Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Generator coordinate method approach to the dynamic group representation  

Science Journals Connector (OSTI)

The generator coordinate method approach to the dynamic group representation is discussed in general. In various cases, either in group space or in coset space, representations of the dynamic group can readily be obtained with the generator coordinate method. Boson representation is just one form of the generator coordinate method approach to the dynamic group representation. Various representations of the dynamic group are described by the generator coordinate method approach to the dynamic group representation in a unified way. Not only is the algebraic structure of generators preserved, but also conditions imposed by (a) the Pauli principle, (b) symmetry properties, (c) dynamic properties, and (d) other concrete properties of nuclear systems are well incorporated in these representations, so that the original fermion representation is faithfully realized. The generator coordinate method approach to the dynamic group representation is strictly a transformation theory from the fermion representation to continuous variable or boson representations of the dynamic group. Examples are given for showing the essence and the prospects of applications of the generator coordinate method approach to the dynamic group representation.

Xu Gong-ou; Wang Shun-jin; Yang Ya-tian

1987-11-01T23:59:59.000Z

2

Method of fabricating vertically aligned group III-V nanowires  

DOE Patents [OSTI]

A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

Wang, George T; Li, Qiming

2014-11-25T23:59:59.000Z

3

Methods for improved growth of group III nitride buffer layers  

DOE Patents [OSTI]

Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

2014-07-15T23:59:59.000Z

4

A study of classification methods for multiply transitive permutation groups  

E-Print Network [OSTI]

of doubly transi- tive permutation groups with PSL(n, q)& G & P IL(n, q). In Chapter IV we discuss a series of papers culminating in a bound on the degree of transitivity of a permutation group which depends on the Schreier conjecture. In the last... is the symmetric group which is denoted by S or S if the cardinality of n is n. A group G is m- n n transitive if for each pair of m - tuples of distinct elements from n there is some group element sending the first to the second, Thus S is n - transitive...

Meadows, Sheryl Diane

1979-01-01T23:59:59.000Z

5

Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking  

Science Journals Connector (OSTI)

This work presents the current state-of-the-art in techniques for tracking a number of objects moving in a coordinated and interacting fashion. Groups are structured objects characterized with particular motion patterns. The group can be comprised of ... Keywords: Group and extended object tracking, Markov chain Monte Carlo methods, Metropolis Hastings, Nonlinear filtering, Reasoning over time, Sequential Monte Carlo methods

Lyudmila Mihaylova; Avishy Y. Carmi; François Septier; Amadou Gning; Sze Kim Pang; Simon Godsill

2014-02-01T23:59:59.000Z

6

Groups  

Open Energy Info (EERE)

groups/all/feed en Buildings groups/all/feed en Buildings http://en.openei.org/community/group/buildings Description: This group is dedicated to discussions about green buildings, energy use in buildings, occupant comfort in buildings, and building technologies. The OpenEI Buildings Community Group will be dedicated to discussions, blogs, and postings about new building technologies, green buildings, energy use in buildings, and occupant experience (comfort levels) in green buildings.group/buildings" target="_blank">read more architecture building reviews buildings technology comfort energy use facilities management green building LEED technologies usgbc

7

Iterative method for evaluating the matrix representation of the generators in the unitary-group approach  

Science Journals Connector (OSTI)

An iterative method is presented for the evaluation of the matrix representation of the group generators in the unitary-group approach to many-electron systems. The method yields, in addition, closed-form expressions and selection rules for nonvanishing matrix elements. Generator products (two-body operators) are treated by a scalar-product method.

A. Lev; M. Schlesinger; R. D. Kent

1984-12-01T23:59:59.000Z

8

Improved group-theoretical method for eigenvalue problems of special symmetric structures, using graph theory  

Science Journals Connector (OSTI)

Group-theoretical methods for decomposition of eigenvalue problems of skeletal structures with symmetry employ the symmetry group of the structures and block-diagonalize their matrices. In some special cases, such decompositions can further be continued. ... Keywords: Decomposition, Eigenvalues, Group theory, Laplacian matrix, Mass graph, Natural frequency, Representation theory, Stiffness graph, Symmetry

A. Kaveh; M. Nikbakht

2010-01-01T23:59:59.000Z

9

STEIN'S METHOD, HEAT KERNEL, AND TRACES OF POWERS OF ELEMENTS OF COMPACT LIE GROUPS  

E-Print Network [OSTI]

STEIN'S METHOD, HEAT KERNEL, AND TRACES OF POWERS OF ELEMENTS OF COMPACT LIE GROUPS JASON FULMAN Abstract. Combining Stein's method with heat kernel techniques, we show that the trace of the jth power There is a large literature on the traces of powers of random elements of compact Lie groups. One of the earliest

Fulman, Jason

10

STEIN'S METHOD, HEAT KERNEL, AND TRACES OF POWERS OF ELEMENTS OF COMPACT LIE GROUPS  

E-Print Network [OSTI]

STEIN'S METHOD, HEAT KERNEL, AND TRACES OF POWERS OF ELEMENTS OF COMPACT LIE GROUPS JASON FULMAN Abstract. Combining Stein's method with heat kernel techniques, we show that the trace of the jth power on the traces of powers of random elements of compact Lie groups. One of the earliest results is due to Diaconis

Fulman, Jason

11

Method for Improving Mg Doping During Group-III Nitride MOCVD  

DOE Patents [OSTI]

A method for improving Mg doping of Group III-N materials grown by MOCVD preventing condensation in the gas phase or on reactor surfaces of adducts of magnesocene and ammonia by suitably heating reactor surfaces between the location of mixing of the magnesocene and ammonia reactants and the Group III-nitride surface whereon growth is to occur.

Creighton, J. Randall (Albuquerque, NM); Wang, George T. (Albuquerque, NM)

2008-11-11T23:59:59.000Z

12

The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups  

SciTech Connect (OSTI)

We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

Gerke, Brian F.; /UC, Berkeley; Newman, Jeffrey A.; /LBNL, NSD; Davis, Marc; /UC, Berkeley /UC, Berkeley, Astron.Dept.; Marinoni, Christian; /Brera Observ.; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; /UC, Berkeley, Astron.Dept.; Faber, S.M.; /Lick Observ.; Finkbeiner, Douglas P.; /Princeton U. Observ.; Guhathakurta, Puragra; /Lick Observ.; Kaiser, Nick; /Hawaii U.; Koo, David C.; Phillips, Andrew C.; /Lick Observ.; Weiner, Benjamin J.; /Maryland U.

2012-02-14T23:59:59.000Z

13

Economical method for the determination of group constants for reactor lattices  

SciTech Connect (OSTI)

The development of an economical method for determining accurately group constants of hexagonal and rectangular cells is considered in this dissertation. The mathematical model constructed for this purpose has the capability to characterize the group constants for the entire range of the neutron spectrum. Furthermore, this model is also rigorous enough to predict the group constants with the required accuracy for a specific range of interest in the energy spectrum and for a variety of energy group configurations. The group constants calculated wih the economical model have been benchmarked with those computed by the VIM Monte Carlo code. The values obtained for the group constants agree within 1-2% with those computed by VIM for the fast energy region. The agreements for the thermal energy region are within 2-3%. The CPU running time of the implemented model is about 3 1/2 minutes for a four group configuration. On the other hand a typical VIM run comprising 25,000 neutron histories and a four-group structure expends about 30 minutes of CPU time for light water moderated systems. Moreover, similar VIM runs utilizing heavy water as moderator require over one hour of CPU time. Therefore, the implemented model makes utilization of computer resources with a cost advantage of a factor of 10 or better as compared to VIM.

Rogow, R.

1984-01-01T23:59:59.000Z

14

Graphically oriented method for obtaining atomic displacement fields in crystals from irreducible representations of space groups  

Science Journals Connector (OSTI)

A method for obtaining distortion fields in a crystal from a given irreducible representation of the underlying space group is described. The method, based on projection operators of group theory, is graphically oriented and therefore calculation-free. For an example (space group P4¯21m), complete sets of representation matrices are analytically calculated for all irreducible representations which correspond to all wave vectors of the form k=(q,q,0). All 96 linear independent atomic displacement modes in the (3×3×1) supercell, which are induced by the two irreducible representations with k=(13,13,0), are explicitly determined: the obtained atomic displacement fields are plane waves with wave vector k.

Jürgen K. Gutmann and Horst Böhm

2000-06-01T23:59:59.000Z

15

Investigation of the "summation" method for predicting group dependent delayed neutron data  

E-Print Network [OSTI]

The objectives of this thesis were 1) to propose modifications of the ENDF/BVI delayed neutron data, 2) to derive new delayed neutron parameters for groups 1, 2, 3, and 4 using the summation method, and 3) to establish the relative importance...

Angers, Laetitia Genevieve

2012-06-07T23:59:59.000Z

16

A Theoretical Study on the Spontaneous Radiation of Inertia-gravity Waves Using the Renormalization Group Method. Part I: Derivation of the Renormalization Group Equations  

Science Journals Connector (OSTI)

By using the renormalization group (RG) method, the interaction between balanced flows and Doppler-shifted inertia-gravity waves (GWs) is formulated for the hydrostatic Boussinesq equations on the f-plane. The derived time-evolution equations (RG ...

Yuki Yasuda; Kaoru Sato; Norihiko Sugimoto

17

Method and making group IIB metal - telluride films and solar cells  

DOE Patents [OSTI]

A technique is disclosed forming thin films (13) of group IIB metal-telluride, such as Cd.sub.x Zn.sub.1-x Te (0.ltoreq.x.ltoreq.1), on a substrate (10) which comprises depositing Te (18) and at least one of the elements (19) of Cd, Zn, and Hg onto a substrate and then heating the elements to form the telluride. A technique is also provided for doping this material by chemically forming a thin layer of a dopant on the surface of the unreacted elements and then heating the elements along with the layer of dopant. A method is disclosed of fabricating a thin film photovoltaic cell which comprises depositing Te and at least one of the elements of Cd, Zn, and Hg onto a substrate which contains on its surface a semiconductor film (12) and then heating the elements in the presence of a halide of the Group IIB metals, causing the formation of solar cell grade Group IIB metal-telluride film and also causing the formation of a rectifying junction, in situ, between the semiconductor film on the substrate and the Group IIB metal-telluride layer which has been formed.

Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

1990-08-21T23:59:59.000Z

18

Product modular design incorporating life cycle issues - Group Genetic Algorithm (GGA) based method  

Science Journals Connector (OSTI)

Traditional design methods lead to serious environmental problems because of the oversight of life cycle issues such as recycling. For solving these problems, a new modular design method is proposed with the considerations of not only the traditional function related attributes, but also the life cycle related ones. These attributes form what we call Modular Driving Forces (MDFs). The proposed method first determines what \\{MDFs\\} should be included and what their weights should be. Then the component to component relations with each specific MDF are generated and expressed in a matrix. After that, the comprehensive relations between components with different \\{MDFs\\} are established with the introduction of a comprehensive relation matrix for further modular optimization. Each element in the comprehensive matrix denotes the relation of every two components affected by all the MDFs. Finally, Group Genetic Algorithm (GGA) is employed to conduct modular optimization. The modular object adaptive function constructed for GGA optimization is to maximize the interactions between components within modules. The proposed method is explained by a case study of a refrigerator. Sensitivity analysis shows that the proposed method is robust.

Suiran Yu; Qingyan Yang; Jing Tao; Xia Tian; Fengfu Yin

2011-01-01T23:59:59.000Z

19

Artificial Neural Network Investigation of the Structural Group Contribution Method for Predicting Pure Components Auto Ignition Temperature  

Science Journals Connector (OSTI)

Artificial Neural Network Investigation of the Structural Group Contribution Method for Predicting Pure Components Auto Ignition Temperature ... Artificial neural networks were used to investigate several structural group contribution (SGC) methods available in the literature. ... The hidden layer is a single layer with six neurons, and the output layer consists of one neuron representing the predicted AIT property. ...

Tareq A. Albahri; Reena S. George

2003-09-27T23:59:59.000Z

20

First-principles path-integral renormalization-group method for Coulombic many-body systems  

SciTech Connect (OSTI)

An approach for obtaining the ground state of Coulombic many-body systems is presented. This approach is based on the path-integral renormalization-group method with nonorthogonal Slater determinants, is free of the negative sign problem, and can handle higher dimensional systems with consideration of the correlation effect. Furthermore, it can be easily extended to the multicomponent quantum systems that contain more than two kinds of quantum particles. According to our results obtained with the present approach, it achieves the same accuracy as the variational Monte Carlo method with a few Slater determinants and enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation.

Kojo, Masashi; Hirose, Kikuji [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Multi-Group Transport Methods for High-Resolution Neutron Activation Analysis  

SciTech Connect (OSTI)

The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples. In these applications, high-resolution gamma-ray spectrometers are used to measure the spectrum of the emitted photon flux, which consists of both continuum and characteristic gamma rays with discrete energies. Monte Carlo transport is the most commonly used simulation tool for this type of problem, but computational times for many problems can be prohibitively long. This work explores the use of multi-group deterministic methods for the simulation of coupled neutron-photon problems.

Burns, Kimberly A.; Smith, Leon E.; Gesh, Christopher J.; Shaver, Mark W.

2009-09-24T23:59:59.000Z

22

New method for evaluation of the matrix representation of the generators in the unitary-group approach  

Science Journals Connector (OSTI)

A new superposition method is presented for evaluating the matrix representation of the generators in the unitary-group approach. This superposition method is based on the Weyl graphical method for the calculation of matrix elements; the latter is an extension of Harter’s jawbone formula for the evaluation of the matrix elements of Ei,i-1 to the more general case Ei,j and can also deal with both fermion and boson.

Hai-Lun Lin and Yu-Fang Cao

1988-01-01T23:59:59.000Z

23

On Binary Methods Kim Bruce \\Lambda Luca Cardelli y Giuseppe Castagna z The Hopkins Objects Group x  

E-Print Network [OSTI]

On Binary Methods Kim Bruce \\Lambda Luca Cardelli y Giuseppe Castagna z The Hopkins Objects Group x on Foundations of Object­ Oriented Languages, which was sponsored by NSF and ESPRIT and held in Paris in June@cs.williams.edu. Bruce's research was partially supported by NSF grant CCR­9121778. y Digital Equipment Corporation

Ghelli, Giorgio

24

New applications of the renormalization group method in physics: a brief introduction  

Science Journals Connector (OSTI)

...phenomenological and chiEFT nuclear interactions. So-called...precision microscopic nuclear structure and reaction...array of applications to nuclear systems have been recently...with different methods. Graphs of RG flows or running...quantities at a modest cost. The applications include...

2011-01-01T23:59:59.000Z

25

Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation  

DOE Patents [OSTI]

An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-based materials is disclosed. Samples of zirconium-based materials having different compositions and/or fabrication methods are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280 to 316 C). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hydriding for the same materials when subject to in-reactor (irradiated) corrosion. 1 figure.

Johnson, A.B. Jr.; Levy, I.S.; Trimble, D.J.; Lanning, D.D.; Gerber, F.S.

1990-04-10T23:59:59.000Z

26

Stein's method, heat kernel, and traces of powers of elements of compact Lie groups  

E-Print Network [OSTI]

Combining Stein's method with heat kernel techniques, we show that the trace of the jth power of an element of U(n,C), USp(n,C) or SO(n,R) has a normal limit with error term of order j/n. In contrast to previous works, here j may be growing with n. The technique should prove useful in the study of the value distribution of approximate eigenfunctions of Laplacians.

Jason Fulman

2010-05-07T23:59:59.000Z

27

Method to predict relative hydriding within a group of zirconium alloys under nuclear irradiation  

DOE Patents [OSTI]

An out-of-reactor method for screening to predict relative in-reactor hydriding behavior of zirconium-bsed materials is disclosed. Samples of zirconium-based materials having different composition and/or fabrication are autoclaved in a relatively concentrated (0.3 to 1.0M) aqueous lithium hydroxide solution at constant temperatures within the water reactor coolant temperature range (280.degree. to 316.degree. C.). Samples tested by this out-of-reactor procedure, when compared on the basis of the ratio of hydrogen weight gain to oxide weight gain, accurately predict the relative rate of hyriding for the same materials when subject to in-reactor (irradiated) corrision.

Johnson, Jr., A. Burtron (Richland, WA); Levy, Ira S. (Kennewick, WA); Trimble, Dennis J. (Kennewick, WA); Lanning, Donald D. (Kennewick, WA); Gerber, Franna S. (Richland, WA)

1990-01-01T23:59:59.000Z

28

Power counting and renormalization group invariance in the subtracted kernel method for the two-nucleon system  

E-Print Network [OSTI]

We apply the subtracted kernel method (SKM), a renormalization approach based on recursive multiple subtractions performed in the kernel of the scattering equation, to the chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading-order (NNLO). We evaluate the phase-shifts in the 1S0 channel at each order in Weinberg's power counting scheme and in a modified power counting scheme which yields a systematic power-law improvement. We also explicitly demonstrate that the SKM procedure is renormalization group invariant under the change of the subtraction scale through a non-relativistic Callan-Symanzik flow equation for the evolution of the renormalized NN interactions.

Sérgio Szpigel; Varese S. Timóteo

2011-12-27T23:59:59.000Z

29

Evaluation of an operational method for the estimation of emissions of nitrogen compounds for a group of farms  

Science Journals Connector (OSTI)

The aim of this article is to evaluate a practical method for estimating nitrogen emissions on the scale of a group of farms, to be used in Life Cycle Assessment (LCA). The method rests on the estimation of nitrogen inputs and outputs to calculate the surplus of the annual nitrogen balance on the scale of a farm. The different gaseous nitrogen losses (NH3, NO, N2O, N3) are then estimated for each livestock or cropping system. The leaching losses in the form of NO3 are assumed to correspond to the surplus of the apparent nitrogen balance to which are added the atmospheric depositions, minus the gaseous losses. The feasibility of this method was studied on 24 farms in the Naizin catchment area (Brittany, France). An analysis of the sensitivity of NO3 estimates to different parameters used to calculate gaseous losses was carried out. Lastly the robustness of the NO3 estimates was examined by comparing them with measurements of NO3 collected within this catchment area.

Sylvain Payraudeau; Hayo M.G. Van Der Werf; Francoise Vertes

2006-01-01T23:59:59.000Z

30

Kolmogorov Lecture Renormalization Group Method  

E-Print Network [OSTI]

of the linearized map near this point. If the number of unstable (|| > 1) and neutral (|| = 1) eigen-values eigen-values then there is an open set in the space of d-parameter families such that each family from this point of view, limiting distributions of probability theory are fixed points of the corresponding semi

Sinai, Yakov

31

Magnetism Group  

Science Journals Connector (OSTI)

... of the Institute of Physics and the Physical Society has announced the establishment of a Magnetism Group. The aim of the new Group is to further interest in ... Group. The aim of the new Group is to further interest in magnetism by holding regular discussion meetings and in other ways. It is intended that these ...

1965-09-04T23:59:59.000Z

32

Group X  

SciTech Connect (OSTI)

This project is currently under contract for research through the Department of Homeland Security until 2011. The group I was responsible for studying has to remain confidential so as not to affect the current project. All dates, reference links and authors, and other distinguishing characteristics of the original group have been removed from this report. All references to the name of this group or the individual splinter groups has been changed to 'Group X'. I have been collecting texts from a variety of sources intended for the use of recruiting and radicalizing members for Group X splinter groups for the purpose of researching the motivation and intent of leaders of those groups and their influence over the likelihood of group radicalization. This work included visiting many Group X websites to find information on splinter group leaders and finding their statements to new and old members. This proved difficult because the splinter groups of Group X are united in beliefs, but differ in public opinion. They are eager to tear each other down, prove their superiority, and yet remain anonymous. After a few weeks of intense searching, a list of eight recruiting texts and eight radicalizing texts from a variety of Group X leaders were compiled.

Fields, Susannah

2007-08-16T23:59:59.000Z

33

A one-group parametric sensitivity analysis for the graphite isotope ratio method and other related techniques using ORIGEN 2.2  

E-Print Network [OSTI]

Several methods have been developed previously for estimating cumulative energy production and plutonium production from graphite-moderated reactors. The Graphite Isotope Ratio Method (GIRM) is one well-known technique. This method is based...

Chesson, Kristin Elaine

2009-06-02T23:59:59.000Z

34

A Theoretical Study on the Spontaneous Radiation of Inertia-gravity Waves Using the Renormalization Group Method. Part II: Verification of the Theoretical Equations by Numerical Simulation  

Science Journals Connector (OSTI)

The renormalization group equations (RGEs) describing spontaneous inertia-gravity wave (GW) radiation from part of a balanced flow through a quasi-resonance that were derived in a companion paper by Yasuda et al. are validated through numerical ...

Yuki Yasuda; Kaoru Sato; Norihiko Sugimoto

35

Automata groups  

E-Print Network [OSTI]

-presentation. We also find the L-presentation for several other groups generated by three-state automata, and we describe the defining relations in the Grigorchuk groups G_w. In case when the sequence w is almost periodic these relations provide an L...

Muntyan, Yevgen

2010-01-16T23:59:59.000Z

36

ASD Groups  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

integrated expertise in accelerator physics, operations techniques, safety systems, software development, and numerical methods to the operation, understanding, simulation, and...

37

Topic Group Participants  

Broader source: Energy.gov (indexed) [DOE]

Topic Group Report Topic Group Report Presented to: Transportation External Coordination Working Group April 5, 2005 Phoenix, Arizona Recent 180(c) Topic Group Activities Issue Papers 1. Funding Distribution Method 2. Allowable Activities 3. Definitions 4. Pass-Through Requirements 5. Contingency Plans 6. 180(c) Policy or Rulemaking 7. Timing and Eligibility* 8. Funding for Related Activities* 9. State Fees* 10. Funding Allocation Approach* 180(c) Policy & Procedures * Executive Summary * Draft Policy & Procedures * Draft Grant Application Pckg * Appendix *Papers 7-10 still under discussion Today's Discussion Items * Reviewed Topic Group member comments on a variety of issues * Key issues included: - Funding allocation and timing of grants - Planning grants - State fees/matching requirements - Related non-training activities

38

Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2 -- Appendix A: Characterization methods and data summary  

SciTech Connect (OSTI)

This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at WAG 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The US Department of Energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used.

NONE

1995-09-01T23:59:59.000Z

39

Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands  

DOE Patents [OSTI]

A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

Maya, L.

1981-11-05T23:59:59.000Z

40

Abelian groups  

E-Print Network [OSTI]

s a 1-1 mapping. Also (na + ma)c' [(n + m)a]c ge (n + m)b ra nb + mb gt (na)c + (ma)o. Thus a is a homomorphism, and th1s together with the above tells us that a is an isomorphism. Hence (2) is proved, and thus the theorem, Definition 2 e6 If a...t o e. d ix elexext x oi s dross G is ~dvdsdt s by' n if there exists y such that ny rx x, As sn example of divisibility we note that the element 0 is divisible by every integer. Also, in the additive group of' xational numbers, we note every...

Bolen, James Cordell

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation  

SciTech Connect (OSTI)

The charge of Task Group 186 (TG-186) is to provide guidance for early adopters of model-based dose calculation algorithms (MBDCAs) for brachytherapy (BT) dose calculations to ensure practice uniformity. Contrary to external beam radiotherapy, heterogeneity correction algorithms have only recently been made available to the BT community. Yet, BT dose calculation accuracy is highly dependent on scatter conditions and photoelectric effect cross-sections relative to water. In specific situations, differences between the current water-based BT dose calculation formalism (TG-43) and MBDCAs can lead to differences in calculated doses exceeding a factor of 10. MBDCAs raise three major issues that are not addressed by current guidance documents: (1) MBDCA calculated doses are sensitive to the dose specification medium, resulting in energy-dependent differences between dose calculated to water in a homogeneous water geometry (TG-43), dose calculated to the local medium in the heterogeneous medium, and the intermediate scenario of dose calculated to a small volume of water in the heterogeneous medium. (2) MBDCA doses are sensitive to voxel-by-voxel interaction cross sections. Neither conventional single-energy CT nor ICRU/ICRP tissue composition compilations provide useful guidance for the task of assigning interaction cross sections to each voxel. (3) Since each patient-source-applicator combination is unique, having reference data for each possible combination to benchmark MBDCAs is an impractical strategy. Hence, a new commissioning process is required. TG-186 addresses in detail the above issues through the literature review and provides explicit recommendations based on the current state of knowledge. TG-43-based dose prescription and dose calculation remain in effect, with MBDCA dose reporting performed in parallel when available. In using MBDCAs, it is recommended that the radiation transport should be performed in the heterogeneous medium and, at minimum, the dose to the local medium be reported along with the TG-43 calculated doses. Assignments of voxel-by-voxel cross sections represent a particular challenge. Electron density information is readily extracted from CT imaging, but cannot be used to distinguish between different materials having the same density. Therefore, a recommendation is made to use a number of standardized materials to maintain uniformity across institutions. Sensitivity analysis shows that this recommendation offers increased accuracy over TG-43. MBDCA commissioning will share commonalities with current TG-43-based systems, but in addition there will be algorithm-specific tasks. Two levels of commissioning are recommended: reproducing TG-43 dose parameters and testing the advanced capabilities of MBDCAs. For validation of heterogeneity and scatter conditions, MBDCAs should mimic the 3D dose distributions from reference virtual geometries. Potential changes in BT dose prescriptions and MBDCA limitations are discussed. When data required for full MBDCA implementation are insufficient, interim recommendations are made and potential areas of research are identified. Application of TG-186 guidance should retain practice uniformity in transitioning from the TG-43 to the MBDCA approach.

Beaulieu, Luc [Departement de Radio-Oncologie et Centre de Recherche en Cancerologie de l'Universite Laval, Centre hospitalier universitaire de Quebec, Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d'Optique, Universite Laval, Quebec, Quebec G1R 2J6 (Canada); Carlsson Tedgren, Asa [Department of Medical and Health Sciences (IMH), Radiation Physics, Faculty of Health Sciences, Linkoeping University, SE-581 85 Linkoeping (Sweden) and Swedish Radiation Safety Authority, SE-171 16 Stockholm (Sweden); Carrier, Jean-Francois [Departement de radio-oncologie, CRCHUM, Centre hospitalier de l'Universite de Montreal, Montreal, Quebec H2L 4M1 (Canada) and Departement de physique, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); and others

2012-10-15T23:59:59.000Z

42

SSRL ETS Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STANFORD SYNCHROTRON RADIATION LABORATORY Stanford Linear Accelerator Center Engineering & Technical Services Groups: Mechanical Services Group Mechanical Services Group Sharepoint...

43

Microsystems and Nanotechnology Group  

E-Print Network [OSTI]

Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2008 Microsystems and Nanotechnology Research Group 1 About

Pulfrey, David L.

44

Microsystems and Nanotechnology Group  

E-Print Network [OSTI]

Microsystems and Nanotechnology Group Microsystems and Nanotechnology Group 1 Microsystems and Nanotechnology Research Group The University of British Columbia Microsystems and Nanotechnology Research Group The University of British Columbia Annual Report ­ 2007 Microsystems and Nanotechnology Research Group 1 About

Pulfrey, David L.

45

Nanomaterials Chemistry Group - CSD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSD CSD Organization Contact List Search Other Links CSD CSD Organization Contact List Search Other Links Selected Research and Development Projects The Nanomaterials Chemistry Group at Chemical Sciences Division, the Oak Ridge National Laboratory conducts fundamental research related to synthesis and characterization of nanoscopic materials as well as ionic liquids for fundamental investigation of separation and catalysis processes. This group also conducts the applied research related to the applications of nanomaterials in advanced scintillators for radiation sensing, catalysts for fuel cells, radioactive tracers for medical imaging, novel electrodes for energy storage, and sensing devices for biological agents. Extensive synthesis capabilities exist within the group for preparation of mesoporous materials (oxides and carbons), low-dimensional materials (e.g., quantum dots and nanowires), sol-gel materials, inorganic and hybrid monoliths (e.g., membranes), and nanocatalysts. Solvothermal, ionothermal, templating synthesis, chemical vapor deposition (CVD), and atomic layer deposition (ALD) methods are extensively utilized in the group for tailored synthesis of nanostructured materials. An array of techniques for characterizing physical and chemical properties related to separation and catalysis are in place or are currently being developed. This research program also takes advantage of the unique resources at ORNL such as small-angle x-ray scattering, small-angle neutron scattering at the High Flux Isotope Reactor and Spallation Neutron Source (SNS), structural analysis by a variety of electron microscopes (SEM, TEM, STEM, HRTEM) and powdered X-ray diffraction (XRD) techniques. A wide variety of other facilities for routine and novel techniques are also utilized including the Center for Nanophase Materials Science. Computational chemistry tools are employed to understand experimental results related to separation and other interfacial chemical processes and design better nanomaterials and ionic liquids. Commonly used methods include first principles density functional theory (DFT) and mixed quantum mechanical/molecular mechanical (QM/MM) techniques.

46

TEC Working Group Topic Groups Archives Consolidated Grant Topic Group |  

Broader source: Energy.gov (indexed) [DOE]

Consolidated Grant Topic Consolidated Grant Topic Group TEC Working Group Topic Groups Archives Consolidated Grant Topic Group The Consolidated Grant Topic Group arose from recommendations provided by the TEC and other external parties to the DOE Senior Executive Transportation Forum in July 1998. It was proposed that the consolidation of multiple funding streams from numerous DOE sources into a single grant would provide a more equitable and efficient means of assistance to States and Tribes affected by DOE nuclear material shipments. The group serves as an important vehicle for DOE senior managers to assess and incorporate stakeholder input into the development of a consolidated funding vehicle for transportation activities, should DOE implement such a program. Some of the major issues under consideration by the Consolidated Grant

47

Group Members-Surface Electrochemistry and Electrocatalysis (SEE) Group |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Members Group Members Principal Investigators Radoslav Adzic (Group Leader) Surface electrochemistry, Electrocatalysis, Direct energy conversion, Fuel cells Jia Wang Surface electrochemistry, Electrocatalysis, Nano-synthesis, Structural characterization using XRD, TEM, and SEM, Fuel cells and water electrolysis Miomir Vukmirovic To advance fuel cell electrocatalysts for higher activity and improved durability, and for lower cost through reduced Pt loading. Investigation of single crystal model systems for fundamental understanding and structured nanoparticle electrocatalysts for applications. Development of Pt monolayer core-shell electrocatalysts for the cathode (oxygen reduction reaction). Kotaro Sasaki Electrocatalysis, fuel cells and water splitting, Direct energy conversion, Nanotechnology, Nanomaterial characterization by in situ XAS and XRD, Surface modifications by electrochemical methods

48

Diffeomorphism groups and anyon fields  

SciTech Connect (OSTI)

We make use of unitary representations of the group of diffeomorphisms of the plane to construct an explicit field theory of anyons. The resulting anyon fields satisfy q-commutators, where q is the well-known phase shift associated with a single counterclockwise exchange of a pair of anyons. Our method uses a realization of the braid group by means of paths in the plane, that transform naturally under diffeomorphisms of R{sup 2}.

Goldin, G.A. [Rutgers Univ., New Brunswick, NJ (United States); Sharp, D.H. [Los Alamos National Lab., NM (United States)

1995-09-01T23:59:59.000Z

49

GRAYSTONE GROUP ADVERTISING  

E-Print Network [OSTI]

and GRAYSTONE GROUP ADVERTISING Partnership The University Central Florida has partnered with the Graystone Group for the purposes of facilitating recruitment advertising services. Benefits of partnering evaluations. Placing Recruitment Advertising: · Graystone Group is available to support all your recruitment

Wu, Shin-Tson

50

Symmetry groups of single-wall nanotubes  

Science Journals Connector (OSTI)

An approach to the determination of the symmetry groups of structural analogs of single-wall carbon nanotubes using ideas in color symmetry theory is described. The line group structures of the symmetry groups of BN, BC3, BCN and BC2N nanotubes are identified. An extension of the method to address nanotubes with non-hexagonal symmetry is also presented.

De Las Pe?as, M.L.A.N.

2013-11-26T23:59:59.000Z

51

NIF User Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

users NIF User Group The National Ignition Facility User Group provides an organized framework and independent vehicle for interaction between the scientists who use NIF for...

52

Student Groups Student Group Description Short Description  

E-Print Network [OSTI]

Student Groups Student Group Description Short Description AHR Scholar-Architecture Scholar ART Honors - Architecture Honors H04 Honors - Allied Medical Prof Honors H05 Honors - Arts & Sciences Honors H14 Honors - Envir&Natural Resources Honors H15 Honors - Food, Agr, & Envir Sci Honors H16 Honors

53

Automatic identification of abstract online groups  

DOE Patents [OSTI]

Online abstract groups, in which members aren't explicitly connected, can be automatically identified by computer-implemented methods. The methods involve harvesting records from social media and extracting content-based and structure-based features from each record. Each record includes a social-media posting and is associated with one or more entities. Each feature is stored on a data storage device and includes a computer-readable representation of an attribute of one or more records. The methods further involve grouping records into record groups according to the features of each record. Further still the methods involve calculating an n-dimensional surface representing each record group and defining an outlier as a record having feature-based distances measured from every n-dimensional surface that exceed a threshold value. Each of the n-dimensional surfaces is described by a footprint that characterizes the respective record group as an online abstract group.

