either an indene-C{sub 60} bisadduct (ICBA) or [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) as the electron acceptor. Relative to the bisindene, PCBM significantly enhances resistance to photobleaching of the P3HT donor polymer. We tentatively attribute a decrease in the charge transfer rate as the mechanism responsible for the more rapid photobleaching in the sample containing the bisindene adduct. In order to elucidate the influence of the photobleaching rate on the initial performance of unencapsulated devices, we also monitored the time-dependent behavior for P3HT:fullerene inverted devices. Under conditions of constant illumination, we observe essentially identical behavior in device performance parameters regardless of the energy levels of the electron acceptor. We conclude that over the time frame measured for these devices, the primary degradation mechanism of the active layer is independent of the electron acceptor, despite the enhanced tolerance to photobleaching it may impart to the donor material.

  14. Genotypic and phenotypic characterization of aerosolized bacteria collected from African dust events

    SciTech Connect (OSTI)

    Wilson, Christina A.; Brigmon, Robin L.; Yeager, Chris; Smith, Garriet W.; Polson, Shawn W.

    2013-07-31

    Twenty-one bacteria were isolated and characterized from air samples collected in Africa and the Caribbean by the United States Geological Survey (USGS). Isolates were selected based on preliminary characterization as possible pathogens. Identification of the bacterial isolates was 25 achieved using 16S rRNA gene sequence analysis, fatty acid methyl esters (FAMEs) profiling, the BIOLOG Microlog® System (carbon substrate assay), and repetitive extragenic palindromic (REP)-PCR analysis. The majority of isolates (18/21) were identified as species of the genus Bacillus. Three isolates were classified within the Bacillus cereus senso lato group, which includes Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus strains. One isolate was identified as a Staphylococcus sp., 30 most closely related to species (i.e Staphylococcus kloosii, Staphylococcus warneri) that are commonly associated with human or animal skin, but can also act as opportunistic pathogen. Another isolate was tentatively identified as Tsukamurella inchonensis, a known respiratory pathogen, and was resistant to the ten antibiotics tested including vancomycin.

  15. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  16. High electron mobility ZnO film for high-performance inverted polymer solar cells

    SciTech Connect (OSTI)

    Lv, Peiwen; Chen, Shan-Ci; Zheng, Qingdong; Huang, Feng Ding, Kai

    2015-04-20

    High-quality ZnO films (ZnO-MS) are prepared via magnetron sputtering deposition with a high mobility of about 2 cm{sup 2}/(V·s) and are used as electron transport layer for inverted polymer solar cells (PSCs) with polymer poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′] dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate]:[6,6]-phenyl C71-butyric acid methyl ester as the active layer. A significant improvement of J{sub SC}, about 20% enhancement in contrast to the devices built on sol-gel derived ZnO film (ZnO-Sol), is found in the ZnO-MS based device. High performance ZnO-MS based PSCs exhibit power conversion efficiency (PCE) up to 8.55%, which is much better than the device based on ZnO-Sol (PCE = 7.78%). Further research on cathode materials is promising to achieve higher performance.

  17. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    SciTech Connect (OSTI)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; Toops, Todd J.; Daw, C. Stuart; Sun, Chenxi; Lapuerta, Magin; Agudelo, John

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and mediumhigh (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEM imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.

  18. Quality Parameters and Chemical Analysis for Biodiesel Produced in the United States in 2011

    SciTech Connect (OSTI)

    Alleman, T. L.; Fouts, L.; Chupka, G.

    2013-03-01

    Samples of biodiesel (B100) from producers and terminals in 2011were tested for critical properties: free and total glycerin, flash point, cloud point, oxidation stability, cold soak filterability, and metals. Failure rates for cold soak filterability and oxidation stability were below 5%. One sample failed flash point due to excess methanol. One sample failed oxidation stability and metal content. Overall, 95% of the samples from this survey met biodiesel quality specification ASTM D6751. In 2007, a sampling of B100 from production facilities showed that nearly 90% met D6751. In samples meeting D6751, calcium was found above the method detection limit in nearly half the samples. Feedstock analysis revealed half the biodiesel was produced from soy and half was from mixed feedstocks. The saturated fatty acid methyl ester concentration of the B100 was compared to the saturated monoglyceride concentration as a percent of total monoglyceride. The real-world correlation of these properties was very good. The results of liquid chromatograph measurement of monoglycerides were compared to ASTM D6751. Agreement between the two methods was good, particularly for total monoglycerides and unsaturated monoglycerides. Because only very low levels of saturated monoglycerides measured, the two methods had more variability, but the correlation was still acceptable.

