Sample records for methods ground electromagnetic

  1. Narrow field electromagnetic sensor system and method

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  2. Narrow field electromagnetic sensor system and method

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-11-19T23:59:59.000Z

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  3. Structures, systems and methods for harvesting energy from electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D. (Idaho Falls, ID); Kotter, Dale K. (Shelley, ID); Pinhero, Patrick J. (Columbia, MO)

    2011-12-06T23:59:59.000Z

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  4. Ground Electromagnetic Survey At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    horizontally on the ground. Interpretation of the data was made using an inversion computer program and the primary magnetic field was estimated directly from the data rather...

  5. Mathematical Methods for Electromagnetic and Optical Waves1

    E-Print Network [OSTI]

    Lu, Ya Yan

    Mathematical Methods for Electromagnetic and Optical Waves1 Ya Yan Lu Department of Mathematics . . . . . . . . . . . . . . . . . . . . . . 5 1.6 The energy law of electromagnetic field . . . . . . . . . . . . . . . . . . . . . 7 2.5 Pulse propagation and temporal solitons . . . . . . . . . . . . . . . . . . . . . 70 2 #12;Chapter 1

  6. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    SciTech Connect (OSTI)

    PETERSEN SW

    2010-12-02T23:59:59.000Z

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground measurements to refine interpretations of AEM data; and (3) Improve the calibration and correlation of AEM information. The potential benefits of this project are as follows: (1) Develop a tool to map subsurface units at the Hanford Site in a rapid and cost effective manner; (2) Map groundwater pathways within the River Corridor; and (3) Aid development of the conceptual site model. If anomalies observed in the AEM data can be correlated with subsurface geology, then the rapid scanning and non-intrusive capabilities provided by the airborne surveys can be used at the Hanford Site to screen for areas that warrant further investigation.

  7. Ground-State Electromagnetic Moments of Calcium Isotopes

    E-Print Network [OSTI]

    Ruiz, R F Garcia; Blaum, K; Frommgen, N; Hammen, M; Holt, J D; Kowalska, M; Kreim, K; Menendez, J; Neugart, R; Neyens, G; Nortershauser, W; Nowacki, F; Papuga, J; Poves, A; Schwenk, A; Simonis, J; Yordanov, D T

    2015-01-01T23:59:59.000Z

    High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the $^{43-51}$Ca isotopes. The ground state magnetic moments of $^{49,51}$Ca and quadrupole moments of $^{47,49,51}$Ca were measured for the first time, and the $^{51}$Ca ground state spin $I=3/2$ was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the $^{40}$Ca core in their ground state.

  8. Ground-State Electromagnetic Moments of Calcium Isotopes

    E-Print Network [OSTI]

    R. F. Garcia Ruiz; M. L. Bissell; K. Blaum; N. Frommgen; M. Hammen; J. D. Holt; M. Kowalska; K. Kreim; J. Menendez; R. Neugart; G. Neyens; W. Nortershauser; F. Nowacki; J. Papuga; A. Poves; A. Schwenk; J. Simonis; D. T. Yordanov

    2015-04-17T23:59:59.000Z

    High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the $^{43-51}$Ca isotopes. The ground state magnetic moments of $^{49,51}$Ca and quadrupole moments of $^{47,49,51}$Ca were measured for the first time, and the $^{51}$Ca ground state spin $I=3/2$ was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the $^{40}$Ca core in their ground state.

  9. Electromagnetic Structure of Few-Nucleon Ground States

    E-Print Network [OSTI]

    Marcucci, L E; Pena, M T; Piarulli, M; Schiavilla, R; Sick, I; Stadler, A; Van Orden, J W; Viviani, M

    2015-01-01T23:59:59.000Z

    Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled $\\chi$EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled CST). For momentum transfers below $Q \\lesssim 5$ fm$^{-1}$ there is satisfactory agreement between experimental data and theoretical results in all three approaches. However, at $Q \\gtrsim 5$ fm$^{-1}$, particularly in the case of the deuteron, a relativistic treatment of the dynamics, as is done in the CST, is necessary....

  10. Category:Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:Conceptual Model Add.pngpage?source HistoryGround

  11. Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals and Conductive

    E-Print Network [OSTI]

    Kepler, Grace Martinelli

    Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals of a pulsed planar electromagnetic wave of a dielectric slab with a supraconductive backing. Previous work

  12. Physical and computer modeling of military earth grounding practices in a HEMP (high-altitude electromagnetic pulse) environment. Technical memo

    SciTech Connect (OSTI)

    Cuneo, A.A. Jr.; Loftus, J.J.; Perala, R.A.

    1983-06-01T23:59:59.000Z

    Military grounding practices compatible with hardening electronic systems to high-altitude electromagnetic pulse (HEMP) illumination are considered. This study concerns the grounding practices outlined in MIL-STD-188-124, Common Long-Haul/Tactical Communications Systems. Three standard grounding schemes and one new scheme were chosen for study at a 10:1 scale, illuminated by a 59-V/m peak simulated HEMP. There were several significant results: (a) The theoretical technique in general agrees to within a factor of three with the experimental results, (b) The type end of earth ground system does not appear to be important, and (c) Intrasite transients tend to be dominated by electromagnetic coupling to completed conductive loops. When the loop is broken, the transient is characterized by the half-wavelength resonance of the conductor. Grounding paths which do not form part of the loop do not contribute significantly to the transient in the loop.

  13. Method for imaging with low frequency electromagnetic fields

    DOE Patents [OSTI]

    Lee, Ki H. (Lafayette, CA); Xie, Gan Q. (Berkeley, CA)

    1994-01-01T23:59:59.000Z

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  14. Method for imaging with low frequency electromagnetic fields

    DOE Patents [OSTI]

    Lee, K.H.; Xie, G.Q.

    1994-12-13T23:59:59.000Z

    A method is described for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The travel times corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter [alpha] for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography. 13 figures.

  15. Numerical Methods of Computational Electromagnetics for Complex Inhomogeneous Systems

    SciTech Connect (OSTI)

    Cai, Wei

    2014-05-15T23:59:59.000Z

    Understanding electromagnetic phenomena is the key in many scientific investigation and engineering designs such as solar cell designs, studying biological ion channels for diseases, and creating clean fusion energies, among other things. The objectives of the project are to develop high order numerical methods to simulate evanescent electromagnetic waves occurring in plasmon solar cells and biological ion-channels, where local field enhancement within random media in the former and long range electrostatic interactions in the latter are of major challenges for accurate and efficient numerical computations. We have accomplished these objectives by developing high order numerical methods for solving Maxwell equations such as high order finite element basis for discontinuous Galerkin methods, well-conditioned Nedelec edge element method, divergence free finite element basis for MHD, and fast integral equation methods for layered media. These methods can be used to model the complex local field enhancement in plasmon solar cells. On the other hand, to treat long range electrostatic interaction in ion channels, we have developed image charge based method for a hybrid model in combining atomistic electrostatics and continuum Poisson-Boltzmann electrostatics. Such a hybrid model will speed up the molecular dynamics simulation of transport in biological ion-channels.

  16. Numerical methods for electromagnetic wave propagation and scattering in complex media

    E-Print Network [OSTI]

    Moss, Christopher D. Q. (Christopher Doniert Q.), 1973-

    2004-01-01T23:59:59.000Z

    Numerical methods are developed to study various applications in electromagnetic wave propagation and scattering. Analytical methods are used where possible to enhance the efficiency, accuracy, and applicability of the ...

  17. Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals and Conductive

    E-Print Network [OSTI]

    Reduced Order Computational Methods for Electromagnetic Material Interrogation Using Pulsed Signals consider the interrogation by means of a pulsed planar electromagnetic wave of a dielectric slab properties by means of a non-invasive probes such as low energy electromag- netic pulses is desirable

  18. Evaluation of analytical methods to interpret ground deformations due to soft ground tunneling

    E-Print Network [OSTI]

    Zymnis, Despina M

    2009-01-01T23:59:59.000Z

    An in depth study was undertaken to evaluate the effectiveness of analytical solutions in describing ground movements induced by soft ground tunneling. The analytical solutions that were examined consider both isotropic ...

  19. 1936 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 4, JULY 2000 Electromagnetic Inversion in Monostatic Ground

    E-Print Network [OSTI]

    Spagnolini, Umberto

    (GPR) is a remote sensing system used to measure short-pulse electromagnetic (EM) reflections due1936 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 4, JULY 2000 Electromagnetic and Umberto Spagnolini, Member, IEEE Abstract--A comprehensive analysis of electromagnetic (EM) inversion

  20. Method and apparatus for injecting particulate media into the ground

    DOE Patents [OSTI]

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28T23:59:59.000Z

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  1. Poynting-vector based method for determining the bearing and location of electromagnetic sources

    DOE Patents [OSTI]

    Simons, David J. (Modesto, CA); Carrigan, Charles R. (Tracy, CA); Harben, Philip E. (Livermore, CA); Kirkendall, Barry A. (Golden, CO); Schultz, Craig A. (Danville, CA)

    2008-10-21T23:59:59.000Z

    A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.

  2. An Efficient and Stable Spectral Method for Electromagnetic ...

    E-Print Network [OSTI]

    2011-11-14T23:59:59.000Z

    Nov 6, 2011 ... Department of Mathematics, Statistics, and Computer Science ... Fast–Multipole Method [10]) for configurations of engineering interest.

  3. Probabilistic methods applied to 2D electromagnetic numerical dosimetry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    the determinist solution is widely recast [Ghanem and Kruger, 1996] and the so called non intrusive method on the non intrusive method because of the limitation of the numerical resources. Indeed, the intrusive using the polyno- mial chaos. There are two approaches: the so called intrusive method where

  4. A Novel Synthesis Method for Designing Electromagnetic Band Gap (EBG) Structures in Packaged Mixed Signal Systems

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    on a periodically patterned power/ground plane. CPA-Method gives a final dimension of EBG structure for a desired. PLM calculates isolation level of an EBG structure based on the transmitted power. The proposed's mixed-signal systems are very sensitive to power/ground noise. For high-speed systems, it has been

  5. Electromagnetic variable degrees of freedom actuator systems and methods

    DOE Patents [OSTI]

    Montesanti, Richard C. (Pleasanton, CA); Trumper, David L. (Plaistow, NH); Kirtley, Jr., James L. (Brookline, MA)

    2009-02-17T23:59:59.000Z

    The present invention provides a variable reluctance actuator system and method that can be adapted for simultaneous rotation and translation of a moving element by applying a normal-direction magnetic flux on the moving element. In a beneficial example arrangement, the moving element includes a swing arm that carries a cutting tool at a set radius from an axis of rotation so as to produce a rotary fast tool servo that provides a tool motion in a direction substantially parallel to the surface-normal of a workpiece at the point of contact between the cutting tool and workpiece. An actuator rotates a swing arm such that a cutting tool moves toward and away from a mounted rotating workpiece in a controlled manner in order to machine the workpiece. Position sensors provide rotation and displacement information for a swing arm to a control system. A control system commands and coordinates motion of the fast tool servo with the motion of a spindle, rotating table, cross-feed slide, and in feed slide of a precision lathe.

  6. Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor

    DOE Patents [OSTI]

    Datskos, Panagiotis G. (Knoxville, TN); Rajic, Slobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN)

    2002-01-01T23:59:59.000Z

    A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

  7. A Novel High Order Time Domain Vector Finite Element Method for the Simulation of Electromagnetic Devices

    SciTech Connect (OSTI)

    Rieben, R N

    2004-07-20T23:59:59.000Z

    The goal of this dissertation is twofold. The first part concerns the development of a numerical method for solving Maxwell's equations on unstructured hexahedral grids that employs both high order spatial and high order temporal discretizations. The second part involves the use of this method as a computational tool to perform high fidelity simulations of various electromagnetic devices such as optical transmission lines and photonic crystal structures to yield a level of accuracy that has previously been computationally cost prohibitive. This work is based on the initial research of Daniel White who developed a provably stable, charge and energy conserving method for solving Maxwell's equations in the time domain that is second order accurate in both space and time. The research presented here has involved the generalization of this procedure to higher order methods. High order methods are capable of yielding far more accurate numerical results for certain problems when compared to corresponding h-refined first order methods , and often times at a significant reduction in total computational cost. The first half of this dissertation presents the method as well as the necessary mathematics required for its derivation. The second half addresses the implementation of the method in a parallel computational environment, its validation using benchmark problems, and finally its use in large scale numerical simulations of electromagnetic transmission devices.

  8. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOE Patents [OSTI]

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14T23:59:59.000Z

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  9. Full-wave Surface Integral Equation Method for Electromagnetic-circuit Simulation of Three-dimensional Interconnects in Layered Media

    E-Print Network [OSTI]

    Karsilayan, Nur

    2011-08-08T23:59:59.000Z

    FULL-WAVE SURFACE INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC-CIRCUIT SIMULATION OF THREE-DIMENSIONAL INTERCONNECTS IN LAYERED MEDIA A Dissertation by NUR KURT KARSILAYAN Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2010 Major Subject: Electrical Engineering FULL-WAVE SURFACE INTEGRAL EQUATION METHOD FOR ELECTROMAGNETIC-CIRCUIT SIMULATION OF THREE-DIMENSIONAL INTERCONNECTS...

  10. Application of the two-microphone method for in-situ ground impedance measurements

    E-Print Network [OSTI]

    Vormann, Matthias

    Application of the two-microphone method for in-situ ground impedance measurements Roland Kruse is a convenient and well- known procedure to measure the surface impedance in-situ. Its proposed implementation-processing. Keywords: Ground impedance; In-situ impedance measurement; ANSI S1.18 PACS 43.58.Bh Introduction

  11. Apparatus and method for the simultaneous detection of neutrons and ionizing electromagnetic radiation

    DOE Patents [OSTI]

    Bell, Zane W. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A sensor for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising: a sensor for the detection of gamma radiation, the sensor defining a sensing head; the sensor further defining an output end in communication with the sensing head; and an exterior neutron-sensitive material configured to form around the sensing head; wherein the neutron-sensitive material, subsequent to the capture of the neutron, fissions into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the first excited state decaying via the emission of a single gamma ray at 478 keV which can in turn be detected by the sensing head; and wherein the sensing head can also detect the ionizing electromagnetic radiation from an incident radiation field without significant interference from the neutron-sensitive material. A method for simultaneously detecting neutrons and ionizing electromagnetic radiation comprising the steps of: providing a gamma ray sensitive detector comprising a sensing head and an output end; conforming an exterior neutron-sensitive material configured to form around the sensing head of the detector; capturing neutrons by the sensing head causing the neutron-sensitive material to fission into an alpha-particle and a .sup.7 Li ion that is in a first excited state in a majority of the fissions, the state decaying via the emission of a single gamma ray at 478 keV; sensing gamma rays entering the detector through the neutron-sensitive material; and producing an output through a readout device coupled to the output end; wherein the detector provides an output which is proportional to the energy of the absorbed ionizing electromagnetic radiation.

  12. Efficient numerical methods for computing ground states and ...

    E-Print Network [OSTI]

    2010-08-06T23:59:59.000Z

    Jul 8, 2010 ... New efficient and accurate numerical methods are proposed to ... ating integrals with high singularity and thus they are more efficient and ...

  13. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17T23:59:59.000Z

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  14. VOLUME 85, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 20 NOVEMBER 2000 Ground State Laser Cooling Using Electromagnetically Induced Transparency

    E-Print Network [OSTI]

    Blatt, Rainer

    of the ion trap quantum computer [5]. Furthermore, the same techniques that allow ground state cooling sideband cooling is designed from a L-shaped three-level atom by Raman coupling [11,12]. Both techniques Cooling Using Electromagnetically Induced Transparency Giovanna Morigi,1 Jürgen Eschner,2 and Christoph H

  15. Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems

    DOE Patents [OSTI]

    Zhdanov; Michael S. (Salt Lake City, UT)

    2008-01-29T23:59:59.000Z

    Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

  16. Phase field method to optimize dielectric devices for electromagnetic wave propagation

    SciTech Connect (OSTI)

    Takezawa, Akihiro, E-mail: akihiro@hiroshima-u.ac.jp; Kitamura, Mitsuru, E-mail: kitamura@naoe.hiroshima-u.ac.jp

    2014-01-15T23:59:59.000Z

    We discuss a phase field method for shape optimization in the context of electromagnetic wave propagation. The proposed method has the same functional capabilities as the level set method for shape optimization. The first advantage of the method is the simplicity of computation, since extra operations such as re-initialization of functions are not required. The second is compatibility with the topology optimization method due to the similar domain representation and the sensitivity analysis. Structural shapes are represented by the phase field function defined in the design domain, and this function is optimized by solving a time-dependent reaction diffusion equation. The artificial double-well potential function used in the equation is derived from sensitivity analysis. We study four types of 2D or 2.5D (axisymmetric) optimization problems. Two are the classical problems of photonic crystal design based on the Bloch theory and photonic crystal wave guide design, and two are the recent topics of designing dielectric left-handed metamaterials and dielectric ring resonators.

  17. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOE Patents [OSTI]

    Andrews, Lowell B. (2181-13th Ave. SW., Largo, FL 34640)

    1998-01-01T23:59:59.000Z

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined.

  18. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOE Patents [OSTI]

    Andrews, L.B.

    1998-08-18T23:59:59.000Z

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined. 17 figs.

  19. Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform magnetic field

    E-Print Network [OSTI]

    Bao, Weizhu

    Numerical methods for computing the ground state of spin-1 Bose-Einstein condensates in a uniform for computing the ground-state solution of spin-1 Bose-Einstein condensates subjected to a uniform magnetic to compute the condensate ground state in a harmonic plus optical lattice potential, and the effect

  20. Apparatus and method for enhanced chemical processing in high pressure and atmospheric plasmas produced by high frequency electromagnetic waves

    DOE Patents [OSTI]

    Efthimion, Philip C. (Bedminister, NJ); Helfritch, Dennis J. (Flemington, NJ)

    1989-11-28T23:59:59.000Z

    An apparatus and method for creating high temperature plasmas for enhanced chemical processing of gaseous fluids, toxic chemicals, and the like, at a wide range of pressures, especially at atmospheric and high pressures includes an electro-magnetic resonator cavity, preferably a reentrant cavity, and a wave guiding structure which connects an electro-magnetic source to the cavity. The cavity includes an intake port and an exhaust port, each having apertures in the conductive walls of the cavity sufficient for the intake of the gaseous fluids and for the discharge of the processed gaseous fluids. The apertures are sufficiently small to prevent the leakage of the electro-magnetic radiation from the cavity. Gaseous fluid flowing from the direction of the electro-magnetic source through the guiding wave structure and into the cavity acts on the plasma to push it away from the guiding wave structure and the electro-magnetic source. The gaseous fluid flow confines the high temperature plasma inside the cavity and allows complete chemical processing of the gaseous fluids at a wide range of pressures.

  1. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions

    SciTech Connect (OSTI)

    Dragt, A.J.; Gluckstern, R.L.

    1990-11-01T23:59:59.000Z

    The University of Maryland Dynamical Systems and Accelerator Theory Group carries out research in two broad areas: the computation of charged particle beam transport using Lie algebraic methods and advanced methods for the computation of electromagnetic fields and beam-cavity interactions. Important improvements in the state of the art are believed to be possible in both of these areas. In addition, applications of these methods are made to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. The Lie algebraic method of computing and analyzing beam transport handles both linear and nonlinear beam elements. Tests show this method to be superior to the earlier matrix or numerical integration methods. It has wide application to many areas including accelerator physics, intense particle beams, ion microprobes, high resolution electron microscopy, and light optics. With regard to the area of electromagnetic fields and beam cavity interactions, work is carried out on the theory of beam breakup in single pulses. Work is also done on the analysis of the high behavior of longitudinal and transverse coupling impendances, including the examination of methods which may be used to measure these impedances. Finally, work is performed on the electromagnetic analysis of coupled cavities and on the coupling of cavities to waveguides.

  2. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    DOE Patents [OSTI]

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29T23:59:59.000Z

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  3. ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA

    SciTech Connect (OSTI)

    Alex J. Dragt

    2012-08-31T23:59:59.000Z

    Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

  4. Electromagnetic methods for measuring materials properties of cylindrical rods and array probes for rapid flaw inspection

    SciTech Connect (OSTI)

    Sun, Haiyan

    2005-05-01T23:59:59.000Z

    The case-hardening process modifies the near-surface permeability and conductivity of steel, as can be observed through changes in alternating current potential drop (ACPD) along a rod. In order to evaluate case depth of case hardened steel rods, analytical expressions are derived for the alternating current potential drop on the surface of a homogeneous rod, a two-layered and a three-layered rod. The case-hardened rod is first modeled by a two-layer rod that has a homogeneous substrate with a single, uniformly thick, homogeneous surface layer, in which the conductivity and permeability values differ from those in the substrate. By fitting model results to multi-frequency ACPD experimental data, estimates of conductivity, permeability and case depth are found. Although the estimated case depth by the two-layer model is in reasonable agreement with the effective case depth from the hardness profile, it is consistently higher than the effective case depth. This led to the development of the three-layer model. It is anticipated that the new three-layered model will improve the results and thus makes the ACPD method a novel technique in nondestructive measurement of case depth. Another way to evaluate case depth of a case hardened steel rod is to use induction coils. Integral form solutions for an infinite rod encircled by a coaxial coil are well known, but for a finite length conductor, additional boundary conditions must be satisfied at the ends. In this work, calculations of eddy currents are performed for a two-layer conducting rod of finite length excited by a coaxial circular coil carrying an alternating current. The solution is found using the truncated region eigenfunction expansion (TREE) method. By truncating the solution region to a finite length in the axial direction, the magnetic vector potential can be expressed as a series expansion of orthogonal eigenfunctions instead of as a Fourier integral. Closed-form expressions are derived for the electromagnetic field in the presence of a finite a two-layer rod and a conductive tube. The results are in very good agreement with those obtained by using a 2D finite element code. In the third part, a new probe technology with enhanced flaw detection capability is described. The new probe can reduce inspection time through the use of multiple Hall sensors. A prototype Hall array probe has been built and tested with eight individual Hall sensor ICs and a racetrack coil. Electronic hardware was developed to interface the probes to an oscilloscope or an eddy current instrument. To achieve high spatial resolution and to limit the overall probe size, high-sensitivity Hall sensor arrays were fabricated directly on a wafer using photolithographic techniques and then mounted in their unencapsulated form. The electronic hardware was then updated to interface the new probes to a laptop computer.

  5. A comparison of several surface finish measurement methods as applied to ground ceramic and metal surfaces

    SciTech Connect (OSTI)

    Blau, P.J.; Martin, R.L.; Riester, L.

    1996-01-01T23:59:59.000Z

    Surface finish is one of the most common measures of surface quality of ground ceramics and metal parts and a wide variety of methods and parameters have been developed to measure it. The purpose of this investigation was to compare the surface roughness parameters obtained on the same two specimens from three different types of measuring instruments: a traditional mechanical stylus system, a non-contact laser scanning system, and the atomic force microscope (two different AFM systems were compared). The same surface-ground silicon nitride and Inconel 625 alloy specimens were used for all measurements in this investigation. Significant differences in arithmetic average roughness, root-mean-square roughness, and peak-to-valley roughness were obtained when comparing data from the various topography measuring instruments. Non-contact methods agreed better with the others on the metal specimen than on the ceramic specimen. Reasons for these differences include the effective dimensions and geometry of the probe with respect to the surface topography; the reflectivity of the surface, and the type of filtering scheme Results of this investigation emphasize the importance of rigorously specifying the manner of surface roughness measurement when either reporting roughness data or when requesting that roughness data be provided.

  6. Iterative Krylov solution methods for geophysical electromagnetic simulations on throughput-oriented processing units

    E-Print Network [OSTI]

    Commer, M.

    2012-01-01T23:59:59.000Z

    R. , 1992. Conjugate gradient type methods for linearand bi-conjugate gradient iterative methods to solve complexcase, the conjugate gradient (CG) method of Hestenes and

  7. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOE Patents [OSTI]

    Clark, M.C.; Coleman, P.D.; Marder, B.M.

    1993-08-10T23:59:59.000Z

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  8. Method and split cavity oscillator/modulator to generate pulsed particle beams and electromagnetic fields

    DOE Patents [OSTI]

    Clark, M. Collins (Albuquerque, NM); Coleman, P. Dale (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

    1993-01-01T23:59:59.000Z

    A compact device called the split cavity modulator whose self-generated oscillating electromagnetic field converts a steady particle beam into a modulated particle beam. The particle beam experiences both signs of the oscillating electric field during the transit through the split cavity modulator. The modulated particle beam can then be used to generate microwaves at that frequency and through the use of extractors, high efficiency extraction of microwave power is enabled. The modulated beam and the microwave frequency can be varied by the placement of resistive wires at nodes of oscillation within the cavity. The short beam travel length through the cavity permit higher currents because both space charge and pinching limitations are reduced. The need for an applied magnetic field to control the beam has been eliminated.

  9. A blind deconvolution method for ground based telescopes and Fizeau interferometers

    E-Print Network [OSTI]

    Prato, M; Bonettini, S; Rebegoldi, S; Bertero, M; Boccacci, P

    2015-01-01T23:59:59.000Z

    In the case of ground-based telescopes equipped with adaptive optics systems, the point spread function (PSF) is only poorly known or completely unknown. Moreover, an accurate modeling of the PSF is in general not available. Therefore in several imaging situations the so-called blind deconvolution methods, aiming at estimating both the scientific target and the PSF from the detected image, can be useful. A blind deconvolution problem is severely ill-posed and, in order to reduce the extremely large number of possible solutions, it is necessary to introduce sensible constraints on both the scientific target and the PSF. In a previous paper we proposed a sound mathematical approach based on a suitable inexact alternating minimization strategy for minimizing the generalized Kullback-Leibler divergence, assuring global convergence. In the framework of this method we showed that an important constraint on the PSF is the upper bound which can be derived from the knowledge of its Strehl ratio. The efficacy of the ap...