Engel, David W; Gregory, Michelle L; Bell, Eric B; Cowell, Andrew J; Piatt, Andrew W

2014-04-15T23:59:59.000Z

54

Pending Jobs by Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pending Jobs by Group Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:14...

55

Long Term by Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Running Jobs by Group Running Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 13:59:48...

56

HASQARD Focus Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group to introduce themselves and their role in the Focus Group to Jeff. III. The Action Tracking matrix was discussed. The following updates were provided: a. The process for...

57

Interagency Advanced Power Group, Solar Working Group: Meeting minutes  

SciTech Connect (OSTI)

This report is the minutes of the Solar Working group. The meeting was prompted by the Steering Group`s desire to resolve issues the Solar Working Group.

Not Available

1993-10-14T23:59:59.000Z

58

Hydrogen Analysis Group  

SciTech Connect (OSTI)

NREL factsheet that describes the general activites of the Hydrogen Analysis Group within NREL's Hydrogen Technologies and Systems Center.

Not Available

2008-03-01T23:59:59.000Z

59

Interagency Sustainability Working Group  

Broader source: Energy.gov [DOE]

The Interagency Sustainability Working Group (ISWG) is the coordinating body for sustainable buildings in the federal government.

60

Working Group 7 Summary  

SciTech Connect (OSTI)

The primary subject of working group 7 at the 2012 Advanced Accelerator Concepts Workshop was muon accelerators for a muon collider or neutrino factory. Additionally, this working group included topics that did not fit well into other working groups. Two subjects were discussed by more than one speaker: lattices to create a perfectly integrable nonlinear lattice, and a Penning trap to create antihydrogen.

Nagaitsev S.; Berg J.

2012-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Grouped exposed metal heaters  

DOE Patents [OSTI]

A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

Vinegar, Harold J. (Bellaire, TX); Coit, William George (Bellaire, TX); Griffin, Peter Terry (Brixham, GB); Hamilton, Paul Taylor (Houston, TX); Hsu, Chia-Fu (Granada Hills, CA); Mason, Stanley Leroy (Allen, TX); Samuel, Allan James (Kular Lumpar, MY); Watkins, Ronnie Wade (Cypress, TX)

2010-11-09T23:59:59.000Z

62

Property:ExplorationGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationGroup ExplorationGroup Jump to: navigation, search Property Name ExplorationGroup Property Type Page Description Exploration Group for Exploration Activities Pages using the property "ExplorationGroup" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Field Techniques + A Acoustic Logs + Downhole Techniques + Active Seismic Methods + Geophysical Techniques + Active Seismic Techniques + Geophysical Techniques + Active Sensors + Remote Sensing Techniques +, Remote Sensing Techniques + Aerial Photography + Remote Sensing Techniques + Aeromagnetic Survey + Geophysical Techniques + Airborne Electromagnetic Survey + Geophysical Techniques + Airborne Gravity Survey + Geophysical Techniques + Analytical Modeling + Data and Modeling Techniques +

63

Dewhurst Group | Open Energy Information  

Open Energy Info (EERE)

Dewhurst Group Dewhurst Group Jump to: navigation, search Name Dewhurst Group Place Germantown, Maryland Zip 20874 Sector Geothermal energy Product US-based geothermal organization that specializes in geothermal exploration using a double-blind mapping method. Coordinates 43.220985°, -88.118584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.220985,"lon":-88.118584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

BNL | Tracer Technology Group | BNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tracer Technology Group Tracer Technology Group Tracer Technology Image The Tracer Technology Group (TTG) developed the use of perfluorocarbon tracers (PFTs) as tools for studying long range atmospheric transport and dispersion in the early 1980s.We are world leaders in the use of PFTs for solving diverse research and engineering problems in the atmospheric sciences, the energy production and utility industries, and building characterization. The unique capabilities of the TTG are derived from our analytical expertise, infrastructure, and experience. We have developed PFT analytical methods that have detection limits at the femtogram level. We can measure global background levels of PFTS at the parts per quadrillion levels. Our scientists and technical staff have extensive experience in

65

QEP WORKING GROUP CHARGES Assessment Working Group  

E-Print Network [OSTI]

. (Standard 2.12) During Phase I of the planning process, members of the Assessment Working Group with the institution's strategic plan, a review of the literature, definition of student learning appropriate related to goals. (Handbook for Review Committees, Standards 2.12 and 3.3.2) During Phase I

Liu, Paul

66

Galaxy Groups at Intermediate Redshift  

E-Print Network [OSTI]

Galaxy groups likely to be virialized are identified within the CNOC2 intermediate redshift galaxy survey using an iterative method. The number-velocity dispersion relation is in agreement with the low-mass extrapolation of the cluster normalized Press-Schechter function. The two-point group-group correlation function has r_0=6.8+/- 0.3 Mpc, which is larger than the correlations of individual galaxies at the level predicted from n-body calibrated halo clustering. The groups are stacked in velocity and position to create a sample large enough for measurement of a density and velocity dispersion profile. The stacked mean galaxy density profile falls nearly as a power law with r^{-2.5} and has no well-defined core. The projected velocity dispersion is examined for a variety of samples with different methods and found to be either flat or slowly rising outwards. The combination of a steeper-than-isothermal density profile and the outward rising velocity dispersion implies that the mass-to-light ratio of groups rises with radius. The M/L can be kept nearly constant if the galaxy orbits are nearly circular, although such strong tangential anisotropy is not supported by other evidence. The segregation of mass and light is not dependent on galaxy luminosity but is far more prominent in the red galaxies than the blue. The M/L gradient could arise from orbital ``sloshing'' of the galaxies in the group halos, dynamical friction acting on the galaxies in a background of ``classical'' collisionless dark matter, or, more speculatively, the dark matter may have a true core.

R. G. Carlberg; H. K. C. Yee; S. L. Morris; H. Lin; P. B. Hall; D. R. Patton; M. Sawicki; C. W. Shepherd

2000-08-14T23:59:59.000Z

67

Simulation Research Group, LBNL, USA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* T. Hong () Simulation Research Group, LBNL, USA e-mail: thong@lbl.gov Building Energy Benchmarking between the United States and China: Methods and Challenges Tianzhen Hong 1,* , Le Yang 2 , Jianjun Xia 2 , Wei Feng 1 1 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA 2 Tsinghua University, Beijing 100084, China Abstract. Currently, buildings in the U.S. account for more than 40% of total primary energy. In China the

68

Trails Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trails Working Group Trails Working Group Trails Working Group Our mission is to inventory, map, and prepare historical reports on the many trails used at LANL. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The LANL Trails Working Group inventories, maps, and prepares historical reports on the many trails used at LANL. Some of these trails are ancient pueblo footpaths that continue to be used for recreational hiking today. Some serve as quiet and non-motorized alternatives between the Townsite and LANL or between technical areas. The Trails Working Group, established in December 2003, includes representatives from local citizen hiking groups, Los Alamos County, Forest Service, Park Service, Los Alamos National Laboratory and the NNSA Los

69

A Second Poincare' Group  

E-Print Network [OSTI]

Solutions of the sourceless Einstein's equation with weak and strong cosmological constants are discussed by using In\\"on\\"u-Wigner contractions of the de Sitter groups and spaces. The more usual case corresponds to a weak cosmological-constant limit, in which the de Sitter groups are contracted to the Poincar\\'e group, and the de Sitter spaces are reduced to the Minkowski space. In the strong cosmological-constant limit, however, the de Sitter groups are contracted to another group which has the same abstract Lie algebra of the Poincar\\'e group, and the de Sitter spaces are reduced to a 4-dimensional cone-space of infinite scalar curvature, but vanishing Riemann and Ricci curvature tensors. In such space, the special conformal transformations act transitively, and the equivalence between inertial frames is that of special relativity.

R. Aldrovandi; J. G. Pereira

1998-09-21T23:59:59.000Z

70

Photoelectrochemical Working Group  

Broader source: Energy.gov [DOE]

The Photoelectrochemical Working Group meets regularly to review technical progress, develop synergies, and collaboratively develop common tools and processes for photoelectrochemical (PEC) water...

71

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

72

Yennello Group Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Science Texas A&M University The Group Activities Publications Articles Talks and Posters Detectors Links Pictures Women in Nuclear Science Internal Documents Contacts run...

73

Tribal Topic Group Summary  

Broader source: Energy.gov (indexed) [DOE]

Caucus created a mission statement and resolution: - All Tribes with cultural ties to Yucca Mountain should be invited to join TEC - Ongoing funds to support Tribal Topic Group...

74

Hydrogen Pipeline Working Group  

Broader source: Energy.gov [DOE]

The Hydrogen Pipeline Working Group of research and industry experts focuses on issues related to the cost, safety, and reliability of hydrogen pipelines. Participants represent organizations...

75

HASQARD Focus Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

failure occurs." for ICPMS analysis and "One per analytical batch" for ICPAES and flame atomic absorption analysis. This was more frequent than the Focus Group members recalled...

76

HASQARD Focus Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

expectations for incorporating Focus Group interpretations of HASQARD requirements in the document without a new letter from DOE contracting officers (COs) going out to the...

77

Project Documentation Group Members  

E-Print Network [OSTI]

agencies to track client services and outcomes, thus providing sound documentation that justifies stateCSC 4330 Project Documentation 11/30/2009 Group Members: Andy Bursavich Justin Farr Will Folse Chris Miceli Michael Miceli #12;Group Answers I. The Title ­ UREC Client Tracking System II. The project

Kundu, Sukhamay

78

Mechanical Engineering & Thermal Group  

E-Print Network [OSTI]

Mechanical Engineering & Thermal Group The Mechanical Engineering (ME) & Thermal Group at LASP has, and ground- based mechanical systems. Instrument Design Building on decades of design experience that has evolved with the complexity of instrument design demands, LASP mechanical engineers develop advanced

Mojzsis, Stephen J.

79

Interagency Working Groups (IWGs)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interagency Working Groups (IWGs) Print E-mail Interagency Working Groups (IWGs) Print E-mail Interagency Working Groups (IWGs) are the primary USGCRP vehicles for implementing and coordinating research activities within and across agencies. These groups are critical to Program integration and in assessing the Program's progress. The working groups span a wide range of interconnected issues of climate and global change, and address major components of the Earth's environmental and human systems, as well as cross-disciplinary approaches for addressing these issues. IWGs correspond to program functions and are designed to bring agencies together to plan and develop coordinated activities, implement joint activities, and identify and fill gaps in the Program's plans. They allow public officials to communicate with each other on emerging directions within their agencies, on their stakeholder needs, and on best practices learned from agency activities. Together, these functions allow the agencies to work in a more coordinated and effective manner.

80

Steering Group Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Steering Steering Group Report Fermilab Director Pier Oddone convened the Fermilab Steering Group in March 2007. Members comprised particle and accelerator scientists from Fermilab and the national community. Fermilab Deputy Director Young-Kee Kim served as chair. The Steering Group subsequently formed subgroups to provide advice on the best physics opportunities that new facilities could offer. These subgroups drew upon university and laboratory scientists largely from outside Fermilab. The Steering Group took a number of steps to obtain as much input as possible from a broad spectrum of the U.S. particle- and accelerator-physics community. The Steering Group chair gave presentations and conducted town-hall-style sessions at meetings of all the major collaborations at Fermilab (CDF, DZero, MINOS, MINERνA,

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Geophysical Methods | Open Energy Information  

Open Energy Info (EERE)

Geophysical Methods Geophysical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Methods Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Geophysical Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geophysical Methods: Methods used to measure the physical properties of the earth Other definitions:Wikipedia Reegle Introduction There are five main types of geophysical methods used for geothermal resource discovery: Seismic Methods (active and passive) Electrical Methods Magnetic Methods Gravity Methods Radiometric Methods Seismic methods dominates oil and gas exploration, and probably accounts

82

Molten-Salt-Based Growth of Group III Nitrides  

DOE Patents [OSTI]

A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

Waldrip, Karen E. (Albuquerque, NM); Tsao, Jeffrey Y. (Albuquerque, NM); Kerley, Thomas M. (Albuquerque, NM)

2008-10-14T23:59:59.000Z

83

SI Group Scheduling Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Personnel On-Call Page Beamline Validation Schedule Group Organizational Chart Reviews Presentations Group Scheduling Page Project Scheduling Information Ops Scheduling Info Project / Scheduling Info APS fy2005 Annual Schedule ( html ) PSS Validation Schedule APS fy2006 Annual Schedule (html) PSS Validation Teams Latest Machine Studies Schedule (pdf) (html) New Builds Schedule (For SI GROUP Reference Only) Parasitic Beam Operations Schedule Ops Scheduling Page Shutdown Information Work Schedules August/September Shutdown Shutdown Work List Validation Schedule Safety Info Work Request Links ISM Core Functions Enter / Search Work Requests APS Safety Page Modify / Approve Work Requests Radiation Safety Policy APS TMS Training Profiles MSDS Search This page maintained by Joe Budz

84

Fermilab Steering Group Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Steering Group Steering Group Eugene Beier University of Pennsylvania Joel Butler Fermi National Accelerator Laboratory Sally Dawson Brookhaven National Laboratory Helen Edwards Fermi National Accelerator Laboratory Thomas Himel Stanford Linear Accelerator Center Stephen Holmes Fermi National Accelerator Laboratory Young-Kee Kim, Chair Fermi National Accelerator Laboratory/ University of Chicago Andrew Lankford University of California, Irvine David McGinnis Fermi National Accelerator Laboratory Sergei Nagaitsev Fermi National Accelerator Laboratory Tor Raubenheimer Stanford Linear Accelerator Center Vladimir Shiltsev Fermi National Accelerator Laboratory Maury Tigner Cornell University Hendrik Weerts Argonne National Laboratory Contributors Neutrino Physics Group Eugene Beier University of Pennsylvania

85

Indoor Environment Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Indoor Environment Group Indoor Environment Group The Indoor Environment Group performs research that aims to maintain healthy and productive indoor environments while buildings are made more energy efficient. We study the links between indoor environmental quality, building ventilation, building energy efficiency and occupants' health, performance and comfort. We undertake experiments in laboratory and field settings and employ modeling to characterize indoor environmental conditions and evaluate the fate, transport and chemical transformations of indoor pollutants. We elucidate pathways of pollutant exposure, evaluate and develop energy efficient means of controlling indoor environmental quality, and provide input for related guidelines and standards. Contacts William Fisk WJFisk@lbl.gov (510) 486-5910

86

Modern methods of electronic structure calculations  

Science Journals Connector (OSTI)

In this Chapter we shall consider methods that are currently widely used for calculating the electronic structure of solids. Essentially, there are two groups of methods. The methods of the first group are bui...

Lev Kantorovich

2004-01-01T23:59:59.000Z

87

Focus Group I  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CARBON SEQUESTRATION - A COMMUNITY FOCUS GROUP STUDY OF CARBON SEQUESTRATION - A COMMUNITY FOCUS GROUP STUDY OF ATTITUDES IN WILLISTON, NORTH DAKOTA Sheila K. Hanson, Energy & Environmental Research Center Daniel J. Daly, Energy & Environmental Research Center Edward N. Steadman, Energy & Environmental Research Center John A. Harju, Energy & Environmental Research Center June 2005 EXECUTIVE SUMMARY In April 2005, representatives of the Plains CO 2 Reduction (PCOR) Partnership, led by the Energy & Environmental Research Center (EERC) at the University of North Dakota, held two focus groups in Williston, North Dakota. A total of sixteen people participated; seven on April 20 and nine on April 21. The purpose of the focus group research was to gain insight into the public perception of carbon sequestration from

88

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

89

Usage Statistics By Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Usage Statistics Usage Statistics Genepool Cluster Statistics Period: daily weekly monthly quarter yearly 2year Utilization By Group Jobs Pending Last edited: 2013-09-26 18:21:13...

90

Strategic Initiatives Work Group  

Broader source: Energy.gov [DOE]

The Work Group, comprised of members representing DOE, contractor and worker representatives, provides a forum for information sharing; data collection and analysis; as well as, identifying best practices and initiatives to enhance safety performance and safety culture across the Complex.

91

Security Topic Group  

Broader source: Energy.gov (indexed) [DOE]

Group Group Security and TEC * Tension exists between open forum concept of TEC and the ability of STG members to discuss security topics. - DOE will maintain the open forum - it will not form a subgroup of cleared members NAS Study * Some members want STG to formally recommend a fully independent review of security issues - DOE is reviewing the NAS study and has not formulated a position Security Topic Group (Continued) Classification Guide & Information Sharing Protocol * Guide is finished and undergoing internal concurrence - Slated for late September release * Protocol will be completed once the guide is issued Security-Related Lessons Learned * Lessons learned document was distributed and comments requested by the end of March Security Topic Group (Continued) SRG/CVSA Survey

92

Independents' group posts loss  

SciTech Connect (OSTI)

Low oil gas prices and special charges caused the group of 50 U.S. independent producers Oil and Gas Journal tracks to post a combined loss in first half 1992. The group logged a net loss of $53 million in the first half compared with net earnings of $354 million in first half 1991, when higher oil prices during the Persian Gulf crisis buoyed earnings in spite of crude oil and natural gas production declines. The combined loss in the first half follows a 45% drop in the group's earnings in 1991 and compares with the OGJ group of integrated oil companies whose first half 1992 income fell 47% from the prior year. Special charges, generally related to asset writedowns, accounted for most of the almost $560 million in losses posted by about the third of the group. Nerco Oil and Gas Inc., Vancouver, Wash., alone accounted for almost half that total with charges related to an asset writedown of $238 million in the first quarter. Despite the poor first half performance, the outlook is bright for sharply improved group earnings in the second half, assuming reasonably healthy oil and gas prices and increased production resulting from acquisitions and in response to those prices.

Sanders, V.; Price, R.B.

1992-11-23T23:59:59.000Z

93

TEC Working Group Topic Groups Section 180(c) Key Documents | Department of  

Broader source: Energy.gov (indexed) [DOE]

Section 180(c) Key Documents Section 180(c) Key Documents TEC Working Group Topic Groups Section 180(c) Key Documents Key Documents Briefing Package for Section 180(c) Implementation - July 2005 Executive Summary Introduction Appendix A - Funding Distribution Method Appendix B - Timing and Eligibility Appendix C - Allowable Activities/Training Appendix D - Definitions Appendix E - Pass-Through of Funds Appendix F - Contingency Re-Routing Appendix G - Policy on Rulemaking Appendix H - Funding Allocation Method Appendix I - State Fees Appendix J - Funding Operational Activities Appendix K - Matching Funds More Documents & Publications Implementation of Section 180(c) of the Nuclear Waste Policy Act TEC Working Group Topic Groups Section 180(c) Meeting Summaries TEC Working Group Topic Groups Tribal

94

Lighting Group: Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview Overview of the Lighting Research Group The Lighting Research Group at Lawrence Berkeley National Laboratory performs research aimed at improving the energy efficiency of lighting systems in buildings and homes, throughout the State of California and across the Nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research in the Lighting Group falls into three main areas: Sources and Ballasts, Light Distribution Systems and Controls and Communications. Click on a link below for more information about each of these research areas. Sources and Ballasts investigates next generation light sources, such as

95

Specific Group Hardware  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Specific Group Hardware Specific Group Hardware Specific Group Hardware ALICE palicevo1 The Virtual Organization (VO) server. Serves as gatekeeper for ALICE jobs. It's duties include getting assignments from ALICE file catalog (at CERN), submitting jobs to pdsfgrid (via condor) which submits jobs to the compute nodes, monitoring the cluster work load, and uploading job information to ALICE file catalog. It is monitored with MonALISA (the monitoring page is here). It's made up of 2 Intel Xeon E5520 processors each with 4 cores (16 virtual cores with hyperthreading). The total local disk space is 1.9 TB. It is running Scientific Linux SL release 5.5 (Boron) and is disk booted. It is in rack 17. palicevo2 The Virtual Organization (VO) server testbed. It's a Dell PowerEdge R410 with 2 Intel Xeon E5520 processors, each with 4 cores (16 virtual cores

96

The China Energy Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 The China Energy Group A city-owned cogeneration plant, built in 1989 in Weihai, Shandong, received an award from the Chinese government as an advanced energy-efficient enterprise. The Energy Analysis Program's China Energy Group-a core team of four Mandarin-speaking U.S. and Chinese researchers, plus leader Mark Levine and a dozen other staff members-has worked closely with energy policymakers in China for nearly a decade. Their goal is to better understand the dynamics of energy use in China and to develop and enhance the capabilities of institutions that promote energy efficiency in that country. This unique collaboration began as a joint effort with the Energy Research Institute of China's State Planning Commission, but the Group's network has expanded to

97

DOE STGWG Group  

Broader source: Energy.gov (indexed) [DOE]

STGWG Group STGWG Group The State and Tribal Government Working Group (STGWG) is one of the intergovernmental organizations with which the DOE EM office works with. They meet twice yearly for updates to the EM projects. They were formed in 1989. It is comprised of several state legislators and tribal staff and leadership from states in proximity to DOE's environmental cleanup sites of the following states: New York, South Carolina, Ohio, Washington, New Mexico, Idaho, California, Colorado, Georgia, Illinois, Kentucky, Missouri, Nevada, Oregon, Tennessee and Texas. The tribal membership is composed of the Confederated Tribes of the Umatilla Indian Reservation, the Isleta Pueblo, Jemez Pueblo, Navajo Nation, Nez Perce Tribe, Santa Clara Pueblo, Pueblo de San Ildefonso, Seneca Nation of Indians, Shoshone-Bannock Tribes, and the

98

LBNL Community Advisory Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organizing Framework Organizing Framework CAG Organizing Framework The Community Advisory Group Organizing Framework is composed of three primary components: CAG Purpose and Charge CAG Member Responsibilities Operating Principles CAG Membership and Participation Download a pdf of the CAG Organizing Framework. Purpose and Charge The purpose of the LBNL Community Advisory Group (CAG) is to provide input into the Lab's physical plans and development projects. The specific charge to this group is to: Advise LBNL staff on issues related to the environmental impacts of proposed planning and development projects; Articulate key community planning and design principles to be considered in the review of individual projects as well as to guide the physical development of LBNL overall; Identify recommended strategies and actions for addressing community

99

Carbon Materials Breakout Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Breakout Group Process Materials Breakout Group Process * Day 2, Thursday - Review results of Day 1 and modify if needed - Identify critical R&D needs - Outline R&D plan with key milestones - Report results to plenary Carbon Materials Breakout Group * Key Results - Target: get the science right to engineer carbon materials for hydrogen storage * Integrate theory, experiment, engineering * Understand mechanisms, effects, and interactions ranging from physisorption to chemisorption - Theory * Provide "directional" guidance for experiments (and vice- versa) * Provide baseline theory to elucidate parameters affecting the number and type of binding sites and the heat of their interaction with H2 (∆H ) for a broad range of (highly) modified carbon materials

100

Vertical Velocity Focus Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Velocity Focus Group Velocity Focus Group ARM 2008 Science Team Meeting Norfolk, VA March 10-14 Background Vertical velocity measurements have been at the top of the priority list of the cloud modeling community for some time. Doppler measurements from ARM profiling radars operating at 915-MHz, 35-GHz and 94-GHz have been largely unexploited. The purpose of this new focus group is to develop vertical velocity ARM products suitable for modelers. ARM response to their request has been slow. Most ARM instruments are suitable for cloud observations and have limited capabilities in precipitation Using ARM datasets for evaluating and improving cloud parameterization in global climate models (GCMs) is not straightforward, due to gigantic scale mismatches. Consider this... Looking only vertically drastically limits opportunities

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Upgraded Coal Interest Group  

SciTech Connect (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

102

TEC Working Group Topic Groups Rail Meeting Summaries | Department of  

Broader source: Energy.gov (indexed) [DOE]

Rail Meeting Summaries Rail Meeting Summaries TEC Working Group Topic Groups Rail Meeting Summaries MEETING SUMMARIES Kansas City TEC Meeting, Rail Topic Group Summary - July 25, 2007 Atlanta TEC Meeting, Rail Topic Group Summary - March 6, 2007 Green Bay Meeting, Rail Topic Group Summary - October 26, 2006 Washington DC TEC Meeting, Rail Topic Group Summary - March 15, 2006 Pueblo TEC Meeting, Rail Topic Group Summary - September 22, 2005 Phoenix TEC Meeting, Rail Topic Group Summary - April 4, 2005 Minneapolis TEC Meeting, Rail Topic Group Summary - September 21, 2004 Albuquerque TEC Meeting, Rail Topic Group Summary - April 22, 2004 New Orleans TEC Meeting, Rail Topic Group Summary - January 29, 2002 Jacksonville TEC Meeting, Rail Topic Group Summary - January 20, 1999 Milwaukee TEC Meeting, Rail Topic Group Summary - July 13, 1998

103

Magnetism Theory Group / POSTECH Magnetism Theory Group / POSTECH  

E-Print Network [OSTI]

Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH #12;Magnetism Theory Group / POSTECH J.H . Park et al. #12;'s of FeinCsm e tal The chargeandorbitalordering geom etryin YB a C o 2 O 5 S. K. Kwon etal .Magnetism Theory

Min, Byung Il

104

TEC Working Group Topic Groups Tribal Meeting Summaries | Department of  

Broader source: Energy.gov (indexed) [DOE]

Meeting Summaries Meeting Summaries TEC Working Group Topic Groups Tribal Meeting Summaries Meeting Summaries Kansas City TEC Meeting - Tribal Group Summary - July 25, 2007 Atlanta TEC Meeting - Tribal Group Summary - March 6, 2007 Green Bay TEC Meeting -- Tribal Group Summary - October 26, 2006 Washington TEC Meeting - Tribal Topic Group Summary - March 14, 2006 Pueblo TEC Meeting - Tribal Topic Group Summary, September 22, 2005 Phoenix TEC Meeting - Tribal Topic Group Summary - April 4, 2005 Albuquerque TEC Meeting - Tribal Topic Group Presentation - April 21, 2004 New Orleans TEC Meeting - Tribal Topic Group Summary - January 29, 2002 Portland TEC Meeting, Tribal Topic Group Summary - February 6, 2001 Philadelphia TEC Meeting, Tribal Topic Group Summary - July 13, 1999

105

Extension of three-dimensional space-group generators to the (3+1) case  

Science Journals Connector (OSTI)

A method of building up the generators of 775 (3+1)-dimensional superspace groups from the conventional space group generators is presented.

Str?z, K.

1999-06-01T23:59:59.000Z

106

NERSC User Group Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC User Group Meeting NERSC User Group Meeting Oct 18, 2010 Outline * About OpenMP * Parallel Regions * Worksharing Constructs * Synchronization * Data Scope * Tasks * Using OpenMP at NERSC 2 3 Common Architectures * Shared Memory Architecture - Multiple CPUs share global memory, could have local cache - Uniform Memory Access (UMA) - Typical Shared Memory Programming Model: OpenMP, Pthreads, ... * Distributed Memory Architecture - Each CPU has own memory - Non-Uniform Memory Access (NUMA) - Typical Message Passing Programming Model: MPI, ... * Hybrid Architecture - UMA within one SMP node - NUMA across nodes - Typical Hybrid Programming Model: mixed MPI/OpenMP, ... What is OpenMP * OpenMP is an industry standard API of C/C++ and Fortran for shared memory parallel programming.

107

MEA BREAKOUT GROUP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MEA BREAKOUT GROUP MEA BREAKOUT GROUP TOPICS FOCUSED ON CCMs * IONOMER * CATALYST LAYER * PERFORMANCE * DEGRADATION * FUNDAMENTAL STUDIES IONOMER * DEVELOP IMPROVED IONOMERS: PERFLUORINATED IONOMERS (O2 SOLUBILITY) HYDROCARBON IONOMERS * ANODE FLOODING ISSUES, CATHODE DRYOUT ISSUES: - DEVELOP SEPARATE IONOMERS FOR ANODE/CATHODE - IONOMER CHEMISTRY * IONOMER/CATALYST INTERACTION * CL / MEMBRANE INTERACTION * IMPROVED CL/M INTERFACES - IONOMER CROSSLINKING CATALYST LAYER * CATALYST CHALLENGES IN ANODE SIDE * FOCUS ON NON-PGM CATALYSTS * INK FORMULATION * CCM VS. GDE * DELAMINATION PERFORMANCE * BACKUP POWER APPLICATION - STATUS: 60C, 0.5V, 0.2W/CM2 (DEGRADATION ISSUES) - TARGETS: SHOULD BE SET CONSISTENT WITH DOE STATIONARY TARGETS (2015) * AUTOMOTIVE APPLICATION - INCREASE POWER DENSITY TO >0.5W/CM2

108

Group Vision Care Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vision Vision Care Policy Group Name: LOS ALAMOS NATIONAL SECURITY, LLC. RETIREES Group Number: 12284390 Divisions 0005 & 0006 Effective Date: JANUARY 1, 2011 EVIDENCE OF COVERAGE Provided by: VISION SERVICE PLAN INSURANCE COMPANY 3333 Quality Drive, Rancho Cordova, CA 95670 (916) 851-5000 (800) 877-7195 EOC NM 03/02 11/25/08 CLD In addition to the information contained in this Benefit Program Summary, the LANS Health & Welfare Benefit Plan for Retirees Summary Plan Description contains important information about your LANS health and welfare benefits. For additional information: For Retirees: Customer Care Center (866) 934-1200 www.ybr.com/benefits/lanl LANL Benefits Website for Retirees: http://www.lanl.gov/worklife/benefits/retirees/

109

Fermilab Steering Group Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fermilab Icon Fermilab Icon Photo Home About About the Steering Group Members & Contributors Fermilab and the Quantum Universe Acknowledgement Contents Contents Chapter 1 Executive Summary: A Plan for Fermilab Chapter 2 Fermilab and the Quantum Universe Chapter 3 Fermilab and the ILC Chapter 4 Physics at the Intensity Frontier Chapter 5 Facilities for the Intensity Frontier Chapter 6 Beyond the ILC and the LHC Chapter 7 A Fermilab Plan for Discovery Appendix Appendix Appendix Appendix A Steering Group charge Appendix B Fermilab and the ILC Appendix C The international neutrino program Appendix D Neutrino science with 8 GeV and 800 GeV protons Appendix E Muon-to-electron conversion in nuclei Appendix F Precision physics experiments with kaon beams Appendix G Facilities considered Appendix H Steps toward a muon collider

110

TEC Working Group Topic Groups Archives Communications Conference...  

Office of Environmental Management (EM)

Communications Conference Call Summaries TEC Working Group Topic Groups Archives Communications Conference Call Summaries Conference Call Summaries Conference Call Summary April...

111

TEC Working Group Topic Groups Routing Conference Call Summaries...  

Broader source: Energy.gov (indexed) [DOE]

Routing Conference Call Summaries TEC Working Group Topic Groups Routing Conference Call Summaries CONFERENCE CALL SUMMARIES January 31, 2008 December 6, 2007 October 4, 2007...

112

TEC Working Group Topic Groups Security Conference Call Summaries...  

Office of Environmental Management (EM)

Security Conference Call Summaries TEC Working Group Topic Groups Security Conference Call Summaries Conference Call Summaries August 17, 2006 (Draft) July 18, 2006 (Draft) June...

113

TEC Working Group Topic Groups Archives Protocols Conference...  

Office of Environmental Management (EM)

Conference Call Summaries TEC Working Group Topic Groups Archives Protocols Conference Call Summaries Conference Call Summaries May 13, 1999 April 8, 1999 March 1, 1999 More...

114

TEC Working Group Topic Groups Security Meeting Summaries | Department...  

Office of Environmental Management (EM)

Summaries TEC Working Group Topic Groups Security Meeting Summaries Meeting Summaries Green Bay STG Meeting Summary- September 14, 2006 Washington STG Meeting Summary - March 14,...

115

Westly Group | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Westly Group Place: Menlo Park, California Zip: 94025 Product: Clean technology-oriented venture capital firm. References: Westly Group1 This article...

116

Enovos Group | Open Energy Information  

Open Energy Info (EERE)

Enovos Group Jump to: navigation, search Name: Enovos Group Place: Germany Sector: Solar Product: Germany-based utility. The utility has interests in solar energy. References:...

117

Schaeffler Group | Open Energy Information  

Open Energy Info (EERE)

Schaeffler Group Jump to: navigation, search Name: Schaeffler Group Place: Germany Product: A manufacturer of rolling bearings and linear products worldwide as well as a renowned...

118

Zeppini Group | Open Energy Information  

Open Energy Info (EERE)

Zeppini Group Place: Brazil Product: Brazilian firm that sells PV applications for homes, industry and business. References: Zeppini Group1 This article is a stub. You can...

119

Focus Group | Department of Energy  

Energy Savers [EERE]

Focus Group Meeting (Activities Status) Meeting agenda, summary and 2011 Directives Reform Status Meeting Date: May 19, 2011 January 20, 2011 Focus Group Meeting (Activities...