  19. Genotypic and phenotypic characterization of aerosolized bacteria collected from African dust events

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wilson, Christina A.; Brigmon, Robin L.; Yeager, Chris; Smith, Garriet W.; Polson, Shawn W.

    2013-07-31

    Twenty-one bacteria were isolated and characterized from air samples collected in Africa and the Caribbean by the United States Geological Survey (USGS). Isolates were selected based on preliminary characterization as possible pathogens. Identification of the bacterial isolates was 25 achieved using 16S rRNA gene sequence analysis, fatty acid methyl esters (FAMEs) profiling, the BIOLOG Microlog® System (carbon substrate assay), and repetitive extragenic palindromic (REP)-PCR analysis. The majority of isolates (18/21) were identified as species of the genus Bacillus. Three isolates were classified within the Bacillus cereus senso lato group, which includes Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus strains. Onemore » isolate was identified as a Staphylococcus sp., 30 most closely related to species (i.e Staphylococcus kloosii, Staphylococcus warneri) that are commonly associated with human or animal skin, but can also act as opportunistic pathogen. Another isolate was tentatively identified as Tsukamurella inchonensis, a known respiratory pathogen, and was resistant to the ten antibiotics tested including vancomycin.« less

  20. Methods of making organic compounds by metathesis

    DOE Patents [OSTI]

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  1. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOE Patents [OSTI]

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2010-02-16

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group.

  2. Crystal structure of 4-[benzylideneamino]-3-thiophen-2-yl-methyl-4,5-dihydro-1H-[1,2,4] triazole-5-one

    SciTech Connect (OSTI)

    Tanak, H.

    2013-12-15

    The crystal structure of the title compound C{sub 14}H{sub 12}N{sub 4}OS was determined by the X-ray diffraction method. The compound crystallizes in the triclinic space group P-bar1 with Z = 2. The molecule is not planar: the dihedral angle between the triazole and thiophene rings is 73.98(2)°, and that between the triazole and benzene rings is 4.05(2)°. The thiophene ring is disordered over two positions, which are approximately parallel and oppositely oriented. The major component refined to a site-occupancy factor of 0.573(3). An intramolecular C-H...O hydrogen bond generates an S(6) ring motif. In the crystal, molecules are linked together by two pairs of N-H...O interactions (to the same O atom as acceptor), forming inversion dimers. The crystal packing is also stabilized by π-π interactions [centroid-centroid distance is 3.978 Å].

  3. L-[METHYL-{sup 11}C] Methionine Positron Emission Tomography for Target Delineation in Malignant Gliomas: Impact on Results of Carbon Ion Radiotherapy

    SciTech Connect (OSTI)

    Mahasittiwat, Pawinee; Mizoe, Jun-etsu Hasegawa, Azusa; Ishikawa, Hiroyuki; Yoshikawa, Kyosan; Mizuno, Hideyuki; Yanagi, Takeshi; Takagi, Ryou D.D.S.; Pattaranutaporn, Pittayapoom; Tsujii, Hirohiko

