National Library of Energy BETA

Sample records for methods x-ray diffraction

  1. Mapping Strain in Nanocrystalline Nitinol: an X-ray Diffraction Method (SULI paper)

    SciTech Connect (OSTI)

    Bibee, Mathew; /SLAC, SSRL

    2006-01-04

    Understanding the mechanical properties of biomedical devices is critical in predicting and preventing their failure in the body. Such knowledge is essential, for example, in the design of biomedical stents, which must undergo repeated strain over their ten year lifetimes without breaking. Computational models are used to predict mechanical response of a device, but these models are not complete; there are significant deviations from the predictions, especially when devices are subjected to repeated multi-axial loads. Improving these models requires comparisons with actual measurements of strained nitinol. Local measurements of the full strain tensor can be made using X-ray diffraction techniques, but they are currently limited to materials whose grain size is larger than the X-ray beam size or require several diffraction patterns produced by rotation of the sample. Nitinol stents are nanocrystalline, with grains smaller than any available X-ray beam. We present a method for measuring the local strain in a nanocrystalline material from a single X-ray diffraction pattern by extending current powder diffraction techniques. The components of the strain tensor are mapped onto a displacement ellipsoid, which is then reconstructed from diffraction data through Bragg's law and least-squares fitting. Using simulated diffraction data, we performed sensitivity tests to examine how the accuracy of the method depends on how much of the diffraction pattern is measured. We found that strain can be accurately calculated from measurements of at least three diffraction arcs of at least 20{sup o} in length. Thus we believe that our method is a viable approach to calculating strain provided a sufficient amount of diffraction pattern is recorded.

  2. Multilayer graphene stacks grown by different methods-thickness measurements by X-ray diffraction, Raman spectroscopy and optical transmission

    SciTech Connect (OSTI)

    Tokarczyk, M., E-mail: mateusz.tokarczyk@fuw.edu.pl; Kowalski, G.; K?pa, H.; Grodecki, K.; Drabi?ska, A. [University of Warsaw, Institute of Experimental Physics, Faculty of Physics (Poland); Strupi?ski, W. [Institute of Electronic Materials Technology (Poland)

    2013-12-15

    X-ray diffraction, Raman spectroscopy and Optical absorption estimates of the thickness of graphene multi layer stacks (number of graphene layers) are presented for three different growth techniques. The objective of this work was focused on comparison and reconciliation of the two already widely used methods for thickness estimates (Raman and Absorption) with the calibration of the X-ray method as far as Scherer constant K is concerned and X-ray based Wagner-Aqua extrapolation method.

  3. Precise orientation of single crystals by a simple x-ray diffraction rocking curve method

    SciTech Connect (OSTI)

    Doucette, L.D.; Pereira da Cunha, M.; Lad, R.J.

    2005-03-01

    A simple method has been developed for accurately measuring the crystallographic orientation of a single crystal boule, employing a conventional four-circle x-ray diffraction arrangement in the rocking curve mode which relaxes the need for precise instrument and/or reference alignment. By acquiring a total of eight rocking curve measurements at specific orientations about the specimen azimuth, the absolute miscut angle between a crystal surface and the desired crystallographic plane can be resolved to within {+-}0.01 deg.

  4. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOE Patents [OSTI]

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  5. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOE Patents [OSTI]

    Berman, Robert M. (Pittsburgh, PA); Cohen, Isadore (Pittsburgh, PA)

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  6. Method for characterizing mask defects using image reconstruction from X-ray diffraction patterns

    DOE Patents [OSTI]

    Hau-Riege, Stefan Peter (Fremont, CA)

    2007-05-01

    The invention applies techniques for image reconstruction from X-ray diffraction patterns on the three-dimensional imaging of defects in EUVL multilayer films. The reconstructed image gives information about the out-of-plane position and the diffraction strength of the defect. The positional information can be used to select the correct defect repair technique. This invention enables the fabrication of defect-free (since repaired) X-ray Mo--Si multilayer mirrors. Repairing Mo--Si multilayer-film defects on mask blanks is a key for the commercial success of EUVL. It is known that particles are added to the Mo--Si multilayer film during the fabrication process. There is a large effort to reduce this contamination, but results are not sufficient, and defects continue to be a major mask yield limiter. All suggested repair strategies need to know the out-of-plane position of the defects in the multilayer.

  7. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  8. Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method

    E-Print Network [OSTI]

    Duffy, Thomas S.

    Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794, USA 2 DepartmentAbsolute x-ray energy calibration over a wide energy range using a diffraction-based iterative;REVIEW OF SCIENTIFIC INSTRUMENTS 83, 063901 (2012) Absolute x-ray energy calibration over a wide energy

  9. X-ray phase-contrast methods

    SciTech Connect (OSTI)

    Lider, V. V., E-mail: lider@ns.crys.ras.ru; Kovalchuk, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)] [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-11-15

    This review is devoted to a comparative description of the methods for forming X-ray phase-contrast images of weakly absorbing (phase) objects. These include the crystal interferometer method, the Talbot interferometer method, diffraction-enhanced X-ray imaging, and the in-line method. The potential of their practical application in various fields of science and technology is discussed. The publications on the development and optimization of X-ray phase-contrast methods and the experimental study of phase objects are analyzed.

  10. Biological imaging by soft x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore »microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  11. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  12. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of...

  13. X-ray image reconstruction from a diffraction pattern alone

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Marchesini, Stefano

    X-ray diffraction pattern of a sample of 50 nm colloidal gold particles, recorded at a wavelength of 2.1 nm.

  14. In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high not well understood. In this Article, these changes in Li-S batteries are studied in operando by X

  15. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C. H.; et al

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore »resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  16. LINE BROADENING EFFECTS IN X-RAY DIFFRACTION ANALYSIS OF AIR PARTICULATES

    E-Print Network [OSTI]

    O'Connor, B.H.

    2012-01-01

    X-RAY POWDER DIFFRACTION ANALYSIS OF AIR PARTICULATES B. H.Ray Powder Diffraction Analysis Of Air Particulates* B.H. 0X-Ray Powder Diffraction Analysis of Air Particulates* B.H.

  17. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore »freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less

  18. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells

    SciTech Connect (OSTI)

    Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stephano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris

    2010-04-20

    X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the ?-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.

  19. Quantitative determination of mineral composition by powder x-ray diffraction

    DOE Patents [OSTI]

    Pawloski, G.A.

    1984-08-10

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  20. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; Grant, Thomas D.; Liu, Haiguang; James, Daniel; Nelson, Garrett; Subramanian, Ganesh; Aquila, Andrew; Hunter, Mark S.; et al

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  1. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instruments and Methods X-Ray Nanoimaging: Instruments and Methods Print To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

  2. Coherent x-ray diffraction imaging of paint pigmentparticles by scanning a phase plate modulator

    SciTech Connect (OSTI)

    Chu Y. S.; Chen B.; Zhang F.; Berenguer F.; Bean R.; Kewish C.; Vila-Comamala J.; Rodenburg J.; Robinson I.

    2011-10-19

    We have implemented a coherent x-ray diffraction imaging technique that scans a phase plate to modulate wave-fronts of the x-ray beam transmitted by samples. The method was applied to measure a decorative alkyd paint containing iron oxide red pigment particles. By employing an iterative algorithm for wave-front modulation phase retrieval, we obtained an image of the paint sample that shows the distribution of the pigment particles and is consistent with the result obtained from a transmission x-ray microscope. The technique has been experimentally proven to be a feasible coherent x-ray imaging method with about 120 nm spatial resolution and was shown to work well with industrially relevant specimens.

  3. X-ray diffraction study of crystalline barium titanate ceramics

    SciTech Connect (OSTI)

    Zali, Nurazila Mat; Mahmood, Che Seman; Mohamad, Siti Mariam; Foo, Choo Thye; Murshidi, Julie Adrianny

    2014-02-12

    In this study, BaTiO{sub 3} ceramics have been prepared via solid-state reaction method. The powders were calcined for 2 hours at different temperatures ranging from 600°C to 1200°C. Using X-ray diffraction with a Rietveld analysis, the phase formation and crystal structure of the BaTiO{sub 3} powders were studied. Change in crystallite size and tetragonality as a function of calcination temperature were also discussed. It has been found that the formation of pure perovskite phase of BaTiO{sub 3} began at calcination condition of 1000 °C for 2 hours. The crystal structure of BaTiO{sub 3} formed is in the tetragonal structure. The second phases of BaCO{sub 3} and TiO{sub 2} existed with calcination temperature below 1000 °C. Purity, crystallite size and tetragonality of BaTiO{sub 3} powders were found to increase with increasing calcination temperature.

  4. A laboratory based system for Laue micro x-ray diffraction

    E-Print Network [OSTI]

    Lynch, P. A.; Advanced Light Source

    2008-01-01

    A laboratory based system for Laue micro x-ray diffractionLawrence Berkeley National Laboratory, 1 Cyclotron Road,Berkeley, California 94720 A laboratory diffraction system

  5. X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: Energy ResourcessourceX-Ray Diffraction

  6. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind Power >X-Ray Diffraction

  7. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  8. Twisted X-rays: incoming waveforms yielding discrete diffraction patterns for helical structures

    E-Print Network [OSTI]

    Friesecke, Gero; Jüstel, Dominik

    2015-01-01

    Conventional X-ray methods use incoming plane waves and result in discrete diffraction patterns when scattered at crystals. Here we find, by a systematic method, incoming waveforms which exhibit discrete diffraction patterns when scattered at helical structures. As examples we present simulated diffraction patterns of carbon nanotubes and tobacco mosaic virus. The new incoming waveforms, which we call twisted waves due to their geometric shape, are found theoretically as closed-form solutions to Maxwell's equations. The theory of the ensuing diffraction patterns is developed in detail. A twisted analogue of the Von Laue condition is seen to hold, with the peak locations encoding the symmetry and the helix parameters, and the peak intensities indicating the electronic structure in the unit cell. If suitable twisted X-ray sources can in the future be realized experimentally, it appears from our mathematical results that they will provide a powerful tool for directly determining the detailed atomic structure of ...

  9. Variable-metric diffraction crystals for x-ray optics

    SciTech Connect (OSTI)

    Smither, R.K.; Fernandez, P.B. )

    1992-02-01

    A variable-metric (VM) crystal is one in which the spacing between the crystalline planes changes with position in the crystal. This variation can be either parallel to the crystalline planes or perpendicular to the crystalline planes of interest and can be produced by either introducing a thermal gradient in the crystal or by growing a crystal made of two or more elements and changing the relative percentages of the two elements as the crystal is grown. A series of experiments were performed in the laboratory to demonstrate the principle of the variable-metric crystal and its potential use in synchrotron beam lines. One of the most useful applications of the VM crystal is to increase the number of photons per unit bandwidth in a diffracted beam without losing any of the overall intensity. In a normal synchrotron beam line that uses a two-crystal monochromator, the bandwidth of the diffracted photon beam is determined by the vertical opening angle of the beam which is typically 0.10--0.30 mrad or 20--60 arcsec. When the VM crystal approach is applied, the bandwidth of the beam can be made as narrow as the rocking curve of the diffracting crystal, which is typically 0.005--0.050 mrad or 1--10 arcsec. Thus a very large increase of photons per unit bandwidth (or per unit energy) can be achieved through the use of VM crystals. When the VM principle is used with bent crystals, new kinds of x-ray optical elements can be generated that can focus and defocus x-ray beams much like simple lenses where the focal length of the lens can be changed to match its application. Thus both large magnifications and large demagnifications can be achieved as well as parallel beams with narrow bandwidths.

  10. Protein crystallography: From X-ray diffraction spots to a three dimensional image

    SciTech Connect (OSTI)

    Terwilliger, T.C.; Berendzen, J.

    1998-02-25

    Proteins are remarkable molecular machines that are essential for life. They can do many things ranging from the precise control of blood clotting to synthesizing complex organic compounds. Pictures of protein molecules are in high demand in biotechnology because they are important for applications such as drug discovery and for engineering enzymes for commercial use. X-ray crystallography is the most common method for determining the three-dimensional structures of protein molecules. When a crystal of a protein is placed in an X-ray beam, scattering of X-rays off the ordered molecules produces a diffraction pattern that can be measured on a position-sensitive CCD or image-plate detector. Protein crystals typically contain thousands of atoms and the diffraction data are generally measured to relatively low resolution. Consequently the direct methods approaches generally cannot be applied. Instead, if the crystal is modified by adding metal atoms at specific sites or by tuning the wavelength of the X-rays to cross an absorption edge of a metal atom in the crystal, then the information from these additional measurements is sufficient to first identify the /locations of the metal atoms. This information is then used along with the diffraction data to make a three-dimensional picture of electron densities. This picture can be used to determine the position of most or all of the atoms in the protein.

  11. Portable Parallel Beam X-Ray Diffraction System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than 50 pounds, and uses about 50 watts of power. The X-Beam uses polycapillary x-ray optics to collect x-rays over a large solid angle from a low-power x-ray source and to form...

  12. In-situ energy dispersive x-ray diffraction study of the growth of CuO nanowires by annealing method

    SciTech Connect (OSTI)

    Srivastava, Himanshu; Ganguli, Tapas; Deb, S. K.; Sant, Tushar; Poswal, H. K.; Sharma, Surinder M.

    2013-10-14

    The in-situ growth of CuO nanowires was studied by Energy Dispersive X-ray Diffraction (EDXRD) to observe the mechanism of growth. The study was carried out for comparison at two temperatures—at 500 °C, the optimum temperature of the nanowires growth, and at 300 °C just below the temperature range of the growth. The in situ observation revealed the successive oxidation of Cu foil to Cu{sub 2}O layer and finally to CuO layer. Further analysis showed the presence of a compressive stress in CuO layer due to interface at CuO and Cu{sub 2}O layers. The compressive stress was found to increase with the growth of the nanowires at 500 °C while it relaxed with the growth of CuO layer at 300 °C. The present results do not support the existing model of stress relaxation induced growth of nanowires. Based on the detailed Transmission Electron Microscope, Scanning Electron Microscope, and EDXRD results, a microstructure based growth model has been suggested.

  13. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Marchesini, Stefano; Miao, Huijie; Neiman, Aaron M.; Shapiro, David; Steinbrener, Jan; Stewart, Andrew; et al

    2009-11-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  14. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    SciTech Connect (OSTI)

    Huang Xiaojing; Nelson, Johanna; Lima, Enju; Miao, Huijie; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua J.; Jacobsen, Chris; Kirz, Janos; Marchesini, Stefano; Shapiro, David; Neiman, Aaron M.

    2009-11-06

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 deg. C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.

  15. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    SciTech Connect (OSTI)

    Haugh, M. J. Jacoby, K. D.; Wu, M.; Loisel, G. P.

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  16. Argon Adsorption on MCM-41 Mesoporous Crystal Studied by In Situ Synchrotron Powder X-ray Diffraction

    E-Print Network [OSTI]

    Muzzio, Fernando J.

    -701, Korea, ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale, New Jersey 08801 powder X-ray diffraction (XRD) measurements at SPring-8. The diffraction intensity data is analyzed. The proposed method of interpretation of XRD data allows one to calculate the density ratio between the silica

  17. Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 Theoretical Analysis of X-Ray Waveguide Using Fresnel Diffraction

    E-Print Network [OSTI]

    Jun, Kawai

    2010-01-01

    -Ray Waveguide Using Fresnel Diffraction Yusuke MORIKAWA and Jun KAWAI #12;#12;41 145 X Adv. X-Ray. Chem. Anal., Japan 41, pp.145-150 (2010) 606-8501 X Theoretical Analysis of X-Ray Waveguide Using Fresnel Diffraction symmetrical pattern. We regard it as a slit and calculated the Fresnel diffraction. We find

  18. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    SciTech Connect (OSTI)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  19. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind Power >X-RayX-RayX-Ray

  20. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0PhotosPresentationsWorld's largestX-RayX-RayX-RayX-Ray

  1. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-05-01

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  2. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-08-11

    Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (more »to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (« less

  3. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind Power >X-RayX-Ray

  4. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    E-Print Network [OSTI]

    Baker, Jessica L

    2010-01-01

    properties of Au thin films by X?ray diffraction and in in  polythiophene thin?film transistors.  Nat Mater 2006, copper  phthalocyanine thin films evaporated on amorphous 

  5. Lattice motions from THz phonon-polaritons measured with femtosecond x-ray diffraction

    SciTech Connect (OSTI)

    Schoenlein, Robert William; Cavalleri, A.; Wall, S.; Simpson, C.; Statz, E.; Ward, D.W.; Nelson, K.A.; Schoenlein, R.W.; Rini, M.; Dean, N.; Khalil, M.

    2006-08-07

    We use femtosecond x-ray diffraction to measure the coherent lattice displacements associated with the excitation and propagation of THz phonon polaritons in LiTaO3.

  6. X-Ray Diffraction Observations of a Charge-Density-Wave Order...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Diffraction Observations of a Charge-Density-Wave Order in Superconducting Ortho-II YBa2Cu3O6.54 Single Crystals in Zero Magnetic Field Citation Details In-Document Search...

  7. Synthesis and single crystal x-ray diffraction study of a Schiff...

    Office of Scientific and Technical Information (OSTI)

    single crystal x-ray diffraction study of a Schiff base derived from 4-acylpyrazolone and 2-aminophenol Re-direct Destination: The title compound, (Z)-1-(3-chlorophenyl)-41((2hydr...

  8. X-ray diffraction characterization of suspended structures forMEMS applications

    SciTech Connect (OSTI)

    Goudeau, P.; Tamura, N.; Lavelle, B.; Rigo, S.; Masri, T.; Bosseboeuf, A.; Sarnet, T.; Petit, J.-A.; Desmarres, J.-M.

    2005-09-15

    Mechanical stress control is becoming one of the major challenges for the future of micro and nanotechnologies. Micro scanning X-ray diffraction is one of the promising techniques that allows stress characterization in such complex structures at sub micron scales. Two types of MEMS structure have been studied: a bilayer cantilever composed of a gold film deposited on poly-silicon and a boron doped silicon bridge. X-ray diffraction results are discussed in view of numerical simulation experiments.

  9. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOE Patents [OSTI]

    Gibson, David M. (Voorheesville, NY); Gibson, Walter M. (Voorheesville, NY); Huang, Huapeng (Latham, NY)

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  10. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis: Advantages and Limitations

    SciTech Connect (OSTI)

    Frenkel, A.I.; Hanson, J.; Wang, Q.; Marinkovic, N.; Chen, J.G.; Barrio, L.; Si, R.; Lopez Camara, A.; Estrella, A.M.; Rodriguez, J.A.

    2011-08-05

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  11. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis:Advantages and Limitations

    SciTech Connect (OSTI)

    A Frenkel; Q Wang; N Marinkovic; J Chen; L Barrio; R Si; A Lopez Camara; A Estella; J Rodriquez; J Hanson

    2011-12-31

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  12. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium andSamplerBiological Imaging by Soft X-Ray

  13. Category:X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID RoadmapInformation UtilityWindX-Ray

  14. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind Power >X-Ray

  15. X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries

    SciTech Connect (OSTI)

    Sharkov, M. D., E-mail: mischar@mail.ioffe.ru; Boiko, M. E.; Bobyl, A. V.; Ershenko, E. M.; Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Zubavichus, Y. V. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2013-12-15

    Lithium iron phosphate LiFePO{sub 4} (triphylite) and lithium titanate Li{sub 4}Ti{sub 5}O{sub 12} are used as components of a number of active materials in modern rechargeable batteries. Samples of these materials are studied by X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy. Hypotheses about the phase composition of the analyzed samples are formulated.

  16. Signal-to-noise and radiation exposure considerations in conventional and diffraction x-ray microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Miao, Huijie; Steinbrener, Jan; Nelson, Johanna; Shapiro, David; Stewart, Andrew; Turner, Joshua; Jacobsen, Chris

    2009-01-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore »using fewer photons. As a result, this can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  17. Neutron and X-ray diffraction and empirical potential structure refinement modelling of magnesium stabilised amorphous calcium

    E-Print Network [OSTI]

    Benning, Liane G.

    Neutron and X-ray diffraction and empirical potential structure refinement modelling of magnesium online xxxx Keywords: Amorphous calcium carbonate; EPSR modelling; Neutron diffraction; X-ray diffraction Amorphous calcium carbonate (ACC) plays a key role in biomineralisation processes in sea organisms. Neutron

  18. Spectrometer for Hard X-Ray Free Electron Laser Based on Diffraction Focusing

    E-Print Network [OSTI]

    Kohn, V G; Vartanyants, I A

    2012-01-01

    X-ray free electron lasers (XFELs) generate sequences of ultra-short, spatially coherent pulses of x-ray radiation. We propose the diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of $\\Delta E/E\\approx 2\\times 10^{-6}$. This is much better than for most modern x-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from the metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. We show that the DFS can be used in a wide energy range from 5 keV to 20 keV.

  19. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    SciTech Connect (OSTI)

    Baker, Jessica L; Jimison, Leslie H; Mannsfeld, Stefan; Volkman, Steven; Yin, Shong; Subramanian, Vivek; Salleo, Alberto; Alivisatos, A Paul; Toney, Michael F

    2010-02-19

    As thin films become increasingly popular (for solar cells, LEDs, microelectronics, batteries), quantitative morphological information is needed to predict and optimize the film's electronic, optical and mechanical properties. This quantification can be obtained quickly and easily with X-ray diffraction using an area detector and synchrotron radiation in two simple geometries. In this paper, we describe a methodology for constructing complete pole figures for thin films with fiber texture (isotropic in-plane orientation). We demonstrate this technique on semicrystalline polymer films, self-assembled nanoparticle semiconductor films, and randomly-packed metallic nanoparticle films. This method can be immediately implemented to help understand the relationship between film processing and microstructure, enabling the development of better and less expensive electronic and optoelectronic devices.

  20. Systems and methods for detecting x-rays

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  1. Impulsive solvent heating probed by picosecond x-ray diffraction M. Cammarata

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    Impulsive solvent heating probed by picosecond x-ray diffraction M. Cammarata European Synchrotron, the solute-solvent cross term, and the solvent-only term. The last term is very sensitive to the thermodynamic state of the bulk solvent, which may change during a chemical reaction due to energy transfer from

  2. Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction

    E-Print Network [OSTI]

    Motta, Arthur T.

    Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction Olivier F fuel cladding and precipitate as brittle hydride particles, which may reduce cladding ductility. Dissolved hydrogen responds to temperature gradients, resulting in transport and precipitation into cold

  3. Diffraction crystals for sagittally focusing x-rays

    DOE Patents [OSTI]

    Ice, G.E.; Sparks, C.J. Jr.

    1982-06-07

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  4. Diffraction crystal for sagittally focusing x-rays

    DOE Patents [OSTI]

    Ice, Gene E. (Oak Ridge, TN); Sparks, Jr., Cullie J. (Oak Ridge, TN)

    1984-01-01

    The invention is a new type of diffraction crystal designed for sagittally focusing photons of various energies. The invention is based on the discovery that such focusing is not obtainable with conventional crystals because of distortion resulting from anticlastic curvature. The new crystal comprises a monocrystalline base having a front face contoured for sagittally focusing photons and a back face provided with rigid, upstanding, stiffening ribs restricting anticlastic curvature. When mounted in a suitable bending device, the reflecting face of the crystal can be adjusted to focus photons having any one of a range of energies.

  5. Synchrotron X-ray Diffraction Study of Microtubules Buckling and Bundling under Osmotic Stress: A Probe of Interprotofilament Interactions

    E-Print Network [OSTI]

    Weeks, Eric R.

    Synchrotron X-ray Diffraction Study of Microtubules Buckling and Bundling under Osmotic Stress the microtubule wall. Synchrotron x-ray diffraction of microtubules under increasing osmotic stress shows (SAXRD) study of MTs subjected to osmotic stress [5] and depletion attraction [6] due to added poly

  6. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect (OSTI)

    Emamzadah, Soheila [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Petty, Tom J. [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Biomedical Graduate Studies Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, PA 19104 (United States); De Almeida, Victor [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Nishimura, Taisuke [Department of Plant Biology, University of Geneva, CH-1205 Geneva (Switzerland); Joly, Jacques; Ferrer, Jean-Luc [Institut de Biologie Structurale J.-P. Ebel, CEA-CNRS-University J. Fourier, 38027 Grenoble CEDEX 1 (France); Halazonetis, Thanos D., E-mail: thanos.halazonetis@unige.ch [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland)

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  7. Apparatus for X-ray diffraction microscopy and tomography of cryo specimens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beetz, T.; Howells, M. R.; Jacobsen, C.; Kao, C. -C.; Kirz, J.; Lima, E.; Mentes, T. O.; Miao, H.; Sanchez-Hanke, C.; Sayre, D.; et al

    2005-03-14

    An apparatus for diffraction microscopy of biological and materials science specimens is described. In this system, a coherent soft X-ray beam is selected with a pinhole, and the illuminated specimen is followed by an adjustable beamstop and CCD camera to record diffraction data from non-crystalline specimens. In addition, a Fresnel zone plate can be inserted to allow for direct imaging. The system makes use of a cryogenic specimen holder with cryotransfer capabilities to allow frozen hydrated specimens to be loaded. The specimen can be tilted over a range of ± 80 ° degrees for three-dimensional imaging; this is done bymore »computer-controlled motors, enabling automated alignment of the specimen through a tilt series. The system is now in use for experiments in soft X-ray diffraction microscopy.« less

  8. Role of Molecular Structure on X-ray Diffraction in Thermotropic Uniaxial and Biaxial Nematic Liquid Crystal Phases

    SciTech Connect (OSTI)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena; Kumar, Satyendra

    2009-08-27

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution function is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.

  9. Role of Molecular Structure on X-ray Diffraction in Uniaxial and Biaxial Phases of Thermotropic Liquid Crystals

    SciTech Connect (OSTI)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena; Kumar, Satyendra

    2009-04-29

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution function is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.

  10. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine; Araci, Ismail Emre; Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Cohen, Aina E.; Soltis, S. Michael; Baxter, Elizabeth L.; Brewster, Aaron S.; et al

    2015-03-27

    X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (more »conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.« less

  11. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; et al

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore »X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less

  12. Realizing in-plane surface diffraction by x-ray multiple-beam diffraction with large incidence angle

    SciTech Connect (OSTI)

    Huang, Xian-Rong Gog, Thomas; Assoufid, Lahsen; Peng, Ru-Wen; Siddons, D. P.

    2014-11-03

    Based on rigorous dynamical-theory calculations, we demonstrate the principle of an x-ray multiple-beam diffraction (MBD) scheme that overcomes the long-lasting difficulties of high-resolution in-plane diffraction from crystal surfaces. This scheme only utilizes symmetric reflection geometry with large incident angles but activates the out-of-plane and in-plane diffraction processes simultaneously and separately in the continuous MBD planes. The in-plane diffraction is realized by detoured MBD, where the intermediate diffracted waves propagate parallel to the surface, which corresponds to an absolute Bragg surface diffraction configuration that is extremely sensitive to surface structures. A series of MBD diffraction and imaging techniques may be developed from this principle to study surface/interface (misfit) strains, lateral nanostructures, and phase transitions of a wide range of (pseudo)cubic crystal structures, including ultrathin epitaxial films and multilayers, quantum dots, strain-engineered semiconductor or (multi)ferroic materials, etc.

  13. Probing Martensitic Transition in Nitinol Wire: A Comparison of X-ray Diffraction and Other Techniques

    SciTech Connect (OSTI)

    Butler, J.; Tiernan, P.; Tofail, S. A. M.; Ghandi, A. A. [Materials and Surface Science Institute, University of Limerick, Limerick (Ireland)

    2011-01-17

    Martensitic to austenite transformation in Nitinol wire can be measured by a number of techniques such as XRD (X-Ray Diffraction), DSC (Differential Scanning Calorimetry), BFR (Bend and Free Recovery) and Vickers indentation recovery. A comparison of results from these varied characterisation techniques is reported here to obtain a greater understanding of the thermal-elastic-structural changes associated with martensitic transformation. The transformation temperatures measured by DSC were found to correspond well with the structural and mechanical information obtained from XRD, BFR and Vickers indent recovery methods. Indent recovery is a relatively new and accurate method of monitoring stress induced martensitic transformations in NiTi and is one of only a few methods of stress inducing martensitic transformation in large scale samples. It is especially useful for NiTi in the as-cast billet form, where tensile testing is impossible. BFR is uniquely popular in the NiTi wire manufacturing sector and is recognised as the most accurate method of measuring the transformation temperature. Here the material is stressed to a representative in-service stress level during the test. No other test uses the shape memory effect for measuring the transformation temperature of NiTi. The results show that the DSC thermogram and XRD diffractogram have a peak overlap which is a common occurrence in NiTi that has been extensively processed. The XRD method further explains the observations in the DSC thermogram and in combination they confirm the transformation temperature.

  14. Archaeometrical studies using X-ray fluorescence methods

    SciTech Connect (OSTI)

    Pauna, Catalina; Constantinescu, B.; Constantin, F.; Bugoi, R.; Stan, D.; Vasilescu, A. [National Institute of Nuclear Physics and Engineering, POB MG-6, 077125, Bucharest (Romania)

    2010-04-26

    Elemental analysis contributes to authentication (knowing the elemental composition and considering the information about the usual composition of the objects in different historical periods it can be established if the item is original or fake), provenance studies (minor and trace elements indicates ores origin and 'consequently' mines location), (relative) dating of archaeological objects (e.g. for painted items--the chemical recipes for pigments can offer information about the age of objects). The paper gives a general layout for the NIPNE Archaeometry Laboratory's applications using X-Ray Fluorescence (XRF), micro--Proton Induced X-Ray Emission (micro-PIXE), micro-Synchrotron Radiation Induced X-Ray Fluorescence (micro--SR-XRF) methods.

  15. Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading

    SciTech Connect (OSTI)

    Lambert, P. K.; Hustedt, C. J.; Zhao, M.; Ananiadis, A. G.; Hufnagel, T. C. [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vecchio, K. S. [Department of NanoEngineering, University of California San Diego, La Jolla, California 92093 (United States); Huskins, E. L. [Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Casem, D. T. [US Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005 (United States); Gruner, S. M. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853 (United States); Tate, M. W.; Philipp, H. T.; Purohit, P.; Weiss, J. T. [Department of Physics, Cornell University, Ithaca, New York 14853 (United States); Woll, A. R. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Kannan, V.; Ramesh, K. T. [Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kenesei, P.; Okasinski, J. S.; Almer, J. [X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-09-15

    We have developed two techniques for time-resolved x-ray diffraction from bulk polycrystalline materials during dynamic loading. In the first technique, we synchronize a fast detector with loading of samples at strain rates of ?10{sup 3}–10{sup 4} s{sup ?1} in a compression Kolsky bar (split Hopkinson pressure bar) apparatus to obtain in situ diffraction patterns with exposures as short as 70 ns. This approach employs moderate x-ray energies (10–20 keV) and is well suited to weakly absorbing materials such as magnesium alloys. The second technique is useful for more strongly absorbing materials, and uses high-energy x-rays (86 keV) and a fast shutter synchronized with the Kolsky bar to produce short (?40??s) pulses timed with the arrival of the strain pulse at the specimen, recording the diffraction pattern on a large-format amorphous silicon detector. For both techniques we present sample data demonstrating the ability of these techniques to characterize elastic strains and polycrystalline texture as a function of time during high-rate deformation.

  16. Investigation of surface acoustic wave fields in silicon crystals by x-ray diffraction: A dynamical theory approach

    E-Print Network [OSTI]

    Investigation of surface acoustic wave fields in silicon crystals by x-ray diffraction: A dynamical at different x-ray energies from a Si crystal subjected to a deformation produced by surface acoustic wave of the elastic model describing the acoustic wave fields inside the crystal. © 2005 American Institute of Physics

  17. X-ray diffraction in the pulsed laser heated diamond anvil cell

    SciTech Connect (OSTI)

    Goncharov, Alexander F.; Struzhkin, Viktor V.; Dalton, D. Allen; Prakapenka, Vitali B.; Kantor, Innokenty; Rivers, Mark L.

    2010-11-15

    We have developed in situ x-ray synchrotron diffraction measurements of samples heated by a pulsed laser in the diamond anvil cell at pressure up to 60 GPa. We used an electronically modulated 2-10 kHz repetition rate, 1064-1075 nm fiber laser with 1-100 {mu}s pulse width synchronized with a gated x-ray detector (Pilatus) and time-resolved radiometric temperature measurements. This enables the time domain measurements as a function of temperature in a microsecond time scale (averaged over many events, typically more than 10 000). X-ray diffraction data, temperature measurements, and finite element calculations with realistic geometric and thermochemical parameters show that in the present experimental configuration, samples 4 {mu}m thick can be continuously temperature monitored (up to 3000 K in our experiments) with the same level of axial and radial temperature uniformities as with continuous heating. We find that this novel technique offers a new and convenient way of fine tuning the maximum sample temperature by changing the pulse width of the laser. This delicate control, which may also prevent chemical reactivity and diffusion, enables accurate measurement of melting curves, phase changes, and thermal equations of state.

  18. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. We show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffraction patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.

  19. Automated high pressure cell for pressure jump x-ray diffraction

    SciTech Connect (OSTI)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  20. Time-, frequency-, and wavevector-resolved x-ray diffraction from single molecules

    SciTech Connect (OSTI)

    Bennett, Kochise, E-mail: kcbennet@uci.edu; Biggs, Jason D.; Zhang, Yu; Dorfman, Konstantin E.; Mukamel, Shaul, E-mail: smukamel@uci.edu [University of California, Irvine, California 92697-2025 (United States)

    2014-05-28

    Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broadband X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and proteins.

  1. Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus

    DOE Patents [OSTI]

    Green, L.A.; Heck, J.L. Jr.

    1985-04-23

    A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.

  2. Data preparation and evaluation techniques for x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J.; Jacobsen, Chris

    2010-01-01

    The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. In addition, we show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffractionmore »patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.« less

  3. X-RAY METHODS FOR THE CHEMICAL CHARACTERIZATION OF ATMOSPHERIC AEROSOLS

    E-Print Network [OSTI]

    Jaklevic, J.M.

    2010-01-01

    for the routine analysis of air pollution samples, itof x-ray methods to the analysis of air particulate samples.

  4. SCANNING ELECTRON MICROSCOPY AND X-RAY DIFFRACTION ANALYSIS OF TANK 18 SAMPLES

    SciTech Connect (OSTI)

    Hay, M.; O'Rourke, P.; Ajo, H.