120

Advanced Concepts Breakout Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop Workshop Advanced Concepts Working Group Facilitator: John J. Petrovic Scribe: Sherry Marin Advanced Storage Techniques/ Approaches in Priority Order 1. Crystalline Nanoporous Materials (15) 2. Polymer Microspheres (12) Self-Assembled Nanocomposites (12) 3. Advanced Hydrides (11) Metals - Organic (11) 4. BN Nanotubes (5) Hydrogenated Amorphous Carbon (5) 5. Mesoporous materials (4) Bulk Amorphous Materials (BAMs) (4) 6. Iron Hydrolysis (3) 7. Nanosize powders (2) 8. Metallic Hydrogen (1) Hydride Alcoholysis (1) Overarching R&D Questions for All Advanced Materials * Maximum storage capacity - theoretical model * Energy balance / life cycle analysis * Hydrogen absorption / desorption kinetics * Preliminary cost analysis - potential for low cost, high

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Personality and group interaction  

E-Print Network [OSTI]

that "prize Chips will be awarded equally to each person in the group based on the total number of blocks still standing in the tower at the end of the 15 seconds". b) In the contrient condition, subjects were told that "Prize Chips will be awarded only... to the individual with the most blocks still standing in the tower at the end of the 15 seconds. If there are any ties in terms of the number blocks on the tower and there is no clear winner, then no prize chips will be distributed". 6. Only one tower may...

Hair, Elizabeth Catherine

1996-01-01T23:59:59.000Z

122

SPPR Group Proposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Proposal Proposal June 23, 2010 Agenda Purpose of Meeting Presenters Background Information  Three Terminal Plan & Market Access  Business Case  Transmission Infrastructure Program ED5-Palo Verde Project Potential Rate Impacts Discussion / Comments 2 Purpose of Meeting Provide background information Share the SPPR Group's current proposal and how it might affect Parker-Davis Project (P-DP) customers Obtain your feedback on the proposal 3 Presenters Background Information - Todd Rhoades ED5-PV Project Description - Todd Rhoades Project Marketability - John Steward Project Cost & Financing - Jack Murray Potential Rate Impacts - Jack Murray Next Steps - Todd Rhoades 4 Three Terminal Plan November 2009 5 Business Case

123

TEC Working Group Topic Groups | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Topic Groups Topic Groups TEC Working Group Topic Groups TEC Topic Groups were formed in 1991 following an evaluation of the TEC program. Interested members, DOE and other federal agency staff meet to examine specific issues related to radioactive materials transportation. TEC Topic Groups enable a small number of participants to focus intensively on key issues at a level of detail that is unattainable during the TEC semiannual meetings due to time and group size constraints. Topic Groups meet individually by phone and email between TEC's semiannual general meetings, participate in conference calls and report back to the Department and TEC members. The Topic Groups are intended to work on significant issues, produce a relevant product and sunset the group when the work is

124

HSS Focus Group Training Work Group Meeting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

HSS Focus Group Training Work Group Meeting HSS Focus Group Training Work Group Meeting HSS Focus Group Training Work Group Meeting Meeting Dates: July 10 - 11 The Department of Energy (DOE) Office of Health, Safety and Security (HSS) Focus Group Training Work Group met at the DOE National Training Center (NTC) inAlbuquerque, NM on Tuesday, July 10 and Wednesday, July 11, 2012. The meeting was chaired by the Work Group co-chairs, Karen Boardman (HSS/NTC),Pete Stafford (AFL-CIO BCTD/CPWR), and Julie Johnston (EFCOG). Attachment 1 is the Meeting Agenda; Attachment 2 is a list of meeting attendees; and Attachment3 is the proposed Radworker Training Reciprocity Program. Meeting Agenda Meeting Summary Draft RAD Worker Training Reciprocity Program for Work Group v.1 Draft Radiation Worker Portability Validation

125

Lighting Group: People  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

People People Lighting Group Staff Phone Mailstop Email Group Leader [area code 510] Rubinstein, Francis 486-4096 90R3111 FMRubinstein@lbl.gov Staff Scientists Berman, Sam 5682 90R3111 Clear, Robert 486-4286 90R3111 RDClear@lbl.gov Research Associates Enscoe, Abby (510) 486 6077 90R3111 AIEnscoe@lbl.gov Fritz, Randolph M. (510) 495 2532 90R3111 RFritz@lbl.gov Ghatikar, Girish 486-6768 90R3111 GGhatikar@lbl.gov Granderson, Jessica 486-7692 90R3111 JGranderson@lbl.gov Howells, Jack 4096 46R0125 MRHowells@lbl.gov Kiliccote, Sila 495-2615 90R3111 SKiliccote@lbl.gov Liu, Gao 7207 70R0108B GLiu@lbl.gov Wen, Yao-Jung 4702 90R3111 YJWen@lbl.gov Yazdanian, Mehry 486-4701 90R3111 MYazdanian@lbl.gov Research Technicians Galvin, James 486-4661 47R0112 JEGalvin@lbl.gov Technical Support DiBartolomeo, Dennis 486-4702 90R3111

126

Exhaust system having a gold-platinum group metal catalyst  

DOE Patents [OSTI]

A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

Ragle, Christie Susan (Havana, IL); Silver, Ronald G. (Peoria, IL); Zemskova, Svetlana Mikhailovna (Edelstein, IL); Eckstein, Colleen J. (Metamora, IL)

2011-12-06T23:59:59.000Z

127

September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Charter  

Broader source: Energy.gov (indexed) [DOE]

Office of Health, Safety and Security Focus Group [Name of Work Group] Work Group Charter (Date) I. PURPOSE The HSS Focus Group [Name of Work Group] is one of several HSS Work Groups, established to address worker health, safety and security programs improvements across the U.S. Department of Energy Complex. The [Name of Work Group] has been established to (state specific purpose). II. OBJECTIVES (State the desired impact(s) and major outcome(s) for, the Work Group) 1. Establish specific improvement goals, intended outputs and supporting activities that respond to identified worker health and safety improvement needs. 2. Establish measurable indicators when possible to support findings, recommendations and accomplishments.

128

Data Management Group Annual Report  

E-Print Network [OSTI]

Data Management Group Annual Report 2002 prepared by: Data Management Group Joint Program......................................................................................... 9 2001 EMME/2 Road Network Inclusion of Links to CCDRS .................. 9 Road and Transit Management Group 2002 Annual Report i SUMMARY The Data Management Group (DMG), in cooperation

Toronto, University of

129

High Temperature Membrane Working Group  

Broader source: Energy.gov [DOE]

This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

130

Digital Technology Group Computer Laboratory  

E-Print Network [OSTI]

Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

Cambridge, University of

131

Fermilab Steering Group Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Facilities for the Intensity Frontier In This Section: Facilities for the Intensity Frontier SuperNuMI (SNuMI) Project X Existing rings Project X and the ILC Project X and longer term facilities Summary Facilities for the Intensity Frontier The Steering Group considered a variety of accelerator facilities and programs using the following criteria: Support for physics research goals, effective use of accelerator assets freed up at the end of Tevatron operations, Alignment with the ILC R&D program, Potential for achievement over the next decade. Twelve facilities received consideration using some or all of these criteria. Appendix G sorts those facilities not described in this chapter based on relevance to proton- or electron-based programs. This chapter describes the facilities that would support neutrino science and precision physics at the intensity frontier. The facilities include an intense proton source and its injection to the existing rings at Fermilab for a variety of programs.

132

# Energy Measuremenfs Group  

Office of Legacy Management (LM)

ri EECE ri EECE # Energy Measuremenfs Group SUMMARY REPORT . AiRIAL R4DIOLOGICAL SURVEY - NIAGARA FALLS AREA NIAGARA FALLS, NEh' YORK DATE OF SURVEY: SEPTEMBER 1979 APPROVED FOR DISTRIBUTION: P Stuart, EC&G, Inc. . . Herbirt F. Hahn, Department of Energy PERFDRflED BY EGtf, INC. UNDER CONTRACT NO. DE-AHO&76NV01163 WITH THE UNITED STATES DEPARTMENT OF ENERGY II'AFID 010 November 30, 1979 - The Aerial Measurements System (A%), operated by EC&t, Inc< for the Un i ted States Department of Energy, was used during November 1976 to conduct an exploratory aerial radiological survey in-the greater Niagara Fails area. The purpose of that survey was to identify locations having concentrations of terrestrial radioactivity not typical of the radiation

133

Particle Data Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About PDG About PDG About the PDG PDG authors Order PDG products PDG citation Encoder tools Job at LBNL Contact Us Downloads Resources Errata Archives Atomic Nuclear Properties Online HEP Info Non-PDG Databases Durham-RAL databases Current experiments Guide to Data Partial-wave analyses Contact Us News The "Reviews, Tables, Plots" section has been updated. The next book edition is due in early summer 2014, and the booklet in late summer 2014. Funded By: US DOE US NSF CERN MEXT (Japan) INFN (Italy) MEC (Spain) IHEP & RFBR (Russia) Mirrors: USA (LBNL) Brazil CERN Indonesia Italy Japan (KEK) Russia (Novosibirsk) Russia (Protvino) UK (Durham) The Review of Particle Physics J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) and 2013 partial update for the 2014 edition.

134

Particle Data Group - Authors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Edition and 2007 Web Update 6 Edition and 2007 Web Update (Click on Author Name to get Email address, phone numbers, etc.) RPP authors New authors of 2007 Web Update M. Antonelli, 102 H. Baer, 64 G. Bernardi, 103 M. Carena, 51 M.-C. Chen, 11 B. Dobrescu, 51 J.-F. Grivaz, 104 T. Gutsche, 105 J. Huston, 45 T. Junk, 51 C.-J. Lin, 1 H. Mahlke, 106 P. Mohr, 107 P. Nevski, 75 S. Rolli, 108 A. Romaniouk, 109 B. Seligman, 110 M. Shaevitz, 111 B. Taylor, 107 M. Titov, 56,112 G. Weiglein, 78 A. Wheeler, 69 Authors of the 2006 Review of Particle Physics W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) (bibtex format) Also see: PS format or PDF format. AUTHORS OF LISTINGS AND REVIEWS: (Click on Author Name to get Email address, phone numbers, etc.) RPP authors (RPP 2006)

135

Working Group Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Working Group Reports Special Working Session on the Role of Buoy Observations in the Tropical Western Pacific Measurement Scheme J. Downing Marine Sciences Laboratory Sequim, Washington R. M. Reynolds Brookhaven National Laboratory Upton, New York Attending W. Clements (TWPPO) F. Barnes (TWPPO) T. Ackerman (TWP Site Scientist) M. Ivey (ARCS Manager) H. Church J. Curry J. del Corral B. DeRoos S. Kinne J. Mather J. Michalsky M. Miller P. Minnett B. Porch J. Sheaffer P. Webster M. Wesely K. Zorika G. Zhang Focus of Discussion The session convened on March 2, with brief introductions by Bill Clements. The purpose of the session was to discuss the scientific merits of retrofitting TOGA/TAO buoys with shortwave radiometers. Three questions were posed at the outset of the session to focus the discussion.

136

future science group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

61 61 ISSN 1759-7269 10.4155/BFS.11.150 © 2012 Future Science Ltd In 1950 Reese et al. proposed a mechanism for cel- lulose hydrolysis, which involved two general com- ponents, C 1 and C x , acting in sequence [1]. According to the model, the C 1 component first disrupted and swelled the crystalline cellulose, possibly releasing soluble oligo saccharides into solution. The C x compo- nent, which was shown to have endoglucanase activity, was then able to effectively hydrolyze the previously inaccessible substrate along with the soluble oligo- saccharides. Furthermore, the activity of the mixture was found to be higher than the activity of each com- ponent acting alone, indicating that the components were acting synergistically. In the following years, a number of groups began to identify and characterize

137

Lighting Group: Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software Software Lighting Software The Lighting Group has developed several computer programs in the course of conducting research on energy efficient lighting. Several of these programs have proven useful outside the research environment. One of the most popular programs for advanced lighting applications is Radiance. For more information on this program and its availability, click on the link below. RADIANCE Radiance is a suite of programs for the analysis and visualization of lighting in design. The primary advantage of Radiance over simpler lighting calculation and rendering tools is that there are no limitations on the geometry or the materials that may be simulated. Radiance is used by architects and engineers to predict illumination, visual quality and appearance of innovative design spaces, and by researchers to evaluate new

138

Working Group Report: Sensors  

SciTech Connect (OSTI)

Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

Artuso, M.; et al.,

2013-10-18T23:59:59.000Z

139

Particle Data Group - Authors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Particle Data Group Associates and Advisors Particle Data Group Associates and Advisors Aguilar-Benitez, Amsler, Antonelli, Arguin, Armstrong, Artuso, Asner, Babu, Baer, Band, Barberio, Barnett, Battaglia, Bauer, Beringer, Bernardi, Bertl, Besson, Bichsel, Biebel, Bloch, Blucher, Blusk, Bunakov, Burchat, Cahn, Carena, Carone, Casas Serradilla, Casper, Cattai, Ceccucci, Chakraborty, Chen, Chivukula, Copic, Cousins, Cowan, Crawford, Dahl, Dalitz, D'Ambrosio, DeGouvea, DeGrand, Damour, Desler, Dissertori, Dobbs, Dobrescu, Donahue, Doser, Drees, Edwards,A, Edwards, Eidelman, Elvira, Erler, Ezhela, Fasso', Feng, Fetscher, Fields, Filimonov, Foster, Freedman, Froidevaux, Fukugita, Gaisser, Garren, Geer, Gerber, Gerbier, Gherghetta, Gibbons, Gilman, Giudice, Goldhaber, Goodman, Grab, Gritsan, Grivaz, Groom, Grünewald, Gurtu, Gutsche, Haber, Hagiwara, Hagmann, Hanhart, Harper , Hayes, Heltsley, Hernàndez-Rey, Hewett, Hikasa, Hinchliffe, Holder, Höcker, Hogan, Höhler, Holtkamp, Honscheid , Huston , Igo-Kemenes, Jackson, James, Jawahery, Johnson, Junk, Karlen, Kayser, Kirkby, Klein, Kleinknecht, Klempt, Knowles, Kolb, Kolda, Kowalewski, Kreitz, Kreps, Krusche, Kuyanov, Kwon, Lahav, Landua, Langacker , Lepage, Liddle, Ligeti, Lin, Liss, Littenberg, Liu, LoSecco, Lugovsky,K, Lugovsky,S, Lugovsky,V, Lynch, Lys, Mahlke, Mangano, Mankov, Manley, Mannel, Manohar, March-Russell, Marciano, Martin, Masoni, Matthews, Milstead, Miquel, Mönig, Mohr, Morrison, Murayama, Nakada, Nakamura, Narain, Nason, Navas, Nevski, Nicholson, Nir, Olive, Oyanagi, Pape, Patrignani, Peacock, Piepke, Porter, Prell, Punzi, Quadt, Quinn, Raby, Raffelt, Ratcliff, Razuvaev, Renk, Richardson, Roesler, Rolandi, Rolli, Romaniouk , Roos, Rosenberg, Rosner, Sachrajda, Sakai, Salam, Sanda, Sarkar, Sauli, Schaffner, Schindler, Schmitt, Schneider, Scott, Seligman, Shaevitz, Shrock, Silari, Skands, Smith, Sjöstrand, Smoot, Sokolosky, Spanier, Spieler, Spooner, Srednicki, Stahl, Stanev, Stone, Stone,S, Streitmatter, Sumiyoshi, Suzuki, Syphers, Tanabashi, Taylor, Terning, Titov, Tkachenko, Törnqvist, Tovey, Trilling, Trippe, Turner, Valencia, van Bibber, Vincter, Venanzoni, Vogel, Voss, Ward, Watari, Webber, Weiglein, Wells, Whalley, Wheeler, Wohl, Wolfenstein, Womersley, Woody, Workman, Yamamoto, Yao, Youssef, Zenin, Zhang, Zhu, Zyla

140

Fermilab Steering Group Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Executive Summary: A Plan for Fermilab In This Section: Executive Summary: A Plan for Fermilab Guidelines The Steering Group's proposed plan Executive Summary: A Plan for Fermilab The Fermilab Steering Group has developed a plan to keep U.S. accelerator-based particle physics on the pathway to discovery, both at the Terascale with the LHC and the ILC and in the domain of neutrinos and precision physics with a high-intensity accelerator. The plan puts discovering Terascale physics with the LHC and the ILC as Fermilab's highest priority. While supporting ILC development, the plan creates opportunities for exciting science at the intensity frontier. If the ILC remains near the Global Design effort's technically driven timeline, Fermilab would continue neutrino science with the NOνA experiment, using the NuMI (Neutrinos at the Main Injector) proton plan, scheduled to begin operating in 2011. If ILC construction must wait somewhat longer, Fermilab's plan proposes SNuMI, an upgrade of NuMI to create a more powerful neutrino beam. If the ILC start is postponed significantly, a central feature of the proposed Fermilab plan calls for building an intense proton facility, Project X, consisting of a linear accelerator with the currently planned characteristics of the ILC combined with Fermilab's existing Recycler Ring and the Main Injector accelerator. The major component of Project X is the linac. Cryomodules, radio-frequency distribution, cryogenics and instrumentation for the linac are the same as or similar to those used in the ILC at a scale of about one percent of a full ILC linac.

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GEOPHYSICAL METHODS In 2003, a group of scientists in Swit-  

E-Print Network [OSTI]

with Petrobras in Brazil, Pemex in Mexico, Norsk Hydro in Libya and KOC in the Arabian Peninsula, it is evident

Podladchikov, Yuri

142

Tensor renormalization group: Local magnetizations, correlation functions, and phase diagrams of systems with quenched randomness  

E-Print Network [OSTI]

The tensor renormalization-group method, developed by Levin and Nave, brings systematic improvability to the position-space renormalization-group method and yields essentially exact results for phase diagrams and entire ...

Guven, Can

143

HSS Focus Group Training Work Group Meeting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Training Work Group Meeting Training Work Group Meeting HSS Focus Group Training Work Group Meeting Meeting Dates: July 10 - 11 The Department of Energy (DOE) Office of Health, Safety and Security (HSS) Focus Group Training Work Group met at the DOE National Training Center (NTC) inAlbuquerque, NM on Tuesday, July 10 and Wednesday, July 11, 2012. The meeting was chaired by the Work Group co-chairs, Karen Boardman (HSS/NTC),Pete Stafford (AFL-CIO BCTD/CPWR), and Julie Johnston (EFCOG). Attachment 1 is the Meeting Agenda; Attachment 2 is a list of meeting attendees; and Attachment3 is the proposed Radworker Training Reciprocity Program. Meeting Agenda Meeting Summary Draft RAD Worker Training Reciprocity Program for Work Group v.1 Draft Radiation Worker Portability Validation Meeting Attendees

144

Focus Group Training Work Group Meeting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2012 In conjunction with the HAMMER Steering Committee meeting the HSS Focus Group Training Working Group Meeting was conducted from 2:00 PM to 4:30 PM at the HAMMER Training...

145

Category:Wind Working Group Toolkit | Open Energy Information  

Open Energy Info (EERE)

Wind Working Group Toolkit Wind Working Group Toolkit Jump to: navigation, search In 1999, the U.S. Department of Energy (DOE) launched the Wind Powering America (WPA) initiative to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. State Wind Working Groups used Wind Powering America's State Wind Working Group Handbook to serve their states, in conjunction with their own methods and outreach materials. This updated wiki-based Wind Working Group Toolkit provides links to information, methods, and resources. This wiki is a work in progress, and we welcome your contributions. See the Wind Working Group Toolkit home page for an outline of topics. Pages in category "Wind Working Group Toolkit"

146

Expanded Pending Jobs by Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expanded Pending Jobs by Group Expanded Pending Jobs by Group Daily Graph: Weekly Graph: Monthly Graph: Yearly Graph: 2 Year Graph: Last edited: 2011-04-05 14:00:25...

147

Renormalization group aspects of graphene  

Science Journals Connector (OSTI)

...Tsai Renormalization group aspects of graphene Maria A. H. Vozmediano * * vozmediano...Cantoblanco, , 28049 Madrid, Spain Graphene is a two-dimensional crystal of carbon...same lines. renormalization group|graphene|Coulomb interactions| 1. Introduction...

2011-01-01T23:59:59.000Z

148

MTorres Group | Open Energy Information  

Open Energy Info (EERE)

MTorres Group Place: Murcia, Spain Zip: 30320 Sector: Wind energy Product: Wind turbine manufacturer References: MTorres Group1 This article is a stub. You can help OpenEI by...

149

Data Management Group Annual Report  

E-Print Network [OSTI]

iv Data Management Group Annual Report 2003 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located ........................................................................................................ 3 Text-based Data Retrieval System `drs

Toronto, University of

150

Data Management Group Annual Report  

E-Print Network [OSTI]

Data Management Group Annual Report 2001 prepared by: Data Management Group Joint Program..............................................................................2 Text Based Data Retrieval System `drs' ..........................................................2 Internet Browser Data Retrieval System (iDRS)..............................................3 Complex Data

Toronto, University of

151

Data Management Group Annual Report  

E-Print Network [OSTI]

Data Management Group Annual Report 1999 prepared by: Data Management Group Joint Program................................................................. 1 INFORMATION PROCESSING ............................................. 2 Text Based Data Retrieval System `drs' ........................ 2 Internet Browser Data Retrieval System (iDRS) ............ 3

Toronto, University of

152

Data Management Group Annual Report  

E-Print Network [OSTI]

Data Management Group Annual Report 2000 prepared by: Data Management Group Joint Program PROCESSING ...................................................2 Text Based Data Retrieval System `drs'.................................2 Internet Browser Data Retrieval System (iDRS).....................3 Complex Data Requests

Toronto, University of

153

Systematic analysis of group identification in stock markets  

Science Journals Connector (OSTI)

We propose improved methods to identify stock groups using the correlation matrix of stock price changes. By filtering out the marketwide effect and the random noise, we construct the correlation matrix of stock groups in which nontrivial high correlations between stocks are found. Using the filtered correlation matrix, we successfully identify the multiple stock groups without any extra knowledge of the stocks by the optimization of the matrix representation and the percolation approach to the correlation-based network of stocks. These methods drastically reduce the ambiguities while finding stock groups using the eigenvectors of the correlation matrix.

Dong-Hee Kim and Hawoong Jeong

2005-10-25T23:59:59.000Z

154

Fusion systems for profinite groups  

Science Journals Connector (OSTI)

......April 2014 research-article Articles Fusion systems for profinite groups Radu Stancu...paper. We introduce the notion of a pro-fusion system on a pro- group, which generalizes the notion of a fusion system on a finite -group. We also prove......

Radu Stancu; Peter Symonds

2014-04-01T23:59:59.000Z

155

Water Resources Working Group Report  

E-Print Network [OSTI]

Water Resources Working Group Report This report provided content for the Wisconsin Initiative in February 2011. #12;Water Resources Working Group Wisconsin Initiative on Climate Change Impacts October 2010 #12;Water Resources Working Group Members ­ WICCI Tim Asplund (Co-Chair) - Wisconsin Department

Sheridan, Jennifer

156

Data Management Group Annual Report  

E-Print Network [OSTI]

Data Management Group Annual Report 2004 City of Hamilton City of Toronto GO Transit Regional of York Toronto Transit Commission The Data Management Group is a research program located of the funding partners: Ministry of Transportation, Ontario #12;SUMMARY The Data Management Group (DMG

Toronto, University of

157

Data Management Group Annual Report  

E-Print Network [OSTI]

Data Management Group Annual Report 1997 #12;Data Management Group Annual Report 1997 A co-operative project that is jointly funded by members of the Toronto Area Transportation Planning Data Collection: (416) 978-3941 #12;Data Management Group 1997 Annual Report Table of Contents 1 INTRODUCTION

Toronto, University of

158

Fermilab Steering Group Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acknowledgement Acknowledgement The Fermilab Steering Group is grateful to many members of the particle physics and accelerator community for their expert advice and contributions to the preparation of this report: Robert Abrams, Nikolai Andreev, Charles Ankenbrandt, Giorgio Apollinari, Jeff Appel, Rick Baartman, Jonathan Bagger, Wander Baldini, Barry Barish, Gerald Blazey, Dixon Bogert, Ed Bonnema, James Brau, Steven Brice, Stanley Brodsky, Daniel Broemmelsiek, Alan Bross, Charles Brown, Douglas Bryman, William Bugg, Alexey Burov, Phillip Burrows, Maksim Bychkov, Robert Cahn, Marcela Carena, Jean-Paul Carneiro, Harry Carter, Robert Carey, Brian Chase, David Christian, Michael Church, Willie Clark, Janet Conrad, John Corlett, Mary Anne Cummings, Dan Dale, Chris Damerell, Paul Debevec, André de Gouvea, Fritz DeJongh, Marcel Demarteau, Paul Derwent, Milind Diwan, Harold Lee Dodds, Gerald Dugan, Craig Dukes, Estia Eichten, Eckhard Elsen, Louis Emery, Peter Fisher, George Flanagan, Tony Favale, Gary Feldman, Buck Field, David Finley, Bonnie Fleming, Brian Foster, Emil Frlez, Kenneth Ganezer, Consolato Gattuso, Stephen Geer, Norman Gelfand, Terry Goldman, Keith Gollwitzer, Maury Goodman, Paul Grannis, Daniel Green, Terry Grimm, Alan Hahn, Reidar Hahn, Michael Harrison, Ayman Hawari, David Hertzog, Robert Hirosky, David Hitlin, Richard Holmes, Maxine Hronek, Patrick Hurh, Jim Hylen, Gerald Jackson, Andreas Jansson, David Johnson, Jeffrey Johnson, Rol Johnson, John Johnstone, Chang Kee Jung, Steven Kahn, Peter Kammel, Yuri Kamyshkov, David Kawall, Kara Keeter, Christina Keller, Robert Kephart, Harold Kirk, David Kirkby, Arkadiy Klebaner, Sergey Korenev, Ioanis Kourbanis, Andreas Kronfeld, Krishna Kumar, James Lackey, Kenneth Lande, Valeri Lebedev, Kevin Lesko, Tony Leveling, Mats Lindroos, Laurence Littenberg, Vladimir Lobashev, Kevin Lynch, William Marciano, Daniel Marlow, John Marriner, Michael Martens, Dongming Mei, Mark Messier, Peter Meyers, Phillip Miller, Shekhar Mishra, Hugh Montgomery, Kevin Munday, Homer Neal, David Neuffer, Andrew Norman, Kenneth Olsen, Peter Ostroumov, Satoshi Ozaki, Robert Palmer, Vaia Papadimitriou, Stephen Parke, Kent Paschke, Ralph Pasquinelli, Todd Pedlar, Stephen Peggs, Susan Pfiffner, Henryk Piekarz, Thomas Phillips, Dinko Pocanic, Milorad Popovic, James Popp, Eric Prebys, Chris Quigg, Regina Rameika, Ronald Ray, Lee Roberts, Tom Roberts, Natalie Roe, Jerome Rosen, Marc Ross, Howard Rubin, Randy Ruchti, Richard Sah, Niki Saoulidou, Kate Scholberg, Alan Schwartz, Yannis Semertzidis, Abraham Seiden, Melvyn Shochet, Marilyn Smith, Henry Sobel, Paul Souder, Giulio Stancari, Michelle Stancari, Raymond Stefanski, James Stone, Sheldon Stone, Michael Syphers, Alex Tarasiewicz, Eddie Tatar, Rex Tayloe, Alvin Tollestrup, Yagmur Torun, Todd Treado, Michael Turner, Fred Ullrich, John Urbin, Alexander Valishev, Leonid Vorobiev, Nick Walker, Robert Webber, Bernard Wehring, Steven Werkema, Christopher White, Herman White, James Whitmore, David Wildman, Kent Alan Williams, William Willis, Phil Winkle, William Snow, Stanley Wojcicki, Hitoshi Yamamoto, Peter Yamin, Katsuya Yonehara, Cary Yoshikawa, Albert Young, Michael Zeller, Michael Zisman, Alexander Zlobin, and Robert Zwaska

159

Interagency Sustainability Working Group | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sustainable Buildings & Campuses Interagency Sustainability Working Group Interagency Sustainability Working Group The Interagency Sustainability Working Group (ISWG) is the...

160

Transuranic Waste Transportation Working Group Agenda | Department...  

Office of Environmental Management (EM)

Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda More Documents &...

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Property:ExplorationSubGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationSubGroup ExplorationSubGroup Jump to: navigation, search Property Name ExplorationSubGroup Property Type Page Description Exploration sub groups for exploration activities Pages using the property "ExplorationSubGroup" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Data Collection and Mapping + A Acoustic Logs + Well Log Techniques + Active Seismic Methods + Seismic Techniques + Active Seismic Techniques + Seismic Techniques + Active Sensors + Active Sensors + Aerial Photography + Passive Sensors + Aeromagnetic Survey + Magnetic Techniques + Airborne Electromagnetic Survey + Electrical Techniques + Airborne Gravity Survey + Gravity Techniques + Analytical Modeling + Modeling Techniques + Audio-Magnetotellurics + Electrical Techniques +

162

RHIC II Science Working Groups  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshops Workshops The series of RHIC II Science Workshops began in November 2004, at which time seven Working Groups were initiated. These groups met in workshops through 2005, with the purpose of providing an organized forum for the community to address and describe quantitatively the most important science issues for the proposed RHIC II luminosity upgrade, and corresponding detector upgrades. Each Working Group was led by three convenors representing theory and experiment, and each has produced a detailed report (except for the "New Directions" group, which provided a sounding board and input to the other groups). The Working Group reports are linked below. The summary "white paper" document, "Future Science at the Relativistic Heavy Ion Collider" (PDF), is based on these reports, and was prepared by a Writing Committee that included at least one convenor from each of the Working Groups.

163

Particle Data Group - Authors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Edition 8 Edition C. Amsler et al. (Particle Data Group), Physics Letters B667, 1 (2008) Also see: PDF format. AUTHORS: (Click on Author Name to get Email address, phone numbers, etc.) RPP authors C. Amsler, 1 M. Doser, 2 M. Antonelli, 3 D. Asner, 4 K.S. Babu, 5 H. Baer, 6 H.R. Band, 7 R.M. Barnett, 8 J. Beringer, 8 E. Bergren, G. Bernardi, 9 W. Bertl, 10 H. Bichsel, 11 O. Biebel, 12 P. Bloch, 2 E. Blucher, 13 S. Blusk, 14 R.N. Cahn, 8 M. Carena, 15,13,16 C. Caso, 17,* A. Ceccucci, 2 D. Chakraborty, 18 M.-C. Chen, 19 R.S. Chivukula, 20 G. Cowan, 21 O. Dahl, 8 G. D'Ambrosio, 22 T. Damour, 23 A. de Gouvea, 24 T. DeGrand, 25 B. Dobrescu, 15 M. Drees, 26 A. Edwards, 27 S. Eidelman, 28 V.D. Elvira, 15 J. Erler, 29 V.V. Ezhela, 30 J.L. Feng, 19 W. Fetscher, 31 B.D. Fields, 32 B. Foster, 33 T.K. Gaisser, 34 L. Garren, 15 H.-J. Gerber, 31 G. Gerbier, 35 T. Gherghetta, 36 G.F. Giudice, 2 M. Goodman, 37 C. Grab, 31 A.V. Gritsan, 38 J.-F. Grivaz, 39 D.E. Groom, 8 M. Grünewald, 40 A. Gurtu, 41,2 T. Gutsche, 42 H.E. Haber, 43 K. Hagiwara, 44 C. Hagmann, 45 K.G. Hayes, 46 J.J. Hernández-Rey, 47,¶ K. Hikasa, 48 I. Hinchliffe, 8 A. Höcker, 2 J. Huston, 20 P. Igo-Kemenes, 49 J.D. Jackson, 8 K.F. Johnson, 6 T. Junk, 15 D. Karlen, 50 B. Kayser, 15 D. Kirkby, 19 S.R. Klein, 51 I.G. Knowles, 52 C. Kolda, 53 R.V. Kowalewski, 50 P. Kreitz, 54 B. Krusche, 55 Yu.V. Kuyanov, 30 Y. Kwon, 56 O. Lahav, 57 P. Langacker, 58 A. Liddle, 59 Z. Ligeti, 8 C.-J. Lin, 8 T.M. Liss, 60 L. Littenberg, 61 J.C. Liu, 54 K.S. Lugovsky, 30 S.B. Lugovsky, 30 H. Mahlke, 62 M.L. Mangano, 2 T. Mannel, 63 A.V. Manohar, 64 W.J. Marciano, 61 A.D. Martin, 65 A. Masoni, 66 D. Milstead, 67 R. Miquel, 68 K. Mönig, 69 H. Murayama, 70,71,8 K. Nakamura, 44 M. Narain, 72 P. Nason, 73 S. Navas, 74,¶ P. Nevski, 61 Y. Nir, 75 K.A. Olive, 76 L. Pape, 31 C. Patrignani, 17 J.A. Peacock, 52 A. Piepke, 77 G. Punzi, 78 A. Quadt, 79, S. Raby, 80 G. Raffelt, 81 B.N. Ratcliff, 54 B. Renk, 82 P. Richardson, 65 S. Roesler, 2 S. Rolli, 83 A. Romaniouk, 84 L.J. Rosenberg, 11 J.L. Rosner, 13 C.T. Sachrajda, 85 Y. Sakai, 44 S. Sarkar, 86 F. Sauli, 2 O. Schneider, 87 D. Scott, 88 B. Seligman, 89 M. Shaevitz, 90 T. Sjöstrand, 91 J.G. Smith, 25 G.F. Smoot, 8 S. Spanier, 54 H. Spieler, 8 A. Stahl, 92 T. Stanev, 34 S.L. Stone, 14 T. Sumiyoshi, 93 M. Tanabashi, 94 J. Terning, 95 M. Titov, 96 N.P. Tkachenko, 30 N.A. Törnqvist, 97 D. Tovey, 98 G.H. Trilling, 8 T.G. Trippe, 8 G. Valencia, 99 K. van Bibber, 45 M.G. Vincter, 4 P. Vogel, 100 D.R. Ward, 101 T. Watari, 102 B.R. Webber, 101 G. Weiglein, 65 J.D. Wells, 103 M. Whalley, 65 A. Wheeler, 54 C.G. Wohl, 8 L. Wolfenstein, 104 J. Womersley, 105 C.L. Woody, 61 R.L. Workman, 106 A. Yamamoto, 44 W. -M. Yao, 8 O.V. Zenin, 30 J. Zhang, 107 R.-Y. Zhu 108 P.A. Zyla 8

164

Translational groups as generators of gauge transformations  

Science Journals Connector (OSTI)

We examine the gauge generating nature of the translational subgroup of Wigner’s little group for the case of massless tensor gauge theories and show that the gauge transformations generated by the translational group are only a subset of the complete set of gauge transformations. We also show that, just as in the case of topologically massive gauge theories, translational groups act as generators of gauge transformations in gauge theories obtained by extending massive gauge noninvariant theories by a Stückelberg mechanism. The representations of the translational groups that generate gauge transformations in such Stückelberg extended theories can be obtained by the method of dimensional descent. We illustrate these results with the examples of Stückelberg extended first class versions of Proca, Einstein-Pauli-Fierz, and massive Kalb-Ramond theories in 3+1 dimensions. A detailed analysis of the partial gauge generation in massive and massless second rank symmetric gauge theories is provided. The gauge transformations generated by the translational group in two-form gauge theories are shown to explicitly manifest the reducibility of gauge transformations in these theories.