  10. Improvement of the computer methods for grounding analysis in layered soils by using

    E-Print Network [OSTI]

    Colominas, Ignasi

    that currently allows to analyze real grounding grids in real-time in personal computers. The ex- tension, the grounding grid usually consists of a mesh of interconnected cylindrical conductors buried to a certain depth surface that can be connected by a person must be kept under certain maximum safe limits (step, touch

  11. Ground Control | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ground Control Ground Control Released: April 22, 2015 EMSL scientists develop new methods to dig deeper into soil organic matter International Year of the Soils Under our feet...

  12. An iterative finite element time-domain method for simulating three-dimensional electromagnetic diffusion in earth

    E-Print Network [OSTI]

    Um, E.S.

    2013-01-01T23:59:59.000Z

    of an axially symmetric earth for vertical magnetic dipoleDevelopment Grants from Earth Sciences Division. Editor Dr.electromagnetic diffusion in earth Evan Schankee Um, 1 Jerry

  13. Monte Carlo Electromagnetic Cross Section Production Method for Low Energy Charged Particle Transport Through Single Molecules

    E-Print Network [OSTI]

    Madsen, Jonathan R

    2013-08-13T23:59:59.000Z

    energies. This paper presents developments for a novel approach, which to our knowledge has never been done before, to reducing the homogenous water approximation. The purpose of our work is to develop of a completely self-consistent computational method...

  14. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

    2002-01-01T23:59:59.000Z

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  15. Energy harvesting devices for harvesting energy from terahertz electromagnetic radiation

    DOE Patents [OSTI]

    Novack, Steven D.; Kotter, Dale K.; Pinhero, Patrick J.

    2012-10-09T23:59:59.000Z

    Methods, devices and systems for harvesting energy from electromagnetic radiation are provided including harvesting energy from electromagnetic radiation. In one embodiment, a device includes a substrate and one or more resonance elements disposed in or on the substrate. The resonance elements are configured to have a resonant frequency, for example, in at least one of the infrared, near-infrared and visible light spectra. A layer of conductive material may be disposed over a portion of the substrate to form a ground plane. An optical resonance gap or stand-off layer may be formed between the resonance elements and the ground plane. The optical resonance gap extends a distance between the resonance elements and the layer of conductive material approximately one-quarter wavelength of a wavelength of the at least one resonance element's resonant frequency. At least one energy transfer element may be associated with the at least one resonance element.

  16. Electromagnetic fasteners

    DOE Patents [OSTI]

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01T23:59:59.000Z

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  17. Electromagnetic fasteners

    DOE Patents [OSTI]

    Crane, Randolph W. (Idaho Falls, ID); Marts, Donna J. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  18. Grounding electrode and method of reducing the electrical resistance of soils

    DOE Patents [OSTI]

    Koehmstedt, Paul L. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A first solution of an electrolyte is injected underground into a volume of soil having negative surface charges on its particles. A cationic surfactant suspended in this solution neutralizes these surface charges of the soil particles within the volume. Following the first solution, a cationic asphalt emulsion suspended in a second solution is injected into the volume. The asphalt emulsion diffuses through the volume and electrostatically bonds with additional soil surrounding the volume such that an electrically conductive water repellant shell enclosing the volume is formed. This shell prevents the leaching of electrolyte from the volume into the additional soil. The second solution also contains a dissolved deliquescent salt which draws water into the volume prior to the formation of the shell. When electrically connected to an electrical installation such as a power line tower, the volume constitutes a grounding electrode for the tower.

  19. Coherent hybrid electromagnetic field imaging

    DOE Patents [OSTI]

    Cooke, Bradly J. (Jemez Springs, NM); Guenther, David C. (Los Alamos, NM)

    2008-08-26T23:59:59.000Z

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  20. Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska:Gridley,Grocery 2009

  1. Ground Electromagnetic Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska:Gridley,Grocery 2009(Redirected from

  2. A Modified Analytical Method for Simulating Cyclic Operation of Vertical U-Tube Ground-Coupled Heat Pumps 

    E-Print Network [OSTI]

    Dobson, M. K.; O'Neal, D. L.; Aldred, W.

    1994-01-01T23:59:59.000Z

    A modified analytical model is presented which discretizes the ground-coupled heat exchanger of a ground-coupled heat pump and utilized a separate cylindrical source solution for each element. First law expressions are utilized for each element...

  3. Wind load design methods for ground-based heliostats and parabolic dish collectors

    SciTech Connect (OSTI)

    Peterka, J A; Derickson, R G [Colorado State Univ., Fort Collins, CO (United States). Fluid Dynamics and Diffusion Lab.

    1992-09-01T23:59:59.000Z

    The purpose of this design method is to define wind loads on flat heliostat and parabolic dish collectors in a simplified form. Wind loads are defined for both mean and peak loads accounting for the protective influence of upwind collectors, wind protective fences, or other wind-blockage elements. The method used to define wind loads was to generalize wind load data obtained during tests on model collectors, heliostats or parabolic dishes, placed in a modeled atmospheric wind in a boundary-layer wind-tunnel at Colorado State University. For both heliostats and parabolic dishes, loads are reported for solitary collectors and for collectors as elements of a field. All collectors were solid with negligible porosity; thus the effects of porosity in the collectors is not addressed.

  4. Nanofluids and a method of making nanofluids for ground source heat pumps and other applications

    DOE Patents [OSTI]

    Olson, John Melvin

    2013-11-12T23:59:59.000Z

    This invention covers nanofluids. Nanofluids are a combination of particles between 1 and 100 nanometers, a surfactant and the base fluid. The nanoparticles for this invention are either pyrogenic nanoparticles or carbon nanotubes. These nanofluids improve the heat transfer of the base fluids. The base fluid can be ethylene glycol, or propylene glycol, or an aliphatic-hydrocarbon based heat transfer fluid. This invention also includes a method of making nanofluids. No surfactant is used to suspend the pyrogenic nanoparticles in glycols.

  5. Analysis of Noise Isolation Methods on Split Power/Ground Plane of Multi-layered Package and PCB for Low Jitter Mixed Mode System

    E-Print Network [OSTI]

    Kim, Yong Jung

    for Low Jitter Mixed Mode System Youchul Jeong, Hyungsoo Kim, Jingook Kim, Jongbae Park, and Joungbo Kim://tera.kaist.ac.kr ABSTRACT - Various noise isolation methods for low jitter on powerlground plane are thoroughly analyzed/ground noise to analog circuit with jitter measurement. II.Analysis of noise isolation methods and experiment

  6. Electromagnetic Reciprocity.

    SciTech Connect (OSTI)

    Aldridge, David F.

    2014-11-01T23:59:59.000Z

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a geophysical consultant ) and Dr. Chester J. Weiss (recently rejoined with Sandia National Laboratories) for many stimulating (and reciprocal!) discussions regar ding the topic at hand.

  7. Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area 

    E-Print Network [OSTI]

    Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

    2006-01-01T23:59:59.000Z

    The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due...

  8. Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data

    E-Print Network [OSTI]

    Stoffelen, Ad

    Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data ERWIN L. A. WOLTERS, ROBERT A. ROEBELING, AND ARNOUT J. FEIJT Royal Netherlands 2007) ABSTRACT Three cloud-phase determination algorithms from passive satellite imagers are explored

  9. Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water

    E-Print Network [OSTI]

    Chen, Tsuhan

    Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

  10. Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area

    E-Print Network [OSTI]

    Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

    2006-01-01T23:59:59.000Z

    Energiae Solaris Sinica, 2005, 6(2):162-165.(In Chinese) [4] Sun Jianping, Wang Jinggang, etc. Operating performance analysis of the ground source heat pump [J]. Journal of North China electric Power University, 2004,31(5):52-55.(In Chinese) [5] Wang...

  11. A Modified Analytical Method for Simulating Cyclic Operation of Vertical U-Tube Ground-Coupled Heat Pumps

    E-Print Network [OSTI]

    Dobson, M. K.; O'Neal, D. L.; Aldred, W.

    1994-01-01T23:59:59.000Z

    as a heat source/sink for heat pumps. Using the soil rather than the ambient air as the heat source in 1 heating and the heat sink in cooling offers potential thermodynamic advantages since the earth is normally at a more favorable temperature for heat...-coupled heat exchangers have proceeded in two different directions: (1) numerical solutions of the heat diffusion equation in the soil and the ground-coil [Mei and Fischer, 1984] and (2) modified analytical solutions [Al- Juwayhel, 1981; Bose et al., 1985...

  12. Investigation of electromagnetic welding

    E-Print Network [OSTI]

    Pressl, Daniel G. (Daniel Gerd)

    2009-01-01T23:59:59.000Z

    We propose several methodologies to study and optimize the electromagnetic process for Electromagnetic Forming (EMF) and Welding (EMW), thereby lowering the necessary process energy up to a factor of three and lengthening ...

  13. Ground Penetrating Radar in Hydrogeophysics

    SciTech Connect (OSTI)

    Hubbard, Susan; Lambot, S.; Binley, A.; Slob, E.; Hubbard, S.

    2008-01-15T23:59:59.000Z

    To meet the needs of a growing population and to provide us with a higher quality of life, increasing pressures are being placed on our environment through the development of agriculture, industry, and infrastructures. Soil erosion, groundwater depletion, salinization, and pollution have been recognized for decades as major threats to ecosystems and human health. More recently, the progressive substitution of fossil fuels by biofuels for energy production and climate change have been recognized as potential threats to our water resources and sustained agricultural productivity. The vadose zone mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff , groundwater recharge, contaminant transport, plant growth, evaporation, and energy exchanges between the Earth's surface and its atmosphere. It also determines soil organic carbon sequestration and carbon-cycle feedbacks, which could substantially impact climate change. The vadose zone's inherent spatial variability and inaccessibility precludes direct observation of the important subsurface processes. In a societal context where the development of sustainable and optimal environmental management strategies has become a priority, there is a strong prerequisite for the development of noninvasive characterization and monitoring techniques of the vadose zone. In particular, hydrogeophysical approaches applied at relevant scales are required to appraise dynamic subsurface phenomena and to develop optimal sustainability, exploitation, and remediation strategies. Among existing geophysical techniques, ground penetrating radar (GPR) technology is of particular interest for providing high-resolution subsurface images and specifically addressing water-related questions. Ground penetrating radar is based on the transmission and reception of VHF-UHF (30-3000 MHz) electromagnetic waves into the ground, whose propagation is determined by the soil electromagnetic properties and their spatial distribution. As the dielectric permittivity of water overwhelms the permittivity of other soil components, the presence of water in the soil principally governs GPR wave propagation. Therefore, GPR-derived dielectric permittivity is usually used as surrogate measure for soil water content. In the areas of unsaturated zone hydrology and water resources, GPR has been used to identify soil stratigraphy, to locate water tables, to follow wetting front movement, to estimate soil water content, to assist in subsurface hydraulic parameter identification, to assess soil salinity, and to support the monitoring of contaminants. The purpose of this special section of the Vadose Zone Journal is to present recent research advances and applications of GPR in hydrogeophysics, with a particular emphasis on vadose zone investigations. This special section includes contributions presented at the European Geosciences Union General Assembly 2006 (EGU 2006, Vienna, Austria) and the 11th International Conference on Ground Penetrating Radar (GPR 2006, Columbus, OH). The studies presented here deal with a wide range of surface and borehole GPR applications, including GPR sensitivity to contaminant plumes, new methods for soil water content determination, three-dimensional imaging of the subsurface, time-lapse monitoring of hydrodynamic events and inversion techniques for soil hydraulic properties estimation, and joint interpretation of GPR and electric resistivity tomography (ERT) data.

  14. Theory of electromagnetic fields

    E-Print Network [OSTI]

    Wolski, Andrzej

    2011-01-01T23:59:59.000Z

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  15. Application of collision-based two dimensional Monte Carlo method in a simulated microscale ground water model

    E-Print Network [OSTI]

    Chung, Kiwhan

    1996-01-01T23:59:59.000Z

    While the use of Monte Carlo method has been prevalent in nuclear engineering, it has yet to fully blossom in the study of solute transport in porous media. By using an etched-glass micromodel, an attempt is made to apply Monte Carlo method...

  16. Tunability enhanced electromagnetic wiggler

    DOE Patents [OSTI]

    Schlueter, Ross D. (Albany, CA); Deis, Gary A. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  17. SOLAR NANTENNA ELECTROMAGNETIC COLLECTORS

    SciTech Connect (OSTI)

    Steven D. Novack; Dale K. Kotter; Dennis Slafer; Patrick Pinhero

    2008-08-01T23:59:59.000Z

    This research explores a new efficient approach for producing electricity from the abundant energy of the sun. A nanoantenna electromagnetic collector (NEC) has been designed, prototyped, and tested. Proof of concept has been validated. The device targets mid-infrared wavelengths where conventional photovoltaic (PV) solar cells do not respond but is abundant in solar energy. The initial concept of designing NEC antennas was based on scaling of radio frequency antenna theory. This approach has proven unsuccessful by many due to not fully understanding and accounting for the optical behavior of materials in the THz region. Also until recent years the nanofabrication methods were not available to fabricate the optical antenna elements. We have addressed and overcome both technology barriers. Several factors were critical in successful implementation of NEC including: 1) frequency-dependent modeling of antenna elements, 2) selection of materials with proper THz properties and 3) novel manufacturing methods that enable economical large-scale manufacturing. The work represents an important step toward the ultimate realization of a low-cost device that will collect as well as convert this radiation into electricity, which will lead to a wide spectrum, high conversion efficiency, and low cost solution to complement conventional PVs.

  18. {sup 222}Rn in water: A comparison of two sample collection methods and two sample transport methods, and the determination of temporal variation in North Carolina ground water

    SciTech Connect (OSTI)

    Hightower, J.H. III [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering] [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1994-12-31T23:59:59.000Z

    Objectives of this field experiment were: (1) determine whether there was a statistically significant difference between the radon concentrations of samples collected by EPA`s standard method, using a syringe, and an alternative, slow-flow method; (2) determine whether there was a statistically significant difference between the measured radon concentrations of samples mailed vs samples not mailed; and (3) determine whether there was a temporal variation of water radon concentration over a 7-month period. The field experiment was conducted at 9 sites, 5 private wells, and 4 public wells, at various locations in North Carolina. Results showed that a syringe is not necessary for sample collection, there was generally no significant radon loss due to mailing samples, and there was statistically significant evidence of temporal variations in water radon concentrations.

  19. Quantum modulation against electromagnetic interference

    E-Print Network [OSTI]

    Juan Carlos Garcia-Escartin

    2014-11-26T23:59:59.000Z

    Periodic signals in electrical and electronic equipment can cause interference in nearby devices. Randomized modulation of those signals spreads their energy through the frequency spectrum and can help to mitigate electromagnetic interference problems. The inherently random nature of quantum phenomena makes them a good control signal. I present a quantum modulation method based on the random statistics of quantum light. The paper describes pulse width modulation schemes where a Poissonian light source acts as a random control that spreads the energy of the potential interfering signals. I give an example application for switching-mode power supplies and comment the further possibilities of the method.

  20. The Study of Electromagnetic Wave Propogation in Photonic Crystals Via Planewave Based Transfer (Scattering) Matrix Method with Active Gain Material Applications

    SciTech Connect (OSTI)

    Ming LI

    2007-12-01T23:59:59.000Z

    In this dissertation, a set of numerical simulation tools are developed under previous work to efficiently and accurately study one-dimensional (1D), two-dimensional(2D), 2D slab and three-dimensional (3D) photonic crystal structures and their defects effects by means of spectrum (transmission, reflection, absorption), band structure (dispersion relation), and electric and/or magnetic fields distribution (mode profiles). Furthermore, the lasing property and spontaneous emission behaviors are studied when active gain materials are presented in the photonic crystal structures. Various physical properties such as resonant cavity quality factor, waveguide loss, propagation group velocity of electromagnetic wave and light-current curve (for lasing devices) can be obtained from the developed software package.

  1. Electromagnetic Effects in SDF Explosions

    SciTech Connect (OSTI)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12T23:59:59.000Z

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise between optimizing the combustion performance and keeping the number of elementary charges low. Further tests in a barometric bomb calorimeter of 21.2 l volume were performed with four types of aluminum. The mass fraction burned in this case appeared to depend on the morphology of the aluminum particles. Flake aluminum exhibited a better performance than granulated aluminum with particle sizes ranging from below 25 {micro}m to 125 {micro}m for the coarsest material. In addition, a feasibility study on electro-magnetic effects from SDF charges detonated in a tunnel has been performed. A method was developed to measure the local, unsteady electro-conductivity in the detonation/combustion products cloud. This method proved to yield reproducible results. A variety of methods were tested with regard to probing electro-magnetic pulses from the detonation of SDF charges. The results showed little reproducibility and were small compared to the effect from pulsed high voltage discharges of comparatively small energy (around 32 J). Thus either no significant electromagnetic pulse is generated in our small-scale tests or the tested techniques have to be discarded as too insensitive or too limited in bandwidth to detect possibly very high frequency electro-magnetic disturbances.

  2. Electromagnetic rotational actuation.

    SciTech Connect (OSTI)

    Hogan, Alexander Lee

    2010-08-01T23:59:59.000Z

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  3. Cryogenic heat pipe for cooling high temperature superconductors with application to Electromagnetic Formation Flight Satellites

    E-Print Network [OSTI]

    Kwon, Daniel W., 1980-

    2009-01-01T23:59:59.000Z

    An emerging method of propellant-less formation flight propulsion is the use of electromagnets coupled with reaction wheels. This technique is called Electromagnetic Formation Flight (EMFF). In order to create a large ...

  4. Fluidic electrodynamics: Approach to electromagnetic propulsion

    SciTech Connect (OSTI)

    Martins, Alexandre A.; Pinheiro, Mario J. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.92.43 (Portugal); Department of Physics and Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.93.22 (Portugal)

    2009-03-16T23:59:59.000Z

    We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

  5. Electromagnetic properties of massive neutrinos

    SciTech Connect (OSTI)

    Dobrynina, A. A., E-mail: aleksandradobrynina@rambler.ru; Mikheev, N. V.; Narynskaya, E. N. [Demidov Yaroslavl State University (Russian Federation)] [Demidov Yaroslavl State University (Russian Federation)

    2013-10-15T23:59:59.000Z

    The vertex function for a virtual massive neutrino is calculated in the limit of soft real photons. A method based on employing the neutrino self-energy operator in a weak external electromagnetic field in the approximation linear in the field is developed in order to render this calculation of the vertex function convenient. It is shown that the electric charge and the electric dipole moment of the real neutrino are zero; only the magnetic moment is nonzero for massive neutrinos. A fourth-generation heavy neutrino of mass not less than half of the Z-boson mass is considered as a massive neutrino.

  6. Ground Electromagnetic Survey At Kilauea East Rift Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrderNebraska:Gridley,Grocery 2009 TSDGroom(Kauahikaua

  7. Electromagnetic Wellbore Heating C. Sean Bohun, The Pennsylvania State University,

    E-Print Network [OSTI]

    Bohun, C. Sean

    Electromagnetic Wellbore Heating C. Sean Bohun, The Pennsylvania State University, Bruce McGee, Mc Workshop, June 2000. 1 Introduction In this paper we derive a simple model that describes the recovery of petroleum fluids from an oil reservoir by the method of electromagnetic heating. By its very nature

  8. Saturated hydraulic conductivity determined by on ground mono-offset Ground-Penetrating Radar inside a single ring infiltrometer

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01T23:59:59.000Z

    In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and fallin...

  9. Electromagnetic properties of baryons

    SciTech Connect (OSTI)

    Ledwig, T.; Pascalutsa, V.; Vanderhaeghen, M. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Martin-Camalich, J. [Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC, Spain and Department of Physics and Astronomy, University of Sussex, BN1 9Qh, Brighton (United Kingdom)

    2011-10-21T23:59:59.000Z

    We discuss the chiral behavior of the nucleon and {Delta}(1232) electromagnetic properties within the framework of a SU(2) covariant baryon chiral perturbation theory. Our one-loop calculation is complete to the order p{sup 3} and p{sup 4}/{Delta} with {Delta} as the {Delta}(1232)-nucleon energy gap. We show that the magnetic moment of a resonance can be defined by the linear energy shift only when an additional relation between the involved masses and the applied magnetic field strength is fulfilled. Singularities and cusps in the pion mass dependence of the {Delta}(1232) electromagnetic moments reflect a non-fulfillment. We show results for the pion mass dependence of the nucleon iso-vector electromagnetic quantities and present preliminary results for finite volume effects on the iso-vector anomalous magnetic moment.

  10. Electromagnetic Induction by Sq Ionospheric Currents in a Heterogeneous Earth: Modeling

    E-Print Network [OSTI]

    Velímsky, Jakub

    Electromagnetic Induction by Sq Ionospheric Currents in a Heterogeneous Earth: Modeling Using Ground-based and Satellite Measurements Jakub Vel´imsk´y and Mark E. Everett Department of Geology of hourly means of the geomagnetic field components observed on quiet days in years 2001­2002 on ground

  11. Fast dynamic force computation for electrostatic and electromagnetic conductors 

    E-Print Network [OSTI]

    Koteeswaran, Prabhavathi

    2005-02-17T23:59:59.000Z

    This thesis presents an improved method for dynamic force computation applicable to both electrostatic and electromagnetic conductors with complex 3D geometries. During the transient simulation of electrostatic actuated MEMS, the positions...

  12. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05T23:59:59.000Z

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  13. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11T23:59:59.000Z

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  14. Electromagnetic pump stator coil

    DOE Patents [OSTI]

    Fanning, A.W.; Dahl, L.R.

    1996-06-25T23:59:59.000Z

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  15. Electromagnetic pump stator coil

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Dahl, Leslie R. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  16. Ground Turkey Stroganoff Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Ground Turkey Stroganoff Ingredients: 8 ounces egg noodles, uncooked 1 pound ground turkey 1 onion. Meanwhile, brown ground turkey and onions in non stick skillet until meat is no longer pink and onions cup of egg noodles on plate, top with 1/2 cup of turkey mixture. Equipment: Knife Cutting board

  17. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    E-Print Network [OSTI]

    Léger, Emmanuel; Coquet, Yves

    2013-01-01T23:59:59.000Z

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  18. Ground potential rise monitor

    DOE Patents [OSTI]

    Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

    2012-04-03T23:59:59.000Z

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  19. Cooking with Ground Pork

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    to thaw. Even when cooked, pork that has been thawed at room temperature can make you sick. Cooking ground pork safely For dishes that contain ground pork, cook the pork before mixing it with other ingredients. How to store cooked ground pork Leftover... dishes made with ground pork should be stored in a covered dish in the refrigerator right away to prevent spoilage. Use it within 3 days. Reheat foods with ground pork until they are steaming hot, bubbling, or at 165 degrees. Other uses Use cooked...

  20. Ground Water Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called Ground Water Management Areas (GWMA). Currently,...

  1. Electromagnetic reactions on light nuclei

    E-Print Network [OSTI]

    Sonia Bacca; Saori Pastore

    2014-07-13T23:59:59.000Z

    Electromagnetic reactions on light nuclei are fundamental to advance our understanding of nuclear structure and dynamics. The perturbative nature of the electromagnetic probes allows to clearly connect measured cross sections with the calculated structure properties of nuclear targets. We present an overview on recent theoretical ab-initio calculations of electron-scattering and photonuclear reactions involving light nuclei. We encompass both the conventional approach and the novel theoretical framework provided by chiral effective field theories. Because both strong and electromagnetic interactions are involved in the processes under study, comparison with available experimental data provides stringent constraints on both many-body nuclear Hamiltonians and electromagnetic currents. We discuss what we have learned from studies on electromagnetic observables of light nuclei, starting from the deuteron and reaching up to nuclear systems with mass number A=16.

  2. Marine Electromagnetic Methods for Gas Hydrate Characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen A

    2008-01-01T23:59:59.000Z

    MT results, Ocean Drilling Program Leg 204 well logs, andThe four ocean drilling program leg 204 well logs – 1245,on Ocean Drilling Program Leg 204 resistivity well logs.

  3. Least-squares methods for computational electromagnetics

    E-Print Network [OSTI]

    Kolev, Tzanio Valentinov

    2004-11-15T23:59:59.000Z

    ............... 132 3. Eigenvalues of the Fichera corner . . . . . . . . . . . . 135 4. Eigenvalues of a linear accelerator cell . . . . . . . . . 137 D.Thetime-harmonicproblem ................. 137 VIII CONCLUSIONS ........................... 140 REFERENCES..., eigenmode 7. ......................... 160 B.11 Unit ball, eigenmode 8. ......................... 160 B.12 Unit ball, eigenmode 9. ......................... 160 B.13 Unit ball, eigenmode 10. ......................... 161 B.14 Linear accelerator cell...

  4. Marine electromagnetic methods for gas hydrate characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen Andrea

    2008-01-01T23:59:59.000Z

    1.2 Gas Hydrates . . . . . . . .1.2.1 Distribution of Gas Hydrates . . . . . . . . . . .1.2.2 Importance of Gas Hydrates . . . . .