    2012-03-08

    The F-Area Tank Farm (FTF) Performance Assessment (PA) utilizes waste speciation in the waste release model used in the FTF fate and transport modeling. The waste release modeling associated with the residual plutonium in Tank 18 has been identified as a primary contributor to the Tank 18 dose uncertainty. In order to reduce the uncertainty related to plutonium in Tank 18, a better understanding of the plutonium speciation in the Tank 18 waste (including the oxidation state and stoichiometry) is desired. Savannah River National Laboratory (SRNL) utilized Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) to analyze Tank 18 samples to provide information on the speciation of plutonium in the waste material. XRD analysis of the Tank 18 samples did not identify any plutonium mineral phases in the samples. These indicates the crystalline mineral phases of plutonium are below the detection limits of the XRD method or that the plutonium phase(s) lack long range order and are present as amorphous or microcrystalline solids. SEM analysis of the Tank 18 samples did locate particles containing plutonium. The plutonium was found as small particles, usually <1 {micro}m but ranging up to several micrometers in diameter, associated with particles of an iron matrix and at low concentration in other elemental matrices. This suggests the plutonium has an affinity for the iron matrix. Qualitatively, the particles of plutonium found in the SEM analysis do not appear to account for all of the plutonium in the sample based on concentrations determined from the chemical analysis of the Tank 18 samples. This suggests that plutonium is also distributed throughout the solids in low concentrations.

  5. Diffraction imaging for in-situ characterization of double-crystal x-ray monochromators

    E-Print Network [OSTI]

    Stoupin, Stanislav; Heald, Steve M; Brewe, Dale; Meron, Mati

    2015-01-01

    Imaging of the Bragg reflected x-ray beam is proposed and validated as an in-situ method for characterization of performance of double-crystal monochromators under the heat load of intense synchrotron radiation. A sequence of images is collected at different angular positions on the reflectivity curve of the second crystal and analyzed. The method provides rapid evaluation of the wavefront of the exit beam, which relates to local misorientation of the crystal planes along the beam footprint on the thermally distorted first crystal. The measured misorientation can be directly compared to results of finite element analysis. The imaging method offers an additional insight on the local intrinsic crystal quality over the footprint of the incident x-ray beam.

  6. Dynamic in-situ X-ray Diffraction of Catalyzed Alanates

    SciTech Connect (OSTI)

    Gross, K.J.; Sandrock, G.; Thomas, G.J.

    2000-11-01

    The discovery that hydrogen can be reversible absorbed and desorbed from NaAlH{sub 4} by the addition of catalysts has created an entirely new prospect for lightweight hydrogen storage. NaAlH{sub 4} releases hydrogen through the following set of decomposition reactions: NaAlH{sub 4} {r_arrow} 1/3({alpha}-Na{sub 3}AlH{sub 6}) + 2/3Al + H{sub 2} {r_arrow} NaH + Al + 3/2H{sub 2}. These decomposition reactions as well as the reverse recombination reactions were directly observed using time-resolved in-situ x-ray powder diffraction. These measurements were performed under conditions similar to those found in PEM fuel cell operations (hydrogen absorption: 50--70 C, 10--15 bar Hz, hydrogen resorption: 80--110 C, 5--100 mbar H{sub 2}). Catalyst doping was found to dramatically improve kinetics under these conditions. In this study, the alanate was doped with a catalyst by dry ball-milling NaAlH{sub 4} with 2 mol.% solid TiCl{sub 3}. X-ray diffraction clearly showed that TiCl{sub 3} reacts with NaAlH{sub 4} to form NaCl during the doping process. Partial desorption of NaAlH{sub 4} was even observed to occur during the catalyst doping process.

  7. Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures

    SciTech Connect (OSTI)

    Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian

    2014-12-06

    Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensions is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices.

  8. Coherent X-ray diffraction imaging and characterization of strain in silicon-on-insulator nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiong, Gang; Moutanabbir, Oussama; Reiche, Manfred; Harder, Ross; Robinson, Ian

    2014-12-06

    Coherent X-ray diffraction imaging (CDI) has emerged in the last decade as a promising high resolution lens-less imaging approach for the characterization of various samples. It has made significant technical progress through developments in source, algorithm and imaging methodologies thus enabling important scientific breakthroughs in a broad range of disciplines. In this report, we will introduce the principles of forward scattering CDI and Bragg geometry CDI (BCDI), with an emphasis on the latter. BCDI exploits the ultra-high sensitivity of the diffraction pattern to the distortions of crystalline lattice. Its ability of imaging strain on the nanometer scale in three dimensionsmore »is highly novel. We will present the latest progress on the application of BCDI in investigating the strain relaxation behavior in nanoscale patterned strained silicon-on-insulator (sSOI) materials, aiming to understand and engineer strain for the design and implementation of new generation semiconductor devices.« less

  9. High-pressure X-ray diffraction and X-ray emission studies on iron-bearing silicate perovskite under high pressures

    SciTech Connect (OSTI)

    Lin, Jung-Fu; Speciale, Sergio; Prakapenka, Vitali B.; Dera, Przemek; Lavina, Babara; Watson, Heather C.

    2010-06-22

    Iron-bearing silicate perovskite is believed to be the most abundant mineral of the Earth's lower mantle. Recent studies have shown that Fe{sup 2+} exists predominantly in the intermediate-spin state with a total spin number of 1 in silicate perovskite in the lower part of the lower mantle. Here we have measured the spin states of iron and the pressure-volume relation in silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}] at pressure conditions relevant to the lowermost mantle using in situ X-ray emission and X-ray diffraction in a diamond cell. Our results showed that the intermediate-spin Fe{sup 2+} is stable in the silicate perovskite up to {approx} 125 GPa but starts to transition to the low-spin state at approximately 135 GPa. Concurrent X-ray diffraction measurements showed a decrease of approximately 1% in the unit cell volume in the silicate perovskite [(Mg{sub 0.6},Fe{sub 0.4})SiO{sub 3}], which is attributed to the intermediate-spin to the low-spin transition. The transition pressure coincides with the pressure conditions of the lowermost mantle, raising the possibility of the existence of the silicate perovskite phase with the low-spin Fe{sup 2+} across the transition from the post-perovskite to the perovskite phases in the bottom of the D{double_prime} layer.

  10. X-Ray Powder Diffraction Study of Synthetic Palmierite, K{sub 2}Pb(SO{sub 4}){sub 2}

    SciTech Connect (OSTI)

    TISSOT JR.,RALPH G.; RODRIGUEZ,MARK A.; SIPOLA,DIANA L.; VOIGT,JAMES A.

    2000-12-19

    Palmierite (K{sub 2}Pb(SO{sub 4}){sub 2}) has been prepared via a chemical synthesis method. Intensity differences were observed when X-ray powder data from the newly synthesized compound were compared to the published powder diffraction card (PDF) 29-1015 for Palmierite. Investigation of these differences indicated the possibility of preferred orientation and/or chemical inhomogeneity affecting intensities, particularly those of the basal (00{ell}) reflections. Annealing of the Palmierite was found to reduce the effects of preferred orientation. Electron microprobe analysis confirmed K:Pb:S as 2:1:2 for the annealed Palmierite powder. Subsequent least-squares refinement and Rietveld analysis of the annealed powder showed peak intensities very close to that of a calculated Palmierite pattern (based on single crystal data), yet substantially higher than many of the PDF 29-1015 published intensities. Further investigation of peak intensity variation via calculated patterns suggested that the intensity discrepancies between the annealed sample and those found in PDF 29-1015 were potentially due to chemical variation in the K{sub 2}Pb(SO{sub 4}){sub 2} composition. X-ray powder diffraction and crystal data for Palmierite are reported for the annealed sample. Palmierite is Trigonal/Hexagonal with unit cell parameters a = 5.497(1){angstrom}, c = 20.864(2) {angstrom}, space group R-3m (166), and Z = 3.

  11. High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films

    SciTech Connect (OSTI)

    Gregoire, John M. [Department of Physics, and Cornell Fuel Cell Institute, Cornell University, Ithaca, New York 14853 (United States); Dale, Darren; Kazimirov, Alexander [Cornell High Energy Synchrotron Source, Cornell University, New York 14853 (United States); DiSalvo, Francis J. [Department of Chemistry and Chemical Biology, and Cornell Fuel Cell Institute, Cornell University, New York 14853 (United States); Dover, R. Bruce van [Department of Materials Science and Engineering, and Cornell Fuel Cell Institute, Cornell University, New York 14853 (United States)

    2009-12-15

    High-throughput crystallography is an important tool in materials research, particularly for the rapid assessment of structure-property relationships. We present a technique for simultaneous acquisition of diffraction images and fluorescence spectra on a continuous composition spread thin film using a 60 keV x-ray source. Subsequent noninteractive data processing provides maps of the diffraction profiles, thin film fiber texture, and composition. Even for highly textured films, our diffraction technique provides detection of diffraction from each family of Bragg reflections, which affords direct comparison of the measured profiles with powder patterns of known phases. These techniques are important for high throughput combinatorial studies as they provide structure and composition maps which may be correlated with performance trends within an inorganic library.

  12. Following the dynamics of matter with femtosecond precision using the X-ray streaking method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    David, C.; Karvinen, P.; Sikorski, M.; Song, S.; Vartiainen, I.; Milne, C. J.; Mozzanica, A.; Kayser, Y.; Diaz, A.; Mohacsi, I.; et al

    2015-01-06

    X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide amore »time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.« less

  13. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect (OSTI)

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy Joe

    2013-01-01

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  14. Structural Characterization of a Plutonium Sequestering Agent Complex by Synchrotron X-ray Diffraction

    SciTech Connect (OSTI)

    Gorden, A.E.V. |; Szigethy, G.; Tiedemann, B.E.F.; Xu, J.; Shuh, D.K.; Raymond, K.N. |

    2007-07-01

    New ligands and materials are required that can coordinate, sense, and purify actinides for selective extraction and reduction of toxic, radioactive wastes from the mining and purification of actinides. The similarities in the chemical, biological transport, and distribution properties of Fe(III) and Pu(IV) inspired a bio-mimetic approach to the development of sequestering agents for actinides. A detailed evaluation of the structure and bonding of actinide coordinating ligands like these is important for the design of new selective ligand systems. Knowing the difficulty with working with the crystals resulting from these ligand systems and safe handling considerations for working with Pu, procedures were developed that utilize the Advanced Light Source of Lawrence Berkeley National Laboratory to determine the solid-state structures of Pu complexes by X-ray diffraction. (au0011tho.

  15. A semianalytic model to extract differential linear scattering coefficients of breast tissue from energy dispersive x-ray diffraction measurements

    SciTech Connect (OSTI)

    LeClair, Robert J.; Boileau, Michel M.; Wang Yinkun [Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada) and Biomolecular Sciences Program, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada); Department of Physics and Astronomy, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6 (Canada)

    2006-04-15

    The goal of this work is to develop a technique to measure the x-ray diffraction signals of breast biopsy specimens. A biomedical x-ray diffraction technology capable of measuring such signals may prove to be of diagnostic use to the medical field. Energy dispersive x-ray diffraction measurements coupled with a semianalytical model were used to extract the differential linear scattering coefficients [{mu}{sub s}(x)] of breast tissues on absolute scales. The coefficients describe the probabilities of scatter events occurring per unit length of tissue per unit solid angle of detection. They are a function of the momentum transfer argument, x=sin({theta}/2)/{lambda}, where {theta}=scatter angle and {lambda}=incident wavelength. The technique was validated by using a 3 mm diameter 50 kV polychromatic x-ray beam incident on a 5 mm diameter 5 mm thick sample of water. Water was used because good x-ray diffraction data are available in the literature. The scatter profiles from 6 deg. to 15 deg. in increments of 1 deg. were measured with a 3 mmx3 mmx2 mm thick cadmium zinc telluride detector. A 2 mm diameter Pb aperture was placed on top of the detector. The target to detector distance was 29 cm and the duration of each measurement was 10 min. Ensemble averages of the results compare well with the gold standard data of A. H. Narten [''X-ray diffraction data on liquid water in the temperature range 4 deg. C-200 deg. C, ORNL Report No. 4578 (1970)]. An average 7.68% difference for which most of the discrepancies can be attributed to the background noise at low angles was obtained. The preliminary measurements of breast tissue are also encouraging.

  16. X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole

    SciTech Connect (OSTI)

    Borovik, A. A.; Grebenko, A. I.; Melik-Adamyan, V. R.

    2011-07-15

    The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.

  17. Synthesis and single crystal x-ray diffraction study of a Schiff base derived from 4-acylpyrazolone and 2-aminophenol

    SciTech Connect (OSTI)

    Sharma, Naresh; Kant, Rajni Gupta, Vivek K.; Jadeja, R. N.

    2014-04-24

    The title compound, (Z)-1-(3-chlorophenyl)-4[1((2hydroxyphenyl)amino)propylidene] -3-methyl-1H-pyrazol-5(4H)-one was synthesized by refluxing compound 1-(m-chlorophenyl)-3-methyl-4-propionyl-5-pyrazolone, with 2-aminophenol in ethanol. The compound crystallizes in the orthorhombic crystal system with space group Pca2{sub 1} having unit cell parameters: a = 26.2993(8), b = 7.0724(2) and c = 18.7170(5)Å. The structure contains two crystallographically independent molecules, A, and, B, in the asymmetric unit cell. The crystal structure was solved by direct method using single crystal X-ray diffraction data collected at room temperature and refined by full-matrix least-squares procedures to a final R- value of 0.049 for 5207 observed reflections.

  18. Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction q

    E-Print Network [OSTI]

    Motta, Arthur T.

    Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction q R.S. Daum a,1 , Y.S. Chu b,2 , A.T. Motta c,* a Nuclear Engineering Division, Argonne National, IL 60439, United States c Department of Mechanical and Nuclear Engineering, The Pennsylvania State

  19. Synchrotron X-ray Diffraction Investigation of the Anomalous Behavior of Ice During Freezing of Aqueous Systems

    E-Print Network [OSTI]

    Elliott, James

    Synchrotron X-ray Diffraction Investigation of the Anomalous Behavior of Ice During Freezing be used to quantify stresses during freezing, which could improve our understanding of the role of water, such as freeze-induced destabilization of biological systems, and laboratory or industrial practices

  20. X-ray diffraction studies and equation of state of methane at 202 GPa Liling Sun a,*, Wei Yi a

    E-Print Network [OSTI]

    Shen, Guoyin

    X-ray diffraction studies and equation of state of methane at 202 GPa Liling Sun a,*, Wei Yi that at room temperature compressed CH4 remains an insulator with cubic structure to 202 GPa. Ó 2009 Elsevier B of planetary interiors and the origin of their magnetic field distribution. CH4 has a very rich phase diagram

  1. Simulation of X-ray diffraction profiles for bent anisotropic crystals

    E-Print Network [OSTI]

    del Rio, Manuel Sanchez; Shi, Xianbo; Honkimaki, Veijo; Zhang, Lin

    2015-01-01

    The equations for calculating diffraction profiles for bent crystals are revisited for both meridional and sagittal bending. Two approximated methods for computing diffraction profiles are treated: multilamellar and Penning-Polder. A common treatment of crystal anisotropy is included in these models. The formulation presented is implemented into the XOP package, completing and updating the crystal module that simulates diffraction profiles for perfect, mosaic and now distorted crystals by elastic bending.

  2. Versatile wide angle diffraction setup for simultaneous wide and small angle x-ray scattering measurements with synchrotron radiation

    SciTech Connect (OSTI)

    Rueda, D.R.; Garcia-Gutierrez, M.C.; Nogales, A.; Capitan, M.J.; Ezquerra, T.A.; Labrador, A.; Fraga, E.; Beltran, D.; Juanhuix, J.; Herranz, J.F.; Bordas, J. [Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid (Spain); LLS, BM16-ESRF, 6 rue Jules Horowitz, BP220, 38043 Grenoble (France)

    2006-03-15

    Here we present a novel, simple, and versatile experimental setup aimed to perform wide angle x-ray scattering (WAXS) measurements alone or in simultaneous combination with small angle x-ray scattering measurements. The design of the WAXS goniometer allows one to obtain high resolution diffraction patterns in a broad angular range. The setup can incorporate a hot stage in order to evaluate temperature resolved experiments. The performance of the equipment has been verified in the BM16 beam line of the European Synchrotron Radiation Facility with different well known samples such as alumina, isotropic film of high density polyethylene (HDPE), and oriented HPDE fiber.

  3. An experimental apparatus for diffraction-limites soft x-ray nanofocusing

    SciTech Connect (OSTI)

    Merthe, Daniel; Goldberg, Kenneth; Yashchuk, Valeriy; Yuan, Sheng; McKinney, Wayne; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory; Rakawa, Senajith; Anderson, Erik; Smith, Brian; Domning, Edward; Warwick, Tony; Padmore, Howard

    2011-10-21

    Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing.The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

  4. Pressure-temperature stability studies of FeOOH using x-ray diffraction

    SciTech Connect (OSTI)

    Gleason, Arianna E.; Jeanloz, Raymond; Kunz, Martin

    2008-07-21

    The Mie-Gruneisen formalism is used to fit a Birch-Murnaghan equation of state to high-temperature (T), high-pressure (P) X-ray diffraction unit-cell volume (V) measurements on synthetic goethite (alpha-FeOOH) to combined conditions of T = 23-250o C and P = 0-29.4 GPa. We find the zero-pressure thermal expansion coefficient of goethite to be alpha0 = 2.3 (+-0.6) x 10-5 K-1 over this temperature range. Our data yield zero-pressure compressional parameters: V0 = 138.75 (+- 0.02) Angstrom3, bulk modulus K0 = 140.3 (+- 3.7) GPa, pressure derivative K0' = 4.6 (+- 0.4), Gruneisen parameter gamma0 = 0.91 (+- 0.07), and Debye temperature Theta0 = 740 (+- 5) K. We identify decomposition conditions for 2alpha-FeOOH --> alpha-Fe2O3 + H2O at 1 - 8 GPa and 100-400oC, and the polymorphic transition from alpha-FeOOH (Pbnm) to epsilon-FeOOH (P21mn). The non-quenchable, high-pressure epsilon-FeOOH phase P-V data are fitted to a second-order (Birch) equation of state yielding, K0 = 158 (+- 5) GPa and V0 = 66.3 (+- 0.5) Angstrom3.

  5. Boron phosphide under pressure: In situ study by Raman scattering and X-ray diffraction

    SciTech Connect (OSTI)

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Kurnosov, Aleksandr V.; Oganov, Artem R.

    2014-07-21

    Cubic boron phosphide, BP, has been studied in situ by X-ray diffraction and Raman scattering up to 55?GPa at 300?K in a diamond anvil cell. The bulk modulus of B{sub 0}?=?174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state (EOS) data, allowed us to estimate the Grüneisen parameters of the TO and LO modes of zinc-blende structure, ?{sub G}{sup TO?}=?1.26 and ?{sub G}{sup LO?}=?1.13, just like in the case of other A{sup III}B{sup V} diamond-like phases, for which ?{sub G}{sup TO?}>??{sub G}{sup LO?}??1. We also established that the pressure dependence of the effective electro-optical constant ? is responsible for a strong change in relative intensities of the TO and LO modes from I{sub TO}/I{sub LO}???0.25 at 0.1?MPa to I{sub TO}/I{sub LO}???2.5 at 45?GPa, for which we also find excellent agreement between experiment and theory.

  6. Method and apparatus for micromachining using hard X-rays

    DOE Patents [OSTI]

    Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

  7. Method and apparatus for micromachining using hard X-rays

    DOE Patents [OSTI]

    Siddons, David Peter (Shoreham, NY); Johnson, Erik D. (Ridge, NY); Guckel, Henry (Madison, WI); Klein, Jonathan L. (Madison, WI)

    1997-10-21

    An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

  8. Systems and methods for detecting an image of an object by use of an X-ray beam having a polychromatic distribution

    DOE Patents [OSTI]

    Parham, Christopher; Zhong, Zhong; Pisano, Etta; Connor, Dean; Chapman, Leroy D.

    2010-06-22

    Systems and methods for detecting an image of an object using an X-ray beam having a polychromatic energy distribution are disclosed. According to one aspect, a method can include detecting an image of an object. The method can include generating a first X-ray beam having a polychromatic energy distribution. Further, the method can include positioning a single monochromator crystal in a predetermined position to directly intercept the first X-ray beam such that a second X-ray beam having a predetermined energy level is produced. Further, an object can be positioned in the path of the second X-ray beam for transmission of the second X-ray beam through the object and emission from the object as a transmitted X-ray beam. The transmitted X-ray beam can be directed at an angle of incidence upon a crystal analyzer. Further, an image of the object can be detected from a beam diffracted from the analyzer crystal.

  9. Structural hysteresis in dragline spider silks induced by supercontraction: an X-ray fiber micro-diffraction study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sampath, Sujatha; Yarger, Jeffery L.

    2014-11-27

    Interaction with water causes shrinkage and significant changes in the structure of spider dragline silks, which has been referred to as supercontraction in the literature. Preferred orientation or alignment of protein chains with respect to the fiber axis is extensively changed during this supercontraction process. Synchrotron X-ray micro-fiber diffraction experiments have been performed on Nephila clavipes and Argiope aurantia major and minor ampullate dragline spider fibers in the native dry, contracted (by immersion in water) and restretched (from contracted) states. Changes in the orientation of ?-sheet nanocrystallites and the oriented component of the amorphous network have been determined from wide-anglemore »X-ray diffraction patterns. While both the crystalline and amorphous components lose preferred orientation on wetting with water, the nano-crystallites regain their orientation on wet-restretching, whereas the oriented amorphous components only partially regain their orientation. Dragline major ampullate silks in both the species contract more than their minor ampullate silks.« less

  10. Analysis of surface integrity of grinded gears using Barkhausen noise analysis and x-ray diffraction

    SciTech Connect (OSTI)

    Vrkoslavová, Lucie; Louda, Petr; Malec, Ji?i

    2014-02-18

    The contribution is focused to present results of study grinded gears made of 18CrNiMo7-6 steel used in the wind power plant for support (service) purposes. These gears were case-hardened due to standard hard case and soft core formation. This heat treatment increases wear resistance and fatigue strength of machine parts. During serial production some troubles with surface integrity have occurred. When solving complex problems lots of samples were prepared. For grinding of gears were used different parameters of cutting speed, number of material removal and lots from different subsuppliers. Material characterization was carried out using Barkhausen noise analysis (BNA) device; X-ray diffraction (XRD) measurement of surface residual stresses was done as well. Depth profile of measured characteristics, e.g. magnetoelastic parameter and residual stress was obtained by step by step layers' removing using electrolytic etching. BNA software Viewscan was used to measure magnetizing frequency sweep (MFS) and magnetizing voltage sweep (MVS). Scanning of Magnetoelastic parameter (MP) endwise individual teeth were also carried out with Viewscan. These measurements were done to find problematic surface areas after grinding such as thermal damaged locations. Plots of the hardness and thickness of case-hardened layer on cross sections were measurered as well. Evaluation of structure of subsurface case-hardened layer and core was made on etched metallographic patterns. The aim of performed measurements was to find correlation between conditions of grinding, residual stresses and structural and magnetoelastic parameters. Based on correlation of measured values and technological parameters optimizing the production of gears will be done.

  11. X-ray Diffraction of Photonic Colloidal Single Crystals Willem L. Vos,*, Mischa Megens, Carlos M. van Kats,, and Peter Bosecke,|

    E-Print Network [OSTI]

    Vos, Willem L.

    X-ray Diffraction of Photonic Colloidal Single Crystals Willem L. Vos,*, Mischa Megens, Carlos M of Bragg peaks of photonic colloidal single crystals by synchrotron small angle X-ray scattering (SAXS). We find that charge-stabilized colloids form face-centered cubic crystals at all densities up to 60 vol

  12. Comment on 'Dirac R-matrix method for the calculation of x-ray...

    Office of Scientific and Technical Information (OSTI)

    Comment on 'Dirac R-matrix method for the calculation of x-ray line polarization' Citation Details In-Document Search Title: Comment on 'Dirac R-matrix method for the calculation...

  13. A criterion for the dynamical to kinematical transition of x-ray diffraction on a bent crystal

    SciTech Connect (OSTI)

    Kushnir, V.I.; Macrander, A.T.

    1993-09-01

    It is well known that the peak reflectivity of a bent crystal, generally speaking, is smaller than that of a plane crystal, and it goes to zero when the crystal curvature goes to infinity. The reason for this is the transition between dynamical and kinematical diffraction that takes place as the crystal curvature increases. The physical explanation is as follows: the deviation from exact Bragg position along the beam changes so fast that the thickness over which the beam is within a Darwin width becomes too small to reflect the beam. Bent crystals are widely used as focusing elements in X-ray optics, and estimation of whether or not a bent crystal is still perfect enough to provide good reflectivity is of great importance. Currently the Advanced Photon Source (APS) is considering a number of bent crystals as focusing elements for future APS beamlines, including a sagittaly focusing monochromator and bent backscattering analyzer for inelastic X-ray scattering experiments. A criterion is given in answer to the question: To what extent is it possible to bend a crystal without loss of X-ray peak reflectivity? An expression based on the work of Chukhovskii, Gabrielyan and Petrashen, is formulated that applies to anisotropic cubic crystal and that can be used not only for conventional asymmetric Bragg diffraction, but also for inclined crystal diffraction. The following special cases are treated as examples: isotropic crystal, standard symmetrical Bragg diffraction, extremely asymmetric diffraction, and backscattering with Bragg angles near 90{degree}. In addition, an asymptotic behavior for high energies is detailed.

  14. Study of microstress state of P91 steel using complementary mechanical Barkhausen, magnetoacoustic emission, and X-ray diffraction techniques

    SciTech Connect (OSTI)

    Augustyniak, Boles?aw, E-mail: bolek@mif.pg.gda.pl; Piotrowski, Leszek; Maciakowski, Pawe?; Chmielewski, Marek [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, 80-233 Gdansk (Poland); Lech-Grega, Marzena; ?elechowski, Janusz [The Institute of Non-Ferrous Metals, 32-050 Skawina (Poland)

    2014-05-07

    The paper deals with assessment of microstress state of martensite P91 steel using three complementary techniques: mechanical Barkhausen emission, magnetoacoustic emission (MAE), and X-ray diffraction (XRD) profile analysis. Magnetic coercivity Hc and microstructure were investigated with inductive magnetometry and magnetic force microscopy (MFM), respectively. Internal stress level of P91 steel was modified by heat treatment. Steel samples were austenitized, quenched, and then tempered at three temperatures (720?°C, 750?°C, and 780?°C) during increasing time (from 15?min up to 240?min). The microstrain level ?{sub i} was evaluated using Williamson–Hall method. It was revealed that during tempering microstrain systematically decreases from ?{sub i}?=?2.5 × 10{sup ?3} for as quenched state down to ?{sub i}?=?0.3?×?10{sup ?3} for well tempered samples. Both mechanical hardness (Vicker's HV) and magnetic hardness (coercivity) decrease almost linearly with decreasing microstrain while the MAE and MBE intensities strongly increase. Tempering leads to evident shift of the MeBN intensity maximum recorded for the first load towards lower applied strain values and to increase of MAE intensity. This indicates that the microstress state deduced by magnetic techniques is correlated with microstrains evaluated with XRD technique.

  15. X-ray diffraction study of the structure of detonation nanodiamonds

    SciTech Connect (OSTI)

    Ozerin, A. N. Kurkin, T. S.; Ozerina, L. A.; Dolmatov, V. Yu.

    2008-01-15

    The spatial structure of aggregates formed by detonation nanodiamonds is investigated using the wide-angle and small-angle X-ray scattering techniques. The effective sizes of crystallites and the crystallite size distribution function are determined. The shape of scattering aggregates is restored from the small-angle X-ray scattering data. An analysis of the results obtained allowed the conclusion that the nanodiamond aggregates have an extended spatial structure composed of nine to ten clusters, each involving four to five crystallites with a crystal lattice of the diamond type.

  16. Formation of delta ferrite in 9 wt.% Cr steel investigated by in-situ X-ray diffraction using synchrotron radiation

    E-Print Network [OSTI]

    Mayr, P.

    In-situ X-ray diffraction (XRD) measurements using high energy synchrotron radiation were performed to monitor in real time the formation of delta ferrite in a martensitic 9 wt pct chromium steel under simulated weld thermal ...

  17. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    SciTech Connect (OSTI)

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H

    2014-07-14

    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  18. X-ray diffraction, spectroscopic and DFT studies of 1-(4-bromophenyl)-3,5-diphenylformazan

    SciTech Connect (OSTI)

    Tezcan, H.; Tokay, N.; Alpaslan, G.; Erdönmez, A.

    2013-12-15

    The crystal structure of 1-(4-bromophenyl)-3,5-diphenylformazan was determined by X-ray single crystal diffraction technique. The crystals are orthorhombic, a = 23.0788(9), b = 7.9606(3), c = 18.6340(12) Å, Z = 8, sp. gr. Pbca, R{sub 1} = 0.074. The structure was also examined using the density-functional theory. Its structure stability, and frontier molecular orbital components were discussed and the results were compared with X-ray and spectral results. The maximum absorbtion peaks of the UV-vis spectrum of the compound have been calculated using the time-dependent density-functional theory. It was found a good agreement between the calculated and experimental maximum absorption wavelength.

  19. Quantitative analysis of the x-ray diffraction intensities of undulated smectic phases in bent-core liquid crystals

    SciTech Connect (OSTI)

    Folcia, C. L.; Etxebarria, J.; Ortega, J.

    2007-07-15

    X-ray diffraction diagrams of undulated smectic phases in bent-core liquid crystals have been theoretically studied. The intensities of the reflections have been obtained for different layer modulations, and a general expression has been deduced for orthogonal cells in terms of the different harmonics of the distortion. The case of sinusoidal modulation is especially simple and has been studied also in oblique cells. High-quality x-ray measurements of three compounds reported in the literature have been analyzed as examples. In all cases it has been deduced that the modulation is sinusoidal and its amplitude has been easily obtained by fitting the experimental intensities. Equatorial (h0) reflections have been also considered to obtain information about the structure of defects at the maxima and minima of the undulation.

  20. Design and imaging performance of achromatic diffractive/refractive X-ray and Gamma-ray Fresnel lenses

    E-Print Network [OSTI]

    Gerald K. Skinner

    2004-07-21

    Achromatic combinations of a diffractive Phase Fresnel Lens and a refractive correcting element have been proposed for X-ray and gamma-ray astronomy and for microlithography, but considerations of absorption often dictate that the refractive component be given a stepped profile, resulting in a double Fresnel lens. The imaging performance of corrected Fresnel lenses, with and without `stepping' is investigated and the trade-off between resolution and useful bandwidth in different circumstances is discussed. Provided the focal ratio is large, correction lenses made of low atomic number materials can be used with X-rays in the range approximately 10--100 keV without stepping. The use of stepping extends the possibility of correction to higher aperture systems, to energies as low as a few kilo electron volts and to gamma-rays of $\\sim$ mega electron volt energy.

  1. Comparison of two x-ray phase-contrast imaging methods with a microfocus source

    E-Print Network [OSTI]

    and experiments using a liquid-metal-jet x-ray microfocus source. Radiation doses required for detection radiation, simulations show a lower dose requirement for PBI for small object features and a lower dose and implementation of a compact low-dose diffraction enhanced medical imaging system," Acad. Radiol. 16(8), 911

  2. Method for detecting binding events using micro-X-ray fluorescence spectrometry

    DOE Patents [OSTI]

    Warner, Benjamin P. (Los Alamos, NM); Havrilla, George J. (Los Alamos, NM); Mann, Grace (Hong Kong, HK)

    2010-12-28

    Method for detecting binding events using micro-X-ray fluorescence spectrometry. Receptors are exposed to at least one potential binder and arrayed on a substrate support. Each member of the array is exposed to X-ray radiation. The magnitude of a detectable X-ray fluorescence signal for at least one element can be used to determine whether a binding event between a binder and a receptor has occurred, and can provide information related to the extent of binding between the binder and receptor.

  3. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOE Patents [OSTI]

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  4. Crystallization and preliminary X-ray diffraction analysis of YidC, a membrane-protein chaperone and insertase from Bacillus halodurans

    SciTech Connect (OSTI)

    Kumazaki, Kaoru [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Tsukazaki, Tomoya, E-mail: ttsukaza@bs.naist.jp [Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nishizawa, Tomohiro [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Tanaka, Yoshiki [Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Kato, Hideaki E. [Stanford University, Stanford, CA 94305 (United States); Nakada-Nakura, Yoshiko [Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Hirata, Kunio [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Mori, Yoshihiro; Suga, Hiroaki [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Dohmae, Naoshi [RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Ishitani, Ryuichiro; Nureki, Osamu, E-mail: ttsukaza@bs.naist.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan)

    2014-07-23

    YidC, a membrane-protein chaperone/insertase from B. halodurans, was expressed, purified and crystallized in the lipidic cubic phase. An X-ray diffraction data set was collected to 2.4 Å resolution. YidC, a member of the YidC/Oxa1/Alb3 family, inserts proteins into the membrane and facilitates membrane-protein folding in bacteria. YidC plays key roles in both Sec-mediated integration and Sec-independent insertion of membrane proteins. Here, Bacillus halodurans YidC2, which has five transmembrane helices conserved among the other family members, was identified as a target protein for structure determination by a fluorescent size-exclusion chromatography analysis. The protein was overexpressed, purified and crystallized in the lipidic cubic phase. The crystals diffracted X-rays to 2.4 Å resolution and belonged to space group P2{sub 1}, with unit-cell parameters a = 43.9, b = 60.6, c = 58.9 Å, ? = 100.3°. The experimental phases were determined by the multiwavelength anomalous diffraction method using a mercury-derivatized crystal.

  5. Multiferroic CuCrO? under high pressure: In situ X-ray diffraction and Raman spectroscopic studies

    SciTech Connect (OSTI)

    Garg, Alka B. Mishra, A. K.; Pandey, K. K.; Sharma, Surinder M.

    2014-10-07

    The compression behavior of delafossite compound CuCrO? has been investigated by in situ x-ray diffraction (XRD) and Raman spectroscopic measurements up to 23.2 and 34 GPa, respectively. X-ray diffraction data show the stability of ambient rhombohedral structure up to ~23 GPa. Material shows large anisotropy in axial compression with c-axis compressibility, ?{sub c} = 1.26 × 10?³(1) GPa?¹ and a-axis compressibility, ?{sub a} = 8.90 × 10?³(6) GPa?¹. Our XRD data show an irreversible broadening of diffraction peaks. Pressure volume data when fitted to 3rd order Birch-Murnaghan equation of state give the value of bulk modulus, B? = 156.7(2.8) GPa with its pressure derivative, B?{sup ’} as 5.3(0.5). All the observed vibrational modes in Raman measurements show hardening with pressure. Appearance of a new mode at ~24 GPa indicates the structural phase transition in the compound. Our XRD and Raman results indicate that CuCrO{sub 2} may be transforming to an ordered rocksalt type structure under compression.

  6. Purification, crystallization and preliminary X-ray diffraction analysis of the kinase domain of human tousled-like kinase 2

    SciTech Connect (OSTI)

    Garrote, Ana M.; Redondo, Pilar; Montoya, Guillermo; Muñoz, Inés G.