    2008-02-01

    Purpose: To assess the importance of {sup 11}C-methionine (MET)-positron emission tomography (PET) for clinical target volume (CTV) delineation. Methods and Materials: This retrospective study analyzed 16 patients with malignant glioma (4 patients, anaplastic astrocytoma; 12 patients, glioblastoma multiforme) treated with surgery and carbon ion radiotherapy from April 2002 to Nov 2005. The MET-PET target volume was compared with gross tumor volume and CTV, defined by using computed tomography/magnetic resonance imaging (MRI). Correlations with treatment results were evaluated between positive and negative extended volumes (EVs) of the MET-PET target for CTV. Results: Mean volumes of the MET-PET targets, CTV1 (defined by means of high-intensity volume on T2-weighted MRI), and CTV2 (defined by means of contrast-enhancement volume on T1-weighted MRI) were 6.35, 264.7, and 117.7 cm{sup 3}, respectively. Mean EVs of MET-PET targets for CTV1 and CTV2 were 0.6 and 2.2 cm{sup 3}, respectively. The MET-PET target volumes were included in CTV1 and CTV2 in 13 (81.3%) and 11 patients (68.8%), respectively. Patients with a negative EV for CTV1 had significantly greater survival rate (p = 0.0069), regional control (p = 0.0047), and distant control time (p = 0.0267) than those with a positive EV. Distant control time also was better in patients with a negative EV for CTV2 than those with a positive EV (p = 0.0401). Conclusions: For patients with malignant gliomas, MET-PET has a possibility to be a predictor of outcome in carbon ion radiotherapy. Direct use of MET-PET fused to planning computed tomography will be useful and yield favorable results for the therapy.

  4. Optimization of esterification of oleic acid and trimethylolpropane (TMP) and pentaerythritol (PE)

    SciTech Connect (OSTI)

    Mahmud, Hamizah Ammarah; Salimon, Jumat

    2014-09-03

    Vegetable oil (VO) is the most potential alternative to replace mineral oil for lubricant due to better lubricating properties and great physicochemical properties. Chemical modification has to be done to overcome low temperature performance and low oxidation instability due to the presence of ?-hydrogen atoms of glycerol molecule. The optimization of esterification of oleic acid and polyhydric alcohol with sulfuric acid catalyst was carried out to find the optimum conditions with the highest yield. Reeaction variables such as; molar ratio, temperature, duration and catalyst concentration. Two types of polyhydric alcohol have been used; TMP and PE. The optimum results showed oleic acid successfully converted 91.2% ester TMP and 92.7% ester PE at duration: 5 hours (Ester TMP), 6 hours (Ester PE); temperature: 150C (ester TMP), 180C (Ester PE); catalyst concentration: 1.5% (w/w); and mol ratio: 3.9:1 (ester TMP), 4.9:1 (ester PE). From the data obtained, mole ratio showed most influenced factors to the increasing yields of ester conversions.. The TMP/PE ester was confirmed using gas chromatography (GC-FID), Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR)

  5. Modeling optical properties of silicon clusters by first principles: From a few atoms to large nanocrystals

    SciTech Connect (OSTI)

    Nurbawono, Argo; Liu, Shuanglong; Zhang, Chun

    2015-04-21

    Time dependent density functional tight binding (TDDFTB) method is implemented with sparse matrix techniques and improved parallelization algorithms. The method is employed to calculate the optical properties of various Si nanocrystals (NCs). The calculated light absorption spectra of small Si NCs from TDDFTB were found to be comparable with many body perturbation methods utilizing planewave basis sets. For large Si NCs (more than a thousand atoms) that are beyond the reach of conventional approaches, the TDDFTB method is able to produce reasonable results that are consistent with prior experiments. We also employed the method to study the effects of surface chemistry on the optical properties of large Si NCs. We learned that the optical properties of Si NCs can be manipulated with small molecule passivations such as methyl, hydroxyl, amino, and fluorine. In general, the shifts and profiles in the absorption spectra can be tuned with suitably chosen passivants.

  6. Global prevalence and distribution of genes and microorganisms involved in

    Office of Scientific and Technical Information (OSTI)

    mercury methylation (Journal Article) | DOE PAGES Global prevalence and distribution of genes and microorganisms involved in mercury methylation « Prev Next » Title: Global prevalence and distribution of genes and microorganisms involved in mercury methylation Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in

  7. Petroleum Supply Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    ... amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ... amyl methyl ether (TAME), tertiary butyl alcohol (TBA), and other aliphatic alcohols and ...

