National Library of Energy BETA

Sample records for methods ground electromagnetic

  1. Category:Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Electromagnetic Techniques page? For...

  2. Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information...

  3. METHOD OF LOCATING GROUNDS

    DOE Patents [OSTI]

    Macleish, K.G.

    1958-02-11

    ABS>This patent presents a method for locating a ground in a d-c circult having a number of parallel branches connected across a d-c source or generator. The complete method comprises the steps of locating the ground with reference to the mildpoint of the parallel branches by connecting a potentiometer across the terminals of the circuit and connecting the slider of the potentiometer to ground through a current indicating instrument, adjusting the slider to right or left of the mildpoint so as to cause the instrument to indicate zero, connecting the terminal of the network which is farthest from the ground as thus indicated by the potentiometer to ground through a condenser, impressing a ripple voltage on the circuit, and then measuring the ripple voltage at the midpoint of each parallel branch to find the branch in which is the lowest value of ripple voltage, and then measuring the distribution of the ripple voltage along this branch to determine the point at which the ripple voltage drops off to zero or substantially zero due to the existence of a ground. The invention has particular application where a circuit ground is present which will disappear if the normal circuit voltage is removed.

  4. Apparatus and method for detecting electromagnetic radiation...

    Office of Scientific and Technical Information (OSTI)

    in a micromechanical sensor Title: Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor A micromechanical ...

  5. Narrow field electromagnetic sensor system and method

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  6. Narrow field electromagnetic sensor system and method

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  7. Chapter 4: Electrical and Electromagnetic Methods | Open Energy...

    Open Energy Info (EERE)

    4: Electrical and Electromagnetic Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Chapter 4: Electrical and Electromagnetic Methods Author...

  8. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2011-12-06

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  9. A Numerical Evaluation Of Electromagnetic Methods In Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration - Discussion...

  10. A Numerical Evaluation Of Electromagnetic Methods In Geothermal...

    Open Energy Info (EERE)

    of the electric charge at conductivity boundaries rather than electromagnetic induction. This means that, for detection of the reservoir, methods such as MT, which rely on...

  11. A Numerical Evaluation Of Electromagnetic Methods In Geothermal...

    Open Energy Info (EERE)

    Of Electromagnetic Methods In Geothermal Exploration - Reply Authors L. Pellerin and J. M. Johnston Published Journal Geophysics, 1997 DOI Not Provided Check for DOI...

  12. Electromagnetic structure of few-nucleon ground states

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marcucci, Laura E.; Istituto Nazionale di Fisica Nucleare; Gross, Franz L.; Thomas Jefferson National Accelerator Facility; Peña, M. T.; Piarulli, M.; Old Dominion Univ., Norfolk, VA; Schiavilla, Rocco; Old Dominion Univ., Norfolk, VA; Sick, Ingo; et al

    2016-01-08

    Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled ChiEFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). Furthermore, for momentum transfers belowmore » Q < 5 fm-1 there is satisfactory agreement between experimental data and theoretical results in all three approaches. Conversely, at Q > 5 fm-1, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary. The experimental data on the deuteron A structure function extend to Q ~ 12 fm-1, and the close agreement between these data and the CST results suggests that, even in this extreme kinematical regime, there is no evidence for new effects coming from quark and gluon degrees of freedom at short distances.« less

  13. Device and method for redirecting electromagnetic signals

    DOE Patents [OSTI]

    Garcia, Ernest J.

    1999-01-01

    A device fabricated to redirect electromagnetic signals, the device including a primary driver adapted to provide a predetermined force, a linkage system coupled to the primary driver, a pusher rod rotationally coupled to the linkage system, a flexible rod element attached to the pusher rod and adapted to buckle upon the application of the predetermined force, and a mirror structure attached to the flexible rod element at one end and to the substrate at another end. When the predetermined force buckles the flexible rod element, the mirror structure and the flexible rod element both move to thereby allow a remotely-located electromagnetic signal directed towards the device to be redirected.

  14. Method for imaging with low frequency electromagnetic fields

    DOE Patents [OSTI]

    Lee, K.H.; Xie, G.Q.

    1994-12-13

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  15. Method for imaging with low frequency electromagnetic fields

    DOE Patents [OSTI]

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  16. Electromagnetic wave method for mapping subterranean earth formations

    DOE Patents [OSTI]

    Shuck, Lowell Z.; Fasching, George E.; Balanis, Constantine A.

    1977-01-01

    The present invention is directed to a method for remotely mapping subterranean coal beds prior to and during in situ gasification operations. This method is achieved by emplacing highly directional electromagnetic wave transmitters and receivers in bore holes penetrating the coal beds and then mapping the anomalies surrounding each bore hole by selectively rotating and vertically displacing the directional transmitter in a transmitting mode within the bore hole, and thereafter, initiating the gasification of the coal at bore holes separate from those containing the transmitters and receivers and then utilizing the latter for monitoring the burn front as it progresses toward the transmitters and receivers.

  17. An electromagnetic induction method for underground target detection and characterization

    SciTech Connect (OSTI)

    Bartel, L.C.; Cress, D.H.

    1997-01-01

    An improved capability for subsurface structure detection is needed to support military and nonproliferation requirements for inspection and for surveillance of activities of threatening nations. As part of the DOE/NN-20 program to apply geophysical methods to detect and characterize underground facilities, Sandia National Laboratories (SNL) initiated an electromagnetic induction (EMI) project to evaluate low frequency electromagnetic (EM) techniques for subsurface structure detection. Low frequency, in this case, extended from kilohertz to hundreds of kilohertz. An EMI survey procedure had already been developed for borehole imaging of coal seams and had successfully been applied in a surface mode to detect a drug smuggling tunnel. The SNL project has focused on building upon the success of that procedure and applying it to surface and low altitude airborne platforms. Part of SNL`s work has focused on improving that technology through improved hardware and data processing. The improved hardware development has been performed utilizing Laboratory Directed Research and Development (LDRD) funding. In addition, SNL`s effort focused on: (1) improvements in modeling of the basic geophysics of the illuminating electromagnetic field and its coupling to the underground target (partially funded using LDRD funds) and (2) development of techniques for phase-based and multi-frequency processing and spatial processing to support subsurface target detection and characterization. The products of this project are: (1) an evaluation of an improved EM gradiometer, (2) an improved gradiometer concept for possible future development, (3) an improved modeling capability, (4) demonstration of an EM wave migration method for target recognition, and a demonstration that the technology is capable of detecting targets to depths exceeding 25 meters.

  18. Frequency-domain multiscale quantum mechanics/electromagnetics simulation method

    SciTech Connect (OSTI)

    Meng, Lingyi; Yin, Zhenyu; Yam, ChiYung E-mail: ghc@everest.hku.hk; Koo, SiuKong; Chen, GuanHua E-mail: ghc@everest.hku.hk; Chen, Quan; Wong, Ngai

    2013-12-28

    A frequency-domain quantum mechanics and electromagnetics (QM/EM) method is developed. Compared with the time-domain QM/EM method [Meng et al., J. Chem. Theory Comput. 8, 11901199 (2012)], the newly developed frequency-domain QM/EM method could effectively capture the dynamic properties of electronic devices over a broader range of operating frequencies. The system is divided into QM and EM regions and solved in a self-consistent manner via updating the boundary conditions at the QM and EM interface. The calculated potential distributions and current densities at the interface are taken as the boundary conditions for the QM and EM calculations, respectively, which facilitate the information exchange between the QM and EM calculations and ensure that the potential, charge, and current distributions are continuous across the QM/EM interface. Via Fourier transformation, the dynamic admittance calculated from the time-domain and frequency-domain QM/EM methods is compared for a carbon nanotube based molecular device.

  19. Monitoring of thermal enhanced oil recovery processes with electromagnetic methods

    SciTech Connect (OSTI)

    Wilt, M.

    1992-09-01

    Research in applying electromagnetic methods for imaging thermal enhanced oil recovery has progressed significantly during the past eighteen months. Working together with researchers at Lawrence Berkeley Laboratory (LBL) and supported by a group of industrial sponsors we have focused our effort on field system development and doing field surveys connected with EOR operations. Field surveys were recently completed at the Lost Hills No.3 oil field and at UC Richmond Field station. At Lost Hills, crosshole EM data sets were collected before a new phase of steam injection for EOR and again four months after the onset of steaming. The two data sets were nearly identical suggesting that very little steam had been injected into this borehole. This is in accord with the operators records which indicate injectivity problems with this particular well. At Richmond we conducted a salt water injection monitoring experiment where 50,000 gallons of salt water were injected in a shallow aquifer and crosshole EM data were collected using the injection well and several observation wells. We applied the imaging code to some of the collected data and produced an image showing that the salt water slug has propagated 8--10 m from the injector into the aquifer. This result is partially confirmed by prior calculations and well logging data. Applying the EM methods to the problem of oil field characterization essentially means extending the borehole resistivity log into the region between wells. Since the resistivity of a sedimentary environment is often directly dependent on the fluids in the rock the knowledge of the resistivity distribution within an oil field can be invaluable for finding missed or bypassed oil or for mapping the overall structure. With small modification the same methods used for mapping EOR process can be readily applied to determining the insitu resistivity structure.

  20. Control and monitoring method and system for electromagnetic forming process

    DOE Patents [OSTI]

    Kunerth, Dennis C.; Lassahn, Gordon D.

    1990-01-01

    A process, system, and improvement for a process for electromagnetic forming of a workpiece in which characteristics of the workpiece such as its geometry, electrical conductivity, quality, and magnetic permeability can be determined by monitoring the current and voltage in the workcoil. In an electromagnet forming process in which a power supply provides current to a workcoil and the electromagnetic field produced by the workcoil acts to form the workpiece, the dynamic interaction of the electromagnetic fields produced by the workcoil with the geometry, electrical conductivity, and magnetic permeability of the workpiece, provides information pertinent to the physical condition of the workpiece that is available for determination of quality and process control. This information can be obtained by deriving in real time the first several time derivatives of the current and voltage in the workcoil. In addition, the process can be extended by injecting test signals into the workcoil during the electromagnetic forming and monitoring the response to the test signals in the workcoil.

  1. Poynting-vector based method for determining the bearing and location of electromagnetic sources

    DOE Patents [OSTI]

    Simons, David J.; Carrigan, Charles R.; Harben, Philip E.; Kirkendall, Barry A.; Schultz, Craig A.

    2008-10-21

    A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.

  2. Method for locating underground anomalies by diffraction of electromagnetic waves passing between spaced boreholes

    DOE Patents [OSTI]

    Lytle, R. Jeffrey; Lager, Darrel L.; Laine, Edwin F.; Davis, Donald T.

    1979-01-01

    Underground anomalies or discontinuities, such as holes, tunnels, and caverns, are located by lowering an electromagnetic signal transmitting antenna down one borehole and a receiving antenna down another, the ground to be surveyed for anomalies being situated between the boreholes. Electronic transmitting and receiving equipment associated with the antennas is activated and the antennas are lowered in unison at the same rate down their respective boreholes a plurality of times, each time with the receiving antenna at a different level with respect to the transmitting antenna. The transmitted electromagnetic waves diffract at each edge of an anomaly. This causes minimal signal reception at the receiving antenna. Triangulation of the straight lines between the antennas for the depths at which the signal minimums are detected precisely locates the anomaly. Alternatively, phase shifts of the transmitted waves may be detected to locate an anomaly, the phase shift being distinctive for the waves directed at the anomaly.

  3. Overview Of Electromagnetic Methods Applied In Active Volcanic...

    Open Energy Info (EERE)

    the understanding of volcanoes by being the method which is most sensitive to change in temperature and, therefore, can best map heat budget and hydrological character to aid in...

  4. Electromagnetic variable degrees of freedom actuator systems and methods

    DOE Patents [OSTI]

    Montesanti, Richard C.; Trumper, David L.; Kirtley, Jr., James L.

    2009-02-17

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  5. Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor

    DOE Patents [OSTI]

    Datskos, Panagiotis G.; Rajic, Slobodan; Datskou, Irene C.; Egert, Charles M.

    2002-01-01

    A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

  6. Method and apparatus for injecting particulate media into the ground

    DOE Patents [OSTI]

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  7. Category:Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    3 subcategories, out of 3 total. A Airborne Electromagnetic Survey 1 pages G + Ground Electromagnetic Techniques (2 categories) 3 pages S Self Potential...

  8. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOE Patents [OSTI]

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  9. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOE Patents [OSTI]

    Bell, Zane W.

    2000-01-01

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  10. Operation Castle. Project 7. 1. Electromagnetic radiation calibration, Pacific )roving ground. Report for March-May 1954

    SciTech Connect (OSTI)

    Olseon, M.H.

    1984-08-31

    A total of 17 stations, one close-in (320 km from Bikini and 23 km from Eniwetok) and the balance at distances, were operated for the electromagnetic experimental effort. Seventy-four sets of data were obtained from a possible total of 102. Of the remaining 28 sets, no data were obtained because equipment was not in operation, records were not readable, the alert notifications were not received, signals were not discernible, or equipment malfunctioned.

  11. Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation

    DOE Patents [OSTI]

    Buican, Tudor N.; Martin, John C.

    1990-01-01

    An apparatus and method simultaneously measures a plurality of spectral wavelengths present in electromagnetic radiation. A modulatable birefringent optical element is employed to divide a polarized light beam into two components, thereby producing a phase difference in two resulting light beams such that the two beams can be made to interfere with one another when recombined, the interference pattern providing the wavelength information required for the analysis of the incident light. The interferometer thus created performs in a similar manner to a Michelson interferometer, but with no moving parts, and with a resolution dependent on the degree of phase shift introduced by the modulator.

  12. Apparatus and method for grounding compressed fuel fueling operator

    DOE Patents [OSTI]

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  13. Method and apparatus for controlling an electromagnetic clutch for use on a vehicle

    SciTech Connect (OSTI)

    Watanabe, T.

    1986-11-25

    This patent describes a method of controlling an electromagnetic clutch of the magnetic powder type which is incorporated in a power transmission system of a vehicle to transmit an output of an engine to drive wheels. This includes a driving rotary member operatively connected to the engine, a driven rotary member operatively connected to the drive wheels and cooperating with the driving rotary member to define an annular space therebetween, a mass of magnetic powder accommodated in the annular space, and a solenoid to be energized for bonding together particles of the magnetic powder such that the mass of magnetic powder transmits a torque of the engine to the drive wheels. A clutch torque is transmitted from the driving rotary member to the driven rotary member being varied as a function of an electric current to energize the solenoid, so that the clutch torque is increased with an actual speed of the engine during the engaging action of the clutch. The method comprises: detecting a currently required output of the engine during a period of the engaging action of the electromagnetic clutch; and changing a rate of increase in the electric current relative to the actual speed of the engine, such that the rate of increase is increased as the required output of the engine is decreased.

  14. A finite integration method for conformal, structured-grid, electromagnetic simulation

    SciTech Connect (OSTI)

    Cooke, S.J. . E-mail: simon.cooke@nrl.navy.mil; Shtokhamer, R.; Mondelli, A.A.; Levush, B.

    2006-06-10

    We describe a numerical scheme for solving Maxwell's equations in the frequency domain on a conformal, structured, non-orthogonal, multi-block mesh. By considering Maxwell's equations in a volume parameterized by dimensionless curvilinear coordinates, we obtain a set of tensor equations that are a continuum analogue of common circuit equations, and that separate the metrical and metric-free parts of Maxwell's equations and the material constitutive relations. We discretize these equations using a new formulation that treats the electric field and magnetic induction using simple basis-function representations to obtain a discrete form of Faraday's law of induction, but that uses finite integral representations for the displacement current and magnetic field to obtain a discrete form of Ampere's law, as in the finite integration technique [T. Weiland, A discretization method for the solution of Maxwell's equations for six-component fields, Electron. Commun. (AE U) 31 (1977) 116; T. Weiland, Time domain electromagnetic field computation with finite difference methods, Int. J. Numer. Model: Electron. Netw. Dev. Field 9 (1996) 295-319]. We thereby derive new projection operators for the discrete tensor material equations and obtain a compact numerical scheme for the discrete differential operators. This scheme is shown to exhibit significantly reduced numerical dispersion when compared to the standard linear finite element method. We take advantage of the mesh structure on a block-by-block basis to implement these numerical operators efficiently, and achieve computational speed with modest memory requirements when compared to explicit sparse matrix storage. Using the Jacobi-Davidson [G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (2) (1996) 401-425; S.J. Cooke, B. Levush, Eigenmode solution of 2-D and 3-D electromagnetic cavities containing absorbing materials using the Jacobi

  15. Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems

    DOE Patents [OSTI]

    Zhdanov; Michael S.

    2008-01-29

    Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

  16. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  17. Electromagnetic Profiling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock...

  18. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOE Patents [OSTI]

    Efthimion, Philip C.; Helfritch, Dennis J.

    1989-11-28

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  19. Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation

    SciTech Connect (OSTI)

    Koelling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.-G.

    2009-10-15

    We derive the leading two-pion-exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  20. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  1. Electromagnetic wrap

    DOE Patents [OSTI]

    Tremblay, Paul L [Idaho Falls, ID; Scott, Jill R [Idaho Falls, ID

    2010-09-28

    A device and method for altering the line reactance of a transmission line having a transmission line, a first floating conductor and a grounding (shielding) conductor. The first floating conductor is positioned between and electrically insulated from the transmission line and the grounding conductor. A source and a load are connected at opposite ends of the transmission line.

  2. Model based approach to UXO imaging using the time domain electromagnetic method

    SciTech Connect (OSTI)

    Lavely, E.M.

    1999-04-01

    Time domain electromagnetic (TDEM) sensors have emerged as a field-worthy technology for UXO detection in a variety of geological and environmental settings. This success has been achieved with commercial equipment that was not optimized for UXO detection and discrimination. The TDEM response displays a rich spatial and temporal behavior which is not currently utilized. Therefore, in this paper the author describes a research program for enhancing the effectiveness of the TDEM method for UXO detection and imaging. Fundamental research is required in at least three major areas: (a) model based imaging capability i.e. the forward and inverse problem, (b) detector modeling and instrument design, and (c) target recognition and discrimination algorithms. These research problems are coupled and demand a unified treatment. For example: (1) the inverse solution depends on solution of the forward problem and knowledge of the instrument response; (2) instrument design with improved diagnostic power requires forward and inverse modeling capability; and (3) improved target recognition algorithms (such as neural nets) must be trained with data collected from the new instrument and with synthetic data computed using the forward model. Further, the design of the appropriate input and output layers of the net will be informed by the results of the forward and inverse modeling. A more fully developed model of the TDEM response would enable the joint inversion of data collected from multiple sensors (e.g., TDEM sensors and magnetometers). Finally, the author suggests that a complementary approach to joint inversions is the statistical recombination of data using principal component analysis. The decomposition into principal components is useful since the first principal component contains those features that are most strongly correlated from image to image.

  3. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    SciTech Connect (OSTI)

    Alex J. Dragt

    2012-08-31

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  4. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    DOE Patents [OSTI]

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  5. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOE Patents [OSTI]

    Andrews, Lowell B.

    1998-01-01

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined.

  6. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOE Patents [OSTI]

    Andrews, L.B.

    1998-08-18

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined. 17 figs.

  7. Electromagnetic methods for measuring materials properties of cylindrical rods and array probes for rapid flaw inspection

    SciTech Connect (OSTI)

    Sun, Haiyan

    2005-05-01

    The case-hardening process modifies the near-surface permeability and conductivity of steel, as can be observed through changes in alternating current potential drop (ACPD) along a rod. In order to evaluate case depth of case hardened steel rods, analytical expressions are derived for the alternating current potential drop on the surface of a homogeneous rod, a two-layered and a three-layered rod. The case-hardened rod is first modeled by a two-layer rod that has a homogeneous substrate with a single, uniformly thick, homogeneous surface layer, in which the conductivity and permeability values differ from those in the substrate. By fitting model results to multi-frequency ACPD experimental data, estimates of conductivity, permeability and case depth are found. Although the estimated case depth by the two-layer model is in reasonable agreement with the effective case depth from the hardness profile, it is consistently higher than the effective case depth. This led to the development of the three-layer model. It is anticipated that the new three-layered model will improve the results and thus makes the ACPD method a novel technique in nondestructive measurement of case depth. Another way to evaluate case depth of a case hardened steel rod is to use induction coils. Integral form solutions for an infinite rod encircled by a coaxial coil are well known, but for a finite length conductor, additional boundary conditions must be satisfied at the ends. In this work, calculations of eddy currents are performed for a two-layer conducting rod of finite length excited by a coaxial circular coil carrying an alternating current. The solution is found using the truncated region eigenfunction expansion (TREE) method. By truncating the solution region to a finite length in the axial direction, the magnetic vector potential can be expressed as a series expansion of orthogonal eigenfunctions instead of as a Fourier integral. Closed-form expressions are derived for the electromagnetic

  8. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    DOE Patents [OSTI]

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  9. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOE Patents [OSTI]

    Clark, M.C.; Coleman, P.D.; Marder, B.M.

    1993-08-10

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  10. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOE Patents [OSTI]

    Clark, M. Collins; Coleman, P. Dale; Marder, Barry M.

    1993-01-01

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  11. ELECTROMAGNETIC PUMP

    DOE Patents [OSTI]

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  12. A comparison of several surface finish measurement methods as applied to ground ceramic and metal surfaces

    SciTech Connect (OSTI)

    Blau, P.J.; Martin, R.L.; Riester, L.

    1996-01-01

    Surface finish is one of the most common measures of surface quality of ground ceramics and metal parts and a wide variety of methods and parameters have been developed to measure it. The purpose of this investigation was to compare the surface roughness parameters obtained on the same two specimens from three different types of measuring instruments: a traditional mechanical stylus system, a non-contact laser scanning system, and the atomic force microscope (two different AFM systems were compared). The same surface-ground silicon nitride and Inconel 625 alloy specimens were used for all measurements in this investigation. Significant differences in arithmetic average roughness, root-mean-square roughness, and peak-to-valley roughness were obtained when comparing data from the various topography measuring instruments. Non-contact methods agreed better with the others on the metal specimen than on the ceramic specimen. Reasons for these differences include the effective dimensions and geometry of the probe with respect to the surface topography; the reflectivity of the surface, and the type of filtering scheme Results of this investigation emphasize the importance of rigorously specifying the manner of surface roughness measurement when either reporting roughness data or when requesting that roughness data be provided.

  13. Electromagnetic fasteners

    DOE Patents [OSTI]

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  14. Electromagnetic fasteners

    DOE Patents [OSTI]

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  15. Communications system using a mirror kept in outer space by electromagnetic radiation pressure

    DOE Patents [OSTI]

    Csonka, Paul L.

    1981-01-01

    A method and system are described for transmitting electromagnetic radiation by using a communications mirror located between about 100 kilometers and about 200 kilometers above ground. The communications mirror is kept aloft above the atmosphere by the pressure of the electromagnetic radiation which it reflects, and which is beamed at the communications mirror by a suitably constructed transmitting antenna on the ground. The communications mirror will reflect communications, such as radio, radar, or television waves up to about 1,100 kilometers away when the communications mirror is located at a height of about 100 kilometers.

  16. Grounding and shielding in the accelerator environment

    SciTech Connect (OSTI)

    Kerns, Q.

    1991-12-31

    Everyday features of the accelerator environment include long cable runs, high power and low level equipment sharing building space, stray electromagnetic fields and ground voltage differences between the sending and receiving ends of an installation. This paper pictures some Fermilab installations chosen to highlight significant features and presents practices, test methods and equipment that have been helpful in achieving successful shielding. Throughout the report are numbered statements aimed at summarizing good practices and avoiding pitfalls.

  17. Coherent hybrid electromagnetic field imaging

    DOE Patents [OSTI]

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  18. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  19. Electromagnetic Reciprocity.

    SciTech Connect (OSTI)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  20. Comparison of practical vertical ground heat exchanger sizing methods to a Fort Polk data/model benchmark

    SciTech Connect (OSTI)

    Thornton, J.W.; McDowell, T.P.; Hughes, P.J.

    1997-09-01

    The results of five practical vertical ground heat exchanger sizing programs are compared against a detailed simulation model that has been calibrated to monitored data taken from one military family housing unit at Fort Polk, Louisiana. The calibration of the detailed model to data is described in a companion paper. The assertion that the data/detailed model is a useful benchmark for practical sizing methods is based on this calibration. The results from the comparisons demonstrate the current level of agreement between vertical ground heat exchanger sizing methods in common use. It is recommended that the calibration and comparison exercise be repeated with data sets from additional sites in order to build confidence in the practical sizing methods.

  1. Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Area 1973 1976 Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Kilauea East Rift Geothermal Area Print PDF Retrieved from "http:en.openei.orgw...

  2. Surface Signature Characterization at SPE through Ground-Proximal Methods: Methodology Change and Technical Justification

    SciTech Connect (OSTI)

    Schultz-Fellenz, Emily S.

    2015-09-09

    A portion of LANL’s FY15 SPE objectives includes initial ground-based or ground-proximal investigations at the SPE Phase 2 site. The area of interest is the U2ez location in Yucca Flat. This collection serves as a baseline for discrimination of surface features and acquisition of topographic signatures prior to any development or pre-shot activities associated with SPE Phase 2. Our team originally intended to perform our field investigations using previously vetted ground-based (GB) LIDAR methodologies. However, the extended proposed time frame of the GB LIDAR data collection, and associated data processing time and delivery date, were unacceptable. After technical consultation and careful literature research, LANL identified an alternative methodology to achieve our technical objectives and fully support critical model parameterization. Very-low-altitude unmanned aerial systems (UAS) photogrammetry appeared to satisfy our objectives in lieu of GB LIDAR. The SPE Phase 2 baseline collection was used as a test of this UAS photogrammetric methodology.