Tomy Scaria

2003-11-26T23:59:59.000Z

165

Nanowire-templated lateral epitaxial growth of non-polar group III nitrides  

DOE Patents [OSTI]

A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

Wang, George T. (Albuquerque, NM); Li, Qiming (Albuquerque, NM); Creighton, J. Randall (Albuquerque, NM)

2010-03-02T23:59:59.000Z

166

Tim Kuneli, Electronics Maintenance Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tim Kuneli, Electronics Maintenance Group Print The recent ALS power supply failure was one of the most challenging projects that Electronics Engineer Technical Superintendent Tim...

167

Infrared Thermography (IRT) Working Group  

Broader source: Energy.gov (indexed) [DOE]

Infrared Thermography (IRT) Working Group Sco McWilliams U.S. Photovoltaic Manufacturing Consor;um (PVMC) Infrared Thermography Infrared Thermography (IRT) has been demonstrated...

168

Strategic Initiatives Work Group Charter  

Broader source: Energy.gov [DOE]

Strategic Initiatives Work Group promote excellence and continuous improvement in the implementation of worker health and safety programs across the DOE complex.

169

High Temperature Membrane Working Group  

Broader source: Energy.gov [DOE]

The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

170

Renewable Electricity Working Group Presentation  

U.S. Energy Information Administration (EIA) Indexed Site

Renewable Electricity Working Group Chris Namovicz, Renewable Electricity Analysis Team July 9, 2013 Agenda * Review status of AEO 2013 * Discuss new model updates and development...

171

Renormalisation group for depinning transition ind=2 ising models  

Science Journals Connector (OSTI)

We develop a position space renormalisation group (RG) method to study generalised depinning transition in two-dimensional Ising models. The treatment encompasses (i) the original model for depinning invented by ...

D. N. Mihajlovi?; N. M. Švraki?

1983-01-01T23:59:59.000Z

172

TEC Working Group Topic Groups Archives Training - Medical Training |  

Broader source: Energy.gov (indexed) [DOE]

Training - Medical Training Training - Medical Training TEC Working Group Topic Groups Archives Training - Medical Training The TEC Training and Medical Training Issues Topic Group was formed to address the training issues for emergency responders in the event of a radioactive material transportation incident. The Topic Group first met in 1996 to assist DOE in developing an approach to address radiological emergency response training needs and to avoid redundancy of existing training materials. The group worked with the Transportation Emergency Preparedness Program (TEPP) to review existing training material to determine its applicability, developed a front-end analysis describing an approach, and developed the Modular Emergency Response Radiological Transportation Training (MERRTT). In 1998, the Medical Training Issues

173

FACT SHEET: BIOENERGY WORKING GROUP  

Broader source: Energy.gov (indexed) [DOE]

, 2010 , 2010 1 FACT SHEET: BIOENERGY WORKING GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers launched a Bioenergy Working Group, which will advance the deployment of bioenergy technologies by implementing recommendations of the Technology Action Plan on Bioenergy Technologies that was released by the Major Economies Forum Global Partnership in December 2009. The Working Group will work in close cooperation with the Global Bioenergy Partnership (GBEP), which is co-chaired by Brazil and Italy. Initial key activities of the Working Group include: 1. Global Bioenergy Atlas: The Working Group will combine and build upon existing databases of sustainably-developed bioenergy potential around the globe and make it available in an open web-

174

Richway Group | Open Energy Information  

Open Energy Info (EERE)

Richway Group Richway Group Jump to: navigation, search Logo: Richway Group Name Richway Group Address 105 - 12031 Horseshoe Way Place Richmond, British Columbia Zip V7A 4V4 Sector Biomass Website http://www.richwaygroup.com Coordinates 49.163469°, -123.137766° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.163469,"lon":-123.137766,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

175

Focus Groups | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Outreach & Collaboration » Focus Groups Outreach & Collaboration » Focus Groups Focus Groups A forum for interface between union worker representatives and senior DOE managers and stakeholders to address key issues and concerns from worker perspectives, share information regarding HSS activities and programs, and identify potential opportunities to work together to improve worker health and safety at DOE sites. Learn more about the HSS Focus Groups... Labor Management Meetings and Activities HSS provides forums for communication between labor and management related to worker health, safety and security improvements across the DOE complex. 10 CFR 851 Worker Safety and Health Program The 10 C.F.R. 851 Work Group promotes excellence in the implementation of 10 C.F.R. 851, "Worker Safety and Health" and continuous improvement in the

176

Iodine content of food groups  

Science Journals Connector (OSTI)

The iodine content of several kinds of foods representing different product groups available on the Swiss market was analyzed by isotope dilution inductively coupled plasma mass spectrometry using the enriched long-lived nuclide 129I. Considerable variations in levels of iodine between single foodstuffs within food groups were found, which also applied for levels in different food groups. The contribution of the food groups to the average daily iodine intake for the Swiss population was estimated from recent food consumption data. Bread and milk were identified as significant sources of iodine in the Swiss diet as they contributed 58 and 29 ?g/day, respectively. The estimated contribution of all basic food groups to the per capita intake of iodine was approximately 140 ?g/day, which was somewhat below the amount recognized for adequate nutrition (150 ?g/day). In view of the additional consumption of iodized kitchen salt, an average of 140 ?g/day underestimates the actual iodine intake.

M. Haldimann; A. Alt; A. Blanc; K. Blondeau

2005-01-01T23:59:59.000Z

177

TEC Working Group Topic Groups Rail | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rail Rail TEC Working Group Topic Groups Rail The Rail Topic Group has the responsibility to identify and discuss current issues and concerns regarding rail transportation of radioactive materials by the Department of Energy (DOE). The group's current task is to examine different aspects of rail transportation including inspections, tracking and radiation monitoring, planning and process, and review of lessons learned. Ultimately, the main goal for members will be to assist in the identification of potential rail routes for shipments to Yucca Mountain, in a manner that will contribute to a safe, dynamic, and flexible transportation system. The identification of potential routes from reactor sites and DOE facilities will serve as an important first step in transportation planning, examining alternative routes, and getting feedback

178

TEC Working Group Topic Groups Routing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Routing Routing TEC Working Group Topic Groups Routing ROUTING The Routing Topic Group has been established to examine topics of interest and relevance concerning routing of shipments of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) to a national repository at Yucca Mountain, Nevada by highway, rail, and intermodal operations that could involve use of barges. Ultimately, the main goal for the topic group members will be to provide stakeholder perspectives and input to the Office of Logistics Management (OLM) in the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for the identification of a national suite of routes to Yucca Mountain. The identification of a suite of routes will provide an advanced planning framework for State and Tribal

179

TEC Working Group Topic Groups Manual Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manual Review Manual Review TEC Working Group Topic Groups Manual Review This group is responsible for the update of DOE Manual 460.2-1, Radioactive Material Transportation Practices Manual. This manual was issued on September 23, 2002, and establishes a set of standard transportation practices for U.S. Department of Energy (DOE) programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. The manual was developed in response to recommendations from various DOE programs and external stakeholders. A writing group was convened to evaluate the shipping practices being used or planned for use throughout the Department, document them, and, where appropriate, standardize them. The results of this effort are reflected

180

Control Group Variation in the Janus Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Variation in the Janus Studies Group Variation in the Janus Studies Benjamin Haley 1 , William Liu 1 , Mary J. Kwasny 2 , Tatjana Paunesku 1 , Gayle Woloschak 1 1. Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 2. Department of Preventative Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 Data from historical radiobiological mega-studies is being migrated online to enable open access to the results of these studies. The availability of these large data sets offers the possibility of merging the results of multiple studies for meta-analysis. However, researchers must overcome several hurdles in order to analyze data from disparate radiobiology studies. Variations in animal treatment, autopsy methods, and nomenclature must be accounted for before developing

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Control Group Variation in the Janus Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Control Group Variation in the Janus Studies Control Group Variation in the Janus Studies Benjamin Haley Northwestern University Abstract Data from historical radiobiological mega-studies is being migrated online to enable open access to the results of these studies. The availability of these large data sets offers the possibility of merging the results of multiple studies for meta-analysis. However, researchers must overcome several hurdles in order to analyze data from disparate radiobiology studies. Variations in animal treatment, autopsy methods, and nomenclature must be accounted for before developing new conclusions from merged studies. This work focuses on differences in animal treatment between studies in the Janus radiobiology experiments. The Janus Studies data sets include coded necropsy results for more than 40,000 mice divided between 12 studies. We

182

Acterra Group | Open Energy Information  

Open Energy Info (EERE)

Acterra Group Acterra Group Jump to: navigation, search Name Acterra Group Place MARION, Iowa Zip 52302 Sector Services Product Acterra Group provides consulting, project financing, services and support to energy, natural resource, and sustainability companies. Coordinates 44.671312°, -88.889263° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.671312,"lon":-88.889263,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Arakaki Group | Open Energy Information  

Open Energy Info (EERE)

Arakaki Group Arakaki Group Jump to: navigation, search Name Arakaki Group Place Fernandopolis, Sao Paulo, Brazil Product Brazil based agriculture company, which owns 50% of an ethanol plant. Coordinates -20.284244°, -50.246359° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-20.284244,"lon":-50.246359,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Lucas Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Lucas Group Place Chicago, Illinois Sector Services Product Renewable Energy Recruiters Year founded 1970 Coordinates 41.850033°, -87.6500523° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.850033,"lon":-87.6500523,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Physics Division: Subatomic Physics Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subatomic Physics Subatomic Physics Physics home » Subatomic Physics Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic Physics, P-25 CONTACTS Group Leader Jon Kapustinsky (Acting) Deputy Group Leader Andy Saunders Office Administration Irene Martinez Miquela Sanchez Group Office (505) 667-6941 Physics Links Jobs in Physics Human Resources Working at Los Alamos Los Alamos resources Who we are, what we do We conduct basic research in nuclear and particle physics, applying this expertise to solve problems of national importance. By pushing the limits of our understanding of the smallest building blocks of matter through diverse experiments probing aspects of subatomic reactions, we aim to provide a more thorough understanding of the basic

186

Altira Group | Open Energy Information  

Open Energy Info (EERE)

Altira Group Altira Group Jump to: navigation, search Name Altira Group Address 1675 Broadway, Suite 2400 Place Denver, Colorado Zip 80202 Region Rockies Area Product Venture Capital Number of employees 11-50 Year founded 1996 Phone number 303-592-5500 Website http://www.altiragroup.com/ Coordinates 39.742513°, -104.988163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.742513,"lon":-104.988163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

187

The Platinum-Group Elements:  

Science Journals Connector (OSTI)

...higher Pt emissions have been measured for diesel catalysts (Moldovan et al. 2002...1031-1036 Johnson Matthey (2007) Market Data Tables. Online information www...platinum-group elements released from gasoline and diesel engine catalytic converters. Science...

Sebastien Rauch; Gregory M. Morrison

188

BEDES Strategic Working Group Recommendations  

Broader source: Energy.gov [DOE]

The BEDES Strategic Working Group Recommendations document is a guide to how the BEDES Dictionary can be brought to market and provide the services for which it was designed.

189

Ayrshire Red Squirrel Group Squirrelpox  

E-Print Network [OSTI]

Ayrshire Red Squirrel Group SSG Report 1st March 2012 Squirrelpox Sero-positive grey squirrels. Concerns are also rising that there may be outbreaks of pox in red squirrel populations which have gone

190

Sustainability Community Special Interest Group  

E-Print Network [OSTI]

Sustainability Community Special Interest Group Meeting, CHI 2012 Eli Blevis, Yue Pan, & David: Weather Effects #12;Discussion Catalyst: Social Sustainability #12;Discussion Catalyst: Barriers & Brick Catalyst: Education #12;Discussion Catalyst: Cultural Factors #12;Discussion Catalyst: Finding Our Way #12

Blevis, Eli

191

DOE Catalysis Working Group Meeting  

Broader source: Energy.gov (indexed) [DOE]

PEMFC Performance and Durability - Jim Waldecker (Ford) 9:45 - 10:00 Degradation of Nanoparticle Pt alloy and De-alloyed Pt Catalysts - Debbie Myers (ANL) Catalysis Working Group...

192

Midwest Hydro Users Group Meeting  

Broader source: Energy.gov [DOE]

The Midwest Hydro Users Group will be holding their annual Fall meeting on November 12th and 13th in Wausau, Wisconsin.  An Owners-only meeting on the afternoon of the 12th followed by a full...

193

Report of Working Group IV  

Science Journals Connector (OSTI)

This report summarizes the discussions of the Working Group on Resource Policy and East-West Relationships that were held as part of the NATO Advance Study Institute on “Deposit and Geoenvironmental Models for...

Gabor Gaál; Slavko Šolar

2002-01-01T23:59:59.000Z

194

Interagency Committees and Working Groups  

Broader source: Energy.gov [DOE]

DOE is actively involved with other Federal agencies that have responsibilities for the radiation protection of the public and the environment. This site provides the different committees and working groups that DOE is involved with.

195

LLNL Chemical Kinetics Modeling Group  

SciTech Connect (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

196

Fifteenth LAMPF users group meeting  

SciTech Connect (OSTI)

The Fifteenth LAMPF Users Group Meeting was held November 2-3, 1981 at the Clinton P. Anderson Meson Physical Facility. The program of papers scheduled to be presented was amended to include a Report from Washington by Clarence R. Richardson, US Department of Energy. The general meeting ended with a round-table working group discussion concerning the Planning for a Kaon Factory. Individual items from the meeting were prepared separately for the data base.

Cochran, D.R.F. (comp.)

1982-03-01T23:59:59.000Z

197

NEWTON: Blood Group Systems Usage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Blood Group Systems Usage Blood Group Systems Usage Name: Kishori Status: student Grade: n/a Location: Outside U.S. Country: India Date: Summer 2013 Question: What is the difference between MN blood group system and ABO bloodgroup system? Although, we nowadays prefer ABO blood groups why do we use MN blood groups in the forensic department? Replies: Humans actually have multiple blood antigens on the surface of our blood cells. Wikipedia says that there are over 50 different blood group antigens. ABO and Rh are just the most dominant. Rh actually has 3 alleles called C, D and E. So one could be CCddee, for example, but clinically, when referring to Rh, only the D antigen is considered. So MN is another system that is also present. The reason it would be considered in forensics is due to population genetics considerations. Certain combinations are found in different percentages depending on what ancestry a person is a part of. Humans evolved in isolation from each other and until relatively recently, were separated due to difficult travel/migration. But even though we can move around the planet easily now, we still carry the history of our ancestry in our DNA. M and N are codominant, like the ABO system.

198

Networks Spanish project COPABIB Group Murcia Group Polit. Valencia Group La Laguna Computation in heterogeneous-hierarchical  

E-Print Network [OSTI]

Networks Spanish project COPABIB Group Murcia Group Polit. Valencia Group La Laguna Computation in heterogeneous-hierarchical environments Project COPABIB: Univ. Alicante, Castell´on, La Laguna, Murcia COPABIB Group Murcia Group Polit. Valencia Group La Laguna Contents 1 Networks 2 Spanish project COPABIB 3

Giménez, Domingo

199

Representations of the groups of order 24  

E-Print Network [OSTI]

T of G is either one-dimensional or two-dimensional. All the non-abelian groups except number 8, 11, and 15, have abelian subgroups of index two. The method for carrying out the process in Theorem 3. 2 has been machine programmed by P. Ruud... 13 14 24 22 23 24 16 17 24 22 17 18 22 23 18 16 20 21 13 14 Zl 19 14 15 19 20 15 13 11 12 4 5 12 10 5 6 10 11 b 2 3 10 11 3 1 11 12 1 ? 12 10 21 22 23 24 19 23 24 22 ZG 24 24 19 ?g, 20 23...

Strange, John Billy

1967-01-01T23:59:59.000Z

200

Introduction Abstract reflection groups and abstract buildings  

E-Print Network [OSTI]

Introduction Abstract reflection groups and abstract buildings Their geometric realizations Compactly supported cohomology L2 -cohomology Cohomology of Coxeter groups and buildings Mike Davis (work groups and buildings #12;Introduction Abstract reflection groups and abstract buildings Their geometric

Vogtmann, Karen

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group Guidance  

Broader source: Energy.gov (indexed) [DOE]

29-11 Draft 29-11 Draft Collaboration provides an opportunity to serve as an entity that is greater than the sum of its parts. HSS FOCUS GROUP DRAFT PROPOSED WORK GROUP GUIDANCE BACKGROUND: The HSS Focus Group provides a forum for communication and collaboration related to worker health, safety and security among HSS management and staff, labor unions, DOE Programs and stakeholders. Based on the foundation that labor union representatives are an essential source of frontline perspective in identifying, addressing and resolving worker health, safety and security concerns, the Focus Group has served to open lines of communication with worker representatives and provides a vehicle for information exchange, problem solving, building relationships and trust,

202

Groups | OpenEI Community  

Open Energy Info (EERE)

Featured groups Featured groups PreviousPauseNext Join Utility Rate Tags: urdb, utility rate Group interested in making improvements to OpenEI's utility rate data, structure and user interface. Join OpenEI Community Central Tags: central, OpenEI, town The central OpenEI community for students, scientists, researchers, enthusiasts, analysts and developers. Join Developer Tags: author, developer, power user, web services, wiki Developer community for OpenEI data, and helpful information for OpenEI wiki authors Join Water Power Forum Tags: forum, gateway, hydro, Power, Water Forum for information related to the Water Power Gateway Join Buildings Tags: architecture, building reviews, buildings technology, comfort, energy use, facilities management, green building, LEED, technologies, usgbc

203

KG Group | Open Energy Information  

Open Energy Info (EERE)

KG Group KG Group Jump to: navigation, search Name KG Group Place Coimbatore, Tamil Nadu, India Sector Solar Product Holding company for three yarn firms; setting up a solar thermal plant in Tamil Nadu. Coordinates 11.01167°, 76.98406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":11.01167,"lon":76.98406,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Groups | OpenEI Community  

Open Energy Info (EERE)

Featured groups Featured groups PreviousPauseNext Join Utility Rate Tags: urdb, utility rate Group interested in making improvements to OpenEI's utility rate data, structure and user interface. Join OpenEI Community Central Tags: central, OpenEI, town The central OpenEI community for students, scientists, researchers, enthusiasts, analysts and developers. Join Developer Tags: author, developer, power user, web services, wiki Developer community for OpenEI data, and helpful information for OpenEI wiki authors Join Water Power Forum Tags: forum, gateway, hydro, Power, Water Forum for information related to the Water Power Gateway Join Buildings Tags: architecture, building reviews, buildings technology, comfort, energy use, facilities management, green building, LEED, technologies, usgbc

205

Groupe Valeco | Open Energy Information  

Open Energy Info (EERE)

Groupe Valeco Groupe Valeco Jump to: navigation, search Name Groupe Valeco Place Montpellier, France Zip 34070 Sector Biomass, Solar, Wind energy Product Develops wind, solar, biomass and cogeneration projects in France. Coordinates 43.610855°, 3.87609° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.610855,"lon":3.87609,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Delaney Group | Open Energy Information  

Open Energy Info (EERE)

Delaney Group Delaney Group Jump to: navigation, search Name Delaney Group Place Gloversville, New York Zip 12078 Sector Services, Wind energy Product Services company focused on environmental permitting for wind energy projects. Coordinates 43.05063°, -74.344459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.05063,"lon":-74.344459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Royalstar Group | Open Energy Information  

Open Energy Info (EERE)

Royalstar Group Royalstar Group Jump to: navigation, search Name Royalstar Group Place Hefei, Anhui Province, China Sector Solar Product Chinese manufacturer of washing machines, solar water heaters, and as of June 2006, announced to enter the thin-film (CIGS) cell market. Coordinates 31.86141°, 117.27562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.86141,"lon":117.27562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Noribachi Group | Open Energy Information  

Open Energy Info (EERE)

Noribachi Group Noribachi Group Jump to: navigation, search Name Noribachi Group Place Albuquerque, New Mexico Zip 87104 Product New Mexico-based private equity firm focused on investing in and actively supporting the development and commercialisation of clean technology. Coordinates 35.08418°, -106.648639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.08418,"lon":-106.648639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Winslow Group | Open Energy Information  

Open Energy Info (EERE)

Winslow Group Winslow Group Jump to: navigation, search Name Winslow Group Place Sofia, Bulgaria Zip Sofia - 1330 Sector Wind energy Product Real estate developer with a focus on Bulgarian market investing in wind and PV projects. Coordinates 42.697085°, 23.32455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.697085,"lon":23.32455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Aksa Group | Open Energy Information  

Open Energy Info (EERE)

Aksa Group Aksa Group Jump to: navigation, search Name Aksa Group Place Istanbul, Turkey Zip 34212 Sector Wind energy Product Turkey-based international company recently involved in the wind energy market. Coordinates 41.040855°, 28.986183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.040855,"lon":28.986183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Ralos Group | Open Energy Information  

Open Energy Info (EERE)

Ralos Group Ralos Group Jump to: navigation, search Name Ralos Group Place Michelstadt, Germany Zip D-64720 Sector Solar Product Germany-based solar project developer that specialises in the design, installation, and operation of solar power systems. Coordinates 49.67706°, 9.005106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.67706,"lon":9.005106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

AYT Group | Open Energy Information  

Open Energy Info (EERE)

AYT Group AYT Group Jump to: navigation, search Name AYT Group Place Antalya, Turkey Sector Solar Product Turkey-based construction and property development firm. The firm is a developer of a solar manufacturing plant. Coordinates 36.87905°, 30.709205° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.87905,"lon":30.709205,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Elecnor Group | Open Energy Information  

Open Energy Info (EERE)

Elecnor Group Elecnor Group Jump to: navigation, search Name Elecnor Group Place Madrid, Spain Zip 28003 Product Engineering conglomerate - specialises in promotion and project administration for energy generation, electricity, installations, gas, telecoms, rail, the environment and water projects. Coordinates 40.4203°, -3.705774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4203,"lon":-3.705774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

GEA Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Place Bochum, Germany Zip 44809 Sector Biofuels, Solar Product Bochum-based, engineering group specialising in process engineering and components for the food, pharmaceutical and petrochemical industries. GEA through its subsidiaries is involved in the solar and biofuels sector. Coordinates 51.485955°, 7.210866° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.485955,"lon":7.210866,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Minoan Group | Open Energy Information  

Open Energy Info (EERE)

Minoan Group Minoan Group Jump to: navigation, search Name Minoan Group Place Kent, England, United Kingdom Zip BR5 1XB Sector Solar Product UK-based developer of resorts in Greece that has branched into solar power project development. Coordinates 41.150928°, -81.358223° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.150928,"lon":-81.358223,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

ESV Group | Open Energy Information  

Open Energy Info (EERE)

ESV Group ESV Group Jump to: navigation, search Name ESV Group Place London, England, United Kingdom Zip W1K 4QH Sector Biofuels Product UK-based investment agri-business involved in biofuels, in particular jatropha. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Velankani Group | Open Energy Information  

Open Energy Info (EERE)

Velankani Group Velankani Group Jump to: navigation, search Name Velankani Group Place Bangalore, Andhra Pradesh, India Zip 560100 Sector Solar Product Setting up manufacturing complex for chlorosilanes, polysilicon and other silicon compounds for semiconductor and solar markets. Coordinates 12.97092°, 77.60482° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.97092,"lon":77.60482,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Groups | OpenEI Community  

Open Energy Info (EERE)

Featured groups Featured groups PreviousPauseNext Join Utility Rate Tags: urdb, utility rate Group interested in making improvements to OpenEI's utility rate data, structure and user interface. Join OpenEI Community Central Tags: central, OpenEI, town The central OpenEI community for students, scientists, researchers, enthusiasts, analysts and developers. Join Developer Tags: author, developer, power user, web services, wiki Developer community for OpenEI data, and helpful information for OpenEI wiki authors Join Water Power Forum Tags: forum, gateway, hydro, Power, Water Forum for information related to the Water Power Gateway Join Buildings Tags: architecture, building reviews, buildings technology, comfort, energy use, facilities management, green building, LEED, technologies, usgbc

219

Angeleno Group | Open Energy Information  

Open Energy Info (EERE)

Angeleno Group Angeleno Group Jump to: navigation, search Logo: Angeleno Group Name Angeleno Group Address 2029 Century Park East, Suite 2980 Place Los Angeles, California Zip 90067 Region Southern CA Area Product Private equity firm focused on high growth investments in energy and environmental technology companies Phone number (310) 552-2790 Website http://www.angelenogroup.com/ Coordinates 34.05969°, -118.413144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.05969,"lon":-118.413144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP  

E-Print Network [OSTI]

exploration coordination tool to enhance the implementation of the coordination process At the 1st ISECG1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting broader future participation in the planning and coordination process; - assessment of the requirements

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geodesic spaces : momentum Groups : symmetry  

E-Print Network [OSTI]

Geodesic spaces : momentum :: Groups : symmetry Vaughan Pratt Stanford University BLAST 2010 a · b denoting b rotated 90 degrees about a. End of reprise. 3. This talk; Geodesic spaces At FMCS. as points evenly spaced along a geodesic , right distributivity expresses a symmetry of about an arbitrary

Pratt, Vaughan

222

Task Group 9 Update (Presentation)  

SciTech Connect (OSTI)

This presentation is a brief update of IEC TC82 QA Task Force, Group 9. Presented is an outline of the recently submitted New Work Item Proposal (NWIP) for a Comparative Thermal Cycling Test for CPV Modules to Differentiate Thermal Fatigue Durability.

Bosco, N.

2014-04-01T23:59:59.000Z

223

Applied Super Conductor Group, Oxide Molecular Beam Epitaxy Group,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AEMG Homepage AEMG Homepage Site Details Homepage Research Publications Presentations Facilities How to Contact Us Other Information Basic Energy Sciences Directorate Links BNL Site Index Can't View PDFs? Advanced Energy Materials Group Applied Superconductivity The applied superconductivity research (past funded by DOE Office of Electricity Delivery and Energy Reliability) is related to modernization of the U.S. power grid. One direction of the modernization is replacement of normal metal (copper, aluminum) transmission lines with High Temperature Superconducting (HTS) cables. Our group concentrates its effort on studying fundamental thermodynamics of nucleation and texture development of thick YBCO layers. High-performance YBCO layer is a critical element of modern second generation (2G) HTS wire.

224

Method of passivating semiconductor surfaces  

DOE Patents [OSTI]

A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

Wanlass, Mark W. (Golden, CO)

1990-01-01T23:59:59.000Z

225

Airvoice Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Place Gurgaon, Haryana, India Zip 122001 Sector Services, Solar, Wind energy Product Holding company with interest in tele-solutions, petrochemicals and services business. The firm, via its subsidiary Airvoice Green Energy, plans to set up solar and wind projects. Coordinates 28.55114°, 78.89427° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.55114,"lon":78.89427,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Environmental Service Group Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services Group Whom to Call List by Activity Services Group Whom to Call List by Activity Updated October 4, 2013 Activity Category Primary Secondary Extension Cell/Pager Email Air Quality (outdoor) Non- radioactive Ned Borglin Patrick Thorson 4332 5852 925-437-9397 cell 510-301-0938 cell EKBorglin@lbl.gov PAThorson@lbl.gov Air Quality (outdoor) Radioactive Linnea Wahl Patrick Thorson - 5852 510-229-2370 cell 510-301-0938 cell LEWahl@lbl.gov PAThorson@lbl.gov Creek Sampling John Jelinski Robert Fox 7616 7327 510-517-5378 cell 510-425-0451 pager JAJelinski@lbl.gov RAFox@lbl.gov Environmental Management System Patrick Thorson Ron Pauer 5852 7614 510-301-0938 cell 510-289-9324 cell PAThorson@lbl.gov ROPauer@lbl.gov Environmental Protection Ron Pauer Linnea Wahl 7614 - 510-289-9324 cell

227

The Yi Liu Group - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Research Group Members News Publications Contacts Home Research Group Members News Publications Contacts - A supramolecular approach to better n-type organic field effect transistors. Soon in Adv. Mater. - Electron donors, acceptors, and host-guest complexes enable supramolecular networks in action. See the trio publications on J. Am. Chem. Soc., Polym. Chem., and Chem. Eur. J. - Encaged! Not one, not two, but three. Three-fold clipping leads to triply threaded interlocked structures. Soon in Angew. Chem. Int. Ed. - Strongly interacting C3-symmetric donor-acceptor pairs made its way to Chem. Sci. - Check out our recent report on organic semi- conductors and molecular switches at Appl. Mat. Inter. and Agnew. Chem. Int. Ed. - Advances in efficient bio- orthogonal labeling - soon in Agnew. Chem.

228

Women in Physics | Advocacy Groups  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics Advocacy Groups Physics Advocacy Groups Photo: Women in Physics Association for Women in Science (AWIS) Founded in 1971, the Association for Women in Science is a not-for-profit professional society dedicated to achieving equity and full participation for women in all areas of science and technology. AWIS makes the voice of women in science heard by holding and participating in conferences, publishing AWIS Magazine, speaking out about discrimination, and much more. Association for Women in Science and Engineering. A UK organization that aims to advance the participation of girls and women in the sciences, engineering and technologies and to contribute to policy in these fields. BEWISE-Belgian Women in Science BeWiSe is dedicated to achieving equal and full participation of women in all scientific disciplines and at all levels, because diversity will promote scientific excellence and progress further.

229

Noble Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Place Hong Kong Coordinates 22.396428°, 114.109497° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.396428,"lon":114.109497,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Ostwind Group | Open Energy Information  

Open Energy Info (EERE)

Ostwind Group Ostwind Group Place Regensburg, Germany Zip D-93047 Sector Biomass, Hydro, Wind energy Product Develops wind projects, and also sometimes biomass and hydropower. Coordinates 49.01492°, 12.10173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.01492,"lon":12.10173,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Contact NETL Technology Transfer Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Significance * Applicable to subcritical and supercritical air-fired boiler designs * Eliminates the need to mimic air-fired heat transfer characteristics in order to meet existing dry steam load demands * Reduces retrofit complexity, time, and cost Applications * Retrofitting of conventional air-fired boilers Opportunity Research is active on the patent-pending technology, titled "Temperature

232

Visualization and Modeling Working Group  

SciTech Connect (OSTI)

During the 2005 Hurricane season, many consequence predictions were available from 36 to 96 hours before landfalls, via the Department of Energy’s Visualization and Modeling Working Group (VMWG). Real-time data can be tapped by local officials and utilities, and can also be accessed for post-event regulatory audits. An overview of VMWG’s models, results and uses will be presented.