  5. Marine Electromagnetic Methods for Gas Hydrate Characterization

    E-Print Network [OSTI]

    Weitemeyer, Karen A

    2008-01-01T23:59:59.000Z

    1.2 Gas Hydrates . . . . . . . .1.2.1 Distribution of Gas Hydrates . . . . . . . . . . .1.2.2 Importance of Gas Hydrates . . . . .

  6. Electrical, electromagnetic, and magnetotelluric methods | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcologyElInformationof

  7. Nucleon Electromagnetic Form Factors

    SciTech Connect (OSTI)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01T23:59:59.000Z

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  8. Cavity cooling of a trapped atom using Electromagnetically-Induced Transparency

    E-Print Network [OSTI]

    Marc Bienert; Giovanna Morigi

    2011-12-01T23:59:59.000Z

    A cooling scheme for trapped atoms is proposed, which combines cavity-enhanced scattering and electromagnetically induced transparency. The cooling dynamics exploits a three-photon resonance, which combines laser and cavity excitations. It is shown that relatively fast ground-state cooling can be achieved in the Lamb-Dicke regime and for large cooperativity. Efficient ground-state cooling is found for parameters of ongoing experiments.

  9. Cooking with Ground Beef

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09T23:59:59.000Z

    This fact sheet describes the nutritional value and safe storage of ground beef, a commodity food. It also offers food preparation ideas....

  10. Predaceous Ground Beetles

    E-Print Network [OSTI]

    Sansone, Chris; Minzenmayer, Rick

    2003-06-30T23:59:59.000Z

    Predaceous ground beetles can be a nuisance to homeowners, especially when they are numerous. This publication describes the beetles and discusses ways to prevent and treat them....

  11. Electromagnetically driven peristaltic pump

    DOE Patents [OSTI]

    Marshall, Douglas W. (Blackfoot, ID)

    2000-01-01T23:59:59.000Z

    An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

  12. A Fractal Interpretation of Controlled-Source Helicopter Electromagnetic Survey Data Seco Creek, Edwards Aquifer, TX

    E-Print Network [OSTI]

    Decker, Kathryn T.

    2010-07-14T23:59:59.000Z

    .1 Literature Review of Airborne Electromagnetic Surveys.................................................................... 36 5.2 Helicopter EM Survey Details..................................... 39 VI DATA ANALYSIS... to detect the magnetic field arising from eddy current induction in the ground. In some airborne surveys, the transmitter and receiver 21 loops are separated by a fixed distance and housed in a bird (often with other equipment for sensing elevation...

  13. Ground State Quantum Computation

    E-Print Network [OSTI]

    Ari Mizel; M. W. Mitchell; Marvin L. Cohen

    1999-08-11T23:59:59.000Z

    We formulate a novel ground state quantum computation approach that requires no unitary evolution of qubits in time: the qubits are fixed in stationary states of the Hamiltonian. This formulation supplies a completely time-independent approach to realizing quantum computers. We give a concrete suggestion for a ground state quantum computer involving linked quantum dots.

  14. Mimicking Time Evolution within a Quantum Ground State: Ground-State Quantum Computation, Cloning, and Teleportation

    E-Print Network [OSTI]

    Ari Mizel

    2003-12-09T23:59:59.000Z

    Ground-state quantum computers mimic quantum mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.

  15. Ground Versus Unground Grain for Lactating Dairy Cows. 

    E-Print Network [OSTI]

    Darnell, A. L. (Albert Laurie); Copeland, O. C. (Orlin Cephas)

    1936-01-01T23:59:59.000Z

    LIBRARY, A & hf COLLEGE, CAMPUS. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIFkECTOR COLLE~E STATION, BRAZOS COUNTY, TEXAS BULLETIN NO. 530 SEPTEMBER, 193 6 DIVISION OF DAIRY HUSBANDRY Ground Versus Unground Grain far Lactating...- bandry in cooperation with the Texas Agricultural Experiment Station. The double reversal method of feeding lactating dairy cows was used in comparing whole versus ground shelled corn, whole versus ground threshed oats, whole versus ground threshed...

  16. Electromagnetic Radiation Hardness of Diamond Detectors

    E-Print Network [OSTI]

    T. Behnke; M. Doucet; N. Ghodbane; A. Imhof; C. Martinez; W. Zeuner

    2001-08-22T23:59:59.000Z

    The behavior of artificially grown CVD diamond films under intense electromagnetic radiation has been studied. The properties of irradiated diamond samples have been investigated using the method of thermally stimulated current and by studying their charge collection properties. Diamonds have been found to remain unaffected after doses of 6.8 MGy of 10 keV photons and 10 MGy of MeV-range photons. This observation makes diamond an attractive detector material for a calorimeter in the very forward region of the proposed TESLA detector.

  17. A New Method of Accelerated Bayesian Inference for Comparable Mass Binaries in both Ground and Space-Based Gravitational Wave Astronomy

    E-Print Network [OSTI]

    Edward K. Porter

    2014-11-03T23:59:59.000Z

    With the advance in computational resources, Bayesian inference is increasingly becoming the standard tool of practise in GW astronomy. However, algorithms such as Markov Chain Monte Carlo (MCMC) require a large number of iterations to guarantee convergence to the target density. Each chain demands a large number of evaluations of the likelihood function, and in the case of a Hessian MCMC, calculations of the Fisher information matrix for use as a proposal distribution. As each iteration requires the generation of at least one gravitational waveform, we very quickly reach a point of exclusion for current Bayesian algorithms, especially for low mass systems where the length of the waveforms is large and the waveform generation time is on the order of seconds. This suddenly demands a timescale of many weeks for a single MCMC. As each likelihood and Fisher information matrix calculation requires the evaluation of noise-weighted scalar products, we demonstrate that by using the linearity of integration, and the fact that more than 90% of the generation time is spent at frequencies less that one third of the maximum, we can construct composite integrals that speed up the MCMCs for comparable mass binaries by a factor of between 3.5 and 5.5, depending on the waveform length. This method is both source and detector type independent, and can be applied to any waveform that displays significant frequency evolution, such as stellar mass binaries with Advanced LIGO/Virgo, as well as supermassive black holes with eLISA

  18. Electromagnetic-gravitational cross-sections in external electromagnetic fields

    E-Print Network [OSTI]

    Long, H N; Tran, T A; Tuan, T A; Long, Hoang Ngoc; Van Soa, Dang; Tran, Tuan A; Tuan, Tran Anh

    1994-01-01T23:59:59.000Z

    The classical processes: the conversion of photons into gravitons in the static electromagnetic fields are considered by using Feynman perturbation techniques. The differential cross sections are presented for the conversion in the electric field of the flat condesor and the magnetic field of the selenoid. A numerical evaluation shows that the cross sections may have the observable value in the present technical scenario.

  19. Space-Time Galerkin Projection of Electro-Magnetic Fields

    E-Print Network [OSTI]

    Wang, Zifu; Hofmann, Heath

    2015-01-01T23:59:59.000Z

    Spatial Galerkin projection transfers fields between different meshes. In the area of finite element analysis of electromagnetic fields, it provides great convenience for remeshing, multi-physics, domain decomposition methods, etc. In this paper, a space-time Galerkin projection is developed in order to transfer fields between different spatial and temporal discretization bases.

  20. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  1. Electromagnetic effects on geodesic acoustic modes

    SciTech Connect (OSTI)

    Bashir, M. F., E-mail: frazbashir@yahoo.com [Salam Chair in Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Department of Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Smolyakov, A. I. [University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada); Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); Elfimov, A. G. [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Melnikov, A. V. [Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); National Research Nuclear University MEPhI, 115409, Moscow (Russian Federation); Murtaza, G. [Visiting Professor, Department of Physics, Quaid-e-Azam University, Islamabad (Pakistan)

    2014-08-15T23:59:59.000Z

    By using the full electromagnetic drift kinetic equations for electrons and ions, the general dispersion relation for geodesic acoustic modes (GAMs) is derived incorporating the electromagnetic effects. It is shown that m?=?1 harmonic of the GAM mode has a finite electromagnetic component. The electromagnetic corrections appear for finite values of the radial wave numbers and modify the GAM frequency. The effects of plasma pressure ?{sub e}, the safety factor q, and the temperature ratio ? on GAM dispersion are analyzed.

  2. Electromagnetic design considerations for fast acting controllers

    SciTech Connect (OSTI)

    Woodford, D.A. [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)] [Manitoba HVDC Research Centre, Winnipeg, Manitoba (Canada)

    1996-07-01T23:59:59.000Z

    Electromagnetic design considerations for fast acting controllers in a power system is introduced and defined. A distinction is made in relation to the more commonly understood system control design necessary for damping electromechanical oscillations using stability programs and eigenanalysis. Electromagnetic eigenanalysis tools have limited availability and are consequently rarely used. Electromagnetic transients programs (emtp) on the other hand are widely used and a procedure for undertaking electromagnetic control design of fast acting controllers in a power system using emtp is presented.

  3. Structurally Electromagnetic Formation Flight (EMFF)

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Structurally connected secondary mirror EMFF secondary mirror EMFF Design Electromagnetic Formation for a smaller, simpler system. µEMFF investigates the use of conventional conductors, capacitors, and solar propellants that often limit lifetime, the EMFF system uses solar power to energize a magnetic field

  4. A note on classical ground state energies

    E-Print Network [OSTI]

    Michael K. -H. Kiessling

    2009-05-28T23:59:59.000Z

    The pair-specific ground state energy of Newtonian N-body systems grows monotonically in N. This furnishes a whole family of simple new tests for minimality of putative ground state energies obtained through computer experiments. Inspection of several publically available lists of such computer-experimentally obtained putative ground state energies has yielded several dozen instances which failed (at least) one of these tests. Although the correct ground state energy is not revealed by this method, it does yield a better upper bound on it than the experimentally found value whenever the latter fails a monotonicity test. The surveyed N-body systems include in particular N point charges with 2- or 3-dimensional Coulomb pair interactions, placed either on the unit 2-sphere or on a 2-torus (a.k.a. Thomson, Fekete, or Riesz problems).

  5. Bridge Deck Evaluation with Ground Penetrating Radar Dryver Huston, Jing Hu, Noel Pelczarski, and Brian Esser

    E-Print Network [OSTI]

    Huston, Dryver R.

    in a step-frequency mode. The system is used to test laboratory specimens and bridge decks in the field Health Monitoring Stanford University September 1999 ABSTRACT Ground Penetrating Radar (GPR) uses electromagnetic (EM) waves to identify underlying features in solid structures. The typical technique uses

  6. Application of evolutionary algorithms and neural networks to electromagnetic inverse problems

    E-Print Network [OSTI]

    Mydur, Ravicharan

    2000-01-01T23:59:59.000Z

    ) illumination. A technique is developed for the novel application of the Differential Evolution (DE) algorithm to electromagnetic imaging of buried objects. A hybrid of the DE and Powell method is also developed to further accelerate the DE's performance. Both...

  7. Ground water protection management program plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 5400.1 requires the establishment of a ground water protection management program to ensure compliance with DOE requirements and applicable federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office was prepared this Ground Water Protection Management Program Plan (ground water protection plan) whose scope and detail reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter III, for special program planning. This ground water protection plan highlights the methods designed to preserve, protect, and monitor ground water resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies technical guidance documents and site-specific documents for the UMTRA Project ground water protection management program. In addition, the plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA Project sites.

  8. The ground state energy at unitarity

    E-Print Network [OSTI]

    Dean Lee

    2008-07-28T23:59:59.000Z

    We consider two-component fermions on the lattice in the unitarity limit. This is an idealized limit of attractive fermions where the range of the interaction is zero and the scattering length is infinite. Using Euclidean time projection, we compute the ground state energy using four computationally different but physically identical auxiliary-field methods. The best performance is obtained using a bounded continuous auxiliary field and a non-local updating algorithm called hybrid Monte Carlo. With this method we calculate results for 10 and 14 fermions at lattice volumes 4^3, 5^3, 6^3, 7^3, 8^3 and extrapolate to the continuum limit. For 10 fermions in a periodic cube, the ground state energy is 0.292(12) times the ground state energy for non-interacting fermions. For 14 fermions the ratio is 0.329(5).

  9. Laminated electromagnetic pump stator core

    DOE Patents [OSTI]

    Fanning, A.W.

    1995-08-08T23:59:59.000Z

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  10. Electromagnetism Tutorial (Tutorial de Eletromagnetismo)

    E-Print Network [OSTI]

    Dantas, Christine C

    2009-01-01T23:59:59.000Z

    The present tutorial aims at covering the fundamentals of electromagnetism, in a condensed and clear manner. Some solved and proposed exercises have been included. The reader is assumed to have knowledge of basic electricity, partial derivatives and multiple integrals. ----- O presente tutorial visa cobrir os fundamentos do eletromagnetismo, de forma condensada e clara. Alguns exercicios resolvidos e propostos foram incluidos. Assume-se conhecimento de eletricidade basica, derivadas parciais e integrais multiplas.

  11. International Energy Agency Building Energy Simulation Test and Diagnostic Method (IEA BESTEST): In-Depth Diagnostic Cases for Ground Coupled Heat Transfer Related to Slab-on-Grade Construction

    SciTech Connect (OSTI)

    Neymark, J.; Judkoff, R.; Beausoleil-Morrison, I.; Ben-Nakhi, A.; Crowley, M.; Deru, M.; Henninger, R.; Ribberink, H.; Thornton, J.; Wijsman, A.; Witte, M.

    2008-09-01T23:59:59.000Z

    This report documents a set of idealized in-depth diagnostic test cases for use in validating ground-coupled floor slab heat transfer models. These test cases represent an extension to IEA BESTEST.

  12. Electromagnetic matrix elements for negative parity nucleons

    E-Print Network [OSTI]

    Benjamin Owen; Waseem Kamleh; Derek Leinweber; Selim Mahbub; Benjamin Menadue

    2014-12-15T23:59:59.000Z

    Here we present preliminary results for the evaluation of the electromagnetic form factors for the lowest-lying negative-parity, spin-$\\frac{1}{2}$ nucleons, namely the $S_{11}(1535)$ and $S_{11}(1650)$, through the use of the variational method. We find that the characteristics of the electric form factor, $G_{E}$, are similar between these states, however significant differences are observed between the quark-sector contributions to the magnetic form factor, $G_{M}$. Within simple constituent quark models, these states are understood to be admixtures of $s=\\frac{1}{2}$ and $s=\\frac{3}{2}$ states coupled to orbital angular momentum $\\ell = 1$. Our results reveal a qualitative difference in the manner in which the singly-represented quark sector contributes to these baryon magnetic form factors.

  13. GROUND WATER CONTAMINATION

    SciTech Connect (OSTI)

    Unknown

    1999-09-01T23:59:59.000Z

    As required by the terms of the above referenced grant, the following summary serves as the Final Report for that grant. The grant relates to work performed at two separate sites, the Hoe Creek Underground Coal Gasification Site south of Gillette, Wyoming, and the Rock Springs In-Situ Oil Shale Retort Site near Rock Springs, Wyoming. The primary concern to the State of Wyoming at each site is ground water contamination (the primary contaminants of concern are benzene and related compounds), and the purpose of the grant has been to provide tiding for a Geohydrologist at the appropriate State agency, specifically the Land Quality Division (LQD) of the Wyoming Department of Environmental Quality. The LQD Geohydrologist has been responsible for providing technical and regulatory support to DOE for ground water remediation and subsequent surface reclamation. Substantial progress has been made toward remediation of the sites, and continuation of LQD involvement in the remediation and reclamation efforts is addressed.

  14. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK SOURCE HEAT PUMP SYSTEMS Thesis Approved: ___________________________________________ Thesis Adviser scale test data. The short-term behavior of ground-coupled heat pump systems is important for the design

  15. A New Spectral Method for Numerical Solution of the Unbounded ...

    E-Print Network [OSTI]

    2012-11-26T23:59:59.000Z

    applications in a wide range of scientific areas, such as modeling acoustic and electromagnetic wave propagation over outdoor .... 0 physically accounts for energy absorption and ...... We plan to extend the method to the electromagnetic.

  16. Spacetime algebra as a powerful tool for electromagnetism

    E-Print Network [OSTI]

    Justin Dressel; Konstantin Y. Bliokh; Franco Nori

    2014-12-03T23:59:59.000Z

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  17. Evolution of linearly polarized electromagnetic pulses in laser plasmas

    SciTech Connect (OSTI)

    Borhanian, J. [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz 51664 (Iran, Islamic Republic of); Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Sobhanian, S. [Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz 51664 (Iran, Islamic Republic of); Kourakis, I. [Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Esfandyari-Kalejahi, A. [Department of Physics, Faculty of Science, Azarbaijan University of Tarbiat Moallem, Tabriz 51745-406 (Iran, Islamic Republic of)

    2008-09-15T23:59:59.000Z

    An analytical and numerical investigation is presented of the behavior of a linearly polarized electromagnetic pulse as it propagates through a plasma. Considering a weakly relativistic regime, the system of one-dimensional fluid-Maxwell equations is reduced to a generalized nonlinear Schroedinger type equation, which is solved numerically using a split step Fourier method. The spatio-temporal evolution of an electromagnetic pulse is investigated. The evolution of the envelope amplitude of density harmonics is also studied. An electromagnetic pulse propagating through the plasma tends to broaden due to dispersion, while the nonlinear frequency shift is observed to slow down the pulse at a speed lower than the group velocity. Such nonlinear effects are more important for higher density plasmas. The pulse broadening factor is calculated numerically, and is shown to be related to the background plasma density. In particular, the broadening effect appears to be stronger for dense plasmas. The relation to existing results on electromagnetic pulses in laser plasmas is discussed.

  18. Y-12 electromagnetic separation process wins approval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    work immediately. Just like what we know of Groves, huh. The gaseous diffusion, reactor pile and electromagnetic separation approaches were reviewed with each group attempting to...

  19. Electromagnetic compatibility of nuclear power plants

    SciTech Connect (OSTI)

    Cabayan, H.S.

    1983-01-01T23:59:59.000Z

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  20. Airborne electromagnetic surveys as a reconnaissance technique...

    Open Energy Info (EERE)

    geothermal exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Airborne electromagnetic surveys as a reconnaissance technique for...

  1. Cellular Manipulation and Control by Electromagnetism | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phenomenon for sensors; however, one may also use intense electromagnetic radiation, such as pulsed power, plasmas, or lasers, to induce changes in cellular...

  2. 6.630 Electromagnetic Theory, Fall 2002

    E-Print Network [OSTI]

    Kong, Jin Au, 1942-

    6.630 is an introductory subject on electromagnetics, emphasizing fundamental concepts and applications of Maxwell equations. Topics covered include: polarization, dipole antennas, wireless communications, forces and energy, ...

  3. Electromagnetic and nuclear radiation detector using micromechanical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  4. Ground-Based Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed ServicesGround-Based Microwave

  5. 466 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Electromagnetic Pulses Produced by

    E-Print Network [OSTI]

    Florida, University of

    discharge, lightning electromagnetic (EM) pulse, trav- eling wave, wave reflections. I. INTRODUCTION466 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Electromagnetic Pulses Produced by Bouncing-Wave-Type Lightning Discharges Amitabh Nag, Member, IEEE, and Vladimir A

  6. Progress In Electromagnetics Research, Vol. 114, 317332, 2011 PULSED BEAM EXPANSION OF ELECTROMAGNETIC

    E-Print Network [OSTI]

    Melamed, Timor

    Progress In Electromagnetics Research, Vol. 114, 317­332, 2011 PULSED BEAM EXPANSION-based pulsed-beams expansion of planar aperture time- dependent electromagnetic fields. The propagating field-beam waveobjects over the frame spectral lattice. Explicit asymptotic expressions for the electromagnetic pulsed

  7. Nuclear electromagnetic charge and current operators in Chiral EFT

    SciTech Connect (OSTI)

    Girlanda, Luca [Università del Salento; Marcucci, Laura Elisa [Univ. Pisa; Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Piarulli, Maria [Department of Physics, Old Dominion University, Norfolk, VA; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, Michele

    2013-08-01T23:59:59.000Z

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  8. Ultraslow Propagation of Squeezed Vacuum Pulses with Electromagnetically Induced Transparency

    E-Print Network [OSTI]

    Daisuke Akamatsu; Yoshihiko Yokoi; Manabu Arikawa; Satoshi Nagatsuka; Takahito Tanimura; Akira Furusawa; Mikio Kozuma

    2008-01-27T23:59:59.000Z

    We have succeeded in observing ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency. Squeezed vacuum pulses (probe lights) were incident on a laser cooled 87Rb gas together with an intense coherent light (control light). A homodyne method sensitive to the vacuum state was employed for detecting the probe pulse passing through the gas. A delay of 3.1us was observed for the probe pulse having a temporal width of 10 us.

  9. Electromagnetic probes of the QGP

    E-Print Network [OSTI]

    E. L. Bratkovskaya; O. Linnyk; W. Cassing

    2014-09-15T23:59:59.000Z

    We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow $v_2$ of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleus-nucleus collisions can be employed to shed some more light on the origin of the photon $v_2$ "puzzle". While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

  10. Electromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999

    E-Print Network [OSTI]

    California at Los Angeles, University of

    to avoid corrosion or fire. Lithium's high electrical conductivity may possibly permit efficient, compactElectromagnetically Restrained Lithium Blanket APEX Interim Report November, 1999 6-1 CHAPTER 6: ELECTROMAGNETICALLY RESTRAINED LITHIUM BLANKET Contributors Robert Woolley #12;Electromagnetically Restrained Lithium

  11. Space-time Curvature of Classical Electromagnetism

    E-Print Network [OSTI]

    R. W. M. Woodside

    2004-10-08T23:59:59.000Z

    The space-time curvature carried by electromagnetic fields is discovered and a new unification of geometry and electromagnetism is found. Curvature is invariant under charge reversal symmetry. Electromagnetic field equations are examined with De Rham co homology theory. Radiative electromagnetic fields must be exact and co exact to preclude unobserved massless topological charges. Weyl's conformal tensor, here called ``the gravitational field'', is decomposed into a divergence-free non-local piece with support everywhere and a local piece with the same support as the matter. By tuning a local gravitational field to a Maxwell field the electromagnetic field's local gravitational field is discovered. This gravitational field carries the electromagnetic field's polarization or phase information, unlike Maxwell's stress-energy tensor. The unification assumes Einstein's equations and derives Maxwell's equations from curvature assumptions. Gravity forbids magnetic monopoles! This unification is stronger than the Einstein-Maxwell equations alone, as those equations must produce the electromagnetic field's local gravitational field and not just any conformal tensor. Charged black holes are examples. Curvature of radiative null electromagnetic fields is characterized.

  12. Ultimate Energy Densities for Electromagnetic Pulses

    E-Print Network [OSTI]

    Mankei Tsang

    2008-03-06T23:59:59.000Z

    The ultimate electric and magnetic energy densities that can be attained by bandlimited electromagnetic pulses in free space are calculated using an ab initio quantized treatment, and the quantum states of electromagnetic fields that achieve the ultimate energy densities are derived. The ultimate energy densities also provide an experimentally accessible metric for the degree of localization of polychromatic photons.

  13. Optimization Material Distribution methodology: Some electromagnetic examples

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    730 1 Optimization Material Distribution methodology: Some electromagnetic examples P. Boissoles, H. Ben Ahmed, M. Pierre, B. Multon Abstract--In this paper, a new approach towards Optimization Material to be highly adaptive to various kinds of electromagnetic actuator optimization approaches. Several optimal

  14. Noninvasive valve monitor using alternating electromagnetic field

    DOE Patents [OSTI]

    Eissenberg, David M. (Oak Ridge, TN); Haynes, Howard D. (Knoxville, TN); Casada, Donald A. (Knoxville, TN)

    1993-01-01T23:59:59.000Z

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  15. An electromagnetic black hole made of metamaterials

    E-Print Network [OSTI]

    Cheng, Qiang

    2009-01-01T23:59:59.000Z

    Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...

  16. Controlled Source Frequency-Domain Electromagnetics At Neal Hot...

    Open Energy Info (EERE)

    Source Frequency-Domain Electromagnetics Activity Date 2011 - 2011 Usefulness useful DOE-funding Unknown Exploration Basis Electromagnetic surveys were conducted to gain a better...

  17. applied computational electromagnetics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electromagnetics Geosciences Websites Summary: Max Optics, Inc. 12;MadMax Optics 2 Stealth Electromagnetic interference Antennas on complex platformsFMM Code...

  18. The CLAS Forward Electromagnetic Calorimeter

    SciTech Connect (OSTI)

    M. Amarian; Geram Asryan; Kevin Beard; Will Brooks; Volker Burkert; Tom Carstens; Alan Coleman; Raphael Demirchyan; Yuri Efremenko; Hovanes Egiyan; Kim Egiyan; Herb Funsten; Vladimir Gavrilov; Kevin L. Giovanetti; R.M. Marshall; Berhard Mecking; R.C. Minehart; H. Mkrtchan; Mavrik Ohandjanyan; Youri Sharabian; L.C. Smith; Stepan Stepanyan; W.A. Stephens; T.Y. Tung; Carl Zorn

    2001-05-01T23:59:59.000Z

    The CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab utilizes six iron-free superconducting coils to provide an approximately toroidal magnetic field. The six sectors are instrumented individually to form six independent spectrometers. The forward region (8deg < (theta) < 45deg) of each sector is equipped with a lead-scintillator electromagnetic sampling calorimeter (EC), 16 radiation lengths thick, using a novel triangular geometry with stereo readout. With its good energy and position resolution, the EC is used to provide the primary electron trigger for CLAS. It is also used to reject pions, reconstruct pi-0 and eta decays and detect neutrons, This paper treats the design, construction and performance of the calorimeter.