  3. Investigations of the Absorption Properties of Near-Ground Aerosol by the Methods of Optical-Acoustic Spectrometry and Diff...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigations of the Absorption Properties of Near-Ground Aerosol by the Methods of Optical-Acoustic Spectrometry and Diffuse Extinction V. S. Kozlov, M. V. Panchenko, A. B. Tikhomirov, and B. A. Tikhomirov Institute of Atmospheric Optics Tomsk, Russia Introduction Aerosol absorption is an important factor in the formation of non-selective radiation extinction in the visible wavelength range, and plays a great role in solving many radiative and climatic problems. The principal absorbing

  4. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Scudiere, Matthew B.; Jordan, John K.

    2002-01-01

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  5. Grounding electrode and method of reducing the electrical resistance of soils

    DOE Patents [OSTI]

    Koehmstedt, Paul L.

    1980-01-01

    A first solution of an electrolyte is injected underground into a volume of soil having negative surface charges on its particles. A cationic surfactant suspended in this solution neutralizes these surface charges of the soil particles within the volume. Following the first solution, a cationic asphalt emulsion suspended in a second solution is injected into the volume. The asphalt emulsion diffuses through the volume and electrostatically bonds with additional soil surrounding the volume such that an electrically conductive water repellant shell enclosing the volume is formed. This shell prevents the leaching of electrolyte from the volume into the additional soil. The second solution also contains a dissolved deliquescent salt which draws water into the volume prior to the formation of the shell. When electrically connected to an electrical installation such as a power line tower, the volume constitutes a grounding electrode for the tower.

  6. Ground difference compensating system

    DOE Patents [OSTI]

    Johnson, Kris W.; Akasam, Sivaprasad

    2005-10-25

    A method of ground level compensation includes measuring a voltage of at least one signal with respect to a primary ground potential and measuring, with respect to the primary ground potential, a voltage level associated with a secondary ground potential. A difference between the voltage level associated with the secondary ground potential and an expected value is calculated. The measured voltage of the at least one signal is adjusted by an amount corresponding to the calculated difference.

  7. Anisotropic conducting films for electromagnetic radiation applications

    DOE Patents [OSTI]

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  8. Thin sheet casting with electromagnetic pressurization

    DOE Patents [OSTI]

    Walk, Steven R.; Slepian, R. Michael; Nathenson, Richard D.; Williams, Robert S.

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  9. Wind load design methods for ground-based heliostats and parabolic dish collectors

    SciTech Connect (OSTI)

    Peterka, J A; Derickson, R G

    1992-09-01

    The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

  10. Nanofluids and a method of making nanofluids for ground source heat pumps and other applications

    DOE Patents [OSTI]

    Olson, John Melvin

    2013-11-12

    This invention covers nanofluids. Nanofluids are a combination of particles between 1 and 100 nanometers, a surfactant and the base fluid. The nanoparticles for this invention are either pyrogenic nanoparticles or carbon nanotubes. These nanofluids improve the heat transfer of the base fluids. The base fluid can be ethylene glycol, or propylene glycol, or an aliphatic-hydrocarbon based heat transfer fluid. This invention also includes a method of making nanofluids. No surfactant is used to suspend the pyrogenic nanoparticles in glycols.

  11. Jeff Grounds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jeff Grounds Jeff Grounds jeffgrounds-sm.jpg Jeff Grounds Facilities Manager JTGrounds@lbl.gov Phone: (510) 486-7197 Mobile: (510) 207-2273 Last edited: 2016-04-29 11:34:57

  12. Generating highly uniform electromagnetic field characteristics

    DOE Patents [OSTI]

    Crow, J.T.

    1998-02-10

    An apparatus and method for generating homogeneous electromagnetic fields within a volume is disclosed. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 39 figs.

  13. Generating highly uniform electromagnetic field characteristics

    DOE Patents [OSTI]

    Crow, J.T.

    1997-06-24

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 26 figs.

  14. Generating highly uniform electromagnetic field characteristics

    DOE Patents [OSTI]

    Crow, J.T.

    1998-05-05

    An apparatus and method are disclosed for generating homogeneous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set. 55 figs.

  15. Generating highly uniform electromagnetic field characteristics

    DOE Patents [OSTI]

    Crow, James T.

    1997-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially cancelling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  16. Generating highly uniform electromagnetic field characteristics

    DOE Patents [OSTI]

    Crow, James T.

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  17. Generating highly uniform electromagnetic field characteristics

    DOE Patents [OSTI]

    Crow, James Terry

    1998-01-01

    An apparatus and method for generating homogenous electromagnetic fields within a volume. The homogeneity provided may be for magnetic and/or electric fields, and for field magnitude, radial gradient, or higher order radial derivative. The invention comprises conductive pathways oriented mirror symmetrically about a desired region of homogeneity. A corresponding apparatus and method is provided for substantially canceling the electromagnetic field outside of the apparatus, comprising a second set of conductive pathways placed outside the first set.

  18. Conformal Electromagnetic Particle in Cell: A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meierbachtol, Collin S.; Greenwood, Andrew D.; Verboncoeur, John P.; Shanker, Balasubramaniam

    2015-10-26

    We review conformal (or body-fitted) electromagnetic particle-in-cell (EM-PIC) numerical solution schemes. Included is a chronological history of relevant particle physics algorithms often employed in these conformal simulations. We also provide brief mathematical descriptions of particle-tracking algorithms and current weighting schemes, along with a brief summary of major time-dependent electromagnetic solution methods. Several research areas are also highlighted for recommended future development of new conformal EM-PIC methods.

  19. Tunability enhanced electromagnetic wiggler

    DOE Patents [OSTI]

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  20. Tunability enhanced electromagnetic wiggler

    DOE Patents [OSTI]

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  1. Electromagnetically Operated Counter

    DOE Patents [OSTI]

    Goldberg, H.D.; Goldberg, M.I.

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  2. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect (OSTI)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  3. Electromagnetic rotational actuation.

    SciTech Connect (OSTI)

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  4. Electromagnetic Effects in SDF Explosions

    SciTech Connect (OSTI)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise

  5. The Study of Electromagnetic Wave Propogation in Photonic Crystals Via Planewave Based Transfer (Scattering) Matrix Method with Active Gain Material Applications

    SciTech Connect (OSTI)

    Ming LI

    2007-12-01

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional(2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Furthermore, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. Various physical properties such as resonant cavity quality factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current curve (for lasing devices) can be obtained from the developed software package.

  6. Fluidic electrodynamics: Approach to electromagnetic propulsion

    SciTech Connect (OSTI)

    Martins, Alexandre A.; Pinheiro, Mario J.

    2009-03-16

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  7. Superconducting dipole electromagnet

    DOE Patents [OSTI]

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  8. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems

    SciTech Connect (OSTI)

    Nakata, Hiroya; RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 ; Fedorov, Dmitri G.; Yokojima, Satoshi; Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 ; Kitaura, Kazuo; Sakurai, Minoru; Nakamura, Shinichiro

    2014-04-14

    We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.

  9. Electromagnetic radiation detector

    DOE Patents [OSTI]

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  10. Electromagnetic structure of light nuclei

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  11. Computational Electronics and Electromagnetics

    SciTech Connect (OSTI)

    DeFord, J.F.

    1993-03-01

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  12. Ground Electromagnetic Survey At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    the data rather than computed from a theoretical formula. This survey was good for learning about the deep resistivity structures. References James Kauahikaua, Douglas Klein...

  13. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOE Patents [OSTI]

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  14. ELECTROMAGNETIC RELEASE MECHANISM

    DOE Patents [OSTI]

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  15. Electromagnetic targeting of guns

    SciTech Connect (OSTI)

    Pogue, E.W.; Boat, R.M.; Holden, D.N.; Lopez, J.R.

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Electromagnetic pulse (EMP) signals produced from explosives being fired have been reported in the literature for fifty years. When a gun is fired it produces an EMP muzzle blast signal. The strength and nature of these signals was first analyzed in the early 1970s, while the results were interesting, no follow-up studies were conducted. With modern detection and signal processing technology, we believe that these signals could be used to instantaneously locate guns of virtually all calibers as they fire. The objective of our one-year project was to establish the basic nature of these signals and their utility in the concept of electromagnetic targeting of guns.

  16. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  17. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  18. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  19. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  20. Apparatus And Method For Reducing Drag Of A Bluff Body In Ground Effect Using Counter-Rotating Vortex Pairs

    DOE Patents [OSTI]

    Ortega, Jason M.; Sabari, Kambiz

    2005-12-27

    An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.

  1. Apparatus And Method For Reducing Drag Of A Bluff Body In Ground Effect Using Counter-Rotating Vortex Pairs

    DOE Patents [OSTI]

    Ortega, Jason M.; Salari, Kambiz

    2005-08-09

    An aerodynamic base drag reduction apparatus and method for bluff bodies, such as tractor-trailer trucks, utilizing a pair of lift surfaces extending to lift surface tips and located alongside the bluff body such as on opposing left and right side surfaces. In a flowstream substantially parallel to the longitudinal centerline of the bluff body, the pair of lift surfaces generate a pair of counter-rotating trailing vortices which confluence together in the wake of the bluff body in a direction orthogonal to the flowstream. The confluence draws or otherwise turns the flowstream, such as the flowstream passing over a top surface of the bluff body, in and around behind a trailing end of the bluff body to raise the pressure on a base surface at the trailing end and thereby reduce the aerodynamic base drag.

  2. Discriminating electromagnetic radiation based on angle of incidence

    DOE Patents [OSTI]

    Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.

    2015-06-16

    The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.

  3. Electromagnetic pump stator coil

    DOE Patents [OSTI]

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  4. Electromagnetic pump stator coil

    DOE Patents [OSTI]

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  5. Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    Physical Properties See Electrical Techniques Electromagnetic techniques utilize EM induction processes to measure one or more electric or magnetic field components resulting...

  6. Sandia National Laboratories: Electromagnetic Environments Simulator (EMES)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electromagnetic Environments Simulator (EMES) The Electromagnetic Environments Simulator (EMES) is a large transverse electromagnetic (TEM) cell that propagates a uniform, planar electromagnetic wave through the cell volume where test items are placed. EMES can be used for continuous wave (CW) Electromagnetic Radiation (EMR) and transient Electromagnetic Pulse (EMP) testing. The electric field is vertically polarized between the center conductor and the floor. If it is desired to illuminate test

  7. Nucleon Electromagnetic Form Factors

    SciTech Connect (OSTI)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  8. Detection of electromagnetic radiation using micromechanical...

    Office of Scientific and Technical Information (OSTI)

    Patent: Detection of electromagnetic radiation using micromechanical multiple quantum wells structures Citation Details In-Document Search Title: Detection of electromagnetic ...

  9. First experience of vectorizing electromagnetic physics models...

    Office of Scientific and Technical Information (OSTI)

    electromagnetic physics models for detector simulation Citation Details In-Document Search Title: First experience of vectorizing electromagnetic physics models for detector ...

  10. Transient performance of substation structures and associated grounding systems

    SciTech Connect (OSTI)

    Dawalibi, F.P.; Xiong, W.; Ma, J.

    1995-05-01

    When lightning strikes an electric substation, large currents generated by the stroke flow in the above ground structures and grounding system and dissipate in the soil. The electromagnetic fields generated by such high currents may cause damage to equipment and may be dangerous to personnel working nearby. In this paper, the frequency and time domain performance of a substation subjected to a lightning strike is described and discussed. The computed scalar potentials, electric fields, and magnetic fields are presented graphically as a function of spatial coordinates, as a function of time and as a function of both. Two cases are considered. The first case examines the substation grounding system only, while the second case includes an above-ground structure as well. It is believed that the results of the second case have not been published before. A double exponential lightning surge current is injected at one corner of the substation. The response of the grounding system to the frequency domain electromagnetic spectrum of this signal is computed by a frequency domain electromagnetic field analysis software package. The temporal and spatial distributions of the electromagnetic fields inside and near the substation are obtained by an inverse Fourier transformation of all these responses. The presence of a soil with an arbitrary resistivity and permittivity is accurately taken into account. The analysis sheds some new light on the understanding of the effects which take place at the higher frequencies.

  11. Double hull grounding experiments

    SciTech Connect (OSTI)

    Rodd, J.L.; Sikora, J.P.

    1995-12-31

    In the last few years the public and governments of many nations have become increasingly aware of the need for improving oil tanker safety. The requirements for double hull tankers are an attempt to address this need through legislation. Even though a number of investigations on the mechanics of collisions have been done in the past, until recently very little research supported the development of structural improvements to reduce oil tanker damage during grounding and stranding accidents. An aggressive evaluation of double hull tanker crashworthiness in stranding and grounding accidents is underway at CD/NSWC (formerly the David Taylor Research Center). The ability to predict damage from grounding accidents accurately is not currently available. The objective of this paper is to present qualitatively the structural failure mechanisms associated with stranding and grounding events for candidate double hull tanker structures and to present some simple methods for comparing damage scenarios. A comparison of the structural performance of key features in several very different designs will provide useful information toward this understanding.

  12. Electromagnetically driven peristaltic pump

    DOE Patents [OSTI]

    Marshall, Douglas W.

    2000-01-01

    An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

  13. Electrical, electromagnetic, and magnetotelluric methods | Open...

    Open Energy Info (EERE)

    poor until the last several years when application of numerical techniques using computers permitted forward and inverse solutions to electrical boundary value problems in two...

  14. Handbook of electromagnetic pump technology

    SciTech Connect (OSTI)

    Baker, R.S.; Tessier, M.J.

    1987-01-01

    The Handbook of Electromagnetic Pump Technology features: Step-by-Step design procedures, relating to actual pumps for specific applications; Computer program listings for pump efficiency and weight prediction (in BASIC); Test results for selected pump applications; Practical considerations, installation and implementation; A discussion of the related use of electromagnetic devices in magnetohydrodynamic power generation. A source of information for EM pump design and selection, the Handbook is designed for metallurgical and plant engineers in the metals industry, design engineers in chemical and process plants, and students of electrical, mechanical, metallurgical, and nuclear engineering.

  15. Ground water and energy

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  16. Low-Frequency Electromagnetic Backscatter from Buried Tunnels

    SciTech Connect (OSTI)

    Casey, K; Pao, H

    2006-06-21

    This progress report is submitted under a contract between the Special Project Office of DARPA and Lawrence Livermore National Laboratory. The Project Manager at DARPA is Dr. Michael Zatman. Our purpose under this contract is to investigate interactions between electromagnetic waves and a class of buried targets located in multilayered media with rough interfaces. In this report, we investigate three preliminary problems. In each case our specific goal is to understand various aspects of the electromagnetic wave interaction mechanisms with targets in layered media. The first problem, discussed in Section 2, is that of low-frequency electromagnetic backscattering from a tunnel that is cut into a lossy dielectric half-space. In this problem, the interface between the upper (free space) region and the lower (ground) region is smooth. The tunnel is assumed to be a cylindrical free-space region of infinite extent in its axial direction and with a diameter that is small in comparison to the free-space wavelength. Because its diameter is small, the tunnel can be modeled as a buried ''wire'' described by an equivalent impedance per unit length. In Section 3 we extend the analysis to include a statistically rough interface between the air and ground regions. The interface is modeled as a random-phase screen. Such a screen reduces the coherent power in a plane wave that is transmitted through it, scattering some of the total power into an incoherent field. Our analysis of this second problem quantifies the reduction in the coherent power backscattered from the buried tunnel that is caused by the roughness of the air-ground interface. The problem of low-frequency electromagnetic backscattering from two buried tunnels, parallel to each other but at different locations in the ground, is considered in Section 4. In this analysis, we wish to determine the conditions under which the presence of more than one tunnel can be detected via backscattering. Section 5 concludes the report

  17. Strong permanent magnet-assisted electromagnetic undulator

    DOE Patents [OSTI]

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  18. Human body impedance for electromagnetic hazard analysis in the VLF to MF band

    SciTech Connect (OSTI)

    Kanai, H.; Chatterjee, I.; Gandhi, O.P.

    1984-08-01

    A knowledge of the average electrical impedance of the human body is essential for the analysis of electromagnetic hazards in the VLF to MF band. The purpose of the measurements was to determine the average body impedance of several human subjects as a function of frequency. Measurements were carried out with the subjects standing barefoot on a ground plane and touching various metal electrodes with the hand or index finger. The measured impedance includes the electrode polarization and skin impedances, spread impedance near the electrode, body impedance, stray capacitance between the body surface and ground, and inductance due to the body and grounding strap. These components are separated and simplified equivalent circuits are presented for body impedance of humans exposed to free-space electromagnetic waves as well as in contact with large ungrounded metallic objects therein.

  19. Electromagnetically induced transparency in paraffin-coated vapor cells

    SciTech Connect (OSTI)

    Klein, M.; Hohensee, M.; Walsworth, R. L. [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Phillips, D. F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States)

    2011-01-15

    Antirelaxation coatings in atomic vapor cells allow ground-state coherent spin states to survive many collisions with the cell walls. This reduction in the ground-state decoherence rate gives rise to ultranarrow-bandwidth features in electromagnetically induced transparency (EIT) spectra, which can form the basis of, for example, long-time scale slow and stored light, sensitive magnetometers, and precise frequency standards. Here we study, both experimentally and theoretically, how Zeeman EIT contrast and width in paraffin-coated rubidium vapor cells are determined by cell and laser-beam geometry, laser intensity, and atomic density. Using a picture of Ramsey pulse sequences, where atoms alternately spend ''bright'' and ''dark'' time intervals inside and outside the laser beam, we explain the behavior of EIT features in coated cells, highlighting their unique characteristics and potential applications.

  20. Time domain electromagnetic metal detectors

    SciTech Connect (OSTI)

    Hoekstra, P.

    1996-04-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved.

  1. electromagnetics, eddy current, computer codes

    Energy Science and Technology Software Center (OSTI)

    2002-03-12

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  2. Laminated electromagnetic pump stator core

    DOE Patents [OSTI]

    Fanning, Alan W.

    1995-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference.

  3. Laminated electromagnetic pump stator core

    DOE Patents [OSTI]

    Fanning, A.W.

    1995-08-08

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  4. Pulsed power for electromagnetic launching

    SciTech Connect (OSTI)

    Cowan, M

    1980-12-01

    There are system advantages to producing power for electromagnetic propulsion by real-time generation rather than by a sequence of generation-storage-switching. The best type of generator for this purpose is the flux compression generator. Different types of flux compression generator which have been developed at Sandia National Laboratories are reviewed and their applications to electric launching are discussed. New experimental facilities for producing more powerful generators are described and cost comparisons are made.

  5. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery W.; Zevenbergen, Gary A.

    2012-04-03

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  6. Electromagnetic nonlinear gyrokinetics with polarization drift

    SciTech Connect (OSTI)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-08-15

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.

  7. Electrical grounding prong socket

    DOE Patents [OSTI]

    Leong, Robert

    1991-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  8. INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2004-11-05

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential

  9. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Electromagnetic Soundings At Kilauea East Rift Geothermal Area (KELLER, Et...

  10. Sandia National Laboratories: Electromagnetic Environments Simulator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High bandwidth oscilloscopes and spectrum analyzers are used to acquire transient and CW ...m @ 4 m Related Links Pulsed Power Electromagnetic Environments Simulator (EMES) ...

  11. Implicitly-Coupled Electromechanical and Electromagnetic Transient...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electromechanical and electromagnetic transient analysis problem using a ... The FDNE is able to resolve the transient behavior over a wider frequency spectrum leading ...

  12. Crosswell Electromagnetic Resistivity Imaging: Illuminating the...

    Open Energy Info (EERE)

    Reviiew, 2006 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Crosswell Electromagnetic Resistivity Imaging: Illuminating the Reservior...

  13. High Energy Electromagnetic and Weak Interaction Processes

    DOE R&D Accomplishments [OSTI]

    Lee, T. D.

    1972-01-11

    This talk reviews some known features of the high energy electromagnetic and weak interaction processes and then tries to speculate on some particular aspects of their future possibilities.

  14. Sandia National Laboratories: Electromagnetics: Main Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORIES Electromagnetics (EM) is the study of the nature and interaction of static and dynamic electric and magnetic fields. Telecommunications, navigational guidance,...

  15. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOE Patents [OSTI]

    Young, J.N.

    1957-08-20

    An electromagnetic device for moving an object in a linear path by increments is described. The device is specifically adapted for moving a neutron absorbing control rod into and out of the core of a reactor and consists essentially of an extension member made of magnetic material connected to one end of the control rod and mechanically flexible to grip the walls of a sleeve member when flexed, a magnetic sleeve member coaxial with and slidable between limit stops along the flexible extension, electromagnetic coils substantially centrally located with respect to the flexible extension to flex the extension member into gripping engagement with the sleeve member when ener gized, moving electromagnets at each end of the sleeve to attract the sleeve when energized, and a second gripping electromagnet positioned along the flexible extension at a distance from the previously mentioned electromagnets for gripping the extension member when energized. In use, the second gripping electromagnet is deenergized, the first gripping electromagnet is energized to fix the extension member in the sleeve, and one of the moving electromagnets is energized to attract the sleeve member toward it, thereby moving the control rod.

  16. Noninvasive valve monitor using alternating electromagnetic field

    DOE Patents [OSTI]

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  17. Noninvasive valve monitor using alternating electromagnetic field

    DOE Patents [OSTI]

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  18. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  19. Efficient transformer for electromagnetic waves

    DOE Patents [OSTI]

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.

  20. Nuclear electromagnetic charge and current operators in Chiral EFT

    SciTech Connect (OSTI)

    Girlanda, Luca; Marcucci, Laura Elisa; Pastore, Saori; Piarulli, Maria; Schiavilla, Rocco; Viviani, Michele

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  1. Low-cost Electromagnetic Heating Technology for Polymer Extrusion...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing Citation Details In-Document Search Title: Low-cost Electromagnetic ...

  2. Is the proton electromagnetic form factor modified in nuclei...

    Office of Scientific and Technical Information (OSTI)

    Is the proton electromagnetic form factor modified in nuclei? Citation Details In-Document Search Title: Is the proton electromagnetic form factor modified in nuclei? You are ...

  3. Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) ...

    Open Energy Info (EERE)

    Time-Domain Electromagnetics At Soda Lake Area (Combs 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Soda...

  4. Category:Time-Domain Electromagnetics | Open Energy Information

    Open Energy Info (EERE)

    Time-Domain Electromagnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Time-Domain Electromagnetics page? For detailed...

  5. Analysis Of Factors Affecting Natural Source Slf Electromagnetic...

    Open Energy Info (EERE)

    The Super Low Frequency (SLF) electromagnetic exploration was performed by using a nature source SLF electromagnetic detector at two geothermal wells in Peking University. The...

  6. Electromagnetic effects on the light hadron spectrum (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Electromagnetic effects on the light hadron spectrum Citation Details In-Document Search Title: Electromagnetic effects on the light hadron spectrum Authors: Basak, S. ...

  7. Category:Electromagnetic Profiling Techniques | Open Energy Informatio...

    Open Energy Info (EERE)

    Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electromagnetic Profiling Techniques page? For...

  8. Interpretation of electromagnetic soundings in the Raft River...

    Open Energy Info (EERE)

    electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Interpretation of electromagnetic...

  9. Modeling of Electromagnetic Heating in RF Copper Accelerating...

    Office of Scientific and Technical Information (OSTI)

    Modeling of Electromagnetic Heating in RF Copper Accelerating Cavities Citation Details In-Document Search Title: Modeling of Electromagnetic Heating in RF Copper Accelerating ...

  10. Electromagnetics in high-{Tc} superconductors

    SciTech Connect (OSTI)

    Ma, J.G.; Wolff, I.

    1996-04-01

    The behavior of electromagnetic fields in high-{Tc} superconductors (HTS`s) is studied in order to examine their effects in classical electromagnetic boundary value problems. It is shown that an HTS can not be simply treated as a low loss conductor and boundary conditions of HTS`s can not be considered as perfect conducting boundaries like conventional treatments. The electromagnetics of HTS are investigated in terms of complex conductivity, surface impedance with applied magnetic fields, and computational electrodynamics using the new proposed model in Ref. 1.

  11. Nanomechanical electric and electromagnetic field sensor

    SciTech Connect (OSTI)

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  12. Electrical wire insulation and electromagnetic coil

    DOE Patents [OSTI]

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  13. Computes Generalized Electromagnetic Interactions Between Structures

    Energy Science and Technology Software Center (OSTI)

    1999-02-20

    Object oriented software for computing generalized electromagnetic interactions between structures in the frequency domains. The software is based on integral equations. There is also a static integral equation capability.

  14. Sandia National Laboratories: Electromagnetic Technology at Sandia National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Electromagnetics Facilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Research Electromagnetic Technology at Sandia National Laboratories Lightning Electromagnetics (EM) is the study of the nature and interaction of static and dynamic electric and magnetic fields. Telecommunications, navigational guidance, radar, and power transmission depend on our ability to generate, guide, radiate, receive, and detect electromagnetic

  15. Frequency-Domain Electromagnetic Survey | Open Energy Information

    Open Energy Info (EERE)

    Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Profiling Techniques...

  16. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect (OSTI)

    Sati, Priti; Tripathi, V. K.

    2012-12-15

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  17. Electromagnetic Transport From Microtearing Mode Turbulence

    SciTech Connect (OSTI)

    Guttenfelder, W; Kaye, S M; Nevins, W M; Wang, E; Bell, R E; Hammett, G W; LeBlanc, B P; Mikkelsen, D R

    2011-03-23

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  18. Substation grounding programs

    SciTech Connect (OSTI)

    Meliopoulos, A.P.S. . Electric Power Lab.)