Fernandez, S.J. (LANL); Dodrill, K.A.

2007-03-01T23:59:59.000Z

233

PROGRAMME GROUP RESEARCH UPDATE: Biodiversity indicators &  

E-Print Network [OSTI]

1 PROGRAMME GROUP RESEARCH UPDATE: Biodiversity indicators & knowledge management programme group Introduction Duncan Ray The programme group Biodiversity Indicators and Knowledge Management (BIKM) was established by the merger of the Biodiversity Indicators & Evaluation Programme and the Decision Support

234

A group bridge approach for variable selection  

Science Journals Connector (OSTI)

......group bridge approach for variable...Actuarial Science, University...Department of Management Science, University...group bridge approach that is capable...group bridge approach for variable...Actuarial Science, University...Department of Management Science......

Jian Huang; Shuange Ma; Huiliang Xie; Cun-Hui Zhang

2009-06-01T23:59:59.000Z

235

Skeleton Technologies Group | Open Energy Information  

Open Energy Info (EERE)

Technologies Group Place: Sweden Product: Manufacturers of supercapacitors and other composite materials. References: Skeleton Technologies Group1 This article is a stub. You...

236

BASF Linde Group JV | Open Energy Information  

Open Energy Info (EERE)

BASF Linde Group JV Jump to: navigation, search Name: BASF & Linde Group JV Place: Germany Sector: Carbon Product: Germany-based carbon capture projects joint venture. References:...

237

Fraunhofer Venture Group | Open Energy Information  

Open Energy Info (EERE)

Fraunhofer Venture Group Place: Germany Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: Fraunhofer Venture Group1 This...

238

Biodiesel Investment Group | Open Energy Information  

Open Energy Info (EERE)

Investment Group Place: Dallas, Texas Zip: 75205 Sector: Biofuels Product: Biodiesel Investment Group is a subsidiary established by Earth Biofuels to coordinate the company's...

239

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

240

Training Work Group Charter | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Charter Training Work Group Charter The Training Work Group fosters improvements in the quality, efficacy, and delivery of DOE safety training, and realizes significant...

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Vehicle Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Alternative Fuels Vehicle Group Place: New York, New York Zip: 28 West 25th Street Sector: Vehicles Product: Focussed on news and...

242

Alternative Fuels Group | Open Energy Information  

Open Energy Info (EERE)

Alternative Fuels Group Place: Maryland Sector: Renewable Energy Product: US-based producer of renewable fuels. References: Alternative Fuels Group1 This article is a stub. You...

243

Nick Wright Named Advanced Technologies Group Lead  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy...

244

Intersolar Group defunct | Open Energy Information  

Open Energy Info (EERE)

Group defunct Jump to: navigation, search Name: Intersolar Group (defunct) Place: Canada Sector: Solar Product: Intersolar was taken over by Canadian PV cell manufacturer...

245

Car Charging Group Inc | Open Energy Information  

Open Energy Info (EERE)

Car Charging Group, Inc. Place: Miami Beach, Florida Product: Miami Beach, USA based installer of plug-in vehicle charge equipment. References: Car Charging Group, Inc.1 This...

246

Natural Currents Energy Group | Open Energy Information  

Open Energy Info (EERE)

Natural Currents Energy Group Jump to: navigation, search Name: Natural Currents Energy Group Place: New York Sector: Hydro, Ocean, Renewable Energy, Solar, Wind energy Product:...

247

Transportation External Coordination Working Group:  

Broader source: Energy.gov (indexed) [DOE]

Accomplishments and Future Accomplishments and Future Transportation External Coordination Working Group Meeting Phoenix, AZ Judith A. Holm, Office of National Transportation Office of Civilian Radioactive Waste Management April 4, 2005 TEC MEMBER ORGANIZATIONS American College of Emergency Physicians (ACEP) American Nuclear Society (ANS) Association of American Railroads (AAR) Brotherhood of Locomotive Engineers and Trainmen (BLET) Commercial Vehicle Safety Alliance (CVSA) Conference of Radiation Control Program Directors, Inc. (CRCPD) Council of Energy Resource Tribes (CERT) Council of State Governments-Eastern Regional Conference (CSG-ERC) Council of State Governments-Midwestern Office (CSG-MW) Council on Radionuclides and Radiopharmaceuticals (CORAR) Dangerous Goods Advisory Council (DGAC)

248

Transportation External Coordination Working Group:  

Broader source: Energy.gov (indexed) [DOE]

External Coordination External Coordination Working Group: Background and Process Judith Holm National Transportation Program Albuquerque, New Mexico April 21, 2004 TEC History * DOE's Office of Environmental Management (EM) and Office of Civilian Radioactive Waste Management (OCRWM) formed TEC in 1992 * EM & RW developed MOU and TEC charter in 1992 - Other DOE program offices joined in 1993-94 * Other agencies (DOT, FRA, NRC, EPA) have been active participants Meeting Locations 1992-present Some Founding Principles * TEC concept centered on unique stakeholder accountability principles - Participation by key responsible parties in technical/policy issue discussion and resolution results in increased confidence and more efficient business decisions * Ultimate goal: develop multi-year set of

249

Drilling Methods | Open Energy Information  

Open Energy Info (EERE)

Drilling Methods Drilling Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Methods Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Exploration Sub Group: None Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques CA-170-02-15 EA Mammoth Pacific Long Valley Caldera Geothermal Area BLM BLM Central California District Office BLM Bishop Field Office BLM Geothermal/Exploration Drilling Methods

250

Gravity Methods | Open Energy Information  

Open Energy Info (EERE)

Gravity Methods Gravity Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Methods Details Activities (0) Areas (0) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Gravity Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques NVN-084630 CU Vulcan Energy Patua Geothermal Area BLM Nevada State Office BLM Winnemucca District Office BLM Humboldt River Field Office BLM BLM Geothermal/Exploration Gravity Methods

251

Bayesian modelling of the cool core galaxy group NGC 4325  

E-Print Network [OSTI]

We present an X-ray analysis of the radio-quiet cool-core galaxy group NGC 4325 (z=0.026) based on Chandra and ROSAT observations. The Chandra data were analysed using XSPEC deprojection, 2D spectral mapping and forward-fitting with parametric models. Additionally, a Markov chain Monte Carlo method was used to perform a joint Bayesian analysis of the Chandra and ROSAT data. The results of the various analysis methods are compared, particularly those obtained by forward-fitting and deprojection. The spectral mapping reveals the presence of cool gas displaced up to 10 kpc from the group centre. The Chandra X-ray surface brightness shows the group core to be highly disturbed, and indicates the presence of two small X-ray cavities within 15 kpc of the group core. The XSPEC deprojection analysis shows that the group has a particularly steep entropy profile, suggesting that an AGN outburst may be about to occur. With the evidence of prior AGN activity, but with no radio emission currently observed, we suggest that the group in in a pre-outburst state, with the cavities and displaced gas providing evidence of a previous, weak AGN outburst.

Paul A. Russell; Trevor J. Ponman; Alastair J. R. Sanderson

2007-03-01T23:59:59.000Z

252

David Turner! User Services Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Services Group User Services Group Accounts and Allocations --- 1 --- September 10, 2013 Accounts There a re t wo t ypes o f a ccounts a t N ERSC. 1. Your p ersonal, p rivate a ccount * Associated w ith y our l ogin o r u ser n ame * Iden:fies y ou t o o ur s ystems a nd u sed w hen l ogging i n t o N ERSC systems a nd w eb s ervices * Your p roject's P rincipal I nves:gator ( PI) o r P roject M anager r equests an a ccount f or y ou * Four p rimary a ccount r oles - PI, P I P roxy, P roject M anager, U ser 2. An a lloca:on a ccount, o r r epository ( aka r epo) * Like a b ank a ccount y ou u se t o " pay" f or c omputer : me * PIs r equest a lloca:ons o f : me a nd/or s torage * An i ndividual u ser m ay b elong t o m ore t han o ne r epository - But o nly o ne d efault r epo --- 2 --- Allocations * You must belong to a repo to run jobs

253

Mixed Waste Working Group report  

SciTech Connect (OSTI)

The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

Not Available

1993-11-09T23:59:59.000Z

254

Nucleic acid detection methods  

DOE Patents [OSTI]

The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

1998-05-19T23:59:59.000Z

255

2002 Nature Publishing Group PERSPECTIVES  

E-Print Network [OSTI]

. One way of assessing the opportunities available to the pharmaceutical industry is to begin of post-genomic research strategies within the pharmaceutical industry. Now that we know the size using several methods. In a comprehensive review of the accumulated portfolio of the pharmaceutical

Gates, Kent. S.

256

Combined group ECC protection and subgroup parity protection  

DOE Patents [OSTI]

A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.

Gara, Alan G.; Chen, Dong; Heidelberger, Philip; Ohmacht, Martin

2013-06-18T23:59:59.000Z

257

MCYT TIC2001-4936-E RESEARCH GROUPS ROADMAP  

E-Print Network [OSTI]

MCYT TIC2001-4936-E RESEARCH GROUPS ROADMAP November, 2002 #12;#12;Contents 1 Grupo SEPIA 7 2 Grupo Scheduling and Temporal Reasoning (RNPST, TIC2001-4936-E) and it is devoted to spread the information about Research Projects CICYT TIC95-0453 Machine learning methods in uncertain and imprecise environments

Castillo, Luis

258

Quantum Mechanics, Group Theory, and C60 Frank Rioux  

E-Print Network [OSTI]

production in macroscopic amounts2 has generated a tremendous amount of research activity in chemistry and the angular momentum quantum number. (1) Just as the quantum mechanical solution for the one-electron hydrogen all other levels are completely filled. Using traditional group theoretical methods6 , it can be shown that

Rioux, Frank

259

Cationic Main Group Compounds as Water Compatible Small Anion Receptors  

E-Print Network [OSTI]

.................................................. 31 27. Top: Fluoride capture and release protocol using [34]+. Bottom: Examples of fluorination reactions ................................................................ 33 28. Synthesis of 37, 38, and [39...-withdrawing substituents in triarylboranes constitutes a well-established method for enhancing their Lewis acidity.11 Noteworthy applications for these fluorinated boranes include the activation of transition metal and main group species via anionic ligand abstraction...

Leamer, Lauren Anne

2013-05-06T23:59:59.000Z

260

Johnson Research Group University of New Hampshire  

E-Print Network [OSTI]

group at Boston University. http://sites.bu.edu/porcogrp/ #12;Microwave Flash Pyrolysis: Making Reactive

New Hampshire, University of

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Grouping Parts for Multiple Parts Production in Additive Manufacturing  

Science Journals Connector (OSTI)

Abstract Rapid prototyping (RP) has evolved to Additive Manufacturing (AM) in recent years. It can produce functional or end-use parts with small or even medium quantities. And further, due to its unique layer-by-layer construction principle, it can produce different parts at the same time in a same AM machine. To improve the productivity and machine utilization of AM processes under multiple parts production context, this paper propose the conception of ‘Grouping parts’. Based on the Group Technology (GT) used in traditional processing technologies, a modified Group Technology for AM under multiple parts manufacturing context is presented. To group parts, a set of key attributes affecting the AM production time, cost, quality and work preparation are identified to represent the parts, and then a Grey Clustering method is adopted to conduct the similarity analysis. A simple case study is presented in the end to illustrate the proposed conception and its methodology.

Yicha Zhang; Alain Bernard

2014-01-01T23:59:59.000Z

262

Mean importance measures for groups of events in fault trees  

SciTech Connect (OSTI)

The method of moments is applied to precisely determine the mean values of three importance measures: risk reduction, partial derivative, and variance reduction. Variance reduction calculations, in particular, are significantly improved by eliminating the imprecision associated with Monte Carlo estimates. The three importance measures are extended to permit analyses of the relative importance of groups of basic and initiating events. The partial derivative importance measure is extended by assessing the contribution of a group of events to the gradient of the top event frequency. The group importance measures are quantified for the overall fuel damage equation and for 14 dominant accident sequences from an independent probabilistic safety assessment of the K Production Reactor. This application demonstrates both the utility and the versatility of the group importance measures.

Haskin, F.E.; Huang, Min [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Sasser, M.K.; Stack, D.W. [Los Alamos National Lab., NM (United States)

1993-10-12T23:59:59.000Z

263

Fuel Cell Technologies Office: Photoelectrochemical Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Photoelectrochemical Working Group to someone by E-mail Share Fuel Cell Technologies Office: Photoelectrochemical Working Group on Facebook Tweet about Fuel Cell Technologies Office: Photoelectrochemical Working Group on Twitter Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Google Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Delicious Rank Fuel Cell Technologies Office: Photoelectrochemical Working Group on Digg Find More places to share Fuel Cell Technologies Office: Photoelectrochemical Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts

264

Fuel Cell Technologies Office: Catalysis Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalysis Working Catalysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Catalysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Catalysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Google Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Delicious Rank Fuel Cell Technologies Office: Catalysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Catalysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis

265

Argonne Physics Division - Theory Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Special Day & Time: Special Day & Time: 10:30am Tues. 19 March 2013 Alessandro Lovato Argonne Leadership Computing Facility and Physics Division lovato@anl.gov Weak Response of Cold Symmetric Nuclear Matter at Three-Body Cluster Level 24 January 2013 Elmar Biernat Universidade Técnica de Lisboa, Portugal elmar.biernat@ist.utl.pt Meson properties from two different covariant approaches Special Day: Tues. 22 January 2013 Guillaume Hupin Lawrence Livermore National Lab hupin1@llnl.gov Continuum effects in nuclear structure and reactions Special Day & Time: 10:30am, Tues. 15 January 2013 Kyle Wendt Ohio State University wendt.31@osu.edu Non-Locality in the Similarity Renormalization Group Special Time: 10:30am 10 January 2013 Vojtech Krejcirik University of Maryland vkrejcir@umd.edu

266

Hydrology Group - UNSAT-H  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

H H Recharge Estimation UNSAT-H is a FORTRAN computer code used to simulate the one-dimensional flow of water, vapor, and heat in soils. The code addresses the processes of precipitation, evaporation, plant transpiration, storage, and deep drainage. The UNSAT-H computer code is used to understand the movement of water, heat, and vapor in soils so better decisions can be made about land use, waste disposal, and climate change. Example Tests and Typical Applications include studies of the water balance behavior of surface covers over shallow land burial waste sites and studies of land disturbance effects on recharge rates. The UNSAT-H computer code is managed by the Hydrology Group at the Pacific Northwest National Laboratory (PNNL). PNNL is a U.S. Department of Energy

267

Particle Data Group - Errata 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Review of Particle Physics 2 Review of Particle Physics J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012). During the time between editions of the Review of Particle Physics and the Particle Physics Booklet, we often find a number of errata. We correct most errata on our WWW pages. If you should find errata that are not known to us, please send mail to pdg @ lbl.gov. Pages 79, 1255 of the full Review (page 144 of the DataBooklet, pages 3, 3, 10 of the Web versions below): p, n, N-resonces; Baryons Summary Table (page 3) Baryons Summary Table (page 3) p Particle Listing (page 10) (November 28, 2012): The value of the partial mean life limit for n n → νe νe should read: > 1.4 (1030 years) at 90% CL. Page 320 of the full Review (page 4 of the Web versions below):

268

Renormalization group aspects of graphene  

E-Print Network [OSTI]

Graphene is a two dimensional crystal of carbon atoms with fascinating electronic and morphological properties. The low energy excitations of the neutral, clean system are described by a massless Dirac Hamiltonian in (2+1) dimensions which also captures the main electronic and transport properties. A renormalization group analysis sheds light on the success of the free model: due to the special form of the Fermi surface which reduces to two single points in momentum space, short range interactions are irrelevant and only gauge interactions like long range Coulomb or effective disorder can play a role in the low energy physics. We review these features and discuss briefly other aspects related to disorder and to the bilayer material along the same lines.

Maria A. H. Vozmediano

2010-10-25T23:59:59.000Z

269

Nevada applied ecology group publications  

SciTech Connect (OSTI)

Since January 1972, the Nevada Applied Ecology Information Center (NAEIC), Information Research and Analysis Section, Health and Safety Research Division, Oak Ridge National Laboratory, has provided technical information support to the Nevada Applied Ecology Group (NAEG) relevant to the behavior of specific radionuclides, primarily plutonium and americium, in the environment, with special emphasis on pathways to man. This bibliography represents a summary of the biomedical and environmental studies conducted by the NAEG and its contractors. The bibliography focuses on research sponsored by the NAEG. Subject areas of the publications include cover studies of soil, vegetation, animals, microorganisms, resuspension, and meteorology. All references in this publication are stored in a computerized form that is readily available for searches upon request to NAEG and it contractors. 558 refs.

Chilton, B.D.; Pfuderer, H.A.; Cox, T.L. (Oak Ridge National Lab., TN (USA))

1989-09-01T23:59:59.000Z

270

Energy Systems Group Annual Report  

E-Print Network [OSTI]

of the major state agencies. The second task is to evaluate the feasibility of applying Cogeneration in selected state agencies and institutions. The third major task includes developing energy efficiency standards for all new buildings constructed... LABORATORY CONSORTIUM Acquisition and improvements of the Energy Systems Laboratory (ESL) have created a unique method for industries to become further involved in university programs. A consortium is being organized to provide direction and financing...

Anand, N. K.; Caton, J.; Heffington, W. M.; O'Neal, D. L.; Somasundaram, S.; Turner, W. D.

1986-01-01T23:59:59.000Z

271

Estimating Methods  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Based on the project's scope, the purpose of the estimate, and the availability of estimating resources, the estimator can choose one or a combination of techniques when estimating an activity or project. Estimating methods, estimating indirect and direct costs, and other estimating considerations are discussed in this chapter.

1997-03-28T23:59:59.000Z

272

Magnetotelluric Methods | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Methods Magnetotelluric Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Methods Details Activities (0) Areas (0) Regions (0) NEPA(3) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Magnetotelluric Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques DOI-BLM-NV-C010-2012-0070-CX CX US Navy Geothermal Program Office Dixie Valley Geothermal Area BLM BLM Carson City District Office BLM Stillwater Field Office BLM BLM Geothermal/Exploration Reflection Survey

273

Topaz Power Group | Open Energy Information  

Open Energy Info (EERE)

Topaz Power Group Topaz Power Group Jump to: navigation, search Name Topaz Power Group Place Austin, Texas Sector Hydro Product Topaz Power Group, LLC is a 3.4GW generation portfolio, mostly coal but some small hydro, located in the South Texas market and operated by Carlyle Group under a management agreement with 50% equity partner, Sempra. References Topaz Power Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Topaz Power Group is a company located in Austin, Texas . References ↑ "Topaz Power Group" Retrieved from "http://en.openei.org/w/index.php?title=Topaz_Power_Group&oldid=352336" Categories: Clean Energy Organizations Companies Organizations Stubs

274

September 8, 2011, HSS/Union Focus Group Work Group Telecom - Work Group matrix  

Broader source: Energy.gov (indexed) [DOE]

Rev 09-19-11) Rev 09-19-11) Work Group / HSS and Union Leads Union/Stakeholder/HSS Participants Improvement Issues/Goals Initial/Current Tasks Outputs 10CFR 851 -Implementation -Training HSS Leads: Pat Worthington / Bill McArthur Union Lead: Doug Stephens -USW Co-Lead: Barb McCabe - IUOE TBD - BCTD Dianne Whitten - HAMTC Stan Scott - HAMMER Gary Gustafson - LIUNA Steve Simonson - HSS Tom Staker - HSS Collectively work to ensure implementation of health and safety programs (851 Rule) within and among DOE site contractors to eliminate/minimize inconsistent requirements among M&I, M&O, LLC and SBA contractors/subcontractors. - Identify leads and participants - Develop charter - Goals/ Intended Output - Develop Task Activities - HS-1 engage DOE

275

Abstract Error Groups Via Jones Unitary Braid Group Representations at q=i  

E-Print Network [OSTI]

In this paper, we classify a type of abstract groups by the central products of dihedral groups and quaternion groups. We recognize them as abstract error groups which are often not isomorphic to the Pauli groups in the literature. We show the corresponding nice error bases equivalent to the Pauli error bases modulo phase factors. The extension of these abstract groups by the symmetric group are finite images of the Jones unitary representations (or modulo a phase factor) of the braid group at q=i or r=4. We hope this work can finally lead to new families of quantum error correction codes via the representation theory of the braid group.

Yong Zhang

2009-02-02T23:59:59.000Z

276

Erythromycin-Resistant Group A Streptococci in Schoolchildren in Pittsburgh  

Science Journals Connector (OSTI)

...emergence and rapid spread of erythromycin resistance among these isolates in January 2001. Methods. Study Setting and Subjects. In 1998 we began a longitudinal study of the epidemiology of infections with group A streptococci in a private, tuition-supported elementary school with an enrollment of approximately... In a longitudinal study at an elementary school in Pittsburgh, group A streptococci with resistance to erythromycin were unexpectedly identified in surveillance throat cultures in January 2001. Through May 2001, nearly half the isolates were resistant to erythromycin, and 22 of 46 children with resistant isolates had multiple cultures that were positive for this resistant streptococcus.

Martin J.M.Green M.Barbadora K.A.Wald E.R.

2002-04-18T23:59:59.000Z

277

Contributory Group Key Agreement Protocols, Revisited for Mobile Ad-Hoc Groups  

E-Print Network [OSTI]

Contributory Group Key Agreement Protocols, Revisited for Mobile Ad-Hoc Groups Mark Manulis Horst of various group-oriented applications for mo- bile ad-hoc groups requires a group secret shared between all- and wide-area wired networks, can also be used in ad-hoc sce- narios because of the similar security

Manulis, Mark

278

Florida Biomass Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Florida Biomass Energy Group Place Gulf Breeze, Florida Zip 32561 Sector Biomass Product Florida Biomass Energy Group is a Florida limited liability corporation whose business is the development and operation of closed-loop, biomass-fired electrical generating plants. References Florida Biomass Energy Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Florida Biomass Energy Group is a company located in Gulf Breeze, Florida . References ↑ "Florida Biomass Energy Group" Retrieved from "http://en.openei.org/w/index.php?title=Florida_Biomass_Energy_Group&oldid=345419" Categories: Clean Energy Organizations

279

Utility Wind Interest Group | Open Energy Information  

Open Energy Info (EERE)

Wind Interest Group Wind Interest Group Jump to: navigation, search Name Utility Wind Interest Group Place Reston, Virginia Zip VI 20195 Sector Wind energy Product The Utility Wind Interest Group (UWIG) is a non-profit corporation whose mission is to accelerate the appropriate integration of wind power into the electric system. References Utility Wind Interest Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Wind Interest Group is a company located in Reston, Virginia . References ↑ "Utility Wind Interest Group" Retrieved from "http://en.openei.org/w/index.php?title=Utility_Wind_Interest_Group&oldid=352690" Categories: Clean Energy Organizations

280

TGI Solar Power Group | Open Energy Information  

Open Energy Info (EERE)

TGI Solar Power Group TGI Solar Power Group Jump to: navigation, search Name TGI Solar Power Group Place New York, New York Zip 10001 Sector Solar Product TGI Solar Power Group specialises in the manufacture and integration of thin film PV fabrication lines, PV thin film manufacturing equipment, as well as project development. References TGI Solar Power Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TGI Solar Power Group is a company located in New York, New York . References ↑ "TGI Solar Power Group" Retrieved from "http://en.openei.org/w/index.php?title=TGI_Solar_Power_Group&oldid=352158" Categories: Clean Energy Organizations Companies Organizations

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Bobst Group SA | Open Energy Information  

Open Energy Info (EERE)

Bobst Group SA Jump to: navigation, search Name: Bobst Group SA Place: Susanne, Switzerland Zip: CH-1001 Sector: Services Product: A Swiss-based company that supplies equipment and...

282

Concerted Action European Solar Storage Testing Group  

Science Journals Connector (OSTI)

The European Solar Storage Testing Group has been established by the ... to draw up recommendations for test-procedures for solar storage systems. The working group programme is discussed...

E. van Galen

1983-01-01T23:59:59.000Z

283

LANDAU'S NECESSARY DENSITY CONDITIONS FOR LCA GROUPS  

E-Print Network [OSTI]

LANDAU'S NECESSARY DENSITY CONDITIONS FOR LCA GROUPS KARLHEINZ GR�OCHENIG, GITTA KUTYNIOK's conditions to the setting of locally compact abelian (LCA) groups, relying in an analogous way on the basics

Seip, Kristian

284

LANDAU'S NECESSARY DENSITY CONDITIONS FOR LCA GROUPS  

E-Print Network [OSTI]

LANDAU'S NECESSARY DENSITY CONDITIONS FOR LCA GROUPS KARLHEINZ GR¨OCHENIG, GITTA KUTYNIOK's conditions to the setting of locally compact abelian (LCA) groups, relying in an analogous way on the basics

Kutyniok, Gitta

285

MACDONALD FUNCTIONS ASSOCIATED TO COMPLEX REFLECTION GROUPS  

E-Print Network [OSTI]

MACDONALD FUNCTIONS ASSOCIATED TO COMPLEX REFLECTION GROUPS TOSHIAKI SHOJI Department version of the above Hall-Littlewood functions, as a generalization of Macdonald functions associated to symmetric groups. A generalization of Macdonald operators is also constructed, and we characterize

Shoj, Toshiaki

286

Green Power Group Ltd | Open Energy Information  

Open Energy Info (EERE)

company under Nixon International Group specilized in solar technology R&D. References: Green Power Group Ltd1 This article is a stub. You can help OpenEI by expanding it. Green...

287

Biofuel Industries Group LLC | Open Energy Information  

Open Energy Info (EERE)

Industries Group LLC Industries Group LLC Jump to: navigation, search Name Biofuel Industries Group LLC Place Adrian, Michigan Zip 49221 Product Biofuel Industries Group, LLC owns and operates the NextDiesel biodiesel plant in Adrian, Michigan. References Biofuel Industries Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Biofuel Industries Group LLC is a company located in Adrian, Michigan . References ↑ "Biofuel Industries Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Biofuel_Industries_Group_LLC&oldid=342814" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

288

The Conti Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name The Conti Group Place South Plainfield, New Jersey Zip 7080 Sector Services Product The Conti Group provides a wide range of construction & engineering services. References The Conti Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Conti Group is a company located in South Plainfield, New Jersey . References ↑ "The Conti Group" Retrieved from "http://en.openei.org/w/index.php?title=The_Conti_Group&oldid=352174" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

289

Program Building Committee's Central Planning Group.  

E-Print Network [OSTI]

Tooe ZTA245.7 8873 Y)O./3~ The Texas A&M (stem r ultural ~ion ~ervrce Damet C Plannstlel. Director College Stallon Program Building Committee's CENTRAL PLANNING GROUP 8-1344 Authors: Burl B. Richardson , Extension Program Specialist... and Mary G. Marshall, Extension Program Specialist Program -Building Committee's CENTRAL PLANNING GROUP This leaflet describes the role of the central planning group in the program development process_ The central planning group is the highest...

Richardson, Burl B.; Marshall, Mary G.

1982-01-01T23:59:59.000Z

290

Agenda: High Temperature Membrane Working Group Meeting  

Broader source: Energy.gov [DOE]

Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

291

Group Study Room Policy and Reservation Form  

E-Print Network [OSTI]

to the Group Study Reservation Form. Fill out the web form and click "Send" to submit the request. A confirming

Reynolds, Albert C.

292

Factor groups, semidirect product and quantum chemistry  

E-Print Network [OSTI]

In this paper we prove some general theorems about representations of finite groups arising from the inner semidirect product of groups. We show how these results can be used for standard applications of group theory in quantum chemistry through the orthogonality relations for the characters of irreducible representations. In this context, conditions for transitions between energy levels, projection operators and basis functions were determined. This approach applies to composite systems and it is illustrated by the dihedral group related to glycolate oxidase enzyme.

Marco A. S. Trindade

2014-02-14T23:59:59.000Z

293

Exotic fusion systems over 2-groups  

E-Print Network [OSTI]

and types of fusion systems. Definition Fix a prime p, a finite p-group S, and a fusion system F over S. LetExotic fusion systems over 2-groups Bob Oliver joint with Kasper Andersen and Joana Ventura The fusion category of a finite group G encodes the conjugacy relations within a Sylow p-subgroup S of G

Thévenaz, Jacques

294

Advisor Resourcesi Advisor-Group Dynamic  

E-Print Network [OSTI]

Advisor Resourcesi Advisor- Group Dynamic A Mutually Beneficial Relationship Exists Between an Organization and its Advisor An advisor provides the group with: · A "sounding board", someone with whom or perspective · Easy access to campus connections The group provides the advisor with: · A unique opportunity

Sherrill, David

295

Computer Graphics Group Leif KobbeltAACHEN  

E-Print Network [OSTI]

Computer Graphics Group Leif KobbeltAACHEN Computer Graphics Leif Kobbelt Computer Graphics Group Leif KobbeltAACHEN Public Perception of CG · Games · Movies Computer Graphics Group Leif KobbeltAACHEN Computer Graphics Research · fundamental algorithms & data structures - continuous & discrete mathematics

Kobbelt, Leif

296

Arbovirus infection increases with group size  

Science Journals Connector (OSTI)

...increase with host group size (e.g. Poulin 1991a,b; Hoogland 1995; Brown & Brown...1839 Proc. R. Soc. Lond. B (2001) Poulin, R. 1991a Group-living and infestation...in passerines. Condor 93, 418^423. Poulin, R. 1991b Group-living and the richness...

2001-01-01T23:59:59.000Z

297

GREEN FUNCTIONS ASSOCIATED TO COMPLEX REFLECTION GROUPS  

E-Print Network [OSTI]

GREEN FUNCTIONS ASSOCIATED TO COMPLEX REFLECTION GROUPS TOSHIAKI SHOJI Department of Mathematics Science University of Tokyo Noda, Chiba 278­8510, Japan Abstract. Green functions of classical groups this, we define Green functions associated to complex reflection groups G(e, 1, n), and study

Shoj, Toshiaki

298

Sustainability Peer Educator Group Lead Positions Position: Sustainability Peer Educators Group Lead  

E-Print Network [OSTI]

Sustainability Peer Educator Group Lead Positions Position: Sustainability Peer Educators Group times) Term of position: September 2013 ­ April 2014 Position Summary: Working with the Sustainability Project Coordinator, the Sustainability Peer Educator Group Leads will be responsible

Boonstra, Rudy

299

Utility Variable Generation Integration Group Fall O&M User Group...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

O&M User Group Meeting Utility Variable Generation Integration Group Fall O&M User Group Meeting October 1, 2014 7:00AM CDT to October 2, 2014 3:00PM CDT The Utility Variable...

300

TEC Working Group Background | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

TEC Working Group Background TEC Working Group Background TEC Working Group Background Through the TEC/WG, DOE interacted with representatives of organizations at the state, tribal, and local levels to obtain input for program needs assessment, development and management, and to enhance their capability to carry out transportation emergency preparedness and safety activities specifically related to radioactive materials shipments. TEC membership included representatives from national, state, tribal and local government organizations, labor, industry and professional groups. Members meet semiannually to participate in plenary sessions, breakout work sessions, and in more specialized Topic Groups. To learn more about the history and background of TEC, please see the following documents:

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Training Work Group Charter | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Charter Charter Training Work Group Charter The Training Work Group fosters improvements in the quality, efficacy, and delivery of DOE safety training, and realizes significant efficiencies by minimizing redundancies across the DOE Complex. The Work Group provides a collaborative opportunity for DOE to gain insights from operating contractors, the contractor work force and their representatives, and to combine the best wisdom to assure that the most efficient and effective worker health and safety program expectations, approaches and processes are in place and are well communicated. Training Work Group Charter More Documents & Publications HSS Briefing to the Defense Nuclear Facilities Safety Board (DNFSB) on Union Activities 10 CFR 851 Implementation Work Group Charter

302

LBNL China Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Logo: China Energy Group Name China Energy Group Agency/Company /Organization Lawrence Berkeley National Laboratory Sector Energy Focus Area Energy Efficiency Topics Implementation, GHG inventory, Market analysis, Policies/deployment programs, Resource assessment, Pathways analysis, Background analysis Resource Type Dataset, Software/modeling tools, Training materials, Lessons learned/best practices Website http://china.lbl.gov/ Country China Eastern Asia References Program Homepage [1] Abstract The China Energy Group at Lawrence Berkeley National Laboratory is committed to understanding those opportunities, and to exploring their implications for policy and business. "While daunting, the challenge of meeting China's energy needs presents a

303

Preliminary Notice of Violation, Washington Group International -  

Broader source: Energy.gov (indexed) [DOE]

Group International - Group International - EA-2003-07 Preliminary Notice of Violation, Washington Group International - EA-2003-07 October 23, 2003 Preliminary Notice of Violation issued to Washington Group International related to Falsification of Records and Procurement Deficiencies at the Advanced Mixed Waste Treatment Project at the Idaho National Engineering and Environmental Laboratory This letter refers to the investigation conducted by the Department of Energy (DOE) into allegations that RTS Wright Industries, LLC, (RTS), a supplier for which Washington Group International (WGI) had direct contractual responsibility, had falsified quality control inspection records. These records pertained to the Advanced Mixed Waste Treatment Project (AMWTP) Supercompactor Glovebox Suite at the Idaho

304

A Renormalization Group Approach to Relativistic Cosmology  

E-Print Network [OSTI]

We discuss the averaging hypothesis tacitly assumed in standard cosmology. Our approach is implemented in a "3+1" formalism and invokes the coarse graining arguments, provided and supported by the real-space Renormalization Group (RG) methods. Block variables are introduced and the recursion relations written down explicitly enabling us to characterize the corresponding RG flow. To leading order, the RG flow is provided by the Ricci-Hamilton equations studied in connection with the geometry of three-manifolds. The properties of the Ricci-Hamilton flow make it possible to study a critical behaviour of cosmological models. This criticality is discussed and it is argued that it may be related to the formation of sheet-like structures in the universe. We provide an explicit expression for the renormalized Hubble constant and for the scale dependence of the matter distribution. It is shown that the Hubble constant is affected by non-trivial scale dependent shear terms, while the spatial anisotropy of the metric influences significantly the scale-dependence of the matter distribution.