  19. A new electromagnetic code for ICRF antenna in EAST

    E-Print Network [OSTI]

    Yang, Hua; Dong, Sa; Zhang, Xin-Jun; Zhao, Yan-Ping; Shang, Lei

    2015-01-01T23:59:59.000Z

    The demand for an effective tool to help in the design of ion cyclotron radio frequency (ICRF) antenna system for fusion experiment has driven the development of predictive codes. A new electromagnetic code based on the method of moments (MOM) is described in the paper. The code computes the electromagnetic field by the solution of the electric field integral equation. The structure of ICRF antennas are discretized with triangular mesh. By using the new code, the scattering parameter and the surface current are given and compared with the result by commercial code CST. Moreover, the power spectra are studied with different toroidal phases for heating and current drive. Good agreement of simulation results between the new code and CST are obtained. The code has been validated against CST for EAST ICRF antenna.

  20. Geophysical investigation of selected sites in burial grounds 218-W-3A, -4B, and -4C

    SciTech Connect (OSTI)

    Kiesler, J.P.

    1996-08-20T23:59:59.000Z

    Ground-penetrating radar (GPR) and electro-magnetic induction(EMI) were successfully used to delineate buried wastes in Trenches 218-W-3A, -4B, and -4C and determine the amount of soil cover of the buried wastes.

  1. Burial Ground Expansion Hydrogeologic Characterization

    SciTech Connect (OSTI)

    Gaughan , T.F.

    1999-02-26T23:59:59.000Z

    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  2. Ground Control for Emplacement Drifts for SR

    SciTech Connect (OSTI)

    Y. Sun

    2000-04-07T23:59:59.000Z

    This analysis demonstrates that a satisfactory ground control system can be designed for the Yucca Mountain site, and provides the technical basis for the design of ground support systems to be used in repository emplacement and non-emplacement drifts. The repository ground support design was based on analytical methods using acquired computer codes, and focused on the final support systems. A literature review of case histories, including the lessons learned from the design and construction of the ESF, the studies on the seismic damages of underground openings, and the use of rock mass classification systems in the ground support design, was conducted (Sections 6.3.4 and 6.4). This review provided some basis for determining the inputs and methodologies used in this analysis. Stability of the supported and unsupported emplacement and non-emplacement drifts was evaluated in this analysis. The excavation effects (i.e., state of the stress change due to excavation), thermal effects (i.e., due to heat output from waste packages), and seismic effects (i.e., from potential earthquake events) were evaluated, and stress controlled modes of failure were examined for two in situ stress conditions (k_0=0.3 and 1.0) using rock properties representing rock mass categories of 1 and 5. Variation of rock mass units such as the non-lithophysal (Tptpmn) and lithophysal (Tptpll) was considered in the analysis. The focus was on the non-lithophysal unit because this unit appears to be relatively weaker and has much smaller joint spacing. Therefore, the drift stability and ground support needs were considered to be controlled by the design for this rock unit. The ground support systems for both emplacement and non-emplacement drifts were incorporated into the models to assess their performance under in situ, thermal, and seismic loading conditions. Both continuum and discontinuum modeling approaches were employed in the analyses of the rock mass behavior and in the evaluation of the stability of the openings. No credit or account was given for the initial ground support in modeling the final ground support systems for both emplacement and non-emplacement drifts in this analysis.

  3. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28T23:59:59.000Z

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  4. Compression of ground-motion data

    SciTech Connect (OSTI)

    Long, J.W.

    1981-04-01T23:59:59.000Z

    Ground motion data has been recorded for many years at Nevada Test Site and is now stored on thousands of digital tapes. The recording format is very inefficient in terms of space on tape. This report outlines a method to compress the data onto a few hundred tapes while maintaining the accuracy of the recording and allowing restoration of any file to the original format for future use. For future digitizing a more efficient format is described and suggested.

  5. Technical basis for evaluating electromagnetic and radio-frequency interference in safety-related I&C systems

    SciTech Connect (OSTI)

    Ewing, P.D.; Korsah, K. [Oak Ridge National Lab., TN (United States)

    1994-04-01T23:59:59.000Z

    This report discusses the development of the technical basis for the control of upsets and malfunctions in safety-related instrumentation and control (I&C) systems caused by electromagnetic and radio-frequency interference (EMI/RFI) and power surges. The research was performed at the Oak Ridge National Laboratory (ORNL) and was sponsored by the USNRC Office of Nuclear Regulatory Research (RES). The motivation for research stems from the safety-related issues that need to be addressed with the application of advanced I&C systems to nuclear power plants. Development of the technical basis centered around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant`s electronic and electromechanical systems known to be the source(s) of EMI/RFI and power surges. First, good EMC design and installation practices need to be established to control the impact of interference sources on nearby circuits and systems. These EMC good practices include circuit layouts, terminations, filtering, grounding, bonding, shielding, and adequate physical separation. Second, an EMI/RFI test and evaluation program needs to be established to outline the tests to be performed, the associated test methods to be followed, and carefully formulated acceptance criteria based on the intended environment to ensure that the circuit or system under test meets the recommended guidelines. Third, a program needs to be developed to perform confirmatory tests and evaluate the surge withstand capability (SWC) and of I&C equipment connected to or installed in the vicinity of power circuits within the nuclear power plant. By following these three steps, the design and operability of safety-related I&C systems against EMI/RFI and power surges can be evaluated, acceptance criteria can be developed, and appropriate regulatory guidance can be provided.

  6. Counting energy packets in the electromagnetic wave

    E-Print Network [OSTI]

    Stefan Popescu; Bernhard Rothenstein

    2007-05-18T23:59:59.000Z

    We discuss the concept of energy packets in respect to the energy transported by electromagnetic waves and we demonstrate that this physical quantity can be used in physical problems involving relativistic effects. This refined concept provides results compatible to those obtained by simpler definition of energy density when relativistic effects apply to the free electromagnetic waves. We found this concept further compatible to quantum theory perceptions and we show how it could be used to conciliate between different physical approaches including the classical electromagnetic wave theory, the special relativity and the quantum theories.

  7. Ground Turkey Stir Fry Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Ground Turkey Stir Fry Ingredients: 1 1/2 cups brown rice, medium- grain, making 3 cups cooked 1 pound ground turkey 4 zucchini 1 onion 1 green pepper 1/4 teaspoon pepper Directions 1. Cook brown rice turkey in skillet and use a spatula to break beef into small pieces as it browns. Keep on stirring

  8. Effect and minimization of errors in in-situ ground impedance measurements

    E-Print Network [OSTI]

    Vormann, Matthias

    Effect and minimization of errors in in-situ ground impedance measurements Roland Kruse, Volker method is a procedure to measure the surface impedance of grounds in-situ. In this article, the influence. #12;Keywords: Ground impedance; In-situ impedance measurement PACS 43.58.Bh Introduction The surface

  9. PV Grounding Sponsored by the Photovoltaic Systems Assistance Center, Sandia National Laboratories

    E-Print Network [OSTI]

    Johnson, Eric E.

    PV Grounding Continued John Wiles Sponsored by the Photovoltaic Systems Assistance Center, Sandia methods will be covered. The subject is quite complex. Grounding photovoltaic (PV) systems with both AC-grounding conductors in other DC circuits and in AC circuits are sized according to Table 250.122 in the NEC

  10. Regional analysis of ground and above-ground climate

    SciTech Connect (OSTI)

    Not Available

    1981-12-01T23:59:59.000Z

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  11. Electrical wire insulation and electromagnetic coil

    DOE Patents [OSTI]

    Bich, George J. (Penn Hills, PA); Gupta, Tapan K. (Monroeville, PA)

    1984-01-01T23:59:59.000Z

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  12. Advances in non-planar electromagnetic prototyping

    E-Print Network [OSTI]

    Ehrenberg, Isaac M

    2013-01-01T23:59:59.000Z

    The advent of metamaterials has introduced new ways to manipulate how electromagnetic waves reflect, refract and radiate in systems where the range of available material properties now includes negative permittivity, ...

  13. Dynamic programming applied to electromagnetic satellite actuation

    E-Print Network [OSTI]

    Eslinger, Gregory John

    2013-01-01T23:59:59.000Z

    Electromagnetic formation flight (EMFF) is an enabling technology for a number of space mission architectures. While much work has been done for EMFF control for large separation distances, little work has been done for ...

  14. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    SciTech Connect (OSTI)

    Sati, Priti; Tripathi, V. K. [Indian Institute of Technology, Hauz Khas, Delhi 110054 (India)

    2012-12-15T23:59:59.000Z

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  15. Characterization of electromagnetic transients in power substations

    E-Print Network [OSTI]

    Goers, William Chester

    1980-01-01T23:59:59.000Z

    CHARACTERIZATION OF ELECTROMAGNETIC TRANSIENTS IN POWER SUBSTATIONS A Thesis by WILLIAM CHESTER CiOERS, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1980 Major Subject: Electrical Engineering CHARACTERIZATION OF ELECTROMAGNETIC TRANSIENTS IN POWER SUBSTATIONS A Thesis by WILLIAM CHESTER GOERS, JR. Approved as to style and content by: Dr. B. Don Russell (Chairman of Committee...

  16. Innovative Electromagnetic Sensors for Pipeline Crawlers

    SciTech Connect (OSTI)

    J. Bruce Nestleroth

    2006-05-04T23:59:59.000Z

    Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.

  17. Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,...

  18. Pattern of shallow ground water flow at Mount Princeton Hot Springs...

    Open Energy Info (EERE)

    methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Pattern of shallow ground water flow at Mount Princeton Hot Springs,...

  19. NLS ground states on graphs

    E-Print Network [OSTI]

    Riccardo Adami; Enrico Serra; Paolo Tilli

    2014-06-16T23:59:59.000Z

    We investigate the existence of ground states for the subcritical NLS energy on metric graphs. In particular, we find out a topological assumption that guarantees the nonexistence of ground states, and give an example in which the assumption is not fulfilled and ground states actually exist. In order to obtain the result, we introduce a new rearrangement technique, adapted to the graph where it applies. Owing to such a technique, the energy level of the rearranged function is improved by conveniently mixing the symmetric and monotone rearrangement procedures.

  20. Electromagnetic scattering and absorption by aerosol agglomerates

    SciTech Connect (OSTI)

    Chen, Hsingyi.

    1989-01-01T23:59:59.000Z

    Calculation of scattering and absorption by smoke aerosols is required in many applications, including characterization of atmospheric aerosols, prediction of climatic impact of smoke, evaluation of smoke effectiveness in obscuration, calculation of heat transfer from flames, and evaluation of various scenarios of nuclear winter. In this dissertation two procedures were developed to accurately make these calculations utilizing realistic models of smoke agglomerates including oriented chains and fractal geometries. First the Iterative Extended Boundary Condition Method (IEBCM) was utilized to calculate the electromagnetic (EM) scattering and absorption of elongated aerosol particles. The computation efficiency and capability of IEBCM were improved by implementing the sectioning and the segmentation procedures. The sectioning procedure resulted in improving the computational efficiency and the segmentation method made it possible to make calculations for particles with aspect ratios as high as 250. The other procedure employed the Volume Integral Equation Formulation (VIEF) to compute the EM scattering and absorption by agglomerates of complex geometries. The validity of the procedure was checked first by comparing the obtained results with those obtained from the Mie solution for a spherical object and with the IEBCM for nonspherical objects. The comparison between results showed excellent agreement and hence validated the accuracy of the VIEF. The VIEF solution was then used to make calculations for five types of fractal agglomerates of smoke aerosol particles with fractal dimensions in the range from 1.7 to 1.9. The results obtained were compared with those based on the fractal theory recently published by Berry and Percival, and some differences were observed.

  1. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas 

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01T23:59:59.000Z

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  2. A Simplified Procedure for Sizing Vertical Ground Coupled Heat Pump Heat Exchangers for Residences in Texas

    E-Print Network [OSTI]

    O'Neal, D. L.; Gonzalez, J. A.; Aldred, W.

    1994-01-01T23:59:59.000Z

    the simplified method were compared to two available heat exchanger sizing methods: the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA). The simplified method predicted shorter lengths than those from...

  3. Characterization of microstructure with low frequency electromagnetic techniques

    SciTech Connect (OSTI)

    Cherry, Matthew R.; Sathish, Shamachary [University of Dayton Research Institute, Structural Integrity Division, 300 College Park, Dayton, OH 45469-0020 (United States); Pilchak, Adam L.; Blodgett, Mark P. [Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXCM), 2230 10th St., WPAFB, OH 45433 (United States); Cherry, Aaron J. [Southwest Ohio Council for Higher Education, 3155 Research Blvd., Suite 204, Dayton, OH 45420-4015 (United States)

    2014-02-18T23:59:59.000Z

    A new computational method for characterizing the relationship between surface crystallography and electrical conductivity in anisotropic materials with low frequency electromagnetic techniques is presented. The method is discussed from the standpoint of characterizing the orientation of a single grain, as well as characterizing statistical information about grain ensembles in the microstructure. Large-area electron backscatter diffraction (EBSD) data was obtained and used in conjunction with a synthetic aperture approach to simulate the eddy current response of beta annealed Ti-6Al-4V. Experimental eddy current results are compared to the computed eddy current approximations based on electron backscatter diffraction (EBSD) data, demonstrating good agreement. The detectability of notches in the presence of noise from microstructure is analyzed with the described simulation method and advantages and limitations of this method are discussed relative to other NDE techniques for such analysis.

  4. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    John Peterson

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  5. Ground Water Management Regulations (Louisiana)

    Broader source: Energy.gov [DOE]

    The rules and regulations apply to the management of the state's ground water resources. In addition, the Commissioner of Conservation has recommended that oil and gas operators with an interest...

  6. MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE

    E-Print Network [OSTI]

    MODELING, SIMULATION AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS By MUHAMMAD HAIDER KHAN AND OPTIMIZATION OF GROUND SOURCE HEAT PUMP SYSTEMS Thesis Approved..................................................................................................................... 1 1.1 Overview of Ground Source Heat Pump Systems.............................................. 1 1

  7. Nucleon electromagnetic form factors from twisted mass lattice QCD

    E-Print Network [OSTI]

    Abdou Abdel-Rehim; Constantia Alexandrou; Martha Constantinou; Kyriakos Hadjiyiannakou; Karl Jansen; Giannis Koutsou

    2015-01-07T23:59:59.000Z

    Results on the electromagnetic form factors of the nucleon using twisted mass fermion configurations are presented. These include a gauge field ensemble simulated with two degenerate light quarks yielding a pion mass of around 130 MeV, as well as two ensembles that include strange and charm quarks in the sea yielding pion masses of 210 MeV and 373 MeV. Details of the methods used and systematic errors are discussed, such as noise reduction techniques and the effect of excited states contamination.

  8. Nucleon electromagnetic form factors from twisted mass lattice QCD

    E-Print Network [OSTI]

    Abdel-Rehim, Abdou; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Koutsou, Giannis

    2015-01-01T23:59:59.000Z

    Results on the electromagnetic form factors of the nucleon using twisted mass fermion configurations are presented. These include a gauge field ensemble simulated with two degenerate light quarks yielding a pion mass of around 130 MeV, as well as two ensembles that include strange and charm quarks in the sea yielding pion masses of 210 MeV and 373 MeV. Details of the methods used and systematic errors are discussed, such as noise reduction techniques and the effect of excited states contamination.

  9. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30T23:59:59.000Z

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  10. Electromagnetically induced absorption due to transfer of coherence and to transfer of population

    SciTech Connect (OSTI)

    Goren, C.; Rosenbluh, M. [Department of Physics, Bar-Ilan University, Ramat Gan 52900 (Israel); Wilson-Gordon, A.D.; Friedmann, H. [Department of Chemistry, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2003-03-01T23:59:59.000Z

    The absorption spectrum of a weak probe, interacting with a driven degenerate two-level atomic system, whose ground and excited hyperfine states are F{sub g,e}, can exhibit narrow peaks at line center. When the pump and probe polarizations are different, F{sub e}=F{sub g}+1 and F{sub g}>0, the electromagnetically induced absorption (EIA) peak has been shown to be due to the transfer of coherence (TOC) between the excited and ground states via spontaneous decay. We give a detailed explanation of why the TOC that leads to EIA (EIA-TOC) can only take place when ground-state population trapping does not occur, that is, when F{sub e}=F{sub g}+1. We also explain why EIA-TOC is observed in open systems. We show that EIA can also occur when the pump and probe polarizations are identical and F{sub e}=F{sub g}+1. This EIA is analogous to an effect that occurs in simple two-level systems when the collisional transfer of population (TOP) from the ground state to a reservoir is greater than that from the excited state. For a degenerate two-level system, the reservoir consists of the Zeeman sublevels of the ground hyperfine state, and of other nearby hyperfine states that do not interact with the pump. We will also discuss the four-wave mixing spectrum under the conditions where EIA-TOC and EIA-TOP occur.

  11. High frequency electromagnetic burn monitoring for underground coal gasification

    SciTech Connect (OSTI)

    Deadrick, F.J.; Hill, R.W.; Laine, E.F.

    1981-06-17T23:59:59.000Z

    This paper describes the use of high frequency electromagnetic waves to monitor an in-situ coal gasification burn process, and presents some recent results obtained with the method. Both the technique, called HFEM (high frequency electromagnetic) probing, the HFEM hardware used are described, and some of the data obtained from the LLNL Hoe Creek No. 3 underground coal gasification experiment conducted near Gillette, Wyoming are presented. HFEM was found to be very useful for monitoring the burn activity found in underground coal gasification. The technique, being a remote sensing method which does not require direct physical contact, does not suffer from burnout problems as found with thermocouples, and can continue to function even as the burn progresses on through the region of interest. While HFEM does not replace more conventional instrumentation such as thermocouples, the method does serve to provide data which is unobtainable by other means, and in so doing it complements the other data to help form a picture of what cannot be seen underground.

  12. A New Spectral Method for Numerical Solution of the Unbounded ...

    E-Print Network [OSTI]

    2013-08-07T23:59:59.000Z

    The phenomenon of acoustic and electromagnetic scattering by unbounded ...... It follows from the method of induction that (4.37) holds for any polynomials.

  13. Electromagnetic Signatures of Massive Black Hole Binaries

    E-Print Network [OSTI]

    Tamara Bogdanovic; Britton D. Smith; Michael Eracleous; Steinn Sigurdsson

    2006-09-28T23:59:59.000Z

    We model the electromagnetic emission signatures of massive black hole binaries (MBHBs) with an associated gas component. The method comprises numerical simulations of relativistic binaries and gas coupled with calculations of the physical properties of the emitting gas. We calculate the accretion powered UV/X-ray and Halpha light curves and the Halpha emission line profiles. The simulations have been carried out with a modified version of the parallel tree SPH code Gadget. The heating, cooling, and radiative processes for the solar metallicity gas have been calculated with the photoionization code Cloudy. We investigate gravitationally bound, sub-parsec binaries which have not yet entered the gravitational radiation phase. The results from the first set of calculations, carried out for a coplanar binary and gas disk, suggest that the outbursts in the X-ray light curve are pronounced during pericentric passages and can serve as a fingerprint for this type of binaries if periodic outbursts are a long lived signature of the binary. The Halpha emission-line profiles also offer strong indications of a binary presence and may be used as a criterion for selection of MBHB candidates for further monitoring from existing archival data. The orbital period and mass ratio of a binary could be determined from the Halpha light curves and profiles of carefully monitored candidates. Although systems with the orbital periods studied here are not within the frequency band of the Laser Interferometer Space Antenna (LISA), their discovery is important for understanding of the merger rates of MBHBs and the evolution of such binaries through the last parsec and towards the detectable gravitational wave window.

  14. Conservation of Optical Chirality in Superconductors as a measure for 5 dimensional Electromagnetism

    E-Print Network [OSTI]

    Lashkari-Ghouchani, H

    2015-01-01T23:59:59.000Z

    Currently only three spatial and one temporal dimensions are considered to be "physical". Recently, solutions to a plethora of questions have used the notion of extra-dimensions. The experimental verification of the existence of such extra dimensions, however, remains elusive. Here by applying standard electromagnetism to five dimensional Minkowski space-time, we propose a novel test ground to search for a new non-compactified lengthlike extra dimension. in this regard, we propose superconductors as a testbed for this hypothetical new extra dimension.

  15. Massless Dirac Fermions in Electromagnetic Field

    E-Print Network [OSTI]

    Ahmed Jellal; Abderrahim El Mouhafid; Mohammed Daoud

    2012-02-12T23:59:59.000Z

    We study the relations between massless Dirac fermions in an electromagnetic field and atoms in quantum optics. After getting the solutions of the energy spectrum, we show that it is possible to reproduce the 2D Dirac Hamiltonian, with all its quantum relativistic effects, in a controllable system as a single trapped ion through the Jaynes--Cummings and anti-Jaynes--Cummings models. Also we show that under certain conditions the evolution of the Dirac Hamiltonian provides us with Rashba spin-orbit and linear Dresselhaus couplings. Considering the multimode multiphoton Jaynes-Cummings model interacting with N modes of electromagnetic field prepared in general pure quantum states, we analyze the Rabi oscillation. Evaluating time evolution of the Dirac position operator, we determine the Zitterbewegung frequency and the corresponding oscillating term as function of the electromagnetic field.

  16. Best Possible Strategy for Finding Ground States

    SciTech Connect (OSTI)

    Franz, Astrid; Hoffmann, Karl Heinz; Salamon, Peter

    2001-06-04T23:59:59.000Z

    Finding the ground state of a system with a complex energy landscape is important for many physical problems including protein folding, spin glasses, chemical clusters, and neural networks. Such problems are usually solved by heuristic search methods whose efficacy is judged by empirical performance on selected examples. We present a proof that, within the large class of algorithms that simulate a random walk on the landscape, threshold accepting is the best possible strategy. In particular, it can perform better than simulated annealing and Tsallis statistics. Our proof is the first example of a provably optimal strategy in this area.

  17. Electromagnetic continuous casting project: Final report

    SciTech Connect (OSTI)

    Battles, J.E.; Rote, D.M.; Misra, B.; Praeg, W.F.; Hull, J.R.; Turner, L.R.; Shah, V.L.; Lari, R.J.; Gopalsami, N.; Wiencek, T.

    1988-10-01T23:59:59.000Z

    This report describes the work on development of an electromagnetic casting process for steel, which was carried out at Argonne National Laboratory between January 1985 and December 1987. This effort was concerned principally with analysis and design work on magnet technology, liquid metal feed system, coolant system, and sensors and process controllers. Experimentation primarily involved (1) electromagnetic studies to determine the conditions and controlling parameters for stable levitation and (2) feed-system studies to establish important parameters that control and influence fluid flow from the liquid metal source to the caster. 73 refs., 91 figs., 11 tabs.

  18. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Anhui, CN); Schultz, Peter G. (La Jolla, CA); Wei, Tao (Sunnyvale, CA)

    2003-01-01T23:59:59.000Z

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  19. Scanning evanescent electro-magnetic microscope

    DOE Patents [OSTI]

    Xiang, Xiao-Dong (Alameda, CA); Gao, Chen (Alameda, CA)

    2001-01-01T23:59:59.000Z

    A novel scanning microscope is described that uses near-field evanescent electromagnetic waves to probe sample properties. The novel microscope is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The inventive scanning evanescent wave electromagnetic microscope (SEMM) can map dielectric constant, tangent loss, conductivity, complex electrical impedance, and other electrical parameters of materials. The quantitative map corresponds to the imaged detail. The novel microscope can be used to measure electrical properties of both dielectric and electrically conducting materials.

  20. Forces in electromagnetic field and gravitational field

    E-Print Network [OSTI]

    Zihua Weng

    2011-03-31T23:59:59.000Z

    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in the interplanetary space between the sun and the earth.

  1. Bioelectromagnetic effects of the electromagnetic pulse (EMP)

    SciTech Connect (OSTI)

    Patrick, E.L.; Vault, W.L.

    1990-03-01T23:59:59.000Z

    The public has expressed concern about the biological effects and hazards of non-ionizing electromagnetic fields produced by the electro-magnetic pulse (EMP) simulators that simulate the EMP emanating from a high-altitude nuclear explosion. This paper provides a summary of the bioelectromagnetic effects literature up through the present, describes current occupational standards for workers exposed to the EMP environment, and discusses the use of medical surveillance as it relates to the potential human health hazards associated with exposure to the EMP environment.

  2. Acoustic and Seismic Modalities for Unattended Ground Sensors

    SciTech Connect (OSTI)

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31T23:59:59.000Z

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  3. On the Higher-Order MoM-PO Electromagnetic Modeling of Vehicles

    E-Print Network [OSTI]

    Notaros, Branislav M.

    vehicles (cars, airplanes, helicopters, spacecraft, etc.). From the electromagnetic point of view and accurate higher-order, large-domain hybrid computational technique based on the method of moments (Mo the efficiency and accuracy of the hybrid higher-order computational technique and its advantages over

  4. An eddy current problem related to electromagnetic Alfredo Bermudez, Rafael Mu~noz, Pilar Salgado

    E-Print Network [OSTI]

    Rodríguez, Rodolfo

    An eddy current problem related to electromagnetic forming Alfredo Berm´udez, Rafael Mu~noz, Pilar is to analyze a numerical method to solve a transient axisymmetric eddy current problem arising from currents in the workpiece. The magnetic field, together with the eddy currents, originate the Lorentz

  5. Role of Higher Multipole Excitations in the Electromagnetic Dissociation of One Neutron Halo Nuclei

    E-Print Network [OSTI]

    R. Chatterjee; L. Fortunato; A. Vitturi

    2007-12-20T23:59:59.000Z

    We investigate the role of higher multipole excitations in the electromagnetic dissociation of one-neutron halo nuclei within two different theoretical models -- a finite range distorted wave Born approximation and another in a more analytical method with a finite range potential. We also show, within a simple picture, how the presence of a weakly bound state affects the breakup cross section.