    1992-05-01

    This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

  19. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  20. Is Electromagnetic Gravity Control Possible?

    SciTech Connect (OSTI)

    Vargas, Jose G.; Torr, Douglas G.

    2004-02-04

    We study the interplay of Einstein's Gravitation (GR) and Maxwell's Electromagnetism, where the distribution of energy-momentum is not presently known (The Feynman Lectures, Vol 2, Chapter 27, section 4). As Feynman himself stated, one might in principle use Einstein's equations of GR to find such a distribution. GR (born in 1915) presently uses the Levi-Civita connection, LCC (the LCC was born two years after GR as a new concept, and not just as the pre-existing Christoffel symbols that represent it). Around 1927, Einstein proposed for physics an alternative to the LCC that constitutes a far more sensible and powerful affine enrichment of metric Riemannian geometry. It is called teleparallelism (TP). Its Finslerian version (i.e. in the space-time-velocity arena) permits an unequivocal identification of the EM field as a geometric quantity. This in turn permits one to identify a completely geometric set of Einstein equations from curvature equations. From their right hand side, one may obtain the actual distribution of EM energy-momentum. It is consistent with Maxwell's equations, since these also are implied by the equations of structure of TP. We find that the so-far-unknown terms in this distribution amount to a total differential and do not, therefore, alter the value of the total EM energy-momentum. And yet these extra terms are at macroscopic distances enormously larger than the standard quadratic terms. This allows for the generation of measurable gravitational fields by EM fields. We thus answer affirmatively the question of the title.

  1. Cable Braid Electromagnetic Penetration Model.

    SciTech Connect (OSTI)

    Warne, Larry K.; Langston, William L.; Basilio, Lorena I.; Johnson, W. A.

    2015-06-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles and reciprocity for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also setup in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used in a simplified application of reciprocity to be able to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  2. Innovative Electromagnetic Sensors for Pipeline Crawlers

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2006-05-04

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual

  3. International Energy Agency Building Energy Simulation Test and Diagnostic Method (IEA BESTEST): In-Depth Diagnostic Cases for Ground Coupled Heat Transfer Related to Slab-on-Grade Construction

    SciTech Connect (OSTI)

    Neymark, J.; Judkoff, R.; Beausoleil-Morrison, I.; Ben-Nakhi, A.; Crowley, M.; Deru, M.; Henninger, R.; Ribberink, H.; Thornton, J.; Wijsman, A.; Witte, M.

    2008-09-01

    This report documents a set of idealized in-depth diagnostic test cases for use in validating ground-coupled floor slab heat transfer models. These test cases represent an extension to IEA BESTEST.

  4. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    DOE Patents [OSTI]

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  5. Electromagnetic continuous casting project: Final report

    SciTech Connect (OSTI)

    Battles, J.E.; Rote, D.M.; Misra, B.; Praeg, W.F.; Hull, J.R.; Turner, L.R.; Shah, V.L.; Lari, R.J.; Gopalsami, N.; Wiencek, T.

    1988-10-01

    This report describes the work on development of an electromagnetic casting process for steel, which was carried out at Argonne National Laboratory between January 1985 and December 1987. This effort was concerned principally with analysis and design work on magnet technology, liquid metal feed system, coolant system, and sensors and process controllers. Experimentation primarily involved (1) electromagnetic studies to determine the conditions and controlling parameters for stable levitation and (2) feed-system studies to establish important parameters that control and influence fluid flow from the liquid metal source to the caster. 73 refs., 91 figs., 11 tabs.

  6. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen; Schultz, Peter G.; Wei, Tao

    2003-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  7. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong; Gao, Chen

    2001-01-01

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  8. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  9. Electromagnetic behavior of high-{Tc} superconductors

    SciTech Connect (OSTI)

    Ma, J.G.; Wolff, I.

    1996-05-01

    Using a new proposed model, the electromagnetic behavior of high-temperature superconductors (HTSs) is discussed. It indicates that the real part of the complex conductivity of HTSs is dependent on the driving frequency, and the simulated results agree well with measured data in literature. Nonlinear surface resistances dependence on an external magnetic field are also simulated and compared with experimental results.

  10. Improved Characterization and Monitoring of Electromagnetic Sources -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Characterization and Monitoring of Electromagnetic Sources Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary LLNL's technology is useful in fields such as power systems engineering, security monitoring, and vehicle tracking to identify, locate and monitor a particular source of

  11. Joint Electromagnetic Pulse Resilience Strategy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electromagnetic Pulse Resilience Strategy Joint Electromagnetic Pulse Resilience Strategy The Joint Electromagnetic Pulse Resilience Strategy is a collaboration between the Department of Energy (DOE) and the Electric Power Research Institute (EPRI) that enhances coordination and guides future efforts to help meet the growing demands for electromagnetic pulse (EMP) guidance. The Joint Strategy lays out five strategic goals to guide DOE and EPRI to minimize EMP impacts and improve resilience: 1.

  12. Motor Packaging with Consideration of Electromagnetic and Material...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless Charging

  13. Coherent THz electromagnetic radiation emission as a shock wave...

    Office of Scientific and Technical Information (OSTI)

    AND SUPERFLUIDITY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ACOUSTICS; COMPRESSION; ELECTROMAGNETIC RADIATION; KINETICS; PHASE TRANSFORMATIONS; PROBES; ...

  14. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelquist, T.; Berkowitz, E.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; et al

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from a dark SU(4) confining gauge theory—“stealth dark matter.” In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using themore » background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be possibly detectable in the dark matter mass range of about 200–700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m6B, suggests the observable dark matter mass range is not appreciably modified. We highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.« less

  15. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability

    SciTech Connect (OSTI)

    Appelquist, T.; Berkowitz, E.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from a dark SU(4) confining gauge theory—“stealth dark matter.” In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be possibly detectable in the dark matter mass range of about 200–700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m6B, suggests the observable dark matter mass range is not appreciably modified. We highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.

  16. Grounded Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Grounded Renewable Energy Jump to: navigation, search Name: Grounded Renewable Energy Place: Carbondale, Colorado Zip: 81623 Sector: Renewable Energy, Solar Product: Grounded...

  17. Category:Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Ground Magnetics page? For detailed information on Ground...

  18. Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report.

    SciTech Connect (OSTI)

    Siefert, Christopher; Bochev, Pavel Blagoveston; Kramer, Richard Michael Jack; Voth, Thomas Eugene; Cox, James

    2014-09-01

    Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include explod- ing bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are im- practical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The em- pirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which sat- isfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.

  19. A strong permanent magnet-assisted electromagnetic undulator

    DOE Patents [OSTI]

    Halbach, K.

    1987-01-30

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles. 4 figs.

  20. A Numerical Evaluation Of Electromagnetic Methods In Geothermal...

    Open Energy Info (EERE)

    L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Numerical...

  1. Apparatuses and method for converting electromagnetic radiation to direct current

    DOE Patents [OSTI]

    Kotter, Dale K; Novack, Steven D

    2014-09-30

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  2. Effects of thermal motion on electromagnetically induced absorption

    SciTech Connect (OSTI)

    Tilchin, E.; Wilson-Gordon, A. D.; Firstenberg, O.

    2011-05-15

    We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

  3. Electromagnetic radiation absorbers and modulators comprising polyaniline

    DOE Patents [OSTI]

    Epstein, Arthur J.; Ginder, John M.; Roe, Mitchell G.; Hajiseyedjavadi, Hamid

    1992-01-01

    A composition for absorbing electromagnetic radiation, wherein said electromagnetic radiation possesses a wavelength generally in the range of from about 1000 Angstroms to about 50 meters, wherein said composition comprises a polyaniline composition of the formula ##STR1## where y can be equal to or greater than zero, and R.sup.1 and R.sup.2 are independently selected from the group containing of H, --OCH.sub.3, --CH.sub.3, --F, --Cl, --Br, --I, NR.sup.3 .sub.2, --NHCOR.sup.3, --OH, --O.sup.-, SR.sup.3, --OCOR.sup.3, --NO.sub.2, --COOH, --COOR.sup.3, --COR.sup.3, --CHO, and --CN, where R.sup.3 is a C.sub.1 to C.sub.8 alkyl, aryl or aralkyl group.

  4. On the radar cross section (RCS) prediction of vehicles moving on the ground

    SciTech Connect (OSTI)

    Sabihi, Ahmad

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Targets material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  5. Low-frequency computational electromagnetics for antenna analysis

    SciTech Connect (OSTI)

    Miller, E.K. ); Burke, G.J. )

    1991-01-01

    An overview of low-frequency, computational methods for modeling the electromagnetic characteristics of antennas is presented here. The article presents a brief analytical background, and summarizes the essential ingredients of the method of moments, for numerically solving low-frequency antenna problems. Some extensions to the basic models of perfectly conducting objects in free space are also summarized, followed by a consideration of some of the same computational issues that affect model accuracy, efficiency and utility. A variety of representative computations are then presented to illustrate various modeling aspects and capabilities that are currently available. A fairly extensive bibliography is included to suggest further reference material to the reader. 90 refs., 27 figs.

  6. Electromagnetic confinement for vertical casting or containing molten metal

    DOE Patents [OSTI]

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  7. Renewable Energy, Photovoltaic Systems Near Airfields. Electromagnetic Interference

    SciTech Connect (OSTI)

    Deline, Chris; Dann, Geoff

    2015-04-01

    Recent increases in photovoltaic (PV) systems on Department of the Navy (DON) land and potential siting near airfields prompted Commander, Naval Installations Command to fund the Naval Facilities Engineering Command to evaluate the impact of electromagnetic interference (EMI) from PV systems on airfield electronic equipment. Naval Facilities Engineering and Expeditionary Warfare Center tasked Department of Energy National Renewable Energy laboratory (NREL) to conduct the assessment. PV systems often include high-speed switching semiconductor circuits to convert the voltage produced by the PV arrays to the voltage needed by the end user. Switching circuits inherently produce electromagnetic radiation at harmonics of the switching frequency. In this report, existing literature is summarized and tests to measure emissions and mitigation methods are discussed. The literature shows that the emissions from typical PV systems are low strength and unlikely to cause interference to most airfield electronic systems. With diligent procurement and siting of PV systems, including specifications for FCC Part 15 Class A compliant equipment and a 250-foot setback from communication equipment, NREL anticipates little to no EMI impact on nearby communications or telemetry equipment.

  8. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, R.J.

    1994-06-07

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  9. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, Richard J.

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  10. Electromagnetic or other directed energy pulse launcher

    DOE Patents [OSTI]

    Ziolkowski, Richard W.

    1990-01-01

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  11. Ground Magnetics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (25) Areas (19) Regions (0) NEPA(1) Exploration...

  12. Comparison between electroglottography and electromagnetic glottography

    SciTech Connect (OSTI)

    Titze, Ingo R.; Story, Brad H.; Burnett, Gregory C.; Holzrichter, John F.; Ng, Lawrence C.; Lea, Wayne A.

    2000-01-01

    Newly developed glottographic sensors, utilizing high-frequency propagating electromagnetic waves, were compared to a well-established electroglottographic device. The comparison was made on four male subjects under different phonation conditions, including three levels of vocal fold adduction (normal, breathy, and pressed), three different registers (falsetto, chest, and fry), and two different pitches. Agreement between the sensors was always found for the glottal closure event, but for the general wave shape the agreement was better for falsetto and breathy voice than for pressed voice and vocal fry. Differences are attributed to the field patterns of the devices. Whereas the electroglottographic device can operate only in a conduction mode, the electromagnetic device can operate in either the forward scattering (diffraction) mode or in the backward scattering (reflection) mode. Results of our tests favor the diffraction mode because a more favorable angle imposed on receiving the scattered (reflected) signal did not improve the signal strength. Several observations are made on the uses of the electromagnetic sensors for operation without skin contact and possibly in an array configuration for improved spatial resolution within the glottis. (c) 2000 Acoustical Society of America.

  13. Ground Control for Emplacement Drifts for SR

    SciTech Connect (OSTI)

    Y. Sun

    2000-04-07

    This analysis demonstrates that a satisfactory ground control system can be designed for the Yucca Mountain site, and provides the technical basis for the design of ground support systems to be used in repository emplacement and non-emplacement drifts. The repository ground support design was based on analytical methods using acquired computer codes, and focused on the final support systems. A literature review of case histories, including the lessons learned from the design and construction of the ESF, the studies on the seismic damages of underground openings, and the use of rock mass classification systems in the ground support design, was conducted (Sections 6.3.4 and 6.4). This review provided some basis for determining the inputs and methodologies used in this analysis. Stability of the supported and unsupported emplacement and non-emplacement drifts was evaluated in this analysis. The excavation effects (i.e., state of the stress change due to excavation), thermal effects (i.e., due to heat output from waste packages), and seismic effects (i.e., from potential earthquake events) were evaluated, and stress controlled modes of failure were examined for two in situ stress conditions (k_0=0.3 and 1.0) using rock properties representing rock mass categories of 1 and 5. Variation of rock mass units such as the non-lithophysal (Tptpmn) and lithophysal (Tptpll) was considered in the analysis. The focus was on the non-lithophysal unit because this unit appears to be relatively weaker and has much smaller joint spacing. Therefore, the drift stability and ground support needs were considered to be controlled by the design for this rock unit. The ground support systems for both emplacement and non-emplacement drifts were incorporated into the models to assess their performance under in situ, thermal, and seismic loading conditions. Both continuum and discontinuum modeling approaches were employed in the analyses of the rock mass behavior and in the evaluation of the

  14. Regional analysis of ground and above-ground climate

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  15. Compression of ground-motion data

    SciTech Connect (OSTI)

    Long, J.W.

    1981-04-01

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

  16. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOE Patents [OSTI]

    Liburdy, Robert P.

    1993-01-01

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  17. Branching Ratio of the Electromagnetic Decay of the Σ+(1385)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keller, D.; Hicks, K.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; et al

    2012-03-01

    The CLAS detector was used to obtain the first ever measurement of the electromagnetic decay of the Σ*+(1385) from the reaction γp → K0 Σ*+(1385). A real photon beam with a maximum energy of 3.8 GeV was incident on a liquid-hydrogen target, resulting in the photoproduction of the kaon and Σ* hyperon. Kinematic fitting was used to separate the reaction channel from the background processes. The fitting algorithm exploited a new method to kinematically fit neutrons in the CLAS detector, leading to the partial width measurement of 250.0 ± 56.9(stat)-41.2+34.3(sys) keV. A U-spin symmetry test using the SU(3) flavor-multiplet representationmore » yields predictions for the Σ*+(1385) → Σ+γ and Σ*0(1385) → Λγ partial widths that agree with the experimental measurements.« less

  18. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOE Patents [OSTI]

    Liburdy, R.P.

    1993-03-02

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  19. Artificial Retina Project: Electromagnetic and Thermal Effects

    SciTech Connect (OSTI)

    Lazzi, Gianluca

    2014-08-29

    This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

  20. Electromagnetic effects on the light hadron spectrum

    SciTech Connect (OSTI)

    Basak, S.; et al.

    2015-10-16

    Calculations studying electromagnetic eff ects on light mesons are reported. The calculations use fully dynamical QCD, but only quenched photons, which suffi ces to NLO in χ PT; that is, the sea quarks are electrically neutral, while the valence quarks carry charge. The non-compact formalism is used for photons. New results are obtained with lattice spacing as small as 0.045 fm and a large range of volumes. The success of chiral perturbation theory in describing these results and the implications for light quark masses are considered.

  1. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOE Patents [OSTI]

    Young, J.N.

    1958-04-22

    An electromagnetic apparatus for moving a rod-like member in small steps in either direction is described. The invention has particular application in the reactor field where the reactor control rods must be moved only a small distance and where the use of mechanical couplings is impractical due to the high- pressure seals required. A neutron-absorbing rod is mounted in a housing with gripping uaits that engage the rod, and coils for magnetizing the gripping units to make them grip, shift, and release the rod are located outside the housing.

  2. Electromagnetic imaging of dynamic brain activity

    SciTech Connect (OSTI)

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  3. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ferrite Hybrid Excitation Electric Machines Motor Packaging with Consideration of Electromagnetic and Material Characteristics Novel Flux Coupling Machine without Permanent Magnets

  4. Airborne Electromagnetic Survey At Chena Geothermal Area (Kolker...

    Open Energy Info (EERE)

    Phase I) Notes Fugro, Inc. performed an airborne geophysical survey using the DIGHEM (Digital Helicopter ElectroMagnetics) aircraft over a 937 km2 survey grid. An coplanar...

  5. Vlf Electromagnetic Investigations Of The Crater And Central...

    Open Energy Info (EERE)

    Of Mount St Helens, Washington Abstract A very low frequency (VLF) electromagnetic induction survey in the crater of Mount St. Helens has identified several electrically...

  6. Electromagnetic form factors and the hypercentral constituent quark model

    SciTech Connect (OSTI)

    Sanctis, M. De; Giannini, M. M.; Santopinto, E.; Vassallo, A.

    2007-12-15

    We present new results concerning the electromagnetic form factors of the nucleon using a relativistic version of the hypercentral constituent quark model and a relativistic current.

  7. Time-Domain Electromagnetics At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration...

  8. Time-Domain Electromagnetics At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea East Rift Geothermal Area (Skokan, 1974) Exploration...

  9. Time-Domain Electromagnetics At Kilauea Southwest Rift And South...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea Southwest Rift And South Flank Area (Thomas, 1986)...

  10. Time-Domain Electromagnetics At Hualalai Northwest Rift Area...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986) Exploration...

  11. Time-Domain Electromagnetics At Mauna Loa Northeast Rift Area...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration...

  12. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Exploration...

  13. Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) Exploration Activity...

  14. Time-Domain Electromagnetics At Truckhaven Area (Warpinski, Et...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Truckhaven Area (Warpinski, Et Al., 2004) Exploration...

  15. Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) Exploration Activity...

  16. Category:Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    subcategories, out of 3 total. M + Magnetotelluric Techniques (4 categories) 1 pages T Telluric Survey 1 pages Time-Domain Electromagnetics 1 pages Pages in...

  17. Sub-Cell Resolution Techniques for Multi-Material Electromagnetics...

    Office of Scientific and Technical Information (OSTI)

    Sub-Cell Resolution Techniques for Multi-Material Electromagnetics in Two and Three Dimensions. Citation Details In-Document Search Title: Sub-Cell Resolution Techniques for ...

  18. Modeling of Electromagnetic Heating in RF Copper Accelerating...

    Office of Scientific and Technical Information (OSTI)

    cooling scheme whether it is water or air based or even a combination of both. In this paper we investigate the electromagnetic heating in multiple cavities that were ...

  19. OSTIblog Articles in the electromagnetic Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    Related Topics: 70th Anniversary, atomic bomb, DOE Research & Development (R&D) Accomplishments, electromagnetic, gaseous diffusion, Manhattan Project, nuclear chain reaction, ...

  20. Frequency-Domain Electromagnetics Survey At Kilauea East Rift...

    Open Energy Info (EERE)

    1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Frequency-Domain Electromagnetics Survey At Kilauea East Rift Geothermal Area (FURUMOTO,...

  1. Comment on Pion-nucleon bremsstrahlung and. Delta. electromagnetic moments''

    SciTech Connect (OSTI)

    Weyrauch, M. )

    1989-11-01

    We analyze the definition of the electromagnetic moments of the dressed'' {Delta} introduced by Heller, Kumano, Martinez, and Moniz with respect to gauge invariance.

  2. Electromagnetic Soundings At Raft River Geothermal Area (1977...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Raft River Geothermal Area (1977)...

  3. Airborne Electromagnetic Survey At Raft River Geothermal Area...

    Open Energy Info (EERE)

    Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Airborne Electromagnetic Survey At Raft River Geothermal Area...

  4. The first clinical implementation of electromagnetic transponder-guided MLC tracking

    SciTech Connect (OSTI)

    Keall, Paul J., E-mail: paul.keall@sydney.edu.au; OBrien, Ricky; Ng, Jin Aun [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006 (Australia)] [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006 (Australia); Colvill, Emma [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)] [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Poulsen, Per Rugaard [Department of Oncology, Aarhus University Hospital, Aarhus 8000, Denmark and Institute of Clinical Medicine, Aarhus University, Aarhus 8000 (Denmark)] [Department of Oncology, Aarhus University Hospital, Aarhus 8000, Denmark and Institute of Clinical Medicine, Aarhus University, Aarhus 8000 (Denmark); Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)] [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2014-02-15

    Purpose: We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. Methods: An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. Results: The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V{sub 60}. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V{sub 60} from that planned, even for the small motion. Conclusions: The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy.

  5. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    SciTech Connect (OSTI)

    Fawley, William; Vay, Jean-Luc

    2010-08-16

    Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma^2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the ?standard? eikonal FEL simulation approach.

  6. Inverter Ground Fault Overvoltage Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Task Force on Effective Grounding, ITFEG), led by Brian Lydic of Fronius USA, for providing the test plan that served as the basis for the test procedure used in this study. ...

  7. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  8. Ground-water in Texas

    SciTech Connect (OSTI)

    Ward-McLemore, E.

    1985-01-01

    Amount 61% of the water used by Texans is ground-water. Some areas, both municipal and rural, depend entirely on ground-water. In many areas long term withdrawal is lowering the water levels, causing surface land subsidence, salt-water encroachment, and reducing future reservoir availability. The increasing probability of seepage from radioactive and toxic wastes, herbicide residues, septic systems, and oilfield brines is threatening dangerous contamination of fresh ground-water reservoirs. The Texas Department of Water Resources, the Texas Department of Health, State and private colleges and universities, the US Geological Survey, the Environmental Protection Agency, various underground water districts, among others, are cooperating with concerned hydrologists in a concentrated program to increase the efficiency of ground-water use and development, preserve the aquifer reservoirs, and decrease the pollution potential. 88 references.

  9. Solution accelerators for large scale 3D electromagnetic inverse problems

    SciTech Connect (OSTI)

    Newman, Gregory A.; Boggs, Paul T.

    2004-04-05

    We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.

  10. Document Number Q0029500 Ground Water Model 3.0 Ground Water...

    Office of Legacy Management (LM)

    Ground Water Model 3.0 Ground Water Model This section presents a steady-state ground water flow model and a coupled solute transport model (ground water model) for the alluvial ...

  11. Tritium Ground Water Issues | Department of Energy

    Office of Environmental Management (EM)

    Ground Water Issues Tritium Ground Water Issues Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. Tritium Ground Water Issues ...

  12. Note on Inverse Bremsstrahlung in a Strong Electromagnetic Field

    DOE R&D Accomplishments [OSTI]

    Bethe, H. A.

    1972-09-01

    The collisional energy loss of an electron undergoing forced oscillation in an electromagnetic field behaves quite differently in the low and high intensity limits. ... It is shown that in the case of an electromagnetic field v {sub o} >> v {sub t} the rate of transfer is much slower, and actually decreases with the strength of the field.

  13. Colorado Ground Water Commission | Open Energy Information

    Open Energy Info (EERE)

    Colorado Ground Water Commission Jump to: navigation, search Name: Colorado Ground Water Commission Place: Colorado Website: water.state.co.usgroundwater References: Colorado...

  14. Appendix B Ground Water Management Policy

    Office of Legacy Management (LM)

    Ground Water Management Policy for the Monticello Mill Tailings Site and Adjacent Areas ... OF NATURAL RESOURCES DIVISION OF WATER RIGHTS Ground-Water Management Policy for ...

  15. Ground Source Solutions | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: NG22 9GW Sector: Buildings Product: UK-based installer of ground source energy systems to domestic and commercial buildings. References: Ground Source...

  16. Emergent cosmological constant from colliding electromagnetic waves

    SciTech Connect (OSTI)

    Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr

    2014-11-01

    In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.

  17. Computes Generalized Electromagnetic Interactions Between Structures

    Energy Science and Technology Software Center (OSTI)

    2006-05-18

    Eiger is primarily in integral equation code for both frequency-domain electromagnetics and electrostatics. There is also some finiate element capability. In the frequency-domain version there are different Green's functions in the code, 2D, 3D free space, symmetry-plane Green's functions, periodic Green's functions, and layered media Green's functions. There are thin slot models for coupling into cavities. There is a thin wire algorithm as well as junction basis functions for attachment of a wire to amore » conducting surface. The code is written in Fortran 90 using object oriented design. The code has the capability to run both in parallel and serial modes. The code is a suite consisting of pre-processor (Jungfrau), the physics code (EIGER), and post processor (Moench).« less

  18. The study of electromagnetic cusp solitons

    SciTech Connect (OSTI)

    Verma, Deepa; Das, Amita; Kaw, Predhiman; Tiwari, Sanat Kumar

    2015-01-15

    The formation of a cusp structure in the envelope of electromagnetic solitons for electron-ion plasma at the ion wave breaking point has been shown by Farina and Bulanov [Phys. Rev. Lett. 86, 5289 (2001)]. The analytical form of the cusp structure has been obtained here. The analytical form of the cusp is shown to compare well with the exact numerically obtained solutions. Such cusp solitons occurring at the ion wave breaking point may have relevance to ion acceleration mechanism. In an effort towards studying the dynamical stability of such structures, the time evolution studies have been carried out which show that the structure survives for several plasma periods. However, ultimately it breaks apart due to the instability associated with the forward Raman scattering.

  19. Electron-beam mapping of plasmon resonances in electromagnetically interacting gold nanorods

    SciTech Connect (OSTI)

    N'Gom, Moussa; Li Shuzhou; Schatz, George; Erni, Rolf; Agarwal, Ashish; Kotov, Nicholas; Norris, Theodore B.