    2014-02-19

    The C-terminal kinase domain of TLK2 (a human tousled-like kinase) has been cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-?-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4{sub 1}22 and cubic P2{sub 1}3. Tousled-like kinases (TLKs) are an evolutionarily conserved family of serine/threonine protein kinases involved in chromatin dynamics, including DNA replication and repair, transcription and chromosome segregation. The two members of the family reported in humans, namely TLK1 and TLK2, localize to the cell nucleus and are capable of forming homo- or hetero-oligomers by themselves. To characterize the role of TLK2, its C-terminal kinase domain was cloned and overexpressed in Escherichia coli followed by purification to homogeneity. Crystallization experiments in the presence of ATP-?-S yielded crystals suitable for X-ray diffraction analysis belonging to two different space groups: tetragonal I4{sub 1}22 and cubic P2{sub 1}3. The latter produced the best diffracting crystal (3.4 Å resolution using synchrotron radiation), with unit-cell parameters a = b = c = 126.05 Å, ? = ? = ? = 90°. The asymmetric unit contained one protein molecule, with a Matthews coefficient of 4.59 Å{sup 3} Da{sup ?1} and a solvent content of 73.23%.

  7. X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al-Si hypoeutectic alloy

    SciTech Connect (OSTI)

    Manickaraj, Jeyakumar; Gorny, Anton; Shankar, Sumanth, E-mail: shankar@mcmaster.ca [Light Metal Casting Research Centre (LMCRC), Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4L7 (Canada); Cai, Zhonghou [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2014-02-17

    The evolution of strontium (Sr) containing intermetallic phase in the eutectic reaction of Sr-modified Al-Si hypoeutectic alloy was studied with high energy synchrotron beam source for nano-diffraction experiments and x-ray fluorescence elemental mapping. Contrary to popular belief, Sr does not seem to interfere with the Twin Plane Re-entrant Edge (TPRE) growth mechanism of eutectic Si, but evolves as the Al{sub 2}Si{sub 2}Sr phase during the eutectic reaction at the boundary between the eutectic Si and Al grains.

  8. In-situ stoichiometry determination using x-ray fluorescence generated by reflection-high-energy-electron-diffraction

    SciTech Connect (OSTI)

    Keenan, Cameron; Chandril, Sandeep; Lederman, David [Department of Physics and Multifunctional Materials Laboratory, West Virginia University, Morgantown, West Virginia 26506 (United States); Myers, T. H. [Department of Physics and Multifunctional Materials Laboratory, West Virginia University, Morgantown, West Virginia 26506 (United States); Materials Science, Engineering, and Commercialization Program, Texas State University-San Marcos, San Marcos, Texas 78666 (United States)

    2011-06-01

    A major challenge in the stoichiometric growth of complex oxide compounds is the control of the relative compositions of the constituent materials. A potential avenue for compositional analysis during growth is the use of x-ray fluorescence generated during reflection high energy electron diffraction measurements. Using this technique, relative compositions of Y and Mn in molecular beam epitaxy grown YMnO{sub 3} samples were studied. Comparing the results with Rutherford back scattering spectroscopy suggests that the technique has the potential for real-time analysis of elemental fluxes and stoichiometry control during sample growth.

  9. High efficiency replicated x-ray optics and fabrication method

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA); Lane, Stephen M. (Oakland, CA); Hoffman, Donald E. (Fremont, CA)

    2001-01-01

    Replicated x-ray optics are fabricated by sputter deposition of reflecting layers on a super-polished reusable mandrel. The reflecting layers are strengthened by a supporting multilayer that results in stronger stress-relieved reflecting surfaces that do not deform during separation from the mandrel. The supporting multilayer enhances the ability to part the replica from the mandrel without degradation in surface roughness. The reflecting surfaces are comparable in smoothness to the mandrel surface. An outer layer is electrodeposited on the supporting multilayer. A parting layer may be deposited directly on the mandrel before the reflecting surface to facilitate removal of the layered, tubular optic device from the mandrel without deformation. The inner reflecting surface of the shell can be a single layer grazing reflection mirror or a resonant multilayer mirror. The resulting optics can be used in a wide variety of applications, including lithography, microscopy, radiography, tomography, and crystallography.

  10. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Howells, M.R.; Beetz, T.; Chapman, H.N.; Cui, C.; Holton, J.M.; Jacobsen, C.J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; Sayre, D.; Shapiro, D.A.; Spence, J.C.H.; Starodub, D.

    2009-03-01

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.

  11. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Howells, M. R.; Beetz, T.; Chapman, H. N.; Cui, C.; Holton, J. M.; Jacobsen, C. J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; et al

    2008-11-17

    X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Nine years have elapsed since the technique was first introduced and it has made rapid progress in demonstrating high-resolution three-dimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper wemore »address the question of the role of radiation damage. We use a statistical analysis based on the so-called "dose fractionation theorem" of Hegerl and Hoppe to calculate the dose needed to make an image of a single life-science sample by XDM with a given resolution. We find that for simply-shaped objects the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered otherwise. The conclusion of this study is that, based on the natural contrast between protein and water and "Rose-criterion" image quality, one should be able to image a frozen-hydrated biological sample using XDM at a resolution of about 10 nm.« less

  12. Mirrors for X-ray telescopes: Fresnel diffraction-based computation of Point Spread Functions from metrology

    E-Print Network [OSTI]

    Raimondi, Lorenzo

    2014-01-01

    The imaging sharpness of an X-ray telescope is chiefly determined by the optical quality of its focusing optics, which in turn mostly depends on the shape accuracy and the surface finishing of the grazing incidence X-ray mirrors that compose the optical modules. In order to ensure the imaging performance during the mirror manufacturing, a fundamental step is represented by the prediction of the mirror Point Spread Function (PSF) from the metrology of its surface. Traditionally, the PSF computation in X-rays is assumed to be different depending on whether the surface defects are classified as figure errors or roughness [...] The aim of this work is to overcome this limit, providing analytical formulae, valid at any light wavelength, to compute the PSF of an X-ray mirror shell from the measured longitudinal profiles and the roughness Power Spectral Density (PSD), without distinguishing spectral ranges with different treatments. The method we adopted is based on the Huygens-Fresnel principle to compute the diffr...

  13. Femtosecond diffractive imaging with a soft-X-ray free-electron laser (CXIDB ID 3)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chapman, H. N.

    2011-02-23

    The diffraction pattern of this entry corresponds to the one shown in **figure 2a** of the corresponding citation.

  14. Femtosecond diffractive imaging with a soft-X-ray free-electron laser (CXIDB ID 3)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chapman, H. N.

    The diffraction pattern of this entry corresponds to the one shown in **figure 2a** of the corresponding citation.

  15. Communication: X-ray coherent diffractive imaging by immersion in nanodroplets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tanyag, Rico Mayro P.; Bernando, Charles; Jones, Curtis F.; Bacellar, Camila; Ferguson, Ken R.; Anielski, Denis; Boll, Rebecca; Carron, Sebastian; Cryan, James P.; Englert, Lars; et al

    2015-10-14

    Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. As a result, images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.

  16. History and Solution of the Phase Problem in theTheory of Structure Determination of Crystals from X-ray Diffraction Experiments

    ScienceCinema (OSTI)

    Wolf, Emil [University of Rochester, Rochester, New York, United States

    2010-09-01

    Since the pioneering work of Max von Laue on interference and diffraction of x-rays, carried out almost 100 years ago, numerous attempts have been made to determine structures of crystalline media from x-ray diffraction experiments. The usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk, the most important research carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented.

  17. High efficiency, high quality x-ray optic based on ellipsoidally bent highly oriented pyrolytic graphite crystal for ultrafast x-ray diffraction experiments

    SciTech Connect (OSTI)

    Uschmann, I.; Nothelle, U.; Foerster, E.; Arkadiev, V.; Langhoff, N.; Antonov, A.; Grigorieva, I.; Steinkopf, R.; Gebhardt, A

    2005-08-20

    By the use of a thin highly oriented pyrolytic graphite crystal (HOPG) bent to a high-performance ellipsoidal shape it was possible to focus monochromatic x-rays of 4.5 keV photon energy with an efficiency of 0.0033, which is 30 times larger than for previously used bent crystals. Isotropic TiK{sub a}lpha radiation of a 150 {mu}m source was focused onto a 450 {mu}m spot. The size of the focal spot can be explained by broadening due to the mosaic crystal rocking curve. The rocking curve width (FWHM) of the thin graphite foil was determined to 0.11 deg. . The estimated temporal broadening of an ultrashort Kalpha pulse by the crystal is not larger than 300 fs. These properties make the x-ray optic very attractive for ultrafast time-resolved x-ray measurements.

  18. Characterization of morphology and hydration products of high-volume fly ash paste by monochromatic scanning x-ray micro-diffraction (?-SXRD)

    SciTech Connect (OSTI)

    Bae, Sungchul; Meral, Cagla; Oh, Jae-eun; Moon, Juhyuk; Kunz, Martin; Monteiro, Paulo J.M.

    2014-05-01

    The present study focuses on identification and micro-structural characterization of the hydration products formed in high-volume fly ash (HVFA)/portland cement (PC) systems using monochromatic scanning x-ray micro-diffraction (?-SXRD) and SEM-EDS. Pastes with up to 80% fly ash replacement were studied. Phase maps for HVFA samples using ?-SXRD patterns prove that ?-SXRD is an effective method to identify and visualize the distribution of phases in the matrix. ?-SXRD and SEM-EDS analysis shows that the C-S-H formed in HVFA system containing 50% or more of fly ash has a similar structure as C-S-H(I) with comparatively lower Ca/Si ratio than the one produced in PC system. Moreover, coexistence of C-S-H(I) and strätlingite is observed in the system containing 80% of fly ash, confirming that the amount of alumina and silicate phases provided by the fly ash is a major factor for the formation of C-S-H(I) and strätlingite in HVFA system. - Highlights: • High-volume fly ash (HVFA) paste was studied by scanning x-ray micro-diffraction. • Coexistence of C-S-H(I) and strätlingite in the HVFA system is clearly shown. • The distribution of minor phases in the HVFA system is shown. • Differences between inner and outer products of fly ash are observed by SEM-EDS.

  19. Crystallization and preliminary X-ray diffraction analysis of a lectin from Canavalia maritima seeds

    SciTech Connect (OSTI)

    Almeida Gadelha, Carlos Alberto de [BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970 (Brazil); Moreno, Frederico Bruno Mendes Batista [Programa de Pós-graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000 (Brazil); Santi-Gadelha, Tatiane; Cajazeiras, João Batista; Rocha, Bruno Anderson M. da [BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970 (Brazil); Rustiguel, Joane Kathelen Rodrigues [Programa de Pós-graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000 (Brazil); Freitas, Beatriz Tupinamba [BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970 (Brazil); Grupo de Química Biológica, Departamento de Ciências Biológicas, Universidade Regional do Cariri, Crato, CE 63195-000 (Brazil); Canduri, Fernanda [Programa de Pós-graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000 (Brazil); Delatorre, Plínio [BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970 (Brazil); Grupo de Química Biológica, Departamento de Ciências Biológicas, Universidade Regional do Cariri, Crato, CE 63195-000 (Brazil); Azevedo, Walter Filgueira Jr de, E-mail: walterfa@df.ibilce.unesp.br [Programa de Pós-graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000 (Brazil); Cavada, Benildo S., E-mail: walterfa@df.ibilce.unesp.br [BioMol-Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, CE, Caixa Postal 6043, CEP 60455-970 (Brazil)

    2005-01-01

    A lectin from C. maritima was crystallized using the vapour-diffusion method and crystals diffracted to 2.1 Å resolution. A molecular-replacement search found a solution with a correlation coefficient of 69.2% and an R factor of 42.5%, refinement is in progress. A lectin from Canavalia maritima seeds (ConM) was purified and submitted to crystallization experiments. The best crystals were obtained using the vapour-diffusion method at a constant temperature of 293 K and grew in 7 d. A complete structural data set was collected to 2.1 Å resolution using a synchrotron-radiation source. The ConM crystal belongs to the orthorhombic space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 67.15, b = 70.90, c = 97.37 Å. A molecular-replacement search found a solution with a correlation coefficient of 69.2% and an R factor of 42.5%. Crystallographic refinement is under way.

  20. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    SciTech Connect (OSTI)

    Iverson, Adam [National Security Technologies, LLC; Carlson, Carl [National Security Technologies, LLC; Young, Jason [National Security Technologies, LLC; Curtis, Alden [National Security Technologies, LLC; Jensen, Brian [Los Alamos National Laboratory; Ramos, Kyle [Los Alamos National Laboratory; Yeager, John [Los Alamos National Laboratory; Montgomery, David [Los Alamos National Laboratory; Fezza, Kamel [Argonne National Laboratory

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  1. {ital In} {ital situ} x-ray diffraction analysis of the C49--C54 titanium silicide phase transformation in narrow lines

    SciTech Connect (OSTI)

    Roy, R.A.; Clevenger, L.A.; Cabral, C. Jr.; Saenger, K.L.; Brauer, S.; Jordan-Sweet, J.; Bucchignano, J.; Stephenson, G.B.; Morales, G.; Ludwig, K.F. Jr.

    1995-04-03

    The transformation of titanium silicide from the C49 to the C54 structure was studied using x-ray diffraction of samples containing arrays of narrow lines of preformed C49 TiSi{sub 2}. Using a synchrotron x-ray source, diffraction patterns were collected at 1.5--2 {degree}C intervals during sample heating at rates of 3 or 20 {degree}C/s to temperatures of 1000--1100 {degree}C. The results show a monotonic increase in the C54 transition temperature by as much as 180 {degree}C with a decreasing linewidth from 1.0 to 0.1 {mu}m. Also observed is a monotonic increase in (040) preferred orientation of the C54 phase with decreasing linewidth. The results demonstrate the power of {ital in} {ital situ} x-ray diffraction of narrow line arrays as a tool to study finite size effects in thin-film reactions.

  2. Reconstruction of a yeast cell from x-ray diffraction data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thibault, Pierre; Elser, Veit; Jacobsen, Chris; Shapiro, David; Sayre, David

    2006-06-21

    We provide details of the algorithm used for the reconstruction of yeast cell images in the recent demonstration of diffraction microscopy by Shapiro, Thibault, Beetz, Elser, Howells, Jacobsen, Kirz, Lima, Miao, Nieman & Sayre. Two refinements of the iterative constraint-based scheme are developed to address the current experimental realities of this imaging technique, which include missing central data and noise. A constrained power operator is defined whose eigenmodes allow the identification of a small number of degrees of freedom in the reconstruction that are negligibly constrained as a result of the missing data. To achieve reproducibility in the algorithm's output,more »a special intervention is required for these modes. Weak incompatibility of the constraints caused by noise in both direct and Fourier space leads to residual phase fluctuations. This problem is addressed by supplementing the algorithm with an averaging method. The effect of averaging may be interpreted in terms of an effective modulation transfer function, as used in optics, to quantify the resolution. The reconstruction details are prefaced with simulations of wave propagation through a model yeast cell. These show that the yeast cell is a strong-phase-contrast object for the conditions in the experiment.« less

  3. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    SciTech Connect (OSTI)

    Khanbabaee, B. Pietsch, U.; Facsko, S.; Doyle, S.

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5?nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviations from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.

  4. Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate

    SciTech Connect (OSTI)

    Navirian, H. A.; Schick, D. Leitenberger, W.; Bargheer, M.; Gaal, P.; Shayduk, R.

    2014-01-13

    We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO{sub 3} electrode sandwiched between a ferroelectric Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film with negative thermal expansion and a SrTiO{sub 3} substrate. SrRuO{sub 3} is rapidly heated by fs-laser pulses with 208?kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120?ps to 5??s with a relative accuracy up to ?c/c?=?10{sup ?6}. The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}.

  5. Frustrated smectic layer structures in bent-shaped dimer liquid crystals studied by x-ray microbeam diffraction

    SciTech Connect (OSTI)

    Takanishi, Yoichi; Toshimitsu, Megumi; Nakata, Michi; Takada, Naoki; Izumi, Tatsuya; Ishikawa, Ken; Takezoe, Hideo; Watanabe, Junji; Takahashi, Yumiko; Iida, Atsuo

    2006-11-15

    The layer structures in bent-shaped liquid crystal dimers mOAM5AMOm (m=6-16) have been investigated by x-ray microbeam diffraction. These liquid crystal molecules have two rodlike mesogens connected with an odd-numbered alkylene spacer and form a bent shape. In these compounds it is found that the structure changes from the single (m=6) to frustrated-layer structures (m=8, 10, and 12) and switchable frustrated-layer structures (m=14 and 16) with increasing terminal chain length. An anticlinic antiferroelectric structure is suggested in the compound with m=16, based on the different electric-field-induced reorientation behavior from those in the other dimers.

  6. Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique

    SciTech Connect (OSTI)

    Sabelström, N., E-mail: sabelstrom.n.aa@m.titech.ac.jp; Hayashi, M. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Watanabe, T. [Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo 152-8552 (Japan); Nagata, K. [Department of Conservation Science, Tokyo University of the Arts, 12-8 Ueno Park, Taito-ku, Tokyo (Japan)

    2014-10-28

    In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100?°C could be observed.

  7. X-ray diffraction and electron microscope studies of yttria stabilized zirconia (YSZ) ceramic coatings exposed to vanadia. Master's thesis

    SciTech Connect (OSTI)

    Kondos, K.G.

    1992-09-01

    The U.S. Navy sometimes has the requirement to use low cost fuels containing significant amounts of vanadium and sulfur in gas turbine engines. Unfortunately the yttria stabilized zirconia (YSZ) witch is used as a thermal barrier coating on gas turbine blades can be severely attacked by vanadia. Powders of YSZ containing 8-mol% Y203 and pure zirconia containing various and mounts Of V205 were annealed at 900 deg. C. These were then examined by X-ray diffraction and electron microscopy, as well as single crystals of pure Zro2 and YSZ ( 20% Wt Y203 ) exposed to V205 Melts, to study how the vanadia degrades the YSZ by reacting with the stabilizer to form YVO4 and how the vanadium transforms the cubic and tetragonal YSZ crystal structures to monoclinic which degrades rapidly as a gas turbine blade coating.

  8. X-ray photon-in/photon-out methods for chemical imaging

    SciTech Connect (OSTI)

    Marcus, Matthew A.

    2010-03-24

    Most interesting materials in nature are heterogeneous, so it is useful to have analytical techniques with spatial resolution sufficient to resolve these heterogeneities.This article presents the basics of X-ray photon-in/photon-out chemical imaging. This family of methods allows one to derive images reflectingthe chemical state of a given element in a complex sample, at micron or deep sub-micron scale. X-ray chemical imaging is relatively non-destructiveand element-selective, and requires minimal sample preparation. The article presents the basic concepts and some considerations of data takingand data analysis, along with some examples.

  9. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    SciTech Connect (OSTI)

    Fourspring, P.M. [Lockheed Martin Corp., Schenectady, NY (United States); Pangborn, R.N. [Pennsylvania State Univ., University Park, PA (United States)

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

  10. X-ray microstructural analysis of nanocrystalline TiZrN thin films by diffraction pattern modeling

    SciTech Connect (OSTI)

    Escobar, D.; Ospina, R.; Gómez, A.G.; Restrepo-Parra, E.; Arango, P.J.

    2014-02-15

    A detailed microstructural characterization of nanocrystalline TiZrN thin films grown at different substrate temperatures (T{sub S}) was carried out by X-ray diffraction (XRD). Total diffraction pattern modeling based on more meaningful microstructural parameters, such as crystallite size distribution and dislocation density, was performed to describe the microstructure of the thin films more precisely. This diffraction modeling has been implemented and used mostly to characterize powders, but the technique can be very useful to study hard thin films by taking certain considerations into account. Nanocrystalline films were grown by using the cathodic pulsed vacuum arc technique on stainless steel 316L substrates, varying the temperature from room temperature to 200 °C. Further surface morphology analysis was performed to study the dependence of grain size on substrate temperature using atomic force microscopy (AFM). The crystallite and surface grain sizes obtained and the high density of dislocations observed indicate that the films underwent nanostructured growth. Variations in these microstructural parameters as a function of T{sub S} during deposition revealed a competition between adatom mobility and desorption processes, resulting in a specific microstructure. These films also showed slight anisotropy in their microstructure, and this was incorporated into the diffraction pattern modeling. The resulting model allowed for the films' microstructure during synthesis to be better understood according to the experimental results obtained. - Highlights: • Mobility and desorption competition generates a critical temperature. • A microstructure anisotropy related to the local strain was observed in thin films. • Adatom mobility and desorption influence grain size and microstrain.

  11. High speed optical and X-ray methods for evaluating laser-generated shock-wave in materials

    SciTech Connect (OSTI)

    Paisley, D.; Swift, D.

    2000-11-01

    Optical diagnostic techniques including interferometry, electronic streak photography, and transient x-ray diffraction are used to study the dynamic material response to shock loading by direct laser irradiation and impact by laser-launched plates. The Los Alamos Trident laser is one of several lasers that have been used to generate shocks of 10 Kbar to several Mbar in single crystal and polycrystalline materials. Incorporating optical velocity interferometry (line-VISAR and point-VISAR) with transient x-ray diffraction can provide a complete understanding of the dynamic material response to shock compression and release. Laser-launched flyer plates provide an ideal method to generate one-dimensional shocks in materials. The quality of the one-dimensionality of the launch and acceleration of plates is evaluated by line-imaging VISA.R. The line-imaging VISAR images the fringes along a line across the diameter of the plate. Each fringe maxima and minima provide acceleration and velocity information at the specific point on the plate. By varying the fringe constant number of fringes and fringe spacing on the plate, detailed experimental data can be obtained. For our experiments, most plates are 3-mm diameter and accelerated to 0.2-->6 km/sec.

  12. A camera for coherent diffractive imaging and holography with a soft-X-ray free electron laser

    SciTech Connect (OSTI)

    Bajt, S; Chapman, H N; Spiller, E; Alameda, J; Woods, B; Frank, M; Bogan, M J; Barty, A; Boutet, S; Marchesini, S; Hau-Riege, S P; Hajdu, J; Shapiro, D

    2007-09-24

    We describe a camera to record coherent scattering patterns with a soft-X-ray free-electron laser. The camera consists of a laterally-graded multilayer mirror which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter both for wavelength and angle, which isolates the desired scattering pattern from non-sample scattering or incoherent emission from the sample. The mirror also solves the particular problem of the extreme intensity of the FEL pulses, which are focused to greater than 10{sup 14} W/cm{sup 2}. The strong undiffracted pulse passes through a hole in the mirror and propagates on to a beam dump at a distance behind the instrument rather than interacting with a beamstop placed near the CCD. The camera concept is extendable for the full range of the fundamental wavelength of the FLASH FEL (i.e. between 6 nm and 60 nm) and into the water window. We have fabricated and tested various multilayer mirrors for wavelengths of 32 nm, 16 nm, 13.5 nm, and 4.5 nm. At the shorter wavelengths mirror roughness must be minimized to reduce scattering from the mirror. We have recorded over 30,000 diffraction patterns at the FLASH free-electron laser with no observable mirror damage or degradation of performance.

  13. Explosives under pressure - the crystal structure of gamma-RDX as determined by high-pressure X-ray and neutron diffraction 

    E-Print Network [OSTI]

    Davidson, A.J.; Oswald, Iain D H; Francis, A.R.; Pulham, Colin

    Using a combination of X-ray single crystal and neutron powder diffraction, the crystal structure of the high-pressure ?-form of RDX has been determined at 5.2 GPa and shows that the RDX molecules adopt different conformations ...

  14. HEW simulations and quantification of the microroughness requirements for X-ray telescopes by means of numerical and analytical methods

    E-Print Network [OSTI]

    Spiga, D; Pareschi, G

    2015-01-01

    Future X-ray telescopes like SIMBOL-X will operate in a wide band of the X-ray spectrum (from 0.1 to 80 keV); these telescopes will extend the optical performances of the existing soft X-ray telescopes to the hard X-ray band, and in particular they will be characterized by a angular resolution (conveniently expressed in terms of HEW, Half-Energy- Width) less than 20 arcsec. However, it is well known that the microroughness of the reflecting surfaces of the optics causes the scattering of X-rays. As a consequence, the imaging quality can be severely degraded. Moreover, the X-ray scattering can be the dominant problem in hard X-rays because its relevance is an increasing function of the photon energy. In this work we consistently apply a numerical method and an analytical one to evaluate the X-ray scattering impact on the HEW of an X-ray optic, as a function of the photon energy: both methods can also include the effects of figure errors in determining the final HEW. A comparison of the results obtained with th...

  15. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    SciTech Connect (OSTI)

    Prilliman, Gerald Stephen

    2003-09-01

    The behavior of nanocrystals under extreme pressure was investigated using synchrotron x-ray diffraction. A major part of this investigation was the testing of a prototype synchrotron endstation on a bend magnet beamline at the Advanced Light Source for high pressure work using a diamond anvil cell. The experiments conducted and documented here helped to determine issues of efficiency and accuracy that had to be resolved before the construction of a dedicated ''super-bend'' beamline and endstation. The major conclusions were the need for a cryo-cooled monochromator and a fully remote-controllable pressurization system which would decrease the time to change pressure and greatly reduce the error created by the re-placement of the diamond anvil cell after each pressure change. Two very different types of nanocrystal systems were studied, colloidal iron oxide (Fe{sub 2}O{sub 3}) and thin film TiN/BN. Iron oxide nanocrystals were found to have a transition from the {gamma} to the {alpha} structure at a pressure strongly dependent on the size of the nanocrystals, ranging from 26 GPa for 7.2 nm nanocrystals to 37 GPa for 3.6 nm nanocrystals. All nanocrystals were found to remain in the {alpha} structure even after release of pressure. The transition pressure was also found, for a constant size (5.7 nm) to be strongly dependent on the degree of aggregation of the nanocrystals, increasing from 30 GPa for completely dissolved nanocrystals to 45 GPa for strongly aggregated nanocrystals. Furthermore, the x-ray diffraction pattern of the pressure induced {alpha} phase demonstrated a decrease in intensity for certain select peaks. Together, these observations were used to make a complete picture of the phase transition in nanocrystalline systems. The size dependence of the transition was interpreted as resulting from the extremely high surface energy of the {alpha} phase which would increase the thermodynamic offset and thereby increase the kinetic barrier to transition that must be overridden with pressure. The anomalous intensities in the x-ray diffraction patterns were interpreted as being the result of stacking faults, indicating that the mechanism of transition proceeds by the sliding of {gamma}(111) planes to form {alpha}(001) planes. The increasing transition pressure for more aggregated samples may be due to a positive activation volume, retarding the transition for nanocrystals with less excess (organic) volume available to them. The lack of a reverse transition upon decompression makes this interpretation more difficult because of the lack of an observable hysteresis, and it is therefore difficult to ascertain kinetic effects for certain. In the case TiN/BN nanocomposite systems, it was found that the bulk modulus (B{sub 0}) of the TiN nanoparticles was not correlated to the observed hardness or Young's modulus of the macroscopic thin film. This indicates that the origin of the observed super-hard nature of these materials is not due to any change in the Ti-N interatomic potential. Rather, the enhanced hardness must be due to nano-structural effects. It was also found that during pressurization the TiN nanoparticles developed a great deal of strain. This strain can be related to defects induced in individual nanoparticles which generates strain in adjacent particles due to the highly coupled nature of the system.

  16. In situ monitoring of the electrochemical absorption of deuterium into palladium by x-ray diffraction using synchrotron-wiggler radiation

    SciTech Connect (OSTI)

    Dominguez, D.D.; Hagans, P.L.; Skelton, E.F.; Qadri, S.B.; Nagel, D.J.

    1998-12-31

    With low energy x-rays, such as those from a Cu x-ray tube, only the outer few microns of a metallic sample can be probed. This low penetrating power prohibits structural studies from being carried out on the interior of an electrode in an electrochemical cell because of absorption by the cell material, electrodes and the electrolyte. The work described in this paper circumvents this problem by utilizing high energy, high brightness x-rays produced on the superconducting wiggler beam line, X-17C, at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The penetrating power of the higher energy x-rays allowed Pd diffraction spectra to be obtained in-situ on a 1 mm diameter Pd wire cathode during electrolysis of heavy water. Moreover, the beam (28 x 28 {micro}m in cross-section) allowed diffraction spectra to be acquired as a function of distance across the sample. Spectra were recorded in 50 {micro}m steps from the edge of the Pd wire to its core. This was done at 2 minute intervals as a function of electrolysis time. The {alpha}-{beta} phase transition induced in the Pd while deuterium was electrochemically absorbed was observed by monitoring the Pd-(422) diffraction peaks. Results allowed the diffusion rate and the diffusivity of deuterium atoms in the Pd wire to be determined. Other features of the structural changes associated with the absorption of deuterium into Pd are reported.

  17. Ultra-short wavelength x-ray system

    DOE Patents [OSTI]

    Umstadter, Donald (Ann Arbor, MI); He, Fei (Ann Arbor, MI); Lau, Yue-Ying (Potomac, MD)

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  18. Method for the fabrication of three-dimensional microstructures by deep X-ray lithography

    DOE Patents [OSTI]

    Sweatt, William C.; Christenson, Todd R.

    2005-04-05

    A method for the fabrication of three-dimensional microstructures by deep X-ray lithography (DXRL) comprises a masking process that uses a patterned mask with inclined mask holes and off-normal exposures with a DXRL beam aligned with the inclined mask holes. Microstructural features that are oriented in different directions can be obtained by using multiple off-normal exposures through additional mask holes having different orientations. Various methods can be used to block the non-aligned mask holes from the beam when using multiple exposures. A method for fabricating a precision 3D X-ray mask comprises forming an intermediate mask and a master mask on a common support membrane.

  19. Revisiting the blocking force test on ferroelectric ceramics using high energy x-ray diffraction

    SciTech Connect (OSTI)

    Daniel, L.; Hall, D. A.; Withers, P. J.; Koruza, J.; Webber, K. G.; King, A.

    2015-05-07

    The blocking force test is a standard test to characterise the properties of piezoelectric actuators. The aim of this study is to understand the various contributions to the macroscopic behaviour observed during this experiment that involves the intrinsic piezoelectric effect, ferroelectric domain switching, and internal stress development. For this purpose, a high energy diffraction experiment is performed in-situ during a blocking force test on a tetragonal lead zirconate titanate (PZT) ceramic (Pb{sub 0.98}Ba{sub 0.01}(Zr{sub 0.51}Ti{sub 0.49}){sub 0.98}Nb{sub 0.02}O{sub 3}). It is shown that the usual macroscopic linear interpretation of the test can also be performed at the single crystal scale, allowing the identification of local apparent piezoelectric and elastic properties. It is also shown that despite this apparent linearity, the blocking force test involves significant non-linear behaviour mostly due to domain switching under electric field and stress. Although affecting a limited volume fraction of the material, domain switching is responsible for a large part of the macroscopic strain and explains the high level of inter- and intra-granular stresses observed during the course of the experiment. The study shows that if apparent piezoelectric and elastic properties can be identified for PZT single crystals from blocking stress curves, they may be very different from the actual properties of polycrystalline materials due to the multiplicity of the physical mechanisms involved. These apparent properties can be used for macroscopic modelling purposes but should be considered with caution if a local analysis is aimed at.

  20. SU-E-I-01: A Fast, Analytical Pencil Beam Based Method for First Order X-Ray Scatter Estimation of Kilovoltage Cone Beam X-Rays

    SciTech Connect (OSTI)

    Liu, J; Bourland, J [Wake Forest University, Winston-salem, NC (United States)

    2014-06-01

    Purpose: To analytically estimate first-order x-ray scatter for kV cone beam x-ray imaging with high computational efficiency. Methods: In calculating first-order scatter using the Klein-Nishina formula, we found that by integrating the point-to-point scatter along an interaction line, a “pencil-beam” scatter kernel (BSK) can be approximated to a quartic expression when the imaging field is small. This BSK model for monoenergetic, 100keV x-rays has been verified on homogeneous cube and cylinder water phantoms by comparing with the exact implementation of KN formula. For heterogeneous medium, the water-equivalent length of a BSK was acquired with an improved Siddon's ray-tracing algorithm, which was also used in calculating pre- and post- scattering attenuation. To include the electron binding effect for scattering of low-kV photons, the mean corresponding scattering angle is determined from the effective point of scattered photons of a BSK. The behavior of polyenergetic x-rays was also investigated for 120kV x-rays incident to a sandwiched infinite heterogeneous slab phantom, with the electron binding effect incorporated. Exact computation and Monte Carlo simulations were performed for comparisons, using the EGSnrc code package. Results: By reducing the 3D volumetric target (o(n{sup 3})) to 2D pencil-beams (o(n{sup 2})), the computation expense can be generally lowered by n times, which our experience verifies. The scatter distribution on a flat detector shows high agreement between the analytic BSK model and exact calculations. The pixel-to-pixel differences are within (-2%, 2%) for the homogeneous cube and cylinder phantoms and within (0, 6%) for the heterogeneous slab phantom. However, the Monte Carlo simulation shows increased deviation of the BSK model toward detector periphery. Conclusion: The proposed BSK model, accommodating polyenergetic x-rays and electron binding effect at low kV, shows great potential in efficiently estimating the first-order scatter from small imaging fields. We are investigating more thoroughly to improve performance and explore applications.

  1. X-ray Diffraction and Molecular Dynamics Study of Medium-range Order in Ambient and Hot Water

    E-Print Network [OSTI]

    Congcong Huang; K. T. Wikfeldt; D. Nordlund; U. Bergmann; T. McQueen; J. Sellberg; L. G. M. Pettersson; A. Nilsson

    2011-07-24

    We have developed x-ray diffraction measurements with high energy-resolution and accuracy to study water structure at three different temperatures (7, 25 and 66 C) under normal pressure. Using a spherically curved Ge crystal an energy resolution better than 15 eV has been achieved which eliminates influence from Compton scattering. The high quality of the data allows a precise oxygen-oxygen pair correlation function (PCF) to be directly derived from the Fourier transform of the experimental data resolving shell structure out to ~12 {\\AA}, i.e. 5 hydration shells. Large-scale molecular dynamics (MD) simulations using the TIP4P/2005 force-field reproduce excellently the experimental shell-structure in the range 4-12 {\\AA} although less agreement is seen for the first peak in the PCF. The Local Structure Index [J. Chem. Phys. 104, 7671 (1996)] identifies a tetrahedral minority giving the intermediate-range oscillations in the PCF and a disordered majority providing a more featureless background in this range. The current study supports the proposal that the structure of liquid water, even at high temperatures, can be described in terms of a two-state fluctuation model involving local structures related to the high-density and low-density forms of liquid water postulated in the liquid-liquid phase transition hypothesis.

  2. Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts

    SciTech Connect (OSTI)

    Dodds, J.N. [Washington State Univ., Pullman, WA (United States). Dept. of Chemical Engineering]|[UNOCAL, Brea, CA (United States). Hartley Research Center

    1994-07-01

    Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na{sub 2}NiFe(CN){sub 6}, and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300{degrees}C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ``hot spot`` show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions.

  3. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    SciTech Connect (OSTI)

    Wu Di; Li Yuhua; Wong, Molly D.; Liu Hong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2013-05-15

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signal radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.