  8. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    SciTech Connect (OSTI)

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-06-14

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets [I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas [2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study [3] has been expanded with additional bacteria and fungi. These spectra were acquired on a Finnigan Magnum ion trap using helium buffer gas. A new database of Cl spectra of microorganisms is planned using the CBMS Block II instrument and air as the buffer gas. Using the current database, the fatty acid composition of the organisms was compared using the percentage of the ion current attributable to fatty acids. The data presented suggest promising rules for discrimination of these organisms. Strain, growth media and vegetative state do contribute to some of the distributions observed in the data. However, the data distributions observed in the current study only reflect our experience to date and do not fully represent the variability that might be expected in practice: Acquisition of MS/ MS spectra has begun (using He and air buffer gas) of the protonated molecular ion of a variety of fatty acids and for a number of ions nominally assigned as fatty acids from microorganisms. These spectra will be used to help verify fatty acid .

  9. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect (OSTI)

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  10. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    SciTech Connect (OSTI)

    Kail, Brian W.; Link, Dirk D.; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120C for up to 2 h. Method validation was provided using gas chromatographyflame ionization detection, gas chromatographymass spectrometry, and liquid chromatographymass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50C with a 2.1:1 HCl to fatty acid ratio) with 97.6 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  11. The hyperthermia mediated by 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy) is sensitive to sex differences

    SciTech Connect (OSTI)

    Wyeth, Richard P.; Mills, Edward M.; Ullman, Alison; Kenaston, M. Alexander; Burwell, Johanna; Sprague, Jon E.

    2009-02-15

    Female subjects have been reported to be less sensitive to the hyperthermic effects of 3,4-methylenedioxymethamine (MDMA) than males. Studies were designed to examine the cellular mechanisms involved in these sex sensitive differences. Gonadectomized female and male rats were treated with a 200 {mu}g 100 {mu}L{sup -1} of estrogen or 100 {mu}g 100 {mu}L{sup -1} of testosterone respectively every 5 days for a total of three doses. Rats were then challenged with either saline or MDMA (20 mg kg{sup -1}, sc). Rats were then euthanized and aortas were constricted, in vitro, by serial phenylephrine (Phe) addition with or without the inhibitor of nitric oxide (NO) synthase, g-nitro-L-Arginine-Methyl Ester (L-NAME). Skeletal muscle uncoupling protein-3 (UCP3) expression was measured as well as plasma norepinephrine (NE) levels. All males but no females developed hyperthermia following MDMA treatment. The EC{sub 50} for Phe dose response curves increased only in the females treated with MDMA and T{sub max} for Phe increased following L-NAME only in the females. Both males and females demonstrated an increase in plasma NE following MDMA treatment; however, males displayed a significantly greater NE concentration. Skeletal muscle UCP3 expression was 80% less in females than in males. These results suggest that the inability of MDMA to induce a thermogenic response in the female subjects may be due to four sex-specific mechanisms: 1) Female subjects have reduced sympathetic activation following MDMA challenge; 2) Female vasculature is less sensitive to {alpha}{sub 1}-AR stimulation following MDMA challenge; 3) Female vasculature has an increased sensitivity to NO; 4) UCP3 expression in skeletal muscle is less in females.

  12. Certification of alternative aviation fuels and blend components

    SciTech Connect (OSTI)

    Wilson III, George R. ); Edwards, Tim; Corporan, Edwin ); Freerks, Robert L. )

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

  13. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  14. Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC 70BM blend

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hansson, Rickard; Ericsson, Leif K. E.; Holmes, Natalie P.; Rysz, Jakub; Opitz, Andreas; Campoy-Quiles, Mariano; Wang, Ergang; Barr, Matthew G.; Kilcoyne, A. L. David; Zhou, Xiaojing; et al

    2015-02-13

    The distribution of electron donor and acceptor in the active layer is known to strongly influence the electrical performance of polymer solar cells for most of the high performance polymer:fullerene systems. The formulation of the solution from which the active layer is spincoated plays an important role in the quest for morphology control. We have studied how the choice of solvent and the use of small amounts of a low vapour pressure additive in the coating solution influence the film morphology and the solar cell performance for blends of poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1) and [6,6]-phenyl C71-butyric acid methyl ester (PC70BM). We havemore » investigated the lateral morphology using atomic force microscopy (AFM) and scanning transmission X-ray microscopy (STXM), the vertical morphology using dynamic secondary ion mass spectrometry (d-SIMS) and variable-angle spectroscopic ellipsometry (VASE), and the surface composition using near-edge X-ray absorption fine structure (NEXAFS). The lateral phase-separated domains observed in films spincoated from single solvents, increase in size with increasing solvent vapour pressure and decreasing PC70BM solubility, but are not observed when 1-chloronaphthalene (CN) is added. A strongly TQ1-enriched surface layer is formed in all TQ1:PC70BM blend films and rationalized by surface energy differences. The photocurrent and power conversion efficiency strongly increased upon the addition of CN, while the leakage current decreased by one to two orders of magnitude. The higher photocurrent correlates with the finer lateral structure and stronger TQ1-enrichment at the interface with the electron-collecting electrode. This indicates that the charge transport and collection are not hindered by this polymer-enriched surface layer. Neither the open-circuit voltage nor the series resistance of the devices are sensitive to the differences in morphology.« less