    2009-09-15

    Electron energy-loss spectroscopy and energy-filtered transmission electron-microscope imaging are used to characterize the energy distribution of the surface plasmon of isolated and coupled gold nanorods. Local-field enhancement and spectral shift of the plasmon modes are observed for two interacting nanoparticles. The spatial modes measured by energy loss are shown to share qualitative similarities with the electromagnetic field distribution around gold nanorods induced by optical excitation as simulated using the discrete dipole-approximation method.

  20. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOE Patents [OSTI]

    Epstein, A.J.; Morin, B.G.

    1998-10-13

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  1. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOE Patents [OSTI]

    Epstein, Arthur J.; Morin, Brian G.

    1998-01-01

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  2. Mechanical interface having multiple grounded actuators

    DOE Patents [OSTI]

    Martin, Kenneth M.; Levin, Mike D.; Rosenberg, Louis B.

    1998-01-01

    An apparatus and method for interfacing the motion of a user-manipulable object with a computer system includes a user object physically contacted or grasped by a user. A 3-D spatial mechanism is coupled to the user object, such as a stylus or a medical instrument, and provides three degrees of freedom to the user object. Three grounded actuators provide forces in the three degrees of freedom. Two of the degrees of freedom are a planar workspace provided by a closed-loop linkage of members, and the third degree of freedom is rotation of the planar workspace provided by a rotatable carriage. Capstan drive mechanisms transmit forces between actuators and the user object and include drums coupled to the carriage, pulleys coupled to grounded actuators, and flexible cables transmitting force between the pulleys and the drums. The flexibility of the cable allows the drums to rotate with the carriage while the pulleys and actuators remain fixed to ground. The interface also may include a floating gimbal mechanism coupling the linkage to the user object. The floating gimbal mechanism includes rotatably coupled gimbal members that provide three degrees of freedom to the user object and capstan mechanisms coupled between sensors and the gimbal members for providing enhanced sensor resolution.

  3. Interim progress report addendun - environmental geophysics: Building E5032 decommissioning, Aberdeen Proving Ground, January 1994 resurvey

    SciTech Connect (OSTI)

    Thompson, M.D.; McGinnis, L.D.; Benson, M.A.; Borden, H.M.; Padar, C.A.

    1994-12-01

    Geophysical surveying around Building E5032 using three new continuously recording geophysical instruments - two types of electromagnetic induction instruments and a cesium vapor magnetometer that were unavailable at the time of the original survey - has provided additional information for defining the location of buried debris, vaults, tanks, and the drainage/sump system near the building. The dominant geophysical signature around Building E5032 consists of a complex pattern of linear magnetic, electrical-conductivity, and electromagnetic field anomalies that appear to be associated with drainage/sewer systems, ditches, past railway activity, the location for Building T5033 (old number 99A), and the probable location of Building 91. Integrated analysis of data acquired using the three techniques, plus a review of the existing ground-penetrating-radar data, allow a more thorough definition of the sources for the observed anomalies.

  4. LINE-ABOVE-GROUND ATTENUATOR

    DOE Patents [OSTI]

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  5. Engineering characterization of ground motion. Task II. Observational data on spatial variations of earthquake ground motion. Volume 3

    SciTech Connect (OSTI)

    Chang, C.Y.; Power, M.S.; Idriss, I.M.; Somerville, P.G.; Silva, W.; Chen, P.C.

    1986-02-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the US Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Volume 3 presents observational data on spatial variations of earthquake ground motion.

  6. Best Possible Strategy for Finding Ground States

    SciTech Connect (OSTI)

    Franz, Astrid; Hoffmann, Karl Heinz; Salamon, Peter

    2001-06-04

    Finding the ground state of a system with a complex energy landscape is important for many physical problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are usually solved by heuristic search methods whose efficacy is judged by empirical performance on selected examples. We present a proof that, within the large class of algorithms that simulate a random walk on the landscape, threshold accepting is the best possible strategy. In particular, it can perform better than simulated annealing and Tsallis statistics. Our proof is the first example of a provably optimal strategy in this area.

  7. Theory of electromagnetic fluctuations for magnetized multi-species plasmas

    SciTech Connect (OSTI)

    Navarro, Roberto E. Muoz, Vctor; Araneda, Jaime; Moya, Pablo S.; Vias, Adolfo F.; Valdivia, Juan A.

    2014-09-15

    Analysis of electromagnetic fluctuations in plasma provides relevant information about the plasma state and its macroscopic properties. In particular, the solar wind persistently sustains a small but detectable level of magnetic fluctuation power even near thermal equilibrium. These fluctuations may be related to spontaneous electromagnetic fluctuations arising from the discreteness of charged particles. Here, we derive general expressions for the plasma fluctuations in a multi-species plasma following arbitrary distribution functions. This formalism, which generalizes and includes previous works on the subject, is then applied to the generation of electromagnetic fluctuations propagating along a background magnetic field in a plasma of two proton populations described by drifting bi-Maxwellians.

  8. Ground freezing for containment of hazardous waste

    SciTech Connect (OSTI)

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  9. Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

    SciTech Connect (OSTI)

    Wang, J.; Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q.; Cao, L. H.

    2014-10-15

    A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.

  10. Binary power multiplier for electromagnetic energy

    DOE Patents [OSTI]

    Farkas, Zoltan D.

    1988-01-01

    A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

  11. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1987-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  12. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1988-01-01

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  13. Electromagnetic Studies of Mesons, Nucleons, and Nuclei

    SciTech Connect (OSTI)

    Baker, Oliver K.

    2013-08-20

    Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

  14. Calibrating Accelerometers Using an Electromagnetic Launcher

    SciTech Connect (OSTI)

    Erik Timpson

    2012-05-13

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  15. Electromagnetic anti-jam telemetry tool

    DOE Patents [OSTI]

    Ganesan, Harini; Mayzenberg, Nataliya

    2008-02-12

    A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.

  16. Electromagnetic analysis of arbitrarily shaped pinched carpets

    SciTech Connect (OSTI)

    Dupont, Guillaume; Guenneau, Sebastien; Enoch, Stefan

    2010-09-15

    We derive the expressions for the anisotropic heterogeneous tensors of permittivity and permeability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map an arbitrary region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components. Moreover, a reduced set of parameters leads to nonmagnetic two-dimensional carpets in p polarization (i.e., for a magnetic field orthogonal to the plane containing the carpet). Such an arbitrarily shaped carpet is shown to work over a finite bandwidth when it is approximated by a checkerboard with 190 homogeneous cells of piecewise constant anisotropic permittivity. We finally perform some finite element computations in the full vector three-dimensional case for a plane wave in normal incidence and a Gaussian beam in oblique incidence. The latter requires perfectly matched layers set in a rotated coordinate axis which exemplifies the role played by geometric transforms in computational electromagnetism.

  17. (Low frequency electromagnetic fields and public health)

    SciTech Connect (OSTI)

    Aldrich, T.E.

    1988-05-23

    The traveler participated in the IARC-sponsored workshop entitled Extremely Low Frequency Electromagnetic Fields (EMF) and Public Health'' where he delivered the keynote address. This address set the stage for deliberations among the EMF public health professionals regarding strategies for international collaborative work on this topic. Strong emphasis was placed in explicit exposure monitoring. The traveler also participated in the Tenth Yves Biraud Seminar on rare-event surveillance as a sentinel system for detection potential environmental hazards. He presented an invited paper describing a means for making rapid, preliminary decisions regarding potential health impacts due to contamination of the environment around point sources of toxic substances. He served as the symposium's expert on numerical techniques on the use of spatial and temporal aggregation of rare health events. There is considerable variation among countries in emphasis on application of sentinel systems and application of sentinel systems and data gathering. France has a highly automated, statistically-sophisticated system involving individual physician reporting of specific reportable infectious diseases to a central location. The European Common Market nations are sold on this concept and are supporting the development of an internationally coordinated system.

  18. Electromagnetic Evidence For An Ancient Avalanche Caldera Rim...

    Open Energy Info (EERE)

    Electromagnetic (LOTEM) data and VIBROTEM data from the south flank of Mount Merapi on Java island, Indonesia, are interpreted with one-dimensional (1D) inversions as well as...

  19. NFPA hazardous classifications and compliance regarding the electromagnetic induction probe

    SciTech Connect (OSTI)

    Vargo, G.F.; Stokes, T.I., Westinghouse Hanford

    1996-08-13

    This document discusses how the Electromagnetic Induction probe complies with the hazardous locations discussed for the Surface Moisture Measurement System (SMMS). The EMI probe head was designed to interchange with the neutron probe of the SMMS.

  20. Magnetic field adjustment structure and method for a tapered wiggler

    DOE Patents [OSTI]

    Halbach, Klaus

    1988-01-01

    An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

  1. Geophysical investigation at Mustard Gas Burial Ground, Naval Surface Warfare Center, Crane Division, Crane, Indiana. Final report

    SciTech Connect (OSTI)

    Llopis, J.L.; Sjostrom, K.J.; Murphy, W.L.

    1997-06-01

    A geophysical investigation was conducted at the Mustard Gas Burial Ground (MGBG) at the Naval Surface Warfare Center, Crane Division, Crane, IN. The MGBG, an approximately 2-acre area, is a former Solid Waste Management Unit. The objective of the investigation was to detect and delineate anomalies indicating the locations of buried structures, objects, or disturbed zones associated with past hazardous waste burial at the MGBG. The locations of these objects are needed so they can be excavated for removal to a permanent treatment or disposal site. Frequency and time domain electromagnetic (EM) along with magnetic survey methods were used at the MGBG. All the surveys performed at the MGBG indicated an anomalous area approximately 10 ft in diameter centered on Station 255 on Line 130. The estimated depth of the anomaly, based on results of the transient EM surveys, is 1 to 2 ft. The anomaly is presumed to be ferrous in nature since it was detected by the magnetometer. An additional, 2- to 3-ft diameter anomaly, caused by a small metallic object was detected by the transient EM surveys.

  2. Understanding Risks Associated with Electromagnetic Pulses | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Understanding Risks Associated with Electromagnetic Pulses Understanding Risks Associated with Electromagnetic Pulses July 18, 2016 - 3:00pm Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of Electricity Delivery & Energy Reliability DOE's Office of Electricity Delivery & Energy Reliability (OE) has long focused on research, preparedness, response, and recovery activities related to potential threats to the nation's critical energy infrastructure

  3. Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials

    SciTech Connect (OSTI)

    Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu

    2010-02-15

    We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.

  4. Ground control for highwall mining

    SciTech Connect (OSTI)

    Zipf, R.K.; Mark, C.

    2007-09-15

    Perhaps the greatest risk to both equipment and personnel associated with highwall mining is from ground control. The two most significant ground control hazards are rock falls from highwall and equipment entrapment underground. In the central Appalachians, where the majority of highwall mining occurs in the USA, hillseams (or mountain cracks) are the most prominent structure that affects highwall stability. The article discusses measures to minimise the risk of failure associated with hillstreams. A 'stuck' or trapped highwall miner, and the ensuring retrieval or recovery operation, can be extremely disruptive to the highwall mining process. Most entrapment, are due to roof falls in the hole. The options for recovery are surface retrieval, surface excavation or underground recovery. Proper pillar design is essential to maintain highwall stability and prevent entrapments. NIOSH has developed the Analysis of Retreat Mining Pillar stability-Highwall Mining (ARMPS-HWM) computer program to help mine planners with this process. 10 figs.

  5. The Effect of Ionospheric Models on Electromagnetic Pulse Locations

    SciTech Connect (OSTI)

    Fenimore, Edward E.; Triplett, Laurie A.

    2014-07-01

    Locations of electromagnetic pulses (EMPs) determined by time-of-arrival (TOA) often have outliers with significantly larger errors than expected. In the past, these errors were thought to arise from high order terms in the Appleton-Hartree equation. We simulated 1000 events randomly spread around the Earth into a constellation of 22 GPS satellites. We used four different ionospheres: simple where the time delay goes as the inverse of the frequency-squared, full Appleton-Hartree, the BobRD integrals and a full raytracing code. The simple and full Appleton-Hartree ionospheres do not show outliers whereas the BobRD and raytracing do. This strongly suggests that the cause of the outliers is not additional terms in the Appleton-Hartree equation, but rather is due to the additional path length due to refraction. A method to fix the outliers is suggested based on fitting a time to the delays calculated at the 5 GPS frequencies with BobRD and simple ionospheres. The difference in time is used as a correction to the TOAs.

  6. Inverter Ground Fault Overvoltage Testing

    SciTech Connect (OSTI)

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  7. In-Ground Radiation Detection

    SciTech Connect (OSTI)

    McCormick, Kathleen R.; Stromswold, David C.; Woodring, Mitchell L.; Ely, James H.; Siciliano, Edward R.; Caggiano, Joseph A.; Hensley, Walter K.

    2006-10-29

    Vertically oriented radiation detectors may not provide sufficient screening in rail or aviation applications. Railcars can be heavily shielded on the sides, reducing the sensitivity of vertically mounted monitors. For aviation, the distance required for wingspan clearance reduces a vertical detector’s coverage of the fuselage. To surmount these, and other, challenging operational and sensitivity issues, we have investigated the use of in-ground radiation detectors. (PIET-43741-TM-605).

  8. System for detecting and limiting electrical ground faults within electrical devices

    DOE Patents [OSTI]

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  9. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect (OSTI)

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L.

    2013-08-15

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45 135, 225, and 315, at each of four gantry angles (0, 90, 180, 270) using a 3 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 0.036, 0.121 0

  10. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems

    SciTech Connect (OSTI)

    Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Vance, E.F. , Fort Worth, TX )

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  11. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    DOE Patents [OSTI]

    Goyal, Amit , Kang; Sukill

    2012-02-21

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  12. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    SciTech Connect (OSTI)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  13. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    SciTech Connect (OSTI)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin; Liu Yanming

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  14. Method of depositing epitaxial layers on a substrate

    SciTech Connect (OSTI)

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  15. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    heating andor cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground. Other definitions:Wikipedia Reegle...

  16. Development of mine explosion ground truth smart sensors

    SciTech Connect (OSTI)

    Taylor, Steven R.; Harben, Phillip E.; Jarpe, Steve; Harris, David B.

    2015-09-14

    Accurate seismo-acoustic source location is one of the fundamental aspects of nuclear explosion monitoring. Critical to improved location is the compilation of ground truth data sets for which origin time and location are accurately known. Substantial effort by the National Laboratories and other seismic monitoring groups have been undertaken to acquire and develop ground truth catalogs that form the basis of location efforts (e.g. Sweeney, 1998; Bergmann et al., 2009; Waldhauser and Richards, 2004). In particular, more GT1 (Ground Truth 1 km) events are required to improve three-dimensional velocity models that are currently under development. Mine seismicity can form the basis of accurate ground truth datasets. Although the location of mining explosions can often be accurately determined using array methods (e.g. Harris, 1991) and from overhead observations (e.g. MacCarthy et al., 2008), accurate origin time estimation can be difficult. Occasionally, mine operators will share shot time, location, explosion size and even shot configuration, but this is rarely done, especially in foreign countries. Additionally, shot times provided by mine operators are often inaccurate. An inexpensive, ground truth event detector that could be mailed to a contact, placed in close proximity (< 5 km) to mining regions or earthquake aftershock regions that automatically transmits back ground-truth parameters, would greatly aid in development of ground truth datasets that could be used to improve nuclear explosion monitoring capabilities. We are developing an inexpensive, compact, lightweight smart sensor unit (or units) that could be used in the development of ground truth datasets for the purpose of improving nuclear explosion monitoring capabilities. The units must be easy to deploy, be able to operate autonomously for a significant period of time (> 6 months) and inexpensive enough to be discarded after useful operations have expired (although this may not be part of our business

  17. First principles cable braid electromagnetic penetration model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; Johnson, William A.

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinitemore » periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.« less

  18. First principles cable braid electromagnetic penetration model

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Langston, William L.; Basilio, Lorena I.; Johnson, William A.

    2016-01-01

    The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multi-poles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. Furthermore, this is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.

  19. Ground Source Heat Pump Subprogram Overview

    Broader source: Energy.gov [DOE]

    This overview of GTP's Ground Source Heat Pump subprogram was given at GTP's Program Peer Review on May 18, 2010.

  20. Ground Magnetics (Nannini, 1986) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration...

  1. Development on electromagnetic impedance function modeling and its estimation

    SciTech Connect (OSTI)

    Sutarno, D.

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  2. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    SciTech Connect (OSTI)

    Brooks, William; Basso, Thomas; Coddington, Michael

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  3. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  4. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  5. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    SciTech Connect (OSTI)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  6. Transverse electromagnetic horn antenna with resistively-loaded exterior surfaces

    DOE Patents [OSTI]

    Aurand, John F.

    1999-01-01

    An improved transverse electromagnetic (TEM) horn antenna comprises a resistive loading material on the exterior surfaces of the antenna plates. The resistive loading material attenuates or inhibits currents on the exterior surfaces of the TEM horn antenna. The exterior electromagnetic fields are of opposite polarity in comparison to the primary and desired interior electromagnetic field, thus inherently cause partial cancellation of the interior wave upon radiation or upon reception. Reducing the exterior fields increases the radiation efficiency of the antenna by reducing the cancellation of the primary interior field (supported by the interior surface currents). This increases the transmit gain and receive sensitivity of the TEM horn antenna, as well as improving the transient (time-domain) response.

  7. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  8. Theoretical study on electromagnetically induced transparency...

    Office of Scientific and Technical Information (OSTI)

    Conference of Computational Methods in Sciences and Engineering 2010, Kos (Greece), 3-8 Oct 2010; Other Information: (c) 2015 AIP Publishing LLC; Country of input: ...

  9. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    SciTech Connect (OSTI)

    Haber, Eldad

    2014-03-17

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequal- ity constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  10. Ground Source Heat Pump Demonstration Projects | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground Source Heat Pump Demonstration Projects Ground Source Heat Pump Demonstration Projects Below are the project presentations and respective peer review results for Ground ...

  11. Appendix D Surface Water and Ground Water Time-Concentration...

    Office of Legacy Management (LM)

    Surface Water and Ground Water Time-Concentration Plots, Stream Discharge Measurements, Ground Water Level Data, and Ground Water Well Hydrographs This page intentionally left ...

  12. North Village Ground Source Heat Pumps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North Village Ground Source Heat Pumps North Village Ground Source Heat Pumps Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with ...

  13. Iterative electromagnetic Born inversion applied to earth conductivity imaging

    SciTech Connect (OSTI)

    Alumbaugh, D.L.

    1993-08-01

    This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (< 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.

  14. Giant Electromagnet Move at Brookhaven Lab, June 22, 2013

    SciTech Connect (OSTI)

    2013-06-22

    On Saturday, June 22, 2013, a 50-foot-wide, circular electromagnet began its 3,200-mile land and sea voyage from Brookhaven National Laboratory in New York to a new home at Fermilab in Illinois. There, scientists will use it to study the properties of muons, subatomic particles that live only 2.2 millionths of a second, and the results could open the door to new realms of particle physics. In the first part of the move, Emmert International and a team of Fermilab and Brookhaven Lab scientists and engineers transported the electromagnet across the Brookhaven Lab site to a staging area by its main gate.

  15. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, Stephen B.

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  16. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  17. Plasmonic electromagnetic hot spots temporally addressed by photoinduced molecular displacement.

    SciTech Connect (OSTI)

    Juan, M. L.; Plain, J.; Bachelot, R.; Vial, A.; Royer, P.; Gray, S. K.; Montgomery, J. M.; Wiederrecht, G. P.; Univ. de Technologie de Troyes

    2009-04-23

    We report the observation of temporally varying electromagnetic hot spots in plasmonic nanostructures. Changes in the field amplitude, position, and spatial features are induced by embedding plasmonic silver nanorods in the photoresponsive azo-polymer. This polymer undergoes cis?trans isomerization and wormlike transport within resonant optical fields, producing a time-varying local dielectric environment that alters the locations where electromagnetic hot spots are produced. Finite-difference time-domain and Monte Carlo simulations that model the induced field and corresponding material response are presented to aid in the interpretation of the experimental results. Evidence for propagating plasmons induced at the ends of the rods is also presented.

  18. Spontaneous excitation of a circularly accelerated atom coupled to electromagnetic vacuum fluctuations

    SciTech Connect (OSTI)

    Jin, Yao; Hu, Jiawei; Yu, Hongwei

    2014-05-15

    We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature. -- Highlights: •We study the spontaneous excitation of a circularly accelerated atom. •Contribution of radiation reaction to the excitation is affected by acceleration. •The radiation perceived by a circularly orbiting observer is no longer thermal. •An effective temperature can be defined in terms of atomic transition rates. •Effective temperature is larger than Unruh temperature and frequency-dependent.

  19. INTERPRETATION OF AIRBORNE ELECTROMAGNETIC AND MAGNETIC DATA IN THE 600 AREA

    SciTech Connect (OSTI)

    CUMMINS GD

    2010-11-11

    As part of the 200-PO-1 Phase I geophysical surveys, Fugro Airborne Surveys was contracted to collect airborne electromagnetic (EM) and magnetic surveys of the Hanford Site 600 Area. Two helicopter survey systems were used with the HeliGEOTEM{reg_sign} time domain portion flown between June 19th and June 20th, 2008, and the RESOLVE{reg_sign} frequency domain portion was flown from June 29th to July 1st, 2008. Magnetic data were acquired contemporaneously with the electromagnetic surveys using a total-field cesium vapor magnetometer. Approximately 925 line kilometers (km) were flown using the HeliGEOTEM{reg_sign} II system and 412 line kilometers were flown using the RESOLVE{reg_sign} system. The HeliGEOTEM system has an effective penetration of roughly 250 meters into the ground and the RESOLVE system has an effective penetration of roughly 60 meters. Acquisition parameters and preliminary results are provided in SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site. Airborne data are interpreted in this report in an attempt to identify areas of likely preferential groundwater flow within the aquifer system based on the presence of paleochannels or fault zones. The premise for the interpretation is that coarser-grained intervals have filled in scour channels created by episodic catastrophic flood events during the late Pleistocene. The interpretation strategy used the magnetic field anomaly data and existing bedrock maps to identify likely fault or lineament zones. Combined analysis of the magnetic, 60-Hz noise monitor, and flight-altitude (radar) data were used to identify zones where EM response is more likely due to cultural interference and or bedrock structures. Cross-sectional and map view presentations of the EM data were used to identify more electrically resistive zones that likely correlate with coarser-grained intervals. The resulting interpretation identifies one major northwest-southeast trending

  20. Electromagnetic analysis of forces and torques on the ITER shield modules due to plasma disruption.

    SciTech Connect (OSTI)

    Kotulski, Joseph Daniel; Coats, Rebecca Sue; Pasik, Michael Francis; Ulrickson, Michael Andrew

    2009-06-01

    An electromagnetic analysis is performed on the ITER shield modules under different plasma disruption scenarios using the OPERA-3d software. The modeling procedure is explained, electromagnetic torques are presented, and results of the modeling are discussed.

  1. Electromagnetic pump stator frame having power crossover struts

    DOE Patents [OSTI]

    Fanning, Alan W.; Olich, Eugene E.

    1995-01-01

    A stator frame for an electromagnetic pump includes a casing joined to a hub by a plurality of circumferentially spaced apart struts. At least one electrically insulated power crossover lead extends through the hub, through a crossover one of the struts, and through the casing for carrying electrical current therethrough.

  2. Susceptibility study of audio recording devices to electromagnetic stimulations

    SciTech Connect (OSTI)

    Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.

    2014-02-01

    Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals. Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.

  3. Microscale electromagnetic heating in heterogeneous energetic materials based on x-ray computed tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.

    2016-04-15

    Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.

  4. Promising Technology: Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Ground source heat pumps (GSHP) use the constant temperature of the Earth as the heat exchange medium instead of the outside air temperature. During the winter, a GSHP uses the ground as a heat source to provide heating, and during the summer, a GSHP uses the ground as a heat sink to provide cooling. Although more expensive than air-source heat pumps, GSHP’s are much more efficient, especially in cold temperatures.

  5. Ground Gravity Survey | Open Energy Information

    Open Energy Info (EERE)

    Et Al., 2000) Dixie Valley Geothermal Area 1999 2000 Precise Gravimetry and Geothermal Reservoir Management Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell, Et...

  6. Pacific Northwest National Laboratory Grounds Maintenance

    SciTech Connect (OSTI)

    2009-08-05

    FEMP Water Efficiency Best Management Practice #4 and #5: Case study overview of the grounds maintenance program for Pacific Northwest National Laboratory.

  7. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A.

    1996-11-01

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  8. Evaluation of Bare Ground on Rangelands using Unmanned Aerial Vehicles

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Maxine Dakins

    2011-01-01

    Attention is currently being given to methods that assess the ecological condition of rangelands throughout the United States. There are a number of different indicators that assess ecological condition of rangelands. Bare Ground is being considered by a number of agencies and resource specialists as a lead indicator that can be evaluated over a broad area. Traditional methods of measuring bare ground rely on field technicians collecting data along a line transect or from a plot. Unmanned aerial vehicles (UAVs) provide an alternative to collecting field data, can monitor a large area in a relative short period of time, and in many cases can enhance safety and time required to collect data. In this study, both fixed wing and helicopter UAVs were used to measure bare ground in a sagebrush steppe ecosystem. The data were collected with digital imagery and read using the image analysis software SamplePoint. The approach was tested over seven different plots and compared against traditional field methods to evaluate accuracy for assessing bare ground. The field plots were located on the Idaho National Laboratory (INL) site west of Idaho Falls, Idaho in locations where there is very little disturbance by humans and the area is grazed only by wildlife. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  9. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G.; Bashforth, Michael B.; Lewallen, Tricia S.; Nammath, Sharyn R.