Mauro Carfora; Kamilla Piotrkowska

1995-02-08T23:59:59.000Z

305

5 Questions for Indoor Environment Group's William Fisk  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Questions for Indoor Environment Group's William Fisk 5 Questions for Indoor Environment Group's William Fisk William Fisk January 2014 Quantifying the Economic Implications of Indoor Air on Energy Efficiency, Performance, and Health William Fisk is a senior scientist, mechanical engineer, and leader of the Indoor Environment Group at Lawrence Berkeley National Laboratory (LBNL). During his 33 years at the lab, he has researched the interrelated issues of building energy performance, ventilation, indoor environmental quality (IEQ), and occupant health and performance. His research focuses primarily on energy efficient methods of maintaining and improving ventilation and IEQ in buildings and on quantifying the impacts of building ventilation and IEQ on health and performance. He is a fellow of ASHRAE, a member of the

306

Topological Invariants in Point Group Symmetric Photonic Topological Insulators  

E-Print Network [OSTI]

We proposed a group-theory method to calculate topological invariant in bi-isotropic photonic crystals invariant under crystallographic point group symmetries. Spin Chern number has been evaluated by the eigenvalues of rotation operators at high symmetry k-points after the pseudo-spin polarized fields are retrieved. Topological characters of photonic edge states and photonic band gaps can be well predicted by total spin Chern number. Nontrivial phase transition is found in large magnetoelectric coupling due to the jump of total spin Chern number. Light transport is also issued at the {\\epsilon}/{\\mu} mismatching boundary between air and the bi-isotropic photonic crystal. This finding presents the relationship between group symmetry and photonic topological systems, which enables the design of photonic nontrivial states in a rational manner.

Chen, Xiao-Dong; Chen, Wen-Jie; Wang, Jia-Rong; Dong, Jian-Wen

2014-01-01T23:59:59.000Z

307

September 8, 2011, HSS/Union Focus Group Work Group Telecom - Agenda  

Broader source: Energy.gov (indexed) [DOE]

Focus Group Focus Group HSS/Union Work Group Telecom September 8, 2011 Call-In: 301-903-0620 PROPOSED AGENDA Work Group Framework 3:00 - 4:00 pm EST Introductory Remarks...................................................Glenn Podonsky Meeting Purpose/Process..........................................Mari-Jo Campagnone Group Discussion Facilitation...............................................Pete Stafford Discussion...................................................................................All (1) Proposed Work Group Guidance (2) Proposed Charter Template (3) Work Group Matrix Next Steps..........................................Mari-Jo Campagnone/Pete Stafford Training Work Group 4:00 - 5:00 pm EST Introductory Remarks.....................................................Karen Boardman

308

Shikun Binui Arison Group | Open Energy Information  

Open Energy Info (EERE)

Shikun Binui Arison Group Shikun Binui Arison Group Jump to: navigation, search Name Shikun & Binui Arison Group Place Ramat Gan, Israel Zip 55215 Product String representation "Shikun & Binui ... gy and ecology." is too long. References Shikun & Binui Arison Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shikun & Binui Arison Group is a company located in Ramat Gan, Israel . References ↑ "Shikun & Binui Arison Group" Retrieved from "http://en.openei.org/w/index.php?title=Shikun_Binui_Arison_Group&oldid=350967" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

309

Case Engineering Group India | Open Energy Information  

Open Energy Info (EERE)

Group India Group India Jump to: navigation, search Name Case Engineering Group India Place Uttar Pradesh, India Sector Services, Solar Product Faridabad-based coal gasifiers and pollution services firm. Through its joint venture with Norasco the firm is planning to venture into solar power generation sector. References Case Engineering Group India[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Case Engineering Group India is a company located in Uttar Pradesh, India . References ↑ "Case Engineering Group India" Retrieved from "http://en.openei.org/w/index.php?title=Case_Engineering_Group_India&oldid=343278" Categories: Clean Energy Organizations

310

Clark Energy Group LLC | Open Energy Information  

Open Energy Info (EERE)

Clark Energy Group LLC Clark Energy Group LLC Jump to: navigation, search Name Clark Energy Group LLC Place Arlington, Virginia Zip 22203 Sector Efficiency, Renewable Energy Product Virginia-based energy efficiency and renewable energy project developer. References Clark Energy Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clark Energy Group LLC is a company located in Arlington, Virginia . References ↑ "Clark Energy Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Clark_Energy_Group_LLC&oldid=343635" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

311

Environmental Capital Group LLC | Open Energy Information  

Open Energy Info (EERE)

Group LLC Group LLC Jump to: navigation, search Name Environmental Capital Group LLC Place Grass Valley, California Zip 95945 Product String representation "Environmental C ... tartup forward." is too long. References Environmental Capital Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Environmental Capital Group LLC is a company located in Grass Valley, California . References ↑ "Environmental Capital Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=Environmental_Capital_Group_LLC&oldid=345025" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

312

The Gemstone Group | Open Energy Information  

Open Energy Info (EERE)

Gemstone Group Gemstone Group Jump to: navigation, search Name The Gemstone Group Place Wayne, Pennsylvania Zip 19087-1945 Sector Efficiency, Renewable Energy Product String representation "The Gemstone Gr ... oject financing" is too long. References The Gemstone Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Gemstone Group is a company located in Wayne, Pennsylvania . References ↑ "The Gemstone Group" Retrieved from "http://en.openei.org/w/index.php?title=The_Gemstone_Group&oldid=352184" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

313

Archean Group of Companies | Open Energy Information  

Open Energy Info (EERE)

Archean Group of Companies Archean Group of Companies Jump to: navigation, search Name Archean Group of Companies Place Chennai, Tamil Nadu, India Zip 600028 Sector Solar, Wind energy Product Chennai-based minerals and industrial chemicals firm. Archean is planning to set up wind and solar power projects via its subsidiary Green Energy India. References Archean Group of Companies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Archean Group of Companies is a company located in Chennai, Tamil Nadu, India . References ↑ "Archean Group of Companies" Retrieved from "http://en.openei.org/w/index.php?title=Archean_Group_of_Companies&oldid=342288" Categories: Clean Energy Organizations

314

RAM Capital Management Group | Open Energy Information  

Open Energy Info (EERE)

RAM Capital Management Group RAM Capital Management Group Jump to: navigation, search Name RAM Capital Management Group Place Boca Raton, Florida Zip 33486 Sector Hydro, Hydrogen Product Private VC fund and investment banking advisory firm investing in fuel cells and hydrogen. References RAM Capital Management Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. RAM Capital Management Group is a company located in Boca Raton, Florida . References ↑ "RAM Capital Management Group" Retrieved from "http://en.openei.org/w/index.php?title=RAM_Capital_Management_Group&oldid=350184" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

315

Warana Group of Cooperatives | Open Energy Information  

Open Energy Info (EERE)

Warana Group of Cooperatives Warana Group of Cooperatives Jump to: navigation, search Name Warana Group of Cooperatives Place Dist. Kolhapur, Maharashtra, India Zip 416113 Sector Solar Product Kolhapur-based firm having various units in the co-operative sector including sugar mill, bank, milk dairy and poultry etc; also setting up solar project. Developed ethanol plant as well. References Warana Group of Cooperatives[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Warana Group of Cooperatives is a company located in Dist. Kolhapur, Maharashtra, India . References ↑ "Warana Group of Cooperatives" Retrieved from "http://en.openei.org/w/index.php?title=Warana_Group_of_Cooperatives&oldid=35292

316

Stakeholder Engagement and Outreach: Wind Working Groups  

Wind Powering America (EERE)

Information Information Resources Printable Version Bookmark and Share Publications Success Stories Webinars Podcasts Videos Stakeholder Interviews Lessons Learned Wind Working Groups Economic Impact Studies Wind Turbine Ordinances Wind Working Groups Wind Powering America educates, equips, and supports state wind working groups that form strategic alliances to communicate wind's benefits and challenges to state stakeholders. State Wind Working Groups The U.S. map below shows which states have wind working groups. Click on a state to read about its wind working group. Text version of states with Wind Working Groups Alaska Arizona Arkansas Colorado Connecticut Georgia Hawaii Idaho Illinois Indiana Kansas Kentucky Maine Massachusetts Michigan Montana Nebraska Nevada New Jersey New Mexico North Carolina

317

The Ashlawn Group LLC | Open Energy Information  

Open Energy Info (EERE)

Ashlawn Group LLC Ashlawn Group LLC Jump to: navigation, search Name The Ashlawn Group LLC Place Alexandria, Virginia Zip 22304 Sector Services Product Provides management and technical consulting services, sales representations, product development, design and manufacturing process engineering solutions for industrial applications for the Department of Defense and energy-related industries. References The Ashlawn Group LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Ashlawn Group LLC is a company located in Alexandria, Virginia . References ↑ "The Ashlawn Group LLC" Retrieved from "http://en.openei.org/w/index.php?title=The_Ashlawn_Group_LLC&oldid=352164"

318

Electromechanical Engineering Consulting Group ECG | Open Energy  

Open Energy Info (EERE)

Electromechanical Engineering Consulting Group ECG Electromechanical Engineering Consulting Group ECG Jump to: navigation, search Name Electromechanical Engineering Consulting Group (ECG) Place San Jose, Costa Rica Zip 1521-1000 Sector Solar Product Costa Rica based solar thermal and PV installer engineering company. References Electromechanical Engineering Consulting Group (ECG)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Electromechanical Engineering Consulting Group (ECG) is a company located in San Jose, Costa Rica . References ↑ "Electromechanical Engineering Consulting Group (ECG)" Retrieved from "http://en.openei.org/w/index.php?title=Electromechanical_Engineering_Consulting_Group_ECG&oldid=344616

319

Impax Group Plc | Open Energy Information  

Open Energy Info (EERE)

Impax Group Plc Impax Group Plc Jump to: navigation, search Name Impax Group Plc Place London, United Kingdom Zip W1S 3EH Product A UK-based financial advisory and asset management company quoted on the Alternative Investment Market of the London Stock Exchange. References Impax Group Plc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Impax Group Plc is a company located in London, United Kingdom . References ↑ "Impax Group Plc" Retrieved from "http://en.openei.org/w/index.php?title=Impax_Group_Plc&oldid=346815" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

320

Casting methods  

DOE Patents [OSTI]

A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

2012-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic  

Broader source: Energy.gov (indexed) [DOE]

Summaries Rail Summaries Rail Topic Group TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic Group Rail Topic Group May 17, 2007 January 16, 2007 August 31, 2006 July 27, 2006 June 8, 2006 April 20, 2006 March 9, 2006 January 26, 2006 November 9, 2005 September 15, 2005 April 28, 2005 March 24, 2005 February 24, 2005 January 27, 2005 December 16, 2004 October 28, 2004 May 17, 2004 June 2, 2003 June 26, 2002 March 26, 1999 November 13, 1998 Meeting October 6, 1998 Meeting September 11, 1998 Meeting June 22, 1998 Meeting May 27, 1998 Meeting November 3, 1997 Meeting September 18, 1997 Meeting More Documents & Publications TEC Working Group Topic Groups Routing Conference Call Summaries TEC Working Group Topic Groups Rail Meeting Summaries TEC Working Group Topic Groups Rail Conference Call Summaries Inspections

322

Particle Data Group - 2009 Authors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

08 Edition and 2009 Web Update 08 Edition and 2009 Web Update (Click on Author Name to get Email address, phone numbers, etc.) New authors of 2009 Web Update D. de Florian, 109 G. Dissertori, 31 D. Edwards, 27 S. Golwala, 108 M. Heffner, 45 B. Heltsley, 62 J. Holder, 34 A. Karle, 7 J. Lys, 8 G. Salam, 112 K. Scholberg, 111 M. Syphers, 15 A. Vogt, 110 W. Walkowiak, 113 C. Walter, 111 E. Weinberg, 90 L. Wiencke, 114 Authors of the 2008 Review of Particle Physics C. Amsler et al. (Particle Data Group), Physics Letters B667, 1 (2008) (Also see: PDF format) AUTHORS: (Click on Author Name to get Email address, phone numbers, etc.) C. Amsler, 1 M. Doser, 2 M. Antonelli, 3 D. Asner, 4 K.S. Babu, 5 H. Baer, 6 H.R. Band, 7 R.M. Barnett, 8 J. Beringer, 8 E. Bergren, G. Bernardi, 9 W. Bertl, 10 H. Bichsel, 11 O. Biebel, 12 P. Bloch, 2 E. Blucher, 13 S. Blusk, 14 R.N. Cahn, 8 M. Carena, 15,13,16 C. Caso, 17,* A. Ceccucci, 2 D. Chakraborty, 18 M.-C. Chen, 19 R.S. Chivukula, 20 G. Cowan, 21 O. Dahl, 8 G. D'Ambrosio, 22 T. Damour, 23 A. de Gouvea, 24 T. DeGrand, 25 B. Dobrescu, 15 M. Drees, 26 A. Edwards, 27 S. Eidelman, 28 V.D. Elvira, 15 J. Erler, 29 V.V. Ezhela, 30 J.L. Feng, 19 W. Fetscher, 31 B.D. Fields, 32 B. Foster, 33 T.K. Gaisser, 34 L. Garren, 15 H.-J. Gerber, 31 G. Gerbier, 35 T. Gherghetta, 36 G.F. Giudice, 2 M. Goodman, 37 C. Grab, 31 A.V. Gritsan, 38 J.-F. Grivaz, 39 D.E. Groom, 8 M. Grünewald, 40 A. Gurtu, 41,2 T. Gutsche, 42 H.E. Haber, 43 K. Hagiwara, 44 C. Hagmann, 45 K.G. Hayes, 46 J.J. Hernández-Rey, 47,¶ K. Hikasa, 48 I. Hinchliffe, 8 A. Höcker, 2 J. Huston, 20 P. Igo-Kemenes, 49 J.D. Jackson, 8 K.F. Johnson, 6 T. Junk, 15 D. Karlen, 50 B. Kayser, 15 D. Kirkby, 19 S.R. Klein, 51 I.G. Knowles, 52 C. Kolda, 53 R.V. Kowalewski, 50 P. Kreitz, 54 B. Krusche, 55 Yu.V. Kuyanov, 30 Y. Kwon, 56 O. Lahav, 57 P. Langacker, 58 A. Liddle, 59 Z. Ligeti, 8 C.-J. Lin, 8 T.M. Liss, 60 L. Littenberg, 61 J.C. Liu, 54 K.S. Lugovsky, 30 S.B. Lugovsky, 30 H. Mahlke, 62 M.L. Mangano, 2 T. Mannel, 63 A.V. Manohar, 64 W.J. Marciano, 61 A.D. Martin, 65 A. Masoni, 66 D. Milstead, 67 R. Miquel, 68 K. Mönig, 69 H. Murayama, 70,71,8 K. Nakamura, 44 M. Narain, 72 P. Nason, 73 S. Navas, 74,¶ P. Nevski, 61 Y. Nir, 75 K.A. Olive, 76 L. Pape, 31 C. Patrignani, 17 J.A. Peacock, 52 A. Piepke, 77 G. Punzi, 78 A. Quadt, 79, S. Raby, 80 G. Raffelt, 81 B.N. Ratcliff, 54 B. Renk, 82 P. Richardson, 65 S. Roesler, 2 S. Rolli, 83 A. Romaniouk, 84 L.J. Rosenberg, 11 J.L. Rosner, 13 C.T. Sachrajda, 85 Y. Sakai, 44 S. Sarkar, 86 F. Sauli, 2 O. Schneider, 87 D. Scott, 88 B. Seligman, 89 M. Shaevitz, 90 T. Sjöstrand, 91 J.G. Smith, 25 G.F. Smoot, 8 S. Spanier, 54 H. Spieler, 8 A. Stahl, 92 T. Stanev, 34 S.L. Stone, 14 T. Sumiyoshi, 93 M. Tanabashi, 94 J. Terning, 95 M. Titov, 96 N.P. Tkachenko, 30 N.A. Törnqvist, 97 D. Tovey, 98 G.H. Trilling, 8 T.G. Trippe, 8 G. Valencia, 99 K. van Bibber, 45 M.G. Vincter, 4 P. Vogel, 100 D.R. Ward, 101 T. Watari, 102 B.R. Webber, 101 G. Weiglein, 65 J.D. Wells, 103 M. Whalley, 65 A. Wheeler, 54 C.G. Wohl, 8 L. Wolfenstein, 104 J. Womersley, 105 C.L. Woody, 61 R.L. Workman, 106 A. Yamamoto, 44 W. -M. Yao, 8 O.V. Zenin, 30 J. Zhang, 107 R.-Y. Zhu 108 P.A. Zyla 8

323

Zwitterionic Group VIII transition metal initiators supported by olefin ligands  

DOE Patents [OSTI]

A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

Bazan, Guillermo C. (Goleta, CA); Chen, Yaofeng (Shanghai, CN)

2011-10-25T23:59:59.000Z

324

Summary Report of Working Group 6: Laser-Plasma Acceleration  

SciTech Connect (OSTI)

A summary is given of presentations and discussions in theLaser-Plasma Acceleration Working Group at the 2006 Advanced AcceleratorConcepts Workshop. Presentation highlights include: widespreadobservation of quasi-monoenergetic electrons; good agreement betweenmeasured and simulated beam properties; the first demonstration oflaser-plasma acceleration up to 1 GeV; single-shot visualization of laserwakefield structure; new methods for measuring<100 fs electronbunches; and new methods for "machining" laser-plasma acceleratorstructures. Discussion of future direction includes: developing a roadmapfor laser-plasma acceleration beyond 1 GeV; a debate over injection andguiding; benchmarking simulations with improved wake diagnostics;petawatt laser technology for future laser-plasmaaccelerators.

Leemans, Wim P.; Downer, Michael; Siders, Craig

2006-07-01T23:59:59.000Z

325

INVERTIBLE AND NILPOTENT ELEMENTS IN THE GROUP ALGEBRA OF A UNIQUE PRODUCT GROUP  

E-Print Network [OSTI]

INVERTIBLE AND NILPOTENT ELEMENTS IN THE GROUP ALGEBRA OF A UNIQUE PRODUCT GROUP ERHARD NEHER Abstract. We describe the nilpotent and invertible elements in group alge- bras k[G] for k a commutative. A fundamental problem in the theory of group algebras is to determine their units = invertible elements

Neher, Erhard

326

NERSC seeks Computational Systems Group Lead  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

seeks Computational Systems Group Lead seeks Computational Systems Group Lead NERSC seeks Computational Systems Group Lead January 6, 2011 by Katie Antypas Note: This position is now closed. The Computational Systems Group provides production support and advanced development for the supercomputer systems at NERSC. Manage the Computational Systems Group (CSG) which provides production support and advanced development for the supercomputer systems at NERSC (National Energy Research Scientific Computing Center). These systems, which include the second fastest supercomputer in the U.S., provide 24x7 computational services for open (unclassified) science to world-wide researchers supported by DOE's Office of Science. Duties/Responsibilities Manage the Computational Systems Group's staff of approximately 10

327

Renewable Energy Working Group | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Working Group Working Group Renewable Energy Working Group October 7, 2013 - 10:17am Addthis The Renewable Energy Working Group provides a forum for Federal agencies and the renewable energy industry to exchange information on existing and planned projects, lessons learned, sources of project funds, and technologies. Guidance The Renewable Energy Working Group is charged with providing guidance about renewable energy regulatory requirements. Federal Renewable Energy Requirement Guidance Under EPAct 2005 and Executive Order 13423 Transmittal Letter Summarizing the Federal Renewable Energy Requirement Guidance Members Led by the Federal Energy Management Program, the Renewable Energy Working Group is made up of more than 100 Federal agency representatives, U.S. Department of Energy programs, and the renewable energy industry.

328

Pattern Energy Group LP | Open Energy Information  

Open Energy Info (EERE)

Pattern Energy Group LP Pattern Energy Group LP Place San Francisco, California Zip CA 94111 Sector Renewable Energy Product California-based firm that develops, constructs, owns and operates renewable and transmission energy assets across North America and parts of Latin America. References Pattern Energy Group LP[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pattern Energy Group LP is a company located in San Francisco, California . References ↑ "Pattern Energy Group LP" Retrieved from "http://en.openei.org/w/index.php?title=Pattern_Energy_Group_LP&oldid=349626" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes

329

Computer Networking Group | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Networking Group Networking Group Do you need help? For assistance please submit a CNG Help Request ticket. CNG Logo Chris Ramirez SSRL Computer and Networking Group Manager (650) 926-2901 | email Jerry Camuso SSRL Computer and Networking (650) 926-2994 | email Networking Support The Networking group provides connectivity and communications services for SSRL. The services provided by the Networking Support Group include: Local Area Network support for cable and wireless connectivity. Installation and maintenance of network printers and queues. Telephony installations and support. Printing Support The Networking group provides printer maintenance and support for SSRL Beamline Printers and plotters. The following models are supported: HP - Designjet large format plotters HP - Color and B/W Laserjet, Inkjet, Deskjet, Officejet

330

Risk Group and Biosafety Level Definitions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group and Biosafety Level Definitions Group and Biosafety Level Definitions European Economic Community (DIRECTIVE 93/88/EEC, Oct. 1993) (1) Group 1 biological agent means one that is unlikely to cause human disease; (2) Group 2 biological agent means one that can cause human disease and might be a hazard to workers; it is unlikely to spread to the community; there is usually effective prophylaxis or treatment available; (3) Group 3 biological agent means one that can cause severe human disease and present a serious hazard to workers; it may present a risk of spreading to the community, but there is usually effective prophylaxis or treatment available; (4) Group 4 biological agent means one that causes severe human disease and is a serious hazard to workers; it may present a high risk of spreading to the community; there is usually no effective prophylaxis or treatment

331

Template:ExplorationGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationGroup ExplorationGroup Jump to: navigation, search This is the 'ExplorationGroup' template. To define a new Exploration Technique, please use the Exploration Group Form. Parameters Definition - A link to the OpenEI definition of the technique (optional) ExplorationGroup - ExplorationSubGroup - LithologyInfo - the type of lithology information this technique could provide StratInfo - the type of stratigraphic and/or structural information this technique could provide HydroInfo - the type of hydrogeology information this technique could provide ThermalInfo - the type of temperature information this technique could provide EstimatedCostLowUSD - the estimated value only of the low end of the cost range (units described in CostUnit) EstimatedCostMedianUSD - the estimated value only of the median cost

332

Renewable Energy Group Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Inc Jump to: navigation, search Name Renewable Energy Group Inc Place Ames, Iowa Zip 50010 Sector Renewable Energy Product Iowa-based holding company operated under the auspices of biodiesel production company Renewable Energy Group. References Renewable Energy Group Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Group Inc is a company located in Ames, Iowa . References ↑ "Renewable Energy Group Inc" Retrieved from "http://en.openei.org/w/index.php?title=Renewable_Energy_Group_Inc&oldid=350324" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

333

Meister Consultants Group | Open Energy Information  

Open Energy Info (EERE)

Meister Consultants Group Meister Consultants Group Jump to: navigation, search Logo: Meister Consultants Group Name Meister Consultants Group Address 98 North Washington Street Place Boston, Massachusetts Zip 02114 Sector Services Product sustainable energy consulting, international dialog and change management Phone number (617) 934-4847 Website http://www.mc-group.com/ Coordinates 42.3654195°, -71.0584082° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3654195,"lon":-71.0584082,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Definition: Reserve Sharing Group | Open Energy Information  

Open Energy Info (EERE)

Sharing Group Sharing Group Jump to: navigation, search Dictionary.png Reserve Sharing Group A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating reserves required for each Balancing Authority's use in recovering from contingencies within the group. Scheduling energy from an Adjacent Balancing Authority to aid recovery need not constitute reserve sharing provided the transaction is ramped in over a period the supplying party could reasonably be expected to load generation in (e.g., ten minutes). If the transaction is ramped in quicker (e.g., between zero and ten minutes) then, for the purposes of Disturbance Control Performance, the Areas become a Reserve Sharing Group.[1] Related Terms adjacent balancing authority, balancing authority, smart grid

335

Fuel Cell Technologies Office: Photoelectrochemical Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photoelectrochemical Working Group Photoelectrochemical Working Group Promising PEC Materials The PEC Working Group invites the international research community to assist in the development of PEC Materials White Papers to track the research status of the most promising materials classes for solar water splitting. The Photoelectrochemical Working Group meets regularly to review technical progress, develop synergies, and collaboratively develop common tools and processes for photoelectrochemical (PEC) water splitting. Its members include principal investigators and supporting personnel from U.S. Department of Energy (DOE)-funded photoelectrochemical projects. More information on planned DOE photoelectrochemical activities can be found in the Multi-Year Research, Development, and Demonstration Plan.

336

Renewable & Appropriate Energy Laboratory Energy & Resources Group  

E-Print Network [OSTI]

Renewable & Appropriate Energy Laboratory Energy & Resources Group University of California Goldman School of Public Policy Renewable and Appropriate Energy Laboratory University of California ------------------------------------------------------------------------------------------------------------ 23 2.4 Solar

Kammen, Daniel M.

337

US Renewables Group USRG | Open Energy Information  

Open Energy Info (EERE)

private equity firm, focused exclusively on investing in renewable power, biofuels and clean technology infrastructure. References: US Renewables Group (USRG)1 This article is...

338

Himin Solar Energy Group | Open Energy Information  

Open Energy Info (EERE)

Himin Solar Energy Group Place: Dezhou City, Shandong Province, China Zip: 253092 Sector: Solar Product: Its products are evacuated tubes, solar water heaters, solar collectors,...

339

Safety Interlocks Group - Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interlocks Group is responsible for developing, implementing, and supporting primarily PLC-based interlock systems for personnel access control and equipment protection of the...

340

SITIZN Group Holding AG | Open Energy Information  

Open Energy Info (EERE)

Holding AG Jump to: navigation, search Name: SITIZN Group Holding AG Place: Riederich, Germany Zip: 72585 Sector: Solar Product: Germany-based solar technology and consultancy...

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Global Flex Group Inc | Open Energy Information  

Open Energy Info (EERE)

Name: Global-Flex Group Inc. Place: Temple, Texas Zip: 76501 Product: Texas based trade and financial solutions company consisting of three operating divisions. Coordinates:...

342

Indecomposability for differential algebraic groups James Freitag  

E-Print Network [OSTI]

Indecomposability for differential algebraic groups James Freitag freitag@math.berkeley.edu Department of Mathematics University of California, Berkeley 970 Evans Hall Berkeley, CA 94720-3840 Abstract

343

Alta Power Group LLC | Open Energy Information  

Open Energy Info (EERE)

Product: California-based firm specializing in advisory services for the renewable energy market. References: Alta Power Group LLC1 This article is a stub. You can help...

344

Plenia Locatel Group: Globalizing from Venezuela  

E-Print Network [OSTI]

In 2009 the founders and top executives of Plenia Locatel Group, a retail business in Venezuela specializing in health care products and services, were planning a global

Gibson, Cyrus

2009-05-01T23:59:59.000Z

345

Transportation Protocols Working Group First Conference Call...  

Broader source: Energy.gov (indexed) [DOE]

Call March 1, 1999 Conference Call Summary The first conference call of the Transportation External Coordination Working Group (TECWG) DOE Transportation Protocols Working...

346

EM QA Working Group September 2011 Notes  

Office of Environmental Management (EM)

management expectations and will be providing the contractor information soon. Ken Armstrong noted that the records group at the EMCBC would like to participate and provide some...

347

DOE Hydrogen Pipeline Working Group Workshop  

Broader source: Energy.gov (indexed) [DOE]

Pipeline Working Group Workshop August 31, 2005 Augusta, Georgia Hydrogen Pipeline Experience Presented By: LeRoy H. Remp Lead Project Manager Pipeline Projects ppt00 3 Hydrogen...

348

Risk Assessment Technical Experts Working Group  

Broader source: Energy.gov [DOE]

The Risk Assessment Technical Experts Working Group (RWG) was established to assist DOE in the appropriate and effective use of quantitative risk assessment in nuclear safety related activities.

349

Group 3: Humidity, Temperature, and Voltage (Presentation)  

SciTech Connect (OSTI)

Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

Wohlgemuth, J.

2013-05-01T23:59:59.000Z

350

Mukul Tikekar > Graduate Student - Archer Group > Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mukul Tikekar Graduate Student - Archer Group mdt78@cornell.edu Mukul hails from Mumbai, India. He finished his undergraduate education in a Dual Degree - Bachelor of Technology...

351

Peter Beaucage > Graduate Student - Wiesner Group > Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beaucage Graduate Student - Wiesner Group pab275@cornell.edu Peter Beaucage is from Cincinnati, Ohio and received his BS in Chemical Engineering from the University of Cincinnati....

352

The Spin Holonomy Group In General Relativity  

E-Print Network [OSTI]

It has recently been shown by Goldberg et al that the holonomy group of the chiral spin-connection is preserved under time evolution in vacuum general relativity. Here, the underlying reason for the time-independence of the holonomy group is traced to the self-duality of the curvature 2-form for an Einstein space. This observation reveals that the holonomy group is time-independent not only in vacuum, but also in the presence of a cosmological constant. It also shows that once matter is coupled to gravity, the "conservation of holonomy" is lost. When the fundamental group of space is non-trivial, the holonomy group need not be connected. For each homotopy class of loops, the holonomies comprise a coset of the full holonomy group modulo its connected component. These cosets are also time-independent. All possible holonomy groups that can arise are classified, and examples are given of connections with these holonomy groups. The classification of local and global solutions with given holonomy groups is discussed.

Ted Jacobson; Joseph D. Romano

1992-07-23T23:59:59.000Z

353

Enforcement Letter, Parsons Infrastructure & Technology Group...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Technology Group, Inc. related to a form wood timber fire caused by nearby propane heaters during construction of the Salt Waste Processing Facility at DOE's Savannah...

354

Focus Group Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

representatives. The Focus Group Forum has resulted in integrated collaborative worker health and safety improvement activities in the areas of Training, 10 CFR 851 Implementation...

355

Federal Utility Partnership Working Group Utility Partners  

Broader source: Energy.gov [DOE]

Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

356

Group Doppler effect in anisotropic plasmas  

Science Journals Connector (OSTI)

In anisotropic plasmas, the radiative power emitted and the power observed per unit solid angle should be calculated along the direction of the group velocityv g ...

P. L. Leung; P. C. W. Fung

357

Employee Resource Groups | Department of Energy  

Energy Savers [EERE]

about the Department's existing employee resource groups please contact Gloria Smith, Office of Diversity & Inclusion at 202-586-1587. To learn about the requirements for...

358

Macro-Industrial Working Group: meeting 1  

U.S. Energy Information Administration (EIA) Indexed Site

July 24, 2012 Macroeconomic team: Kay Smith, Russ Tarver, Elizabeth Sendich and Vipin Arora WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE...

359

Macro-Industrial Working Group: meeting 1  

Gasoline and Diesel Fuel Update (EIA)

4 MacroIndustrial Working Group Macroeconomic team: Kay Smith, Russ Tarver, Elizabeth Sendich and Vipin Arora Briefing on Macroeconomic Reference Case for the Annual Energy...

360

Macro-Industrial Working Group 2  

U.S. Energy Information Administration (EIA) Indexed Site

2 Macro-Industrial Working Group Macroeconomic Analysis Team: Kay Smith, Team Leader, Elizabeth Sendich, Russ Tarver, and Vipin Aurora September 11, 2012 | Washington, DC Macro...

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Interagency Working Groups | Department of Energy  

Office of Environmental Management (EM)

among federal agencies, utilities, and energy service companies. Interagency Sustainability Working Group (ISWG) The ISWG serves as a forum for information exchange and...