  15. Understanding the role of histidine in the GHSxG acyltransferase...

    Office of Scientific and Technical Information (OSTI)

    ... Subject: 59 BASIC BIOLOGICAL SCIENCES hydrolysis; histidine; sequence motif analysis; hydrogen bonding; serine; alanine; esters; fatty acids Word Cloud More Like This Free Publicly ...

  16. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (1) crystallography (1) enzymes (1) esterification (1) esters (1) genes (1) kinetics (1) ... phosphinates containing two P-C bonds or esterification of the phosphonate group. ...

  17. Structural Interactions within Lithium Salt Solvates: Acyclic...

    Office of Scientific and Technical Information (OSTI)

    Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Citation Details In-Document Search Title: Structural Interactions within Lithium Salt Solvates: ...

  18. Senegal-UNEP Risoe-Technology Needs Assessment Program | Open...

    Open Energy Info (EERE)

    Risoe-Technology Needs Assessment Program Jump to: navigation, search Name Senegal-UNEP Risoe-Technology Needs Assessment Program AgencyCompany Organization --Sean Esterly (talk)...

  19. Structural Interactions within Lithium Salt Solvates: Cyclic...

    Office of Scientific and Technical Information (OSTI)

    and ester solvents coordinate Li+ cations in electrolyte solutions for lithium batteries. One approach to gleaning significant insight into these interactions is to examine...

  20. Crystallization of Enantiomerically Pure Proteins from Quasi...

    Office of Scientific and Technical Information (OSTI)

    Crystallization of Enantiomerically Pure Proteins from Quasi-Racemic Mixtures: Structure Determination by X-Ray Diffraction of Isotope-Labeled Ester Insulin and Human Insulin ...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    sei layer (2) solvation (2) atomic and molecular physics (1) batteries (1) carbonic acid esters lithium batteries (1) coordination (1) dendrite-free (1) ec (1) electrochemical ...

  2. Host cells and methods for producing isoprenyl alkanoates (Patent...

    Office of Scientific and Technical Information (OSTI)

    the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthasediacylglycerol acyltransferase (WSDGAT) ...

  3. Mississippi State Biodiesel Production Project

    SciTech Connect (OSTI)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the disadvantages of homogeneous transesterification, such as the presence of salts in the glycerine phase and the continuous lost of catalyst. A maximum soy biodiesel yield of 85% was obtained by BaO in 14 minutes, whereas, PbO, MnO2, CaO and MgO gave a maximum yields of 84%, 80%, 78% and 66% respectively at 215°C. The overall reaction order of PbO, MnO2, BaO, CaO and MgO was found to be 1, 1, 3, 1 and 1 respectively. The highest rate constant was observed for BaO, which was 0.0085 g2.mole-2.min-1. The performance of biodiesel in terms of type (e.g., NOx, and CO) and quantity of emissions was tested using soy biodiesel, blends of biodiesel and ethanol, and differently aged diesel engines. It was determined that saturated methyl esters, and relatively high oxygen content in the fuel, caused by addition of ethanol, increased the NOx emissions from new diesel engines compared to petroleum diesel.