    1994-01-01

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  10. Enclosed ground-flare incinerator

    DOE Patents [OSTI]

    Wiseman, Thomas R.

    2000-01-01

    An improved ground flare is provided comprising a stack, two or more burner assemblies, and a servicing port so that some of the burner assemblies can be serviced while others remain in operation. The burner assemblies comprise a burner conduit and nozzles which are individually fitted to the stack's burner chamber and are each removably supported in the chamber. Each burner conduit is sealed to and sandwiched between a waste gas inlet port and a matching a closure port on the other side of the stack. The closure port can be opened for physically releasing the burner conduit and supplying sufficient axial movement room for extracting the conduit from the socket, thereby releasing the conduit for hand removal through a servicing port. Preferably, the lower end of the stack is formed of one or more axially displaced lower tubular shells which are concentrically spaced for forming annular inlets for admitting combustion air. An upper tubular exhaust stack, similarly formed, admits additional combustion air for increasing the efficiency of combustion, increasing the flow of exhausted for improved atmospheric dispersion and for cooling the upper stack.

  11. DOD-SBIR Structured Multi-Resolution PIC Code for Electromagnetic Plasma Simulations, Final Report

    SciTech Connect (OSTI)

    Vay, J L; Grote, D P; Friedman, A

    2010-04-22

    A novel electromagnetic solver with mesh refinement capability was implemented in Warp. The solver allows for calculations in 2-1/2 and 3 dimensions, includes the standard Yee stencil, and the Cole-Karkkainen stencil for lower numerical dispersion along the principal axes. Warp implementation of the Cole-Karkkainen stencil includes an extension to perfectly matched layers (PML) for absorption of waves, and is preserving the conservation property of charge conserving current deposition schemes, like the Buneman-Villanesor and Esirkepov methods. Warp's mesh refinement framework (originally developed for electrostatic calculations) was augmented to allow for electromagnetic capability, following the methodology presented in [1] extended to an arbitrary number of refinement levels. Other developments include a generalized particle injection method, internal conductors using stair-cased approximation, and subcycling of particle pushing. The solver runs in parallel using MPI message passing, with a choice at runtime of 1D, 2D and 3D domain decomposition, and is shown to scale linearly on a test problem up-to 32,768 CPUs. The novel solver was tested on the modeling of filamentation instability, fast ignition, ion beam induced plasma wake, and laser plasma acceleration.

  12. On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability

    SciTech Connect (OSTI)

    Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James

    2014-07-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.

  13. Method for fusing bone

    DOE Patents [OSTI]

    Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.

    1996-01-01

    Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  14. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program.

  15. Strategic Ground Delivery Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Ground Delivery Services Strategic Ground Delivery Services Use of New Strategically Source Agreement UPS.pdf.pdf (96.79 KB) More Documents & Publications POLICY FLASH 2010-42 Use of New Strategically Sourced Blanket Purchase Agreement for Domestic Delivery Services with United Parcel Service Minutes from the Print and Mail Managers Exchange Forum Teleconferences

  16. TORO II: A finite element computer program for nonlinear quasi-static problems in electromagnetics: Part 2, User`s manual

    SciTech Connect (OSTI)

    Gartling, D.K.

    1996-05-01

    User instructions are given for the finite element, electromagnetics program, TORO II. The theoretical background and numerical methods used in the program are documented in SAND95-2472. The present document also describes a number of example problems that have been analyzed with the code and provides sample input files for typical simulations. 20 refs., 34 figs., 3 tabs.

  17. Method of Focussing Waves by Inhomogeneous Oscillations of the underlying

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medium | Princeton Plasma Physics Lab Method of Focussing Waves by Inhomogeneous Oscillations of the underlying Medium Disclosed is a nw method of refracting electromagnetic and other waves in a dispersive medium by modulating parameters of this medium by other waves. Possible uses include developing adaptive lenses of a new type for focusing and/or regracting electromagnetic radiation or wother waves. No.: M-868 Inventor(s): Nathaniel J Fisch

  18. Reservoir Characterization: Electromagnetic Imaging of CO2 for EOR Processes

    SciTech Connect (OSTI)

    Kirkendall, B; Roberts, J

    2002-10-14

    Lawrence Livermore National Laboratory is currently involved in a long term study using time-lapse multiple frequency electromagnetic (EM) imaging at a carbon dioxide (CO{sub 2}) enhanced oil recovery (EOR) site in the San Joaquin Valley, California. The impetus for this proposed research project is to develop the ability to image subsurface CO{sub 2} during EOR processes while simultaneously discriminating between background heavy petroleum and water deposits. Using field equipment developed at Lawrence Livermore National Laboratory in prior imaging studies of EOR water and steam injection, this research uses multiple field deployments to acquire subsurface image snapshots of the CO{sub 2} injection and displacement. Laboratory research, including electrical and transport properties of fluid and CO{sub 2} in saturated materials, uses core samples from drilling, as well as samples of injection and formation fluid provided by industrial partners on-site. Our two-fold approach to combine laboratory and field methods in imaging a pilot CO{sub 2} sequestration EOR site using the cross-borehole EM technique is to (1) improve the inversion process in CO{sub 2} studies by coupling field results with petrophysical laboratory measurements and (2) focus on new gas interpretation techniques of the field data using multiple frequencies and low noise data processing techniques. This approach is beneficial, as field and laboratory data can provide information on subsurface CO{sub 2} detection, CO{sub 2} migration tracking, and the resulting displacement of petroleum and water over time. While the electrical properties of the brine from the prior waterflooding are sharply contrasted from the other components, the electrical signatures of the formation fluid (oil) and CO{sub 2} are quite similar. We attempt to quantify that difference under multiple conditions and as a function of injection time. We find that the electrical conductivity signature difference increases over time and

  19. Solar tracker motor having a fixed caliper and a translating caliper each with an electromagnetic brake system

    DOE Patents [OSTI]

    Rau, Scott James

    2013-01-29

    Concepts and technologies described herein provide for an accurate and cost-effective method for rotating a solar array disk for tracking the movement of the sun. According to various aspects, a motor includes a fixed caliper and a translating caliper positioned adjacent to one another. Electromagnetically controlled brakes on the translating caliper grip the solar array disk while adjacent, but spaced apart, electromagnets on the fixed caliper and the translating caliper are energized to create an attractive force that pulls the translating caliper with the solar array disk toward the fixed caliper. After reaching the fixed caliper, brakes on the fixed caliper are engaged with the disk, brakes on the translating caliper are released from the disk, and the translating caliper is pushed back to the starting location where the process repeats until the desired rotation is completed.

  20. HOT ELECTROMAGNETIC OUTFLOWS. II. JET BREAKOUT

    SciTech Connect (OSTI)

    Russo, Matthew; Thompson, Christopher

    2013-08-20

    We consider the interaction between radiation, matter, and a magnetic field in a compact, relativistic jet. The entrained matter accelerates outward as the jet breaks out of a star or other confining medium. In some circumstances, such as gamma-ray bursts (GRBs), the magnetization of the jet is greatly reduced by an advected radiation field while the jet is optically thick to scattering. Where magnetic flux surfaces diverge rapidly, a strong outward Lorentz force develops and radiation and matter begin to decouple. The increase in magnetization is coupled to a rapid growth in Lorentz factor. We take two approaches to this problem. The first examines the flow outside the fast magnetosonic critical surface, and calculates the flow speed and the angular distribution of the radiation field over a range of scattering depths. The second considers the flow structure on both sides of the critical surface in the optically thin regime, using a relaxation method. In both approaches, we find how the terminal Lorentz factor and radial profile of the outflow depend on the radiation intensity and optical depth at breakout. The effect of bulk Compton scattering on the radiation spectrum is calculated by a Monte Carlo method, while neglecting the effects of internal dissipation. The peak of the scattered spectrum sits near the seed peak if radiation pressure dominates the acceleration, but is pushed to a higher frequency if the Lorentz force dominates. The unscattered seed radiation can form a distinct, low-frequency component of the spectrum, especially if the magnetic Poynting flux dominates.

  1. Laser-driven deflection arrangements and methods involving charged particle beams

    DOE Patents [OSTI]

    Plettner, Tomas; Byer, Robert L.

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  2. Electromagnetic pumping of liquid lithium in inertial confinement fusion reactors

    SciTech Connect (OSTI)

    Baker, R.S.; Blink, J.A.; Tessier, M.J.

    1983-03-01

    The basic operating principles and geometries of ten electromagnetic pumps are described. Two candidate pumps, the annular-linear-induction pump and the helical-rotor electromagnetic pump, are compared for possible use in a full-scale liquid-lithium inertial confinement fusion reactor. A parametric design study completed for the helical-rotor pump is shown to be valid when applied to an experimental sodium pump. Based upon the preliminary HYLIFE requirements for a lithium flow rate per pump of 8.08 m/sup 3//s at a head of 82.5 kPa, a complete set of 70 variables are specified for a helical-rotor pump with either a normally conducting or a superconducting winding. The two alternative designs are expected to perform with efficiencies of 50 and 60%, respectively.

  3. Evidence for new nucleon resonances from electromagnetic meson production

    SciTech Connect (OSTI)

    Volker Burkert

    2012-12-01

    The study of nucleon resonances in electromagnetic meson production with the CLAS detector is discussed. The electromagnetic interaction is complementary to pion scattering in the exploration of the nucleon excitation spectrum. Higher mass states often decouple from the N{pi} channel and are not seen in {pi} N --> {pi} N. Photoproduction of mesons, such as K {Lambda}, {omega} p and {eta}' p may be more sensitive to many of these states. The CLAS detector, combined with the use of energy-tagged polarized photons and polarized electrons, as well as po- larized targets and the measurement of recoil polarization, are the tools needed for a comprehensive nucleon resonance program. Some of the recently published high statistics data sets had significant impact on further clarifying the nucleon excitation spectrum.

  4. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Mike; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

    2012-02-14

    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the verticalmore » kick of the beam.« less

  5. Electromagnetic Probes: A Chronometer of Heavy Ion Collision

    SciTech Connect (OSTI)

    Sinha, Bikash

    2010-11-23

    I have known Predhiman for quite some time and I consider his friendship a great privilege. He along with some of his colleagues made the almost unique transition time to time from Quantum Electrodynamics of his (almost classical) electromagnetic plasma to Quantum Chromodynamics of quarks and gluons. Some of the papers are unique in the sense they surface up to the centre stage of the field of quarks and gluons giving us a new insight; the particular paper of Bannur and Kaw discussing the stability of quark gluon plasma is a particularly interesting one.I wish Predhiman the very best on this occasion and sincerely hope for a long vital and fruitful life that lies ahead.Interestingly enough this transition from QED (electromagnetic plasma) to QCD plasma (Quark Gluon Plasma) was motivated by consuming a very special kind of Indian soft nuts on Sunday afternoons, the consumers consisted of two persons, P. K. Kaw and Jitendra Parikh - some nuts!

  6. A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation

    SciTech Connect (OSTI)

    Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; ,

    2010-06-07

    A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.

  7. Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

    SciTech Connect (OSTI)

    Allmond, J. M.; Stuchbery, A. E.; Galindo-Uribarri, A.; Padilla-Rodal, E.; Radford, D. C.; Batchelder, J. C.; Bingham, C. R.; Howard, M. E.; Liang, J. F.; Manning, B.; Pain, S. D.; Stone, N. J.; Varner, R. L.; Yu, C. -H.

    2015-10-19

    A complete set of electromagnetic moments, B(E2;0+1 2+1), Q(2+1), and g(2+1), have been measured from Coulomb excitation of semi-magic 112,114,116,118,120,122,124Sn (Z = 50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ~4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler- shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2+1), has been measured for 114Sn. The static quadrupole moments are generally consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at mid shell and outside of current model spaces, needs to be investigated in the future.

  8. Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allmond, J. M.; Stuchbery, A. E.; Galindo-Uribarri, A.; Padilla-Rodal, E.; Radford, D. C.; Batchelder, J. C.; Bingham, C. R.; Howard, M. E.; Liang, J. F.; Manning, B.; et al

    2015-10-19

    A complete set of electromagnetic moments, B(E2;0+1 2+1), Q(2+1), and g(2+1), have been measured from Coulomb excitation of semi-magic 112,114,116,118,120,122,124Sn (Z = 50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ~4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler- shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2+1), has been measured for 114Sn. The static quadrupole moments are generallymore » consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at mid shell and outside of current model spaces, needs to be investigated in the future.« less

  9. Device for conversion of electromagnetic radiation into electrical current

    DOE Patents [OSTI]

    Blakeslee, A. Eugene; Mitchell, Kim W.

    1981-01-01

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  10. Device for conversion of electromagnetic radiation into electrical current

    DOE Patents [OSTI]

    Blakeslee, A.E.; Mitchell, K.W.

    1980-03-25

    Electromagnetic energy may be converted directly into electrical energy by a device comprising a sandwich of at least two semiconductor portions, each portion having a p-n junction with a characteristic energy gap, and the portions lattice matched to one another by an intervening superlattice structure. This superlattice acts to block propagation into the next deposited portion of those dislocation defects which can form due to lattice mismatch between adjacent portions.

  11. Electromagnetic squeezer for compressing squeezable electron tunneling junctions. Technical report

    SciTech Connect (OSTI)

    Moreland, J.; Hansma, P.K.

    1984-01-01

    The resistance of squeezable electron tunnel junctions (SET junctions) can be adjusted with an electromagnetic squeezer. For junctions immersed in liquid helium, the resistance is stable to approximately 0.1%. This stability is sufficient for measurements of superconducting energy gaps and for superconducting phonon spectroscopy out to 50 mV applied bias. Increased stability, especially at higher biases, will be necessary for inelastic electron tunneling spectroscopy.

  12. Electromagnetic squeezer for compressing squeezable electron tunnelling junctions

    SciTech Connect (OSTI)

    Moreland, J.; Hansma, P.K.

    1984-03-01

    The resistance of squeezable electron tunnel junctions (SET junctions) can be adjusted with an electromagnetic squeezer. For junctions immersed in liquid helium, the resistance is stable to approximately 0.1%. This stability is sufficient for measurements of superconducting energy gaps and for superconducting phonon spectroscopy out to 50-mV applied bias. Increased stability, especially at higher biases, will be necessary for inelastic electron tunnelling spectroscopy.

  13. Electromagnetic Near Field Measurements of Two Critical Assemblies

    SciTech Connect (OSTI)

    Goettee, Jeffrey David

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  14. Three dimensional electromagnetic wavepackets in a plasma: Spatiotemporal modulational instability

    SciTech Connect (OSTI)

    Borhanian, J.; Hosseini Faradonbe, F.

    2014-04-15

    The nonlinear interaction of an intense electromagnetic beam with relativistic collisionless unmagnetized plasma is investigated by invoking the reductive perturbation technique, resting on the model of three-dimensional nonlinear Schrödinger (NLS) equation with cubic nonlinearity which incorporates the effects of self-focusing, self-phase modulation, and diffraction on wave propagation. Relying on the derived NLS equation, the occurrence of spatiotemporal modulational instability is investigated in detail.

  15. Gradient instabilities of electromagnetic waves in Hall thruster plasma

    SciTech Connect (OSTI)

    Tomilin, Dmitry

    2013-04-15

    This paper presents a linear analysis of gradient plasma instabilities in Hall thrusters. The study obtains and analyzes the dispersion equation of high-frequency electromagnetic waves based on the two-fluid model of a cold plasma. The regions of parameters corresponding to unstable high frequency modes are determined and the dependence of the increments and intrinsic frequencies on plasma parameters is obtained. The obtained results agree with those of previously published studies.

  16. Electromagnetically induced transparency with a partially standing drive field

    SciTech Connect (OSTI)

    Strekalov, Dmitry V.; Matsko, Andrey B.; Yu, Nan

    2007-11-15

    We study electromagnetically induced transparency in a vacuum rubidium atomic cell and show that reflected drive radiation results in the reshaping and shift of dark resonance. We show that those effects are connected with (i) Bragg reflection of the probe radiation in optically thick atomic coherent medium modulated by the standing-wave drive field, as well as with (ii) quantum interference enhanced absorption of the probe radiation in four-level N-configuration formed due to the reflected drive field.

  17. CRC handbook of biological effects of electromagnetic fields

    SciTech Connect (OSTI)

    Polk, C. . Dept. of Electrical Engineering); Postow, E. )

    1986-01-01

    This book presents current knowledge about the effects of electromagnetic fields on living matter. The three-part format covers: dielectric permittivity and electrical conductivity of biological materials; effects of direct current and low frequency fields; and effects of radio frequency (including microwave) fields. The parts are designed to be consulted independently or in sequence, depending upon the needs of the reader. Useful appendixes on measurement units and safety standards are also included.

  18. CRC handbook of biological effects of electromagnetic fields

    SciTech Connect (OSTI)

    Polk, C.; Postow, E.

    1986-01-01

    This book presents the current knowledge about the effects of electromagnetic fields on living matter. The three-part format covers dielectric permittivity and electrical conductivity of biological materials; effects of direct current and low frequency fields; and effects of radio frequency (including microwave) fields. The parts are designed to be consulted independently or in sequence, depending upon the needs of the reader. Useful appendixes on measurement units and safety standards are also included.

  19. Experimental studies of electromagnetic properties of few body systems

    SciTech Connect (OSTI)

    Bosted, P.E.

    1987-08-01

    An overview is given of some recent and planned experiments which have or will substantially increase our knowledge of the electromagnetic properties of few body systems. Specific examples include the proton and neutron elastic form factors, the deuteron elastic form factors, deuteron threshold electrodisintegration and quasi-elastic scattering, deuteron photodisintegration, and finally measurements of cross sections in deep inelastic scattering from hydrogen, deuterium, and iron. 47 refs., 13 figs. (DWL)

  20. Method for fusing bone

    DOE Patents [OSTI]

    Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.

    1996-03-12

    The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  1. Final report on passive and active low-frequency electromagnetic spectroscopy for airborne detection of underground facilities

    SciTech Connect (OSTI)

    SanFilipo, Bill

    2000-04-01

    The objective of this program is to perform research to advance the science in the application of both passive and active electromagnetic measurement techniques for the detection and spatial delineation of underground facilities. Passive techniques exploit the electromagnetic fields generated by electrical apparatus within the structure, including generators, motors, power distribution circuitry, as well as communications hardware and similar electronics equipment. Frequencies monitored are generally in the audio range (60-20,000 Hz), anticipating strong sources associated with normal AC power (i.e., 50 or 60 Hz and associated harmonics), and low frequency power from broad-band sources such as switching circuits. Measurements are made using receiver induction coils wired to electronics that digitize and record the voltage induced by the time varying magnetic fields. Active techniques employ electromagnetic field transmitters in the form of AC current carrying loops also in the audio frequency range, and receiving coils that measure the resultant time varying magnetic fields. These fields are perturbed from those expected in free space by any conductive material in the vicinity of the coils, including the ground, so that the total measured field is comprised of the primary free-space component and the secondary scattered component. The latter can be further delineated into an average background field (uniform conductive half-space earth) and anomalous field associated with heterogeneous zones in the earth, including both highly conductive objects such as metallic structures as well as highly resistive structures such as empty voids corresponding to rooms or tunnels. Work performed during Phase I included the development of the prototype GEM-2H instrumentation, collection of data at several test sites in the passive mode and a single site in the active mode, development of processing and interpretation software. The technical objectives of Phase II were to: (1

  2. Using malaise traps to sample ground beetles (Coleoptera. Carabidae)

    SciTech Connect (OSTI)

    Ulyshen, Michael D.; Hanula, James L.; Horn, Scott

    2012-04-02

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  3. Using malaise traps to sample ground beetles (Coleoptera: Carabidae).

    SciTech Connect (OSTI)

    Ulyshen, Michael D., James L. Hanula, and Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and ? ????trap-shy?¢??? species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  4. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems. Power Systems Technology Program

    SciTech Connect (OSTI)

    Barnes, P.R.; Tesche, F.M.; Vance, E.F.

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth`s magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  5. Ground Source Heat Pump Subprogram Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EGS Demonstration s, 51.4 Innovative Exploration Technologies, 98.1 Ground Source Heat Pumps, ... chiller, VAV air handling system, and gas-fired hot water boiler *54 GHP units, 200 ...

  6. Ground Source Heat Pumps | Open Energy Information

    Open Energy Info (EERE)

    efficient when cooling your home. Not only does this save energy and money, it reduces air pollution. GSHP System Ground source heat pump systems consist of three parts: the...

  7. Solid waste burial grounds interim safety analysis

    SciTech Connect (OSTI)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  8. 118-K-1 Burial Ground - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  9. Method of the cementing of material

    SciTech Connect (OSTI)

    Konovalov, Y.G.; Shutov, G.M.; Khanenya, G.P.; Dyatko, E.K.; Buben, K.K.

    1990-10-30

    Invention relates to woodworking industry and concerns method of cementing of materials of foam plastic with duralumin, glued plywood, etc. Known methods of cementing of materials by effect of electromagnetic field of superhigh frequencies are unproductive and do not make it possible to cement parts on the plane. Target of invention - acceleration of process of cementing of planar, including of complex configuration, parts and assemblies from wood, foam plastic, duralumin, glued plywood and other materials. For this material is cemented under the effect of directed electromagnetic field of superhigh frequency in the range 01-50 GHz, the specific power of 0.5-15 W/cm3.

  10. Natural radionuclides in ground waters and cores

    SciTech Connect (OSTI)

    Laul, J.C.; Smith, M.R.; Maiti, T.C.

    1988-01-01

    Investigations of natural radionuclides of uranium and thorium decay series in site-specific ground waters and cores (water/rock interaction) can provide information on the expected migration behavior of their radioactive waste and analog radionuclides in the unlikely event of radioactive releases from a repository. These data in ground waters can provide in situ retardation and sorption/desorption parameters for transport models and their associated kinetics (residence time). These data in cores can also provide information on migration or leaching up to a period of about one million years. Finally, the natural radionuclide data can provide baseline information for future monitoring of possible radioactive waste releases. The natural radionuclides of interest are {sup 238}U, {sup 234}Th, {sup 234}U, {sup 230}Th, {sup 226}Ra, {sup 222}Rn, {sup 210}Pb, {sup 210}Bi, {sup 210}Po, {sup 232}Th, {sup 228}Ra, {sup 228}Th, and {sup 224}Ra. The half-lives of the daughter radionuclides range from 3 days to 2.5 x 10{sup 5} yr. The data discussed are for low ionic strength ground waters from the Hanford (basalt) site and briny ground waters (high ionic strength) and cores from the Deaf Smith salt site. Similar applications of the natural radionuclide data can be extended to the Nevada Tuff repository site and subseabed disposal site. The concentrations of uranium, thorium, radium, lead, and polonium radionuclides are generally very low in ground waters. However, significant differences in disequilibrium exist between basalt and briny ground waters.

  11. Frequency-Domain Electromagnetic Survey | Open Energy Information

    Open Energy Info (EERE)

    magnetic field. Data Access and Acquisition A transmitter loop (of 6 AWG copper welding cable with four turns and a 50 m radius) is laid out on the ground surface. The EM-60...

  12. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    SciTech Connect (OSTI)

    Brooks, William

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  13. Ground movements associated with gas hydrate production. Final report

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The present study is expected to provide a ``lower bound`` solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir.

  14. Models the Electromagnetic Response of a 3D Distribution using MP COMPUTERS

    Energy Science and Technology Software Center (OSTI)

    1999-05-01

    EM3D models the electromagnetic response of a 3D distribution of conductivity, dielectric permittivity and magnetic permeability within the earth for geophysical applications using massively parallel computers. The simulations are carried out in the frequency domain for either electric or magnetic sources for either scattered or total filed formulations of Maxwell''s equations. The solution is based on the method of finite differences and includes absorbing boundary conditions so that responses can be modeled up into themore » radar range where wave propagation is dominant. Recent upgrades in the software include the incorporation of finite size sources, that in addition to dipolar source fields, and a low induction number preconditioner that can significantly reduce computational run times. A graphical user interface (GUI) is bundled with the software so that complicated 3D models can be easily constructed and simulated with the software. The GUI also allows for plotting of the output.« less

  15. Electromagnetic form factors of the nucleon: New fit and analysis of uncertainties

    SciTech Connect (OSTI)

    Alberico, W. M.; Giunti, C.; Bilenky, S. M.; Graczyk, K. M.

    2009-06-15

    Electromagnetic form factors of proton and neutron, obtained from a new fit of data, are presented. The proton form factors are obtained from a simultaneous fit to the ratio {mu}{sub p}G{sub Ep}/G{sub Mp} determined from polarization transfer measurements and to ep elastic cross section data. Phenomenological two-photon exchange corrections are taken into account. The present fit for protons was performed in the kinematical region Q{sup 2} is an element of (0,6) GeV{sup 2}. For both protons and neutrons we use the latest available data. For all form factors, the uncertainties and correlations of form factor parameters are investigated with the {chi}{sup 2} method.

  16. State of the art in electromagnetic modeling for the Compact Linear Collider

    SciTech Connect (OSTI)

    Candel, Arno; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Ng, Cho; Schussman, Greg; Ko, Kwok; /SLAC

    2009-07-10

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefield damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.