  6. Simulation of Analog and Digital energy measurements in the LDC electromagnetic

    E-Print Network [OSTI]

    LC Note Simulation of Analog and Digital energy measurements in the LDC electromagnetic calorimeter. The simulations show that for electron energies above 4 GeV, the energy resolution is better for the analog method simulation software [2], for electrons energy from 1 to 300 GeV. For the detector con#12;guration, only

  7. Exact analytical expression for the electromagnetic field in a focused laser beam or pulse

    E-Print Network [OSTI]

    Alexander M. Fedotov; Konstantin Yu. Korolev; Maxim V. Legkov

    2007-05-18T23:59:59.000Z

    We present a new class of exact nonsingular solutions for the Maxwell equations in vacuum, which describe the electromagnetic field of the counterpropagating focused laser beams and the subperiod focused laser pulse. These solutions are derived by the use of a modification of the "complex source method", investigated and visualized.

  8. Low-Frequency Electromagnetic Response Function for Strong-Coupling Superconductors

    E-Print Network [OSTI]

    SCHOLTEN, PD; LEJEUNE, JD; SASLOW, WM; Naugle, Donald G.

    1977-01-01T23:59:59.000Z

    PHYSICAL REVIE% B VOLUME 16, NUMBER 3 1 AUGUST 1977 Low-frequency electromagnetic response function for strong-coupling superconfluctors* P. D. Scholten, J. D. Lejeune, t O'. M. Saslow, and D. G. Naugle Department of Physics, Texas A8r...M University, College Station, Texas 77843 (Received 1 March 1977) A simple method for calculating the low-frequency electromagnetic response function from tunneling derived a'(co)F(co) has been developed and applied to Pb, Pbog0810lo amorphous Bi, amorphous...

  9. Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

    E-Print Network [OSTI]

    Shaw, Steven W.

    asphalt b) Wet asphalt c) Gravel d) Packed Snow Nonlinear Dynamics of Longitudinal Ground Vehicle Traction

  10. New protection method for HVDC lines including cables

    SciTech Connect (OSTI)

    Takeda, H.; Ayakawa, H.; Tsumenaga, N.; Sanpei, M.

    1995-10-01T23:59:59.000Z

    For the third project of the Hokkaido-Honshu HVDC Link in Japan, called the HVDC Link III project (rated at 250 kVdc-1,200 A-300 MW), the authors developed an HVDC transmission line protection method based on a new working principle that allows high-speed and highly sensitive detection of faults, enhancing reliability in the supply of electric power. In general, increasing the sensitivity of relays will lead to an increased likelihood of undesired operation whereas lowering the sensitivity will impair the responsiveness of the relays. The proposed method meets these apparently incompatible requirements very well. Basically classified as a differential scheme, the HVDC transmission line protection method compensates for a charging and discharging current that flows through the line-to-ground capacitance at times of voltage variations caused by a line fault or by the operation of dc power systems. The developed protection method is also characterized in that it uses current changes induced by voltage variations to restrain the operation of a relay. This configuration has made the proposed method far superior in responsiveness and sensitivity to the conventional protection method. A simulation using an EMTP (Electro-Magnetic Transients Program) was conducted on this method. Developed relay equipment embodying the new protection method was subjected to various verification tests, where this equipment was connected to a power system simulator, before being delivered to the HVDC Link III facility.

  11. A Numerical Evaluation Of Electromagnetic Methods In Geothermal...

    Open Energy Info (EERE)

    Published Journal International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996 DOI 10.1016S0148-9062(97)87449-9 Citation . 1996. A Numerical...

  12. A Numerical Evaluation Of Electromagnetic Methods In Geothermal...

    Open Energy Info (EERE)

    clay cap. Authors L. Pellerin, J. M. Johnston and G. W. Hohmann Published Journal Geophysics, 1996 DOI Not Provided Check for DOI availability: http:crossref.org Citation L....

  13. High-order Accurate Methods in Computational Electromagnetics

    E-Print Network [OSTI]

    ... very high geometric complexity, scale separation due to materials, and sheer size ... sensoring as well as numerous military applications, e.g., stealth coatings.

  14. A Numerical Evaluation Of Electromagnetic Methods In Geothermal...

    Open Energy Info (EERE)

    In Geothermal Exploration - Discussion Author M. Poddar Published Journal Geophysics, 1997 DOI Not Provided Check for DOI availability: http:crossref.org Citation M. Poddar....

  15. A Numerical Evaluation Of Electromagnetic Methods In Geothermal...

    Open Energy Info (EERE)

    - Reply Authors L. Pellerin and J. M. Johnston Published Journal Geophysics, 1997 DOI Not Provided Check for DOI availability: http:crossref.org Citation L....

  16. Overview Of Electromagnetic Methods Applied In Active Volcanic...

    Open Energy Info (EERE)

    which is most sensitive to change in temperature and, therefore, can best map heat budget and hydrological character to aid in prediction of eruptions. Author Catherine K....

  17. Apparatuses and method for converting electromagnetic radiation to direct current

    DOE Patents [OSTI]

    Kotter, Dale K; Novack, Steven D

    2014-09-30T23:59:59.000Z

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  18. Chapter 4: Electrical and Electromagnetic Methods | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey asWest,CEI JumpChandradeep

  19. A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOf The 28-29MakingSteam | Open-

  20. A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOf The 28-29MakingSteam | Open--

  1. A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOf The 28-29MakingSteam | Open---

  2. A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOf The 28-29MakingSteam |

  3. Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany OilInformationPre-TaxShelf Lands ActWestern

  4. Passive electromagnetic damping device for motion control of building structures

    E-Print Network [OSTI]

    Palomera-Arias, Rogelio, 1972-

    2005-01-01T23:59:59.000Z

    The research presented in this thesis develops a new device for the passive control of motion in building structures: an electromagnetic damper. The electromagnetic damper is a self-excited device that provides a reaction ...

  5. Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered

    E-Print Network [OSTI]

    Oughstun, Kurt

    Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered Biological Media- cally rigorous, physically correct description of the propagation of pulsed electromagnetic fields pulses through multilayered biological media consisting of three biological tissue layers rep- resenting

  6. Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz

    E-Print Network [OSTI]

    Yavuz, Deniz

    Electromagnetically induced transparency with broadband laser pulses D. D. Yavuz Department pulses inside an atomic medium using electromag- netically induced transparency. Extending the suggestion.65. k Over the last decade, counterintuitive optical effects using electromagnetically induced

  7. Sedimentological and geophysical studies of clastic reservoir analogs: Methods, applications and developments of ground-penetrating radar for determination of reservoir geometries in near-surface settings. Final report

    SciTech Connect (OSTI)

    McMechan, G.A.; Soegaard, K.

    1998-05-25T23:59:59.000Z

    An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitable for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.

  8. Waveguide-based Ultrasonic and Far-field Electromagnetic Sensors...

    Office of Environmental Management (EM)

    ultrasonic and farfield electromagnetic sensors to measure key Enhanced Geothermal Systems (EGS) reservoir parameters, including directional temperature, pressure,...

  9. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless Charging...

  10. Structural composites with integrated electromagnetic functionality

    E-Print Network [OSTI]

    Nemat-Nasser, Sia

    Structural composites with integrated electromagnetic functionality Syrus C. Nemat-Nasser, Alireza, such as wires, into polymer-based or ceramic-based composites. In addition to desired structural properties, these materials may be leveraged for active tasks such as filtering. The advantages of such hybrid composites

  11. Electromagnetic Composites at the Compton Scale

    E-Print Network [OSTI]

    Frederick J. Mayer; John R. Reitz

    2011-09-10T23:59:59.000Z

    A new class of electromagnetic composite particles is proposed. The composites are very small (the Compton scale), potentially long-lived, would have unique interactions with atomic and nuclear systems, and, if they exist, could explain a number of otherwise anomalous and conflicting observations in diverse research areas.

  12. Electromagnetic Wellbore Heating Ibrahim Agyemang1

    E-Print Network [OSTI]

    Bohun, C. Sean

    Chapter 5 Electromagnetic Wellbore Heating Ibrahim Agyemang1 , Matthew Bolton2 , Lloyd Bridge2 with the recovery of petroleum fluids from an oil reservoir using electrical energy. By its very nature this problem must deal with both the equations that describe the fluid flow as well as the heat flow equations

  13. Electromagnetic Radiation and Motion of Real Particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-06-21T23:59:59.000Z

    Relativistically covariant equation of motion for real dust particle under the action of electromagnetic radiation is derived. The particle is neutral in charge. Equation of motion is expressed in terms of particle's optical properties, standardly used in optics for stationary particles.

  14. Turbulent Transition in an Electromagnetically Levitated Droplet

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Turbulent Transition in an Electromagnetically Levitated Droplet Christina R. Rizer, Robert W a marked transition from laminar to turbulent flow, which can be observed by following the movement, will oscillate and break apart, marking the transition to turbulence. Using videos taken of these metal samples

  15. FMM Code Libraries for Computational Electromagnetics

    E-Print Network [OSTI]

    Maryland at College Park, University of

    Max Optics, Inc. #12;MadMax Optics 2 · Stealth · Electromagnetic interference · Antennas on complex platforms ­ Closed and open surfaces, complex materials · Fast, Direct Solvers for Ill-Conditioned Problems ­ handle isotropic materials with closed surfaces ­ Open surfaces still active area of research · Geometric

  16. Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae

    E-Print Network [OSTI]

    Xiong, Qihua

    Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae Stephanie Dodson, Mohamed: Sensitivity is a key factor in the improvement of nanoparticle-based biosensors. Bowtie nanoantennae have resonance (LSPR)-based biosensing. In this work, optical bowtie nanoantennae with varying geometries were

  17. Decomposition of Electromagnetic Q and P Media

    E-Print Network [OSTI]

    Lindell, I V

    2015-01-01T23:59:59.000Z

    Two previously studied classes of electromagnetic media, labeled as those of Q media and P media, are decomposed according to the natural decomposition introduced by Hehl and Obukhov. Six special cases based on either non-existence or sole existence of the three Hehl-Obukhov components, are defined for both medium classes.

  18. Matched slow pulses using double electromagnetically induced transparency

    E-Print Network [OSTI]

    Lvovsky, Alexander

    Matched slow pulses using double electromagnetically induced transparency Andrew MacRae,* Geoff, 2008 We implement double electromagnetically induced transparency (DEIT) in rubidium vapor using Optical Society of America OCIS codes: 270.1670, 270.5585, 190.5530. Electromagnetically induced

  19. Cosmological electromagnetic fields due to gravitational wave perturbations Mattias Marklund*

    E-Print Network [OSTI]

    Dunsby, Peter

    show that this coupling leads to an initial pulse of electromagnetic waves whose width and amplitude to produce a pulse of gravitationally induced electromagnetic waves. In particular, because of the differentCosmological electromagnetic fields due to gravitational wave perturbations Mattias Marklund

  20. Effects of thermal motion on electromagnetically induced absorption

    SciTech Connect (OSTI)

    Tilchin, E.; Wilson-Gordon, A. D.; Firstenberg, O. [Department of Chemistry, Bar-Ilan University, Ramat Gan IL-52900 (Israel); Department of Physics, Technion-Israel Institute of Technology, Haifa IL-32000 (Israel)

    2011-05-15T23:59:59.000Z

    We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

  1. Effects of thermal motion on electromagnetically induced absorption

    E-Print Network [OSTI]

    E. Tilchin; O. Firstenberg; A. D. Wilson-Gordon

    2011-07-04T23:59:59.000Z

    We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited to ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusion-like equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

  2. Astro2010 Decadal Survey Whitepaper: Coordinated Science in the Gravitational and Electromagnetic Skies

    E-Print Network [OSTI]

    Joshua S. Bloom; Daniel E. Holz; Scott A. Hughes; Kristen Menou; Allan Adams; Scott F. Anderson; Andy Becker; Geoffrey C. Bower; Niel Brandt; Bethany Cobb; Kem Cook; Alessandra Corsi; Stefano Covino; Derek Fox; Andrew Fruchter; Chris Fryer; Jonathan Grindlay; Dieter Hartmann; Zoltan Haiman; Bence Kocsis; Lynne Jones; Abraham Loeb; Szabolcs Marka; Brian Metzger; Ehud Nakar; Samaya Nissanke; Daniel A. Perley; Tsvi Piran; Dovi Poznanski; Tom Prince; Jeremy Schnittman; Alicia Soderberg; Michael Strauss; Peter S. Shawhan; David H. Shoemaker; Jonathan Sievers; Christopher Stubbs; Gianpiero Tagliaferri; Pietro Ubertini; Przemyslaw Wozniak

    2009-02-10T23:59:59.000Z

    It is widely expected that the coming decade will witness the first direct detection of gravitational waves (GWs). The ground-based LIGO and Virgo GW observatories are being upgraded to advanced sensitivity, and are expected to observe a significant binary merger rate. The launch of The Laser Interferometer Space Antenna (LISA) would extend the GW window to low frequencies, opening new vistas on dynamical processes involving massive (M >~ 10^5 M_Sun) black holes. GW events are likely to be accompanied by electromagnetic (EM) counterparts and, since information carried electromagnetically is complementary to that carried gravitationally, a great deal can be learned about an event and its environment if it becomes possible to measure both forms of radiation in concert. Measurements of this kind will mark the dawn of trans-spectral astrophysics, bridging two distinct spectral bands of information. The aim of this whitepaper is to articulate future directions in both theory and observation that are likely to impact broad astrophysical inquiries of general interest. What will EM observations reflect on the nature and diversity of GW sources? Can GW sources be exploited as complementary probes of cosmology? What cross-facility coordination will expand the science returns of gravitational and electromagnetic observations?

  3. 532 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Lightning Electromagnetic Field Coupling to

    E-Print Network [OSTI]

    Florida, University of

    of both the incident lightning electromagnetic pulse (LEMP) and the effects of coupling of this field- mental validation using: 1) reduced-scale setups with LEMP and nuclear electromagnetic pulse (NEMP532 IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 51, NO. 3, AUGUST 2009 Lightning

  4. Electromagnetic confinement for vertical casting or containing molten metal

    DOE Patents [OSTI]

    Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1991-01-01T23:59:59.000Z

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  5. Methodology to assess the effects of magnetohydrodynamic electromagnetic pulse (MHD-EMP) on power systems

    SciTech Connect (OSTI)

    Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Tesche, F.M.

    1985-01-01T23:59:59.000Z

    This paper summarizes a method to evaluate the possible effects of magnetohydrodynamic-electromagnetic pulse (MHD-EMP) on power systems. This method is based on the approach adapted to study the impact of geomagnetic storms on power systems. The paper highlights the similarities and differences between the two phenomena. Also presented are areas of concern which are anticipated from MHD-EMP on the overall system operation. 12 refs., 1 fig.

  6. Hybrid electromagnetic transient simulation with the state variable representation of HVDC converter plant

    SciTech Connect (OSTI)

    Zavahir, J.M.; Arrillaga, J.; Watson, N.R. (Univ. of Canterbury, Christchurch (New Zealand))

    1993-07-01T23:59:59.000Z

    The two alternative methods in current use for the transient simulation of HVdc power systems are Electromagnetic Transient Programs and State Variable Analysis. A hybrid algorithm is described in this paper which combines the two methods selecting their best features. The relative performances of conventional and hybrid algorithms are discussed. Simulation results of typical back-to back HVdc link show that the hybrid representation provides more stable, accurate and efficient solutions.

  7. Enhanced Site Characterization of the 618-4 Burial Ground

    SciTech Connect (OSTI)

    Murray, Christopher J.; Last, George V.; Chien, Yi-Ju

    2001-09-25T23:59:59.000Z

    This report describes the results obtained from deployment of the Enhanced Site Characterization System (ESCS) at the Hanford Site's 618-4 Burial Ground. The objective of this deployment was to use advanced geostatistical methods to integrate and interpret geophysical and ground truth data, to map the physical types of waste materials present in unexcavated portions of the burial ground. One issue of particularly interest was the number of drums (containing depleted uranium metal shavings or uranium-oxide powder) remaining in the burial ground and still requiring removal.Fuzzy adaptive resonance theory (ART), a neural network classification method, was used to cluster the study area into 3 classes based on their geophysical signatures. Multivariate statistical analyses and discriminant function analysis (DFA) indicated that the drum area as well as a second area (the SW anomaly) had similar geophysical signatures that were different from the rest of the burial ground. Further analysis of the drum area suggested that as many as 770 drums to 850 drums may remain in that area. Similarities between the geophysical signatures of the drum area and the SW anomaly suggested that excavation of the SW anomaly area also proceed with caution.Deployment of the ESCS technology was successful in integrating multiple geophysical variables and grouping these observations into clusters that are relevant for planning further excavation of the buried ground. However, the success of the technology could not be fully evaluated because reliable ground truth data were not available to enable calibration of the different geophysical signatures against actual waste types.

  8. Enhanced Site Characterization of the 618-4 Burial Ground

    SciTech Connect (OSTI)

    Murray, Christopher J; Last, George V; Chien, Yi-Ju

    2001-09-25T23:59:59.000Z

    This report describes the results obtained from deployment of the Enhanced Site Characterization System (ESCS) at the Hanford Site's 618-4 Burial Ground. The objective of this deployment was to use advanced geostatistical methods to integrate and interpret geophysical and ground truth data, to map the physical types of waste materials present in unexcavated portions of the burial ground. One issue of particularly interest was the number of drums (containing depleted uranium metal shavings or uranium-oxide powder) remaining in the burial ground and still requiring removal.Fuzzy adaptive resonance theory (ART), a neural network classification method, was used to cluster the study area into 3 classes based on their geophysical signatures. Multivariate statistical analyses and discriminant function analysis (DFA) indicated that the drum area as well as a second area (the SW anomaly) had similar geophysical signatures that were different from the rest of the burial ground. Further analysis of the drum area suggested that as many as 770 drums to 850 drums may remain in that area. Similarities between the geophysical signatures of the drum area and the SW anomaly suggested that excavation of the SW anomaly area also proceed with caution. Deployment of the ESCS technology was successful in integrating multiple geophysical variables and grouping these observations into clusters that are relevant for planning further excavation of the buried ground. However, the success of the technology could not be fully evaluated because reliable ground truth data were not available to enable calibration of the different geophysical signatures against actual waste types.

  9. In-Ground Radiation Detection

    SciTech Connect (OSTI)

    McCormick, Kathleen R.; Stromswold, David C.; Woodring, Mitchell L.; Ely, James H.; Siciliano, Edward R.; Caggiano, Joseph A.; Hensley, Walter K.

    2006-10-29T23:59:59.000Z

    Vertically oriented radiation detectors may not provide sufficient screening in rail or aviation applications. Railcars can be heavily shielded on the sides, reducing the sensitivity of vertically mounted monitors. For aviation, the distance required for wingspan clearance reduces a vertical detector’s coverage of the fuselage. To surmount these, and other, challenging operational and sensitivity issues, we have investigated the use of in-ground radiation detectors. (PIET-43741-TM-605).

  10. Development of a laced electromagnetic wiggler

    SciTech Connect (OSTI)

    Christensen, T.C.; Burns, M.J.; Deis, G.A.; Parkison, C.D.; Prosnitz, D.; Halbach, K.

    1987-01-01T23:59:59.000Z

    The laced electromagnetic wiggler is a new concept being developed to attain higher magnetic fields, shorter wavelengths, and larger gaps for the induction-linear accelerator, free-electron-laser (FEL) program. In the laced wiggler design, permanent magnets are located (''laced'') between the electromagnetic coils to increase the reverse-bias flux in the iron pole beyond that possible with only pole-edge (''side'') permanent magnets. This increase in reverse-bias flux allows wiggler operation at midplane magnetic field intensities comparable to those of a hybrid permanent magnet/steel wiggler, but with field adjustability over a specified range. The maximum field intensity and tuning range are selected, within limits, for specific design requirements. We have designed and tested a one-period prototype of this concept with promising results.

  11. Electromagnetic Scattering by Spheres of Topological Insulators

    E-Print Network [OSTI]

    Ge, Lixin; Zi, Jian

    2015-01-01T23:59:59.000Z

    The electromagnetic scattering properties of topological insulator (TI) spheres are systematically studied in this paper. Unconventional backward scattering caused by the topological magneto-electric (TME) effect of TIs are found in both Rayleigh and Mie scattering regimes. This enhanced backward scattering can be achieved by introducing an impedance-matched background which can suppress the bulk scattering. For the cross-polarized scattering coefficients, interesting antiresonances are found in the Mie scattering regime, wherein the cross-polarized electromagnetic fields induced by the TME effect are trapped inside TI spheres. In the Rayleigh limit, the quantized TME effect of TIs can be determined by measuring the electric-field components of scattered waves in the far field.

  12. Electromagnetic Pulse from Final Gravitational Stellar Collapse

    E-Print Network [OSTI]

    P. D. Morley; Ivan Schmidt

    2002-01-30T23:59:59.000Z

    We employ an effective gravitational stellar final collapse model which contains the relevant physics involved in this complex phenomena: spherical radical infall in the Schwarzschild metric of the homogeneous core of an advanced star, giant magnetic dipole moment, magnetohydrodynamic material response and realistic equations of state (EOS). The electromagnetic pulse is computed both for medium size cores undergoing hydrodynamic bounce and large size cores undergoing black hole formation. We clearly show that there must exist two classes of neutron stars, separated by maximum allowable masses: those that collapsed as solitary stars (dynamical mass limit) and those that collapsed in binary systems allowing mass accretion (static neutron star mass). Our results show that the electromagnetic pulse spectrum associated with black hole formation is a universal signature, independent of the nuclear EOS. Our results also predict that there must exist black holes whose masses are less than the static neutron star stability limit.

  13. Electromagnetic radiation from relativistic nuclear collisions

    E-Print Network [OSTI]

    Charles Gale; Kevin L. Haglin

    2003-06-16T23:59:59.000Z

    We review some of the results obtained in the study of the production of electromagnetic radiation in relativistic nuclear collisions. We concentrate on the emission of real photons and dileptons from the hot and dense strongly interacting phases of the reaction. We examine the contributions from the partonic sector, as well as those from the nonperturbative hadronic sector. We examine the current data, some of the predictions for future measurements, and comment on what has been learnt so far.

  14. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, Richard J. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  15. Electromagnetic or other directed energy pulse launcher

    DOE Patents [OSTI]

    Ziolkowski, Richard W. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  16. Velocity damper for electromagnetically levitated materials

    DOE Patents [OSTI]

    Fox, R.J.

    1994-06-07T23:59:59.000Z

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material is disclosed. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation. 1 fig.

  17. Electromagnetic Dark Energy and Gravitoelectrodynamics of Superconductors

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2007-10-29T23:59:59.000Z

    It is shown that Beck and Mackey electromagnetic model of dark energy in superconductors can account for the non-classical inertial properties of superconductors, which have been conjectured by the author to explain the Cooper pair's mass excess reported by Cabrera and Tate. A new Einstein-Planck regime for gravitation in condensed matter is proposed as a natural scale to host the gravitoelectrodynamic properties of superconductors.

  18. Montana Ground Water Assessment Act (Montana)

    Broader source: Energy.gov [DOE]

    This statute establishes a program to systematically assess and monitor the state's ground water and to disseminate the information to interested persons in order to improve the quality of ground...

  19. DEF: The Physical Basis of Electromagnetic Propulsion

    E-Print Network [OSTI]

    Pinheiro, Mario J

    2015-01-01T23:59:59.000Z

    The very existence of the physical vacuum provides a framework to propose a general mechanism for propelling bodies through an agency of electromagnetic fields, that seat in that medium. When two sub-systems of a general closed device interact via nonlocal and retarded electromagnetic pulses, it is easily shown that they give a nonzero force, and that only tend to comply with the action-to-reaction force in the limit of instantaneous interactions. The arrangement of sub-systems provide a handy way to optimize the unbalanced EM force with the concept of impedance matching. The general properties of the differential electromagnetic force (DEF) are the following: i) it is proportional to the square of the intensity and to the angular wave frequency $\\omega$; ii) to the space between the sub-systems (although in a non-linear manner); iii) it is inversely proportional to the speed of interaction; iv) when the two sub-systems are out-of-phase, DEF is null. The approach is of interest to practical engineering princi...

  20. Electromagnetic Compatibility in Nuclear Power Plants

    SciTech Connect (OSTI)

    Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

    1999-08-29T23:59:59.000Z

    Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

  1. System for detecting and limiting electrical ground faults within electrical devices

    DOE Patents [OSTI]

    Gaubatz, Donald C. (Cupertino, CA)

    1990-01-01T23:59:59.000Z

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  2. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  3. From local to global ground states in Ising spin glasses

    E-Print Network [OSTI]

    Ilia Zintchenko; Matthew B. Hastings; Matthias Troyer

    2015-01-09T23:59:59.000Z

    We consider whether it is possible to find ground states of frustrated spin systems by solving them locally. Using spin glass physics and Imry-Ma arguments in addition to numerical benchmarks we quantify the power of such local solution methods and show that for the average low-dimensional spin glass problem outside the spin- glass phase the exact ground state can be found in polynomial time. In the second part we present a heuristic, general-purpose hierarchical approach which for spin glasses on chimera graphs and lattices in two and three dimensions outperforms, to our knowledge, any other solver currently around, with significantly better scaling performance than simulated annealing.