  4. Intermediate-Valence Tautomerism in Decamethylytterbocene Complexes of

    Office of Scientific and Technical Information (OSTI)

    Methyl-Substituted Bipyridines (Journal Article) | SciTech Connect Intermediate-Valence Tautomerism in Decamethylytterbocene Complexes of Methyl-Substituted Bipyridines Citation Details In-Document Search Title: Intermediate-Valence Tautomerism in Decamethylytterbocene Complexes of Methyl-Substituted Bipyridines Multiconfigurational, intermediate valent ground states are established in several methyl-substituted bipyridine complexes of bispentamethylcyclopentadienylytterbium, Cp*{sub 2}

  5. EA-1157: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas

  6. EA-1157: Final Environmental Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas

  7. Supply Impacts of an MTBE Ban

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes the supply impacts of removing methyl tertiary butyl ether (MTBE) from gasoline.

  8. Water-soluble polymers and compositions thereof

    DOE Patents [OSTI]

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    2002-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  9. Water-soluble polymers and compositions thereof

    DOE Patents [OSTI]

    Smith, Barbara F.; Robison, Thomas W.; Gohdes, Joel W.

    1999-01-01

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  10. Water-soluble polymers and compositions thereof

    DOE Patents [OSTI]

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  11. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or other industries are interested in lignin as a potential fuel or feedstock but need more information on properties.

  12. Variable dimensionality in the uranium fluoride/2-methyl-piperazine system: Synthesis and structures of UFO-5, -6, and -7; Zero-, one-, and two-dimensional materials with unprecedented topologies

    SciTech Connect (OSTI)

    Francis, R.J.; Halasyamani, P.S.; Bee, J.S.; O'Hare, D.

    1999-02-24

    Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-, and two-dimensional materials.

  13. Understanding the Mechanism of Solvent-Mediated Adhesion of Vacuum Deposited Au and Pt Thin Films onto PMMA Substrates

    SciTech Connect (OSTI)

    Mo, Alan K [ORNL; Brown, Victoria L. [James Madison University; Rugg, Brandon K. [James Madison University; Devore, Prof. Thomas C. [James Madison University; Meyer III, Harry M [ORNL; Hu, Dr. Xiaofeng [James Madison University; Hughes, Prof. W. Christopher [James Madison University; Augustine, Prof. Brian H. [James Madison University

    2012-01-01

    The adhesion of 100 nm thick electron-beam deposited Au and Pt and magnetron sputtered Au thin films onto poly(methyl methacrylate) (PMMA) substrates can be significantly enhanced to over 90% adhesion by either spin-casting or vapor-exposure to hydrohalocarbon solvents prior to metal deposition compared to samples that are either cleaned in isopropyl alcohol or pre-treated with a remote O2 plasma. X-ray photoelectron spectroscopy (XPS) and evolved gas Fourier transform infrared spectroscopy (EGA-FTIR) reveal the presence of residual halogenated solvent molecules at the PMMA surface which chemically activates the surface to produce a stable chemical interaction between the noble metal film and the PMMA. Density functional theory (DFT) calculations show that the halogenated solvent molecules preferentially form a Lewis acid-base adduct with the oxygen atoms in the ester group in PMMA which is consistent with the measured enthalpy of desorption of chloroform (CHCl3) on PMMA determined by EGA-FTIR to be 36 kJ mol-1. The DFT model also supports the experimentally observed change in the high resolution XPS O 1s peak at 533.77 eV after metallization attributed to a change in the local bonding environment of the bridging O in the PMMA ester group. DFT also predicts that the deposited metal atom (M) inserts into the C-X bond where X is the halogen atom on either CHCl3 or bromoform (CHBr3) to form a O M X interaction that is observed by a M-X bond in the high resolution XPS Cl 2p3/2 peak at 198.03 eV and Br 3p3/2 peak at 182.06 eV. A range of solvents with differing polarities for PMMA pre-treatment have been used and it is proposed that non-complexing solvents result in significant metal adhesion improvement. The Gutmann acceptor number can be used to predict the effectiveness of solvent treatment for noble metal adhesion. A model is proposed in which the bond energy of the C-X bond of the solvent must be sufficiently low so that the C-X bond can be cleaved to form the M-X bond. Supporting this model, a negative control of vapor phase exposure to fluoroform (CHF3) is shown to have no effect on noble metal adhesion due to the higher bond dissociation energy of the C-F bond compared to the C-Cl and C-Br bond energy. The surface activation of vapor-phase exposed PMMA surfaces is technologically significant for the fabrication of polymer microdevices requiring Au or Pt metallization.