362

Prime power subgroups in certain periodic groups  

E-Print Network [OSTI]

P$38E POlfRR SU89%(UPS IM CENPTAI? PERIODIC QROU1'8 A Thee1 ~ ~Ra Paalllae kxeendaria Lpptoved aa to style and oontent by& 6. P. Chairaen of Coaalttee C. c. aden visor a of epee teen t The author wishes to express his gratitude... groups will serve as a starting point. LENMA 1. 1. Let 0 be a group not the 1dentity alone. Then 0 has no proper subgroups 1f and only if 0 is s finite oyolio group of prime order. Suppose that 0 is a finite oyolio group of prime order p...

Armendariz, Efraim Pacillas

2012-06-07T23:59:59.000Z

363

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Shenzhen-based company, started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications...

364

. . . . . 85 . . . . . International Deep Drawing Research Group  

E-Print Network [OSTI]

. . . . . 85 . . . . . International Deep Drawing Research Group IDDRG 2009 International 20899-855 USA e-mail: mark.iadicola@nist.gov, Web page: www

365

Models of fragmentation phenomena based on the symmetric group S sub n and combinational analysis  

SciTech Connect (OSTI)

Various models for fragmentation phenomena are developed using methods from permutation groups and combinational analysis. The appearance and properties of power laws in these models are discussed. Various exactly soluble cases are studied.

Mekjian, A.Z. (Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory); Lee, S.J. (Rutgers--the State Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy)

1991-01-29T23:59:59.000Z

366

Models of fragmentation phenomena based on the symmetric group S{sub n} and combinational analysis  

SciTech Connect (OSTI)

Various models for fragmentation phenomena are developed using methods from permutation groups and combinational analysis. The appearance and properties of power laws in these models are discussed. Various exactly soluble cases are studied.

Mekjian, A.Z. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory; Lee, S.J. [Rutgers--the State Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

1991-01-29T23:59:59.000Z

367

A minimal axiom group for rough set based on quasi-ordering  

Science Journals Connector (OSTI)

Rough set axiomatization is one aspect of rough set study to characterize rough set theory using dependable and minimal axiom groups. Thus, rough set theory can be studied by logic and axiom system methods. The c...

Jian-hua Dai; Wei-dong Chen; Yun-he Pan

2004-07-01T23:59:59.000Z

368

Paul Sellin, Radiation Imaging Group The role of defects on CdTe detector performance  

E-Print Network [OSTI]

Paul Sellin, Radiation Imaging Group The role of defects on CdTe detector performance P.J. Sellin1-destructive material characterisation techniques have been applied to CdTe wafers grown by the Travelling Heater Method Imaging Group PL mapping of whole CdTe wafers PL ( =819 nm) scan for two CdTe wafers, (left: wafer L700

Sellin, Paul

369

Assessing urban logistics pooling sustainability via a hierarchic dashboard from a group decision perspective  

E-Print Network [OSTI]

Assessing urban logistics pooling sustainability via a hierarchic dashboard from a group decision to measure the sustainable performance of urban logistics pooling systems. To do this, we start by defining it, since the method is able to be replicated in any context of group decision in urban logistics

Paris-Sud XI, Université de

370

Biomedical Domain Status Document MONET 2 (IST-2001-33540), Biomedical Task Group  

E-Print Network [OSTI]

Biomedical Domain Status Document MONET 2 (IST-2001-33540), Biomedical Task Group Deliverable B1-based and qualitative reasoning methods in biomedical industry and health-care 18 3.1 Reprogramming pacemakers out by the Biomedical Task Group of the MONET 2 project (IST-2001-33540) in gathering information

Lucas, Peter

371

Biomedical Domain Status Document MONET 2 (IST-2001-33540), Biomedical Task Group  

E-Print Network [OSTI]

Biomedical Domain Status Document MONET 2 (IST-2001-33540), Biomedical Task Group Deliverable B1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Model-based and qualitative reasoning methods in biomedical industry and health-care 15 3 out by the Biomedical Task Group of the MONET 2 project (IST-2001-33540) in gathering information

Lucas, Peter

372

at the DTIC Research groups (I/II)  

E-Print Network [OSTI]

/im_proc_a.htm #12;Image Processing Group (GPI) #12;Music Technology Group (MTG) · Head of the group: Xavier SerraResearch at the DTIC #12;Research groups (I/II) · Image Processing Group (GPI) · Music Technology Group (MTG) · Distributed Multimedia Applications Group (DMAG) · Interactive Technologies Group (GTI

Verschure, Paul

373

Method for producing superconductors  

SciTech Connect (OSTI)

In a method for producing v/sub 3/Ga superconductors which comprises forming a composite of a core portion and a sheath portion surrounding said core portion, said sheath portion being composed of a gallium-containing alloy selected from the group consisting of copper-gallium and copper-silver-gallium alloys, and said core portion being composed of a vanadium metal, elongating said composite, and heat-treating the resulting elongated composite to form a v/sub 3/Ga layer between said sheath and core portions; the improvement wherein the gallium-containing alloy has a gallium content of 0.1 to 30 atomic percent and additionally contains at least one metal selected from the group consisting of 0.05 to 5 atomic percent of magnesium, 0.5 to 10 atomic percent of aluminum , 0.1 to 10 atomic percent of cerium and 0.05 to 10 atomic percent of sodium, and the vanadium metal is a vanadium alloy containing 0.1 to 15 atomic percent of gallium.

Asano, T.; Tachikawa, K.; Tanaka, Y.; Yoshida, Y.

1981-06-23T23:59:59.000Z

374

Improved convergence of Monte Carlo generated multi-group scattering moments  

SciTech Connect (OSTI)

This paper introduces an improved method of obtaining multi-group scattering moments from a Monte Carlo neutron transport code for use in deterministic transport solvers. The new method increases the information obtained from scattering events and therefore has more useful convergence characteristics than the currently used analog techniques. A prototype of the improved method was implemented in the OpenMC Monte Carlo transport code to compare the accuracy and convergence characteristics of the new method. The prototype showed that accuracy was retained (or improved) while increasing the figure-of-merit for the generation of multi-group scattering moments. (authors)

Nelson, A. G.; Martin, W. R. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, 2355 Bonisteel Boulevard, Ann Arbor, MI 48104 (United States)

2013-07-01T23:59:59.000Z

375

BREAST CANCER GROUP WOMEN'S HEALTH INTERDISCIPLINARY  

E-Print Network [OSTI]

BREAST CANCER GROUP May 2009 WOMEN'S HEALTH INTERDISCIPLINARY RESEARCH CENTER [WHIRC] #12;2 Table: Breast Cancer Research and Treatment 4 Basic/Translational Research Carcinogenesis and Signaling Group 5R) Signaling in Breast Cancer 6 NF-B Family of Transcription Factors in Breast Cancer 7 Transgenic Mouse

Spence, Harlan Ernest

376

Identifying Risk Groups Associated with Colorectal Cancer  

E-Print Network [OSTI]

Identifying Risk Groups Associated with Colorectal Cancer Jie Chen1 , Hongxing He1 , Huidong Jin1 of identifying and describing risk groups for colorectal cancer (CRC) from population based administrative health are applied to the colorectal cancer patients' profiles in contrast to background pa- tients' profiles

Jin, Huidong "Warren"

377

1Nanomaterials for Energy Group Byungwoo Park  

E-Print Network [OSTI]

(2011). Advantages of Quantum-Dot-Sensitized Solar Cells #12;8Nanomaterials for Energy Group://bp.snu.ac.kr Cutting-Edge Nanomaterials for Energy: Solar Cell · Li+ Battery #12;2Nanomaterials for Energy Group Fuel Cell Solar Panel Portable Devices Solar Cell Phosphor Li+ Battery #12;4Nanomaterials for Energy

Cho, Jaephil

378

GSD Student Forum Student Group Spending Guidelines  

E-Print Network [OSTI]

GSD Student Forum Student Group Spending Guidelines September 2010 Questions regarding this document should be directed to the Student Forum Treasurer Purpose: This document serves to establish for GSD student groups guidelines on appropriate expenditures when using funding provided by Student Forum

379

Kazhdan quotients of Golod–Shafarevich groups  

Science Journals Connector (OSTI)

......Let p be the pro-p completion of (then p is a GGS...group). Find a finite index subgroup K of p which...number of subgroups of index m in an abstract group...of open subgroups of index m in the profinite completion G of G: am(G......

Mikhail Ershov

2011-04-01T23:59:59.000Z

380

Telecommunication Networks Group Technische Universitt Berlin  

E-Print Network [OSTI]

Telecommunication Networks Group What can you do with MiXiM Supports energy consumption by ported Energy- Framework Energy consumption Focus on lower layers (Layer 1 + 2) #12;TKN Telecommunication Networks Group Outline) with energy consumption support Different channel-effects: LogNormalShadowing, SimplePathloss and Rayleigh

Wichmann, Felix

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fuel Cycle CrossCut Group  

Broader source: Energy.gov (indexed) [DOE]

CrossCut Group CrossCut Group 1 NERAC Briefing: Assessment of Dose of Closed vs Open Gen-IV Fuel Cycles David Wade NERAC Meeting September 30, 2002 Fuel Cycle CrossCut Group 2 Public Dose and Worker Dose Comparison of Open vs Closed Fuel Cycles * Gen-IV fuel cycle options are meant to address all stated Gen-IV Goals - Dose to workers and to the public is one of the numerous elements to be evaluated by Gen-IV R&D - The Fuel Cycle Crosscut Group was assigned to take an early look at dose implication tradeoffs of open and closed fuel cycles * FCCG Interpretation of Assignment: - Collect already-existing evaluations and prepare a briefing on what is currently known Fuel Cycle CrossCut Group 3 Approach * Look at Actual Historical Doses Based on Operational Experience - Data compiled by the United Nations Scientific Committee on the Effects of Atomic

382

July 2012, Training Work Group Status Overview  

Broader source: Energy.gov (indexed) [DOE]

Training Work Group Status Overview Training Work Group Status Overview Accomplishments: 1. May 7 - 8. Attended NIEHS Trainer's Exchange in Oak Ridge . 2. May 8 - 9. Joined HAMMER in visiting Oak Ridge entities to build support for the Radworker Pilot. 3. June 19-20. Joined Char Wells at Sandia (with NIEHS and HAMMER) for the Learning/Training Workshop. 2. NTC offered support for Data Warehousing at the Learning/Training Workshop. 3. Obtained EFCOG commitment to create a Human Capital Training Subgroup under the Business Management Working Group. 4. June 20 - 21. Hosted HAMMER to develop Radworker Reciprocity Program Checklist. 5. July 10-11. HSS Focus Group Training Working Group and Subcommittee meetings at NTC. Upcoming Meetings: Boardman meeting with HAMMER week of July 29.

383

Transportation External Coordination Working Group (TEC)  

Broader source: Energy.gov (indexed) [DOE]

Transportation External Coordination Working Group (TEC) Transportation External Coordination Working Group (TEC) July 17-19, 2001 Cincinnati, Ohio Meeting Summary The Transportation External Coordination Working Group (TEC) held its 19 th semi-annual meeting July 17-19, 2001, in Cincinnati, Ohio. One hundred fifteen people attended (see Appendix A for listing of participants). Jim Carlson, U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) and TEC co-chair, welcomed participants to the meeting. He then introduced Robert Owen of the Ohio Department of Health, and Jim Richter of the Cincinnati/Hamilton County Emergency Management Agency, who also made some welcoming remarks. Topic Group Meetings Tribal Issues Topic Group Issues discussed during this meeting included the Federal Railroad Administration (FRA) rail safety pilot

384

The Opus Group | Open Energy Information  

Open Energy Info (EERE)

Opus Group Opus Group Jump to: navigation, search Name The Opus Group Address 4643 South Ulster Street Place Denver, CO Zip 80237 Website http://www.opus-group.com Coordinates 39.6306863°, -104.8970452° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6306863,"lon":-104.8970452,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

TASK PLAN: Tribal Issues Topic Group  

Broader source: Energy.gov (indexed) [DOE]

Task Plan 1 Tribal Issues Topic Group 7/12/00 Task Plan 1 Tribal Issues Topic Group 7/12/00 Task Plan 1 Page 1 Status: Active DOE Lead: National Transportation Program (NTP-AL; Judith Holm @ 505-845-4767) Start Date: January 1998 End Date: TBD Subject: TEC Topic Group - Tribal Issues rpose: To address issues such as: (1) HM-164 as it relates to Tribes; (2) to complete the Tribal column of the Rail Topic Group Regulatory Matrix; (3) to determine Tribal authority to stop and inspect shipments of radioactive materials; (4) to provide tribal pre-notification of DOE spent fuel shipments consistent with DOE policy and to provide continuous satellite-based tracking and monitoring capability to Tribes; (5) and to address Tribal involvement in transportation planning, training, and funding. The Topic Group

386

Carbon Solutions Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Carbon Solutions Group Place Chicago, Illinois Zip 60601 Sector Carbon Product Carbon Solutions Group collaborates with project developers to obtain environmental finance ,grants, feed-in ,tax-credits and subsidies.Carbon Solutions Group also procures energy generation technologies. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

A Residual Mass Ballistic Testing Method to Compare Armor Materials or Components (Residual Mass Ballistic Testing Method)  

SciTech Connect (OSTI)

A statistics based ballistic test method is presented for use when comparing multiple groups of test articles of unknown relative ballistic perforation resistance. The method is intended to be more efficient than many traditional methods for research and development testing. To establish the validity of the method, it is employed in this study to compare test groups of known relative ballistic performance. Multiple groups of test articles were perforated using consistent projectiles and impact conditions. Test groups were made of rolled homogeneous armor (RHA) plates and differed in thickness. After perforation, each residual projectile was captured behind the target and its mass was measured. The residual masses measured for each test group were analyzed to provide ballistic performance rankings with associated confidence levels. When compared to traditional V50 methods, the residual mass (RM) method was found to require fewer test events and be more tolerant of variations in impact conditions.

Benjamin Langhorst; Thomas M Lillo; Henry S Chu

2014-05-01T23:59:59.000Z

388

Group solution for unsteady free-convection flow from a vertical moving plate subjected to constant heat flux  

Science Journals Connector (OSTI)

The problem of heat and mass transfer in an unsteady free-convection flow over a continuous moving vertical sheet in an ambient fluid is investigated for constant heat flux using the group theoretical method. The nonlinear coupled partial differential ... Keywords: 22E05, 35Q53, 54H15, Free convective flow, Group theoretic method, Prandtl number, Thermal boundary layer

M. Kassem

2006-03-01T23:59:59.000Z

389

Group decision making based autonomous control system for street lighting  

Science Journals Connector (OSTI)

Most traditional street lighting systems do not have the function of autonomous control. Inspired by social animals and insects, an autonomous control system for street lighting is presented in this paper. All the lamp nodes compose a wireless sensor network (WSN) based lamp group in which there are a lamp leader, a succeeding leader, and some lamp members. All the lamp members communicate with the lamp leader by forming a tree topology. The lamp member collects ambient illumination using a light sensor periodically. When finding the illumination is under the preset threshold, the lamp member will send a turning-on vote to the lamp leader. The lamp leader counts the number of votes received from the members. When the number of the votes is larger than the preset threshold, the lamp leader will send a turning-on command to all the lamp members. Just like the succession behavior in social animals, the succeeding leader in the proposed system can automatically take the place of the current lamp leader when it is disabled. A failure message can be sent to the remote street lighting maintenance center by a GPRS network. Leader switching and group decision making tests have been carried out for validating these proposed methods. The experimental results show that the proposed system can automatically response to ambient light changes. The method of group decision making improves the anti-interference capability and the intelligence level of the lighting control system.

Jun Zhang; Guifang Qiao; Guangming Song; Hongtao Sun; Jian Ge

2013-01-01T23:59:59.000Z

390

Fuel Cell Technologies Office: 2007 Hydrogen Pipeline Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Hydrogen Pipeline Working Group Workshop 7 Hydrogen Pipeline Working Group Workshop The Department of Energy (DOE) Hydrogen Pipeline Working Group met Sept. 25-26, 2007, to review the progress and results of DOE-sponsored pipeline research and development (R&D) projects. More than 30 researchers and industry representatives shared their research results and discussed the current challenges and future goals for hydrogen pipeline R&D. One of the Pipeline Working Group's near-term goals involves developing standardized test methods and procedures and a round-robin testing plan to ensure consistent results. The workshop featured a review of the draft plan, presentations about the DOE-funded pipeline research projects, and facilitated discussion sessions. The DOE Fuel Cell Technologies Office sponsored the workshop. It was held at the Center for Hydrogen Research in conjunction with the Materials and Components for Hydrogen Infrastructure Codes and Standards Workshop, a joint venture between the American Society of Mechanical Engineers (ASME) and Savannah River National Laboratory.

391

Quantum Mechanics associated with a Finite Group  

E-Print Network [OSTI]

I describe, in the simplified context of finite groups and their representations, a mathematical model for a physical system that contains both its quantum and classical aspects. The physically observable system is associated with the space containing elements fxf for f an element in the regular representation of a given finite group G. The Hermitian portion of fxf is the Wigner distribution of f whose convolution with a test function leads to a mathematical description of the quantum measurement process. Starting with the Jacobi group that is formed from the semidirect product of the Heisenberg group with its automorphism group SL(2,F{N}) for N an odd prime number I show that the classical phase space is the first order term in a series of subspaces of the Hermitian portion of fxf that are stable under SL(2,F{N}). I define a derivative that is analogous to a pseudodifferential operator to enable a treatment that parallels the continuum case. I give a new derivation of the Schrodinger-Weil representation of the Jacobi group. Keywords: quantum mechanics, finite group, metaplectic. PACS: 03.65.Fd; 02.10.De; 03.65.Ta.

Robert W. Johnson

2006-04-20T23:59:59.000Z

392

A method for de novo nucleic acid diagnostic target discovery  

Science Journals Connector (OSTI)

......UCRs within the bacteria domain for 15 test groups, including pathogenic, probiotic...which often necessitate a rapid diagnostic test development. As a result, methods that...groups were selected from these genomes to test this proposed UCR-identification method......

Yeting Zhang; Yazhou Sun

2014-11-15T23:59:59.000Z

393

at the DTIC Research groups (I/II)  

E-Print Network [OSTI]

Research at the DTIC #12;Research groups (I/II) · Image Processing Group (GPI) · Music Technology Group (MTG) · Interactive Technologies Group (GTI) · Computational Imaging and Simulation Technologies groups (II/II) · Natural Language Processing Research Group (NLP) · Artificial Intelligence Group (AI

394

Gas Phase Moleculer Dynamics (GPMD) Group | Chemistry Department |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Program Research Program The research within the Gas Phase Molecular Dynamics program spans spectroscopy, kinetics and dynamics, with input from both experiment and theory. The broad topics of recent and current focus are Development of new spectroscopic methods to probe transient molecules of importance to combustion Application of these methods to collisional dynamics and kinetics Theoretical predictions of vibrational spectra of small molecules and radicals Development and use of computational methods in reaction kinetics and dynamics, optimizing accuracy and efficiency to the size of the problem The group has long experience in the application of transient frequency modulation (FM) spectroscopy methods for probing radicals, and using this method for polarized photofragment Doppler spectroscopy and kinetics. More recently, FM applications in double resonance have been developed for spectral simplification and assignments, and for saturation recovery and transfer kinetics to study collisional energy and polarization transfer. Sub-Doppler saturation methods with FM probing have recently been applied to a variety of nuclear hyperfine structure problems in spectroscopy and dynamics. Frequency comb-stabilized diode lasers in the near infrared have been used for highly precise frequency-domain measurements of pressure broadening and line shape studies of collision effects.

395

TEC Working Group Background | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Background Background TEC Working Group Background Through the TEC/WG, DOE interacted with representatives of organizations at the state, tribal, and local levels to obtain input for program needs assessment, development and management, and to enhance their capability to carry out transportation emergency preparedness and safety activities specifically related to radioactive materials shipments. TEC membership included representatives from national, state, tribal and local government organizations, labor, industry and professional groups. Members meet semiannually to participate in plenary sessions, breakout work sessions, and in more specialized Topic Groups. To learn more about the history and background of TEC, please see the following documents: TEC Charter TEC Work Plan

396

Hunton Group core workshop and field trip  

SciTech Connect (OSTI)

The Late Ordovician-Silurian-Devonian Hunton Group is a moderately thick sequence of shallow-marine carbonates deposited on the south edge of the North American craton. This rock unit is a major target for petroleum exploration and reservoir development in the southern Midcontinent. The workshop described here was held to display cores, outcrop samples, and other reservoir-characterization studies of the Hunton Group and equivalent strata throughout the region. A field trip was organized to complement the workshop by allowing examination of excellent outcrops of the Hunton Group of the Arbuckle Mountains.

Johnson, K.S. [ed.

1993-12-31T23:59:59.000Z

397

July 2012, 10 CFR 851 Work Group Status Overview  

Broader source: Energy.gov (indexed) [DOE]

10 CFR 851 Work Group Status Overview 10 CFR 851 Work Group Status Overview Accomplishments: 1. March 2012. 10 CFR 851 Workshop was held in conjunction with the 2012 Chemical Management Workshop. 2. Communication tools to enhance 10 CFR 851 Worker Safety and Health Program (WSHP) compliance updated: Requirements checklist distributed across DOE complex and on the 10 CFR 851 website; DOE Guide 440.1-1B to include technical clarifications. Near Term Goals/Activities: 1. Samples of acceptable WSHP programs (including ones based on ISM) will be posted on the 851 web site. 2. Teaming of HS-10, NTC, NIEHS, HAMMER to: Develop and/or identify applicable training materials and methods for the recent promulgated Hazard Communication standard, DOE wide approach for this training, and approach for

398

Parity-time symmetry broken by point-group symmetry  

SciTech Connect (OSTI)

We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schrödinger equation for a particle in a square box with the PT-symmetric potential V(x, y) = iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of |a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schrödinger equation with the potential V(x, y) = iaxy{sup 2} exhibits real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one.

Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar; Garcia, Javier [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)] [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

2014-04-15T23:59:59.000Z

399

EA-164-B Constellation Energy Commodities Group, Inc | Department...  

Broader source: Energy.gov (indexed) [DOE]

B Constellation Energy Commodities Group, Inc EA-164-B Constellation Energy Commodities Group, Inc Order authorizing Constellation Energy Commodities Group, Inc to export electric...

400

EA-164-C Constellation Energy Commodities Group, Inc | Department...  

Broader source: Energy.gov (indexed) [DOE]

64-C Constellation Energy Commodities Group, Inc EA-164-C Constellation Energy Commodities Group, Inc Order authorizing Constellation Energy Commodities Group, Inc to export...

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Transportation Plan Ad Hoc Working Group | Department of Energy  

Office of Environmental Management (EM)

Transportation Plan Ad Hoc Working Group Transportation Plan Ad Hoc Working Group Transportation Plan Ad Hoc Working Group More Documents & Publications Nuclear Fuel Storage and...

402

EM QA Working Group September 2011 Notes | Department of Energy  

Office of Environmental Management (EM)

Group September 2011 Notes Meeting minutes and notes from the EM QA Working Group video conference meeting held in September 2011. EM QA Working Group September 2011 Notes...

403

Energy Lawyers and Contracting Officers Group Special Session...  

Broader source: Energy.gov (indexed) [DOE]

Group Special Session Energy Lawyers and Contracting Officers Group Special Session Presentation covers the Energy Lawyers and Contracting Officers Group Special Session at the...

404

Breakout Group 3: Water Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Breakout Group 3: Water Management Breakout Group 3: Water Management Report from Breakout Group 3 of the Fuel Cell Pre-Solicitation Workshop, January 23-24, 2008...

405

Records Management Working Group Charter | Department of Energy  

Office of Environmental Management (EM)

Working Group Charter Records Management Working Group Charter The purpose of the Records Management Working Group (RMWG) is to provide guidance, direction, and coordination for...

406

Orion Energy Group | Open Energy Information  

Open Energy Info (EERE)

Orion Energy Group Orion Energy Group Place Oakland, California Zip 94612 Product Orion Energy Group is a developer and owner of two projects under construction in the Midwest US as of October 2007. It is not affiliated with BP or with Orion Energy LLC. Coordinates 37.805065°, -122.273024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.805065,"lon":-122.273024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Air Liquide Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Air Liquide Group Place Paris, France Zip 75321 Sector Hydro, Hydrogen Product Paris-based manufacturer of industrial and medical gases. The company is working on hydrogen production and gas-to-liquid technology. Coordinates 48.85693°, 2.3412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.85693,"lon":2.3412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Microfield Group Inc | Open Energy Information  

Open Energy Info (EERE)

Microfield Group Inc Microfield Group Inc Jump to: navigation, search Name Microfield Group Inc Place Portland, Oregon Zip 97209 Sector Solar, Wind energy Product US-based contractor and integrator of wind, solar, and other distributed power system infrastructures. Coordinates 45.511795°, -122.675629° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.511795,"lon":-122.675629,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Stanford Nitrogen Group | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

410

Black Emerald Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Jump to: navigation, search Name Black Emerald Group Address 4 Park Place Place London, United Kingdom Zip SW1A 1LP Product Investment banking firm specializing in renewable energy and environmental technology corporate and project finance Year founded 1994 Website http://www.blackemerald.com/ Coordinates 51.5063321°, -0.1401519° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.5063321,"lon":-0.1401519,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Vert Investment Group | Open Energy Information  

Open Energy Info (EERE)

Investment Group Investment Group Jump to: navigation, search Logo: Vert Investment Group Name Vert Investment Group Address 3939 Essex Lane Place Houston, Texas Zip 77027 Website http://www.vertinv.com/ Coordinates 29.739322°, -95.444747° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.739322,"lon":-95.444747,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Simon Property Group | Open Energy Information  

Open Energy Info (EERE)

Simon Property Group Simon Property Group Jump to: navigation, search Name Simon Property Group Address 225 West Washington Street Place Indianapolis, IN Zip 46204 Website http://www.simon.com Coordinates 39.7670345°, -86.1622467° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7670345,"lon":-86.1622467,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Separation Design Group LLC | Open Energy Information  

Open Energy Info (EERE)

Separation Design Group LLC Separation Design Group LLC Jump to: navigation, search Name Separation Design Group LLC Place Waynesburg, Pennsylvania Zip 15370 Product Separation Design Group is a research and product development firm established in 2003. Coordinates 39.896456°, -80.185769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.896456,"lon":-80.185769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

The Omega Group, Brookhaven National Laboratory, BNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Details Site Details Homepage Current Experiments Past Projects Publications (pdf) Group Links Foreign & Domestic Travel Calendars (Omega\PAS) Staff Members Other Information PAS Group Brookhaven Links BNL Site Index Can't View PDFs? Omega Group Brookhaven National Laboratory Brookhaven National Laboratory Physics Department Building 510A Upton, Long Island, NY 11973 U.S.A. Current Experiments Omega Group members are collaborators on the following experiments. ATLAS Experiment (CERN: Geneva, Switzerland) - US ATLAS Collaboration - ATLAS Upgrade D0 (Fermilab: Batavia, Illinois) Proton and Deuteron EDM Experiments at the Deep Underground Science and Engineering Laboratory MicroBooNE - an experiment at Fermilab with a large Liquid Argon Time Projection Chamber (LArTPC) to be exposed to the Booster neutrino beam

415

Alpine Energy Group LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Group LLC Energy Group LLC Jump to: navigation, search Name Alpine Energy Group LLC Place Englewood, CO Sector Bioenergy Coordinates 39.6477653°, -104.9877597° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6477653,"lon":-104.9877597,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Climate Knowledge Brokers Group | Open Energy Information  

Open Energy Info (EERE)

Climate Knowledge Brokers Group Climate Knowledge Brokers Group (Redirected from Knowledge Brokers Workshop) Jump to: navigation, search Home | 2013 Workshop | Previous Events | CKB Snapshots | Collaborative Projects | Shared Tools What is the CKB Group? The Climate Knowledge Brokers (CKB) Group is an emerging alliance of around 50 of the leading global, regional and national websites specialising in climate and development information. It brings together a diverse set of information players, from international organisations to research institutes, NGOs and good practice networks, and covers the full breadth of climate related themes. The focus is on primarily online initiatives, and those that play an explicit knowledge brokerage role, rather than being simply institutional websites. Its goal is to improve access to climate information by coordinating and

417

Davis Energy Group | Open Energy Information  

Open Energy Info (EERE)

Davis Energy Group (Advanced Residential Integrated Energy Davis Energy Group (Advanced Residential Integrated Energy Solutions)) Jump to: navigation, search Name Davis Energy Group (Advanced Residential Integrated Energy Solutions) Place Davis, CA Zip 95616 Website http://www.davisenergy.com/ Coordinates 38.5449065°, -121.7405167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5449065,"lon":-121.7405167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

September 2012, Training Work Group Status Overview  

Broader source: Energy.gov (indexed) [DOE]

Training Work Group Status Overview Training Work Group Status Overview Accomplishments: 1. May 7-8. Attended NIEHS Trainer's Exchange in Oak Ridge. 2. May 8-9. Joined HAMMER in visiting Oak Ridge entities to build support for the Radworker pilot. Entities visited included ORISE, Y-12, DOE TRU Project, and local labor entities. 3. June 19-20. Participated with Char Wells, Sandia National Laboratory Training Manager, (NTC, NIEHS and HAMMER in attendance) at a DOE M&O contractor led Learning/Training Workshop. - Obtained EFCOG commitment to create a Human Capital Training Subgroup under the Business Management Working Group. - Serving this group as data repository and communications hub for efforts to standardize General Employee Radiation Training (GERT) within DOE. - Briefed the complex wide Radworker reciprocity concept finding interest and

419

Axis Technologies Group Inc | Open Energy Information  

Open Energy Info (EERE)

Axis Technologies Group Inc Axis Technologies Group Inc Jump to: navigation, search Name Axis Technologies Group, Inc Place Lincoln, Nebraska Zip 68522 Product Designs, manufactures, and markets energy-saving and daylight harvesting electronic dimming ballasts for the commercial lighting industry. Coordinates 47.829403°, -118.419202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.829403,"lon":-118.419202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

TEC Working Group Members | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Members Members TEC Working Group Members TEC members represent many different national, regional, tribal, state and local governmental, labor, industry and professional groups. To maximize the opportunity for broad-based input and information exchange, no single state, local or tribal governmental, or other entity is itself a member. Instead, membership is composed of organizations representing those perspectives. DOE programs participate in TEC by providing regular updates on key activities and provide resources and work on issues brought to the TEC by members or DOE. Members serve the group in three broad capacities: * Represent their constituent organizations; * Participate actively and consistently in TEC activities; and * Communicate the findings and recommendations of the group back to their

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Kunical International Group Ltd | Open Energy Information  

Open Energy Info (EERE)

Kunical International Group Ltd Kunical International Group Ltd Jump to: navigation, search Name Kunical International Group Ltd Place Burbank, California Zip 91502 Product Supplier of silicon and wafers for PV and semiconductor industries. Coordinates 46.202032°, -119.002405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.202032,"lon":-119.002405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Ruihao Corporation Group | Open Energy Information  

Open Energy Info (EERE)

Ruihao Corporation Group Ruihao Corporation Group Jump to: navigation, search Name Ruihao Corporation Group Place Daqing, Heilongjiang Province, China Zip 163000 Sector Efficiency, Renewable Energy Product A group corporation with 15 subsidiaries engaged in renewable energy and energy efficiency research and development. Coordinates 46.5882°, 125.016808° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.5882,"lon":125.016808,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Category:Trade Groups | Open Energy Information  

Open Energy Info (EERE)

Groups Groups Jump to: navigation, search Trade Groups For our purposes here, Trade Groups are defined as organizations that are classified under Section 501(c)(6) of the Internal Revenue Code Add a new Networking Organization Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

424

Stanford Nitrogen Group | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

425

Acela Energy Group Inc | Open Energy Information  

Open Energy Info (EERE)

Acela Energy Group Inc Acela Energy Group Inc Jump to: navigation, search Name Acela Energy Group Inc Address 290 Main St Place Norfolk, Massachusetts Zip 02056 Sector Efficiency Product Aims to reduce energy costs via rate negotiation, conservation, load management, and competitive bidding Website http://www.acelaenergy.com/ Coordinates 42.1146091°, -71.3463855° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1146091,"lon":-71.3463855,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

TEC/WG Tribal Topic Group  

Broader source: Energy.gov (indexed) [DOE]

TEC Tribal Topic Group Conference Call TEC Tribal Topic Group Conference Call January 18, 2006 Group Chair: Jay Jones (DOE/OCRWM) Participating TEC Tribal Topic Group Members: Rob Burnside (CTUIR), Earl Easton (U.S. NRC), Kristen Ellis (DOE/CI), Ed Gonzales (ELG), Angela Hill (DOE/OCRWM), Marsha Keister (INL), Dan King (Oneida Nation), Corinne Macaluso (DOE/OCRWM), Titto Moses (CTUIR), Stanley Paytiamo (Pueblo of Acoma), Willie Preacher (Shoshone-Bannock Tribes), Cathy Reynolds (DOE/GC), Larry Stern (CVSA), Kevin Tafoya (Santa Clara Pueblo), Neil Weber (Pueblo de San Ildefonso), Andrea Wilkins (NCSL), Sarah Wochos (CSG-MW) DOE support contractors also participated in this call. Action Items: Responsible Party Action to be Taken Jay Jones/Corinne Macaluso/ Email and fax 180(c)-related 2006 Federal Register Notices to Tribal

427

Austin Clean Energy Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Name Austin Clean Energy Group Place Austin, Texas Zip 78701 Year founded 2009 Website http://www.meetup.com/ACEGroup Coordinates 30.2729209°, -97.7443863° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2729209,"lon":-97.7443863,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Davis Energy Group | Open Energy Information  

Open Energy Info (EERE)

Energy Group Energy Group Jump to: navigation, search Name Davis Energy Group (Advanced Residential Integrated Energy Solutions) Place Davis, CA Zip 95616 Website http://www.davisenergy.com/ Coordinates 38.5449065°, -121.7405167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5449065,"lon":-121.7405167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Excess Group Ltd | Open Energy Information  

Open Energy Info (EERE)

Excess Group Ltd Excess Group Ltd Jump to: navigation, search Name Excess Group Ltd Place Chepstow, Wales, United Kingdom Zip NP16 6HN Sector Hydro, Hydrogen Product The Excess Group has developed and builds novel hydrogen generation systems for fuel cell power plants. Coordinates 39.617315°, -96.900768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.617315,"lon":-96.900768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

A realization of the quantum Lorentz group  

E-Print Network [OSTI]

A realization of a deformed Lorentz algebra is considered and its irreducible representations are found; in the limit $q\\to 1$, these are precisely the irreducible representations of the classical Lorentz group.