  17. Waveguide-based ultrasonic and far-field electromagnetic sensors for downhole reservoir characterization.

    SciTech Connect (OSTI)

    Sheen, S. H.; Chien, H. T.; Wang, K.; Liao, S.; Gopalsami, N.; Bakhtiari, S.; Raptis, A. C.; Nuclear Engineering Division

    2010-11-12

    This report summarizes the first year research and development effort leading to development of high-temperature sensors for enhanced geothermal systems. It covers evaluation of ultrasonic and electromagnetic (EM) techniques applied to temperature measurement and flow characterization. On temperature measurement, we have evaluated both microwave radiometry and ultrasonic techniques for temperature gradient and profile measurements. Different antenna designs are evaluated and array loop antenna design is selected for further development. We have also evaluated ultrasonic techniques for total flow characterization, which includes using speed of sound to determine flow temperature, measuring acoustic impedance to estimate fluid density, and using cross-correlation technique to determine the mass flow rate. Method to estimate the flow enthalpy is briefly discussed. At end, the need and proposed techniques to characterize the porosity and permeability of a hot dry rock resource are presented.

  18. Electromagnetic radiation due to naked singularity formation in self-similar gravitational collapse

    SciTech Connect (OSTI)

    Mitsuda, Eiji; Yoshino, Hirotaka; Tomimatsu, Akira

    2005-04-15

    Dynamical evolution of test fields in background geometry with a naked singularity is an important problem relevant to the Cauchy horizon instability and the observational signatures different from black hole formation. In this paper we study electromagnetic perturbations generated by a given current distribution in collapsing matter under a spherically symmetric self-similar background. Using the Green's function method, we construct the formula to evaluate the outgoing energy flux observed at the future null infinity. The contributions from 'quasinormal' modes of the self-similar system as well as 'high-frequency' waves are clarified. We find a characteristic power-law time evolution of the outgoing energy flux which appears just before naked singularity formation and give the criteria as to whether or not the outgoing energy flux diverges at the future Cauchy horizon.

  19. Electromagnetic structure of the proton within the CP-violation hypothesis

    SciTech Connect (OSTI)

    Krutov, A. F. Kudinov, M. Yu.

    2013-11-15

    The so-called non-Rosenbluth behavior of the proton electromagnetic form factors can be explained within the hypothesis of CP violation in electromagnetic processes involving composite systems of strongly interacting particles. It is shown that this hypothesis leads to the appearance of an additional, anapole, form factor of the proton. The proton electromagnetic form factors, including the anapole form factor, are estimated on the basis of experimental data on elastic electron-proton scattering.

  20. Microarcsecond relative astrometry from the ground with a diffractive...

    Office of Scientific and Technical Information (OSTI)

    ground with a diffractive pupil Citation Details In-Document Search Title: Microarcsecond relative astrometry from the ground with a diffractive pupil Authors: Ammons, S M ; ...

  1. Ground Gravity Survey At Clear Lake Area (Skokan, 1993) | Open...

    Open Energy Info (EERE)

    Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Clear Lake Area...

  2. Ground Gravity Survey At Coso Geothermal Area (1980) | Open Energy...

    Open Energy Info (EERE)

    Ground Gravity Survey At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Coso Geothermal...

  3. Ground Gravity Survey At Crump's Hot Springs Area (DOE GTP) ...

    Open Energy Info (EERE)

    Ground Gravity Survey At Crump's Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Crump's Hot...

  4. Ground Gravity Survey At North Brawley Geothermal Area (Biehler...

    Open Energy Info (EERE)

    Ground Gravity Survey At North Brawley Geothermal Area (Biehler, 1964) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At...

  5. Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et...

    Open Energy Info (EERE)

    Ground Gravity Survey At Cove Fort Area - Vapor (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  6. Ground Gravity Survey At Kilauea East Rift Geothermal Area (FURUMOTO...

    Open Energy Info (EERE)

    Ground Gravity Survey At Kilauea East Rift Geothermal Area (FURUMOTO, 1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  7. Ground Gravity Survey At Snake River Plain Region (DOE GTP) ...

    Open Energy Info (EERE)

    Ground Gravity Survey At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Snake River...

  8. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Thomas...

    Open Energy Info (EERE)

    Ground Gravity Survey At Kilauea East Rift Geothermal Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  9. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles...

    Open Energy Info (EERE)

    Ground Gravity Survey At Kilauea East Rift Geothermal Area (Broyles, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity...

  10. An Updated Site Scale Saturated Zone Ground Water Transport Model...

    Office of Scientific and Technical Information (OSTI)

    An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain. Citation Details In-Document Search Title: An Updated Site Scale Saturated Zone Ground Water ...

  11. Department of Veterans Affairs, FONSI - Ground mounted solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National ...

  12. Finite Volume Based Computer Program for Ground Source Heat Pump...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finite Volume Based Computer Program for Ground Source Heat Pump Systems Finite Volume Based Computer Program for Ground Source Heat Pump Systems Project objective: Create a new ...

  13. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Permit Application Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution...

  14. Montana Ground Water Pollution Control System Information Webpage...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Information Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System...

  15. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

  16. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Energy Savers [EERE]

    Analysis from Ground Source Heat Pump Demonstration Projects Data Analysis from Ground Source Heat Pump Demonstration Projects Comparison of building energy use before and after ...

  17. FIELD TEST AND EVALUATION OF RESIDENTIAL GROUND SOURCE HEAT PUMP...

    Office of Scientific and Technical Information (OSTI)

    TEST AND EVALUATION OF RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEMS USING ALTERNATIVE VERTICAL-BORE GROUND HEAT EXCHANGERS Citation Details In-Document Search Title: FIELD TEST AND ...

  18. 2012 Monitoring Research Review: Ground-Based Nuclear Explosion...

    Office of Scientific and Technical Information (OSTI)

    Review: Ground-Based Nuclear Explosion Monitoring Technologies Citation Details In-Document Search Title: 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring ...

  19. Water Quality Surface and Ground | Open Energy Information

    Open Energy Info (EERE)

    Water Quality Surface and Ground Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaterQualitySurfaceandGround&oldid612197" Feedback...

  20. Real-Time Tumor Tracking in the Lung Using an Electromagnetic Tracking System

    SciTech Connect (OSTI)

    Shah, Amish P.; Kupelian, Patrick A.; Waghorn, Benjamin J.; Willoughby, Twyla R.; Rineer, Justin M.; Maon, Rafael R.; Vollenweider, Mark A.; Meeks, Sanford L.

    2013-07-01

    Purpose: To describe the first use of the commercially available Calypso 4D Localization System in the lung. Methods and Materials: Under an institutional review board-approved protocol and an investigational device exemption from the US Food and Drug Administration, the Calypso system was used with nonclinical methods to acquire real-time 4-dimensional lung tumor tracks for 7 lung cancer patients. The aims of the study were to investigate (1) the potential for bronchoscopic implantation; (2) the stability of smooth-surface beacon transponders (transponders) after implantation; and (3) the ability to acquire tracking information within the lung. Electromagnetic tracking was not used for any clinical decision making and could only be performed before any radiation delivery in a research setting. All motion tracks for each patient were reviewed, and values of the average displacement, amplitude of motion, period, and associated correlation to a sinusoidal model (R{sup 2}) were tabulated for all 42 tracks. Results: For all 7 patients at least 1 transponder was successfully implanted. To assist in securing the transponder at the tumor site, it was necessary to implant a secondary fiducial for most transponders owing to the transponder's smooth surface. For 3 patients, insertion into the lung proved difficult, with only 1 transponder remaining fixed during implantation. One patient developed a pneumothorax after implantation of the secondary fiducial. Once implanted, 13 of 14 transponders remained stable within the lung and were successfully tracked with the tracking system. Conclusions: Our initial experience with electromagnetic guidance within the lung demonstrates that transponder implantation and tracking is achievable though not clinically available. This research investigation proved that lung tumor motion exhibits large variations from fraction to fraction within a single patient and that improvements to both transponder and tracking system are still necessary

  1. Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors

    SciTech Connect (OSTI)

    Dale K. Kotter; Steven D. Novack

    2010-02-01

    DRAFT For Submittal to Journal of Solar Energy - Rev 10.1 ---SOL-08-1091 SOLAR Nantenna Electromagnetic Collectors Dale K. Kotter Idaho National Laboratory Steven D. Novack Idaho National Laboratory W. Dennis Slafer MicroContinuum, Inc. Patrick Pinhero University of Missouri ABSTRACT The research described in this paper explores a new and efficient approach for producing electricity from the abundant energy of the sun, using nanoantenna (nantenna) electromagnetic collectors (NECs). NEC devices target mid-infrared wavelengths, where conventional photovoltaic (PV) solar cells are inefficient and where there is an abundance of solar energy. The initial concept of designing NECs was based on scaling of radio frequency antenna theory to the infrared and visible regions. This approach initially proved unsuccessful because the optical behavior of materials in the terahertz (THz) region was overlooked and, in addition, economical nanofabrication methods were not previously available to produce the optical antenna elements. This paper demonstrates progress in addressing significant technological barriers, including: 1) development of frequency-dependent modeling of double-feedpoint square spiral nantenna elements; 2) selection of materials with proper THz properties; and 3) development of novel manufacturing methods that could potentially enable economical large-scale manufacturing. We have shown that nantennas can collect infrared energy and induce THz currents, and we have also developed cost-effective proof-of-concept fabrication techniques for the large-scale manufacture of simple square loop nantenna arrays. Future work is planned to embed rectifiers into the double-feedpoint antenna structures. This work represents an important first step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity. This could lead to a broadband, high conversion efficiency low-cost solution to complement conventional PV

  2. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  3. Computational Science Research in Support of Petascale Electromagnetic Modeling

    SciTech Connect (OSTI)

    Lee, L.-Q.; Akcelik, V; Ge, L; Chen, S; Schussman, G; Candel, A; Li, Z; Xiao, L; Kabel, A; Uplenchwar, R; Ng, C; Ko, K; /SLAC

    2008-06-20

    Computational science research components were vital parts of the SciDAC-1 accelerator project and are continuing to play a critical role in newly-funded SciDAC-2 accelerator project, the Community Petascale Project for Accelerator Science and Simulation (ComPASS). Recent advances and achievements in the area of computational science research in support of petascale electromagnetic modeling for accelerator design analysis are presented, which include shape determination of superconducting RF cavities, mesh-based multilevel preconditioner in solving highly-indefinite linear systems, moving window using h- or p- refinement for time-domain short-range wakefield calculations, and improved scalable application I/O.

  4. Electromagnetic fluctuations and normal modes of a drifting relativistic plasma

    SciTech Connect (OSTI)

    Ruyer, C.; Gremillet, L.; Bénisti, D.; Bonnaud, G.

    2013-11-15

    We present an exact calculation of the power spectrum of the electromagnetic fluctuations in a relativistic equilibrium plasma described by Maxwell-Jüttner distribution functions. We consider the cases of wave vectors parallel or normal to the plasma mean velocity. The relative contributions of the subluminal and supraluminal fluctuations are evaluated. Analytical expressions of the spatial fluctuation spectra are derived in each case. These theoretical results are compared to particle-in-cell simulations, showing a good reproduction of the subluminal fluctuation spectra.

  5. Electromagnetic Acceleration Characteristics of Laser-Electric Hybrid Thrusters

    SciTech Connect (OSTI)

    Sasaki, Koki; Takeda, Akihito; Horisawa, Hideyuki; Kimura, Itsuro

    2006-05-02

    A fundamental study on a laser-electric hybrid thruster was conducted, in which laser-induced plasmas were generated through laser beam irradiation on to a solid target and accelerated by electrical means instead of direct acceleration using only a laser beam. As two typical cases of the hybrid propulsion systems, a feasibility study on electrostatic acceleration mode and electromagnetic acceleration mode of the laser ablation plasma were conducted including thrust performance tests with a torsion-balance, ion current measurements, and ICCD camera observations. It was confirmed that the thrust performances could be improved with electric energy inputs.

  6. Acceleration Mechanism Of Pulsed Laser-Electromagnetic Hybrid Thruster

    SciTech Connect (OSTI)

    Horisawa, Hideyuki; Mashima, Yuki; Yamada, Osamu

    2011-11-10

    A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted. Laser-ablation plasma in the thruster was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thrusters was evaluated by measuring the ablated mass per pulse and impulse bit. As results, significantly high specific impulses up to 7,200 s were obtained at charge energies of 8.6 J. Moreover, from the Faraday cup measurement, it was confirmed that the speed of ions was accelerated with addition of electric energy.

  7. Electromagnetically induced transparency with quantized fields in optocavity mechanics

    SciTech Connect (OSTI)

    Huang Sumei; Agarwal, G. S.

    2011-04-15

    We report electromagnetically induced transparency (EIT) using quantized fields in optomechanical systems. The weak probe field is a narrowband squeezed field. We present a homodyne detection of EIT in the output quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the single-photon level. The EIT with quantized fields can be seen even at temperatures on the order of 100 mK, thus paving the way for using optomechanical systems as memory elements.

  8. Perfect electromagnetic absorption at one-atom-thick scale

    SciTech Connect (OSTI)

    Li, Sucheng; Duan, Qian; Li, Shuo; Yin, Qiang; Lu, Weixin; Li, Liang; Hou, Bo; Gu, Bangming; Wen, Weijia

    2015-11-02

    We experimentally demonstrate that perfect electromagnetic absorption can be realized in the one-atom thick graphene. Employing coherent illumination in the waveguide system, the absorbance of the unpatterned graphene monolayer is observed to be greater than 94% over the microwave X-band, 7–13 GHz, and to achieve a full absorption, >99% in experiment, at ∼8.3 GHz. In addition, the absorption characteristic manifests equivalently a wide range of incident angle. The experimental results agree very well with the theoretical calculations. Our work accomplishes the broadband, wide-angle, high-performance absorption in the thinnest material with simple configuration.

  9. Substation grounding programs. Volume 5, Applications manual

    SciTech Connect (OSTI)

    Meliopoulos, A.P.S.

    1992-05-01

    This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

  10. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    SciTech Connect (OSTI)

    Warne, Larry K.; Jorgenson, Roy E.

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  11. Apparatus and method for measuring electrostatic polarization

    DOE Patents [OSTI]

    Hahn, Erwin L.; Clarke, John; Sloater, Tycho; Hilbert, Claude; Heaney, Michael B.

    1989-01-01

    An apparatus and method for measuring the electric properties of solid matter which provides data for determining the polarizability of the electron distributions contained therein is disclosed. A sample of the solid to be studied is placed between the plates of a capacitor where it acts as a dielectric. The sample is excited by the interaction of electromagnetic radiation with an atomic species contained in the sample. The voltage induced across the capacitor is then measured as a function of time with the aid of a high Q circuit tuned to a frequency related to the frequency of the applied electromagnetic energy.

  12. Electromagnetic Imaging of CO2 Sequestration at an Enhanced-Oil-Recovery Site

    SciTech Connect (OSTI)

    Kirkendall, B; Roberts, J

    2004-02-17

    The two year LDRD-ER-089 project Electromagnetic Imaging of CO{sub 2} Sequestration at an Enhanced-Oil-Recovery Site used a dual track approach to imaging and interpreting the effectiveness and migration of CO2 injection at an enhanced oil recovery site. Both field data and laboratory data were used together to aid in the interpretation and understanding of CO{sub 2} flow in a heavily fracture enhanced oil recovery site. In particular, project highlights include; {lg_bullet} The development of a low-noise digital field system to measure the EM induction response to CO{sub 2} in a variety of field conditions. Central to this system is a low-noise induction receiver antenna that can measure the low-energy response of the CO{sub 2}. This system has consistently measured a shallow pseudo-miscible CO{sub 2} flood at source frequencies between 2.0 kHz and 10 kHz. In addition, the existing and added oil and brine in the formation have also been characterized. {lg_bullet} Comparisons of cross-well images with induction logs acquired before drilling suggest the EM induction resolution for CO2 imaging is equivalent with applications to waterflood imaging completed at LLNL. {lg_bullet} The development and use of laboratory equipment to conduct fluid and gas time-lapsed injection studies of core samples using fluids acquired in the field. Measurements of the resistivity during this injection process and the ability to make instantaneous measurements of the frequency response provide a unique dataset for interpretation. {lg_bullet} The development of an optimum finite difference grid spacing that allows for stable inversions at different frequencies. {lg_bullet} The use of time-lapse field images to show the change of electrical conductivity in the field scales to the laboratory results. Using this result, we can approximate an interpretation of field images based on the rate-of-change of the laboratory results. {lg_bullet} The application of Q-domain processing is not

  13. Record of Decision for Ground Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record of Decision for Ground Water Record of Decision for Ground Water Record of Decision for Ground Water (April 1997) Record of Decision for Ground Water (625.12 KB) More Documents & Publications EIS-0198: Record of Decision EIS-0170: Record of Decision (April 1997) EIS-0251: Second Record of Decision (May 1997)

  14. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect (OSTI)

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  15. Use of the topography of secondary electromagnetic fields in resonance electromagnetic-acoustic quality control

    SciTech Connect (OSTI)

    Shakshin, N.I.; Komarov, V.A.; Deordiev, G.I.; Bausov, S.I.

    1988-09-01

    The article examines methods of identifying resonances from normal elastic waves of lower modes in the low-frequency part of the spectrum of oscillations of rectangular ferromagnetic metal plates from experimental evaluations of the phase velocity of a normal wave by the data on the topography of the amplitude of an EMA signal at a fixed height above the plate or on quasistationary attenuation of this amplitude with increasing height. Their efficiency is demonstrated on plates of Armco iron, steel 40Kh, and nickel. It is shown that the modification of the method using data on the attenuation of the amplitude makes it possible to improve the reliability of quality control of heat treatment of steel plates by going over to a new informative parameter which is directly proportional to the phase velocity of a normal wave and does not depend on variation of the resonance dimensions.

  16. Collection of liquid from below-ground location

    DOE Patents [OSTI]

    Phillips, Steven J.; Alexander, Robert G.

    1995-01-01

    A method of retrieving liquid from a below-ground collection area by permitting gravity flow of the liquid from the collection area to a first closed container; monitoring the level of the liquid in the closed container; and after the liquid reaches a given level in the first closed container, transferring the liquid to a second closed container disposed at a location above the first closed container, via a conduit, by introducing into the first closed container a gas which is substantially chemically inert with respect to the liquid, the gas being at a pressure sufficient to propel the liquid from the first closed container to the second closed container.

  17. Environmental geophysics at the Southern Bush River Peninsula, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Davies, B.E.; Miller, S.F.; McGinnis, L.D.

    1995-05-01

    Geophysical studies have been conducted at five sites in the southern Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland. The goals of the studies were to identify areas containing buried metallic objects and to provide diagnostic signatures of the hydrogeologic framework of the site. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low sea level resulted in a complex pattern of channel-fill deposits. Paleochannels of various sizes and orientations have been mapped throughout the study area by means of ground-penetrating radar and EM-31 techniques. The EM-31 paleochannel signatures are represented onshore either by conductivity highs or lows, depending on the depths and facies of the fill sequences. A companion study shows the features as conductivity highs where they extend offshore. This erosional and depositional system is environmentally significant because of the role it plays in the shallow groundwater flow regime beneath the site. Magnetic and electromagnetic anomalies outline surficial and buried debris throughout the areas surveyed. On the basis of geophysical measurements, large-scale (i.e., tens of feet) landfilling has not been found in the southern Bush River Peninsula, though smaller-scale dumping of metallic debris and/or munitions cannot be ruled out.

  18. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  19. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2010-08-24

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  20. Beam loading and cavity compensation for the ground test accelerator

    SciTech Connect (OSTI)

    Jachim, S.P.; Natter, E.F.

    1989-01-01

    The Ground Test Accelerator (GTA) will be a heavily beam-loaded H/sup minus/ linac with tight tolerances on accelerating field parameters. The methods used in modeling the effects of beam loading in this machine are described. The response of the cavity to both beam and radio-frequency (RF) drive stimulus is derived, including the effects of cavity detuning. This derivation is not restricted to a small-signal approximation. An analytical method for synthesizing a predistortion network that decouples the amplitude and phase responses of the cavity is also outlined. Simulation of performance, including beam loading, is achieved through use of a control system analysis software package. A straightforward method is presented for extrapolating this work to model large coupled structures with closely spaced parasitic modes. Results to date have enabled the RF control system designs for GTA to be optimized and have given insight into their operation. 6 refs., 10 figs.

  1. Programmatic Environmental Impact Statement for Ground Water | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Programmatic Environmental Impact Statement for Ground Water Programmatic Environmental Impact Statement for Ground Water Programmatic Environmental Impact Statement for Ground Water Volumes I & II (October 1996) Optical character recognition has been applied to these files, but full search capabilities are not guaranteed. Programmatic Environmental Impact Statement for Ground Water-Volume I (10.79 MB) Programmatic Environmental Impact Statement for Ground Water-Volume II

  2. Z-Axis Tipper Electromagnetics | Open Energy Information

    Open Energy Info (EERE)

    station. This relation is given by HzTzx (r,r0 ) Hx (r0 )+ Tzy (r,r0 ) Hy (r0) where r is the location for the vertical field, r0 is the location of the ground...

  3. Method and apparatus for measuring stress

    DOE Patents [OSTI]

    Thompson, R. Bruce

    1985-06-11

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  4. Method and apparatus for measuring stress

    DOE Patents [OSTI]

    Thompson, R.B.

    1983-07-28

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  5. Method for plasma formation for extreme ultraviolet lithography-theta pinch

    DOE Patents [OSTI]

    Hassanein, Ahmed; Konkashbaev, Isak; Rice, Bryan

    2007-02-20

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.

  6. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    SciTech Connect (OSTI)

    Ziebell, L. F.; Yoon, P. H.; Simes, F. J. R.; Pavan, J.; Gaelzer, R.; Instituto de Fsica e Matemtica, UFPel, Pelotas, Rio Grande do Sul

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  7. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  8. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOE Patents [OSTI]

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  9. Electromagnetic response of C12 : A first-principles calculation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lovato, A.; Gandolfi, S.; Carlson, J.; Pieper, Steven C.; Schiavilla, R.

    2016-08-15

    Here, the longitudinal and transverse electromagnetic response functions ofmore » $$^{12}$$C are computed in a ``first-principles'' Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of measured versus calculated longitudinal response. This is further corroborated by a re-analysis of the Coulomb sum rule, in which the contributions from the low-lying $$J^\\pi\\,$$=$$\\, 2^+$$, $0^+$ (Hoyle), and $4^+$ states in $$^{12}$$C are accounted for explicitly in evaluating the total inelastic strength.« less

  10. Electromagnetic Meson Production in the Nucleon Resonance Region

    SciTech Connect (OSTI)

    Volker Burkert; T.-S. H. Lee

    2004-10-01

    Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed. The article gives a description of current experimental facilities with electron and photon beams and presents a unified derivation of most of the phenomenological approaches being used to extract the resonance parameters from the data. The analyses of {pi} and {eta} production data and the resulting transition form factors for the {Delta}(1232)P{sub 33}, N(1535)S{sub 11}, N(1440)P{sub 11}, and N(1520)D{sub 13} resonances are discussed in detail. The status of our understanding of the reactions with production of two pions, kaons, and vector mesons is also reviewed.

  11. Electromagnetic field limits set by the V-Curve.

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Hudson, Howard Gerald

    2014-07-01

    When emitters of electromagnetic energy are operated in the vicinity of sensitive components, the electric field at the component location must be kept below a certain level in order to prevent the component from being damaged, or in the case of electro-explosive devices, initiating. The V-Curve is a convenient way to set the electric field limit because it requires minimal information about the problem configuration. In this report we will discuss the basis for the V-Curve. We also consider deviations from the original V-Curve resulting from inductive versus capacitive antennas, increases in directivity gain for long antennas, decreases in input impedance when operating in a bounded region, and mismatches dictated by transmission line losses. In addition, we consider mitigating effects resulting from limited antenna sizes.

  12. Electromagnetic Isolation Solutions in Low Temperature Cofired Ceramic (LTCC)

    SciTech Connect (OSTI)

    Krueger, Daniel; Peterson, Ken; Euler, Laurie

    2011-10-09

    Low Temperature Cofired Ceramic (LTCC) is a commercial ceramic-glass multilayer technology with compelling advantages for microelectronics, microsystems and sensors. High frequency applications require good electrical properties such as low dielectric loss and newer applications require extreme isolation from electromagnetic interference (EMI) that is even difficult to measure (-150db). Approaches to providing this isolation, once provided by via fences, have included sidewall coating and full tape thickness features (FTTF) that have been introduced by the filling of slots with via-fill compositions. Several techniques for creating these structures have been modeled for stress and temperature effects in the face of other necessary attachments, such as metallic seal frames. The relative effects of attachment media, FTTF geometry, and alternative measures will be reported. Approaches for thick film and thin film implementations are described.

  13. A fluid approach to linear beam plasma electromagnetic instabilities

    SciTech Connect (OSTI)

    Bret, A.; Deutsch, C.

    2006-04-15

    Electromagnetic instabilities found for an arbitrary oriented wave vector are typically difficult to investigate analytically within the framework of kinetic theory. The case of a small density relativistic electron beam interacting with a plasma is considered, and a two-fluid theory of the system including a kinetic pressure tensor is developed. The model obtained agrees very well with temperature effects found on oblique instabilities from a kinetic model, and the respective roles of parallel and transverse beam temperatures are correctly reproduced. An analysis of the phase velocities of the unstable waves allows for an explanation of this similarity. Such a formalism could be used to study oblique instabilities in settings where kinetic theory becomes problematic to implement.