  4. TSDC and X-ray diffraction analysis of pure and malachite green sensitized polyvinyl carbazole films

    SciTech Connect (OSTI)

    Mishra, Pankaj Kumar; Kathal, Rachana [Dept. of Applied Physics, Amity School of Applied Sciences, Amity University Madhya Pradesh (India); Mishra, Jyoti [Dept. of Physics, Institute of Professional Studies Gwalior (M.P) (India); Pandey, Hariom [Deptt. of Engg .Physics. Integral Institute of information Technology and Management ,Gwalior, M.P (India); Khare, P. K. [Dept. of Post Graduate Studies and Research in Physics and Electronics, Rani Durgavati University Jabalpur (M.P) (India)

    2013-02-05

    This paper describes the method for investigating the electrical properties of high solids via the study of thermal relaxation effects and offers an alternative scheme to the conventional bridge methods or the current voltage temperature measurements. For standard TSD experiment, this is comparable to a dielectric loss measurement, the low equivalent frequency and high sensitivity (ability to detect dipole concentration). The activation energies found by initial rise method are 0.31 {+-} 0.02 eV for pure and 0.43 {+-} 0.03 eV for malachite green sensitized PVK thermoelectrets. The peak current charges and activation energy associated with the peaks are affected by concentration of malachite green and have been explained in terms of formation of charge transfer complexes and molecular aggregates. The microscopic origin of a given current spectrum is explained by comparing the predictions of the general theories regarding the main polarization processes with the experimental data.

  5. Dual x-ray fluorescence spectrometer and method for fluid analysis

    DOE Patents [OSTI]

    Wilson, Bary W.; Shepard, Chester L.

    2005-02-22

    Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.

  6. High-pressure behavior and thermoelastic properties of niobium studied by in situ x-ray diffraction

    SciTech Connect (OSTI)

    Zou, Yongtao E-mail: yongtaozou6@gmail.com; Li, Baosheng; Qi, Xintong; Wang, Xuebing; Chen, Ting; Li, Xuefei; Welch, David

    2014-07-07

    In situ synchrotron energy dispersive x-ray diffraction (XRD) experiments on Nb have been conducted at pressures up to 6.4 GPa and temperatures up to 1073 K. From the pressure-volume-temperature measurements, thermoelastic parameters were derived for the first time for Nb based on the thermal pressure (?P{sub th}) equation of state (EOS), modified high-T Birch-Murnaghan EOS, and Mie-Grüneisen-Debye EOS. With the pressure derivative of the bulk modulus K{sub T}{sup ´} fixed at 4.0, we obtained the ambient isothermal bulk modulus K{sub T0}=174(5) GPa, the temperature derivative of bulk modulus at constant pressure (?K{sub T}/?T){sub P}=-0.060(8) GPa K?¹ and at constant volume (?K{sub T}/?T){sub V}=-0.046(8) GPa K?¹, the volumetric thermal expansivity ?{sub T}(T)=2.3(3)×10??+0.3(2)×10??T (K?¹), as well as the pressure dependence of thermal expansion (??/?P){sub T}=(?2.0±0.4)×10?? K?¹ GPa?¹. Fitting the present data to the Mie-Grüneisen-Debye EOS with Debye temperature ??=276.6 K gives ??=1.27(8) and K{sub T0}=171(3) GPa at a fixed value of q=3.0. The ambient isothermal bulk modulus and Grüneisen parameter derived from this work are comparable to previously reported values from both experimental and theoretical studies. An in situ high-resolution, angle dispersive XRD study on Nb did not indicate any anomalous behavior related to pressure-induced electronic topological transitions at ~5 GPa as has been reported previously.

  7. Synthesis and X-ray diffraction study of palladium(II) 1,3-diphenyl-5-(benzothiazol-2-yl)formazanate

    SciTech Connect (OSTI)

    Zaidman, A. V., E-mail: biosphera@usfeu.ru; Pervova, I. G.; Rezinskikh, Z. G.; Lipunov, I. N. [Ural State Forest Engineering University (Russian Federation); Slepukhin, P. A., E-mail: slepukhin@ios.uran.ru [Russian Academy of Sciences, Postovsky Institute of Organic Synthesis, Ural Division (Russian Federation)

    2010-05-15

    The behavior of 1,3-diphenyl-5-(benzothiazol-2-yl)formazan as a bidentate ligand in the synthesis of the mononuclear palladium complex was investigated using slow diffusion. According to the X-ray diffraction study, the PdN4 coordination unit has a distorted square structure. The ligands form two six-membered chelate rings formed through the N1 and N4 atoms of the formazan fragment.

  8. Deciphering Ni sequestration in soil ferromanganese nodules by combining x-ray fluorescence, absorption and diffraction at micrometer scales of resolution

    SciTech Connect (OSTI)

    Manceau, Alain; Tamura, Nobumichi; Marcus, Matthew A.; MacDowell, Alastair A.; Celestre, Richard S.; Sublett, Robert E.; Sposito, Garrison; Padmore, Howard A.

    2002-11-06

    X-ray microprobes are among the most important new analytical techniques to emerge from third generation synchrotron facilities. Here we show how X-ray fluorescence, diffraction, and absorption can be used in parallel to determine the structural form of trace elements in heterogeneous matrices at the micrometer-scale of resolution. Scanning X-ray microfluorescence (microSXRF) and microdiffraction (microSXRD) first are used to identify the host solid phase by mapping the distributions of elements and solid species, respectively. Micro-extended X-ray absorption fine structure (microEXAFS) spectroscopy is then used to determine the mechanism of trace element binding by the host phase at the molecular scale. To illustrate the complementary application of these three techniques, we studied how nickel is sequestered in soil ferromanganese nodules, an overwhelmingly complex natural matrix consisting of submicrometer to nanometer sized particles with varying structures and chemical composition s. We show that nickel substitutes for Mn3+ in the manganese layer of the MnO2-Al(OH)3 mixed-layer oxide lithiophorite. The affinity of Ni for lithiophorite was characteristic of micromodules sampled from soils across the U.S.A. and Europe. Since many natural and synthetic materials are heterogeneous at nanometer to micrometer scales, the synergistic use of microSXRF, microSXRD and microEXAFS is expected to have broad applications to earth and materials science.

  9. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    SciTech Connect (OSTI)

    Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.; Chiaro, S.S.X.; Leitão, A.A.; Diniz, R.

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrational and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the ?-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.

  10. Vertical dispersion methods in x-ray spectroscopy of high temperature plasmas

    SciTech Connect (OSTI)

    Renner, O.; Missalla, T.; Foerster, E.

    1995-12-31

    General formulae for the applying the vertical dispersion principle in x-ray spectroscopy of multiple charged ions are summarized, the characteristics of the experimental schemes based on flat and bent crystals are discussed. The unique properties of the novel spectroscopic methods, i.e., their extremely high dispersion, high spectral and 1-D spatial resolution and good collection efficiency, make them very attractive for ultrahigh-resolution spectroscopy. The examples of successful use of the vertical dispersion modifications of the double-crystal and the Johann spectrometer in diagnostics of several types of laser-generated plasma are presented.

  11. Imaging method based on attenuation, refraction and ultra-small-angle-scattering of x-rays

    DOE Patents [OSTI]

    Wernick, Miles N.; Chapman, Leroy Dean; Oltulu, Oral; Zhong, Zhong

    2005-09-20

    A method for detecting an image of an object by measuring the intensity at a plurality of positions of a transmitted beam of x-ray radiation emitted from the object as a function of angle within the transmitted beam. The intensity measurements of the transmitted beam are obtained by a crystal analyzer positioned at a plurality of angular positions. The plurality of intensity measurements are used to determine the angular intensity spectrum of the transmitted beam. One or more parameters, such as an attenuation property, a refraction property and a scatter property, can be obtained from the angular intensity spectrum and used to display an image of the object.

  12. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOE Patents [OSTI]

    Chapline, Jr., George F. (Alamo, CA)

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  13. Fluctuation X-Ray Scattering

    SciTech Connect (OSTI)

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  14. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R. (Williamsburg, VA)

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  15. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect (OSTI)

    Mason, Harris E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walsh, Stuart D. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); DuFrane, Wyatt L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, Susan A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  16. High-Pressure Synchtron Radiation X-Ray Diffraction Studies of Pentaerythritol Tetranitrate C(CH[subscript 2]ONO[subscript 2 ])[subscript 4

    SciTech Connect (OSTI)

    Lipinska-Kalita, K.E.; Pravica, M.; Nicol, M.

    2006-02-02

    A high-pressure x-ray diffraction study of nanocrystalline pentaerythritol tetranitrate, C(CH{sub 2}ONO{sub 2}){sub 4}, (PETN), has been performed in a diamond-anvil cell at ambient temperature using synchrotron radiation. Pressure-induced alterations in the profiles of the diffraction lines, including their positions, widths and intensities were followed up to 30 GPa in a compressino cycle. The spectral changes in the diffraction patterns at low pressures indicated continuous densification of the tetragonal structure (space group P{bar 4}2{sub 1}c). The diffraction patterns confirmed that PETN compressed from ambient pressure to 7.4 GPa by 17%. At 8.2 GPa and above, several new diffraction lines appeared in the patterns. These lines suggest that the lattice undergoes an incomplete stress-induced structural transformation from the tetragonal to an orthorhombic structure (most probably space group P2{sub 1}22{sub 1}). The mixture of both structures appeared to persist to 30 GPa. The progressive broadening of the diffraction lines as the pressure increased beyond 10 GPa is attributed to the combined diffraction lines of a mixture of two coexisting PETN phases and inhomogeneous pressure distribution within the sample.

  17. A new background correction method in X-ray phase contrast imaging with Talbot-Lau interferometer

    E-Print Network [OSTI]

    Wang, Shenghao; Momose, Atsushi; Gao, Kun; Wang, Zhili; Zhang, Can; Han, Huajie; Yang, Meng; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-01-01

    X-ray Talbot-Lau interferometer has been used widely to conduct X-ray phase contrast imaging with a conventional low-brilliance X-ray source. Typically, in this X-ray phase contrast imaging technique, a background correction process has to be performed in order to obtain the pure signal of the sample. In this manuscript, we reported on an experimental research on the background correction strategies within this X-ray imaging technique, especially we introduced a new way to perform background correction, the key point of this new method is changing the initial phase of each pixel by a cyclic shift operation on the raw images collected by phase stepping scan. Experimental result and numerical analysis show that this new method could successfully realize background correction without error, moreover, a potential advantage of this new method is that its effective phase measuring range could be tuned flexibly in some degree for example to (-{\\pi}+3, {\\pi}+3], thus it would find potential advantage in certain case ...

  18. A scaled gradient projection method for the X-ray imaging of solar flares

    E-Print Network [OSTI]

    Bonettini, S

    2013-01-01

    In this paper we present a new optimization algorithm for the reconstruction of X-ray images of solar flares by means of the data collected by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The imaging concept of the satellite is based of rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade a greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of a scaled gradient projection method for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function, by means of a discrepancy principle accounting for the Poisson nature of the noise affecting th...

  19. Karyotyping human chromosomes by optical and x-ray ptychography methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shemilt, Laura; Verbanis, Ephanielle; Schwenke, Joerg; Estandarte, Ana  K.; Xiong, Gang; Harder, Ross; Parmar, Neha; Yusuf, Mohammed; Zhang, Fucai; Robinson, Ian  K.

    2015-02-01

    Sorting and identifying chromosomes, a process known as karyotyping, is widely used to detect changes in chromosome shapes and gene positions. In a karyotype the chromosomes are identified by their size and therefore this process can be performed by measuring macroscopic structural variables. Chromosomes contain a specific number of basepairs that linearly correlate with their size; therefore, it is possible to perform a karyotype on chromosomes using their mass as an identifying factor. Here, we obtain the first images, to our knowledge, of chromosomes using the novel imaging method of ptychography. We can use the images to measure the massmore »of chromosomes and perform a partial karyotype from the results. We also obtain high spatial resolution using this technique with synchrotron source x-rays.« less

  20. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  1. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns (CXIDB ID 20)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Starodub, D.

    2013-03-25

    This deposition includes the diffraction images generated by the paired polystyrene spheres in random orientations. These images were used to determine and phase the single particle diffraction volume from their autocorrelation functions.

  2. Purification, crystallization and preliminary X-ray diffraction analysis of the histone chaperone cia1 from fission yeast

    SciTech Connect (OSTI)

    Umehara, Takashi; Otta, Yumi; Tsuganezawa, Keiko; Matsumoto, Takehisa; Tanaka, Akiko; Horikoshi, Masami; Padmanabhan, Balasundaram; Yokoyama, Shigeyuki

    2005-11-01

    The histone chaperone cia1 from fission yeast has been overexpressed in E. coli, purified and crystallized using the vapour-diffusion method. In fission yeast, cia1{sup +} is an essential gene that encodes a histone chaperone, a homologue of human CIA (CCG1-interacting factor A) and budding yeast Asf1p (anti-silencing function-1), which both facilitate nucleosome assembly by interacting with the core histones H3/H4. The conserved domain (residues 1–161) of the cia1{sup +}-encoded protein was expressed in Escherichia coli, purified to near-homogeneity and crystallized by the sitting-drop vapour-diffusion method. The protein was crystallized in the monoclinic space group C2, with unit-cell parameters a = 79.16, b = 40.53, c = 69.79 Å, ? = 115.93° and one molecule per asymmetric unit. The crystal diffracted to beyond 2.10 Å resolution using synchrotron radiation.

  3. Rietveld Analysis of X-ray Powder Diffraction Patterns as a Potential Tool for the Identification of Impact-deformed Carbonate Rocks

    SciTech Connect (OSTI)

    Huson, Sarah A.; Foit, Franklin F.; Watkinson, A. J.; Pope, Michael C.

    2009-11-01

    Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.

  4. In situ apparatus for the study of clathrate hydrates relevant to solar system bodies using synchrotron X-ray diffraction and Raman spectroscopy

    E-Print Network [OSTI]

    Day, Sarah J; Evans, Aneurin; Parker, Julia E

    2015-01-01

    Clathrate hydrates are believed to play a significant role in various solar system environments, e.g. comets, and the surfaces and interiors of icy satellites, however the structural factors governing their formation and dissociation are poorly understood. We demonstrate the use of a high pressure gas cell, combined with variable temperature cooling and time-resolved data collection, to the in situ study of clathrate hydrates under conditions relevant to solar system environments. Clathrates formed and processed within the cell are monitored in situ using synchrotron X-ray powder diffraction and Raman spectroscopy. X-ray diffraction allows the formation of clathrate hydrates to be observed as CO2 gas is applied to ice formed within the cell. Complete conversion is obtained by annealing at temperatures just below the ice melting point. A subsequent rise in the quantity of clathrate is observed as the cell is thermally cycled. Four regions between 100-5000cm-1 are present in the Raman spectra that carry feature...

  5. Characterization of room temperature recrystallization kinetics in electroplated copper thin films with concurrent x-ray diffraction and electrical resistivity measurements

    SciTech Connect (OSTI)

    Treger, Mikhail; Noyan, I. C.; Witt, Christian; Cabral, Cyril; Murray, Conal; Jordan-Sweet, Jean; Rosenberg, Robert; Eisenbraun, Eric

    2013-06-07

    Concurrent in-situ four-point probe resistivity and high resolution synchrotron x-ray diffraction measurements were used to characterize room temperature recrystallization in electroplated Cu thin films. The x-ray data were used to obtain the variation with time of the integrated intensities and the peak-breadth from the Cu 111 and 200 reflections of the transforming grains. The variation of the integrated intensity and resistivity data with time was analyzed using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. For both 111-textured and non-textured electroplated Cu films, four-point probe resistivity measurements yielded shorter transformation times than the values obtained from the integrated intensities of the corresponding Cu 111 reflections. In addition, the JMAK exponents fitted to the resistivity data were significantly smaller. These discrepancies could be explained by considering the different material volumes from which resistivity and diffraction signals originated, and the physical processes which linked these signals to the changes in the evolving microstructure. Based on these issues, calibration of the resistivity analysis with direct structural characterization techniques is recommended.

  6. X-ray shearing interferometer

    DOE Patents [OSTI]

    Koch, Jeffrey A. (Livermore, CA)

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  7. Structure of N-acetyl-L-cysteine: X-ray (T = 295 K) and neutron (T = 16 K) diffraction studies

    E-Print Network [OSTI]

    Takusagawa, Fusao; Koetzle, Thomas F.; Kou, W. W. H.; Parthasarathy, R.

    1981-08-01

    . & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee. CHEN, C.-S. & PARTHASARATHY, R. (1978). Int. J. Pept. Protein Res. 11, 9-18. COPPENS, P. (1970) . Crystallographic Computing, edited by F. R. AHMED, pp. 2 5 5... 1096-1102. International Tables for X-ray Crystallography ( 1968) . VoL III, pp. 197-198. Birmingham: Kynoch Press. JOCELYN, P. C. (1972). Biochemistry of the SH Groups. New York: Academic Press. JOHNSON, C. K. (1976). ORTEP II. Report ORNL-5138, Oak...

  8. Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)

  9. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    SciTech Connect (OSTI)

    Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.; and others

    2014-08-15

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses.

  10. A practical global distortion correction method for an image intensifier based x-ray fluoroscopy system

    SciTech Connect (OSTI)

    Gutierrez, Luis F.; Ozturk, Cengizhan; McVeigh, Elliot R.; Lederman, Robert J. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Lab of Cardiac Energetics, National Institutes of Health, Bethesda, Maryland 20892 (United States); Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 and Biomedical Engineering Institute, Bogazici University, Istanbul (Turkey); Lab of Cardiac Energetics, National Institutes of Health, Bethesda, Maryland 20892 and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2008-03-15

    X-ray images acquired on systems with image intensifiers (II) exhibit characteristic distortion which is due to both external and internal factors. The distortion is dependent on the orientation of the II, a fact particularly relevant to II's mounted on C arms which have several degrees of freedom of motion. Previous descriptions of distortion correction strategies have relied on a dense sampling of the C-arm orientation space, and as such have been limited mostly to a single arc of the primary angle, {alpha}. We present a new method which smooths the trajectories of the segmented vertices of the grid phantom as a function of {alpha} prior to solving the two-dimensional warping problem. It also shows that the same residual errors of distortion correction could be achieved without fitting the trajectories of the grid vertices, but instead applying the previously described global method of distortion correction, followed by directly smoothing the values of the polynomial coefficients as functions of the C-arm orientation parameters. When this technique was applied to a series of test images at arbitrary {alpha}, the root-mean-square (RMS) residual error was 0.22 pixels. The new method was extended to three degrees of freedom of the C-arm motion: the primary angle, {alpha}; the secondary angle, {beta}; and the source-to-intensifier distance, {lambda}. Only 75 images were used to characterize the distortion for the following ranges: {alpha}, {+-}45 deg. ({delta}{alpha}=22.5 deg.); {beta}, {+-}36 deg. ({delta}{beta}=18 deg.); {lambda}, 98-118 cm ({delta}{lambda}=10 cm). When evaluated on a series of test images acquired at arbitrary ({alpha},{beta},{lambda}), the RMS residual error was 0.33 pixels. This method is targeted at applications such as guidance of catheter-based interventions and treatment planning for brachytherapy, which require distortion-corrected images over a large range of C-arm orientations.

  11. Structural phase transition of ternary dielectric SmGdO{sub 3}: Evidence from angle dispersive x-ray diffraction and Raman spectroscopic studies

    SciTech Connect (OSTI)

    Sharma, Yogesh E-mail: satya504@gmail.com Sahoo, Satyaprakash E-mail: satya504@gmail.com Misra, Pankaj; Pavunny, Shojan P.; Katiyar, Ram S. E-mail: satya504@gmail.com; Mishra, A. K.; Dwivedi, Abhilash; Sharma, S. M.

    2015-03-07

    High-pressure synchrotron based angle dispersive x-ray diffraction (ADXRD) studies were carried out on SmGdO{sub 3} (SGO) up to 25.7?GPa at room temperature. ADXRD results indicated a reversible pressure-induced phase transition from ambient monoclinic to hexagonal phase at ?8.9?GPa. The observed pressure-volume data were fitted with the third order Birch-Murnaghan equation of state yielding zero pressure bulk modulus B{sub 0}?=?132(22) and 177(9) GPa for monoclinic (B-type) and hexagonal (A-type) phases, respectively. Pressure dependent micro-Raman spectroscopy further confirmed the monoclinic to hexagonal phase transition at about 5.24?GPa. The mode Grüneisen parameters and pressure coefficients for different Raman modes corresponding to each individual phases of SGO were calculated using pressure dependent Raman mode analysis.

  12. Phase transitions in heated Sr{sub 2}MgTeO{sub 6} double perovskite oxide probed by X-ray diffraction and Raman spectroscopy

    SciTech Connect (OSTI)

    Manoun, Bouchaib Tamraoui, Y.; Lazor, P.; Yang, Wenge

    2013-12-23

    Double-perovskite oxide Sr{sub 2}MgTeO{sub 6} has been synthetized, and its crystal structure was probed by the technique of X-ray diffraction at room temperature. The structure is monoclinic, space group I2/m. Temperature-induced phase transitions in this compound were investigated by Raman spectroscopy up to 550?°C. Two low-wavenumber modes corresponding to external lattice vibrations merge at temperature of around 100?°C, indicating a phase transition from the monoclinic (I2/m) to the tetragonal (I4/m) structure. At 300?°C, changes in the slopes of temperature dependencies of external and O–Te–O bending modes are detected and interpreted as a second phase transition from the tetragonal (I4/m) to the cubic (Fm-3m) structure.

  13. In-situ x-ray diffraction study of the growth of highly strained epitaxial BaTiO{sub 3} thin films

    SciTech Connect (OSTI)

    Sinsheimer, J.; Callori, S. J.; Ziegler, B.; Bein, B.; Dawber, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States)] [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Chinta, P. V.; Ashrafi, A.; Headrick, R. L. [Department of Physics, Cook Physical Science Building, University of Vermont, Burlington, Vermont 05405 (United States)] [Department of Physics, Cook Physical Science Building, University of Vermont, Burlington, Vermont 05405 (United States)

    2013-12-09

    In-situ synchrotron x-ray diffraction was performed during the growth of BaTiO{sub 3} thin films on SrTiO{sub 3} substrates using both off-axis RF magnetron sputtering and pulsed laser deposition techniques. It was found that the films were ferroelectric during the growth process, and the presence or absence of a bottom SrRuO{sub 3} electrode played an important role in the growth of the films. Pulsed laser deposited films on SrRuO{sub 3} displayed an anomalously high tetragonality and unit volume, which may be connected to the previously predicted negative pressure phase of BaTiO{sub 3}.

  14. Magnetoelastics of a spin liquid : x-ray diffraction studies of Tb{sub 2}Ti{sub 2}O{sub 7} in pulsed magnetic fields.

    SciTech Connect (OSTI)

    Ruff, J. P. C.; Islam, Z.; Clancy, J. P.; Ross, K. A.; Nojiri, H.; Matsuda, Y. H.; Dabkowska, H. A.; Dabkowski, A. D.; Gaulin, B. D.; X-Ray Science Division; McMaster Univ.; Tohoku Univ.; Univ. of Tokyo; Canadian Inst. for Advanced Research; Brockhouse Inst. for Materials Research

    2010-08-13

    We report high resolution single crystal x-ray diffraction measurements of the frustrated pyrochlore magnet Tb{sub 2}Ti{sub 2}O{sub 7}, collected using a novel low temperature pulsed magnet system. This instrument allows characterization of structural degrees of freedom to temperatures as low as 4.4 K, and in applied magnetic fields as large as 30 T. We show that Tb{sub 2}Ti{sub 2}O{sub 7} manifests intriguing structural effects under the application of magnetic fields, including strongly anisotropic giant magnetostriction, a restoration of perfect pyrochlore symmetry in low magnetic fields, and ultimately a structural phase transition in high magnetic fields. It is suggested that the magnetoelastic coupling thus revealed plays a significant role in the spin liquid physics of Tb{sub 2}Ti{sub 2}O{sub 7} at low temperatures.

  15. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, W.K.; Hubbard, B.

    1999-02-09

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion is disclosed. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner`s operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system. 13 figs.

  16. Method and apparatus for analog signal conditioner for high speed, digital x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, William K. (1300 Mills St., Menlo Park, CA 94025); Hubbard, Bradley (Santa Cruz, CA)

    1999-01-01

    A signal processing system which accepts input from an x-ray detector-preamplifier and produces a signal of reduced dynamic range for subsequent analog-to-digital conversion. The system conditions the input signal to reduce the number of bits required in the analog-to-digital converter by removing that part of the input signal which varies only slowly in time and retaining the amplitude of the pulses which carry information about the x-rays absorbed by the detector. The parameters controlling the signal conditioner's operation can be readily supplied in digital form, allowing it to be integrated into a feedback loop as part of a larger digital x-ray spectroscopy system.

  17. Resonant Soft X-Ray Contrast Variation Methods as Composition-Specific Probes of Thin Polymer Film Structure

    E-Print Network [OSTI]

    Welch, Cynthia F.

    2008-01-01

    traditional x-ray and neutron scattering techniques is oftentechniques used in neutron scattering, which requiretraditional x-ray and neutron scattering techniques. 16, 32

  18. Spectral Resolution for Five-Element, Filtered, X-Ray Detector (XRD) Arrays Using the Methods of Backus and Gilbert

    SciTech Connect (OSTI)

    FEHL,DAVID LEE; BIGGS,F.; CHANDLER,GORDON A.; STYGAR,WILLIAM A.

    2000-01-17

    The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ({le}2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model.

  19. X-Ray diffraction and vibrational spectroscopic study of 2-chloro-N-{l_brace}4-[3-(2,5-dimethylphenyl)-3-methylcyclobutyl] -thiazol-2-yl{r_brace}-acetamide

    SciTech Connect (OSTI)

    Caliskan, Nezihe Guentepe, Feyizan; Yueksektepe, Cigdem; Cukurovali, Alaaddin; Bueyuekguengoer, Orhan

    2010-12-15

    The title compound C{sub 18}H{sub 21}ClN{sub 2}SO crystallizes with Z = 4 in space group P2{sub 1}/c. The structure of the title compound was characterized by {sup 1}H-NMR, {sup 13}C-NMR, IR and single crystal diffraction. There are an intermolecular N-H-O hydrogen bond and a C-H-{pi} interactions in crystal packing. In addition to the molecular geometry and packing obtained from X-ray experiment, the molecular geometry and vibrational frequencies of the title compound in ground state have been calculated using density functional theory method DFT (B3LYP) with 6-31G (d, p) basis set. Calculated frequencies, bond lengths, angles and dihedral angles are in good agreement with the corresponding experimental data.

  20. Mathematical simulation and X-ray diffraction investigation of the crystal structure of (R)-[(R)-o-(1-N,N-dimethylaminoethyl)phenyl]-2,5-dimethoxyphenyl(phenyl) methanol

    SciTech Connect (OSTI)

    Maleev, A. V., E-mail: andr_mal@mail.ru; Chesnova, A. V.; Potekhin, K. A. [Vladimir State Pedagogical University (Russian Federation)

    2006-05-15

    The crystal structure of (R)-[(R)-o-(1-N,N-dimethylaminoethyl)phenyl]-2,5-dimethoxyphenyl(phenyl) methanol is mathematically simulated by the discrete modeling of molecular packings. A complete set of possible model variants is analyzed using the proposed algorithm with the aim of choosing the appropriate models that can serve as starting models for solving and refining the crystal structure from X-ray diffraction data. The crystals of the compound under investigation are monoclinic, a = 9.268(2) A, b = 8.802(2) A, c = 13.176(3) A, {beta} = 94.01(3) deg., space group P2{sub 1}, and Z = 2. The structure is solved for a starting model calculated using the discrete modeling method and refined by the full-matrix least-squares procedure to R(F) = 0.037 and {omega}R(F{sup 2}) = 0.097.

  1. Studies of Dynamic Properties of Shock Compressed FCC Crystals by in Situ Dynamic X-Ray Diffraction

    SciTech Connect (OSTI)

    Baldis, H.; Kalantar, D.H.; Remington, B.A.; Belak, J.; Colvin, J.; Boehly, T.R.; Meyers, M.A.; Wark, J.S.; Paisley, D.; Hollan, B.; Lomdahl, P.; German, T.

    2001-08-14

    There were 5 laser experiments conducted to date in FY-01 under the ongoing project to study the response of single crystal fcc materials under shock compression. An additional 10 laser shots are planned for August, 2001. This work has focused on developing capability to record diffraction from multiple lattice planes during the passage of a shock through a thin foil of single crystal copper, while simultaneously performing separate shock sample recovery experiments to study the residual deformation structure in the recovered samples.

  2. Structural phase transition and magnetism in hexagonal SrMnO{sub 3} by magnetization measurements and by electron, x-ray, and neutron diffraction studies

    SciTech Connect (OSTI)

    Daoud-Aladine, A.; Chapon, L. C.; Knight, K. S.; Martin, C.; Hervieu, M.; Brunelli, M.; Radaelli, P. G.

    2007-03-01

    The structural and magnetic properties of the hexagonal four-layer form of SrMnO{sub 3} have been investigated by combining magnetization measurements, electron diffraction, and high-resolution synchrotron x-ray and neutron powder diffraction. Below 350 K, there is subtle structural phase transition from hexagonal symmetry (space group P6{sub 3}/mmc) to orthorhombic symmetry (space group C222{sub 1}) where the hexagonal metric is preserved. The second-order phase transition involves a slight tilting of the corner-sharing Mn{sub 2}O{sub 9} units composed of two face-sharing MnO{sub 6} octahedra and the associated displacement of Sr{sup 2+} cations. The phase transition is described in terms of symmetry-adapted displacement modes of the high symmetry phase. Upon further cooling, long range magnetic order with propagation vector k=(0,0,0) sets in below 300 K. The antiferromagnetic structure, analyzed using representation theory, shows a considerably reduced magnetic moment indicating the crucial role played by direct exchange between Mn centers of the Mn{sub 2}O{sub 9} units.

  3. Pyroelectric crystal-based X-ray diffractometer

    E-Print Network [OSTI]

    Fernandes, Louis Edward

    2007-01-01

    We investigate the use of an Amptek Cool-X X-ray Generator for an instructional tool in the physics of x-rays, as well as a source for x-rays for crystal diffraction experiments. The x-ray source is a solid-state two-phase ...

  4. Purification, crystallization and preliminary X-ray diffraction analysis of aspartate semialdehyde dehydrogenase (Rv3708c) from Mycobacterium tuberculosis

    SciTech Connect (OSTI)

    Vyas, Rajan; Panjikar, Santosh; Kishan, K. V. Radha; Tewari, Rupinder; Weiss, Manfred S.

    2008-03-01

    The enzyme aspartate semialdehyde dehydrogenase from M. tuberculosis has been expressed, purified and crystallized in two different crystal forms. Aspartate semialdehyde dehydrogenase from Mycobacterium tuberculosis (Asd, ASADH, Rv3708c), which is the second enzyme in the lysine/homoserine-biosynthetic pathways, has been expressed heterologously in Escherichia coli. The enzyme was purified using affinity and gel-filtration chromatographic techniques and crystallized in two different crystal forms. Preliminary diffraction data analysis suggested the presence of up to four monomers in the asymmetric unit of the orthorhombic crystal form A and of one or two monomers in the cubic crystal form B.

  5. Method and apparatus for digitally based high speed x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, W.K.; Hubbard, B.

    1997-11-04

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a ``hardwired`` processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer. 19 figs.

  6. Method and apparatus for digitally based high speed x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, William K. (1300 Mills St., Menlo Park, CA 94025); Hubbard, Bradley (Santa Cruz, CA)

    1997-01-01

    A high speed, digitally based, signal processing system which accepts input data from a detector-preamplifier and produces a spectral analysis of the x-rays illuminating the detector. The system achieves high throughputs at low cost by dividing the required digital processing steps between a "hardwired" processor implemented in combinatorial digital logic, which detects the presence of the x-ray signals in the digitized data stream and extracts filtered estimates of their amplitudes, and a programmable digital signal processing computer, which refines the filtered amplitude estimates and bins them to produce the desired spectral analysis. One set of algorithms allow this hybrid system to match the resolution of analog systems while operating at much higher data rates. A second set of algorithms implemented in the processor allow the system to be self calibrating as well. The same processor also handles the interface to an external control computer.

  7. Lensless imaging of nanoporous glass with soft X-rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, Joshua J.; Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Jacobsen, Chris

    2013-06-01

    Coherent soft X-ray diffraction has been used to image nanoporous glass structure in two dimensions using different methods. The merit of the reconstructions was judged using a new method of Fourier phase correlation with a final, refined image. The porous structure was found to have a much larger average size then previously believed.

  8. Purification, crystallization and preliminary X-ray diffraction analysis of pathogen-inducible oxygenase (PIOX) from Oryza sativa

    SciTech Connect (OSTI)

    Lloyd, Tracy; Krol, Adam; Campanaro, Danielle; Malkowski, Michael

    2006-04-01

    The heme-containing membrane-associated fatty-acid ?-dioxygenase pathogen-inducible oxygenase (PIOX) from O. sativa has been crystallized and a data set collected to 3.0 Å using a rotating-anode generator and R-AXIS IV detector. Pathogen-inducible oxygenase (PIOX) is a heme-containing membrane-associated protein found in monocotyledon and dicotyledon plants that utilizes molecular oxygen to convert polyunsaturated fatty acids into their corresponding 2R-hydroperoxides. PIOX is a member of a larger family of fatty-acid ?-dioxygenases that includes the mammalian cyclooxygenase enzymes cyclooxygenase 1 and 2 (COX-1 and COX-2). Single crystals of PIOX from rice (Oryza sativa) have been grown from MPD using recombinant protein expressed in Escherichia coli and subsequently extracted utilizing decyl maltoside as the solubilizing detergent. Crystals diffract to 3.0 Å resolution using a rotating-anode generator and R-AXIS IV detector, and belong to space group P1. Based on the Matthews coefficient and self-rotation function analyses, there are presumed to be four molecules in the asymmetric unit related by noncrystallographic 222 symmetry.

  9. Direct Observations of Sigma Phase Formation in Duplex Stainless Steels using In Situ Synchrotron X-Ray Diffraction

    SciTech Connect (OSTI)

    Elmer, J W; Palmer, T A; Specht, E D

    2006-07-03

    The formation and growth of sigma phase in 2205 duplex stainless steel was observed and measured in real time using synchrotron radiation during 10 hr isothermal heat treatments at temperatures between 700 C and 850 C. Sigma formed in near-equilibrium quantities during the isothermal holds, starting from a microstructure which contained a balanced mixture of metastable ferrite and austenite. In situ synchrotron diffraction continuously monitored the transformation, and these results were compared to those predicted by thermodynamic calculations. Differences between the calculated and measured amounts of sigma, ferrite and austenite suggest that the thermodynamic calculations underpredict the sigma dissolution temperature by approximately 50 C. The data were further analyzed using a modified Johnson-Mehl-Avrami (JMA) approach to determine kinetic parameters for sigma formation over this temperature range. The initial JMA exponent, n, at low fractions of sigma was found to be approximately 7.0, however, towards the end of the transformation, n decreased to values of approximately 0.75. The change in the JMA exponent was attributed to a change in the transformation mechanism from discontinuous precipitation with increasing nucleation rate, to growth of the existing sigma phase after nucleation site saturation occurred. Because of this change in mechanism, it was not possible to determine reliable values for the activation energy and pre-exponential terms for the JMA equation. While cooling back to room temperature, the partial transformation of austenite resulted in a substantial increase in the ferrite content, but sigma retained its high temperature value to room temperature.