  4. Functional ground testing - Evaluating the Tomahawk Cruise Missile

    SciTech Connect (OSTI)

    Parise, K.W. (U.S. Navy, Test and Evaluation Dept., Indian Head, MD (United States))

    1992-01-01T23:59:59.000Z

    Flight testing evaluates vehicle performance in a flight environment and, in the case of a weapon system, clearly indicates mission readiness. However, there is a cost-effective alternative method of testing which is capable of indicating weapon system functionality and subsystem success. Functional ground testing of the all-up round Tomahawk Cruise Missile is described. The Tomahawk functional ground test (FGT) cannot make the same conclusive determinations that an operational test launch can. This paper describes the Tomahawk FGT and what makes it unique. It describes the developments and status of this testing methodology, the data acquisition and control, and the engineering challenges encountered. 3 refs.

  5. Effluent treatment options for nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Brockmann, J.E.

    1992-10-16T23:59:59.000Z

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

  6. Handling effluent from nuclear thermal propulsion system ground tests

    SciTech Connect (OSTI)

    Shipers, L.R.; Allen, G.C.

    1992-09-09T23:59:59.000Z

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

  7. Ground Turkey and Potato Plate Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Ground Turkey and Potato Plate Ingredients: 1 onion 1/2 pound ground turkey 1 cup ketchup, low, brown ground turkey and onion together over medium heat 8 to 10 minutes or until turkey is no longer. Return turkey to skillet. 3. Add ketchup to skillet; cover and simmer over medium-low heat 10 minutes. 4

  8. Case Study/ Ground Water Sustainability: Methodology and

    E-Print Network [OSTI]

    Zheng, Chunmiao

    , or the lack thereof, of ground water flow systems driven by similar hydrogeologic and economic conditionsCase Study/ Ground Water Sustainability: Methodology and Application to the North China Plain of a ground water flow system in the North China Plain (NCP) subject to severe overexploitation and rapid

  9. Branching Ratio of the Electromagnetic Decay of the ?+(1385)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keller, D; Adhikari, K P; Adikaram, D; Amaryan, M J; Anghinolfi, M; Baghdasaryan, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; Bookwalter, C; Boiarinov, S; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Cole, P L; Contalbrigo, M; Crede, V; D' Angelo, A; Daniel, A; Dashyan, N; De Vita, R; De Sanctis, E; Djalali, C; Doughty, D; Dupre, R; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Gabrielyan, M Y; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Gohn, W; Golovatch, E; Gothe, R W; Graham, L; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Hafidi, K; Hakobyan, H; Holtrop, M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Joo, K; Khandaker, M; Khertarpal, P; Kim, A; Kim, W; Klein, F J; Kubarovsky, A; Kubarovsky, V; Kuleshov, S V; Lu, H Y; MacGregor, I.J. D; Mao, Y; Markov, N; Mayer, M; McKinnon, B; Meyer, C A; Mirazita, M; Mokeev, V; Moutarde, H; Munevar, E; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paolone, M; Pappalardo, L; Paremuzyan, R; Anefalos Pereira, S; Pisano, S; Pogorelko, O; Pozdniakov, S; Procureur, S; Prok, Y; Protopopescu, D; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Ritchie, B G; Rosner, G; Rossi, P; Sabatie, F; Saini, M S; Salgado, C; Schott, D; Schumacher, R A; Seraydaryan, H; Sharabian, Y G; Smith, E S; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tkachenko, S; Vernarsky, B; Vineyard, M F; Vlassov, A V; Voskanyan, H; Voutier, E; Wood, M H; Zachariou, N; Zana, L; Zhao, B

    2012-03-23T23:59:59.000Z

    The CLAS detector was used to obtain the first ever measurement of the electromagnetic decay of the ?*+(1385) from the reaction ?p ? K0 ?*+(1385). A real photon beam with a maximum energy of 3.8 GeV was incident on a liquid-hydrogen target, resulting in the photoproduction of the kaon and ?* hyperon. Kinematic fitting was used to separate the reaction channel from the background processes. The fitting algorithm exploited a new method to kinematically fit neutrons in the CLAS detector, leading to the partial width measurement of 250.0 ± 56.9(stat)-41.2+34.3(sys) keV. A U-spin symmetry test using the SU(3) flavor-multiplet representation yields predictions for the ?*+(1385) ? ?+? and ?*0(1385) ? ?? partial widths that agree with the experimental measurements.

  10. Controlling the Emission of Electromagnetic Sources by Coordinate transformation

    E-Print Network [OSTI]

    Yu Luo; Jingjing Zhang; Lixin Ran; Hongsheng Chen; Jin Au Kong

    2007-12-21T23:59:59.000Z

    The coordinate transformation on the space that contains electromagnetic sources is studied. We find that, not only the permittivity and permeability tensors of the media, but also the sources inside the media will take another form in order to behave equivalently as the original case. It is demonstrated that, a source of arbitrary shape and position in the free space can be replaced by an appropriately designed metamaterial coating with current distributed on the inner surface and would not be detected by outer observers, because the emission of the source can be controlled at will in this way. As examples, we show how to design conformal antennas by covering the sources with transformation media. The method proposed in this letter provides a completely new approach to develop novel active EM devices.

  11. Tunable electromagnetically induced transparency with a coupled superconducting system

    E-Print Network [OSTI]

    Xin Wang; Hong-rong Li; Wen-xiao Liu; Fu-li Li

    2015-02-08T23:59:59.000Z

    Electromagnetically induced transparency (EIT) has usually been demonstrated by using three-level atomic systems. In this paper, we theoretically proposed an efficient method to realize EIT in microwave regime through a coupled system consisting of a flux qubit and a superconducting LC resonator with relatively high quality factor. In the present composed system, the working levels are the dressed states of a two-level flux qubit and the resonators with a probe pump field. There exits a second order coherent transfer between the dressed states. By comparing the results with those in the conventional atomic system we have revealed the physical origin of the EIT phenomenon in this composed system. Since the whole system is artificial and tunable, our scheme may have potential applications in various domains.

  12. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOE Patents [OSTI]

    Liburdy, Robert P. (1820 Mountain View Rd., Tiburon, CA 94920)

    1993-01-01T23:59:59.000Z

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release said chemical agent from the liposomes at a temperature of between about +10 and 65.degree. C. The invention further relates to the use of said liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  13. Electromagnetic field triggered drug and chemical delivery via liposomes

    DOE Patents [OSTI]

    Liburdy, R.P.

    1993-03-02T23:59:59.000Z

    The present invention relates to a system and to a method of delivering a drug to a preselected target body site of a patient, comprising the steps of encapsulating the chemical agent within liposomes, essentially temperature insensitive, i.e. not having a specific predetermined phase transition temperature within the specific temperature range of drug administration; administering the liposomes to the target body site; and subjecting the target body site to nonionizing electromagnetic fields in an area of the preselected target body in order to release the chemical agent from the liposomes at a temperature of between about +10 and 65 C. The invention further relates to the use of the liposomes to bind to the surface of or to enter target tissue or an organ in a living system, and, when subjected to a nonionizing field, to release a drug from the liposomes into the target site.

  14. Branching Ratio of the Electromagnetic Decay of the ?+(1385)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Keller, D; Adhikari, K P; Adikaram, D; Amaryan, M J; Anghinolfi, M; Baghdasaryan, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Biselli, A S; et al

    2012-03-23T23:59:59.000Z

    The CLAS detector was used to obtain the first ever measurement of the electromagnetic decay of the ?*+(1385) from the reaction ?p ? K0 ?*+(1385). A real photon beam with a maximum energy of 3.8 GeV was incident on a liquid-hydrogen target, resulting in the photoproduction of the kaon and ?* hyperon. Kinematic fitting was used to separate the reaction channel from the background processes. The fitting algorithm exploited a new method to kinematically fit neutrons in the CLAS detector, leading to the partial width measurement of 250.0 ± 56.9(stat)-41.2+34.3(sys) keV. A U-spin symmetry test using the SU(3) flavor-multiplet representationmore »yields predictions for the ?*+(1385) ? ?+? and ?*0(1385) ? ?? partial widths that agree with the experimental measurements.« less

  15. A simplified methodology for sizing ground coupled heat pump heat exchangers in cooling dominated climates 

    E-Print Network [OSTI]

    Gonzalez, Jose Antonio

    1993-01-01T23:59:59.000Z

    between GSIM and two commercially available heat exchanger sizing methods, the National Water Well Association (NWWA) and the International Ground Source Heat Pump Association (IGSHPA) methods, was performed. GSIM heat exchanger lengths for Dallas were... Pump Capacity and Cooling Load. . . . . Oversizing and Undersizing the Heat Pump. . . . . . . . . . . . . . Summary. . 72 74 76 78 80 82 85 87 90 92 IX COMPARISON OF HEAT EXCHANGER SIZING METHODS . . 93 International Ground Source Heat...

  16. Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts

    E-Print Network [OSTI]

    Pablo L. Saldanha

    2010-02-04T23:59:59.000Z

    It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the same form than in vacuum, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

  17. Division of the momentum of electromagnetic waves in linear media into electromagnetic and material parts

    E-Print Network [OSTI]

    Saldanha, Pablo L

    2009-01-01T23:59:59.000Z

    It is proposed a natural and consistent division of the momentum of electromagnetic waves in linear, non-dispersive and non-absorptive dielectric and magnetic media into material and electromagnetic parts. The material part is calculated using directly the Lorentz force law and the electromagnetic momentum density has the same form than in vacuum, without an explicit dependence on the properties of the media. The consistency of the treatment is verified through the obtention of a correct momentum balance equation in many examples and showing the compatibility of the division with the Einstein's theory of relativity by the use of a gedanken experiment. An experimental prediction for the radiation pressure on mirrors immersed in linear dielectric and magnetic media is also made.

  18. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12T23:59:59.000Z

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  19. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B. (Buellton, CA); Gardner, Duane (Santa Maria, CA); Patrick, Douglas (Santa Maria, CA); Lewallen, Tricia A. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA); Painter, Kelly D. (Goleta, CA); Vadnais, Kenneth G. (Alexandria, VA)

    1996-01-01T23:59:59.000Z

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  20. First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo

    E-Print Network [OSTI]

    Anderson, James B.

    First-row hydrides: Dissociation and ground state energies using quantum Monte Carlo Arne Lu, Pennsylvania 16802 Received 20 May 1996; accepted 24 July 1996 Accurate ground state energies comparable FN-DQMC method. The residual energy, the nodal error due to the error in the nodal structure

  1. Transient analysis of heat dissipation due to a HVDC ground electrode

    SciTech Connect (OSTI)

    Greiss, H.; Mukhedkar, D.; Lagace, P.J.

    1989-04-01T23:59:59.000Z

    The temperature of the soil surrounding a High Voltage Direct Current (HVDC) ground electrode was computed at various points in time using finite difference methods. The response of temperature, for various ground electrodes, was computed using these same techniques. The results were then compared with those results obtained experimentally in a laboratory at Ecole Polytechnique.

  2. Sideband Cooling Micromechanical Motion to the Quantum Ground State

    E-Print Network [OSTI]

    Teufel, J D; Li, Dale; Harlow, J H; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W

    2011-01-01T23:59:59.000Z

    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical inte...

  3. The first clinical implementation of electromagnetic transponder-guided MLC tracking

    SciTech Connect (OSTI)

    Keall, Paul J., E-mail: paul.keall@sydney.edu.au; O’Brien, Ricky; Ng, Jin Aun [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006 (Australia)] [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006 (Australia); Colvill, Emma [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)] [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006, Australia and Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia); Poulsen, Per Rugaard [Department of Oncology, Aarhus University Hospital, Aarhus 8000, Denmark and Institute of Clinical Medicine, Aarhus University, Aarhus 8000 (Denmark)] [Department of Oncology, Aarhus University Hospital, Aarhus 8000, Denmark and Institute of Clinical Medicine, Aarhus University, Aarhus 8000 (Denmark); Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T. [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)] [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065 (Australia)

    2014-02-15T23:59:59.000Z

    Purpose: We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. Methods: An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. Results: The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V{sub 60}. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V{sub 60} from that planned, even for the small motion. Conclusions: The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy.

  4. Electromagnetically-Induced Frame-Dragging around Astrophysical Objects

    E-Print Network [OSTI]

    Ruiz, Andrés F Gutiérrez

    2015-01-01T23:59:59.000Z

    Frame dragging (Lense-Thirring effect) is generally associated with rotating astrophysical objects. However, it can also be generated by electromagnetic fields if electric and magnetic fields are simultaneously present. In most models of astrophysical objects, macroscopic charge neutrality is assumed and the entire electromagnetic field is characterized in terms of a magnetic dipole component. Hence, the purely electromagnetic contribution to the frame dragging vanishes. However, strange stars may posses independent electric dipole and neutron stars independent electric quadrupole moments that may lead to the presence of purely electromagnetic contributions to the frame dragging. Moreover, recent observations have shown that in stars with strong electromagnetic fields, the magnetic quadrupole may have a significant contribution to the dynamics of stellar processes. As an attempt to characterized and quantify the effect of electromagnetic frame-dragging in this kind of astrophysical objects, an analytic soluti...

  5. Solution accelerators for large scale 3D electromagnetic inverse problems

    SciTech Connect (OSTI)

    Newman, Gregory A.; Boggs, Paul T.

    2004-04-05T23:59:59.000Z

    We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.

  6. Electromagnetially-induced-transparency-like ground-state cooling in a double-cavity optomechanical system

    E-Print Network [OSTI]

    Yujie Guo; Kai Li; Wenjie Nie; Yong Li

    2014-07-19T23:59:59.000Z

    We propose to cool a mechanical resonator close to its ground state via an electromagnetically-induced-transparency- (EIT-) like cooling mechanism in a double-cavity optomechanical system, where an additional cavity couples to the original one in the standard optomechanical system. By choosing optimal parameters such that the cooling process of the mechanical resonator corresponds to the maximum value of the optical fluctuation spectrum and the heating process to the minimum one, the mechanical resonator can be cooled with the final mean phonon number less than that at the absence of the additional cavity. And we show the mechanical resonator may be cooled close to its ground state via such an EIT-like cooling mechanism even when the original resolved sideband condition is not fulfilled at the absence of the additional cavity.

  7. Time-Domain Electromagnetics At Glass Mountain Area (Cumming...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass...

  8. Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...

    Open Energy Info (EERE)

    Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

  9. MA598: Modeling and Computation in Optics and Electromagnetics

    E-Print Network [OSTI]

    2010-08-24T23:59:59.000Z

    MA598: Modeling and Computation in Optics and Electromagnetics. Instructor: Peijun Li, office: Math 440, phone: 49-40846, e-mail: lipeijun@math.purdue.edu.

  10. Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area...

    Open Energy Info (EERE)

    Activity: Time-Domain Electromagnetics At Neal Hot Springs Geothermal Area (Colorado School of Mines and Imperial College London, 2011) Exploration Activity Details Location Neal...

  11. MA692: Modeling and Computation in Optics and Electromagnetics

    E-Print Network [OSTI]

    2012-08-14T23:59:59.000Z

    MA692: Modeling and Computation in Optics and Electromagnetics. Instructor: Peijun Li, office: Math 440, phone: 49-40846, e-mail: lipeijun@math.purdue.edu.

  12. Electromagnetic Soundings At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    of this study was to obtain a more complete model of the geologic structure and hydrology of Kilauea's east rift zone Notes Electromagnetic transient soundings were conducted...

  13. 6.013 Electromagnetics and Applications, Fall 2002

    E-Print Network [OSTI]

    Staelin, David H.

    Electromagnetic phenomena are explored in modern applications including wireless communications, circuits, computer interconnects and peripherals, optical fiber links and components, microwave communications and radar, ...

  14. Analysis Of Factors Affecting Natural Source Slf Electromagnetic...

    Open Energy Info (EERE)

    At Geothermal Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Analysis Of Factors Affecting Natural Source Slf Electromagnetic...

  15. Electromagnetic scattering and induction models for spheroidal geometries

    E-Print Network [OSTI]

    Barrowes, Benjamin E., 1973-

    2004-01-01T23:59:59.000Z

    Electromagnetic scattering from a medium containing randomly distributed discrete dielectric spheroidal inclusions is studied. Also, the broadband magnetoquasistatic solution for the induced magnetic field from a conducting ...

  16. 6.641 Electromagnetic Fields, Forces, and Motion, Spring 2003

    E-Print Network [OSTI]

    Zahn, Markus, 1946-

    Electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Electromagnetic forces, force densities, and stress tensors, including magnetization ...

  17. Time-Domain Electromagnetics At Kilauea Southwest Rift And South...

    Open Energy Info (EERE)

    Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea...

  18. Novel resonance-assisted electromagnetic-transport phenomena

    E-Print Network [OSTI]

    Kurs, André B

    2011-01-01T23:59:59.000Z

    We first demonstrate theoretically and experimentally that electromagnetic resonators with high quality factors (Q) can be used to transfer power efficiently over distances substantially larger than the characteristic ...

  19. Electromagnetic Evidence For An Ancient Avalanche Caldera Rim...

    Open Energy Info (EERE)

    Merapi, Indonesia Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electromagnetic Evidence For An Ancient Avalanche Caldera Rim On The South...

  20. Vlf Electromagnetic Investigations Of The Crater And Central...

    Open Energy Info (EERE)

    Helens, Washington Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Vlf Electromagnetic Investigations Of The Crater And Central Dome Of Mount...

  1. General Polarization Matrix of Electromagnetic Radiation

    E-Print Network [OSTI]

    Muhammet Ali Can; Alexander S. Shumovsky

    2001-05-15T23:59:59.000Z

    A general form of the polarization matrix valid for any type of electromagnetic radiation (plane waves, multipole radiation etc.) is defined in terms of a certain bilinear form in the field-strength tensor. The quantum counterpart is determined as an operator matrix with normal-ordered elements with respect to the creation and annihilation operators. The zero-point oscillations (ZPO) of polarization are defined via difference between the anti-normal and normal ordered operator polarization matrices. It is shown that ZPO of the multipole field are stronger than those described by the model of plane waves and are concentrated in a certain neighborhood of a local source.

  2. Artificial Retina Project: Electromagnetic and Thermal Effects

    SciTech Connect (OSTI)

    Lazzi, Gianluca

    2014-08-29T23:59:59.000Z

    This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

  3. Electromagnetic Profiling Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic Profiling Techniques Jump to:

  4. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic Profiling Techniques Jump

  5. NASA Boeing 757 HIRF test series low power on-the-ground tests

    SciTech Connect (OSTI)

    Poggio, A.J.; Pennock, S.T.; Zacharias, R.A.; Avalle, C.A.; Carney, H.L. [National Aeronautics and Space Administration, Langley AFB, VA (United States). Langley Research Center] [National Aeronautics and Space Administration, Langley AFB, VA (United States). Langley Research Center

    1996-08-01T23:59:59.000Z

    The data acquisition phase of a program intended to provide data for the validation of computational, analytical, and experimental techniques for the assessment of electromagnetic effects in commercial transports; for the checkout of instrumentation for following test programs; and for the support of protection engineering of airborne systems has been completed. Funded by the NASA Fly-By-Light/ Power-By-Wire Program, the initial phase involved on-the-ground electromagnetic measurements using the NASA Boeing 757 and was executed in the LESLI Facility at the USAF Phillips Laboratory. The major participants in this project were LLNL, NASA Langley Research Center, Phillips Laboratory, and UIE, Inc. The tests were performed over a five week period during September through November, 1994. Measurements were made of the fields coupled into the aircraft interior and signals induced in select structures and equipment under controlled illumination by RF fields. A characterization of the ground was also performed to permit ground effects to be included in forthcoming validation exercises. This report and the associated test plan that is included as an appendix represent a definition of the overall on-the-ground test program. They include descriptions of the test rationale, test layout, and samples of the data. In this report, a detailed description of each executed test is provided, as is the data identification (data id) relating the specific test with its relevant data files. Samples of some inferences from the data that will be useful in protection engineering and EM effects mitigation are also presented. The test plan which guided the execution of the tests, a test report by UIE Inc., and the report describing the concrete pad characterization are included as appendices.

  6. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOE Patents [OSTI]

    Epstein, Arthur J. (Columbus, OH); Morin, Brian G. (Columbus, OH)

    1998-01-01T23:59:59.000Z

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors.

  7. Molecular based magnets comprising vanadium tetracyanoethylene complexes for shielding electromagnetic fields

    DOE Patents [OSTI]

    Epstein, A.J.; Morin, B.G.

    1998-10-13T23:59:59.000Z

    The invention presents a vanadium tetracyanoethylene solvent complex for electromagnetic field shielding, and a method for blocking low frequency and magnetic fields using these vanadium tetracyanoethylene compositions. The compositions of the invention can be produced at ambient temperature and are light weight, low density and flexible. The materials of the present invention are useful as magnetic shields to block low frequency fields and static fields, and for use in cores in transformers and motors. 21 figs.

  8. Electromagnetic Waves Reflectance of Graphene -- Magnetic Semiconductor Superlattice in Magnetic Field

    E-Print Network [OSTI]

    Kuzmin, Dmitry A; Shavrov, Vladimir G

    2014-01-01T23:59:59.000Z

    Electrodynamic properties of the graphene - magnetic semiconductor - graphene superlattice placed in magnetic field have been investigated theoretically in Faraday geometry with taking into account dissipation processes. Frequency and field dependences of the reflectance, transmittance and absorbtance of electromagnetic waves by such superlattice have been calculated for different numbers of periods of the structure and different sizes of the periods with using a transfer matrix method. The possibility of efficient control of electrodynamic properties of graphene - magnetic semiconductor - graphene superlattice has been shown.

  9. On Evolution of the Pair-Electromagnetic Pulse of a Charge Black Hole

    E-Print Network [OSTI]

    Remo Ruffini; Jay D. Salmonson; James R. Wilson; She-Sheng Xue

    1999-05-04T23:59:59.000Z

    Using hydrodynamic computer codes, we study the possible patterns of relativistic expansion of an enormous pair-electromagnetic-pulse (P.E.M. pulse); a hot, high density plasma composed of photons, electron-positron pairs and baryons deposited near a charged black hole (EMBH). On the bases of baryon-loading and energy conservation, we study the bulk Lorentz factor of expansion of the P.E.M. pulse by both numerical and analytical methods.

  10. Spectroscopic investigations of the vibrational potential energy surfaces in electronic ground and excited states

    E-Print Network [OSTI]

    Yang, Juan

    2007-09-17T23:59:59.000Z

    The vibrational potential energy surfaces in electronic ground and excited states of several ring molecules were investigated using several different spectroscopic methods, including far-infrared (IR), Raman, ultraviolet (UV) absorption...

  11. Electromagnetic fields: Biological and clinical aspects

    SciTech Connect (OSTI)

    Tabrah, F.L.; Batkin, S. (Department of Physiology, University of Hawaii School of Medicine, Honolulu (USA))

    1991-03-01T23:59:59.000Z

    Our entire biosphere is immersed in a sea of man-made electromagnetic fields (EMF). Occupational and public health data suggest that these fields may be a health hazard, possibly involving cancer and fetal loss. This paper reviews the history and pertinent physics of electromagnetic fields and presents evidence from the authors' work, and that of others, of biological interaction with living systems. Epidemiological data suggesting EMF hazards are reviewed including a discussion of possible risks associated with Hawaii's Lualualei transmitter site, TV and FM antennas in high-density population areas, fields surrounding electric power transmission and computer terminals, and the plan to route a major highway through the near-field of an operating Omega signal-source. In the face of current public fear and controversial research reports about long-term EMF exposure, suggestions are presented for public policy about these local sources of concern, as well as for the EMF risks common to any similarly developed areas. 30 refs.

  12. Remote grounding device for subterranean power systems

    SciTech Connect (OSTI)

    Wilson, D.P.

    1987-04-28T23:59:59.000Z

    A remote grounding device is described for subterranean power cable of an insulated conducting cable which comprises: a grounding module and a grounding mechanism; the grounding module is an assembly of a power buss, an insulation sheath, a reducing tap plug and an insulating receptacle cap. The power buss is intimately connected to the conducting cable by a means of an attachment. The reducing tap plug fits concentrically over the power buss and has a tubular probe path void contiguous and in-line to the power buss and a lip around the outer periphery of the reducing tap plug. The insulating receptacle cap covers the tubular void. The insulating sheath covers and holds reducing tap plug and power cable by a multiplicity of locking means and a grounding mechanism assembly of a frame, a probe, a power drive means, a grounding means, a handle means.

  13. Natural restoration of ground water in UCG

    SciTech Connect (OSTI)

    Humenick, M.J.; Britton, L.N.; Mattox, C.F.

    1982-01-01T23:59:59.000Z

    Ground water contamination from underground coal gasification (UCG) has been documented at several field tests in Texas and Wyoming. However, monitoring data following the termination of gasification operations has shown that contaminant concentrations decrease with time, apparently because of natural processes. This research evaluates the probable natural mechanisms for the reduction of organic contaminant concentrations in ground water. Results indicated that biological degradation and adsorption could be a significant mechanism for removal of organics from ground waters. 12 refs.