  14. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect (OSTI)

    Manuel, M. J.-E.; Li, C. K.; Sguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-05-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. Sguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser-irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of ?210 ?m throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  15. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect (OSTI)

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  16. Instability-driven electromagnetic fields in coronal plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; et al

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of 210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature andmore » density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.« less

  17. Cosmological Ohm's law and dynamics of non-minimal electromagnetism

    SciTech Connect (OSTI)

    Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R. E-mail: jain@cp3.dias.sdu.dk

    2013-01-01

    The origin of large-scale magnetic fields in cosmic structures and the intergalactic medium is still poorly understood. We explore the effects of non-minimal couplings of electromagnetism on the cosmological evolution of currents and magnetic fields. In this context, we revisit the mildly non-linear plasma dynamics around recombination that are known to generate weak magnetic fields. We use the covariant approach to obtain a fully general and non-linear evolution equation for the plasma currents and derive a generalised Ohm law valid on large scales as well as in the presence of non-minimal couplings to cosmological (pseudo-)scalar fields. Due to the sizeable conductivity of the plasma and the stringent observational bounds on such couplings, we conclude that modifications of the standard (adiabatic) evolution of magnetic fields are severely limited in these scenarios. Even at scales well beyond a Mpc, any departure from flux freezing behaviour is inhibited.

  18. Instability-driven electromagnetic fields in coronal plasmas

    SciTech Connect (OSTI)

    Manuel, M. J.-E.; Li, C. K.; Seguin, F. H.; Sinenian, N.; Frenje, J. A.; Casey, D. T.; Petrasso, R. D.; Hager, J. D.; Betti, R.; Hu, S. X.; Delettrez, J.; Meyerhofer, D. D.

    2013-04-15

    Filamentary electromagnetic fields previously observed in the coronae of laser-driven spherical targets [F. H. S#2;eguin et al., Phys. Plasma. 19, 012701 (2012)] have been further investigated in laser irradiated plastic foils. Face-on proton-radiography provides an axial view of these filaments and shows coherent cellular structure regardless of initial foil-surface conditions. The observed cellular fields are shown to have an approximately constant scale size of #2;210 lm throughout the plasma evolution. A discussion of possible field-generation mechanisms is provided and it is demonstrated that the likely source of the cellular field structure is the magnetothermal instability. Using predicted temperature and density profiles, the fastest growing modes of this instability were found to be slowly varying in time and consistent with the observed cellular size.

  19. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  20. Modulational instability of electromagnetic waves in a collisional quantum magnetoplasma

    SciTech Connect (OSTI)

    Niknam, A. R.; Rastbood, E.; Bafandeh, F.; Khorashadizadeh, S. M.

    2014-04-15

    The modulational instability of right-hand circularly polarized electromagnetic electron cyclotron (CPEM-EC) wave in a magnetized quantum plasma is studied taking into account the collisional effects. Employing quantum hydrodynamic and nonlinear Schrdinger equations, the dispersion relation of modulated CPEM-EC wave in a collisional plasma has been derived. It is found that this wave is unstable in such a plasma system and the growth rate of the associated instability depends on various parameters such as electron Fermi temperature, plasma number density, collision frequency, and modulation wavenumber. It is shown that while the increase of collision frequency leads to increase of the growth rate of instability, especially at large wavenumber limit, the increase of plasma number density results in more stable modulated CPEM-EC wave. It is also found that in contrast to collisionless plasma in which modulational instability is restricted to small wavenumbers, in collisional plasma, the interval of instability occurrence can be extended to a large domain.

  1. First experience of vectorizing electromagnetic physics models for detector simulation

    SciTech Connect (OSTI)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; Licht, J.de Fine; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  2. The lead-glass electromagnetic calorimeter for the SELEX experiment

    SciTech Connect (OSTI)

    M. Y. Balatz et al.

    2004-07-19

    A large-acceptance, highly segmented electromagnetic lead glass calorimeter for Experiment E781 (SELEX) at Fermi National Acceleration Laboratory was designed and built. This detector has been used to reconstruct photons and electrons with energies ranging from few GeV up to 500 GeV in the collisions of the 650 GeV {Sigma}{sup -} hyperons and {pi}{sup -} mesons with the target nucleons. The design, calibration and performance of the calorimeter are described. Energy resolution and position resolution are assessed using both calibration electron beams and {pi}{sup 0} mesons reconstructed in 650 GeV hadron-hadron interactions. The performance of the calorimeter in selecting resonant states that involve photons is demonstrated.

  3. 3D electromagnetic inversion for environmental site characterization

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1997-04-01

    A 3-D non-linear electromagnetic inversion scheme has been developed to produce images of subsurface conductivity structure from electromagnetic geophysical data. The solution is obtained by successive linearized model updates where full forward modeling is employed at each iteration to compute model sensitivities and predicted data. Regularization is applied to the problem to provide stability. Because the inverse part of the problem requires the solution of 10`s to 100`s of thousands of unknowns, and because each inverse iteration requires many forward models to be computed, the code has been implemented on massively parallel computer platforms. The use of the inversion code to image environmental sites is demonstrated on a data set collected with the Apex Parametrics {open_quote}MaxMin I-8S{close_quote} over a section of stacked barrels and metal filled boxes at the Idaho National Laboratory`s {open_quote}Cold Test Pit{close_quote}. The MaxMin is a loop-loop frequency domain system which operates from 440 Hz up to 56 kHz using various coil separations; for this survey coil separations of 15, 30 and 60 feet were employed. The out-of phase data are shown to be of very good quality while the in-phase are rather noisy due to slight mispositioning errors, which cause improper cancellation of the primary free space field in the receiver. Weighting the data appropriately by the estimated noise and applying the inversion scheme is demonstrated to better define the structure of the pit. In addition, comparisons are given for single coil separations and multiple separations to show the benefits of using multiple offset data.

  4. Localization from near-source quasi-static electromagnetic fields

    SciTech Connect (OSTI)

    Mosher, J.C.

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  5. U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan

    Office of Legacy Management (LM)

    GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction

  6. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M.; Crapse, B.; Cowan, S.

    1998-01-21

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  7. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  8. Ground-Based Microwave Radiometer Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground-Based Microwave Radiometer Measurements and Radiosonde Comparisons During the WVIOP2000 Field Experiment D. Cimini University of L'Aquila L'Aquil, Italy E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Y. Han Science System Applications National Aeronautics Space Administration Goddard Space Flight Center Greenbelt, Maryland S. Keihm

  9. Breaking New Ground The Answer Is....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Ground The Answer Is.... NSTec enters groundbreaking science partnership. CTOS leads the way at FEMA training symposium. Middle School Science Bowl hailed a success. See page 6. See page 8. Use Restriction - What does it Mean? Since 1989, the U.S. Department of Energy Environmental Management (EM) Program has been identifying and addressing areas on the Nevada National Security Site (NNSS) that have been impacted by historical nuclear testing. To date, EM has successfully closed more than

  10. Posters Ground-Based Radiometric Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Posters Ground-Based Radiometric Observations of Atmospheric Water for Climate Research J. B. Snider, D. A. Hazen, A. J. Francavilla, W. B. Madsen, and M. D. Jacobson National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction Surface-based microwave and infrared radiometers have been employed by the National Oceanic and Atmospheric Administration's Environmental Technology Laboratory (NOAA/ETL) in climate research since 1987. The ability

  11. Site survey method and apparatus

    DOE Patents [OSTI]

    Oldham, James G.; Spencer, Charles R.; Begley, Carl L.; Meyer, H. Robert

    1991-06-18

    The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow somewhat irregular terrain to allow consistent and accurate detection, and autolocation equipment.

  12. Site survey method and apparatus

    DOE Patents [OSTI]

    Oldham, J.G.; Spencer, C.R.; Begley, C.L.; Meyer, H.R.

    1991-06-18

    The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow somewhat irregular terrain to allow consistent and accurate detection, and autolocation equipment. 19 figures.

  13. Chaotic advection at large Pclet number: Electromagnetically driven experiments, numerical simulations, and theoretical predictions

    SciTech Connect (OSTI)

    Figueroa, Aldo [Facultad de Ciencias, Universidad Autnoma del Estado de Morelos, Cuernavaca, Morelos 62209 (Mexico)] [Facultad de Ciencias, Universidad Autnoma del Estado de Morelos, Cuernavaca, Morelos 62209 (Mexico); Meunier, Patrice; Villermaux, Emmanuel [Aix-Marseille Univ., CNRS, Centrale Marseille, IRPHE, Marseille F-13384 (France)] [Aix-Marseille Univ., CNRS, Centrale Marseille, IRPHE, Marseille F-13384 (France); Cuevas, Sergio; Ramos, Eduardo [Instituto de Energas Renovables, Universidad Nacional Autnoma de Mxico, A.P. 34, Temixco, Morelos 62580 (Mexico)] [Instituto de Energas Renovables, Universidad Nacional Autnoma de Mxico, A.P. 34, Temixco, Morelos 62580 (Mexico)

    2014-01-15

    We present a combination of experiment, theory, and modelling on laminar mixing at large Pclet number. The flow is produced by oscillating electromagnetic forces in a thin electrolytic fluid layer, leading to oscillating dipoles, quadrupoles, octopoles, and disordered flows. The numerical simulations are based on the Diffusive Strip Method (DSM) which was recently introduced (P. Meunier and E. Villermaux, The diffusive strip method for scalar mixing in two-dimensions, J. Fluid Mech. 662, 134172 (2010)) to solve the advection-diffusion problem by combining Lagrangian techniques and theoretical modelling of the diffusion. Numerical simulations obtained with the DSM are in reasonable agreement with quantitative dye visualization experiments of the scalar fields. A theoretical model based on log-normal Probability Density Functions (PDFs) of stretching factors, characteristic of homogeneous turbulence in the Batchelor regime, allows to predict the PDFs of scalar in agreement with numerical and experimental results. This model also indicates that the PDFs of scalar are asymptotically close to log-normal at late stages, except for the large concentration levels which correspond to low stretching factors.

  14. General description of electromagnetic radiation processes based on instantaneous charge acceleration in ''endpoints''

    SciTech Connect (OSTI)

    James, Clancy W.; Falcke, Heino; Huege, Tim; Ludwig, Marianne

    2011-11-15

    We present a methodology for calculating the electromagnetic radiation from accelerated charged particles. Our formulation - the 'endpoint formulation' - combines numerous results developed in the literature in relation to radiation arising from particle acceleration using a complete, and completely general, treatment. We do this by describing particle motion via a series of discrete, instantaneous acceleration events, or 'endpoints', with each such event being treated as a source of emission. This method implicitly allows for particle creation and destruction, and is suited to direct numerical implementation in either the time or frequency domains. In this paper we demonstrate the complete generality of our method for calculating the radiated field from charged particle acceleration, and show how it reduces to the classical named radiation processes such as synchrotron, Tamm's description of Vavilov-Cherenkov, and transition radiation under appropriate limits. Using this formulation, we are immediately able to answer outstanding questions regarding the phenomenology of radio emission from ultra-high-energy particle interactions in both the earth's atmosphere and the moon. In particular, our formulation makes it apparent that the dominant emission component of the Askaryan effect (coherent radio-wave radiation from high-energy particle cascades in dense media) comes from coherent 'bremsstrahlung' from particle acceleration, rather than coherent Vavilov-Cherenkov radiation.

  15. Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe

    SciTech Connect (OSTI)

    Joseph, Wout; University of Basel ; Thuroczy, Gyoergy; French National Institute for Industrial Environment and Risks , Verneuil en Halatte ; Gajsek, Peter; Trcek, Tomaz; Bolte, John; Vermeeren, Guenter; University of Basel ; Juhasz, Peter; Finta, Viktoria

    2010-10-15

    Background: Only limited data are available on personal radio frequency electromagnetic field (RF-EMF) exposure in everyday life. Several European countries performed measurement studies in this area of research. However, a comparison between countries regarding typical exposure levels is lacking. Objectives: To compare for the first time mean exposure levels and contributions of different sources in specific environments between different European countries. Methods: In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), measurement studies were performed using the same personal exposure meters. The pooled data were analyzed using the robust regression on order statistics (ROS) method in order to allow for data below the detection limit. Mean exposure levels were compared between different microenvironments such as homes, public transports, or outdoor. Results: Exposure levels were of the same order of magnitude in all countries and well below the international exposure limits. In all countries except for the Netherlands, the highest total exposure was measured in transport vehicles (trains, car, and busses), mainly due to radiation from mobile phone handsets (up to 97%). Exposure levels were in general lower in private houses or flats than in offices and outdoors. At home, contributions from various sources were quite different between countries. Conclusions: Highest total personal RF-EMF exposure was measured inside transport vehicles and was well below international exposure limits. This is mainly due to mobile phone handsets. Mobile telecommunication can be considered to be the main contribution to total RF-EMF exposure in all microenvironments.

  16. External circuit integration with electromagnetic particle in cell modeling of plasma focus devices

    SciTech Connect (OSTI)

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2015-03-15

    The pinch performance of a plasma focus (PF) device is sensitive to the physical conditions of the breakdown phase. It is therefore essential to model and study the initial phase in order to optimize device performance. An external circuit is self consistently coupled to the electromagnetic particle in cell code to model the breakdown and initial lift phase of the United Nations University/International Centre for Theoretical Physics (UNU-ICTP) plasma focus device. Gas breakdown during the breakdown phase is simulated successfully, following a drop in the applied voltage across the device and a concurrent substantial rise in the circuit current. As a result, the plasma becomes magnetized, with the growing value of the magnetic field over time leading to the gradual lift off of the well formed current sheath into the axial acceleration phase. This lifting off, with simultaneous outward sheath motion along the anode and vertical cathode, and the strong magnetic fields in the current sheath region, was demonstrated in this work, and hence validates our method of coupling the external circuit to PF devices. Our method produces voltage waveforms that are qualitatively similar to the observed experimental voltage profiles of the UNU-ICTP device. Values of the mean electron energy before and after voltage breakdown turned out to be different, with the values after breakdown being much lower. In both cases, the electron energy density function turned out to be non-Maxwellian.

  17. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    SciTech Connect (OSTI)

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  18. Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions

    SciTech Connect (OSTI)

    Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser

    2012-08-27

    ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration due to electrical contact among various EPP structural components are discussed.

  19. Plasma wave aided two photon decay of an electromagnetic wave in a plasma

    SciTech Connect (OSTI)

    Kumar, K. K. Magesh; Singh, Rohtash; Krishan, Vinod

    2014-11-15

    The presence of a Langmuir wave in an unmagnetized plasma is shown to allow parametric decay of an electromagnetic wave into two electromagnetic waves, which is otherwise not allowed due to wave number mismatch. The decay occurs at plasma densities below one ninth the critical density and the decay waves propagate at finite angles to the pump laser. Above the threshold, the growth rate scales linearly with the amplitude of the Langmuir wave and the amplitude of the pump electromagnetic wave. The frequency ω of the lower frequency decay wave increases with the angle its propagation vector makes with that of the pump. The growth rate, however, decreases with ω.

  20. Ultrastructural Study on Ultra-Low Frequency Electromagnetic Fields and Transfer Factor Effects on Skin Ulcers

    SciTech Connect (OSTI)

    Cadena, M. S. Reyes; Chapul, L. Sanchez; Perez, Javier; Garcia, M. N. Jimenez; Lopez, M. A. Jimenez; Espindola, M. E. Sanchez; Perez, R. Paniagua; Hernandez, N. A.; Paniagua, G.; Uribe, F.; Nava, J. J. Godina; Segura, M. A. Rodriguez

    2008-08-11

    We determined the effect of 120Hz ultra low frequency electromagnetic field (ELF) on the healing process of skin in 20 Wistar rats distributed in four groups in which chronic dermal ulcers had been produced. The first two groups received a dose of the transfer factor and interferon-beta (IFN-{beta}) every 24 h during 12 days. The third group (positive control) received only electromagnetic field (ELF) sessions, and in the fourth group (negative control), no treatment was applied. The electromagnetic field was applied through a Helmholtz coils; 30 Gauss of intensity. Results shown histological changes that improve the healing process in animals subjected to ELF together with the transfer factor.

  1. Emergent spin electromagnetism induced by magnetization textures in the presence of spin-orbit interaction (invited)

    SciTech Connect (OSTI)

    Tatara, Gen; Nakabayashi, Noriyuki

    2014-05-07

    Emergent electromagnetic field which couples to electron's spin in ferromagnetic metals is theoretically studied. Rashba spin-orbit interaction induces spin electromagnetic field which is in the linear order in gradient of magnetization texture. The Rashba-induced effective electric and magnetic fields satisfy in the absence of spin relaxation the Maxwell's equations as in the charge-based electromagnetism. When spin relaxation is taken into account besides spin dynamics, a monopole current emerges generating spin motive force via the Faraday's induction law. The monopole is expected to play an important role in spin-charge conversion and in the integration of spintronics into electronics.

  2. SU-E-T-512: Electromagnetic Simulations of the Dielectric Wall Accelerator

    SciTech Connect (OSTI)

    Uselmann, A; Mackie, T

    2014-06-01

    Purpose: To characterize and parametrically study the key components of a dielectric wall accelerator through electromagnetic modeling and particle tracking. Methods: Electromagnetic and particle tracking simulations were performed using a commercial code (CST Microwave Studio, CST Inc.) utilizing the finite integration technique. A dielectric wall accelerator consists of a series of stacked transmission lines sequentially fired in synchrony with an ion pulse. Numerous properties of the stacked transmission lines, including geometric, material, and electronic properties, were analyzed and varied in order to assess their impact on the transverse and axial electric fields. Additionally, stacks of transmission lines were simulated in order to quantify the parasitic effect observed in closely packed lines. Particle tracking simulations using the particle-in-cell method were performed on the various stacks to determine the impact of the above properties on the resultant phase space of the ions. Results: Examination of the simulation results show that novel geometries can shape the accelerating pulse in order to reduce the energy spread and increase the average energy of accelerated ions. Parasitic effects were quantified for various geometries and found to vary with distance from the end of the transmission line and along the beam axis. An optimal arrival time of an ion pulse relative to the triggering of the transmission lines for a given geometry was determined through parametric study. Benchmark simulations of single transmission lines agree well with published experimental results. Conclusion: This work characterized the behavior of the transmission lines used in a dielectric wall accelerator and used this information to improve them in novel ways. Utilizing novel geometries, we were able to improve the accelerating gradient and phase space of the accelerated particle bunch. Through simulation, we were able to discover and optimize design issues with the device at

  3. CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS CONSTRUCTION OF KEY CLEANUP PROJECT GAINS GOOD GROUND AT SRS June 1, 2010 - 12:00pm Addthis CONSTRUCTION OF KEY CLEANUP ...

  4. Appendix E Supporting Information for Ground Water Modeling

    Office of Legacy Management (LM)

    Supporting Information for Ground Water Modeling This page intentionally left blank Contents Section Geologic Map of Site Area ........................................................................................................ E1.O Stream Flow Measurements ...................................................................................................... E2.0 Estimates of Ground Water Flow .............................................................................................. E3.0

  5. 5-MW Dynamometer Ground Breaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5-MW Dynamometer Ground Breaking 5-MW Dynamometer Ground Breaking December 19, 2011 - 3:04pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D ...

  6. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Designated Ground Water Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Designated Ground Water Basin Map Abstract This webpage provides...

  7. Final Environmental Assessment of Ground Water Compliance at...

    Office of Environmental Management (EM)

    458 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA ... DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick ...

  8. Ground Water Compliance Action Plan for the Old Rifle, Colorado...

    Office of Legacy Management (LM)

    GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, ... GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, ...

  9. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  10. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Broader source: Energy.gov [DOE]

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  11. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D.

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  12. Full-physics 3D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.; Kolodzey, James

    2015-10-01

    In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water asmore » a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.« less

  13. Full-physics 3D heterogeneous simulations of electromagnetic induction fields on level and deformed sea ice

    SciTech Connect (OSTI)

    Samluk, Jesse P.; Geiger, Cathleen A.; Weiss, Chester J.; Kolodzey, James

    2015-10-01

    In this article we explore simulated responses of electromagnetic (EM) signals relative to in situ field surveys and quantify the effects that different values of conductivity in sea ice have on the EM fields. We compute EM responses of ice types with a three-dimensional (3-D) finite-volume discretization of Maxwell's equations and present 2-D sliced visualizations of their associated EM fields at discrete frequencies. Several interesting observations result: First, since the simulator computes the fields everywhere, each gridcell acts as a receiver within the model volume, and captures the complete, coupled interactions between air, snow, sea ice and sea water as a function of their conductivity; second, visualizations demonstrate how 1-D approximations near deformed ice features are violated. But the most important new finding is that changes in conductivity affect EM field response by modifying the magnitude and spatial patterns (i.e. footprint size and shape) of current density and magnetic fields. These effects are demonstrated through a visual feature we define as 'null lines'. Null line shape is affected by changes in conductivity near material boundaries as well as transmitter location. Our results encourage the use of null lines as a planning tool for better ground-truth field measurements near deformed ice types.

  14. Ground Magnetic Data for west-central Colorado

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard

    2012-03-08

    Ground Magnetic Data for west-central Colorado Modeled ground magnetic data was extracted from the Pan American Center for Earth and Environmental Studies database at http://irpsrvgis08.utep.edu/viewers/Flex/GravityMagnetic/GravityMagnetic_CyberShare/ on 2/29/2012. The downloaded text file was then imported into an Excel spreadsheet. This spreadsheet data was converted into an ESRI point shapefile in UTM Zone 13 NAD27 projection, showing location and magnetic field strength in nano-Teslas. This point shapefile was then interpolated to an ESRI grid using an inverse-distance weighting method, using ESRI Spatial Analyst. The grid was used to create a contour map of magnetic field strength. This dataset includes the raw spreadsheet data, an ESRI point shapefile showing magnetic sample locations and magnetic field strength, and an ESRI line shapefile showing magnetic contours. Projection: UTM Zone 13 NAD27 Magnetic Contour Shapefile Extent: West -108.698836 East -105.283977 North 41.048206 South 36.950086 Magnetic Point Shapefile Extent: West -108.698832 East -105.283908 North 41.048142 South 36.950086

  15. Coal mine ground control. 3rd ed.

    SciTech Connect (OSTI)

    Peng, S.S.

    2008-09-15

    The third edition not only completely revises and updates the original subject areas, but also is broadened to include a number of new topics such as high horizontal stresses, computer modeling, and highwall stability. The subject areas covered in this book define the current field of coal mine ground control, except for the recently emerging topic of mine seals and some conventional subjects such as coal/rock cutting and impoundment dams. It contains 1,134 references from all published sources, and archived since 1876.

  16. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2008-10-14

    An electrically conductive mounting/grounding clip, for use with a photovoltaic assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending generally perpendicular to the central portion. Each arm has an outer portion with each outer portion having an outer end. At least one frame surface-disrupting element is at each outer end. The central portion defines a plane with the frame surface-disrupting elements pointing towards the plane. In some examples each arm extends from the central portion at an acute angle to the plane.

  17. Electromagnetic augmentation for casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R.

    1989-01-01

    Thin metal sheets are cast by magnetically levitating molten metal deposited in a mold within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. The magnetic fields associated with the currents in the aforementioned coils levitate the molten metal sheet while the mold provides for its lateral and vertical confinement. A leader sheet having electromagnetic characteristics similar to those of the molten metal sheet is used to start the casing process and precedes the molten metal sheet through the yoke/coil arrangement and mold and forms a continuous sheet therewith. The yoke/coil arrangement may be either U-shaped with a single racetrack coil or may be rectangular with a pair of spaced, facing bedstead coils.

  18. Tissue interaction with nonionizing electromagnetic fields. Final report

    SciTech Connect (OSTI)

    Adey, W.R.; Bawin, S.M.; Lawrence, A.F.; Lin-Liu, S.; Luben, R.A.; Lundak, R.L.; Sagan, P.M.; Sheppard, A.R.

    1981-02-01

    Studies of the effects of environmental low frequency electromagnetic fields on isolated cellular systems and tissue preparations derived from brain, bone, blood, and pancreas are reported. Behavioral effects of 60 Hz fields were examined in monkeys. Bioeffects of low level microwave fields modulated at 60 Hz and other ELF frequencies were also examined. Findings in the present studies emphasize a key role for cell membrane surfaces in detecting ELF environmental fields. Two broad groups of exposure techniques have been utilized. In the ELF spectrum, 60 Hz environmental fields were imposed on monkeys during behavioral task performance. Field intensities from 50 to 1000 V/m were tested in different experiments. The monkeys were exposed to a horizontal electric field. In tissue and cell culture preparations, ELF electric fields were generated by passing current between electrodes in the solutions bathing the tissue. Tissue and cell preparations were also tested with low frequency, pulsed magnetic fields by placing the biological preparation inside Helmholtz coils. For ELF dosimetry measurements in tissue preparations, electric gradients were measured directly in relation to specific axes of tissue and cell preparations. Exposures to ELF modulated 450 MHz microwave fields were conducted in two different systems, one uses a large anechoic horn chamber, the other utilizes a Crawford cell, a double-tapered coaxial system.Environmental field levels and tissue components of these fields were studied collaboratively using implantable tissue probes developed by BRH. Concurrent environmental field levels were based on measurements with other BRH probes and a NARDA microwave probe system. (ERB)

  19. Electromagnetic wave propagation through an overdense magnetized collisional plasma layer

    SciTech Connect (OSTI)

    Thoma, C.; Rose, D. V.; Miller, C. L.; Clark, R. E.; Hughes, T. P. [Voss Scientific LLC, Albuquerque, New Mexico 87108 (United States)

    2009-08-15

    The results of investigations into the feasibility of using a magnetic window to propagate electromagnetic waves through a finite-sized overdense plasma slab are described. We theoretically calculate the transmission coefficients for right- and left-handed circularly polarized plane waves through a uniform magnetized plasma slab. Using reasonable estimates for the plasma properties expected to be found in the ionized shock layer surrounding a hypersonic aircraft traveling in the earth's upper atmosphere (radio blackout conditions), and assuming a 1 GHz carrier frequency for the radio communications channel, we find that the required magnetic field for propagation of right-handed circularly polarized, or whistler, waves is on the order of a few hundred gauss. Transmission coefficients are calculated as a function of sheath thickness and are shown to be quite sensitive to the electron collision frequency. One-dimensional particle-in-cell simulations are shown to be in good agreement with the theory. These simulations also demonstrate that Ohmic heating of the electrons can be considerable. Two- and three-dimensional particle-in-cell simulations using a simplified waveguide and antenna model illustrate the same general transmission behavior as the theory and one-dimensional simulations. In addition, a net focusing effect due to the plasma is also observed in two and three dimensions. These simulations can be extended to design and analyze more realistic waveguide and antenna models.