  10. Some new schemes for producing high-accuracy elliptical X-ray mirrors by elastic bending

    SciTech Connect (OSTI)

    Padmore, H.A.; Howells, M.R.; Irick, S.; Renner, T.; Sandler, R.; Koo, Y.-M.

    1996-08-01

    Although x-ray micro-foci can be produced by a variety of diffractive methods, grazing incidence mirrors are the only route to an achromatic focus. In this paper we describe our efforts to produce elliptically shaped mirrors with the very high figure accuracy necessary for producing a micro-focus. The motivation for this work is provided by the need to produce achromatic foci for a range of applications ranging from tunable micro-focus x-ray photoelectron spectroscopy ({mu}-XPS) at soft x-ray energies to micro-focus white beam x-ray diffraction ({mu}-XRD) at hard x-ray energies. We describe the methodology of beam bending, a practical example of a system we have produced for {mu}-XRD, and results demonstrating the production of a surface with micro-radian figure accuracy.

  11. Synthesis, X-ray diffraction study and physico-chemical characterizations of KLaP{sub 4}O{sub 12}

    SciTech Connect (OSTI)

    Belam, W. Mechergui, J.

    2008-08-04

    Crystals of KLaP{sub 4}O{sub 12} have been synthesized by flux technique and characterized by single-crystal X-ray diffraction. This material crystallizes in the orthorhombic Cmc2{sub 1} space group with lattice parameters: a = 8.547(3) A, b = 11.668(1) A, c = 13.351(2) A, V = 1331.4(5) A{sup 3} and Z = 4. The crystal structure has been refined yielding a final R(F) = 0.015 and wR(F{sup 2})=0.039 for 1303 independent reflections. The three-dimensional framework with intersecting tunnels of KLaP{sub 4}O{sub 12} can be regarded as a succession of alternated [P{sub 4}O{sub 12}]{sup 4-} anionic and K{sup +}, La{sup 3+} cationic layers parallel to the (a and b) plane which are centered by the planes z = 0, 1/2 and 1/4, 3/4, respectively. The title compound has been also characterized by different physico-chemical techniques: IR, NMR and CI spectroscopies and DTA-TGA-DSC thermal analysis.

  12. Direct observation of intrinsic piezoelectricity of Pb(Zr,Ti)O{sub 3} by time-resolved x-ray diffraction measurement using single-crystalline films

    SciTech Connect (OSTI)

    Fujisawa, Takashi; Ehara, Yoshitaka; Yasui, Shintaro; Kamo, Takafumi; Funakubo, Hiroshi; Yamada, Tomoaki; Sakata, Osami

    2014-07-07

    Lead zirconate titanate, Pb(Zr,Ti)O{sub 3} or PZT, is one of the most widely investigated ferroelectric and piezoelectric materials due to its superior properties. However, the intrinsic properties of PZT have not been directly measured due to the lack of fabrication of single crystals even though a basic understanding of intrinsic properties has been of interest developing lead-free piezoelectric materials. We demonstrated the direct observation of the intrinsic piezoelectric property by means of the detection of electric-field induced crystal lattice distortion of thick Pb(Zr{sub 0.35}Ti{sub 0.65})O{sub 3} single-crystalline films with single polar-axis orientation and negligible residual strain using the time-resolved X-ray diffraction (XRD) together with the polarization response. Consequently, the effective converse piezoelectric response was experimentally revealed; hence, the electrostrictive coefficient, which is the conversion coefficient between the electrical and mechanical response, was determined. The obtained effective electrostrictive coefficient was 5.2–6.3?×?10{sup ?2} m{sup 4}/C{sup 2}, which agrees with theoretical prediction.

  13. Phase formation sequences in the silicon-phosphorous system : determined by in-situ synchrotron andj conventional x-ray diffraction measurements and predicted by a theoretical model.

    SciTech Connect (OSTI)

    Carlsson, J. R. A.; Clevenger, L.; Madsen, L. D.; Hultman, L.; Li, X.-H.; Jordan-Sweet, J.; Lavoie, C.; Roy, R. A.; Cabral, C., Jr.; Morales, G.; Ludwig, K. L.; Stephenson, G. B.; Hentzell, H. T. G.; Materials Science Division; Linkoeping Univ.; IBM T. J. Watson Research Center; Boston Univ.

    1997-01-01

    The phase formation sequences of Si-P alloy thin films with P concentrations between 20 and 44 at. % have been studied. The samples were annealed at progressively higher temperatures and the newly formed phases were identified both after each annealing step by ex-situ conventional X-ray diffraction (XRD) and continuously by in-situ synchrotron XRD. It was found that Si was the only phase to form in a sample with 20 at.% P since the evaporation of P at the crystallization temperature prevented phosphides from forming. For a sample with 30at.% P, the Si{sub 12}P{sub 5} phase formed prior to the SiP phase. For samples with 35 and 44at.%P, the formation of SiP preceded the formation of the Si{sub 12}P{sub 5} phase. The experimentally determined phase formation sequences were successfully predicted by a proposed model. According to the model, the first and second crystalline phases to form are those with the lowest and next-lowest crystallization temperatures of the competing compounds predicted by the Gibbs free-energy diagram.

  14. Crystallization and preliminary X-ray diffraction analysis of an anti-H(O) lectin from Lotus tetragonolobus seeds

    SciTech Connect (OSTI)

    Moreno, Frederico Bruno Mendes Batista; Martil, Daiana Evelin [Programa de Pós-graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000 (Brazil); Cavada, Benildo Sousa [BioMol-Lab UFC, Caixa Postal 6043, 60.455-970, Fortaleza-CE (Brazil); Azevedo, Walter Filgueira Jr de, E-mail: walter.junior@pucrs.br [Faculdade de Biociências-PUCRS, Av. Ipiranga 6681, Porto Alegre-RS, CEP 90619-900 (Brazil); Programa de Pós-graduação em Biofísica Molecular, Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000 (Brazil)

    2006-07-01

    The seed lectin from Lotus tetragonolobus (LTA) has been crystallized. The best crystals grew over several days and were obtained using the vapour-diffusion method at a constant temperature of 293 K. The seed lectin from Lotus tetragonolobus (LTA) has been crystallized. The best crystals grew over several days and were obtained using the vapour-diffusion method at a constant temperature of 293 K. A complete structural data set was collected at 2.00 Å resolution using a synchrotron-radiation source. LTA crystals were found to be monoclinic, belonging to space group P2{sub 1}, with unit-cell parameters a = 68.89, b = 65.83, c = 102.53 Å, ? = ? = 90, ? = 92°. Molecular replacement yielded a solution with a correlation coefficient and R factor of 34.4 and 51.6%, respectively. Preliminary analysis of the molecular-replacement solution indicates a new quaternary association in the LTA structure. Crystallographic refinement is under way.

  15. Instrument and method for focusing x rays, gamma rays, and neutrons

    DOE Patents [OSTI]

    Smither, R.K.

    1982-03-25

    A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.

  16. A real-time regional adaptive exposure method for saving dose-area product in x-ray fluoroscopy

    SciTech Connect (OSTI)

    Burion, Steve; Funk, Tobias; Speidel, Michael A.

    2013-05-15

    Purpose: Reduction of radiation dose in x-ray imaging has been recognized as a high priority in the medical community. Here the authors show that a regional adaptive exposure method can reduce dose-area product (DAP) in x-ray fluoroscopy. The authors' method is particularly geared toward providing dose savings for the pediatric population. Methods: The scanning beam digital x-ray system uses a large-area x-ray source with 8000 focal spots in combination with a small photon-counting detector. An imaging frame is obtained by acquiring and reconstructing up to 8000 detector images, each viewing only a small portion of the patient. Regional adaptive exposure was implemented by varying the exposure of the detector images depending on the local opacity of the object. A family of phantoms ranging in size from infant to obese adult was imaged in anteroposterior view with and without adaptive exposure. The DAP delivered to each phantom was measured in each case, and noise performance was compared by generating noise arrays to represent regional noise in the images. These noise arrays were generated by dividing the image into regions of about 6 mm{sup 2}, calculating the relative noise in each region, and placing the relative noise value of each region in a one-dimensional array (noise array) sorted from highest to lowest. Dose-area product savings were calculated as the difference between the ratio of DAP with adaptive exposure to DAP without adaptive exposure. The authors modified this value by a correction factor that matches the noise arrays where relative noise is the highest to report a final dose-area product savings. Results: The average dose-area product saving across the phantom family was (42 {+-} 8)% with the highest dose-area product saving in the child-sized phantom (50%) and the lowest in the phantom mimicking an obese adult (23%). Conclusions: Phantom measurements indicate that a regional adaptive exposure method can produce large DAP savings without compromising the noise performance in the image regions with highest noise.

  17. Phase-based x-ray scattering—A possible method to detect cancer cells in a very early stage

    SciTech Connect (OSTI)

    Feye-Treimer, U. Treimer, W.

    2014-05-15

    Purpose: This theoretical work contains a detailed investigation of the potential and sensitivity of phase-based x-ray scattering for cancer detection in biopsies if cancer is in a very early stage of development. Methods: Cancer cells in their early stage of development differ from healthy ones mainly due to their faster growing cell nuclei and the enlargement of their densities. This growth is accompanied by an altered nucleus–plasma relation for the benefit of the cell nuclei, that changes the physical properties especially the index of refraction of the cell and the one of the cell nuclei. Interaction of radiation with matter is known to be highly sensitive to small changes of the index of refraction of matter; therefore a detection of such changes of volume and density of cell nuclei by means of high angular resolved phase-based scattering of x rays might provide a technique to distinguish malignant cells from healthy ones ifthe cell–cell nucleus system is considered as a coherent phase shifting object. Then one can observe from a thin biopsy which represents a monolayer of cells (no multiple scattering) that phase-based x-ray scattering curves from healthy cells differ from those of cancer cells in their early stage of development. Results: Detailed calculations of x-ray scattering patterns from healthy and cancer cell nuclei yield graphs and numbers with which one can distinguish healthy cells from cancer ones, taking into account that both kinds of cells occur in a tissue within a range of size and density. One important result is the role and the influence of the (lateral) coherence width of the radiation on the scattering curves and the sensitivity of phase-based scattering for cancer detection. A major result is that a larger coherence width yields a larger sensitivity for cancer detection. Further import results are calculated limits for critical sizes and densities of cell nuclei in order to attribute the investigated tissue to be healthy or diseased. Conclusions: With this proposed method it should be in principle possible to detect cancer cells in apparently healthy tissues in biopsies and/or in samples of the far border region of abscised or excised tissues. Thus this method could support established methods in diagnostics of cancer-suspicious samples.

  18. Hidden Superlattice in Tl2(SC6H4S) and Tl2(SeC6H4Se) Solved from Powder X-ray Diffraction

    SciTech Connect (OSTI)

    K Stone; D Turner; M Singh; T Vaid; P Stephens

    2011-12-31

    The crystal structures of the isostructural title compounds poly[({mu}-benzene-1,4-dithiolato)dithallium], Tl{sub 2}(SC{sub 6}H{sub 4}S), and poly[({mu}-benzene-1,4-diselenolato)dithallium], Tl{sub 2}(SeC{sub 6}H{sub 4}Se), were solved by simulated annealing from high-resolution synchrotron X-ray powder diffraction. Rietveld refinements of an initial structure with one formula unit per triclinic cell gave satisfactory agreement with the data, but led to a structure with impossibly close non-bonded contacts. A disordered model was proposed to alleviate this problem, but an alternative supercell structure leads to slightly improved agreement with the data. The isostructural superlattice structures were confirmed for both compounds through additional data collection, with substantially better counting statistics, which revealed the presence of very weak superlattice peaks not previously seen. Overall, each structure contains Tl-S or Tl-Se two-dimensional networks, connected by phenylene bridges. The sulfur (or selenium) coordination sphere around each thallium is a highly distorted square pyramid or a 'see-saw' shape, depending upon how many Tl-S or Tl-Se interactions are considered to be bonds. In addition, the two compounds contain pairs of Tl{sup I} ions that interact through a closed-shell 'thallophilic' interaction: in the sulfur compound there are two inequivalent pairs of Tl atoms with Tl-Tl distances of 3.49 and 3.58 {angstrom}, while in the selenium compound those Tl-Tl interactions are at 3.54 and 3.63 {angstrom}.

  19. Cation Movements during Dehydration and NO2 Desorption in a Ba-Y,FAU zeolite: an in situ Time-resolved X-ray Diffraction Study

    SciTech Connect (OSTI)

    Wang, Xianqin; Hanson, Jonathan C.; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles HF

    2013-02-28

    Synchrotron-based in situ time-resolved X-ray diffraction and Rietveld analysis were used to probe the interactions between BaY, FAU zeolite frameworks and H2O or NO2 molecules. These results provided information about the migration of the Ba2+ cations in the zeolite framework during dehydration and during NO2 adsorption/desorption processes in a water free zeolite. In the hydrated structure water molecules form four double rings of hexagonal ice-like clusters [(H2O)6] in the 12-ring openings of the super-cage. These water rings interacted with the cations and the zeolite framework through four cation/water clusters centered over the four 6-membered rings of the super-cage (site II). Interpenetrating tetrahedral water clusters [(H2O)4] and tetrahedral Ba+2 cation clusters were observed in the sodalite cage. Consistent with the reported FT-IR results, three different ionic NOx species (NO+, NO+-NO2, and NO3-) were observed following NO2 adsorption by the dehydrated Ba-Y,FAU zeolite. The structure of the water and the NOx species were correlated with the interactions between the adsorbates, the cations, and the framework. The population of Ba2+ ions at different cationic positions strongly depended on the amount of bound water or NOx species. Both dehydration and NO2 adsorption/desorption resulted in facile migration of Ba2+ ions among the different cationic positions. Data obtained in this work have provided direct evidence for the Ba2+ cation migration to accommodate the binding of gas molecules. This important feature may play a pivotal role in the strong binding of NO2 to Ba-Y,FAU zeolite, a prerequisite for high catalytic activity in lean NOx reduction catalysis.

  20. Spectroscopic and X-ray diffraction investigation of the behavior of hanksite and tychite at high pressures, and a model for the compressibility of sulfate minerals

    E-Print Network [OSTI]

    Palaich, SEM; Manning, CE; Schauble, E; Kavner, A

    2013-01-01

    Physics and Chemistry of Minerals, 37, 5, 265–282. Chen,and Smith, G.I. (1965) Mineral equilibria in the Searlesstudy of the behavior of mineral barite by X?ray dif-

  1. Methods for assisting recovery of damaged brain and spinal cord using arrays of X-Ray microplanar beams

    DOE Patents [OSTI]

    Dilmanian, F. Avraham (Yaphank, NY); McDonald, III, John W. (Baltimore, MD)

    2007-12-04

    A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.

  2. Methods for assisting recovery of damaged brain and spinal cord using arrays of X-ray microplanar beams

    DOE Patents [OSTI]

    Dilmanian, F. Avraham; McDonald, III, John W.

    2007-01-02

    A method of assisting recovery of an injury site of brain or spinal cord injury includes providing a therapeutic dose of X-ray radiation to the injury site through an array of parallel microplanar beams. The dose at least temporarily removes regeneration inhibitors from the irradiated regions. Substantially unirradiated cells surviving between the microplanar beams migrate to the in-beam irradiated portion and assist in recovery. The dose may be administered in dose fractions over several sessions, separated in time, using angle-variable intersecting microbeam arrays (AVIMA). Additional doses may be administered by varying the orientation of the microplanar beams. The method may be enhanced by injecting stem cells into the injury site.

  3. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    SciTech Connect (OSTI)

    Belley, Matthew D.; Wang, Chu [Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States)] [Medical Physics Graduate Program, Duke University Medical Center, Durham, North Carolina 27705 (United States); Nguyen, Giao; Gunasingha, Rathnayaka [Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710 (United States); Chao, Nelson J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 and Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 and Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Chen, Benny J. [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710 (United States); Dewhirst, Mark W. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)] [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Yoshizumi, Terry T., E-mail: terry.yoshizumi@duke.edu [Duke Radiation Dosimetry Laboratory, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-03-15

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.

  4. Temperature, pressure, and size dependence of Pd-H interaction in size selected Pd-Ag and Pd-Cu alloy nanoparticles: In-situ X-ray diffraction studies

    SciTech Connect (OSTI)

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.

    2014-03-21

    In this study, in-situ X-ray diffraction has been carried out to investigate the effect of temperature and pressure on hydrogen induced lattice parameter variation in size selected Pd-Ag and Pd-Cu alloy nanoparticles. The nanoparticles of three different mobility equivalent diameters (20, 40, and 60?nm) having a narrow size distribution were prepared by gas phase synthesis method. In the present range of temperature (350?K to 250?K) and pressure (10{sup ?4} to 100 millibars), no ? (H/Pd???0.03) ? ? (H/Pd???0.54) phase transition is observed. At temperature higher than 300?°C or pressure lower than 25 millibars, there is a large difference in the rate at which lattice constant varies as a function of pressure and temperature. Further, the lattice variation with temperature and pressure is also observed to depend upon the nanoparticle size. At lower temperature or higher pressure, size of the nanoparticle seems to be relatively less important. These results are explained on the basis of the relative dominance of physical absorption and diffusion of H in Pd alloy nanoparticles at different temperature and pressure. In the present study, absence of ? ? ? phase transition points towards the advantage of using Pd-alloy nanoparticles in applications requiring long term and repeated hydrogen cycling.

  5. Crystallization and preliminary X-ray diffraction studies of tetrameric malate dehydrogenase from the novel Antarctic psychrophile Flavobacterium frigidimaris KUC-1

    SciTech Connect (OSTI)

    Fujii, Tomomi [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Oikawa, Tadao; Muraoka, Ikuo [Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680 (Japan); Soda, Kenji [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680 (Japan); Hata, Yasuo, E-mail: hata@scl.kyoto-u.ac.jp [Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2007-11-01

    A psychrophilic malate dehydrogenase from the novel Antarctic bacterium F. frigidimaris KUC-1 was crystallized using the hanging-drop vapour-diffusion method. The crystals contained one tetrameric molecule per asymmetric unit. The best crystal diffracted to 1.8 Å resolution. Flavobacterium frigidimaris KUC-1 is a novel psychrotolerant bacterium isolated from Antarctic seawater. Malate dehydrogenase (MDH) is an essential metabolic enzyme in the citric acid cycle and has been cloned, overexpressed and purified from F. frigidimaris KUC-1. In contrast to the already known dimeric form of MDH from the psychrophile Aquaspirillium arcticum, F. frigidimaris MDH exists as a tetramer. It was crystallized at 288 K by the hanging-drop vapour-diffusion method using ammonium sulfate as the precipitating agent. The crystal diffracted to a maximum resolution of 1.80 Å. It contains one tetrameric molecule in the asymmetric unit.

  6. X-ray microscopy. Beyond ensemble averages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ice, Gene E.; Budai, John D.

    2015-06-23

    This work exemplifies emerging tools to characterize local materials structure and dynamics, made possible by powerful X-ray synchrotron and transmission electron microscopy methods.

  7. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOE Patents [OSTI]

    Parker, Sherwood (Berkeley, CA)

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  8. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOE Patents [OSTI]

    Parker, S.

    1995-10-24

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.

  9. Structure of a B{sub 6}-like phase formed from bent-core liquid crystals determined by microbeam x-ray diffraction

    SciTech Connect (OSTI)

    Kang, Sungmin; Tokita, Masatoshi; Takanishi, Yoichi; Takezoe, Hideo; Watanabe, Junji

    2007-10-15

    We studied the structure of the B{sub x} phase formed from the short terminal homolog, 1,3-(4-bromobenzene) bis[4-(4-n-butoxyphenylliminomethyl)benzoate] (4Br-P-4-O-PIMB), by focusing a microbeam of x ray on the well-developed fan-shaped texture. From the highly oriented x-ray patterns detected at the two states of DC-ON and DC-OFF, the B{sub x} structure was definitely illustrated. It is a kind of frustrated one similar to the B{sub 1} phase: the molecules lie perpendicularly to the layer, and the frustration takes place perpendicularly to the bent direction. Unlike in the B{sub 1} phase, however, the size of the resulting antidomain is not definite, but fluctuates from position to position as observed in the B{sub 6} phase.

  10. Standard test method for uranium analysis in natural and waste water by X-ray fluorescence

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This test method applies for the determination of trace uranium content in waste water. It covers concentrations of U between 0.05 mg/L and 2 mg/L. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. A theoretical comparison of x-ray angiographic image quality using energy-dependent and conventional subtraction methods

    SciTech Connect (OSTI)

    Tanguay, Jesse; Kim, Ho Kyung; Cunningham, Ian A.

    2012-01-15

    Purpose: X-ray digital subtraction angiography (DSA) is widely used for vascular imaging. However, the need to subtract a mask image can result in motion artifacts and compromised image quality. The current interest in energy-resolving photon-counting (EPC) detectors offers the promise of eliminating motion artifacts and other advanced applications using a single exposure. The authors describe a method of assessing the iodine signal-to-noise ratio (SNR) that may be achieved with energy-resolved angiography (ERA) to enable a direct comparison with other approaches including DSA and dual-energy angiography for the same patient exposure. Methods: A linearized noise-propagation approach, combined with linear expressions of dual-energy and energy-resolved imaging, is used to describe the iodine SNR. The results were validated by a Monte Carlo calculation for all three approaches and compared visually for dual-energy and DSA imaging using a simple angiographic phantom with a CsI-based flat-panel detector. Results: The linearized SNR calculations show excellent agreement with Monte Carlo results. While dual-energy methods require an increased tube heat load of 2x to 4x compared to DSA, and photon-counting detectors are not yet ready for angiographic imaging, the available iodine SNR for both methods as tested is within 10% of that of conventional DSA for the same patient exposure over a wide range of patient thicknesses and iodine concentrations. Conclusions: While the energy-based methods are not necessarily optimized and further improvements are likely, the linearized noise-propagation analysis provides the theoretical framework of a level playing field for optimization studies and comparison with conventional DSA. It is concluded that both dual-energy and photon-counting approaches have the potential to provide similar angiographic image quality to DSA.

  12. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se

    SciTech Connect (OSTI)

    Fang Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S.; Badano, Aldo

    2012-01-15

    Purpose: The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. Methods: A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Results: Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. Conclusions: The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.

  13. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  14. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  15. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  16. Comparison of the TIP4P-2005, SWM4-DP and BK3 interaction potentials of liquid water with respect to their consistency with neutron and X-ray diffraction data of pure water

    E-Print Network [OSTI]

    Z. Steinczinger; L. Pusztai

    2013-12-16

    Following a fairly comprehensive study on popular interaction potentials of water (Pusztai et al., J. Chem. Phys., 2008, 129, 184103), here two more recent polarizable potential sets, SWM4-DP (Lamoureux et al., Chem. Phys. Lett., 2006, 418, 245) and BK3 (Kiss et al., J. Chem. Phys., 2013, 138, 204507) are compared to the TIP4P-2005 water potential (Abascal et al., J. Chem. Phys., 2005, 123, 234505) that had previously appeared to be most favoravble. The basis of comparison was the compatibility with the results of neutron and X-ray diffraction experiments on pure water, using the scheme applied by Pusztai et al. (2008). The scheme combines the experimental total scattering structure factors (TSSF) and partial radial distribution functions (PRDF) from molecular dynamics simulations in a single structural model. Goodness-of-fit values to the O-O, O-H and H-H simulated PRDF-s and to the experimental neutron and X-ray TSSF provided a measure that can characterize the level of consistency between interaction potentials and diffraction experiments. Among the sets of partial RDF-s investigated here, the ones corresponding to the SWM4-DP potential parameters have proven to be the most consistent with the particular diffraction results taken for the present study, by a hardly significant margin ahead of BK3. Perhaps more importantly, it is shown that the three sets of potential parameters produce nearly equivalent PRDF-s that may all be made consistent with diffraction data at a very high level. The largest differences can be detected in terms of the O-O partial radial distribution function.

  17. Compound refractive X-ray lens

    DOE Patents [OSTI]

    Nygren, David R. (Berkeley, CA); Cahn, Robert (Walnut Creek, CA); Cederstrom, Bjorn (Traellborg, SE); Danielsson, Mats (Stocksund, SE); Vestlund, Jonas (Stockholm, SE)

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  18. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  19. Measuring the depth profiles of strain/composition in AlGaN-graded layer by high-resolution x-ray diffraction

    SciTech Connect (OSTI)

    Kuchuk, A. V.; Stanchu, H. V.; Kladko, V. P.; Belyaev, A. E.; Li, Chen; Ware, M. E.; Mazur, Yu. I.; Salamo, G. J.

    2014-12-14

    Here, we demonstrate X-ray fitting through kinematical simulations of the intensity profiles of symmetric reflections for epitaxial compositionally graded layers of AlGaN grown by molecular beam epitaxy pseudomorphically on [0001]-oriented GaN substrates. These detailed simulations depict obvious differences between changes in thickness, maximum concentration, and concentration profile of the graded layers. Through comparison of these simulations with as-grown samples, we can reliably determine these parameters, most important of which are the profiles of the concentration and strain which determine much of the electrical properties of the film. In addition to learning about these parameters for the characterization of thin film properties, these fitting techniques create opportunities to calibrate growth rates and control composition profiles of AlGaN layers with a single growth rather than multiple growths as has been done traditionally.

  20. Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility

    SciTech Connect (OSTI)

    Salah, Wa'el; Sanchez del Rio, M.; Hoorani, H.

    2009-09-15

    The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x10{sup 11} photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

  1. Oriented polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) films by Langmuir–Blodgett deposition: A synchrotron X-ray diffraction study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lindemann, W. R.; Philiph, R. L.; Chan, D. W. W.; Ayers, C. T.; Perez, E. M.; Beckman, S. P.; Strzalka, J.; Chaudhary, S.; Vaknin, D.

    2015-10-07

    Langmuir–Blodgett films of polyvinylidene fluoride trifluoroethylene – P(VDF–TrFE)-copolymers possess substantially improved electrocaloric and pyroelectric properties, when compared with conventionally spin-cast films. In order to rationalize this, we prepared single-layered films of P(VDF–TrFE) (70:30) using both deposition techniques. Grazing incidence wide-angle X-ray scattering (GIWAXS), reveals that Langmuir–Blodgett deposited films have a higher concentration of the ferroelectric ?-phase crystals, and that these films are highly oriented with respect to the substrate. Based on these observations, we suggest alternative means of deposition, which may substantially enhance the electrocaloric effect in P(VDF–TrFE) films. As a result, this development has significant implications for the potentialmore »use of P(VDF–TrFE) in solid-state refrigeration.« less

  2. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    SciTech Connect (OSTI)

    Loo Jr., Billy W.

    2000-06-09

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  3. System for phase-contrast x-ray radiography using X pinch radiation and a method thereof

    DOE Patents [OSTI]

    Chandler, Katherine (Ithaca, NY); Chelkovenko, Tatiana (Moscow, RU); Hammer, David (Ithaca, NY); Pikuz, Sergei (Moscow, RU); Sinars, Daniel (Albuquerque, NM); Song, Byungmoo (Ithaca, NY)

    2007-11-06

    A radiograph system with an anode plate, a cathode plate, and a power source coupled to said anode plate and the cathode plate. At least two wires coupled between the anode plate and the cathode plate provide a configuration to form an X-pinch having a photon source size of less than five microns at energies above 2.5 keV. Material at the configuration forming the X-pinch vaporizes upon application of a suitable current to the wires forming a dense hot plasma and emitting a single x-ray pulse with sufficient photons having energies in the range of from about 2.5 keV to about 20 keV to provide a phase contrast image of an object in the path of the photons. Multiple simultaneous images may be formed of a plurality of objects. Suitable filters and x-ray detectors are provided.

  4. Experimental Study of Polarization Clusters in 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 Relaxor Ferroelectrics by means of Synchrotron Radiation X-ray Diffraction

    SciTech Connect (OSTI)

    Guo Zhi; Tai Renzhong; Xu Hongjie; Gao Chen; Pan Guoqiang; Hu Chuansheng; Fan Rong; Li Ruipeng; Luo Haosu; Lin Di; Namikawa, Kazumichi

    2007-01-19

    X-ray diffraction has been conducted to study the microscopic-scale structures for 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 relaxor ferroelectrics in a high external DC field during phase transition. Clear quasi-periodic structures were observed along <111> and <1-11> directions near Tc induced by the high external DC field. The formation of these periodic structures are interpreted as a type of Coulomb interaction among adjacent polar clusters. The cluster size was estimated to be 17nm. It was also found that the dominating interaction direction among clusters (periodic direction) were changeable among <111> and <1-11> as temperature changed.

  5. Absence of Structural Impact of Noble Nanoparticles on P3HT: PCBM Blends for Plasmon Enhanced Bulk-Heterojunction Organic Solar Cells Probed by Synchrotron Grazing Incidence X-Ray Diffraction

    E-Print Network [OSTI]

    Samuele Lilliu; Mejd Alsari; Oier Bikondoa; J. Emyr Macdonald; Marcus S. Dahlem

    2014-10-18

    The incorporation of noble metal nanoparticles, displaying localized surface plasmon resonance, in the active area of donor-acceptor bulk-heterojunction organic photovoltaic devices is an industrially compatible light trapping strategy, able to guarantee better absorption of the incident photons and give an efficiency improvement between 12% and 38%. In the present work, we investigate the effect of Au and Ag nanoparticles blended with P3HT: PCBM on the P3HT crystallization dynamics by synchrotron grazing incidence X-ray diffraction. We conclude that the presence of (1) 80nm Au, (2) mix of 5nm, 50nm, 80nm Au, (3) 40nm Ag, and (4) 10nm, 40nm, 60nm Ag colloidal nanoparticles, at different concentrations below 0.3 wt% in P3HT: PCBM blends, does not affect the behaviour of the blends themselves.

  6. In-situ synchrotron energy-dispersive x-ray diffraction study of thin Pd foils with Pd:D and Pd:H concentrations up to 1:1

    SciTech Connect (OSTI)

    Knies, D. L.; Grabowski, K. S.; Dominguez, D. D.; Qadri, S. B.; Hubler, G. K.; Violante, V.; Hu, J. Z.; He, J. H.

    2012-10-15

    Time resolved, in-situ, energy dispersive x-ray diffraction was performed in an electrolysis cell during electrochemical loading of palladium foil cathodes with hydrogen and deuterium. Concentrations of H:Pd (D:Pd) up to 1:1 in 0.1 M LiOH (LiOD) in H{sub 2}O (D{sub 2}O) electrolyte were obtained, as determined by both the Pd lattice parameter and cathode resistivity. In addition, some indications on the kinetics of loading and deloading of hydrogen from the Pd surface were obtained. The alpha-beta phase transformations were clearly delineated but no new phases at high concentration were determined.

  7. Crystal structure of fluorite-related Ln{sub 3}SbO{sub 7} (Ln=La–Dy) ceramics studied by synchrotron X-ray diffraction and Raman scattering

    SciTech Connect (OSTI)

    Siqueira, K.P.F.; Borges, R.M.; Granado, E.; Malard, L.M.; Paula, A.M. de; Moreira, R.L.; Bittar, E.M.; Dias, A.

    2013-07-15

    Ln{sub 3}SbO{sub 7} (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb and Dy) ceramics were synthesized by solid-state reaction in optimized conditions of temperature and time to yield single-phase ceramics. The crystal structures of the obtained ceramics were investigated by synchrotron X-ray diffraction, second harmonic generation (SHG) and Raman scattering. All samples exhibited fluorite-type orthorhombic structures with different oxygen arrangements as a function of the ionic radius of the lanthanide metal. For ceramics with the largest ionic radii (La–Nd), the ceramics crystallized into the Cmcm space group, while the ceramics with intermediate and smallest ionic radii (Sm–Dy) exhibited a different crystal structure belonging to the same space group, described under the Ccmm setting. The results from SHG and Raman scattering confirmed these settings and ruled out any possibility for the non-centrosymmetric C222{sub 1} space group describing the structure of the small ionic radii ceramics, solving a recent controversy in the literature. Besides, the Raman modes for all samples are reported for the first time, showing characteristic features for each group of samples. - Graphical abstract: Raman spectrum for La{sub 3}SbO{sub 7} ceramics showing their 22 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. - Highlights: • Ln{sub 3}SbO{sub 7} ceramics belonging to the space groups Cmcm and Ccmm are synthesized. • SXRD, SHG and Raman scattering confirmed the orthorhombic structures. • Ccmm instead of C222{sub 1} is the correct one based on SHG and Raman data.

  8. Synchrotron X-ray diffraction and Raman spectroscopy of Ln{sub 3}NbO{sub 7} (Ln=La, Pr, Nd, Sm-Lu) ceramics obtained by molten-salt synthesis

    SciTech Connect (OSTI)

    Siqueira, K.P.F.; Soares, J.C.; Granado, E.; Bittar, E.M.; Paula, A.M. de; Moreira, R.L.; Dias, A.

    2014-01-15

    Ln{sub 3}NbO{sub 7} (Ln=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) ceramics were obtained by molten-salt synthesis and their structures were systematically investigated by synchrotron X-ray diffraction (SXRD), second harmonic generation (SHG) and Raman spectroscopy. It was observed that ceramics with the largest ionic radii (La, Pr, Nd) crystallized into the Pmcn space group, while the ceramics with intermediate ionic radii (Sm-Gd) exhibited a different crystal structure belonging to the Ccmm space group. For this last group of ceramics, this result was corroborated by SHG and Raman scattering and ruled out any possibility for the non-centrosymmetric C 222{sub 1} space group, solving a recent controversy in the literature. Finally, according to SXRD, Tb-Lu containing samples exhibited an average defect fluorite structure (Fm3{sup ¯}m space group). Nonetheless, broad scattering at forbidden Bragg reflections indicates the presence of short-range domains with lower symmetry. Vibrational spectroscopy showed the presence of six Raman-active modes, inconsistent with the average cubic fluorite structure, and in line with the existence of lower-symmetry nano-domains immersed in the average fluorite structure of these ceramics. - Graphical abstract: Raman spectrum for Sm{sub 3}NbO{sub 7} ceramics showing their 27 phonon modes adjusted through Lorentzian lines. According to synchrotron X-ray diffraction and Raman scattering, this material belongs to the space group Cmcm. Display Omitted - Highlights: • Ln{sub 3}NbO{sub 7} ceramics were obtained by molten-salt synthesis. • SXRD, SHG and Raman scattering confirmed orthorhombic and cubic structures. • Ccmm instead of C222{sub 1} is the correct structure for Sm–Gd ceramics. • Pmcn space group was confirmed for La-, Pr- and Nd-based ceramics. • For Tb–Lu ceramics, ordered domains of a pyrochlore structure were observed.

  9. Analysis of Order Formation in Block Copolymer Thin Films Using Resonant Soft X-Ray Scattering

    E-Print Network [OSTI]

    Virgili, Justin M.; Tao, Yuefei; Kortright, Jeffrey B.; Balsara, Nitash P.; Segalman, Rachel A.