B. Aneva

2008-04-09T23:59:59.000Z

431

Constellation Energy Group | Open Energy Information  

Open Energy Info (EERE)

or interests in 12,000MW of generation capacity, 3% of which is renewables. References: Constellation Energy Group1 This article is a stub. You can help OpenEI by expanding it....

432

The Sustainable Group | Open Energy Information  

Open Energy Info (EERE)

buyer of carbon credits through the Chicago Climate Exchange (CCX). References: The Sustainable Group1 This article is a stub. You can help OpenEI by expanding it. The...

433

Tang Group Energy Ltd | Open Energy Information  

Open Energy Info (EERE)

(mostly natural gas, with some wind) in the People's Republic of China and other Asian markets. References: Tang Group (Energy) Ltd1 This article is a stub. You can help...

434

Energy Management Working Group: Accelerating Energy Management  

E-Print Network [OSTI]

Countries participating in the Global Superior Energy Performance (GSEP) Energy Management Working Group (EMWG) are leveraging their resources and taking collective action to strengthen national and international efforts to facilitate the adoption...

Scheihing, P.

2014-01-01T23:59:59.000Z

435

Windcast Group A S | Open Energy Information  

Open Energy Info (EERE)

Wind energy Product: Supplier of advanced and high quality casting components for wind turbines. References: Windcast Group AS1 This article is a stub. You can help OpenEI by...

436

New Albany shale group of Illinois  

SciTech Connect (OSTI)

The Illinois basin's New Albany shale group consists of nine formations, with the brownish-black laminated shales being the predominant lithology in southeastern Illinois and nearby parts of Kentucky where the group reaches its maximum thickness of 460 ft. A second depositional center lies in west-central Illinois and southeastern Iowa, where the group is about 300 ft thick and the predominant lithology is bioturbated olive-gray to greenish-gray shale. A northeast-trending area of thin strata (mostly interfingering gray and black shales) separates these two depocenters. The distribution and types of lithofacies in the New Albany suggest that the shale was deposited across a shelf-slope-basin transition in a marine, stratified anoxic basin. The record of depositional events in the shale group could serve as a baseline for interpreting the history of tectonically more complex sequences such as the Appalachian basin's Devonian shales.

Cluff, R.M.; Reinbold, M.L.; Lineback, J.A.

1981-01-01T23:59:59.000Z

437

Organizing Your 4-H Project Group  

E-Print Network [OSTI]

Project work allows 4-H volunteer leaders to teach and young people to learn new skills and gain new knowledge. Each project group should be organized in cooperation with the club's organizational leader. Use this guide when planning your first...

Howard, Jeff W.

2005-05-10T23:59:59.000Z

438

Transport Modeling Working Group Meeting Reports  

Broader source: Energy.gov [DOE]

Reports from meetings of the Transport Modeling Working Group, which meets twice per year to exchange information, create synergies, share experimental and computational results, and collaboratively develop methodologies for and understanding of transport phenomena in polymer electrolyte fuel cell stacks.

439

QUASI-REPRESENTATIONS OF SURFACE GROUPS 1 ...  

E-Print Network [OSTI]

C?-algebra. 1. Introduction. Let G be a discrete countable group. In [3,4] the ... conjecture, a unital finite dimensional representation ?: C?(G) ? Mr(C) induces ...

2012-07-13T23:59:59.000Z

440

Motor Wave Group | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies: MotorWave This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleMotorWaveGroup&oldid769272...

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MACDONALD FUNCTIONS ASSOCIATED TO COMPLEX REFLECTION GROUPS  

E-Print Network [OSTI]

MACDONALD FUNCTIONS ASSOCIATED TO COMPLEX REFLECTION GROUPS. A generalization of Macdonald o* *perators is also constructed, and we characterize such functions by making use of * *Macdonald operators, assuming a certain conjecture

Shoj, Toshiaki

442

Group Care of Children and Adolescents  

E-Print Network [OSTI]

This literature review sought the answers to three questions regarding group care for children and adolescents: Question 1: Is there empirical literature that supports the "best practices" idea that family foster care ...

Barfield, Sharon T.; Petr, Chris

2002-02-01T23:59:59.000Z

443

Ritu Sahore > Graduate Student - Giannelis Group > Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ritu Sahore Graduate Student - Giannelis Group rs758@cornell.edu Ritu Sahore grew up in Punjab, India, and recieved her B.Tech.(Hons.) in Metallurgical and Materials Engineering...

444

GREEN FUNCTIONS ASSOCIATED TO COMPLEX REFLECTION GROUPS  

E-Print Network [OSTI]

GREEN FUNCTIONS ASSOCIATED TO COMPLEX REFLECTION GROUPS University of Tokyo Noda, Chiba 278-8510, Japan Abstract. Green functions called symbols. Generali* *zing this, we define Green functions associated to complex reflection

Shoj, Toshiaki

445

Sun Energy Group LLC | Open Energy Information  

Open Energy Info (EERE)

in New Orleans to produce electricity from trash via plasma gasification. References: Sun Energy Group LLC1 This article is a stub. You can help OpenEI by expanding it. Sun...

446

Richard Gerber! NERSC! User Services Group Lead  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Lead Debugging and Optimization Tools Thanks t o W oo---Sun Y ang a nd H elen H e Outline * Take---Aways * Debugging * Performance O p:miza:on * NERSC " automa:c" t ools...

447

NIF and Jupiter User Group Meeting 2015  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Registration Opens November 21, 2014 Information on the NIF User Facility About the NIF and Jupiter Laser Facility User Group Meeting The NIF and Jupiter Laser Facility (JLF)...

448

Perfluorohalogenoorgano Compounds of Main Group 5 Elements  

Science Journals Connector (OSTI)

The compounds of the Main Group 5 elements phosphorus, arsenic, antimony, and bismuth, are covered to the end of 1973 in “Perfluorhalogenorgano-Verbindungen der Hauptgruppenelemente”, Part 3, 1975 (cited here ...

Alois Haas; Michael R. Chr. Gerstenberger…

1983-01-01T23:59:59.000Z

449

Vision System for Group of Mobile Robots  

Science Journals Connector (OSTI)

A vision system for group of small mobile robots playing soccer is presented. The whole process ... shape of color markers on top of each robot, is presented. Then, the color classifier...

Artur Babiarz; Robert Bieda; Krzysztof Jaskot

2013-01-01T23:59:59.000Z

450

Catalysis Working Group Meeting: June 2014  

Broader source: Energy.gov [DOE]

Agenda and presentations from the Catalysis Working Group held on June 16, 2014, in Washington, D.C., in conjunction with the DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting.

451

Green Energy Group | Open Energy Information  

Open Energy Info (EERE)

energy Product: Holding company which plans to develop geothermal projects. References: Green Energy Group1 This article is a stub. You can help OpenEI by expanding it. Green...

452

On cohomology rings of infinite groups.  

E-Print Network [OSTI]

Let R be any ring (with 1), \\Gamma a group and R\\Gamma the corresponding group ring. Let Ext_{R\\Gamma}^{*}(M,M) be the cohomology ring associated to the R\\Gamma-module M. Let H be a subgroup of finite index of \\Gamma. The following is a special version of our main Theorem: Assume the profinite completion of \\Gamma is torsion free. Then an element \\zeta in Ext_{R\\Gamma}^{*}(M,M) is nilpotent (under Yoneda's product) if and only if its restriction to Ext_{RH}^{*}(M,M)$ is nilpotent. In particular this holds for the Thompson group. There are torsion free groups for which the analogous statement is false.

Eli Aljadeff

453

W Boson Mass Working Group Report  

SciTech Connect (OSTI)

The W boson mass working group discussed the current status of the W boson mass measurement and the prospects for improving on LEP and Tevatron measurements at the LHC.

Kilgore, W.; Kilgore, W.

2010-06-14T23:59:59.000Z

454

Department of Physics High Energy Physics Group  

E-Print Network [OSTI]

Department of Physics High Energy Physics Group Electrical Engineer (Job ref: 0004) The High Energy and experience. A job description and an application form can be obtained from http

455

Pod Generating Group | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Pod Generating Group Place: Sault Ste Marie, Ontario, Canada Zip: P6A 2G4 Sector: Solar Product: Canadian developer of utility-scale solar...

456

Affordable Solar Group | Open Energy Information  

Open Energy Info (EERE)

Group Group Name Affordable Solar Group Address 2501 Yale Blvd. SE STE 105 Place Albuquerque, New Mexico Zip 87106 Sector Solar Product Renewable energy products and services Phone number 1-800.810.9939 Website http://www.affordable-solar.co Coordinates 35.054102°, -106.622722° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.054102,"lon":-106.622722,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Howe Group LLC | Open Energy Information  

Open Energy Info (EERE)

Howe Group LLC Howe Group LLC Jump to: navigation, search Name Howe Group LLC Place Santa Fe, New Mexico Phone number +1 505 216 5119 Coordinates 35.6869752°, -105.937799° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6869752,"lon":-105.937799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Safety Monitor Joint Working Group (JWG) Tour  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 th Meeting of the Joint Working Group of the U.S.-Japan Coordinating Committee of Fusion Energy on Safety in Inter-Institutional Collaborations (U.S.-Japan Safety Monitoring...

459

Extreme inequalities for infinite group problems  

E-Print Network [OSTI]

Apr 3, 2006 ... In this paper we derive new properties of extreme inequalities for infinite group ... (f,f(r)) is called extreme if it cannot be written as a convex ...

2006-04-03T23:59:59.000Z

460

Renormalization Group and the Ricci flow  

E-Print Network [OSTI]

We discuss from a geometric point of view the connection between the renormalization group flow for non--linear sigma models and the Ricci flow. This offers new perspectives in providing a geometrical landscape for 2D quantum field theories. In particular we argue that the structure of Ricci flow singularities suggests a natural way for extending, beyond the weak coupling regime, the embedding of the Ricci flow into the renormalization group flow.

Mauro Carfora

2010-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

1 Finite Groups 1.1 Generalities  

E-Print Network [OSTI]

1 Finite Groups 1.1 Generalities Let V be a vector space over C , and let GL(V ) denote the group that (#26;; V ) is indecomposable is there is no expression V = W 1 #8;W 2 such that #26;(g)(W i ) #18; W i (#26; #3; ; V #3; ) de#12;ned as #26; #3; (v #3; )(v) = v #3; (#26;(g 1 )(v)). It will be convenient

Sohoni, Milind

462

THE RECTIFIABILITY THRESHOLD IN ABELIAN GROUPS  

E-Print Network [OSTI]

.2]) that if G is a to* *rsion-free abelian group and t is a positive integer, then any finite subset of G is t-iso98 ] it is shown that any subset S of the cyclic group of prime order* * p with |S| log2tp is t-rectifiable, and an example of a subset with |S| 2 log* *tp + 1, which is not t-rectifiable, is presented. As a refinement

Lev, Vsevolod F.

463

Pyramidal Ownership in Ecuadorian Business Groups  

E-Print Network [OSTI]

of business groups through the legal foundations and institutional framework of the country, and more specifically, of the corporate governance. They also discuss the importance of the high levels of ownership concentration leading to capital allocation... in the corporate governance literature. According to this hypothesis, the pyramidal structure allows groups to shift income or assets out of high tax jurisdictions into low tax jurisdictions, such as tax havens. This paper focuses on the study of the tunneling...

Granda Kuffo, Maria L.

2010-01-16T23:59:59.000Z

464

Regulators on additive higher Chow groups.  

E-Print Network [OSTI]

As an attempt to understand motives over $k[x]/(x^m)$, we define the cubical additive higher Chow groups with modulus for all dimensions extending the works of S. Bloch, H. Esnault and K. Rülling on 0-dimensional cycles. We give an explicit construction of regulator maps on the groups of 1-cycles with an aid of the residue theory of A. Parshin and V. Lomadze.

Jinhyun Park (Purdue University; West Lafayette; IN)

465

Hamilton's Turns for the Lorentz Group  

E-Print Network [OSTI]

Hamilton in the course of his studies on quaternions came up with an elegant geometric picture for the group SU(2). In this picture the group elements are represented by ``turns'', which are equivalence classes of directed great circle arcs on the unit sphere $S^2$, in such a manner that the rule for composition of group elements takes the form of the familiar parallelogram law for the Euclidean translation group. It is only recently that this construction has been generalized to the simplest noncompact group $SU(1,1) = Sp(2, R) = SL(2,R)$, the double cover of SO(2,1). The present work develops a theory of turns for $SL(2,C)$, the double and universal cover of SO(3,1) and $SO(3,C)$, rendering a geometric representation in the spirit of Hamilton available for all low dimensional semisimple Lie groups of interest in physics. The geometric construction is illustrated through application to polar decomposition, and to the composition of Lorentz boosts and the resulting Wigner or Thomas rotation.

R. Simon; S. Chaturvedi; V. Srinivasan; N. Mukunda

2006-01-10T23:59:59.000Z

466

Nonequilibrium Fluctuations in Sedimenting Suspensions: A Dynamical Renormalization Group Theory  

E-Print Network [OSTI]

A nonlinear two-fluid stochastic hydrodynamical description of velocity and concentration fluctuations in sedimenting suspensions is constructed, and analyzed using self-consistent (SC) and renormalization group (RG) methods. The advection of particles by velocity fluctuations is shown to be ``relevant'' in all dimensions $d < 6$ . Both RG and SC analyses predict a strong reduction in the dependence of velocity fluctuations on system-size $L$ relative to the $L^{1/2}$ obtained in the linearized theory of Caflisch and Luke [Phys. Fluids {\\bf 28}, 785 (1985)]. This is an important step towards resolving a ten-year old puzzle in the field.

Alex Levine; Sriram Ramaswamy; Robijn Bruinsma

1996-10-07T23:59:59.000Z

467

RIKEN Center for Sustainable Resource Science Gene Discovery Research Group  

E-Print Network [OSTI]

Research Team Biomass Research Platform Team Drug Discovery Platforms Cooperation Divison Chemical Bank Systems Research Group Plant Immunity Research Group Chemical Genomics Research Group Advanced Catalysis Integrated Genome Informatics Research Unit Chemical Biology Research Group Molecular Ligand Target Research

Fukai, Tomoki

468

Blackout 2003: Electric System Working Group Technical Conference...  

Broader source: Energy.gov (indexed) [DOE]

Electric System Working Group Technical Conference - Comments and Recommendations Blackout 2003: Electric System Working Group Technical Conference - Comments and Recommendations...

469

MetaMatrix Groupe | Open Energy Information  

Open Energy Info (EERE)

MetaMatrix Groupe MetaMatrix Groupe Jump to: navigation, search Name MetaMatrix Groupe Address 3206 Lamond Ct Place San Jose, California Zip 95148 Region Bay Area Number of employees 1-10 Year founded 2004 Phone number 408-705-1010 Website http://www.MetaMatrixGroupe.co Coordinates 37.317661°, -121.787292° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.317661,"lon":-121.787292,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

The Paliwoda Group | Open Energy Information  

Open Energy Info (EERE)

Paliwoda Group Paliwoda Group Jump to: navigation, search Logo: The Paliwoda Group Name The Paliwoda Group Address 244 Fifth Avenue, Suite 2332 Place New York, New York Zip 10001 Region Northeast - NY NJ CT PA Area Product Private investment firm focusing on early stage clean technology companies. Year founded 1995 Website http://www.paliwoda.com Coordinates 40.8163753°, -73.9350086° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8163753,"lon":-73.9350086,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

US Renewables Group (California) | Open Energy Information  

Open Energy Info (EERE)

Renewables Group (California) Renewables Group (California) Jump to: navigation, search Logo: US Renewables Group (California) Name US Renewables Group (California) Address 2425 Olympic Boulevard, Suite 4050 West Place Santa Monica, California Zip 90404 Region Southern CA Area Product Private equity firm investing exclusively in renewable energy. Phone number (310) 586-3900 Website http://www.usregroup.com/ Coordinates 34.028262°, -118.471066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.028262,"lon":-118.471066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Ardent Energy Group Inc | Open Energy Information  

Open Energy Info (EERE)

Ardent Energy Group Inc Ardent Energy Group Inc Jump to: navigation, search Logo: Ardent Energy Group-Ethiopia Name Ardent Energy Group-Ethiopia Address 9245 Laguna Springs Drive, Suite 200 Place Elk Grove, California Zip 95758 Sector Biofuels Product Bio diesel, Crude Jatropha Oil, Year founded 2008 Number of employees 1-10 Phone number 916-509-7238 Website http://www.ardentenergygroup.c Coordinates 38.4202771°, -121.3971607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.4202771,"lon":-121.3971607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Method of gravel packing a subterranean well  

SciTech Connect (OSTI)

This patent describes a method of gravel packing a well bore penetrating a subterranean formation. It comprises blocking a first group of apertures in a liner with an immobile gel; positioning the liner within the well bore thereby defining a first annulus between the liner and the well bore; transporting a slurry comprised of gravel suspended in a fluid into the first annulus, the fluid flowing through a second group of apertures in the liner while the gravel is deposited within the first annulus to form a gravel pack; and thereafter removing substantially all of the gel from the first group of apertures.

Not Available

1991-11-05T23:59:59.000Z

474

Renormalization group maps for Ising models in lattice gas variables  

E-Print Network [OSTI]

Real space renormalization group maps, e.g., the majority rule transformation, map Ising type models to Ising type models on a coarser lattice. We show that each coefficient of the renormalized Hamiltonian in the lattice gas variables depends on only a finite number of values of the renormalized Hamiltonian. We introduce a method which computes the values of the renormalized Hamiltonian with high accuracy and so computes the coefficients in the lattice gas variables with high accuracy. For the critical nearest neighbor Ising model on the square lattice with the majority rule transformation, we compute over 1,000 different coefficients in the lattice gas variable representation of the renormalized Hamiltonian and study the decay of these coefficients. We find that they decay exponentially in some sense but with a slow decay rate. We also show that the coefficients in the spin variables are sensitive to the truncation method used to compute them.

Tom Kennedy

2009-05-15T23:59:59.000Z

475

Chapter 1, Introduction: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Broader source: Energy.gov (indexed) [DOE]

: Introduction : Introduction Hossein Haeri, The Cadmus Group, Inc. Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 1 - 1 Chapter 1 - Table of Contents About the Protocols......................................................................................................................... 2 Rationale ......................................................................................................................................... 2 The Audiences and Objectives ........................................................................................................ 3 Definitions....................................................................................................................................... 4

476

Fuel Cell Technologies Office: Catalysis Working Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Catalysis Working Group Catalysis Working Group The Catalysis Working Group (CWG) meets twice per year to exchange information, create synergies, and collaboratively develop both an understanding of and tools for studying electrocatalysis for polymer electrolyte fuel cells (PEFCs) and other low- and intermediate-temperature fuel cell systems, including direct methanol fuel cells (DMFCs), alkaline fuel cells (AFCs), alkaline membrane fuel cells (AMFCs), and phosphoric acid fuel cells (PAFCs). The CWG members include principal and co-principal investigators in electrocatalysis projects funded by the U.S. Department of Energy (DOE), as well as supporting DOE personnel. More information on DOE electrocatalysis activities can be found in the Multi-Year Research, Development, and Demonstration Plan.

477

Maria Group Inc | Open Energy Information  

Open Energy Info (EERE)

Maria Group Inc Maria Group Inc Jump to: navigation, search Name Maria Group Inc Place Friendswood, Texas Zip 77546 Sector Wind energy Product Holds patent to Noble Wind Turbine, a vertical axis wind turbine. Coordinates 29.53001°, -95.200239° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.53001,"lon":-95.200239,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Arctas Capital Group | Open Energy Information  

Open Energy Info (EERE)

Arctas Capital Group Arctas Capital Group Jump to: navigation, search Name Arctas Capital Group Place Houston, Texas Zip 77056 Sector Geothermal energy, Renewable Energy, Wind energy Product A Houston-based investment and project development firm focusing on multiple energy technologies including renewables wind and geothermal. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Magellan Resources Group LLC | Open Energy Information  

Open Energy Info (EERE)

Magellan Resources Group LLC Magellan Resources Group LLC Jump to: navigation, search Name Magellan Resources Group LLC Place Chantilly, Virginia Zip 20151 Product Magellan Resources is an energy development and investment company primarily focused on alternative energy projects. Coordinates 38.883607°, -77.439755° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.883607,"lon":-77.439755,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Delta Energy Group | Open Energy Information  

Open Energy Info (EERE)

Delta Energy Group Delta Energy Group Address 21 Omega Drive, Delta Campus Place Brattleboro, Vermont Zip 05301 Sector Efficiency Year founded 2008 Number of employees 1-10 Phone number 802-251-7337 Website http://www.deltaenergygroup.co Coordinates 42.8509152°, -72.5578678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8509152,"lon":-72.5578678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "methods group ei-70" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Current Group LLC | Open Energy Information  

Open Energy Info (EERE)

Group LLC Group LLC Jump to: navigation, search Name Current Group, LLC Place Germantown, Maryland Zip 20874 Sector Services Product Current provides electric utilities with smart grid technologies combining two-way high-speed communications, 24/7 monitoring and enterprise analysis software and related services. Coordinates 43.220985°, -88.118584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.220985,"lon":-88.118584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

TEC/WG Tribal Topic Group  

Broader source: Energy.gov (indexed) [DOE]

Conference Call Conference Call December 6, 2005 Group Chair: Jay Jones (DOE/OCRWM) Participating TEC Tribal Topic Group Members: Kevin Clarke (DOE/RL), Kristen Ellis (DOE/CI), Lisa Gover (NTEC), Dan King (Oneida Nation), Corinne Macaluso (DOE/OCRWM), Ellen Ott (DOE/GC), Ted Repasky (CTUIR), Cathy Reynolds (DOE/GC), Lisa Sattler (CSG-MW) Herman Shorty (Navajo Nation), Linda Sikkema (NCSL), Christopher Wells (SSEB) DOE support contractors also participated in this call. Action Items: Responsible Party Action to be Taken Wilda Portner Email potential conference call dates to Tribal representatives who are members of the Topic Group. Ask for their input on which of 2 or 3 dates are the most convenient for the call. Follow up emails with faxes and phone calls as necessary.

483

Nathaniel Group Inc | Open Energy Information  

Open Energy Info (EERE)

Nathaniel Group Inc Nathaniel Group Inc Jump to: navigation, search Name Nathaniel Group Inc Place Vergennes, Vermont Zip 05491-1073 Product Manufactures electronic devices, and received a USD 250,000 grant to develop a CPV project. Coordinates 44.16728°, -73.253394° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.16728,"lon":-73.253394,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

RHIC Superconducting Accelerator and Electron Cooling Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organization Chart (PDF) Organization Chart (PDF) Accelerator R&D Division eRHIC R&D Energy Recovery Linac Photocathode R&D Superconducting RF Electron Cooling LARP Center for Accelerator Science and Education C-AD Accelerator R&D Division Superconducting RF Group Group Headed By: Sergey Belomestnykh This web site presents information on the Superconducting Accelerator and RHIC Electron Cooling Group, which is in the Accelerator R&D Division of the Collider-Accelerator Department of Brookhaven National Laboratory. Work is supported mainly by the Division of Nuclear Physics of the US Department of Energy. Upcoming Events: TBD Most recent events: 56 MHz 2nd External Review, March 8-9, 2011 External Review of the Energy Recovery Linac, February 17-18, 2010. Report of the Review Committee

485

Clark Energy Group ESCO Qualification Sheet  

Broader source: Energy.gov (indexed) [DOE]

Introduction to Clark Energy Group Introduction to Clark Energy Group Clark Energy Group offers comprehensive, turn-key energy and water solutions with a focus on renewable energy and building efficiency. We partner with public and private clients to deliver projects that enhance energy security, protect the environment, and save our customers money. Our $5 billion Super ESPC contract with the U.S. Department of Energy allows us to contract with any federal agency for energy-related projects. On the private side, we work on a wide variety of institutional facilities such as data centers, laboratories, multi-family housing, campuses, and high-performance office buildings. Clark's long history of success on complex projects allow us to

486

Former Worker Program - Joint Outreach Task Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Group Group Former Worker Medical Screening Program (FWP) The Joint Outreach Task Group (JOTG) includes representatives from HSS, Department of Labor (DOL), the National Institute for Occupational Safety and Health (NIOSH), the Offices of the Ombudsman for DOL and NIOSH, and the DOE-funded FWP projects. The JOTG was established in 2009 under the premise that agencies/programs with common goals can work together by combining resources and coordinating outreach efforts. Each involved agency has a different mission, but the missions are complementary. By working together, the agencies are better able to serve the DOE workforce. The JOTG focuses on educating the former workers on the programs and resources available to them. The JOTG has created a monthly calendar of community events to facilitate interagency and community involvement in these events.

487

Greenlight Energy Group | Open Energy Information  

Open Energy Info (EERE)

Energy Group Energy Group Jump to: navigation, search Logo: Greenlight Energy Name Greenlight Energy Address 291 River Street Place Troy, NY Zip 12180 Sector Renewable Energy Product Renewable energy certificates, carbon offsets Year founded 2011 Number of employees 1-10 Phone number 5183994555 Website http://www.gltenergy.com Coordinates 42.7323771°, -73.6903881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7323771,"lon":-73.6903881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

488

Energy Ventures Group | Open Energy Information  

Open Energy Info (EERE)

Energy Ventures Group Energy Ventures Group Name Energy Ventures Group Address 3050 K Street, N.W., Suite 205 Place Washington, District of Columbia Zip 20007 Product Boutique investment firm focused on emerging technologies in the energy industry Phone number (202) 944-4141 Website http://www.energyvg.com/ Coordinates 38.90137°, -77.059768° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.90137,"lon":-77.059768,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

Anneng Thermoelectricity Group | Open Energy Information  

Open Energy Info (EERE)

Anneng Thermoelectricity Group Anneng Thermoelectricity Group Jump to: navigation, search Name Anneng Thermoelectricity Group Place Wuhan, Hubei Province, China Zip 430071 Sector Biomass Product China-based biomass project developer. Coordinates 30.572399°, 114.279121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.572399,"lon":114.279121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

490

Carbon Opportunity Group | Open Energy Information  

Open Energy Info (EERE)

Opportunity Group Opportunity Group Jump to: navigation, search Name Carbon Opportunity Group Place Chicago, Illinois Zip 60606 Sector Carbon, Services Product Chicago-based firm that provides expertise in private equity investments, carbon asset development, financial risk management as well as advisory services. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Climate Knowledge Brokers Group | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Climate Knowledge Brokers Group Jump to: navigation, search Home | 2013 Workshop | Previous Events | CKB Snapshots | Collaborative Projects | Shared Tools What is the CKB Group? The Climate Knowledge Brokers (CKB) Group is an emerging alliance of around 50 of the leading global, regional and national websites specialising in climate and development information. It brings together a diverse set of information players, from international organisations to research institutes, NGOs and good practice networks, and covers the full breadth of climate related themes. The focus is on primarily online initiatives, and

492

Nick Wright Named Advanced Technologies Group Lead  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nick Wright Named Nick Wright Named Advanced Technologies Group Lead Nick Wright Named Advanced Technologies Group Lead February 4, 2013 Nick Nick Wright has been named head of the National Energy Research Scientific Computing Center's (NERSC) Advanced Technologies Group (ATG), which focuses on understanding the requirements of current and emerging applications to make choices in hardware design and programming models that best serve the science needs of NERSC users. ATG specializes in benchmarking, system performance, debugging and analysis, workload monitoring, use of application modeling tools, and future algorithm scaling and technology assessment. The team also engages with vendors and the general research community to advocate technological features that will enhance the effectiveness of systems for NERSC scientists.

493

Utilities Group Aids in Restructuring Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Utilities Group Aids in Restructuring Process Researchers at the Energy Analysis Program's (EAP) Utility Planning and Policy (UPP) Group are helping ensure that energy efficiency, renewable energy, and a host of other important issues are not overlooked as California and the nation restructure the electric power industry. The UPP staff is analyzing the potential impact of restructuring on efficiency and renewables, modeling a variety of potential restructuring policies, and assisting federal customers seeking to better understand emerging electricity markets. UPP Group Leader Chuck Goldman is participating in discussions on how to distribute surcharge funds set aside for energy efficiency in California, and Acting EAP Head Stephen Wiel is assisting state lawmakers and regulators by overseeing the National Council on

494

United Energy Group PLC | Open Energy Information  

Open Energy Info (EERE)

Energy Group PLC Energy Group PLC Jump to: navigation, search Name United Energy Group PLC Place Haslemere, United Kingdom Sector Hydro, Wind energy Product The company develops small hydro, gas co-generation and wind projects in Serbia and the Serbian part of Bosnia Coordinates 51.08879°, -0.708724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.08879,"lon":-0.708724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

Vesuvius Group SA | Open Energy Information  

Open Energy Info (EERE)

Vesuvius Group SA Vesuvius Group SA Jump to: navigation, search Name Vesuvius Group SA Place Brussels, Belgium Zip 1950 Sector Solar Product Belgian manufacturer of industrial equipment such as fused silica crucibles for the solar sector. Coordinates 50.848385°, 4.349685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.848385,"lon":4.349685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

Greenlight Investment Group | Open Energy Information  

Open Energy Info (EERE)

Investment Group Investment Group Jump to: navigation, search Name Greenlight Investment Group Place Elgin, Illinois Zip 60123 Sector Wind energy Product Advising clients on wind aquisitions in North America. Coordinates 30.34901°, -97.370969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.34901,"lon":-97.370969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

Cleantech Group LLC | Open Energy Information  

Open Energy Info (EERE)

Cleantech Group LLC Cleantech Group LLC Jump to: navigation, search Name Cleantech Group LLC Place Brighton, Michigan Zip 48114 Sector Services Product Michigan-based cleantech consultant and parent of the Cleantech Venture Forum, publishes an index and provides advisory services. Coordinates 44.81454°, -71.881084° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.81454,"lon":-71.881084,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

498

Airon Group Spa | Open Energy Information  

Open Energy Info (EERE)

Airon Group Spa Airon Group Spa Jump to: navigation, search Name Airon Group Spa Place Florence, Italy Zip 50122 Sector Solar, Wind energy Product Florence-based strategy and management control planning firm. The firm has invested and advised in solar and wind energy. Coordinates 45.922405°, -88.249839° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.922405,"lon":-88.249839,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

499

FC3 Group | Open Energy Information  

Open Energy Info (EERE)

FC3 Group FC3 Group Jump to: navigation, search Name FC3 Group Place Minneapolis, Minnesota Zip 55440 1299 Product Minnesota-based, division of the Donaldson Company, Inc specialising in air management and filtration for fuel cells. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

500

FINAL Transportation External Coordination Working Group (TEC)  

Broader source: Energy.gov (indexed) [DOE]

Transportation External Coordination Working Group (TEC) January 28-30, 2002 New Orleans, Louisiana Meeting Summary The Transportation External Coordination Working Group (TEC) held its 20 th semi-annual meeting January 28-30, 2002, in New Orleans, Louisiana. This was the tenth anniversary of TEC, and 102 attendees from national, State, Tribal, and local government organizations; industry and professional groups and other interested parties in the U.S. Department of Energy (DOE) programs, met to address a variety of issues related to DOE's radioactive materials transportation activities. The TEC process includes the involvement of these key stakeholders in developing solutions to DOE transportation issues through their actual participation in the work product. These members provide continuing and improved