  14. Progress In Electromagnetics Research B, Vol. 37, 205235, 2012 DERIVATION OF HOMOGENEOUS PERMITTIVITY OF

    E-Print Network [OSTI]

    Koledintseva, Marina Y.

    for engineering electromagnetic absorbing composite materials, for example, containing carbon fibers. The causal PERMITTIVITY OF COMPOSITE MATERIALS WITH ALIGNED CYLINDRI- CAL INCLUSIONS FOR CAUSAL ELECTROMAGNETIC Debye representation is important for incorporation of a composite material in numerical electromagnetic

  15. Guiding of an electromagnetic pulse in a plasma immersed in combined wiggler and axial magnetic fields

    E-Print Network [OSTI]

    Hur, Min Sup

    2009-01-01T23:59:59.000Z

    813 Guiding of an electromagnetic pulse in a plasma immersedGuiding of an electromagnetic pulse in a plasma immersed inof guiding an electromagnetic pulse. The scheme consists of

  16. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A. [ComEd, Chicago, IL (United States)

    1996-11-01T23:59:59.000Z

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  17. Electromagnetic space-time crystals. II. Fractal computational approach

    E-Print Network [OSTI]

    G. N. Borzdov

    2014-10-20T23:59:59.000Z

    A fractal approach to numerical analysis of electromagnetic space-time crystals, created by three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency, is presented. Finite models of electromagnetic crystals are introduced, which make possible to obtain various approximate solutions of the Dirac equation. A criterion for evaluating accuracy of these approximate solutions is suggested.

  18. Electromagnetic actuator to reduce vibration sources Thibaut Chailloux*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in an FE- Tuned Magnetic Equivalent Circuit of an Electromagnetic Relay, Sixdenier F., Raulet M.-A., MarionElectromagnetic actuator to reduce vibration sources Thibaut Chailloux* , L. Morel* , F. Sixdenier In order to improve passenger comfort, a reduction of vibration sources in vehicles is being considered

  19. Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Particle Acceleration by a Short-Intense Elliptically Polarized Electromagnetic Pulse Propagating to plasma physics and particle accelerators. The interaction physics of fields with particles has also been, Colchester CO4 3SQ, U.K. Abstract. The motion of a charged particle driven by an electromagnetic pulse

  20. Time-spatial drift of decelerating electromagnetic pulses

    E-Print Network [OSTI]

    Nerukh, Dmitry

    Time-spatial drift of decelerating electromagnetic pulses Alexander G. Nerukh1* and Dmitry A dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time

  1. Short Gamma Ray Bursts as possible electromagnetic counterpart of coalescing binary systems

    E-Print Network [OSTI]

    S. Capozziello; M. De Laurentis; I. De Martino; M. Formisano

    2010-04-27T23:59:59.000Z

    Coalescing binary systems, consisting of two collapsed objects, are among the most promising sources of high frequency gravitational waves signals detectable, in principle, by ground-based interferometers. Binary systems of Neutron Star or Black Hole/Neutron Star mergers should also give rise to short Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts might thus provide a powerful way to infer the merger rate of two-collapsed object binaries. Under the hypothesis that most short Gamma Ray Bursts originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we outline here the possibility to associate short Gamma Ray Bursts as electromagnetic counterpart of coalescing binary systems.

  2. Isotropic-medium three-dimensional cloaks for acoustic and electromagnetic waves

    E-Print Network [OSTI]

    Urzhumov, Yaroslav; Smith, David R; 10.1063/1.3691242

    2012-01-01T23:59:59.000Z

    We propose a generalization of the two-dimensional eikonal-limit cloak derived from a conformal transformation to three dimensions. The proposed cloak is a spherical shell composed of only isotropic media; it operates in the transmission mode and requires no mirror or ground plane. Unlike the well-known omnidirectional spherical cloaks, it may reduce visibility of an arbitrary object only for a very limited range of observation angles. In the short-wavelength limit, this cloaking structure restores not only the trajectories of incident rays, but also their phase, which is a necessary ingredient to complete invisibility. Both scalar-wave (acoustic) and transverse vector-wave (electromagnetic) versions are presented.

  3. Numerical simulation of the electromagnetic fields excited by loop antennas in plasma in the whistler frequency range

    SciTech Connect (OSTI)

    Koldanov, V. A.; Korobkov, S. V.; Gushchin, M. E.; Kostrov, A. V. [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2011-08-15T23:59:59.000Z

    The electromagnetic fields excited by circular loop antennas in a magnetized plasma in the whistler frequency range are simulated by the finite-difference time-domain method. The spatial structure of quasi-monochromatic fields excited in the near- and far-field zones by an antenna with a harmonic current, as well as the dynamics of the electromagnetic field excited by an antenna with a current in the form of a single video pulse, is studied. Simulations performed for a uniform plasma and uniform ambient magnetic field agree well with the results of theoretical analysis and model laboratory experiments performed on large-scale plasma devices.

  4. Absolute localization of mobile robots in forest environments by correlating ground LiDAR to overhead imagery

    E-Print Network [OSTI]

    Hussein, Marwan

    2014-01-01T23:59:59.000Z

    A method for the autonomous geolocation of ground vehicles in forest environments is presented. The method provides an estimate of the global horizontal position of a vehicle strictly based on finding a geometric match ...

  5. Low-Level Burial Grounds Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    2000-03-02T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage and/or disposal at the Low-Level Burial Grounds which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, obtain and analyze representative samples of waste managed at this unit.

  6. Special Section on Ground Water Research in China Featured in This Issue of Ground Water

    E-Print Network [OSTI]

    Jiao, Jiu Jimmy

    of Ground Water by Xun Zhou1, Jiu J. Jiao2, and Mary P. Anderson3 Contained in this issue of Ground Water, Groundwater Resources and the Related Environ- Hydrogeologic Problems in China, Beijing: Seismological Press

  7. Large Dynamic Range Electromagnetic FieldLarge Dynamic Range Electromagnetic Field Sensor based on Domain Inverted Electro-Optic

    E-Print Network [OSTI]

    Texas at Austin, University of

    Large Dynamic Range Electromagnetic FieldLarge Dynamic Range Electromagnetic Field Sensor based on Domain Inverted Electro-Optic Polymer Directional CouplerPolymer Directional Coupler Alan X. Wang Ray T. Chen Omega Optics Inc Austin TXOmega Optics Inc., Austin, TX -1- #12;Application of Electric Field

  8. Quasi-particle Statistics and Braiding from Ground State Entanglement

    E-Print Network [OSTI]

    Yi Zhang; Tarun Grover; Ari Turner; Masaki Oshikawa; Ashvin Vishwanath

    2012-02-27T23:59:59.000Z

    Topologically ordered phases are gapped states, defined by the properties of excitations when taken around one another. Here we demonstrate a method to extract the statistics and braiding of excitations, given just the set of ground-state wave functions on a torus. This is achieved by studying the Topological Entanglement Entropy (TEE) on partitioning the torus into two cylinders. In this setting, general considerations dictate that the TEE generally differs from that in trivial partitions and depends on the chosen ground state. Central to our scheme is the identification of ground states with minimum entanglement entropy, which reflect the quasi-particle excitations of the topological phase. The transformation of these states allows for a determination of the modular S and U matrices which encode quasi-particle properties. We demonstrate our method by extracting the modular S matrix of an SU(2) spin symmetric chiral spin liquid phase using a Monte Carlo scheme to calculate TEE, and prove that the quasi-particles obey semionic statistics. This method offers a route to a nearly complete determination of the topological order in certain cases.

  9. Stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Vadnais, Kenneth G. (Ojai, CA); Bashforth, Michael B. (Buellton, CA); Lewallen, Tricia S. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA)

    1994-01-01T23:59:59.000Z

    A stepped frequency ground penetrating radar system is described comprising an RF signal generating section capable of producing stepped frequency signals in spaced and equal increments of time and frequency over a preselected bandwidth which serves as a common RF signal source for both a transmit portion and a receive portion of the system. In the transmit portion of the system the signal is processed into in-phase and quadrature signals which are then amplified and then transmitted toward a target. The reflected signals from the target are then received by a receive antenna and mixed with a reference signal from the common RF signal source in a mixer whose output is then fed through a low pass filter. The DC output, after amplification and demodulation, is digitized and converted into a frequency domain signal by a Fast Fourier Transform. A plot of the frequency domain signals from all of the stepped frequencies broadcast toward and received from the target yields information concerning the range (distance) and cross section (size) of the target.

  10. Theory of Dipole Induced Electromagnetic Transparency

    E-Print Network [OSTI]

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Charron, Eric

    2015-01-01T23:59:59.000Z

    A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also propose...

  11. Dissipative electromagnetic solitary waves in collisional plasmas

    SciTech Connect (OSTI)

    Borhanian, Jafar [Department of Physics, Faculty of Science, University of Mohaghegh Ardabili, P.O.Box 179, Ardabil (Iran, Islamic Republic of)

    2012-08-15T23:59:59.000Z

    The propagation of linearly polarized electromagnetic (EM) waves in a collisional plasma is studied using multiple scale perturbation technique in a weakly nonlinear regime. A complex linear dispersion relation and a complex group velocity are obtained for EM waves propagating in a plasma and their dependence on system parameters is investigated. It is shown that the amplitude of EM pulse is governed by an envelope equation similar to a cubic complex Ginzburg-Landau equation. A traveling bright solitary wave solution for envelope equation is found, its existence condition in parameter space is explored and variation of its profile with system parameters is manipulated. Monitoring temporal evolution of traveling solitary wave solution provides more insight into the nature of this solution and ensures that depending on the parameters of the system, solitary wave solution may behave like a stationary soliton or may exhibit the behavior of a breathing soliton.

  12. Guiding and collimating fast electron beam by the quasi-static electromagnetic field array

    SciTech Connect (OSTI)

    Wang, J. [Physics Department, Fudan University, Shanghai 210433 (China); Science and Technology on Plasma Physics Laboratory, Mianyang 621900 (China); Zhao, Z. Q.; He, W. H.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Zhang, T. K.; Zhang, B.; Zhang, Z. M.; Gu, Y. Q., E-mail: yqgu@caep.ac.cn [Science and Technology on Plasma Physics Laboratory, Mianyang 621900 (China); Cao, L. H. [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2014-10-15T23:59:59.000Z

    A guidance and collimation scheme for fast electron beam in a traverse periodic quasi-static electromagnetic field array is proposed with the semi-analytic method and the particle-in-cell simulation. The sheath electric fields on the surfaces of nanowires and the magnetic fields around the nanowires form a traverse periodic quasi-static electromagnetic field array. Therefore, most of the fast electrons are confined at the nanowire surfaces and transport forward. More importantly, due to the divergent property of the beams, the magnitudes of the generated fields decrease with the target depth. The lateral momenta of the electrons convert into the forward momenta through Lorenz force, and they cannot recover their initial values. Therefore, the fast electrons can be guided and collimated efficiently in the gaps between the nanowires. In our particle-in-cell simulations, the observed guiding efficiency exceeds 80% compared with the reference target.

  13. Theoretical Determination of the $?N?$ Electromagnetic Transition Amplitudes in the $?(1232)$ Region

    E-Print Network [OSTI]

    Milton Dean Slaughter

    1999-03-08T23:59:59.000Z

    We utilize non-perturbative and fully relativistic methods to calculate the\\thinspace \\thinspace $\\Delta N\\gamma $ electromagnetic transition amplitudes $G_{M}^{*}(q^{2})$ (related to the magnetic dipole moment $% M_{1^{+}}^{3/2}(q^{2})$), $G_{E}^{*}(q^{2})$ (related to the electric quadrupole moment $E_{1^{+}}^{3/2}(q^{2})$), the electromagnetic ratio $% R_{EM}(q^{2})\\equiv -G_{E}^{*}(q^{2})/G_{M}^{*}(q^{2})=E_{1^{+}}^{3/2}(q^{2})/M_{1^{+}}^{3/2}(q^{2} ) $, and discuss their $q^{2}$ behavior in the $\\Delta (1232)$ mass region. These are very important quantities which arise in all viable quark, QCD, or perturbative QCD models of pion electroproduction and photoproduction.

  14. Study to assess the effects of electromagnetic pulse on electric power systems. Phase I. Executive summary

    SciTech Connect (OSTI)

    Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Hileman, A.R.; Kruse, V.J.; Taylor, E.R. Jr.; Tesche, F.M.

    1985-09-01T23:59:59.000Z

    The high-altitude detonation of a nuclear device over the continental United States can expose electric utility power systems to intense, transient electromagnetic pulses (EMP). In addition to the initial transient fields designated as early-time, high-altitude EMP and intermediate-time, high-altitude EMP, electromagnetic signals are also produced at times from seconds to hundreds of seconds after the burst. Nuclear detonations at or near the earth's surface can also produce transient EMP. This volume presents an executive summary of the preliminary research effort to investigate the nature and coupling of EMP environments to electric power systems, define the construction of approximate system response models, and document the development of a methodology to assess equipment and system vulnerability. The research to date does not include an attempt to quantify power system performance in EMP environments. This effort has been to define the analytical methods and techniques necessary to conduct such assessments at a later time.

  15. Mathematical model of the seismic electromagnetic signals (SEMS) in non crystalline substances

    SciTech Connect (OSTI)

    Dennis, L. C. C.; Yahya, N.; Daud, H.; Shafie, A. [Electromagnetic cluster, Universiti Teknologi Petronas, 31750 Tronoh, Perak (Malaysia)

    2012-09-26T23:59:59.000Z

    The mathematical model of seismic electromagnetic waves in non crystalline substances is developed and the solutions are discussed to show the possibility of improving the electromagnetic waves especially the electric field. The shear stress of the medium in fourth order tensor gives the equation of motion. Analytic methods are selected for the solutions written in Hansen vector form. From the simulated SEMS, the frequency of seismic waves has significant effects to the SEMS propagating characteristics. EM waves transform into SEMS or energized seismic waves. Traveling distance increases once the frequency of the seismic waves increases from 100% to 1000%. SEMS with greater seismic frequency will give seismic alike waves but greater energy is embedded by EM waves and hence further distance the waves travel.

  16. Electromagnetic and neutral-weak response functions of 4He and 12C

    E-Print Network [OSTI]

    A. Lovato; S. Gandolfi; J. Carlson; Steven C. Pieper; R. Schiavilla

    2015-01-08T23:59:59.000Z

    Ab initio calculations of the quasi-elastic electromagnetic and neutral-weak response functions of 4He and 12C are carried out for the first time. They are based on a realistic approach to nuclear dynamics, in which the strong interactions are described by two- and three-nucleon potentials and the electroweak interactions with external fields include one- and two-body terms. The Green's function Monte Carlo method is used to calculate directly the Laplace transforms of the response functions, and maximum-entropy techniques are employed to invert the resulting imaginary-time correlation functions with associated statistical errors. The theoretical results, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasi-elastic to the dip region and beyond. These findings challenge the conventional picture of quasi-elastic inclusive scattering as being largely dominated by single-nucleon knockout processes.

  17. Electromagnetic and neutral-weak response functions of 4He and 12C

    E-Print Network [OSTI]

    Lovato, A; Carlson, J; Pieper, Steven C; Schiavilla, R

    2015-01-01T23:59:59.000Z

    Ab initio calculations of the quasi-elastic electromagnetic and neutral-weak response functions of 4He and 12C are carried out for the first time. They are based on a realistic approach to nuclear dynamics, in which the strong interactions are described by two- and three-nucleon potentials and the electroweak interactions with external fields include one- and two-body terms. The Green's function Monte Carlo method is used to calculate directly the Laplace transforms of the response functions, and maximum-entropy techniques are employed to invert the resulting imaginary-time correlation functions with associated statistical errors. The theoretical results, confirmed by experiment in the electromagnetic case, show that two-body currents generate excess transverse strength from threshold to the quasi-elastic to the dip region and beyond. These findings challenge the conventional picture of quasi-elastic inclusive scattering as being largely dominated by single-nucleon knockout processes.

  18. Ground Loops for Heat Pumps and Refrigeration 

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  19. Ground water provides drinking water, irrigation for

    E-Print Network [OSTI]

    Saldin, Dilano

    Ground water provides drinking water, irrigation for crops and water for indus- tries. It is also connected to surface waters, and maintains the flow of rivers and streams and the level of wetlands- tion of those along Lake Michigan, most communi- ties, farms and industries still rely on ground water

  20. Ground Loops for Heat Pumps and Refrigeration

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01T23:59:59.000Z

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  1. Hanford site ground water protection management plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities.

  2. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems

    SciTech Connect (OSTI)

    Barnes, P.R. (Oak Ridge National Lab., TN (United States)); Tesche, F.M. (Tesche (F.M.), Dallas, TX (United States)); Vance, E.F. (Vance (E.F.), Fort Worth, TX (United States))

    1992-03-01T23:59:59.000Z

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  3. Measuring the Running of the Electromagnetic Coupling Alpha in Small Angle Bhabha Scattering

    E-Print Network [OSTI]

    Luca Trentadue

    2006-08-07T23:59:59.000Z

    We propose a method to determine the running of $\\alpha_{QED}$ from the measurement of small-angle Bhabha scattering. The method is suited to high statistics experiments at $e^{+} e^{-}$ colliders, which are equipped with luminometers in the appropriate angular region. We present a new simulation code predicting small-angle Bhabha scattering. A detailed description of this idea can be found in A.B. Arbuzov, D. Haidt, C. Matteuzzi, M. Paganoni and L. Trentadue, The running of the electromagnetic coupling alpha in small-angle Bhabha scattering, Eur. Phys. J. C34, 267 (2004).

  4. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN), Kang; Sukill (Knoxville, TN)

    2012-02-21T23:59:59.000Z

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  5. The ground state construction of bilayer graphene

    E-Print Network [OSTI]

    Alessandro Giuliani; Ian Jauslin

    2015-07-22T23:59:59.000Z

    We consider a model of half-filled bilayer graphene, in which the three dominant Slonczewski-Weiss-McClure hopping parameters are retained, in the presence of short range interactions. Under a smallness assumption on the interaction strength $U$ as well as on the inter-layer hopping $\\epsilon$, we construct the ground state in the thermodynamic limit, and prove its analyticity in $U$, uniformly in $\\epsilon$. The interacting Fermi surface is degenerate, and consists of eight Fermi points, two of which are protected by symmetries, while the locations of the other six are renormalized by the interaction, and the effective dispersion relation at the Fermi points is conical. The construction reveals the presence of different energy regimes, where the effective behavior of correlation functions changes qualitatively. The analysis of the crossover between regimes plays an important role in the proof of analyticity and in the uniform control of the radius of convergence. The proof is based on a rigorous implementation of fermionic renormalization group methods, including determinant estimates for the renormalized expansion.

  6. Nonlinear Landau damping of transverse electromagnetic waves in dusty plasmas

    SciTech Connect (OSTI)

    Tsintsadze, N. L. [E. Andronikashvili Institute of Physics, Tbilisi 0171 (Georgia); Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Chaudhary, Rozina [Department of Physics, Government College University, Lahore 54000 (Pakistan); Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Government College University, Lahore 54000 (Pakistan); Murtaza, G. [Salam Chair in Physics, Government College University, Lahore 54000 (Pakistan)

    2009-04-15T23:59:59.000Z

    High-frequency transverse electromagnetic waves in a collisionless isotropic dusty plasma damp via nonlinear Landau damping. Taking into account the latter we have obtained a generalized set of Zakharov equations with local and nonlocal terms. Then from this coupled set of Zakharov equations a kinetic nonlinear Schroedinger equation with local and nonlocal nonlinearities is derived for special cases. It is shown that the modulation of the amplitude of the electromagnetic waves leads to the modulation instability through the nonlinear Landau damping term. The maximum growth rate is obtained for the special case when the group velocity of electromagnetic waves is close to the dust acoustic velocity.

  7. Electromagnetic Radiation and Motion of Really Shaped Particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-08-13T23:59:59.000Z

    Relativistically covariant form of equation of motion for real particle (neutral in charge) under the action of electromagnetic radiation is derived. Various formulations of the equation of motion in the proper frame of reference of the particle are used. Main attention is devoted to the reformulation of the equation of motion in the general frame of reference, e. g., in the frame of reference of the source of electromagnetic radiation. This is the crucial form of equation of motion in applying it to motion of particles (cosmic dust, asteroids, ...) in the Universe if electromagnetic radiation acts on the particles. General relativistic equation of motion is presented.

  8. Inferring black hole charge from backscattered electromagnetic radiation

    E-Print Network [OSTI]

    Luís C. B. Crispino; Sam R. Dolan; Atsushi Higuchi; Ednilton S. de Oliveira

    2014-09-16T23:59:59.000Z

    We compute the scattering cross section of Reissner-Nordstr\\"om black holes for the case of an incident electromagnetic wave. We describe how scattering is affected by both the conversion of electromagnetic to gravitational radiation, and the parity-dependence of phase shifts induced by the black hole charge. The latter effect creates a helicity-reversed scattering amplitude that is non-zero in the backward direction. We show that from the character of the electromagnetic wave scattered in the backward direction it is possible, in principle, to infer if a static black hole is charged.

  9. Electromagnetic energy dispersion in a 5D universe

    SciTech Connect (OSTI)

    Hartnett, John G. [School of Physics, University of Western Australia, 35 Stirling Hwy, Crawley 6009 WA Australia (Australia)

    2010-06-15T23:59:59.000Z

    Electromagnetism is analyzed in a 5D expanding universe. Compared to the usual 4D description of electrodynamics it can be viewed as adding effective charge and current densities to the universe that are static in time. These lead to effective polarization and magnetization of the vacuum, which is most significant at high redshift. Electromagnetic waves propagate but group and phase velocities are dispersive. This introduces a new energy scale to the cosmos. And as a result electromagnetic waves propagate with superluminal speeds but no energy is transmitted faster than the canonical speed of light c.

  10. Improvement of the technique of identification of electrons and positrons with use of electromagnetic calorimeter of the CLAS detector

    SciTech Connect (OSTI)

    Gevorgyan, N. E.; Dashyan, N. B.; Paremuzyan, R. G.; Stepanyan, S. G.

    2010-01-01T23:59:59.000Z

    We study the dependence of the sensitivity of response of the electromagnetic calorimeter of CLAS plant on the momenta of electrons and positrons. We made calculation of this dependence and elaborated a method for its employment in identification of e- and e+. We have shown that the new method of selection of e- and e+ improves the quality of identification by about 10%. We used the experimental data obtained with the plant CLAS of linear accelerator at Jefferson laboratory (USA).

  11. Development of a new high altitude electromagnetic pulse (HEMP) environment and resulting over head line responses

    SciTech Connect (OSTI)

    Tesche, F.M.; Barnes, P.R.

    1987-01-01T23:59:59.000Z

    Being able to accurately determine the response of an electrical system which is excited by a high altitude nuclear electromagnetic pulse (EMP) requires a knowledge of the time history of the incident EMP field strength, as well as its angle of incidence and polarization. A commonly used, unclassified, description of this environment is provided by the ''Bell Laboratory waveform.'' Recent studies have shown, however, that this EMP waveform tends to overestimate the response of an above-ground transmission line by more than an order of magnitude. As a result, other unclassified high altitude EMP environments have been developed. This presentation discusses the development of two alternate unclassified EMP environment descriptions: one arising from a simple radiating dipole moment model, and the other resulting from curve-fitting the calculated fields from a computer code named CHAP. For both of these EMP models, the electric field at two earth observation points are compared. These fields are then coupled to an above-ground line and the resulting open-circuit voltage responses are compared. Using the CHAP EMP environment, a limited parametric study of the peak positive and negative open-circuit voltage is then performed and surface plots of these peak voltages are presented. 8 refs., 21 figs., 1 tab.

  12. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

    SciTech Connect (OSTI)

    Litzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109-5010 (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109-5010 (United States)

    2013-08-15T23:59:59.000Z

    Purpose: To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter.Methods: This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3 × 6 cm{sup 2} radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study.Results: The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053 ± 0.036, 0.121 ± 0.023, and 0.093 ± 0.013 cm.Conclusions: The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.

  13. Scaling Considerations in Ground State Quantum Computation

    E-Print Network [OSTI]

    Ari Mizel; M. W. Mitchell; Marvin L. Cohen

    2000-07-02T23:59:59.000Z

    We study design challenges associated with realizing a ground state quantum computer. In such a computer, the energy gap between the ground state and first excited state must be sufficiently large to prevent disruptive excitations. Here, an estimate is provided of this gap as a function of computer size. We then address the problem of detecting the output of a ground state quantum computer. It is shown that the exponential detection difficulties that appear to be present at first can be overcome in a straightforward manner by small design changes.

  14. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect (OSTI)

    Kasevich, R.S.; Vaux, W. [KAI Technologies, Inc., Portsmouth, NH (United States); Ulerich, N. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Nocito, T. [Ohio DSI Corporation, New York (New York)

    1996-12-31T23:59:59.000Z

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed. The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.

  15. Electromagnetic properties of Bi-2223/Ag concentric tapes

    SciTech Connect (OSTI)

    Majoros, M.; Polak, M.; Kvitkovic, J.; Suchon, D. [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Electrical Engineering] [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Electrical Engineering; Martini, L.; Ottoboni, V.; Zannella, S. [CISE SpA, Segrate (Italy)] [CISE SpA, Segrate (Italy)

    1996-07-01T23:59:59.000Z

    It is well established that near the silver interface highly textured Bi-2223 layers compared to the inner ceramic core may be obtained. Thus Bi-2223 multilayered concentric tapes with silver matrix are very promising in increasing transport critical current densities. In the present work the authors report on the electromagnetic characterization of short tapes having in their cross-section a very thin HTS flattened ring with Ag inside and outside of it. The samples were prepared by the powder in tube method and have self-field critical current densities J{sub c} of the order of 3 {times} 10{sup 4} A/cm{sup 2} at 77 K. Transport and SQUID magnetization measurements revealed weak link nature of the samples in low magnetic fields. Large transport J{sub c}(B) hysteresis was observed at 4.2 K and magnetic fields up to 20 T. Magnetic field profiles measurements with miniature Hall sensors are in qualitative accordance with model calculations supposing homogeneous current density distribution across the superconducting core.