    2006-01-01

    Methods of X-Ray and Neutron Scattering in Polymer Science.µ t for X-ray and neutron scattering experiments is unity;18 In classical scattering of light, X-rays or neutrons the

  10. X-ray scattering studies of structure and dynamics of surfaces and interfaces of polymeric liquids

    E-Print Network [OSTI]

    Jiang, Zhang

    2007-01-01

    Evanescent X-ray and Neutron Scattering. Springer-Verlag,Methods of X-ray and neutron scattering in polymer science.Stanley. X-ray and neutron scattering from rough surfaces.

  11. XFEL diffraction: Developing processing methods to optimize data...

    Office of Scientific and Technical Information (OSTI)

    XFEL diffraction: Developing processing methods to optimize data quality Citation Details In-Document Search Title: XFEL diffraction: Developing processing methods to optimize data...

  12. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless Imaging of Whole Biological Cells with Soft X-Rays Print A team of scientists has used x-ray diffraction microscopy at ALS Beamline 9.0.1 to make images of whole yeast...

  13. Development of at-wavelength metrology for x-ray optics at the ALS

    E-Print Network [OSTI]

    Yashchuk, Valeriy V.

    2010-01-01

    alignment of bendable x-ray optics to realize diffraction-Bass (Ed. ), Handbook of Optics, third ed. , vol. V, ch. 46,wavelength metrology for x-ray optics at the ALS* Valeriy V.

  14. Development of procedures for refurbishing x-ray optics at the Advanced Light Source

    E-Print Network [OSTI]

    Yashchuk, Valeriy V.

    2013-01-01

    and Setting of Bendable Optics for Diffraction- Limitedof Soft X-Rays,” Abstract to SPIE Optics and Photonics 2012,Metrology for X-Ray and EUV Optics IV (San Diego, August 12-

  15. X-ray microtomography

    SciTech Connect (OSTI)

    Landis, Eric N.; Keane, Denis T.

    2010-12-15

    In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

  16. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction

    SciTech Connect (OSTI)

    Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

    2010-01-01

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

  17. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L. (Princeton, NJ); Fraenkel, Ben (Jerusalem, IL); Gorman, James L. (Bordentown, NJ); Hill, Kenneth W. (Lawrenceville, NJ); Roquemore, A. Lane (Cranbury, NJ); Stodiek, Wolfgang (Princeton, NJ); von Goeler, Schweickhard E. (Princeton, NJ)

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  18. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M. (2708 Rembrandt Pl., Modesto, CA 95356); Seppala, Lynn G. (7911 Mines Rd., Livermore, CA 94550)

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  19. Reconstructing Three-dimensional Helical Structure With an X-Ray Free Electron Laser

    E-Print Network [OSTI]

    M. Uddin

    2015-06-29

    Recovery of three-dimensional structure from single particle X-ray scattering of completely randomly oriented diffraction patterns as predicted few decades back has been real due to advent of the new emerging X-ray Free Electron Laser (XFEL) technology. As the world's first XFEL is in operation starting from June 2009 at SLAC National Lab at Stanford, the very first few experiments being conducted on larger objects such as viruses. Many of the important structures of nature such as helical viruses or deoxyribonucleic acids (DNA) consist of helical repetition of biological subunits. Hence development of method for reconstructing helical structure from collected XFEL data has been a top priority research. In this work we have developed a method for solving helical structure such as TMV from a set of randomly oriented simulated diffraction patterns exploiting symmetry and Fourier space constraint of the diffraction volume.

  20. Reconstructing Three-dimensional Helical Structure With an X-Ray Free Electron Laser

    E-Print Network [OSTI]

    M. Uddin

    2015-11-21

    Recovery of three-dimensional structure from single particle X-ray scattering of completely randomly oriented diffraction patterns as predicted few decades back has been real due to the advent of the new emerging X-ray Free Electron Laser (XFEL) technology. As the worlds first XFEL is in operation starting from June 2009 at SLAC National Lab at Stanford, the very first few experiments being conducted on larger objects such as viruses. Many of the important structures of nature such as helical viruses or deoxyribonucleic acids (DNA) consist of helical repetition of biological subunits. Hence development of method for reconstructing helical structure from collected XFEL data has been a top priority research. In this work we have developed a method for solving helical structure such as TMV (tobacco mosaic virus) from a set of randomly oriented simulated diffraction patterns exploiting symmetry and Fourier space constraint of the diffraction volume.

  1. X-Ray Data Booklet X-RAY DATA BOOKLET

    E-Print Network [OSTI]

    X-Ray Data Booklet X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Electromagnetic Relations Radioactivity and Radiation Protection Useful Formulas CXRO Home | ALS Home | LBL Home in PDF format Data Booklet Authors CXRO Home | ALS Home | LBL Home Privacy and Security Notice Please

  2. TV-based conjugate gradient method and discrete L-curve for few-view CT reconstruction of X-ray in vivo data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; van de Kamp, Thomas; Rolo, Tomy dos Santos; Xiao, Xianghui; Moosmann, Julian; Kashef, Jubin; Stotzka, Rainer

    2015-01-01

    High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration o fin vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the numbermore »of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.« less

  3. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumptionmore »by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.« less

  4. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan [Brookhaven National Lab. (BNL), Upton, NY (United States); Bak, Seong Min [Brookhaven National Lab. (BNL), Upton, NY (United States); Senanayake, Sanjaya D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yang, Xiao-Qing [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Energy and Materials Engineering; Nam, Kyung-Wan [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Energy and Materials Engineering] (ORCID:0000000162786369); Zhang, Lulu [Hong Kong Univ. of Science and Technology, Clear Water Bay (Hong Kong); Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  5. Hard x-ray broad band Laue lenses (80 - 600 keV): building methods and performances

    E-Print Network [OSTI]

    Virgilli, E; Rosati, P; Liccardo, V; Squerzanti, S; Carassiti, V; Caroli, E; Auricchio, N; Stephen, J B

    2015-01-01

    We present the status of the laue project devoted to develop a technology for building a 20 meter long focal length Laue lens for hard x-/soft gamma-ray astronomy (80 - 600 keV). The Laue lens is composed of bent crystals of Gallium Arsenide (GaAs, 220) and Germanium (Ge, 111), and, for the first time, the focusing property of bent crystals has been exploited for this field of applications. We show the preliminary results concerning the adhesive employed to fix the crystal tiles over the lens support, the positioning accuracy obtained and possible further improvements. The Laue lens petal that will be completed in a few months has a pass band of 80 - 300 keV and is a fraction of an entire Laue lens capable of focusing X-rays up to 600 keV, possibly extendable down to 20 - 30 keV with suitable low absorption crystal materials and focal length. The final goal is to develop a focusing optics that can improve the sensitivity over current telescopes in this energy band by 2 orders of magnitude.

  6. X-ray Image Bank Open for Business - NERSC Center News, Feb 22...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use light sources to shoot intense x-ray beams into molecules, such as proteins, in order to understand their shapes and structures. The resulting diffraction patterns are...

  7. Time-delayed beam splitting with energy separation of x-ray channels

    SciTech Connect (OSTI)

    Stetsko, Yuri P.; Shvyd'ko, Yuri V.; Brian Stephenson, G. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)] [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2013-10-21

    We introduce a time-delayed beam splitting method based on the energy separation of x-ray photon beams. It is implemented and theoretically substantiated on an example of an x-ray optical scheme similar to that of the classical Michelson interferometer. The splitter/mixer uses Bragg-case diffraction from a thin diamond crystal. Another two diamond crystals are used as back-reflectors. Because of energy separation and a minimal number (three) of optical elements, the split-delay line has high efficiency and is simple to operate. Due to the high transparency of diamond crystal, the split-delay line can be used in a beam sharing mode at x-ray free-electron laser facilities.

  8. Methods for assisting recovery of damaged brain and spinal cord and treating various diseases using arrays of x-ray microplanar beams

    DOE Patents [OSTI]

    Dilmanian, F. Avraham (Yaphank, NY); Anchel, David J. (Rocky Point, NY); Gaudette, Glenn (Holden, MA); Romanelli, Pantaleo (Monteroduni, IT); Hainfeld, James (Shoreham, NY)

    2010-06-29

    A method of assisting recovery of an injury site of the central nervous system (CNS) or treating a disease includes providing a therapeutic dose of X-ray radiation to a target volume through an array of parallel microplanar beams. The dose to treat CNS injury temporarily removes regeneration inhibitors from the irradiated site. Substantially unirradiated cells surviving between beams migrate to the in-beam portion and assist recovery. The dose may be staggered in fractions over sessions using angle-variable intersecting microbeam arrays (AVIMA). Additional doses are administered by varying the orientation of the beams. The method is enhanced by injecting stem cells into the injury site. One array or the AVIMA method is applied to ablate selected cells in a target volume associated with disease for palliative or curative effect. Atrial fibrillation is treated by irradiating the atrial wall to destroy myocardial cells while continuously rotating the subject.

  9. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect (OSTI)

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  10. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0PhotosPresentationsWorld's largest singleX-Ray

  11. Method of collecting and processing electron diffraction data

    DOE Patents [OSTI]

    Billinge, Simon; Farrow, Christopher; Gorelik, Tatiana E; Kanatzidis, Mercouri; Schmidt, Martin U

    2014-12-30

    A method of using electron diffraction to obtain PDFs from crystalline, nanocrystalline, and amorphous inorganic, organic, and organometallic compound.

  12. 2010 Diffraction Methods in Structural Biology

    SciTech Connect (OSTI)

    Dr. Ana Gonzalez

    2011-03-10

    Advances in basic methodologies have played a major role in the dramatic progress in macromolecular crystallography over the past decade, both in terms of overall productivity and in the increasing complexity of the systems being successfully tackled. The 2010 Gordon Research Conference on Diffraction Methods in Structural Biology will, as in the past, focus on the most recent developments in methodology, covering all aspects of the process from crystallization to model building and refinement, complemented by examples of structural highlights and complementary methods. Extensive discussion will be encouraged and it is hoped that all attendees will participate by giving oral or poster presentations, the latter using the excellent poster display area available at Bates College. The relatively small size and informal atmosphere of the meeting provides an excellent opportunity for all participants, especially younger scientists, to meet and exchange ideas with leading methods developers.

  13. X-ray spectrometry

    SciTech Connect (OSTI)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-04-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references.

  14. Spatially resolved energy dispersive x-ray spectroscopic method for in-situ evaluation of mechanical properties during the growth of a C - Pt composite nanowire

    SciTech Connect (OSTI)

    Banerjee, Amit; Banerjee, S. S., E-mail: satyajit@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016 (India)

    2014-05-15

    A core-shell type C-Pt composite nanowire is fabricated using focused ion and electron beam induced chemical vapor deposition techniques. Using information from spatially resolved energy dispersive x-ray spectra, we detect the resonance vibration in the C-Pt composite nanowire. We use this method to measure the Young's moduli of the constituents (C, Pt) of the composite nanowire and also estimate the density of the FEB CVD grown Pt shell surrounding the C core. By measuring the resonance characteristics of the composite nanowire we estimate a Pt shell growth rate of ?0.9 nms{sup ?1}. The study is analyzed to suggest that the Pt shell growth mechanism is primarily governed by the sticking coefficient of the organometallic vapor on the C nanowire core.

  15. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  16. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  17. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  18. X-ray transmission movies of spontaneous dynamic events

    SciTech Connect (OSTI)

    Smilowitz, L.; Henson, B. F.; Holmes, M.; Novak, A.; Oschwald, D.; Dolgonos, P.; Qualls, B.

    2014-11-15

    We describe a new x-ray radiographic imaging system which allows for continuous x-ray transmission imaging of spontaneous dynamic events. We demonstrate this method on thermal explosions in three plastic bonded formulations of the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. We describe the x-ray imaging system and triggering developed to enable the continuous imaging of a thermal explosion.

  19. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  20. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Fitch, Joseph P. (Livermore, CA); Everett, Matthew J. (Pleasanton, CA); Colston, Billy W. (Livermore, CA); Stone, Gary F. (Livermore, CA)

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  1. Structural characterization of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    SciTech Connect (OSTI)

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-28

    The structure of Bi{sub 2}Te{sub 3} (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb{sub 2}Te{sub 3} have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20?K to 300?K for Bi{sub 2}Te{sub 3} and from 10?K to 298?K for Sb{sub 2}Te{sub 3}. The EXAFS technique for studying the local structure of the two compounds was conducted from 19?K to 298?K. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} are isostructural, with a space group of R3{sup ¯}m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M?=?Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi{sub 2}Te{sub 3} are similar to those of Sb{sub 2}Te{sub 3} within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi{sub 2}Te{sub 3} relative to Sb{sub 2}Te{sub 3}.

  2. In-situ x-ray diffraction and resistivity analysis of CoSi{sub 2} phase formation with and without a Ti interlayer at rapid thermal annealing rates

    SciTech Connect (OSTI)

    Cabral, C. Jr.; Clevenger, L.A.; Stephenson, G.B.; Brauer, S.; Morales, G.; Ludwig, K.F. Jr.

    1995-09-01

    It has been demonstrated, using synchrotron radiation, that at rapid thermal annealing rates (3 C/s) the 2formation of CoSi{sub 2} shifts to higher temperatures when a thin Ti interlayer is placed between Co and polycrystalline Si. It has also been shown that the Ti interlayer reduces the temperature range between the start of CoSi formation and CoSi{sub 2} formation (i.e. the range over which CoSi is present). 13 nm of Co deposited by physical vapor deposition on polycrystalline Si with and without either a 2 nm or 3.4 nm interlayer of Ti was analyzed in-situ by monitoring x-ray diffraction (XRD) peak intensity as a function of temperature using monochromatic radiation from a synchrotron beam line and by monitoring resistivity as a function of temperature i a rapid thermal annealing (RTA) system. The XRD analysis indicates that the phase formation proceeds from CoSi to CoSi{sub 2} in a temperature range that decreases from about 200 C to 140 C to 115 C with pure Co, Co/2 nm Ti and Co/3.4 nm Ti films respectively. The onset of the CoSi formation increases by about 135 C and 160 C for Co/2 nm Ti and Co/3.4 nm Ti compared to pure Co. The CoSi temperature range decreases from about 75 C in pure Co to less than 50 C in Co/Ti. In-situ RTA resistance along with in-situ XRD analysis indicates that the onset formation temperatures for CoSi are about 440 C, 575 C and 600 C and the temperatures for the completion of CoSi{sub 2} formation are about 640 C, 715 C and 715 C for Co, Co/2 nm Ti and Co/3.4 nm Ti films respectively. The results are consistent with he Ti interlayer acting as a diffusion barrier during the initial stages of the Co-Si reaction.

  3. Evaluation of partial coherence correction in X-ray ptychography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burdet, Nicolas; Shi, Xiaowen; Parks, Daniel; Clark, Jesse N.; Huang, Xiaojing; Kevan, Stephen D.; Robinson, Ian K.

    2015-02-23

    Coherent X-ray Diffraction Imaging (CDI) and X-ray ptychography both heavily rely on the high degree of spatial coherence of the X-ray illumination for sufficient experimental data quality for reconstruction convergence. Nevertheless, the majority of the available synchrotron undulator sources have a limited degree of partial coherence, leading to reduced data quality and a lower speckle contrast in the coherent diffraction patterns. It is still an open question whether experimentalists should compromise the coherence properties of an X-ray source in exchange for a higher flux density at a sample, especially when some materials of scientific interest are relatively weak scatterers. Amore »previous study has suggested that in CDI, the best strategy for the study of strong phase objects is to maintain a high degree of coherence of the illuminating X-rays because of the broadening of solution space resulting from the strong phase structures. In this article, we demonstrate the first systematic analysis of the effectiveness of partial coherence correction in ptychography as a function of the coherence properties, degree of complexity of illumination (degree of phase diversity of the probe) and sample phase complexity. We have also performed analysis of how well ptychographic algorithms refine X-ray probe and complex coherence functions when those variables are unknown at the start of reconstructions, for noise-free simulated data, in the case of both real-valued and highly-complex objects.« less

  4. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-RayX-Ray ScienceX-Ray

  5. A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches

    SciTech Connect (OSTI)

    Ruehrnschopf, Ernst-Peter; Klingenbeck, Klaus

    2011-07-15

    Since scattered radiation in cone-beam volume CT implies severe degradation of CT images by quantification errors, artifacts, and noise increase, scatter suppression is one of the main issues related to image quality in CBCT imaging. The aim of this review is to structurize the variety of scatter suppression methods, to analyze the common structure, and to develop a general framework for scatter correction procedures. In general, scatter suppression combines hardware techniques of scatter rejection and software methods of scatter correction. The authors emphasize that scatter correction procedures consist of the main components scatter estimation (by measurement or mathematical modeling) and scatter compensation (deterministic or statistical methods). The framework comprises most scatter correction approaches and its validity also goes beyond transmission CT. Before the advent of cone-beam CT, a lot of papers on scatter correction approaches in x-ray radiography, mammography, emission tomography, and in Megavolt CT had been published. The opportunity to avail from research in those other fields of medical imaging has not yet been sufficiently exploited. Therefore additional references are included when ever it seems pertinent. Scatter estimation and scatter compensation are typically intertwined in iterative procedures. It makes sense to recognize iterative approaches in the light of the concept of self-consistency. The importance of incorporating scatter compensation approaches into a statistical framework for noise minimization has to be underscored. Signal and noise propagation analysis is presented. A main result is the preservation of differential-signal-to-noise-ratio (dSNR) in CT projection data by ideal scatter correction. The objective of scatter compensation methods is the restoration of quantitative accuracy and a balance between low-contrast restoration and noise reduction. In a synopsis section, the different deterministic and statistical methods are discussed with respect to their properties and applications. The current paper is focused on scatter compensation algorithms. The multitude of scatter estimation models will be dealt with in a separate paper.

  6. Center for X-Ray Optics, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  7. Method and apparatus for combinatorial logic signal processor in a digitally based high speed x-ray spectrometer

    DOE Patents [OSTI]

    Warburton, William K. (1300 Mills St., Menlo Park, CA 94025); Zhou, Zhiquing (Carl) (Fremont, CA)

    1999-01-01

    A high speed, digitally based, signal processing system which accepts a digitized input signal and detects the presence of step-like pulses in the this data stream, extracts filtered estimates of their amplitudes, inspects for pulse pileup, and records input pulse rates and system livetime. The system has two parallel processing channels: a slow channel, which filters the data stream with a long time constant trapezoidal filter for good energy resolution; and a fast channel which filters the data stream with a short time constant trapezoidal filter, detects pulses, inspects for pileups, and captures peak values from the slow channel for good events. The presence of a simple digital interface allows the system to be easily integrated with a digital processor to produce accurate spectra at high count rates and allow all spectrometer functions to be fully automated. Because the method is digitally based, it allows pulses to be binned based on time related values, as well as on their amplitudes, if desired.

  8. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  9. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, Peter A. (Arvada, CO)

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

  10. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  11. Automated suppression of errors in LTP-II slope measurements with x-ray optics

    E-Print Network [OSTI]

    Ali, Zulfiqar

    2012-01-01

    precise reflective X-ray optics,” Nucl. Instrum. and Methods70 (2001). [2] P. Z. Takacs, “X- ray optics metrology,” in [Handbook of Optics], 3rd ed. , Vol. V, M. Bass, Ed. ,

  12. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; Phillips, Nicholas W.; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J.

    2015-02-23

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore »the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  13. X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size

    DOE Patents [OSTI]

    Rosen, Mordecai D. (Berkeley, CA); Matthews, Dennis L. (El Granada, CA)

    1991-01-01

    An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

  14. Use of soft x-ray diagnostic on the COMPASS tokamak for investigations of sawteeth crash neighborhood and of plasma position using fast inversion methods

    SciTech Connect (OSTI)

    Imrisek, M. [Institute of Plasma Physics ASCR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Weinzettl, V.; Mlynar, J.; Panek, R.; Hron, M. [Institute of Plasma Physics ASCR, Prague (Czech Republic); Odstrcil, T. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Odstrcil, M. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Optical Research Center, University of Southampton, Southampton (United Kingdom); Ficker, O. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Pinzon, J. R. [Institue Jean Lamour, Université de Lorraine, Nancy (France); Ehrlacher, C. [ENS Cachan, Paris (France)

    2014-11-15

    The soft x-ray diagnostic is suitable for monitoring plasma activity in the tokamak core, e.g., sawtooth instability. Moreover, spatially resolved measurements can provide information about plasma position and shape, which can supplement magnetic measurements. In this contribution, fast algorithms with the potential for a real-time use are tested on the data from the COMPASS tokamak. In addition, the soft x-ray data are compared with data from other diagnostics in order to discuss possible connection between sawtooth instability on one side and the transition to higher confinement mode, edge localized modes and productions of runaway electrons on the other side.

  15. Lensless x-ray imaging in reflection geometry

    SciTech Connect (OSTI)

    Roy, S.; Parks, D.H.; Seu, K.A.; Turner, J.J.; Chao, W.; Anderson, E.H.; Cabrini, S.; Kevan, S.D.; Su, R.

    2011-02-03

    Lensless X-ray imaging techniques such as coherent diffraction imaging and ptychography, and Fourier transform holography can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.

  16. Nuclear Instruments and Methods in Physics Research A 514 (2003) 206214 A silicon strip detector coupled to the RX64 ASIC for X-ray

    E-Print Network [OSTI]

    Ramello, Luciano

    2003-01-01

    , such as mammography and angiography at the iodine K-edge, the dual energy technique [3] makes it possible to isolate. The system is capable of single photon counting in digital X-ray imaging, with possible applications to dual energy mammography and angiography. The main features of the detecting system are low noise, good spatial

  17. High-Resolution Soft X-Ray Spectral Analysis in the CK Region of Titanium Carbide (TiC) using the DV-X alpha Molecular Orbital Method

    E-Print Network [OSTI]

    Shimomura, Kenta

    2010-01-01

    1 XRD pattern of the measured TiC powder sample. Figure 2XAS. Intensity (arb. units) TiC X-ray: Cu K? voltage: 40 kVintensity (arb. units) CK-XES TiC b a c HOPG e f CK-XAS TiC

  18. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    SciTech Connect (OSTI)

    Yang Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M. [Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States) and Department of Biomedical Engineering, University of California, Davis, Davis, California, 95616 (United States)

    2010-07-15

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.

  19. Ultrafast X-ray Sources

    SciTech Connect (OSTI)

    George Neil

    2010-04-19

    Since before the scattering of X-rays off of DNA led to the first understanding of the double helix structure, sources of X-rays have been an essential tool for scientists examining the structure and interactions of matter. The resolution of a microscope is proportional to the wavelength of light so x-rays can see much finer structures than visible light, down to single atoms. In addition, the energy of X-rays is resonant with the core atomic levels of atoms so with appropriate wavelengths the placement of specific atoms in a large molecule can be determined. Over 10,000 scientists use synchrotron sources, storage rings of high energy electrons, each year worldwide. As an example of such use, virtually every picture of a protein or drug molecule that one sees in the scientific press is a reconstruction based on X-ray scattering of synchrotron light from the crystallized form of that molecule. Unfortunately those pictures are static and proteins work through configuration (shape) changes in response to energy transfer. To understand how biological systems work requires following the energy flow to these molecules and tracking how shape changes drive their interaction with other molecules. We'd like to be able to freeze the action of these molecules at various steps along the way with an X-ray strobe light. How fast does it have to be? To actually get a picture of a molecule in a fixed configuration requires X-ray pulses as short as 30 femtoseconds (1/30 of a millionth of a millionth of a second). To capture the energy flow through changes in electronic levels requires a faster strobe, less than 1 femtosecond! And to acquire such information in smaller samples with higher accuracy demands brighter and brighter X-rays. Unfortunately modern synchrotrons (dubbed 3rd Generation Light Sources) cannot deliver such short bright pulses of X-rays. An entirely new approach is required, linear-accelerator (linac-)-based light sources termed 4th or Next Generation Light Sources (NGLSs). Although NGLSs will not displace synchrotrons from their role they do offer exciting new capabilities which can be understood from the physics of the light production in each device.

  20. X-ray-induced dissociation of H.sub.2O and formation of an O.sub.2-H.sub.2 alloy at high pressure

    DOE Patents [OSTI]

    Mao, Ho-kwang (Washington, DC); Mao, Wendy L. (Washington, DC)

    2011-11-29

    A novel molecular alloy of O.sub.2 and H.sub.2 and a method of producing such a molecular alloy are provided. When subjected to high pressure and extensive x-radiation, H.sub.2O molecules cleaved, forming O--O and H--H bonds. In the method of the present invention, the O and H framework in ice VII was converted into a molecular alloy of O.sub.2 and H.sub.2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrate that this crystalline solid differs from previously known phases.

  1. Large angle solid state position sensitive x-ray detector system

    DOE Patents [OSTI]

    Kurtz, David S. (State College, PA); Ruud, Clay O. (State College, PA)

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  2. Large angle solid state position sensitive x-ray detector system

    DOE Patents [OSTI]

    Kurtz, D.S.; Ruud, C.O.

    1998-07-21

    A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  3. Large angle solid state position sensitive x-ray detector system

    DOE Patents [OSTI]

    Kurtz, D.S.; Ruud, C.O.

    1998-03-03

    A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  4. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E. (Manteca, CA)

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  5. X-ray radiography for container inspection

    DOE Patents [OSTI]

    Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  6. Characterization of X-ray generator beam profiles.

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  7. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  8. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary I. (Sunnyvale, CA); Maccagno, Pierre (Stanford, CA)

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  9. Soft X-ray microflares

    E-Print Network [OSTI]

    Mirzoeva, I K

    2015-01-01

    Soft X-ray solar bursts are studied. Weak bursts with powers up to 10-8 W/m2 were detected. All the events were confirmed by GOES observations. Parameters of these microflares are determined. A physical mechanism for the low-intensity solar events is discussed.

  10. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  11. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  12. High performance x-ray anti-scatter grid

    DOE Patents [OSTI]

    Logan, C.M.

    1995-05-23

    Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

  13. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  14. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  15. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  16. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  17. Improving the Raster Scanning Methods used with X-ray Fluorescence to See the Ancient Greek Text of Archimedes (SULI Paper)

    SciTech Connect (OSTI)

    Griffin, Isabella B.; /Norfolk State U. /SLAC, SSRL

    2006-01-04

    X-ray fluorescence is being used to detect the ancient Greek copy of Archimedes work. The copy of Archimedes text was erased with a weak acid and written over to make a prayer book in the Middle Ages. The ancient parchment, made of goat skin, has on it some of Archimedes most valuable writings. The ink in the text contains iron which will fluoresce under x-ray radiation. My research project deals with the scanning and imaging process. The palimpsest is put in a stage that moves in a raster format. As the beam hits the parchment, a germanium detector detects the iron atoms and discriminates against other elements. Since the computer scans in both forwards and backwards directions, it is imperative that each row of data lines up exactly on top of the next row. There are several parameters to consider when scanning the parchment. These parameters include: speed, count time, shutter time, x-number of points, and acceleration. Formulas were made to relate these parameters together. During the actual beam time of this project, the scanning was very slow going; it took 30 hours to scan 1/2 of a page. Using the formulas, the scientists doubled distance and speed to scan the parchment faster; however, the grey scaled data was not lined up properly causing the images to look blurred. My project was is to find out why doubling the parameters caused blurred images, and to fix the problem if it is fixable.

  18. Dose optimization in cardiac x-ray imaging

    SciTech Connect (OSTI)

    Gislason-Lee, Amber J.; McMillan, Catherine; Cowen, Arnold R.; Davies, Andrew G.

    2013-09-15

    Purpose: The aim of this research was to optimize x-ray image quality to dose ratios in the cardiac catheterization laboratory. This study examined independently the effects of peak x-ray tube voltage (kVp), copper (Cu), and gadolinium (Gd) x-ray beam filtration on the image quality to radiation dose balance for adult patient sizes.Methods: Image sequences of polymethyl methacrylate (PMMA) phantoms representing two adult patient sizes were captured using a modern flat panel detector based x-ray imaging system. Tin and copper test details were used to simulate iodine-based contrast medium and stents/guide wires respectively, which are used in clinical procedures. Noise measurement for a flat field image and test detail contrast were used to calculate the contrast to noise ratio (CNR). Entrance surface dose (ESD) and effective dose measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose. This FOM determined the dose efficiency of x-ray spectra investigated. Images were captured with 0.0, 0.1, 0.25, 0.4, and 0.9 mm Cu filtration and with a range of gadolinium oxysulphide (Gd{sub 2}O{sub 2}S) filtration.Results: Optimum x-ray spectra were the same for the tin and copper test details. Lower peak tube voltages were generally favored. For the 20 cm phantom, using 2 Lanex Fast Back Gd{sub 2}O{sub 2}S screens as x-ray filtration at 65 kVp provided the highest FOM considering ESD and effective dose. Considering ESD, this FOM was only marginally larger than that from using 0.4 mm Cu at 65 kVp. For the 30 cm phantom, using 0.25 mm copper filtration at 80 kVp was most optimal; considering effective dose the FOM was highest with no filtration at 65 kVp.Conclusions: These settings, adjusted for x-ray tube loading limits and clinically acceptable image quality, should provide a useful option for optimizing patient dose to image quality in cardiac x-ray imaging. The same optimal x-ray beam spectra were found for both the tin and copper details, suggesting that iodine contrast based imaging and visualization of interventional devices could potentially be optimized for dose using similar x-ray beam spectra.

  19. Predicting X-ray diffuse scattering from translation–libration–screw structural ensembles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Benschoten, Andrew H.; Afonine, Pavel V.; Terwilliger, Thomas C.; Wall, Michael E.; Jackson, Colin J.; Sauter, Nicholas K.; Adams, Paul D.; Urzhumtsev, Alexandre; Fraser, James S.

    2015-07-28

    Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in macromolecular X-ray crystallography. Because Bragg diffraction describes the average positional distribution of crystalline atoms with imperfect precision, the resulting electron density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce this degeneracy by reporting on correlated atomic displacements. Although recent technological advances are increasing the potential to accurately measure diffuse scattering, computational modeling and validation tools are still needed to quantify the agreement between experimental data and different parameterizations of crystalline disorder. A new tool, phenix.diffuse, addresses this need by employing Guinier'smore »equation to calculate diffuse scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, phenix.diffuse is applied to translation–libration–screw (TLS) refinement, which models rigid-body displacement for segments of the macromolecule. To enable the calculation of diffuse scattering from TLS-refined structures, phenix.tls_as_xyz builds multi-model PDB files that sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative TLS-group partitioning and different motional correlations between groups yield markedly dissimilar diffuse scattering maps with distinct implications for molecular mechanism and allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend macromolecular structural refinement, validation and analysis.« less

  20. Intermolecular triple proton and deuteron transfer in crystalline 3,5-dimethylpyrazole studied by NMR, NQR, and x-ray methods

    SciTech Connect (OSTI)

    Wehrle, B.; Aguilar-Parrilla, F.; Limbach, H.H. ); de la Concepcion Foces-Foces, M.; Cano, F.H. ); Elguero, J. ); Baldy, A.; Pierrot, M. ); Khurshid, M.M.T.; Larcombe-McDouall, J.B.; Smith, J.A.S. )

    1989-09-13

    A combination of {sup 13}C, {sup 15}N magnetic resonance, {sup 14}N quadrupole double resonance, and x-ray studies of solid 3,5-dimethylpyrazole between 270 and 350 K has shown that the NH...N hydrogen bond units present in the crystal are dynamically disordered, so that each nitrogen atom is on average attached to half a hydrogen atom. The molecules form discrete hydrogen-bonded cyclic trimers, in which the hydrogen atoms move in a double minimum potential energy surface which is symmetrical, to within experimental error. The experimental evidence in this temperature range is consistent with disorder by means of correlated triple hydrogen jumps with an activation energy of 45 kJ mol{sup {minus}1}. There is a large kinetic hydrogen (HHH)/deuterium (DDD) isotope effort of >20 at 299 K and equal to 8 at 347 K.

  1. X-ray emission from O stars

    E-Print Network [OSTI]

    David H. Cohen

    2008-02-01

    Young O stars are strong, hard, and variable X-ray sources, properties which strongly affect their circumstellar and galactic environments. After ~1 Myr, these stars settle down to become steady sources of soft X-rays. I use high-resolution X-ray spectroscopy and MHD modeling to show that young O stars like theta-1 Ori C are well explained by the magnetically channeled wind shock scenario. After their magnetic fields dissipate, older O stars produce X-rays via shock heating in their unstable stellar winds. Here too I use X-ray spectroscopy and numerical modeling to confirm this scenario. In addition to elucidating the nature and cause of the O star X-ray emission, modeling of the high-resolution X-ray spectra of O supergiants provides strong evidence that mass-loss rates of these O stars have been overestimated.

  2. Reliable before-fabrication forecasting of expected surface slope distributions for x-ray optics

    E-Print Network [OSTI]

    Yashchuk, Yekaterina V.

    2013-01-01

    of x-ray optics for the LCLS free-electron laser,” Proc.beamlines and diagnostics at LCLS,” Nucl. Instrum. Methods A

  3. X-ray Imaging Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-Ray ImagingInImaging and

  4. Femtosecond x-ray absorption spectroscopy with hard x-ray free electron laser

    SciTech Connect (OSTI)

    Katayama, Tetsuo; Togashi, Tadashi; Tono, Kensuke; Kameshima, Takashi; Inubushi, Yuichi; Sato, Takahiro; Hatsui, Takaki; Yabashi, Makina; Obara, Yuki; Misawa, Kazuhiko; Bhattacharya, Atanu; Kurahashi, Naoya; Ogi, Yoshihiro; Suzuki, Toshinori; Molecular Reaction Dynamics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako 351-0198

    2013-09-23

    We have developed a method of dispersive x-ray absorption spectroscopy with a hard x-ray free electron laser (XFEL), generated by a self-amplified spontaneous emission (SASE) mechanism. A transmission grating was utilized for splitting SASE-XFEL light, which has a relatively large bandwidth (?E/E ? 5 × 10{sup ?3}), into several branches. Two primary split beams were introduced into a dispersive spectrometer for measuring signal and reference spectra simultaneously. After normalization, we obtained a Zn K-edge absorption spectrum with a photon-energy range of 210 eV, which is in excellent agreement with that measured by a conventional wavelength-scanning method. From the analysis of the difference spectra, the noise ratio was evaluated to be ?3 × 10{sup ?3}, which is sufficiently small to trace minute changes in transient spectra induced by an ultrafast optical laser. This scheme enables us to perform single-shot, high-accuracy x-ray absorption spectroscopy with femtosecond time resolution.

  5. Soft X-ray techniques to study mesoscale magnetism

    E-Print Network [OSTI]

    Kortright, Jeffrey B.

    2003-01-01

    X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.