  20. Influence of laser beam profile on electromagnetically induced absorption

    SciTech Connect (OSTI)

    Cuk, S. M.; Radonjic, M.; Krmpot, A. J.; Nikolic, S. N.; Grujic, Z. D.; Jelenkovic, B. M.

    2010-12-15

    We compared, experimentally and theoretically, Hanle electromagnetically induced absorption (EIA) obtained using Gaussian and {Pi}-shaped laser beams 3 mm in diameter. The study was done by measuring the transmission of a laser locked to the F{sub g}=2{yields}F{sub e}=3 transition at the D{sub 2} line of {sup 87}Rb in a vacuum cell. EIA linewidths obtained for the two laser profiles were significantly different in the range of laser intensities 1-4 mW/cm{sup 2}. EIA with the {Pi}-shaped laser beam has a broad intensity maximum and linewidths larger than those obtained with the Gaussian beam profile. We also studied Hanle EIA by measuring the transmission of selected segments of the entire laser beam by placing a small movable aperture in front of the detector. Waveforms so obtained in Hanle EIA resonances were strongly influenced both by the radial distance of the transmitted segment from the beam center and by the radial profile of the laser beam. We show that outer regions of Gaussian beam, and central regions of the {Pi}-shaped beam generate the narrowest lines. The different behaviors of EIA owing to different beam profiles revealed by both theory and experiment indicate the importance of the radial profile of the laser beam for proper modeling of coherent effects in alkali metal vapors.

  1. Design of the electromagnetic fluctuations diagnostic for MFTF-B

    SciTech Connect (OSTI)

    House, P.A.; Goerz, D.A.; Martin, R.

    1983-11-28

    The Electromagnetic Fluctuations (EMF) diagnostic will be used to monitor ion fluctuations which could be unstable in MFTF-B. Each probe assembly includes a high impedance electrostatic probe to measure potential fluctuations, and a group of nested, single turn loops to measure magnetic fluctuations in three directions. Eventually, more probes and loops will be added to each probe assembly for making more detailed measurements. The sensors must lie physically close to the plasma edge and are radially positionable. Also, probes at separate axial locations can be positioned to connect along the same magnetic field line. These probes are similar in concept to the rf probes used on TMX, but the high thermal load for 30-second shots on MFTF-B requires a water-cooled design along with temperature monitors. Each signal channel has a bandwidth of .001 to 150 MHz and is monitored by up to four different data channels which obtain amplitude and frequency information. This paper describes the EMF diagnostic and presents the detailed mechanical and electrical designs.

  2. Electromagnetic Currents and Magnetic Moments in $\\chi$EFT

    SciTech Connect (OSTI)

    Saori Pastore, Luca Girlanda, Rocco Schiavilla, Michele Viviani, Robert Wiringa

    2009-09-01

    A two-nucleon potential and consistent electromagnetic currents are derived in chiral effective field theory ($\\chi$EFT) at, respectively, $Q^{\\, 2}$ (or N$^2$LO) and $e\\, Q$ (or N$^3$LO), where $Q$ generically denotes the low-momentum scale and $e$ is the electric charge. Dimensional regularization is used to renormalize the pion-loop corrections. A simple expression is derived for the magnetic dipole ($M1$) operator associated with pion loops, consisting of two terms, one of which is determined, uniquely, by the isospin-dependent part of the two-pion-exchange potential. This decomposition is also carried out for the $M1$ operator arising from contact currents, in which the unique term is determined by the contact potential. Finally, the low-energy constants (LEC's) entering the N$^2$LO potential are fixed by fits to the $np$ S- and P-wave phase shifts up to 100 MeV lab energies. Three additional LEC's are needed to completely specify the $M1$ operator at N$^3$L

  3. Electromagnetically induced transparency resonances inverted in magnetic field

    SciTech Connect (OSTI)

    Sargsyan, A.; Sarkisyan, D. E-mail: david@ipr.sci.am; Pashayan-Leroy, Y.; Leroy, C.; Cartaleva, S.; Wilson-Gordon, A. D.; Auzinsh, M.

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  4. Design and optimization of a bi-axial vibration-driven electromagnetic...

    Office of Scientific and Technical Information (OSTI)

    Design and optimization of a bi-axial vibration-driven electromagnetic generator Citation Details In-Document Search Title: Design and optimization of a bi-axial vibration-driven ...

  5. The effect of hyperfine mixing in electromagnetic and semileptonic decays of doubly heavy baryons

    SciTech Connect (OSTI)

    Albertus, C.; Hernandez, E.; Nieves, J.

    2011-05-23

    We consider the role played by hyperfine mixing in electromagnetic and semileptonic decays of doubly heavy baryons, which give rise to large corrections to the decay widths in both cases. Our results qualitatively agree with other calculations.

  6. Waveguide-based Ultrasonic and Far-field Electromagnetic Sensors for Downhole Reservoir Characterization

    Broader source: Energy.gov [DOE]

    Project objective: To develop waveguide-based ultrasonic and farfield electromagnetic sensors to measure key Enhanced Geothermal Systems (EGS) reservoir parameters, including directional temperature, pressure, fluidflow, fracture imaging, and flow/rock interaction.

  7. Green's function Monte Carlo calculation for the ground state of helium trimers

    SciTech Connect (OSTI)

    Cabral, F.; Kalos, M.H.

    1981-02-01

    The ground state energy of weakly bound boson trimers interacting via Lennard-Jones (12,6) pair potentials is calculated using a Monte Carlo Green's Function Method. Threshold coupling constants for self binding are obtained by extrapolation to zero binding.

  8. Ground-state structures of Hafnium clusters

    SciTech Connect (OSTI)

    Ng, Wei Chun; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  9. Ground Motion Studies at NuMI

    SciTech Connect (OSTI)

    Mayda M. Velasco; Michal Szleper

    2012-02-20

    Ground motion can cause significant deterioration in the luminosity of a linear collider. Vibration of numerous focusing magnets causes continuous misalignments, which makes the beam emittance grow. For this reason, understanding the seismic vibration of all potential LC sites is essential and related efforts in many sites are ongoing. In this document we summarize the results from the studies specific to Fermilab grounds as requested by the LC project leader at FNAL, Shekhar Mishra in FY04-FY06. The Northwestern group focused on how the ground motion effects vary with depth. Knowledge of depth dependence of the seismic activity is needed in order to decide how deep the LC tunnel should be at sites like Fermilab. The measurements were made in the NuMI tunnel, see Figure 1. We take advantage of the fact that from the beginning to the end of the tunnel there is a height difference of about 350 ft and that there are about five different types of dolomite layers. The support received allowed to pay for three months of salary of Michal Szleper. During this period he worked a 100% of his time in this project. That include one week of preparation: 2.5 months of data taking and data analysis during the full period of the project in order to guarantee that we were recording high quality data. We extended our previous work and made more systematic measurements, which included detailed studies on stability of the vibration amplitudes at different depths over long periods of time. As a consequence, a better control and more efficient averaging out of the daytime variation effects were possible, and a better study of other time dependences before the actual depth dependence was obtained. Those initial measurements were made at the surface and are summarized in Figure 2. All measurements are made with equipment that we already had (two broadband seismometers KS200 from GEOTECH and DL-24 portable data recorder). The offline data analysis took advantage of the full Fourier spectra

  10. Collection of liquid from below-ground location

    DOE Patents [OSTI]

    Phillips, S.J.; Alexander, R.G.

    1995-05-30

    A method is described for retrieving liquid from a below-ground collection area by permitting gravity flow of the liquid from the collection area to a first closed container; monitoring the level of the liquid in the closed container; and after the liquid reaches a given level in the first closed container, transferring the liquid to a second closed container disposed at a location above the first closed container, via a conduit, by introducing into the first closed container a gas which is substantially chemically inert with respect to the liquid, the gas being at a pressure sufficient to propel the liquid from the first closed container to the second closed container. 3 figs.

  11. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions

    SciTech Connect (OSTI)

    Potirakis, S. M.; Karadimitrakis, A.; Eftaxias, K.

    2013-06-15

    Criticality of complex systems reveals itself in various ways. One way to monitor a system at critical state is to analyze its observable manifestations using the recently introduced method of natural time. Pre-fracture electromagnetic (EM) emissions, in agreement to laboratory experiments, have been consistently detected in the MHz band prior to significant earthquakes. It has been proposed that these emissions stem from the fracture of the heterogeneous materials surrounding the strong entities (asperities) distributed along the fault, preventing the relative slipping. It has also been proposed that the fracture of heterogeneous material could be described in analogy to the critical phase transitions in statistical physics. In this work, the natural time analysis is for the first time applied to the pre-fracture MHz EM signals revealing their critical nature. Seismicity and pre-fracture EM emissions should be two sides of the same coin concerning the earthquake generation process. Therefore, we also examine the corresponding foreshock seismic activity, as another manifestation of the same complex system at critical state. We conclude that the foreshock seismicity data present criticality features as well.

  12. Electromagnetic Imaging of CO2 Sequestration at an Enhanced Oil Recovery Site

    SciTech Connect (OSTI)

    Kirkendall, B.; Roberts, J.

    2001-02-28

    Lawrence Livermore National Laboratory (LLNL) is currently involved in a long term study using time-lapse multiple frequency electromagnetic (EM) characterization at a waterflood enhanced oil recovery (EOR) site in California operated by Chevron Heavy Oil Division in Lost Hills, California (Figure 1). The petroleum industry's interest and the successful imaging results from this project suggest that this technique be extended to monitor CO{sub 2} sequestration at an EOR site also operated by Chevron. The impetus for this study is to develop the ability to image subsurface injected CO{sub 2} during EOR processes while simultaneously discriminating between pre-existing petroleum and water deposits. The goals of this study are to combine laboratory and field methods to image a pilot CO{sub 2} sequestration EOR site using the cross-borehole EM technique, improve the inversion process in CO{sub 2} studies by coupling results with petrophysical laboratory measurements, and focus on new gas interpretation techniques. In this study we primarily focus on how joint field and laboratory results can provide information on subsurface CO{sub 2} detection, CO{sub 2} migration tracking, and displacement of petroleum and water over time. This study directly addresses national energy issues in two ways: (1) the development of field and laboratory techniques to improve in-situ analysis of oil and gas enhanced recovery operations and, (2) this research provides a tool for in-situ analysis of CO{sub 2} sequestration, an international technical issue of growing importance.

  13. A fast multigrid-based electromagnetic eigensolver for curved metal boundaries on the Yee mesh

    SciTech Connect (OSTI)

    Bauer, Carl A.; Werner, Gregory R.; Cary, John R.

    2013-10-15

    For embedded boundary electromagnetics using the Dey–Mittra (Dey and Mittra, 1997) [1] algorithm, a special grad–div matrix constructed in this work allows use of multigrid methods for efficient inversion of Maxwell’s curl–curl matrix. Efficient curl–curl inversions are demonstrated within a shift-and-invert Krylov-subspace eigensolver (open-sourced at ([ofortt]https://github.com/bauerca/maxwell[cfortt])) on the spherical cavity and the 9-cell TESLA superconducting accelerator cavity. The accuracy of the Dey–Mittra algorithm is also examined: frequencies converge with second-order error, and surface fields are found to converge with nearly second-order error. In agreement with previous work (Nieter et al., 2009) [2], neglecting some boundary-cut cell faces (as is required in the time domain for numerical stability) reduces frequency convergence to first-order and surface-field convergence to zeroth-order (i.e. surface fields do not converge). Additionally and importantly, neglecting faces can reduce accuracy by an order of magnitude at low resolutions.

  14. Numerical approximation of the Schrdinger equation with the electromagnetic field by the Hagedorn wave packets

    SciTech Connect (OSTI)

    Zhou, Zhennan

    2014-09-01

    In this paper, we approximate the semi-classical Schrdinger equation in the presence of electromagnetic field by the Hagedorn wave packets approach. By operator splitting, the Hamiltonian is divided into the modified part and the residual part. The modified Hamiltonian, which is the main new idea of this paper, is chosen by the fact that Hagedorn wave packets are localized both in space and momentum so that a crucial correction term is added to the truncated Hamiltonian, and is treated by evolving the parameters associated with the Hagedorn wave packets. The residual part is treated by a Galerkin approximation. We prove that, with the modified Hamiltonian only, the Hagedorn wave packets dynamics give the asymptotic solution with error O(?{sup 1/2}), where ? is the scaled Planck constant. We also prove that, the Galerkin approximation for the residual Hamiltonian can reduce the approximation error to O(?{sup k/2}), where k depends on the number of Hagedorn wave packets added to the dynamics. This approach is easy to implement, and can be naturally extended to the multidimensional cases. Unlike the high order Gaussian beam method, in which the non-constant cut-off function is necessary and some extra error is introduced, the Hagedorn wave packets approach gives a practical way to improve accuracy even when ? is not very small.

  15. MTX (Microwave Tokamak Experiment) facility and machine grounding plan

    SciTech Connect (OSTI)

    Bell, H.H.; Rice, B.W.; Petersen, D.E.; Herrera, C.H.

    1987-10-07

    A key issue in the design of fusion research experiments and their related facilities is the control of ground currents. Because of the large magnetic field, high voltages and high currents present in most of these installations, it is essential to avoid ground loops, and to control ground currents during both normal operations and fault conditions. This paper describes the grounding policy that was developed for MTX. The vault area was divided into zones, and each of the four walls was treated as a separate grounding area. Cable runs and magnet buss bars were run into the machine radially. The paper also describes the steps taken to isolate diagnostic signals and power for pumps and instruments. The paper outlines some of the field calculations used to predict problem areas, and to reveal voltage isolation levels that were required. The paper includes the active ground fault detection system used to insure the integrity of the ground system. 2 refs., 5 figs.

  16. Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data

    SciTech Connect (OSTI)

    Gary D. Egbert

    2007-03-22

    The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to the full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before

  17. Electromagnetic waves near the proton cyclotron frequency: Stereo observations

    SciTech Connect (OSTI)

    Jian, L. K.; Wei, H. Y.; Russell, C. T.; Luhmann, J. G.; Klecker, B.; Omidi, N.; Isenberg, P. A.; Goldstein, M. L.; Figueroa-Vias, A.; Blanco-Cano, X.

    2014-05-10

    Transverse, near-circularly polarized, parallel-propagating electromagnetic waves around the proton cyclotron frequency were found sporadically in the solar wind throughout the inner heliosphere. They could play an important role in heating and accelerating the solar wind. These low-frequency waves (LFWs) are intermittent but often occur in prolonged bursts lasting over 10 minutes, named 'LFW storms'. Through a comprehensive survey of them from Solar Terrestrial Relations Observatory A using dynamic spectral wave analysis, we have identified 241 LFW storms in 2008, present 0.9% of the time. They are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with similar characteristics, probably due to Doppler shift of the same type of waves or waves of intrinsically different polarities. In rare cases, the opposite polarities are observed closely in time or even simultaneously. Having ruled out interplanetary coronal mass ejections, shocks, energetic particles, comets, planets, and interstellar ions as LFW sources, we discuss the remaining generation scenarios: LH ion cyclotron instability driven by greater perpendicular temperature than parallel temperature or by ring-beam distribution, and RH ion fire hose instability driven by inverse temperature anisotropy or by cool ion beams. The investigation of solar wind conditions is compromised by the bias of the one-dimensional Maxwellian fit used for plasma data calibration. However, the LFW storms are preferentially detected in rarefaction regions following fast winds and when the magnetic field is radial. This preference may be related to the ion cyclotron anisotropy instability in fast wind and the minimum in damping along the radial field.

  18. Property:ExplorationTimePerMetric | Open Energy Information

    Open Energy Info (EERE)

    Techniques Geothermal Literature Review Geothermometry Gravity Methods Gravity Techniques Ground Electromagnetic Techniques Groundwater Sampling H Hand-held X-Ray Fluorescence...

  19. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Ourmore » findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.« less

  20. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    SciTech Connect (OSTI)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.

  1. Commissioning of the Ground Test Accelerator RFQ

    SciTech Connect (OSTI)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-09-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations.

  2. Commissioning of the Ground Test Accelerator RFQ

    SciTech Connect (OSTI)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H{sup {minus}} beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H{sup {minus}} injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2{beta}{gamma} Drift Tube Linac (DTL-1) module, the 8.7 MeV 2{beta}{gamma} DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations.

  3. Two-Dimensional Ground Water Transport

    Energy Science and Technology Software Center (OSTI)

    1992-03-05

    FRACFLO computes the two-dimensional, space, time dependent, convective dispersive transport of a single radionuclide in an unbounded single or multiple parallel fracture system with constant aperture. It calculates the one-dimensional diffusive transport into the rock matrix as well as the mass flux and cumulative mass flux at any point in the fracture. Steady-state isothermal ground water flow and parallel streamlines are assumed in the fracture, and the rock matrix is considered to be fully saturatedmore » with immobile water. The model can treat a single or multiple finite patch source or a Gaussian distributed source subject to a step or band release mode.« less

  4. Breaking Ground in Miami-Dade

    Broader source: Energy.gov [DOE]

    Officials from Miami-Dade County and the U.S. Department of Energy were on hand Wednesday, October 13th to formally break ground on an innovative project that will help improve the energy efficiency of one of the county’s major water treatment facilities.   The project will upgrade and expand the existing power generation system at the water plant which generates electricity from digester gas produced at the plant.  Landfill gas, which is produced from the Solid Waste Department’s South Dade Landfill, will be collected and piped across a canal to the water plant where it will be mixed with digester gases.  By combining landfill and digester gases, the county will increase the amount of self-generated electricity, and reduce the county's consumption of electricity generated from fossil fuels.  

  5. Natural radionuclides in Hanford site ground waters

    SciTech Connect (OSTI)

    Smith, M.R.; Laul, J.C.; Johnson, V.G.

    1987-10-01

    Uranium, Th, Ra, Rn, Pb and Po radionuclide concentrations in ground waters from the Hanford Site indicate that U, Th, and Ra are highly sorbed. Relative to Rn, these radionuclides are low by factors of 10/sup -3/ to 10/sup -6/. Uranium sorption is likely due to its reduction from the +6 state, where it is introduced via surface waters, to the +4 state found in the confined aquifers. The distribution of radionuclides is very similar in all of the confined aquifers and significantly different from the distribution observed in the unconfined and surface waters. Barium correlates well with Ra over three orders of magnitude, indicating that stable element analogs may be useful for inferring the behavior of radioactive waste radionuclides in this candidate geologic repository. 8 refs., 7 figs., 1 tab.

  6. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz.

  7. Rainfall-ground movement modelling for natural gas pipelines through landslide terrain

    SciTech Connect (OSTI)

    O`Neil, G.D.; Simmonds, G.R.; Grivas, D.A.; Schultz, B.C.

    1996-12-31

    Perhaps the greatest challenge to geotechnical engineers is to maintain the integrity of pipelines at river crossings where landslide terrain dominates the approach slopes. The current design process at NOVA Gas Transmission Ltd. (NGTL) has developed to the point where this impact can be reasonably estimated using in-house models of pipeline-soil interaction. To date, there has been no method to estimate ground movements within unexplored slopes at the outset of the design process. To address this problem, rainfall and slope instrumentation data have been processed to derive rainfall-ground movement relationships. Early results indicate that the ground movements exhibit two components: a steady, small rate of movement independent of the rainfall, and, increased rates over short periods of time following heavy amounts of rainfall. Evidence exists of a definite threshold value of rainfall which has to be exceeded before any incremental movement is induced. Additional evidence indicates a one-month lag between rainfall and ground movement. While these models are in the preliminary stage, results indicate a potential to estimate ground movements for both initial design and planned maintenance actions.

  8. Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings

    SciTech Connect (OSTI)

    Tan, Wei; Sun, Yong; Chen, Hong; Wang, Zhi-Guo

    2014-03-03

    A hybrid coupling model containing both near- and far-field couplings is developed for radiating two-resonator structures. We demonstrate that the near- and far-field couplings make distinguished contributions to electromagnetic responses. Compared to the classical electromagnetically induced transparency configurations, the presence of far-field coupling provides more flexibility in tuning lineshapes. Planar metamaterials composed of metal wires are designed based on this model, and various electromagnetic responses are experimentally observed.

  9. Gauge invariance of phenomenological models of the interaction of quantum dissipative systems with electromagnetic fields

    SciTech Connect (OSTI)

    Tokman, M. D. [Institute of Applied Physics, RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2009-05-15

    We discuss specific features of the electrodynamic characteristics of quantum systems within the framework of models that include a phenomenological description of the relaxation processes. As is shown by W. E. Lamb, Jr., R. R. Schlicher, and M. O. Scully [Phys. Rev. A 36, 2763 (1987)], the use of phenomenological relaxation operators, which adequately describe the attenuation of eigenvibrations of a quantum system, may lead to incorrect solutions in the presence of external electromagnetic fields determined by the vector potential for different resonance processes. This incorrectness can be eliminated by giving a gauge-invariant form to the relaxation operator. Lamb, Jr., et al. proposed the corresponding gauge-invariant modification for the Weisskopf-Wigner relaxation operator, which is introduced directly into the Schroedinger equation within the framework of the two-level approximation. In the present paper, this problem is studied for the von Neumann equation supplemented by a relaxation operator. First, we show that the solution of the equation for the density matrix with the relaxation operator correctly obtained ''from the first principles'' has properties that ensure gauge invariance for the observables. Second, we propose a common recipe for transformation of the phenomenological relaxation operator into the correct (gauge-invariant) form in the density-matrix equations for a multilevel system. Also, we discuss the methods of elimination of other inaccuracies (not related to the gauge-invariance problem) which arise if the electrodynamic response of a dissipative quantum system is calculated within the framework of simplified relaxation models (first of all, the model corresponding to constant relaxation rates of coherences in quantum transitions). Examples illustrating the correctness of the results obtained within the framework of the proposed methods in contrast to inaccuracy of the results of the standard calculation techniques are given.

  10. Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps On Nov. 3, 2011, Dave Peterson, a Project Leader at the National Renewable Energy Laboratory, presented a Webinar about Geothermal/Ground Source Heat Pumps and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: U.S.

  11. High Frequency Ground Motion Simulation for Seismic Hazard Analysis |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Ground motion simulations reveal regions at risk Ground motion simulations reveal regions at risk of strong shaking during a possible magnitude-8 earthquake on the San Andreas fault. For the CyberShake project, reciprocal simulations of all known possible quakes are combined to estimate the total probabilistic hazard for California. Credit: Geoffrey Ely, Argonne National Laboratory High Frequency Ground Motion Simulation for Seismic Hazard Analysis PI

  12. High Frequency Ground Motion Simulation for Seismic Hazard Analysis |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Orange, yellow, and white colors on this map of California reveal regions where strong ground shaking would occur during a possible magnitude-8 earthquake on the San Andreas Fault Orange, yellow, and white colors on this map of California reveal regions where strong ground shaking would occur during a possible magnitude-8 earthquake on the San Andreas Fault. The seismograms shown on the map indicate peak velocity ground motions for selected California

  13. Cleanup Verification Package for the 618-3 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-09-12

    This cleanup verification package documents completion of remedial action for the 618-3 Solid Waste Burial Ground, also referred to as Burial Ground Number 3 and the Dry Waste Burial Ground Number 3. During its period of operation, the 618-3 site was used to dispose of uranium-contaminated construction debris from the 311 Building and construction/demolition debris from remodeling of the 313, 303-J and 303-K Buildings.

  14. Renewable Energy Opportunities at Yuma Proving Ground, Arizona

    SciTech Connect (OSTI)

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Dixon, Douglas R.

    2010-06-30

    This document provides an overview of renewable resource potential at Yuma Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations.

  15. Microsoft Word - HABAdv#243_SWBurialGrounds.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... releases. * The Board advises DOE to provide total volume estimates of plutonium, uranium, cesium, and thorium 232, which were recorded as disposed in the burial grounds. ...

  16. Pantex breaks ground on renewable energy project | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    breaks ground on renewable energy project | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  17. Seismic Ground Motion Response Using SHAKE, EERA and NERA for...

    Office of Environmental Management (EM)

    Seismic Ground Motion Response Using SHAKE, EERA and NERA for SRS Soil Profile Jay Amin - Structural Mechanics, Principal Engineer Shawn Carey, PhD, PE - Structural Mechanics, ...

  18. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details...

  19. Category:Ground Gravity Survey | Open Energy Information

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Category Edit History Category:Ground Gravity Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  20. Ground Gravity Survey At Coso Geothermal Area (1990) | Open Energy...

    Open Energy Info (EERE)

    (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1990 Usefulness not indicated DOE-funding Unknown...