  14. Hepatic lipid profiling of deer mice fed ethanol using {sup 1}H and {sup 31}P NMR spectroscopy: A dose-dependent subchronic study

    SciTech Connect (OSTI)

    Fernando, Harshica; Bhopale, Kamlesh K.; Boor, Paul J.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2012-11-01

    Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH{sup −}) vs. hepatic ADH-normal (ADH{sup +}) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179–188]. However, ADH{sup −} deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH{sup −} and ADH{sup +} deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton ({sup 1}H) and {sup 31}phosphorus ({sup 31}P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH{sup −} deer mouse model. Analysis of NMR data of ADH{sup −} deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH{sub 2}-) and FAMEs) were also mildly increased in ADH{sup −} deer mice fed 1 or 2% ethanol. Only small increases were observed for allylic and diallylic protons, FAMEs and unsaturations in ADH{sup +} deer mice fed 3.5% ethanol vs. pair-fed controls. PCA of NMR data showed increased clustering by gradual separation of ethanol-fed ADH{sup −} deer mice groups from their respective pair-fed control groups and corresponding ethanol-fed ADH{sup +} deer mice groups. Our data indicate that dose of ethanol and hepatic ADH deficiency are two key factors involved in initiation and progression of alcoholic fatty liver disease. Further studies on characterization of individual lipid entities and associated metabolic pathways altered in our deer mouse model after different durations of ethanol feeding could be important to delineate mechanism(s) and identify potential biomarker candidate(s) of early stage ALD. -- Highlights: ► Dose-dependent ethanol-induced fatty liver was studied in deer mouse model. ► A NMR-based lipidomic approach with histology and dry lipid weights was used. ► We used principal component analysis (PCA) to analyze the NMR lipidomic data. ► Dose-dependent clustering patterns by PCA were compared among the groups.

  15. A highly active manganese precatalyst for the hydrosilylation of ketones

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and esters A highly active manganese precatalyst for the hydrosilylation of ketones and esters Authors: Mukhopadhyay, T.K., Flores, M., Groy, T.L., and Trovitch, R.J. Title: A highly active manganese precatalyst for the hydrosilylation of ketones and esters Source: Journal of the American Chemical Society Year: 2014 Volume: 136 (3) Pages: 882-885 ABSTRACT: The reduction of (Ph2PPrPDI)MnCl2 allowed the preparation of the formally zerovalent complex, (Ph2PPrPDI)Mn, which features a

  16. Esterification of fermentation-derived acids via pervaporation

    DOE Patents [OSTI]

    Datta, R.; Tsai, S.P.

    1998-03-03

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture. 2 figs.

  17. Esterification of fermentation-derived acids via pervaporation

    DOE Patents [OSTI]

    Datta, Rathin; Tsai, Shih-Perng

    1998-01-01

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture.

  18. Final Technical Report "Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation" Grant number : DE-FG02-86ER13615

    SciTech Connect (OSTI)

    Wayland, B.B.

    2009-08-31

    Title: Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation Grant No. DE-FG02-86ER13615 PI: Wayland, B. B. (wayland@sas.upenn.edu) Abstract Development of new mechanistic strategies and catalyst materials for activation of CO, H2, CH4, C2H4, O2, and related substrates relevant to the conversion of carbon monoxide, alkanes, and alkenes to organic oxygenates are central objectives encompassed by this program. Design and synthesis of metal complexes that manifest reactivity patterns associated with potential pathways for the hydrogenation of carbon monoxide through metallo-formyl (M-CHO), dimetal ketone (M-C(O)-M), and dimetal dionyl (M-C(O)-C(O)-M) species is one major focus. Hydrocarbon oxidation using molecular oxygen is a central goal for methane activation and functionalization as well as regioselective oxidation of olefins. Discovery of new reactivity patterns and control of selectivity are pursued through designing new metal complexes and adjusting reaction conditions. Variation of reaction media promotes distinct reaction pathways that control both reaction rates and selectivities. Dimetalloradical diporphyrin complexes preorganize transition states for substrate reactions that involve two metal centers and manifest large rate increases over mono-metalloradical reactions of hydrogen, methane, and other small molecule substrates. Another broad goal and recurring theme of this program is to contribute to the thermodynamic database for a wide scope of organo-metal transformations in a range of reaction media. One of the most complete descriptions of equilibrium thermodynamics for organometallic reactions in water and methanol is emerging from the study of rhodium porphyrin substrate reactions in aqueous and alcoholic media. Water soluble group nine metalloporphyrins manifest remarkably versatile substrate reactivity in aqueous and alcoholic media which includes producing rhodium formyl (Rh-CHO) and hydroxy methyl (Rh-CH2OH) species. Exploratory directions for this program include expending new strategies for anti-Markovnikov addition of water, alcohols, and amines with olefins, developing catalytic reactions of CO to give formamides and formic esters, and evaluating the potential for coupling reactions of CO to produce organic building blocks.