  6. X-ray Observations of Mrk 231

    E-Print Network [OSTI]

    T. J. Turner

    1998-08-10

    This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

  7. Controlling X-rays With Light

    SciTech Connect (OSTI)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  8. Ultra-bright, ultra-broadband hard x-ray driven by laser-produced energetic electron beams

    SciTech Connect (OSTI)

    Shi, Yin; Shen, Baifei; Zhang, Xiaomei; Wang, Wenpeng; Ji, Liangliang; Zhang, Lingang; Xu, Jiancai; Yu, Yahong; Zhao, Xueyan; Wang, Xiaofeng; Yi, Longqing; Xu, Tongjun; Xu, Zhizhan [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)] [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2013-09-15

    We propose a new method of obtaining a compact ultra-bright, ultra-broadband hard X-ray source. This X-ray source has a high peak brightness in the order of 10{sup 22} photons/(s mm{sup 2} mrad{sup 2} 0.1\\%BW), an ultrashort duration (10 fs), and a broadband spectrum (flat distribution from 0.1 MeV to 4 MeV), and thus has wide-ranging potential applications, such as in ultrafast Laue diffraction experiments. In our scheme, laser-plasma accelerators (LPAs) provide driven electron beams. A foil target is placed oblique to the beam direction so that the target normal sheath field (TNSF) is used to provide a bending force. Using this TNSF-kick scheme, we can fully utilize the advantages of current LPAs, including their high charge, high energy, and low emittance.

  9. High-resolution single-shot spectral monitoring of hard x-ray free-electron laser radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Makita, M.; Karvinen, P.; Zhu, D.; Juranic, P. N.; Grünert, J.; Cartier, S.; Jungmann-Smith, J. H.; Lemke, H. T.; Mozzanica, A.; Nelson, S.; et al

    2015-10-16

    We have developed an on-line spectrometer for hard x-ray free-electron laser (XFEL) radiation based on a nanostructured diamond diffraction grating and a bent crystal analyzer. Our method provides high spectral resolution, interferes negligibly with the XFEL beam, and can withstand the intense hard x-ray pulses at high repetition rates of >100 Hz. The spectrometer is capable of providing shot-to-shot spectral information for the normalization of data obtained in scientific experiments and optimization of the accelerator operation parameters. We have demonstrated these capabilities of the setup at the Linac Coherent Light Source, in self-amplified spontaneous emission mode at full energy ofmore »>1 mJ with a 120 Hz repetition rate, obtaining a resolving power of ?/?? > 3 × 104. In conclusion, the device was also used to monitor the effects of pulse duration down to 8 fs by analysis of the spectral spike width.« less

  10. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B. (Albuquerque, NM)

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  11. Reverse Monte Carlo investigations concerning recent isotopic substitution neutron diffraction data on liquid water

    E-Print Network [OSTI]

    Pethes, Ildikó

    2015-01-01

    Although liquid water has been studied for many decades by (X-ray and neutron) diffraction measurements, new experimental results keep appearing, virtually every year. The reason for this is that neither X-ray, nor neutron diffraction data are trivial to correct and interpret for this essential substance. Since X-rays are somewhat insensitive to hydrogen, neutron diffraction with (most frequently, H/D) isotopic substitution is vital for investigating the most important feature in water: hydrogen bonding. Here, the two very recent sets of neutron diffraction data are considered, both exploiting the contrast between light and heavy hydrogen, $^1$H and $^2$H, in different ways. Reverse Monte Carlo structural modeling is applied for constructing large structural models that are as consistent as possible with all experimental information, both in real and reciprocal space. The method has also proven to be useful for revealing where possible small inconsistencies appear during primary data processing: for one neutr...

  12. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 ?m FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore »data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  13. X-ray laser microscope apparatus

    DOE Patents [OSTI]

    Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  14. X-ray characterization of solid small molecule organic materials

    SciTech Connect (OSTI)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  15. White dwarfs as the maximal soft x-ray scatterers

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz (Iran, Islamic Republic of) [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 51745-406 Tabriz (Iran, Islamic Republic of); International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Ruhr University Bochum, D-44780 Bochum (Germany)

    2013-09-15

    In this paper, we explore the effect of density on the structure formation and the electromagnetic wave (EMw) elastic scattering on quantum plasmas, using the generalized quantum hydrodynamic model valid for a wide range of the plasma density and relativistic degeneracy. It is found that the electron quantum diffraction effect caused by the Bohm potential has a fundamental effect on the ion correlations in a degenerate electron fluid and crystallization in quantum plasmas in the solid-density regime and beyond. The ion correlations and structure formation are shown to be fundamentally affected by the plasma density and the relativistic degeneracy parameters. Moreover, distinct behavior is shown to exist between the non-relativistic and relativistic matter density regimes, regarding the normalized EMw elastic scattering cross-sections. It is theoretically discovered that the maximal Thomson scattering coincides with the average density of a typical white dwarf corresponding to the soft X-ray wavelength regime. Current research can be very useful in plasma optical diagnostic methods for a wide range of electron number-density from warm dense matter and inertial confinement fusion to the astrophysical compact objects.

  16. X-ray spectroscopy of neutron star low-mass X-ray binaries

    E-Print Network [OSTI]

    Krauss, Miriam Ilana

    2007-01-01

    In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

  17. X-ray radiography with highly charged ions

    DOE Patents [OSTI]

    Marrs, Roscoe E. (Livermore, CA)

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  18. Data fusion in neutron and X-ray computed tomography

    SciTech Connect (OSTI)

    Schrapp, Michael J.; Goldammer, Matthias; Schulz, Michael; Issani, Siraj; Bhamidipati, Suryanarayana; Böni, Peter

    2014-10-28

    We present a fusion methodology between neutron and X-ray computed tomography (CT). On the one hand, the inspection by X-ray CT of a wide class of multimaterials in non-destructive testing applications suffers from limited information of object features. On the other hand, neutron imaging can provide complementary data in such a way that the combination of both data sets fully characterizes the object. In this contribution, a novel data fusion procedure, called Fusion Regularized Simultaneous Algebraic Reconstruction Technique, is developed where the X-ray reconstruction is modified to fulfill the available data from the imaging with neutrons. The experiments, which were obtained from an aluminum profile containing a steel screw, and attached carbon fiber plates demonstrate that the image quality in CT can be significantly improved when the proposed fusion method is used.

  19. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore »resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  20. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect (OSTI)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.

  1. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  2. X-rays from Hot Subdwarfs

    E-Print Network [OSTI]

    Mereghetti, Sandro

    2015-01-01

    Thanks to the high sensitivity of the instruments on board the XMM-Newton and Chandra satellites, it has become possible to explore the properties of the X-ray emission from hot subdwarfs. The small but growing sample of hot subdwarfs detected in X-rays includes binary systems, in which the X-rays result from wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low mass stars provide information which can be useful also for our understanding of the winds of more luminous and massive early-type stars and can lead to the discovery of particularly interesting binary systems.

  3. High Energy Vision: Processing X-rays

    E-Print Network [OSTI]

    DePasquale, Joseph; Edmonds, Peter

    2015-01-01

    Astronomy is by nature a visual science. The high quality imagery produced by the world's observatories can be a key to effectively engaging with the public and helping to inspire the next generation of scientists. Creating compelling astronomical imagery can, however, be particularly challenging in the non-optical wavelength regimes. In the case of X-ray astronomy, where the amount of light available to create an image is severely limited, it is necessary to employ sophisticated image processing algorithms to translate light beyond human vision into imagery that is aesthetically pleasing while still being scientifically accurate. This paper provides a brief overview of the history of X-ray astronomy leading to the deployment of NASA's Chandra X-ray Observatory, followed by an examination of the specific challenges posed by processing X-ray imagery. The authors then explore image processing techniques used to mitigate such processing challenges in order to create effective public imagery for X-ray astronomy. ...

  4. BaZn{sub 2}Si{sub 2}O{sub 7} and the solid solution series BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0X-ray diffraction and dilatometry

    SciTech Connect (OSTI)

    Kerstan, Marita; Thieme, Christian; Grosch, Matthias; Müller, Matthias; Rüssel, Christian, E-mail: ccr@rz.uni-jena.de

    2013-11-15

    For sealing of solid oxide fuel cells, glasses from which crystalline phases with high coefficient of thermal expansion (CTE) can be crystallized are required. In this paper, a new solid solution series BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0X-ray diffraction and high-temperature X-ray diffraction (BaZn{sub 2}Si{sub 2}O{sub 7}). Sintered specimens were characterized by dilatometry. The introduction of Co{sup 2+} does not lead to a change in the space group. All compounds show a transition of a low to a high temperature modification. The attributed temperature increases from 300 °C for BaZn{sub 2}Si{sub 2}O{sub 7} to 850 °C for BaCo{sub 2}Si{sub 2}O{sub 7}. The volume expansion which runs parallel to the phase transition decreases with increasing cobalt concentration. The phase BaZn{sub 2}Si{sub 2}O{sub 7} shows the largest CTE and a steep volume effect during phase transition. For the compound BaZn{sub 0.25}Co{sub 1.75}Si{sub 2}O{sub 7} the CTE is minimum (8.6×10{sup ?6} K{sup ?1} (50–900 °C)) and increases again until for the compound BaCo{sub 2}Si{sub 2}O{sub 7} a CTE of 16.6×10{sup ?6} K{sup ?1} (50–900 °C) is reached. In the cobalt rich composition range, the CTEs are in the right range for high temperature fuel cells and can be adjusted by the composition. - Graphical abstract: The composition of the solid solution BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} strongly affects the thermal expansion. Display Omitted - Highlights: • We examined the thermal expansion of solid solutions BaZn{sub 2?x}Co{sub x}Si{sub 2}O{sub 7} (0

  5. High-resolution X-ray spectroscopy of Theta Car

    E-Print Network [OSTI]

    Yael Naze; Gregor Rauw

    2008-08-25

    Context : The peculiar hot star Theta Car in the open cluster IC2602 is a blue straggler as well as a single-line binary of short period (2.2d). Aims : Its high-energy properties are not well known, though X-rays can provide useful constraints on the energetic processes at work in binaries as well as in peculiar, single objects. Methods : We present the analysis of a 50ks exposure taken with the XMM-Newton observatory. It provides medium as well as high-resolution spectroscopy. Results : Our high-resolution spectroscopy analysis reveals a very soft spectrum with multiple temperature components (1--6MK) and an X-ray flux slightly below the `canonical' value (log[L_X(0.1-10.)/L_{BOL}] ~ -7). The X-ray lines appear surprisingly narrow and unshifted, reminiscent of those of beta Cru and tau Sco. Their relative intensities confirm the anomalous abundances detected in the optical domain (C strongly depleted, N strongly enriched, O slightly depleted). In addition, the X-ray data favor a slight depletion in neon and iron, but they are less conclusive for the magnesium abundance (solar-like?). While no significant changes occur during the XMM-Newton observation, variability in the X-ray domain is detected on the long-term range. The formation radius of the X-ray emission is loosely constrained to <5 R_sol, which allows for a range of models (wind-shock, corona, magnetic confinement,...) though not all of them can be reconciled with the softness of the spectrum and the narrowness of the lines.

  6. New methods for indexing multi-lattice diffraction data

    SciTech Connect (OSTI)

    Gildea, Richard J.; Waterman, David G.; Parkhurst, James M.; Axford, Danny; Sutton, Geoff; Stuart, David I.; Sauter, Nicholas K.; Evans, Gwyndaf; Winter, Graeme

    2014-09-27

    A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from crystals of ~1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can be obtained through accurate identification and rejection of overlapping reflections prior to scaling.

  7. New methods for indexing multi-lattice diffraction data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gildea, Richard J.; Waterman, David G.; Parkhurst, James M.; Axford, Danny; Sutton, Geoff; Stuart, David I.; Sauter, Nicholas K.; Evans, Gwyndaf; Winter, Graeme

    2014-09-27

    A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from crystals of ~1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can bemore »obtained through accurate identification and rejection of overlapping reflections prior to scaling.« less

  8. X-ray optical systems: from metrology to Point Spread Function

    E-Print Network [OSTI]

    Spiga, D

    2015-01-01

    One of the problems often encountered in X-ray mirror manufacturing is setting proper manufacturing tolerances to guarantee an angular resolution - often expressed in terms of Point Spread Function (PSF) - as needed by the specific science goal. To do this, we need an accurate metrological apparatus, covering a very broad range of spatial frequencies, and an affordable method to compute the PSF from the metrology dataset. [...] However, the separation between these spectral ranges is difficult do define exactly, and it is also unclear how to affordably combine the PSFs, computed with different methods in different spectral ranges, into a PSF expectation at a given X-ray energy. For this reason, we have proposed a method entirely based on the Huygens-Fresnel principle to compute the diffracted field of real Wolter-I optics, including measured defects over a wide range of spatial frequencies. Owing to the shallow angles at play, the computation can be simplified limiting the computation to the longitudinal prof...

  9. Micellar structure from comparison of X-ray and neutron small-angle scattering

    E-Print Network [OSTI]

    Boyer, Edmond

    249 Micellar structure from comparison of X-ray and neutron small-angle scattering T. Zemb and P according to the method developed by Hayter and Penfold. Both X-ray and neutron scattering signals, or by a combination of both. It has been shown recent- ly [1, 2] that it is possible in neutron scattering studies

  10. Crystal defect studies using x-ray diffuse scattering

    SciTech Connect (OSTI)

    Larson, B.C.

    1980-01-01

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  11. Studying single nanocrystals under high pressure using an x-ray nanoprobe

    SciTech Connect (OSTI)

    Wang Lin; Ding Yang; Yang Wenge; Patel, Umesh; Xiao Zhili; Cai Zhonghou; Mao, Wendy L.; Mao Hokwang

    2011-04-15

    In this report, we demonstrate the feasibility of applying a 250-nm focused x-ray beam to study a single crystalline NbSe{sub 3} nanobelt under high-pressure conditions in a diamond anvil cell. With such a small probe, we not only resolved the distribution and morphology of each individual nanobelt in the x-ray fluorescence maps but also obtained the diffraction patterns from individual crystalline nanobelts with thicknesses of less than 50 nm. Single crystalline diffraction measurements on NbSe{sub 3} nanobelts were performed at pressures up to 20 GPa.

  12. Time-domain sampling of x-ray pulses using an ultrafast sample response

    SciTech Connect (OSTI)

    Gaal, P.; Shayduk, R.; Schick, D.; Herzog, M.; Bojahr, A.; Goldshteyn, J.; Navirian, H. A.; Leitenberger, W.; Vrejoiu, I.; Khakhulin, D.; Wulff, M.; Bargheer, M.

    2012-12-10

    We employ the ultrafast response of a 15.4 nm thin SrRuO{sub 3} layer grown epitaxially on a SrTiO{sub 3} substrate to perform time-domain sampling of an x-ray pulse emitted from a synchrotron storage ring. Excitation of the sample with an ultrashort laser pulse triggers coherent expansion and compression waves in the thin layer, which turn the diffraction efficiency on and off at a fixed Bragg angle during 5 ps. This is significantly shorter than the duration of the synchrotron x-ray pulse of 100 ps. Cross-correlation measurements of the ultrafast sample response and the synchrotron x-ray pulse allow to reconstruct the x-ray pulse shape.

  13. X-rays Illuminate Ancient Archimedes Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-RayX-RayX-ray

  14. THz Pump and X-Ray Probe Development at LCLS

    SciTech Connect (OSTI)

    Fisher, Alan S; /SLAC, LCLS; Durr, Hermann; /SIMES, Stanford /SLAC, PULSE; Lindenberg, Aaron; Stanford U., Materials Sci.Dept.; /SIMES, Stanford /SLAC, PULSE; Reis, David; /SIMES, Stanford /SLAC, PULSE /Stanford U., Dept. Appl. Phys.; Frisch, Josef; Loos, Henrik; Petree, Mark; /SLAC, LCLS; Daranciang, Dan; /Stanford U., Chem. Dept.; Fuchs, Matthias; /SLAC, PULSE; Ghimire, Shambhu; /SLAC, PULSE; Goodfellow, John; /Stanford U., Materials Sci. Dept.

    2011-11-08

    We report on measurements of broadband, intense, coherent transition radiation at terahertz frequencies, generated as the highly compressed electron bunches in Linear Coherent Light Source (LCLS) pass through a thin metal foil. The foil is inserted at 45{sup o} to the electron beam, 31 m downstream of the undulator. The THz emission passes downward through a diamond window to an optical table below the beamline. A fully compressed 350-pC bunch produces up to 0.5 mJ in a nearly half-cycle pulse of 50 fs FWHM with a spectrum peaking at 10 THz. We estimate a peak field at the focus of over 2.5 GV/m. A 20-fs Ti:sapphire laser oscillator has recently been installed for electro-optic measurements. We are developing plans to add an x-ray probe to this THz pump, by diffracting FEL x rays onto the table with a thin silicon crystal. The x rays would arrive with an adjustable time delay after the THz. This will provide a rapid start to user studies of materials excited by intense single-cycle pulses and will serve as a step toward a THz transport line for LCLS-II.

  15. High power x-ray welding of metal-matrix composites

    DOE Patents [OSTI]

    Rosenberg, Richard A. (Naperville, IL); Goeppner, George A. (Orland Park, IL); Noonan, John R. (Naperville, IL); Farrell, William J. (Flossmoor, IL); Ma, Qing (Westmont, IL)

    1999-01-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  16. Cloning, purification and preliminary X-ray analysis of the C-terminal domain of Helicobacter pylori MotB

    SciTech Connect (OSTI)

    Roujeinikova, Anna, E-mail: anna.roujeinikova@manchester.ac.uk [Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom)

    2008-04-01

    The cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of a putative peptidoglycan-binding domain of H. pylori MotB, a stator component of the bacterial flagellar motor, are reported. The C-terminal domain of MotB (MotB-C) contains a putative peptidoglycan-binding motif and is believed to anchor the MotA/MotB stator unit of the bacterial flagellar motor to the cell wall. Crystals of Helicobacter pylori MotB-C (138 amino-acid residues) were obtained by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. These crystals belong to space group P2{sub 1}, with unit-cell parameters a = 50.8, b = 89.5, c = 66.3 Å, ? = 112.5°. The crystals diffract X-rays to at least 1.6 Å resolution using a synchrotron-radiation source. Self-rotation function and Matthews coefficient calculations suggest that the asymmetric unit contains one tetramer with 222 point-group symmetry. The anomalous difference Patterson maps calculated for an ytterbium-derivative crystal using diffraction data at a wavelength of 1.38 Å showed significant peaks on the v = 1/2 Harker section, suggesting that ab initio phase information could be derived from the MAD data.

  17. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  18. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, Clinton M. (Pleasanton, CA)

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  19. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  20. Sensing the wavefront of x-ray free-electron lasers using aerosol spheres

    SciTech Connect (OSTI)

    Loh, N.Duane; Starodub, Dimitri; Lomb, Lukas; Hampton, Christina Y.; Martin, Andrew V.; Sierra, Raymond G.; Barty, Anton; Aquila, Andrew; Schulz, Joachim; Steinbrener, Jan; Shoeman, Robert L.; Kassemeyer, Stephan; Bostedt, Christoph; Bozek, John; Epp, Sascha W.; Erk, Benjamin; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Rudek, Benedikt; Foucar, Lutz

    2014-04-22

    Characterizing intense, focused x-ray free electron laser (FEL) pulses is crucial for their use in diffractive imaging. We describe how the distribution of average phase tilts and intensities on hard x-ray pulses with peak intensities of 10 21 W/m2 can be retrieved from an ensemble of diffraction patterns produced by 70 nm-radius polystyrene spheres, in a manner that mimics wave-front sensors. Besides showing that an adaptive geometric correction may be necessary for diffraction data from randomly injected sample sources, the paper demonstrates the possibility of collecting statistics on structured pulses using only the diffraction patterns they generate and highlights the imperative to study its impact on single-particle diffractive imaging.

  1. Optical-diffraction method for determining crystal orientation

    DOE Patents [OSTI]

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  2. Compton backscattered collmated X-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  3. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  4. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  5. X-ray laser driven gold targets

    SciTech Connect (OSTI)

    Petrova, Tz. B., E-mail: lina.petrova@nrl.navy.mil; Whitney, K. G.; Davis, J. [Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)] [Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States)

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17}?W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  6. XFEL diffraction: Developing processing methods to optimize data quality

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sauter, Nicholas K.

    2015-01-29

    Serial crystallography, using either femtosecond X-ray pulses from free-electron laser sources or short synchrotron-radiation exposures, has the potential to reveal metalloprotein structural details while minimizing damage processes. However, deriving a self-consistent set of Bragg intensities from numerous still-crystal exposures remains a difficult problem, with optimal protocols likely to be quite different from those well established for rotation photography. Here several data processing issues unique to serial crystallography are examined. It is found that the limiting resolution differs for each shot, an effect that is likely to be due to both the sample heterogeneity and pulse-to-pulse variation in experimental conditions. Shotsmore »with lower resolution limits produce lower-quality models for predicting Bragg spot positions during the integration step. Also, still shots by their nature record only partial measurements of the Bragg intensity. An approximate model that corrects to the full-spot equivalent (with the simplifying assumption that the X-rays are monochromatic) brings the distribution of intensities closer to that expected from an ideal crystal, and improves the sharpness of anomalous difference Fourier peaks indicating metal positions.« less

  7. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ginn, Helen Mary; Brewster, Aaron S.; Hattne, Johan; Evans, Gwyndaf; Wagner, Armin; Grimes, Jonathan M.; Sauter, Nicholas K.; Sutton, Geoff; Stuart, David Ian

    2015-05-23

    Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definitionmore »of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating theRsplitvalue) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will generally increase the utility of the method for difficult cases.« less

  8. Electron Acceleration for X-ray Production Using Paired Pyroelectric Crystals Jeffrey Geuther, Yaron Danon, Frank Saglime, Bryndol Sones

    E-Print Network [OSTI]

    Danon, Yaron

    crystal was also tested. The counts per thermal cycle and maximum energy of the x-ray spectra were shown-ray generator, and to suggest innovative methods to improve the x-ray yield and increase the endpoint energy-vacuum conditions has been shown to be a viable method of producing x-rays. The z-negative face of the crystal forms

  9. Standard test method for determination of bromine and chlorine in UF6 and uranyl nitrate by X-Ray fluorescence (XRF) spectroscopy

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This method covers the determination of bromine (Br) and chlorine (Cl) in uranium hexafluoride (UF6) and uranyl nitrate solution. The method as written covers the determination of bromine in UF6 over the concentration range of 0.2 to 8 ?g/g, uranium basis. The chlorine in UF6 can be determined over the range of 4 to 160 ?g/g, uranium basis. Higher concentrations may be covered by appropriate dilutions. The detection limit for Br is 0.2 ?g/g uranium basis and for Cl is 4 ?g/g uranium basis. 1.2 This standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    SciTech Connect (OSTI)

    Havrilla, George J.; Gao, Ning

    2002-06-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites.

  11. Ultrafast X-ray diffraction K. Sokolowski-Tinten1

    E-Print Network [OSTI]

    von der Linde, D.

    , toroidally bent semiconductor crystals as focusing elements which are configured to select and focus 10 percent of the density of valence electrons) the crystal lattice becomes unstable and a transition

  12. Crystallization, Preliminary X-ray Diffraction and Structure...

    Office of Scientific and Technical Information (OSTI)

    using synchrotron radiation and belonged to the orthorhombic space group C2221, with unit-cell parameters a 69.14, b 138.87, c 124.13 Angstroms. Authors: Leduc,Y. ;...

  13. Residual stress measurement using X-ray diffraction 

    E-Print Network [OSTI]

    Anderoglu, Osman

    2005-02-17

    on the other hand, is recorded as a change in the emf proportional to the rate of change in magnetic moment detected in probe coils as domain walls move. It is attenuated at high frequencies by eddy current shielding and so provides only a near surface...

  14. X-RAY POWDER DIFFRACTION (XPD-1) SCIENTIFIC SCOPE

    E-Print Network [OSTI]

    Ohta, Shigemi

    are implicated in novel electronic properties from high temperature superconductivity to high performance properties. SCIENTIFIC APPLICATIONS Nuclear Applications: · High throughput, combinatorial approach, unmanned storage, CO2 sequestration, advanced structural ceramics, catalysis, and materials processing. ENDSTATION

  15. X-ray Powder Diffraction (XPD) Scientific scope

    E-Print Network [OSTI]

    in, for example, hydrogen storage, CO2 sequestration, advanced structural ceramics, catalysis, and materials processing. Such materials of high technological value often are complex, nanostructured handling, user-defined specific devices. The side station will operate at a fixed high energy (60 or 80ke

  16. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.Help Table of ContentsBiological

  17. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.Help Table of

  18. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.Help Table ofBiological Imaging by

  19. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.Help Table ofBiological Imaging

  20. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.Help Table ofBiological

  1. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.Help Table ofBiologicalBiological

  2. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.Help Table

  3. Portable X-Ray Diffraction (XRD) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas: EnergyOklahoma:Ewen, New

  4. X-ray Diffraction from Membrane Protein Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0PhotosPresentationsWorld'sfeed Related Sites: IITV

  5. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium andSamplerBiological Imaging by Soft

  6. Crystallization, Preliminary X-ray Diffraction and Structure Solution of

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collider TestspolycarbonateArticle)allostericCeramicMosA, a

  7. Self-terminating diffraction gates femtosecond X-ray nanocrystallography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| StanfordOfficeImplementationmeasurements Self-terminating

  8. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  9. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 2)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 2 are the pattern and configuration files for the pattern showed in Figure 2b in the paper.

  10. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    2011-02-02

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  11. Single mimivirus particles intercepted and imaged with an X-ray laser (CXIDB ID 1)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R.N.C.

    These are the files used to reconstruct the images in the paper "Single Mimivirus particles intercepted and imaged with an X-ray laser". Besides the diffracted intensities, the Hawk configuration files used for the reconstructions are also provided. The files from CXIDB ID 1 are the pattern and configuration files for the pattern showed in Figure 2a in the paper.

  12. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments

    SciTech Connect (OSTI)

    Kameshima, Takashi; Ono, Shun; Kudo, Togo; Ozaki, Kyosuke; Kirihara, Yoichi; Kobayashi, Kazuo; Inubushi, Yuichi; Yabashi, Makina; Hatsui, Takaki; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 ; Horigome, Toshio; Holland, Andrew; Holland, Karen; Burt, David; Murao, Hajime

    2014-03-15

    This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 10{sup 14} photon/mm{sup 2}. The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 ?m square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.

  13. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  14. Deep x-ray lithography for micromechanics

    SciTech Connect (OSTI)

    Christenson, T.R. [Sandia National Labs., Albuquerque, NM (United States); Guckel, H. [Wisconsin Univ., Madison, WI (United States). Dept. of Electrical and Computer Engineering

    1995-08-01

    Extensions of the German LIGA process have brought about fabrication capability suitable for cost effective production of precision engineered components. The process attributes allow fabrication of mechanical components which are not capable of being made via conventional subtractive machining methods. Two process improvements have been responsible for this extended capability which involve the areas of thick photoresist application and planarization via precision lapping. Application of low-stress x-ray photoresist has been achieved using room temperature solvent bonding of a preformed photoresist sheet. Precision diamond lapping and polishing has provided a flexible process for the planarization of a wide variety of electroplated metals in the presence of photoresist. Exposure results from the 2.5 GeV National Synchrotron Light Source storage ring at Brookhaven National Laboratory have shown that structural heights of several millimeter and above are possible. The process capabilities are also well suited for microactuator fabrication. Linear and rotational magnetic microactuators have been constructed which use coil winding technology with LIGA fabricated coil forms. Actuator output forces of 1 milliNewton have been obtained with power dissipation on the order of milliWatts. A rotational microdynamometer system which is capable of measuring torque-speed data is also discussed.

  15. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect (OSTI)

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  16. Towards phasing using high X-ray intensity

    SciTech Connect (OSTI)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  17. Towards phasing using high X-ray intensity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; et al

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore »is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less

  18. Ultrafast X-Ray Coherent Control

    SciTech Connect (OSTI)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent #12;eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di#11;racting properties of a x-ray di#11;racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti#12;c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the #12;eld, and have laid the foundation for many experiments being performed on the LCLS, the world's #12;rst hard x-ray free electron laser.

  19. Oscillations During Thermonuclear X-ray Bursts

    E-Print Network [OSTI]

    Tod E. Strohmayer

    2001-01-12

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290 Hz) has been claimed.

  20. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  1. X-ray Point Source Populations Constituting the Galactic Ridge X-ray Emission

    E-Print Network [OSTI]

    Morihana, Kumiko; Yoshida, Tessei; Ebisawa, Ken

    2013-01-01

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of the X-ray astronomy, which is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra Bulge Field (Revnivtsev et al., 2009,2011), we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard band continuum and Fe K\\alpha line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-...

  2. ELECTRON FLUX SPECTRAL IMAGING OF SOLAR FLARES THROUGH REGULARIZED ANALYSIS OF HARD X-RAY SOURCE VISIBILITIES

    E-Print Network [OSTI]

    Piana, Michele

    ELECTRON FLUX SPECTRAL IMAGING OF SOLAR FLARES THROUGH REGULARIZED ANALYSIS OF HARD X-RAY SOURCE a new method for imaging spectroscopy analysis of hard X-ray emission during solar flares. The method the method to a solar flare observed on 2002 February 20 by the RHESSI instrument. The event is characterized

  3. Influence of structural disorder on soft x-ray optical behavior of NbC thin films

    SciTech Connect (OSTI)

    Singh, Amol E-mail: rrcat.amol@gmail.com; Modi, Mohammed H.; Sinha, A. K.; Lodha, G. S.; Rajput, Parasmani

    2015-05-07

    Structural and chemical properties of compound materials are modified, when thin films are formed from bulk materials. To understand these changes, a study was pursued on niobium carbide (NbC) thin films of different thicknesses deposited on Si (100) substrate using ion beam sputtering technique. Optical response of the film was measured in 4–36?nm wavelength region using Indus-1 reflectivity beamline. A discrepancy in soft x-ray performance of NbC film was observed which could not be explained with Henke's tabulated data (see http://henke.lbl.gov/optical{sub c}onstants/ ). In order to understand this, detailed structural and chemical investigations were carried out using x-ray reflectivity, grazing incidence x-ray diffraction, x-ray absorption near edge structure, extended x-ray absorption fine structure, and x-ray photoelectron spectroscopy techniques. It was found that the presence of unreacted carbon and Nb deficiency due to reduced Nb-Nb coordination are responsible for lower soft x-ray reflectivity performance. NbC is an important material for soft x-ray optical devices, hence the structural disorder need to be controlled to achieve the best performances.

  4. Self-standing quasi-mosaic crystals for focusing hard X-rays

    SciTech Connect (OSTI)

    Camattari, Riccardo; Guidi, Vincenzo; Bellucci, Valerio; Neri, Ilaria; Frontera, Filippo; Jentschel, Michael

    2013-05-15

    A quasi mosaic bent crystal for high-resolution diffraction of X and {gamma} rays has been realized. A net curvature was imprinted to the crystal thanks to a series of superficial grooves to keep the curvature without external devices. The crystal highlights very high diffraction efficiency due to quasi mosaic curvature. Quasi mosaic crystals of this kind are proposed for the realization of a high-resolution focusing Laue lens for hard X-rays.

  5. X-ray Clusters at High Redshift

    E-Print Network [OSTI]

    I. M. Gioia

    1997-11-30

    As the largest gravitationally bound structures known, clusters provide clear constraints on the formation of structure and on the composition of the universe. Despite their extreme importance for cosmology the number of clusters at high redshift (z > 0.75) is rather small. There are only a few X-ray emitting examples reported and a handful of optically-selected ones. These clusters can provide stringent constrains on theories of large scale structure formation, if they are massive enough. I will review the status of these distant X-ray selected clusters. These objects are of special importance because their X-ray emission implies that they are massive, comparable to low redshift examples, and their existence is problematic for some theories of structure formation.

  6. Characterization of nuclear physics targets using Rutherford backscattering and particle induced x-ray emission

    E-Print Network [OSTI]

    Th. Rubehn; G. J. Wozniak; L. Phair; L. G. Moretto; Kin M. Yu

    1996-09-23

    Rutherford backscattering and particle induced x-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non destructive determination of target thickness, homogeneity and element composition.

  7. Thin optic surface analysis for high resolution X-ray telescopes

    E-Print Network [OSTI]

    Akilian, Mireille

    2004-01-01

    The art of glass developed throughout the years has covered artifacts ranging from crude ornaments to high precision optics used in flat panel displays, hard disk drives, and x-ray telescopes. Methods for manufacturing ...

  8. Radiobiological studies using gamma and x rays.

    SciTech Connect (OSTI)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

    2013-02-01

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  9. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidentialLensless Imaging of WholeX-Ray Imaging inX-Ray

  10. X-ray reflection spectra from ionized slabs

    E-Print Network [OSTI]

    R. R. Ross; A. C. Fabian; A. J. Young

    1999-02-23

    X-ray reflection spectra are an important component in the X-ray spectra of many active galactic nuclei and Galactic black hole candidates. It is likely that reflection takes place from highly ionized surfaces of the accretion disc in some cases. This can lead to strong Comptonization of the emergent iron, and other, absorption and emission features. We present such reflection spectra here, computed in a self-consistent manner with the method described by Ross and Fabian. In particular we emphasise the range where the ionization parameter (the flux to density ratio) \\xi is around and above 10^4. Such spectra may be relevant to the observed spectral features found in black hole candidates such as Cygnus X-1 in the low/hard state.

  11. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity

    E-Print Network [OSTI]

    Hao, Yajiang; Hanasaki, Kota; Son, Sang-Kil; Santra, Robin

    2015-01-01

    We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.

  12. Hexakis(4-phormylphenoxy)cyclotriphosphazene: X-ray and DFT-calculated structures

    SciTech Connect (OSTI)

    Albayrak, Cigdem Kosar, Basak; Odabasoglu, Mustafa; Bueyuekguengoer, Orhan

    2010-12-15

    The crystal structure of hexakis(4-phormylphenoxy)cyclotriphosphazene is determined by using X-ray diffraction and then the molecular structure is investigated with density functional theory (DFT). X-Ray study shows that the title compound has C-H-{pi} interaction with phosphazene ring. The molecules in the unit cell are packed with Van der Waals and dipole-dipole interactions and the molecules are packed in zigzag shaped. Optimized molecular geometry is calculated with DFT at B3LYP/6-311G(d,p) level. The results from both experimental and theoretical calculations are compared in this study.

  13. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0PhotosPresentationsWorld's

  14. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    SciTech Connect (OSTI)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  15. Study of optical Laue diffraction

    SciTech Connect (OSTI)

    Chakravarthy, Giridhar, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Allam, Srinivasa Rao, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Satyanarayana, S. V. M., E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Sharan, Alok, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com [Department of Physics, Pondicherry University, Puducherry-605014 (India)

    2014-10-15

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  16. Workshops on Science Enabled by a Coherent, CW, Synchrotron X-ray Source, June 2011

    SciTech Connect (OSTI)

    Brock, Joel

    2012-01-03

    In June of 2011 we held six two-day workshops called "XDL-2011: Science at the Hard X-ray Diffraction Limit". The six workshops covered (1) Diffraction-based imaging techniques, (2) Biomolecular structure from non-crystalline materials, (3) Ultra-fast science, (4) High-pressure science, (5) Materials research with nano-beams and (6) X-ray photon correlation spectroscopy (XPCS), In each workshop, invited speaker from around the world presented examples of novel experiments that require a CW, diffraction-limited source. During the workshop, each invited speaker provided a one-page description of the experiment and an illustrative graphic. The experiments identified by the workshops demonstrate the broad and deep scientific case for a CW coherent synchrotron x-ray source. The next step is to perform detailed simulations of the best of these ideas to test them quantitatively and to guide detailed x-ray beam-line designs. These designs are the first step toward developing detailed facility designs and cost estimates.