  19. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures

    SciTech Connect (OSTI)

    Dutta, Arnab; DuBois, Daniel L.; Roberts, John A.; Shaw, Wendy J.

    2014-11-18

    Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site has led to the synthesis of amino acid derivatives, [Ni(PCy2NAmino acid2)2]2+ (CyAA), of [Ni(PR2NR'2)2]2+ complexes. It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation, a feature reminiscent of enzymes. The reversibility is achieved in acidic aqueous solutions, 0.25% H2/Ar, and elevated temperatures (tested up to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expected for a reversible process, the activity is dependent upon H2 and proton concentration. CyArg is significantly faster in both directions than the other two derivatives (~300 s-1 H2 production and 20 s-1 H2 oxidation; pH=1, 348 K). The significantly slower rates for CyArgOMe (35 s-1 production and 7 s-1 oxidation) compared to CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s-1 production and 4 s-1 oxidation under the same conditions) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that appended, outer coordination sphere amino acids work in synergy with the active site and can play an equally important role for synthetic molecular electrocatalysts as the protein scaffold does for redox active enzymes. This work was funded by the Office of Science Early Career Research Program through the US DOE, BES (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, BES (DLD, JASR). PNNL is operated by Battelle for the US DOE.

  20. Technical Note: Nanometric organic photovoltaic thin film detectors for dose monitoring in diagnostic x-ray imaging

    SciTech Connect (OSTI)

    Elshahat, Bassem; Gill, Hardeep Singh; Kumar, Jayant; Filipyev, Ilya; Zygmanski, Piotr; Shrestha, Suman; Karellas, Andrew; Hesser, Jrgen; Sajo, Erno

    2015-07-15

    Purpose: To fabricate organic photovoltaic (OPV) cells with nanometric active layers sensitive to ionizing radiation and measure their dosimetric characteristics in clinical x-ray beams in the diagnostic tube potential range of 60150 kVp. Methods: Experiments were designed to optimize the detectors x-ray response and find the best parameter combination by changing the active layer thickness and the area of the electrode. The OPV cell consisted of poly (3-hexylthiophene-2,5-diyl): [6,6]-phenyl C{sub 61} butyric acid methyl ester photoactive donor and acceptor semiconducting organic materials sandwiched between an aluminum electrode as an anode and an indium tin oxide electrode as a cathode. The authors measured the radiation-induced electric current at zero bias voltage in all fabricated OPV cells. Results: The net OPV current as a function of beam potential (kVp) was proportional to kVp{sup ?0.5} when normalized to x-ray tube output, which varies with kVp. Of the tested configurations, the best combination of parameters was 270 nm active layer thicknesses with 0.7 cm{sup 2} electrode area, which provided the highest signal per electrode area. For this cell, the measured current ranged from approximately 0.7 to 2.4 nA/cm{sup 2} for 60150 kVp, corresponding to about 0.09 nA0.06 nA/mGy air kerma, respectively. When compared to commercial amorphous silicon thin film photovoltaic cells irradiated under the same conditions, this represents 2.5 times greater sensitivity. An additional 40% signal enhancement was observed when a 1 mm layer of plastic scintillator was attached to the cells beam-facing side. Conclusions: Since both OPVs can be produced as flexible devices and they do not require external bias voltage, they open the possibility for use as thin film in vivo detectors for dose monitoring in diagnostic x-ray imaging.