  17. Catalog of supersoft X-ray sources

    E-Print Network [OSTI]

    J. Greiner

    2000-05-11

    This catalog comprises an up-to-date (December 1999) list of luminous (>10^36 erg/s), binary supersoft X-ray sources. This electronic version (including the accompannying Web-pages) supersedes the printed version of Greiner (1996).

  18. SLAC All Access: X-ray Microscope

    ScienceCinema (OSTI)

    Nelson, Johanna; Liu, Yijin

    2014-06-13

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  19. Beam based calibration of X-ray pinhole camera in SSRF

    E-Print Network [OSTI]

    Yong-Bin Leng; Guo-Qing Huang; Man-Zhou Zhang; Zhi-Chu Chen; Jie Chen; Kai-Rong Ye

    2011-03-25

    The Shanghai Synchrotron Radiation Facility (SSRF) contains a 3.5-GeV storage ring serving as a national X-ray synchrotron radiation user facility characterized by a low emittance and a low coupling. The stability and quality of the electron beams are monitored continuously by an array of diagnostics. In particular, an X-ray pinhole camera is employed in the diagnostics beamline of the ring to characterize the position, size, and emittance of the beam. The performance of the measurement of the transverse electron beam size is given by the width of the point spread function (PSF) of the X-ray pinhole camera. Typically the point spread function of the X-ray pinhole camera is calculated via analytical or numerical method. In this paper we will introduce a new beam based calibration method to derive the width of the PSF online.

  20. High Efficiency, Multi-Terawatt X-ray free electron lasers

    E-Print Network [OSTI]

    Emma, Claudio; Wu, Juhao; Pellegrini, Claudio

    2015-01-01

    We study high efficiency, multi-terawatt peak power, few angstrom wavelength, X-ray Free Electron Lasers (X-ray FELs). To obtain these characteristics we consider an optimized undulator design: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. The peak power and efficiency depend on the transverse electron beam distribution and on time dependent effects, like synchrotron sideband growth. The last effect is identified as the main cause for reduction of electron beam microbunching and FEL peak power. We show that the optimal functional form for the undulator magnetic field tapering profile, yielding the maximum output power, depends significantly on these effects. The output power achieved when neglecting time dependent effects for an LCLS-like X-ray FEL with a 100 m lo...

  1. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  2. Strain and particle size of palladium powders by time-of-flight neutron diffraction

    SciTech Connect (OSTI)

    Lawson, A.C.; Conant, J.W.; Talcott, C.L.; David, M.A.; Vaninetti, J.; Goldstone, J.A.; Williams, A.; Von Dreele, R.B.; Roof, R.B.; Hitterman, R.L.; Richardson, J.W. Jr.; Faber, J. Jr.

    1989-01-01

    We have determined the strain and particle size for several samples of palladium powder by time-of-flight neutron powder diffraction on two different diffractometers and by x-ray powder diffraction. The results are compared and found to be in fair agreement. The time-of-flight method gives good enough precision to reveal deficiencies in the simple models used for strain and particle size line broadening. 6 refs., 4 figs., 2 tabs.

  3. X-ray small-angle scattering from sputtered CeO{sub 2}/C bilayers

    SciTech Connect (OSTI)

    Haviar, S.; Dubau, M.; Khalakhan, I.; Vorokhta, M.; Matolinova, I.; Matolin, V.; Vales, V.; Endres, J.; Holy, V.; Buljan, M.; Bernstorff, S.

    2013-01-14

    Surface and interface morphology of cerium oxide/carbon bilayers used as thin-film catalysts is studied by grazing-incidence small-angle x-ray scattering, scanning electron microscopy, and atomic-force microscopy, and the dependence of the structural parameters on the thicknesses of the constituting layers is investigated. The applicability of x-ray scattering and its advantages over standard analytical methods are discussed.

  4. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect (OSTI)

    Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-20

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  5. Low-level determination of plutonium by gamma and L x-ray spectroscopy

    SciTech Connect (OSTI)

    Nitsche, H.; Gatti, R.C.; Lee, S.C.

    1991-04-01

    we have developed an analytical method for detection of {sup 239}Pu in aqueous samples at concentrations as low as 10{sup {minus}10} M. This nuclear counting technique utilizes the uranium L X-rays, which follow the alpha decay of plutonium. Because L X-rays are specific for the element and not for the individual isotopes, the isotopic composition of the plutonium sample must be known. The counting efficiency in the 11--23 keV range is determined from a plutonium standard, and the concentration of the sample is then calculated from the L X-ray count and the isotopic composition. The total L X-ray count is corrected for possible contributions from other radionuclides present as impurities by measuring the low-energy gamma spectrum for each contaminant to establish specific photon/X-ray ratios. The ratios are important when {sup 241}Pu and {sup 242}Pu are measured, because the respective decay chain members produce non-U L X-rays. This new method can replace the use of labor-intensive radiochemical separation techniques and elaborate activation methods for analysis of {sup 239}Pu in aqueous samples. It is also applicable for assaying plutonium in liquid wastes that pose possible hazards to the environment.

  6. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, A.; Luo, J.; Wang, A.; Broadbent, C.; Zhong, J.; Dilmanian, F. A.; Zafonte, F.; Zhong, Z.

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore »the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  7. Fat to Muscle Ratio Measurements with Dual Energy X Ray Absorbtiometry

    E-Print Network [OSTI]

    Chen, A; Broadbent, C; Zhong, J; Dilmanian, A; Zafonte, F; Zhong, Z

    2014-01-01

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. An efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent in the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.

  8. Molecular orientation in soft matter thin films studied by resonant soft x-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B; Valvidares, Manuel; Gullikson, Eric M; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-04-05

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft x-ray reflectivity using linear s and p polarization. It combines the chemical sensitivity of near-edge x-ray absorption fine structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of x-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft x-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and is independent of the film thickness.

  9. Molecular orientation in soft matter thin films studied by resonant soft X-ray reflectivity

    SciTech Connect (OSTI)

    Mezger, Markus; Jerome, Blandine; Kortright, Jeffrey B.; Valvidares, Manuel; Gullikson, Eric; Giglia, Angelo; Mahne, Nicola; Nannarone, Stefano

    2011-01-12

    We present a technique to study depth profiles of molecular orientation in soft matter thin films with nanometer resolution. The method is based on dichroism in resonant soft X-ray reflectivity using linear s- and p-polarization. It combines the chemical sensitivity of Near-Edge X-ray Absorption Fine Structure spectroscopy to specific molecular bonds and their orientation relative to the polarization of the incident beam with the precise depth profiling capability of X-ray reflectivity. We demonstrate these capabilities on side chain liquid crystalline polymer thin films with soft X-ray reflectivity data at the carbon K edge. Optical constants of the anisotropic refractive index ellipsoid were obtained from a quantitative analysis using the Berreman formalism. For films up to 50 nm thickness we find that the degree of orientation of the long axis exhibits no depth variation and isindependent of the film thickness.

  10. Temporal structure of X-ray radiation pulses of picosecond laser plasma

    SciTech Connect (OSTI)

    Belyaev, V S; Kovkov, D V; Matafonov, A P; Karabadzhak, G F; Raikunov, G G [Central Research Institute of Machine Building, Korolev, Moscow region (Russian Federation); Faenov, A Ya; Pikuz, S A; Skobelev, I Yu; Pikuz, T A; Fokin, D A; Fortov, V E [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow (Russian Federation); Ignat'ev, G N; Kapitanov, S V; Krapiva, P S; Korotkov, K E [All-Russian Institute of Automatics, Moscow (Russian Federation)

    2013-09-30

    The shape of the X-ray pulse generated by picosecond laser plasma is experimentally studied. The unusual phenomenon was experimentally observed for the first time for targets made of moderate-heavy chemical elements, namely, the pulse of hard X-ray radiation generated by laser plasma at the laser radiation flux of ?10{sup 18} W cm{sup -2} had a longer duration than the pulse of softer X-ray radiation. A simple kinetic model is suggested for explaining this fact. We have suggested a method for controlling the temporal shape of X-ray pulse emitted by laser plasma by varying the contrast of laser pulse. (interaction of laser radiation with matter)

  11. Note: Dynamic strain field mapping with synchrotron X-ray digital image correlation

    SciTech Connect (OSTI)

    Lu, L. [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); Bie, B. X. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207 (China); School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Ran, X. X.; Qi, M. L., E-mail: qiml@whut.edu.cn [School of Science, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Parab, N.; Sun, J. Z.; Liao, H. J.; Hudspeth, M. C.; Claus, B. [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); Fezzaa, K.; Sun, T. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Chen, W. [School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana 47907 (United States); School of Material Science Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Gong, X. L., E-mail: gongxl@ustc.edu.cn [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-07-15

    We present a dynamic strain field mapping method based on synchrotron X-ray digital image correlation (XDIC). Synchrotron X-ray sources are advantageous for imaging with exceptional spatial and temporal resolutions, and X-ray speckles can be produced either from surface roughness or internal inhomogeneities. Combining speckled X-ray imaging with DIC allows one to map strain fields with high resolutions. Based on experiments on void growth in Al and deformation of a granular material during Kolsky bar/gas gun loading at the Advanced Photon Source beamline 32ID, we demonstrate the feasibility of dynamic XDIC. XDIC is particularly useful for dynamic, in-volume, measurements on opaque materials under high strain-rate, large, deformation.

  12. COMBINING CLASSIFIERS FOR BONE FRACTURE DETECTION IN X-RAY IMAGES Vineta Lai Fun Lum, Wee Kheng Leow, Ying Chen,

    E-Print Network [OSTI]

    Leow, Wee Kheng

    COMBINING CLASSIFIERS FOR BONE FRACTURE DETECTION IN X-RAY IMAGES Vineta Lai Fun Lum, Wee Kheng combination methods ap- plied to the detection of bone fractures in x-ray images. Test results show, only about 12% of them contained fractured femurs. For radius images, about 30% of 145 consecu- tive

  13. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    times science has used high-brilliance x-rays to look so closely at these reactions. Lead author Dr. David Mueller at the ALS using x-rays to characterize working fuel cells....

  14. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Using Light to Control How X Rays Interact with Matter Print Wednesday, 27 January 2010 00:00 Schemes that use one light...

  15. A World's Top-10 X-ray Crystal Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A World's Top-10 X-ray Crystal Structure October 7, 2014 Bookmark and Share Philip Coppens An x-ray crystal structure solved by Philip Coppens has been chosen as one of the world's...

  16. Dawn of x-ray nonlinear optics | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dawn of x-ray nonlinear optics Wednesday, July 8, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: David Reis, PULSE Program Description X-ray free electron lasers...

  17. Staff Research Physicist (X-Ray Spectroscopy) | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    position to work on X-ray spectroscopy, atomic physics, X-ray instrumentation, and high energy density physics. Near-term research goals include participating in the design,...

  18. X-ray mammography with synchrotron radiation

    SciTech Connect (OSTI)

    Burattini, E. (CNR and INFN-Laboratori Nazionali di Frascati, Frascati, Rome (Italy)); Gambaccini, M.; Marziani, M.; Rimondi, O. (Dipartimento di Fisica dell'Universita and Sezione INFN di Ferrara, Ferrara (Italy)); Indovina, P.L. (Dipartimento di Scienze Fisiche dell'Universita and Sezione INFN di Napoli, Naples (Italy)); Pocek, M.; Simonetti, G. (Istituto di Radiologia, Ospedale Sant'Eugenio, Universita di Tor Vergata, Rome (Italy)); Benassi, M.; Tirelli, C. (Istituto Nazionale del Cancro, Regina Elena, Rome (Italy)); Passariello, R. (Cattedra di Radiologia, Universita dell'Aquila, L'Aquila (Italy))

    1992-01-01

    For the first time in the literature, radiographs of breast phantoms were obtained using several monochromatic synchrotron radiation x-ray beams of selected energy in the range from 14 to 26 keV. In addition, after optimization of the photon energy as a function of the phantom thickness, several mammographs were obtained on surgically removed human breast specimens containing cancer nodules. Comparison between radiographs using a conventional x-ray unit and those obtained of the same specimens utilizing synchrotron monochromatic beams clearly shows that higher contrast and better resolution can be achieved with synchrotron radiation. These results demonstrate the possibility of obtaining radiographs of excised human breast tissue containing a greater amount of radiological information using synchrotron radiation.

  19. Coherence Properties of Individual Femtosecond Pulses of an X-ray Free-Electron Laser

    SciTech Connect (OSTI)

    Vartanyants, I.A.; /DESY /Moscow Phys. Eng. Inst.; Singer, A.; Mancuso, A.P.; Yefanov, O.M.; /DESY; Sakdinawat, A.; Liu, Y.; Bang, E.; /UC, Berkeley; Williams, G.J.; /SLAC; Cadenazzi, G.; Abbey, B.; /Melbourne U.; Sinn, H.; /European XFEL, Hamburg; Attwood, D.; /UC, Berkeley; Nugent, K.A.; /Melbourne U.; Weckert, E.; /DESY; Wang, T.; Zhu, D.; Wu, B.; Graves, C.; Scherz, A.; Turner, J.J.; Schlotter, W.F.; /SLAC /LERMA, Ivry /Zurich, ETH /LBL, Berkeley /ANL, APS /Argonne /SLAC /LLNL, Livermore /Latrobe U. /SLAC /SLAC /European XFEL, Hamburg /SLAC /Hamburg U.

    2012-06-06

    Measurements of the spatial and temporal coherence of single, femtosecond x-ray pulses generated by the first hard x-ray free-electron laser, the Linac Coherent Light Source, are presented. Single-shot measurements were performed at 780 eV x-ray photon energy using apertures containing double pinholes in 'diffract-and-destroy' mode. We determined a coherence length of 17 {micro}m in the vertical direction, which is approximately the size of the focused Linac Coherent Light Source beam in the same direction. The analysis of the diffraction patterns produced by the pinholes with the largest separation yields an estimate of the temporal coherence time of 0.55 fs. We find that the total degree of transverse coherence is 56% and that the x-ray pulses are adequately described by two transverse coherent modes in each direction. This leads us to the conclusion that 78% of the total power is contained in the dominant mode.

  20. X-rays from Supernova Remnants

    E-Print Network [OSTI]

    B. Aschenbach

    2002-08-28

    A summary of X-ray observations of supernova remnants is presented including the explosion fragment A of the Vela SNR, Tycho, N132D, RX J0852-4622, the Crab Nebula and the 'bulls eye', and SN 1987A, high-lighting the progress made with Chandra and XMM-Newton and touching upon the questions which arise from these observations and which might inspire future research.

  1. The X-ray Telescope of CAST

    E-Print Network [OSTI]

    M. Kuster; H. Bräuninger; S. Cébrian; M. Davenport; C. Elefteriadis; J. Englhauser; H. Fischer; J. Franz; P. Friedrich; R. Hartmann; F. H. Heinsius; D. H. H. Hoffmann; G. Hoffmeister; J. N. Joux; D. Kang; K. Königsmann; R. Kotthaus; T. Papaevangelou; C. Lasseur; A. Lippitsch; G. Lutz; J. Morales; A. Rodríguez; L. Strüder; J. Vogel; K. Zioutas

    2007-05-10

    The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

  2. Small Angle X-ray Scattering (SAXS) Laboratory Learning Experiences

    E-Print Network [OSTI]

    Meagher, Mary

    .A. & Svergun D.I. (1987). Structure Analysis by Small-Angle X-Ray and Neutron Scattering. NY: Plenum PressSmall Angle X-ray Scattering (SAXS) Laboratory Learning Experiences o - Use of small angle X-ray scattering instrumentation o - Programs that you will use SAXS (BRUKER AXS) PRIMUS (Konarev, Volkov, Koch

  3. Femtosecond laser-electron x-ray source

    DOE Patents [OSTI]

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  4. Monitoring x-ray beam damage on lipid films by an integrated Brewster angle microscope/x-ray diffractometer

    E-Print Network [OSTI]

    Lee, Ka Yee C.

    Polyunsaturated lipids with conjugated tails are easily dam- aged by x-ray irradiation in the presence of oxygen samples and thin films has been detected since the beginning of x-ray studies. Dam- age to lipid samples

  5. The prospects for constraining dark energy with future X-ray cluster gas mass fraction measurements

    E-Print Network [OSTI]

    David Rapetti; Steven W. Allen; Adam Mantz

    2008-06-25

    We examine the ability of a future X-ray observatory to constrain dark energy via measurements of the cluster X-ray gas mass fraction, fgas. We find that fgas measurements for a sample of ~500 hot, X-ray bright, dynamically relaxed clusters, to a precision of ~5 per cent, can be used to constrain dark energy with a Dark Energy Task Force (DETF) figure of merit of 15-40, with the possibility of boosting these values by 40 per cent or more by optimizing the redshift distribution of target clusters. Such constraints are comparable to those predicted by the DETF for other leading, planned dark energy experiments. A future fgas experiment will be preceded by a large X-ray or SZ survey that will find hot, X-ray luminous clusters out to high redshifts. Short `snapshot' observations with the new X-ray observatory should then be able to identify a sample of ~500 suitably relaxed systems. The redshift, temperature and X-ray luminosity range of interest has already been partially probed by existing X-ray cluster surveys which allow reasonable estimates of the fraction of clusters that will be suitably relaxed for fgas work. Our analysis uses a Markov Chain Monte Carlo method which fully captures the relevant degeneracies between parameters and facilitates the incorporation of priors and systematic uncertainties in the analysis. We explore the effects of such uncertainties for scenarios ranging from optimistic to pessimistic. We conclude that the fgas experiment will provide tight constraints on the mean matter and dark energy densities, with a peak sensitivity for dark energy work at redshifts midway between those of supernovae and baryon acoustic oscillation/weak lensing/cluster number counts experiments. In combination, these experiments should enable a precise measurement of the evolution of dark energy. (Abridged)

  6. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B. L.; Gullikson, E. M.; Davis, J. C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  7. Experimental investigation of beam heating in a soft X-ray scanning transmission X-ray microscope

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Experimental investigation of beam heating in a soft X-ray scanning transmission X-ray microscope and an accuracy of Æ1 C has been fabricated for scanning transmission X-ray microscopes (STXM). Here we describe at temperatures near their respective melting points as a means of checking for possible sample heating caused

  8. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    SciTech Connect (OSTI)

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  9. Installation of soft X-ray array diagnostics and its application to tomography reconstruction using synthetic KSTAR X-ray images

    SciTech Connect (OSTI)

    Lee, Seung Hun; Jang, Juhyeok; Hong, Joohwan; Jang, Siwon; Choe, Wonho; Pacella, D.; Romano, A.; Gabellieri, L.; Kim, Junghee

    2014-11-15

    Four-array system of soft X-ray diagnostics was installed on KSTAR tokamak. Each array has 32 viewing chords of two photo-diode array detectors with spatial resolution of 2 cm. To estimate signals from the soft X-ray radiation power, typical n{sub e}, T{sub e}, and argon impurity line radiation profiles in KSTAR are chosen. The photo-diodes were absolutely calibrated as a function of the incident photon energy in 2–40 keV range with a portable X-ray tube. Two-dimensional T{sub e} image properties by multi-energy method were simulated and visualized with six combinations of beryllium filter sets within the dynamic range of signal ratio.

  10. Apparatus for monitoring X-ray beam alignment

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  11. High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Voronov, Dmitriy L.; Goray, Leonid I.; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.

    2015-02-17

    A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 104 achieved routinely today to well above 105. This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations in matter. Thesemore »excitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.« less

  12. HgMn Stars as apparent X-ray emitters

    E-Print Network [OSTI]

    Hubrig, S; Mathys, G

    1998-01-01

    In the ROSAT all-sky survey 11 HgMn stars were detected as soft X-ray emitters (Berghoefer, Schmitt & Cassinelli 1996). Prior to ROSAT, X-ray observations with the Einstein Observatory had suggested that stars in the spectral range B5-A7 are devoid of X-ray emission. Since there is no X-ray emitting mechanism available for these stars (also not for HgMn stars), the usual argument in the case of an X-ray detected star of this spectral type is the existence of an unseen low-mass companion which is responsible for the X-ray emission. The purpose of the present work is to use all available data for our sample of X-ray detected HgMn stars and conclude on the nature of possible companions.

  13. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    SciTech Connect (OSTI)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  14. Two-Bunch Self-Seeding for Narrow-Bandwidth Hard X-Ray Free-Electron...

    Office of Scientific and Technical Information (OSTI)

    one of the most promising methods to accomplish this. In the hard x-ray regime with high- energy electrons, this method requires a large magnetic chicane to match the path length...

  15. Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schot, Gijs, vander

    2015-02-10

    This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.

  16. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, J. L., E-mail: niedzielajl@ornl.gov [Instrument and Source Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Stone, M. B., E-mail: stonemb@ornl.gov [Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-09-08

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80?K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  17. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2014-01-01

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  18. Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schot, Gijs, vander

    This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.

  19. X-ray emission properties of galaxies in Abell 3128

    E-Print Network [OSTI]

    Russell J. Smith

    2003-07-15

    We use archival Chandra X-ray Observatory data to investigate X-ray emission from early-type galaxies in the rich z=0.06 cluster Abell 3128. By combining the X-ray count-rates from an input list of optically-selected galaxies, we obtain a statistical detection of X-ray flux, unbiased by X-ray selection limits. Using 87 galaxies with reliable Chandra data, X-ray emission is detected for galaxies down to M_B ~ -19.0, with only an upper limit determined for galaxies at M_B ~ -18.3. The ratio of X-ray to optical luminosities is consistent with recent determinations of the low-mass X-ray binary content of nearby elliptical galaxies. Taken individually, in contrast, we detect significant (3sigma) flux for only six galaxies. Of these, one is a foreground galaxy, while two are optically-faint galaxies with X-ray hardness ratios characteristic of active galactic nuclei. The remaining three detected galaxies are amongst the optically-brightest cluster members, and have softer X-ray spectra. Their X-ray flux is higher than that expected from X-ray binaries, by a factor 2-10; the excess suggests these galaxies have retained their hot gaseous haloes. The source with the highest L_X / L_B ratio is of unusual optical morphology with prominent sharp-edged shells. Notwithstanding these few exceptions, the cluster population overall exhibits X-ray properties consistent with their emission being dominated by X-ray binaries. We conclude that in rich cluster environments, interaction with the ambient intra-cluster medium acts to strip most galaxies of their hot halo gas.

  20. Metrology for the advancement of x-ray optics at the ALS

    E-Print Network [OSTI]

    Goldberg, Kenneth

    2014-01-01

    S. Yuan et al. , X-ray Optics and Instrumentation 2010,in X-ray and Neutron Optics, Springer, Berlin S. G. AlcockX-ray beam metrology and X-ray optic alignment by Hartmann

  1. X-ray Selected Clusters of Galaxies

    E-Print Network [OSTI]

    Isabella M. Gioia

    1996-01-21

    This paper given at the meeting on "Mapping, Measuring and Modelling the Universe" presents three topics: 1) the study of the clusters and groups of galaxies found serendipitously in the North Ecliptic Pole (NEP) region of the ROSAT all-sky survey; 2) the highest redshift clusters found in the EMSS (up to z=0.82) and the cosmological implications of their very existence; 3) the gravitational lensing in the EMSS X-ray selected clusters of galaxies observed by the Hubble Space Telescope.

  2. SMB, Small Angle X-Ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV 14800Small Angle X-Ray Scattering Home »

  3. SMB, X-ray Absorption Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV 14800Small Angle X-Ray Scattering Home

  4. SMB, X-ray Emission Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV 14800Small Angle X-Ray Scattering

  5. SMB, X-ray Fluorescence Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV 14800Small Angle X-Ray

  6. X-Ray Microscopy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-Ray ImagingIn the

  7. X-ray Microscopy and Imaging: FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWindX-Ray

  8. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidentialLensless Imaging of WholeX-Ray Imaging in

  9. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp GraduateResidentialLensless Imaging of WholeX-Ray Imaging

  10. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N I CLensless X-Ray Imaging in

  11. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N I CLensless X-Ray Imaging

  12. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N I CLensless X-Ray ImagingLensless

  13. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E C H N I CLensless X-Ray

  14. Constraints on the Bulk Lorentz Factors of GRB X-Ray Flares

    E-Print Network [OSTI]

    Yi, Shuang-Xi; Wang, Fa-Yin; Dai, Zi-Gao

    2015-01-01

    X-ray flares were discovered in the afterglow phase of gamma-ray bursts (GRBs) by the {\\em Swift} satellite a decade ago and known as a canonical component in GRB X-ray afterglows. In this paper, we constrain the Lorentz factors of GRB X-ray flares using two different methods. For the first method, we estimate the lower limit on the bulk Lorentz factor with the flare duration and jet break time. In the second method, the upper limit on the Lorentz factor is derived by assuming that the X-ray flare jet has undergone saturated acceleration. We also re-estimate the initial Lorentz factor with GRB afterglow onsets, and find the coefficient of the theoretical Lorentz factor is 1.67 rather than the commonly used 2 for interstellar medium (ISM) and 1.44 for the wind case. We find that the correlation between the limited Lorentz factor and the isotropic radiation energy of X-ray flares in the ISM case is more consistent with that of prompt emission than the wind case in a statistical sense. For a comparison, the lowe...

  15. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect (OSTI)

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ?5 keV to ?10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  16. Spectral softening in the X-RAY afterglow of GRB 130925A as predicted by the dust scattering model

    SciTech Connect (OSTI)

    Zhao, Yi-Nan; Shao, Lang, E-mail: lshao@hebtu.edu.cn [Department of Space Science and Astronomy, Hebei Normal University, Shijiazhuang 050024 (China)

    2014-07-01

    Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a ? 0.1 ?m) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximation may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.

  17. Experiments with relativistic electrons producing tunable X-rays from Cu crystals B. Sones, Y. Danon*, E. Blain*

    E-Print Network [OSTI]

    Danon, Yaron

    Experiments with relativistic electrons producing tunable X-rays from Cu crystals B. Sones, Y electrons with periodic structures like those found in crystal. This phenomenon can be modeled as the diffraction of the "virtual photon" field associated with the relativistic electron as it traverses

  18. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    E-Print Network [OSTI]

    Ritchie, Robert

    each hier- archical structural level contributes to its strength, ductility and toughness-ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen August 2011 Keywords: Human cortical bone Deformation Toughness X-ray diffraction Tomography Collagen a b

  19. Polarization periodicity in the B1 columnar phase determined by resonant x-ray scattering

    SciTech Connect (OSTI)

    Folcia, C.L.; Pindak, R.; Ortega, J.; Etxebarria, J.; Pan, L.; Wang, S.; Huang, C.C.; Ponsinet, V.; Barois, P. and Gimeno, N.

    2011-07-14

    We report structural results that evidence the polarization distribution of the blocks in the columnar phase of an achiral bent-core liquid crystal. The study was performed using resonant x-ray diffraction at the sulfur K edge on oriented samples aligned on substrates. The extra periodicity is revealed through the violation of the systematic extinction rule of the structural symmetry group along the experimentally accessible diffraction direction. Further data obtained from the polarization analysis of a resonant reflection give information concerning the transition mechanism between B{sub 1} and B{sub 2} phases.

  20. Polarization Periodicity in the B(1) Columnar Phase Determined by Resonant X-ray Scattering

    SciTech Connect (OSTI)

    C Folcia; J Ortega; J Etxebarria; L Pan; S Wang; C Huang; V Ponsinet; P Barois; R Pindak; N Gimeno

    2011-12-31

    We report structural results that evidence the polarization distribution of the blocks in the columnar phase of an achiral bent-core liquid crystal. The study was performed using resonant x-ray diffraction at the sulfur K edge on oriented samples aligned on substrates. The extra periodicity is revealed through the violation of the systematic extinction rule of the structural symmetry group along the experimentally accessible diffraction direction. Further data obtained from the polarization analysis of a resonant reflection give information concerning the transition mechanism between B{sub 1} and B{sub 2} phases.

  1. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/?I) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ?F,more »in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  2. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    SciTech Connect (OSTI)

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/?I) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ?F, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  3. A semiempirical linear model of indirect, flat-panel x-ray detectors

    SciTech Connect (OSTI)

    Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M. [Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 92106 (United States); Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817 (United States)

    2012-04-15

    Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r{sup 2} of signal mean to kV: 0.91, 0.93, 0.86, and 0.99 for 0.1-mm Sn, 0.2-mm Cu, 1.5-mm Al, and 0.05-mm Ag, respectively; r{sup 2} of signal variance to kV: 0.99 for all four filters). The comparison of the signal and noise (mean, variance, and NPS) between the simulated and measured air scan images suggested that this model was reasonable in predicting accurate signal statistics of air scan images using absolute percent error. Overall, the model was found to be accurate in estimating signal statistics and spatial correlation between the detector elements of the images acquired with indirect, flat-panel x-ray detectors. Conclusions: The semiempirical linear model of the indirect, flat-panel x-ray detectors was described and validated with images of air scans. The model was found to be a useful tool in understanding the signal and noise transfer within indirect, flat-panel x-ray detector systems.

  4. Wide band focusing x-ray spectrograph with spatial resolution

    SciTech Connect (OSTI)

    Pikuz, S. A.; Douglass, J. D.; Shelkovenko, T. A.; Sinars, D. B.; Hammer, D. A.

    2008-01-15

    A new, wide spectral bandwidth x-ray spectrograph, the wide-bandwidth focusing spectrograph with spatial resolution (WB-FSSR), based on spherically bent mica crystals, is described. The wide bandwidth is achieved by combining three crystals to form a large aperture dispersive element. Since the WB-FSSR covers a wide spectral band, it is very convenient for application as a routine diagnostic tool in experiments in which the desired spectral coverage is different from one test to the next. The WB-FSSR has been tested in imploding wire-array experiments on a 1 MA pulsed power machine, and x-ray spectra were recorded in the 1-20 A spectral band using different orders of mica crystal reflection. Using a two mirror-symmetrically placed WB-FSSR configuration, it was also possible to distinguish between a real spectral shift and a shift of recorded spectral lines caused by the spatial distribution of the radiating plasma. A spectral resolution of about 2000 was demonstrated and a spatial resolution of {approx}100 {mu}m was achieved in the spectral band of 5-10 A in second order of mica reflection. A simple method of numerical analysis of spectrograph capability is proposed.

  5. Dimensionality and noise in energy selective x-ray imaging

    SciTech Connect (OSTI)

    Alvarez, Robert E.

    2013-11-15

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB.Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems.

  6. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  7. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  8. Density gradient free electron collisionally excited x-ray laser

    DOE Patents [OSTI]

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  9. Density gradient free electron collisionally excited X-ray laser

    DOE Patents [OSTI]

    Campbell, Edward M. (Pleasanton, CA); Rosen, Mordecai D. (Berkeley, CA)

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  10. X-ray Moiré deflectometry using synthetic reference images

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stutman, Dan; Valdivia, Maria Pia; Finkenthal, Michael

    2015-06-25

    Moiré fringe deflectometry with grating interferometers is a technique that enables refraction-based x-ray imaging using a single exposure of an object. To obtain the refraction image, the method requires a reference fringe pattern (without the object). Our study shows that, in order to avoid artifacts, the reference pattern must be exactly matched in phase with the object fringe pattern. In experiments, however, it is difficult to produce a perfectly matched reference pattern due to unavoidable interferometer drifts. We present a simple method to obtain matched reference patterns using a phase-scan procedure to generate synthetic Moiré images. As a result, themore »method will enable deflectometric diagnostics of transient phenomena such as laser-produced plasmas and could improve the sensitivity and accuracy of medical phase-contrast imaging.« less

  11. Thickness Measurements from Single X-ray Phase-contrast Speckle Projection

    E-Print Network [OSTI]

    Xi, Yan; Ma, Jingchen; Zhao, Jun

    2015-01-01

    We propose a one-shot thickness measurement method for sponge-like structures using a propagation-based X-ray phase-contrast imaging (P-PCI) method. In P-PCI, the air-material interface refracts the incident X-ray. Refracted many times along their paths by such a structure, incident X-rays propagate randomly within a small divergent angle range, resulting in a speckle pattern in the captured image. We found structure thickness and contrast of a phase-contrast projection are directly related in images. This relationship can be described by a natural logarithm equation. Thus, from the one phase-contrast view, depth information can be retrieved from its contrast. Our preliminary biological experiments indicate promise in its application to measurements requiring in vivo and ongoing assessment of lung tumor progression.

  12. ISOCAM Photometry of Narrow-Line X-ray Galaxies

    E-Print Network [OSTI]

    J. D. Law-Green; A. Zezas; M. J. Ward; C. Boisson

    1998-12-23

    Mid-infrared photometry of the hosts of Narrow-Line X-ray Galaxies at 6 microns and 12 microns has been attempted with ISOCAM. No conclusive detections have been made. This implies that these are quiescent objects with little or no active star-formation. Neither X-ray binaries nor starburst-driven superwinds are consistent explanations for the X-ray emission in these objects. We conclude that these NLXGs are predominantly AGN-powered.

  13. X-ray interferometry with spherically bent crystals (abstract)

    SciTech Connect (OSTI)

    Koch, Jeffrey A.

    2001-01-01

    Recent progress in manufacturing high-quality spherically bent crystals allows highly monochromatic x-ray beams to be produced, and allows efficient x-ray imaging with {mu}m-scale resolution. This article explores some of the constraints for x-ray interferometry utilizing spherically bent crystals and laser-produced plasma sources, and discusses several shearing interferometer concepts that might be experimentally investigated.

  14. Legacy of the X-Ray Laser Program

    SciTech Connect (OSTI)

    Nilsen, J.

    1993-08-06

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  15. Commissioning of a Soft X-ray Beamline PF-BL-16A with a Variable-Included-Angle Varied-Line-Spacing Grating Monochromator

    SciTech Connect (OSTI)

    Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi; Kosuge, Takashi; Nigorikawa, Kazuyuki; Sumii, Ryohei; Ito, Kenji

    2010-06-23

    The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

  16. X-ray micromodulated luminescence tomography in dual-cone ...

    E-Print Network [OSTI]

    2014-07-01

    Jul 16, 2014 ... source, a polycapillary lens, and an electron multiplying charge coupled device ... sources generate x-rays by accelerating electrons into high-z.

  17. X-Ray Characterization of Diesel Sprays | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sprays X-Ray Characterization of Diesel Sprays 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerpowell.pdf More Documents & Publications...

  18. Probing Spatial, Electronic Structures with X-ray Scattering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar:...

  19. In situ X-ray Characterization of Energy Storage Materials |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scholar, SSRL MSD Hard X-ray Department A key factor in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology...

  20. Dissociation of strong acid revisited: X-ray photoelectron spectroscop...

    Office of Scientific and Technical Information (OSTI)

    X-ray photoelectron spectroscopy and molecular dynamics simulations of HNO3 in water Citation Details In-Document Search Title: Dissociation of strong acid revisited:...