  16. Nature and Quantization of the Proton Mass: An Electromagnetic Model

    E-Print Network [OSTI]

    G. Sardin

    2005-12-14T23:59:59.000Z

    A method for quantization of the proton mass is here addressed, which provides a plausible explanation for the origin of mass and leads to the unification of mass and electric charge through their coupling. By means of an electromagnetic approach, the calculated mass of the proton closely approximates its experimental value and does so with dependence on a single parameter. That is to say, the proposed fundamental system provides a way to comprehend the source of mass as a property of the structure of elementary particles. It brings a new tool to the task of gaining insight into the proton mass and to unravelling the enigma of proton stability. The inner energy of elementary particles, or equivalently their mass, is surmised here to have electrodynamic roots, deriving from the dynamics of a single or pair of electric charge(s) shaping out their structure. Mass appears as the quantized balance of two inner energies which conform collapsing action and retentive reaction. Charge and mass are not taken as independent entities as in the traditional mode, instead mass appears as a by-product of the charge structural dynamics, as does the magnetic moment. The proposed model clearly requires a degree of willingness to consider possibilities not accounted for within the framework of the Standard Model. So, this proposal is addressed to those who are open to inspect a different look at the structure of elementary particles and disposed to compare the two approaches, standing out of doctrinal captivity.

  17. Conceptual design for the STAR barrel electromagnetic calorimeter support rings

    SciTech Connect (OSTI)

    Bielick, E.; Fornek, T.; Spinka, H.; Underwood, D.

    1994-02-15T23:59:59.000Z

    The STAR electromagnetic calorimeter (EMC) will be used to measure the energy of photons and electrons from collisions of beams of particles in the RHIC accelerator under construction at Brookhaven National Laboratory. The present design is documented in the EMC Conceptual Design Report, and consists of a cylindrical barrel and two flat endcap calorimeter sections. The barrel EMC will consist of 120 modules, each subtending 6{degrees} in azimuthal angle about the beam ({phi}), and half the barrel length. Each module will be subdivided into ``towers`` of alternating scintillator and lead, which project to the nominal interaction point. There is a strong coupling between the designs for the EMC and for the conventional solenoidal magnet, which will be located immediately outside the barrel EMC. For example, the inner radius of the magnet must be minimized to lower costs and to reduce the STAR detector`s outer diameter to fit within constraints of the existing detector building. This condition requires the calorimeter modules to be just thick enough to accomplish physics goals and to support their weight with small deflections. This note describes progress in the design of the EMC support rings. Several ring designs and methods of construction have been considered. In addition, installation and alignment problems for both the rings and the rails have been considered in more depth. Finally, revised stress calculations for the recommended ring designs have been performed. Most of this work has been done in close collaboration with the STAR magnet subgroup.

  18. Proceedings of the National Groundwater National Ground Water Association Southwest focused ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA, June 3-4, pp:87-90.

    E-Print Network [OSTI]

    ground water conference: Discussing the issue of MTBE and perchlorate in the ground water, Anaheim, CA

  19. Low-cost electromagnetic tagging : design and implementation

    E-Print Network [OSTI]

    Fletcher, Richard R. (Richard Ribon)

    2002-01-01T23:59:59.000Z

    Several implementations of chipless RFID (Radio Frequency Identification) tags are presented and discussed as low-cost alternatives to chip-based RFID tags and sensors. An overview of present-day near-field electromagnetic ...

  20. Symmetry aspects of fermions coupled to torsion and electromagnetic fields

    E-Print Network [OSTI]

    J. L. Boldo; C. A. G. Sasaki

    2002-09-24T23:59:59.000Z

    We study and explore the symmetry properties of fermions coupled to dynamical torsion and electromagnetic fields. The stability of the theory upon radiative corrections as well as the presence of anomalies are investigated.

  1. Electromagnetic Extraction and Annihilation of Antiprotons for Spacecraft Propulsion

    E-Print Network [OSTI]

    . Zayas, Raymond J. Sedwick May, 2008 SSL # 3-08 #12;#12;Electromagnetic Extraction and Annihilation of Antiprotons for Spacecraft Propulsion Daniel A. Zayas, Raymond J. Sedwick May, 2008 SSL # 3-08 This work

  2. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators

    E-Print Network [OSTI]

    Kohen, Stephen Michael, 1980-

    2004-01-01T23:59:59.000Z

    Finite-element numerical modeling and analysis of electromagnetic waveguides and resonators used in terahertz (THz) quantum cascade lasers (QCLs) is presented. Simulations and analysis of two types were performed: ...

  3. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon

    E-Print Network [OSTI]

    Gao, Hongjun

    , electrically conducting polymer composites have gained popularity recently because of their light weight (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI) of a composite material depends on many factors, including the filler's intrinsic conductivity, dielectric

  4. Design Optimization of electromagnetic actuator by genetic algorithm

    E-Print Network [OSTI]

    ELBEZ

    2008-02-26T23:59:59.000Z

    condition in the design or in the optimization of electromagnetic ... propose a new approach to optimize linear actuator. This new .... derivative of the stored magnetic energy with respect ..... H. Poorzahedy “Hybrid meta-heuristic algorithms.

  5. A scalable electro-magnetic communication system for underwater swarms

    E-Print Network [OSTI]

    Zimmer, Uwe

    A scalable electro-magnetic communication system for underwater swarms Felix Schill 1 Uwe R. Zimmer for communication is small compared to propulsion requirements. Communication of state information can there- fore

  6. A dual polarized x-band pulse radar for ground based electromagnetic scattering experiment / by Allen William White

    E-Print Network [OSTI]

    White, Allen William

    1978-01-01T23:59:59.000Z

    of Report II. THE XBR SCATTEROMETER DESIGN Summary Design Objectives XBR Scatterometer Design: Phase I XBR Scatterometer Design: Phase II XBR Scatterometer Design: Phase III III. THE XBR SCATTEROMETER ANTENNAS Summary The Microwave Antenna Antenna... SCATTEROMETER ANTENNA POWER RADIATION PATTERNS APPENDIX C ? XBR SCATTEROMETER AUXILIARY EQUIPMENT P~ae 156 163 165 167 171 173 175 179 187 208 LIST OF TABLES Table II-1 II I-1 IV-1 IV-2 Scatterometer Design Characteristics...

  7. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1987-01-01T23:59:59.000Z

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  8. Horizontal electromagnetic casting of thin metal sheets

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

    1988-01-01T23:59:59.000Z

    Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

  9. Electromagnetic anti-jam telemetry tool

    DOE Patents [OSTI]

    Ganesan, Harini (Sugar Land, TX); Mayzenberg, Nataliya (Missouri City, TX)

    2008-02-12T23:59:59.000Z

    A mud-pulse telemetry tool includes a tool housing, a motor disposed in the tool housing, and a magnetic coupling coupled to the motor and having an inner shaft and an outer shaft. The tool may also include a stator coupled to the tool housing, a restrictor disposed proximate the stator and coupled to the magnetic coupling, so that the restrictor and the stator adapted to generate selected pulses in a drilling fluid when the restrictor is selectively rotated. The tool may also include a first anti-jam magnet coupled to the too housing, and an second anti-jam magnet disposed proximate the first anti-jam magnet and coupled to the inner shaft and/or the outer shaft, wherein at least one of the first anti-jam magnet and the second anti-jam magnet is an electromagnet, and wherein the first anti-jam magnet and the second anti-jam magnet are positioned with adjacent like poles.

  10. Nucleon Structure Studies with Electromagnetic Probes

    SciTech Connect (OSTI)

    Vineyard, Michael F.

    2011-03-31T23:59:59.000Z

    Summarized in this report is the progress achieved during the period from March 1, 2008 to June 14, 2009 under contract number DE-FG02-03ER41252. This is the final technical report under this contract. The experimental work described here is part of the electromagnetic nuclear physics program of the CEBAF Large Acceptance Spectrometer (CLAS) Collaboration at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) that published 17 journal articles during the period of this report. One of these journal articles reported on the results of precise measurements of the neutron magnetic form factor. I was a spokesperson on this experiment and the publication of these results is the culmination of years of effort by a small subset of the CLAS Collaboration. As usual, undergraduate students were involved in all aspects of this work. Three Union College students participated in this program during the window of this report and one presented a paper on his work at the 2009 National Conference on Undergraduate Research (NCUR22). In this report, I discuss recent progress on the measurements of the neutron magnetic form factor and describe my service work for the CLAS Collaboration.

  11. Binary power multiplier for electromagnetic energy

    DOE Patents [OSTI]

    Farkas, Zoltan D. (203 Leland Ave., Menlo Park, CA 94025)

    1988-01-01T23:59:59.000Z

    A technique for converting electromagnetic pulses to higher power amplitude and shorter duration, in binary multiples, splits an input pulse into two channels, and subjects the pulses in the two channels to a number of binary pulse compression operations. Each pulse compression operation entails combining the pulses in both input channels and selectively steering the combined power to one output channel during the leading half of the pulses and to the other output channel during the trailing half of the pulses, and then delaying the pulse in the first output channel by an amount equal to half the initial pulse duration. Apparatus for carrying out each of the binary multiplication operation preferably includes a four-port coupler (such as a 3 dB hybrid), which operates on power inputs at a pair of input ports by directing the combined power to either of a pair of output ports, depending on the relative phase of the inputs. Therefore, by appropriately phase coding the pulses prior to any of the pulse compression stages, the entire pulse compression (with associated binary power multiplication) can be carried out solely with passive elements.

  12. Calibrating Accelerometers Using an Electromagnetic Launcher

    SciTech Connect (OSTI)

    Erik Timpson

    2012-05-13T23:59:59.000Z

    A Pulse Forming Network (PFN), Helical Electromagnetic Launcher (HEML), Command Module (CM), and Calibration Table (CT) were built and evaluated for the combined ability to calibrate an accelerometer. The PFN has a maximum stored energy of 19.25 kJ bank and is fired by a silicon controlled rectifier (SCR), with appropriate safety precautions. The HEML is constructed out of G-10 fiberglass and is designed to accelerate 600 grams to 10 meters per second. The CM is microcontroller based running Arduino Software. The CM has a keypad input and 7 segment outputs of the bank voltage and desired voltage. After entering a desired bank voltage, the CM controls the charge of the PFN. When the two voltages are equal it allows the fire button to send a pulse to the SCR to fire the PFN and in turn, the HEML. The HEML projectile's tip hits a target that is held by the CT. The CT consists of a table to hold the PFN and HEML, a vacuum chuck, air bearing, velocity meter and catch pot. The Target is held with the vacuum chuck awaiting impact. After impact, the air bearing allows the target to fall freely for the velocity meter to get an accurate reading. A known acceleration is determined from the known change in velocity of the target. Thus, if an accelerometer was attached to the target, the measured value can be compared to the known value.

  13. Electromagnetic Studies of Mesons, Nucleons, and Nuclei

    SciTech Connect (OSTI)

    Baker, Oliver K.

    2013-08-20T23:59:59.000Z

    Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.

  14. Design of high temperature high speed electromagnetic axial thrust bearing

    E-Print Network [OSTI]

    Mohiuddin, Mohammad Waqar

    2002-01-01T23:59:59.000Z

    DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2002 Major Subject: Mechanical Engineering DESIGN OF HIGH TEMPERATURE HIGH SPEED ELECTROMAGNETIC AXIAL THRUST BEARING A Thesis by MOHAMMAD WAQAR MOHIUDDIN Submitted to Texas A&M University in partial fulfillment...

  15. The universal C*-algebra of the electromagnetic field

    E-Print Network [OSTI]

    Buchholz, Detlev; Ruzzi, Giuseppe; Vasselli, Ezio

    2015-01-01T23:59:59.000Z

    A universal C*-algebra of the electromagnetic field is constructed. It is represented in any quantum field theory which incorporates electromagnetism and expresses basic features of this field such as Maxwell's equations, Poincar\\'e covariance and Einstein causality. Moreover, topological properties of the field resulting from Maxwell's equations are encoded in the algebra, leading to commutation relations with values in its center. The representation theory of the algebra is discussed with focus on vacuum representations, fixing the dynamics of the field.

  16. Rydberg Atoms Ionisation by Microwave Field and Electromagnetic Pulses

    E-Print Network [OSTI]

    B. Kaulakys; G. Vilutis

    1995-04-10T23:59:59.000Z

    A simple theory of the Rydberg atoms ionisation by electromagnetic pulses and microwave field is presented. The analysis is based on the scale transformation which reduces the number of parameters and reveals the functional dependencies of the processes. It is shown that the observed ionisation of Rydberg atoms by subpicosecond electromagnetic pulses scale classically. The threshold electric field required to ionise a Rydberg state may be simply evaluated in the photonic basis approach for the quantum dynamics or from the multiphoton ionisation theory.

  17. Fast dynamic force computation for electrostatic and electromagnetic conductors

    E-Print Network [OSTI]

    Koteeswaran, Prabhavathi

    2005-02-17T23:59:59.000Z

    FAST DYNAMIC FORCE COMPUTATION FOR ELECTROSTATIC AND ELECTROMAGNETIC CONDUCTORS AThesis by PRABHAVATHI KOTEESWARAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2004 Major Subject: Computer Engineering FAST DYNAMIC FORCE COMPUTATION FOR ELECTROSTATIC AND ELECTROMAGNETIC CONDUCTORS AThesis by PRABHAVATHI KOTEESWARAN Submitted to Texas A&M University in partial fulfillment...

  18. Thickness estimation of subsurface layers in asphalt pavement using monstatic ground penetrating radar

    E-Print Network [OSTI]

    Lau, Chun Lok

    1991-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE December 1991 Major Subject: Electrical Engineering THICKNESS ESTIMATION OF SUBSURFACE LAYERS IN ASPHALT PAVEMENT USING MONSTATIC GROUND PENETRATING RADAR A Thesis CHUN LOK LAU Approved as to style and content by... ACKNOWLEDGEMENTS. LIST OF FIGURES. . CHAPTER I INTRODUCTION. 1. 1 Importance of pavement profile data. 1. 2 Principle of Ground Penetrating Radar (GPR) . . . 1. 3 Subsurface layer thickness measurement method. . . . . . II GPR ANTENNA AND SYSTEM CALIBRATION...

  19. Grounding linguistic analysis in control applications

    E-Print Network [OSTI]

    Branavan, Satchuthananthavale Rasiah Kuhan

    2012-01-01T23:59:59.000Z

    This thesis addresses the problem of grounding linguistic analysis in control applications, such as automated maintenance of computers and game playing. We assume access to natural language documents that describe the ...

  20. Above Ground Storage Tank (AST) Inspection Form

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name.ehs.cornell.edu/env/bulk-material-storage/petroleum-bulk-storage/Documents/AST_Inspection_Form.pdf #12;

  1. Ground Water Protection Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The purpose of the Ground Water Protection Act is to provide substantive provisions and funding mechanisms to the extent that funds are available to enable the state to take corrective action at...

  2. Building an entanglement measure on physical ground

    E-Print Network [OSTI]

    D. Teresi; A. Napoli; A. Messina

    2008-05-28T23:59:59.000Z

    We introduce on physical grounds a new measure of multipartite entanglement for pure states. The function we define is discriminant and monotone under LOCC and moreover can be expressed in terms of observables of the system.

  3. International Borders, Ground Water Flow, and Hydroschizophrenia

    E-Print Network [OSTI]

    Wolf, Aaron

    International Borders, Ground Water Flow, and Hydroschizophrenia by Todd Jarvis1,2, Mark Giordano3 of Geosciences, 104 Wilkinson Hall, Corvallis, OR 97331 2Corresponding author: todd.jarvis@oregonstate.edu 3

  4. Commonality of ground systems in launch operations

    E-Print Network [OSTI]

    Quinn, Shawn M

    2008-01-01T23:59:59.000Z

    NASA is examining the utility of requiring a certain degree of commonality in both flight and ground systems in the Constellation Program. While the benefits of commonality seem obvious in terms of minimizing upfront ...

  5. Ground rubber: Reactive permeable barrier sorption media

    SciTech Connect (OSTI)

    Kershaw, D.S.; Pamukcu, S. [Lehigh Univ., Bethlehem, PA (United States)

    1997-12-31T23:59:59.000Z

    The objective of this research was to examine the feasibility of using ground tire rubber as a sorbent media in reactive permeable barrier systems. Previous research by the current authors has demonstrated that tire rubber can sorb significant quantities of benzene, toluene, ethylbenzene and O-xylene from aqueous solutions. The current research was run to examine the usage rate of ground rubber in a packed bed reactor under specific contact times. In addition, desorption and repetitive sorption tests were run to determine the reversibility of the sorption process for ground tire rubber. These tests were run to determine the regeneration capacity of ground tire rubber. Results of the study show that the usage rates are greater than 50% with an empty bed contact times of 37 minutes, and minimal amounts of energy are needed to regenerate the tire rubber after use.

  6. A new spectral method for numerical solution of the unbounded ...

    E-Print Network [OSTI]

    Ying He

    2014-08-01T23:59:59.000Z

    Jul 23, 2014 ... 0 physically accounts for energy absorption and ...... We plan to extend the method to the electromagnetic wave scattering by unbounded rough surfaces, ... Scattering and Inverse Scattering in Pure and Applied Science,.

  7. The effects of lightning and high altitude electromagnetic pulse on power distribution lines

    SciTech Connect (OSTI)

    Uman, M.A.; Rubinstein, M.; Yacoub, Z. [Florida Univ., Gainesville, FL (United States)

    1995-01-01T23:59:59.000Z

    We simultaneously recorded the voltages induced by lightning on both ends of an unenergized 448-meter long unenergized electric power line and the lightning vertical electric and horizontal magnetic fields at ground level near the line. The lightning data studied and presented here were due both to cloud lightning and to very close (about 20 m from the line) artificially initiated lightning. For cloud sources, a frequency-domain computer program called EMPLIN was used to calculate induced line voltages as a function of source elevation, angle of incidence, and wave polarization of the radiated cloud discharge pulses in order to compare with the measurements. For very-close lightning, the measured line voltages could be grouped into two categories, those in which multiple, similarly shaped, evenly spaced pulses were observed, which we call oscillatory, and those dominated by a principal pulse with subsidiary oscillations of much smaller amplitude, which we call impulsive. The amplitude of the induced voltage ranged from tens of kilovolts for oscillatory voltages to hundreds of kilovolts for impulsive voltages. A new technique is derived for the calculation of the electromagnetic fields from nearby lightning to ground above an imperfectly conducting ground. This technique was used in conjunction with an existing time domain coupling theory and lightning return stroke model to calculate voltages at either end of the line. The results show fair agreement with the measured oscillatory voltage waveforms if corona is ignored and improved results when corona effects are modeled. The modeling of the impulsive voltage, for which local flashover probably successful. In an attempt to understand better the sources of the line voltages for very close lightning, measurements of the horizontal and vertical electric fields 30 m from triggered lightning were obtained.

  8. Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials

    SciTech Connect (OSTI)

    Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu [Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, School of Computer and Communication, Hunan University, Changsha 410082 (China)

    2010-02-15T23:59:59.000Z

    We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.

  9. Nuclear electromagnetic pulse and the electric power system

    SciTech Connect (OSTI)

    Legro, J.R.; Reed, T.J.

    1985-01-01T23:59:59.000Z

    A single, high-altitude nuclear detonation over the continental United States can expose large geographic areas to transient, electromagnetic pulse (EMP). The initial electromagnetic fields produced by this event have been defined as high-altitude electromagnetic pulse (HEMP). Later-time, low frequency fields have been defined as magnetohydrodynamic-electromagnetic pulse (MHD-EMP). Nuclear detonations at, or near the surface of the earth can also produce transient EMP. These electromagnetic phenomena have been defined as source region electromagnetic pulse (SREMP). The Division of Electric Energy Systems (EES) of the United States Department of Energy (DOE) has formulated and implemented a Program Plan to assess the possible effects of the above nuclear EMP on civilian electric power systems. This unclassified research effort is under the technical leadership of the Oak Ridge National Laboratory. This paper presents a brief perspective of EMP phenomenology and important interaction issues for power systems based on research performed by Westinghouse Advanced Systems Technology as a principal subcontractor in the research effort.

  10. MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP

    E-Print Network [OSTI]

    MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS Thesis Approved by: Dr.................................................................................................................... 16 MODELING OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS

  11. Journal of Educational Psychology Applying Grounded Coordination Challenges to Concrete

    E-Print Network [OSTI]

    Journal of Educational Psychology Applying Grounded Coordination Challenges to Concrete Learning, M. I. (2013, August 19). Applying Grounded Coordination Challenges to Concrete Learning Materials.1037/a0034098 #12;Applying Grounded Coordination Challenges to Concrete Learning Materials: A Study

  12. A model of ATL ground motion for storage rings

    E-Print Network [OSTI]

    Wolski, Andrzej; Walker, Nicholas J.

    2003-01-01T23:59:59.000Z

    A MODEL OF ATL GROUND MOTION FOR STORAGE RINGS A. WolskiMODEL OF ATL GROUND MOTION FOR STORAGE RINGS* A. Wolski # ,

  13. Department of Veterans Affairs, FONSI - Ground mounted solar...

    Office of Environmental Management (EM)

    Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National...

  14. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis from Ground Source Heat Pump Demonstration Projects Data Analysis from Ground Source Heat Pump Demonstration Projects Comparison of building energy use before and after...

  15. Fuel Cell Council Working Group on Aircraft and Aircraft Ground...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications Fuel Cell Council Working Group on Aircraft and Aircraft Ground Support Fuel Cell Applications...

  16. Ball State University Completes Nation's Largest Ground-Source...

    Office of Environmental Management (EM)

    University Completes Nation's Largest Ground-Source Geothermal System with Support from Recovery Act Ball State University Completes Nation's Largest Ground-Source Geothermal...

  17. GROUND PLANE INSULATION FAILURE IN THE FIRST TPC SUPERCONDUCTING COIL

    E-Print Network [OSTI]

    Green, M.A.

    2010-01-01T23:59:59.000Z

    is WIUUTEO GROUND PLANE INSULATION FAILURE IN THE FIRST TPCOn August 27, 1980, an insulation failure occurred dt-ringby a failure uf ground plane insulation. ACKNOWLEDGMENTS The

  18. Using ISS Telescopes for Electromagnetic Follow-up of Gravitational Wave Detections of NS-NS and NS-BH Mergers

    E-Print Network [OSTI]

    Jordan Camp; Scott D. Barthelmy; Lindy Blackburn; Kenneth Carpenter; Neil Gehrels; Jonah Kanner; Frank E. Marshall; Judith L. Racusin; Takanori Sakamoto

    2013-04-12T23:59:59.000Z

    The International Space Station offers a unique platform for rapid and inexpensive deployment of space telescopes. A scientific opportunity of great potential later this decade is the use of telescopes for the electromagnetic follow-up of ground-based gravitational wave detections of neutron star and black hole mergers. We describe this possibility for OpTIIX, an ISS technology demonstration of a 1.5 m diffraction limited optical telescope assembled in space, and ISS-Lobster, a wide-field imaging X-ray telescope now under study as a potential NASA mission. Both telescopes will be mounted on pointing platforms, allowing rapid positioning to the source of a gravitational wave event. Electromagnetic follow-up rates of several per year appear likely, offering a wealth of complementary science on the mergers of black holes and neutron stars.

  19. Scalar and Electromagnetic Quasinormal modes of Extended black hole in F(R) gravity

    E-Print Network [OSTI]

    Saneesh Sebastian; V. C. Kuriakose

    2014-08-05T23:59:59.000Z

    In this paper we study the scalar and electromagnetic perturbations of an extended black hole in F(R) gravity. The quasinormal modes in two cases are evaluated and studied their behavior by plotting graphs in each case. To study the quasinormal mode, we use the third order WKB method. The present study shows that the absolute value of imaginary part of complex quasinormal modes increases in both cases, thus the black hole is stable against these perturbations. As the mass of the scalar field increases the imaginary part of the frequency decreases. Thus damping slows down with increasing mass of the scalar field.

  20. Extinction theorem and propagation of electromagnetic waves between two semi-infinite anisotropic magnetoelectric materials

    E-Print Network [OSTI]

    Weixing Shu; Zhongzhou Ren; Hailu Luo; Fei Li; Qin Wu

    2006-10-11T23:59:59.000Z

    Based on molecular optics we investigate the reflection and refraction of an electromagnetic wave between two semi-infinite anisotropic magnetoelectric materials. In terms of Hertz vectors and the principle of superposition, we generalize the extinction theorem and derive the propagation characteristics of wave. Using these results we can easily explain the physical origin of Brewster effect. Our results extend the extinction theorem to the propagation of wave between two arbitrary anisotropic materials and the methods used can be applied to other problems of wave propagation in materials, such as scattering of light.

  1. Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system

    E-Print Network [OSTI]

    R. P. Abel; A. K. Mohapatra; M. G. Bason; J. D. Pritchard; K. J. Weatherill; U. Raitzsch; C. S. Adams

    2009-03-05T23:59:59.000Z

    We demonstrate laser frequency stabilization to excited state transitions using cascade electromagnetically induced transparency (EIT). Using a room temperature Rb vapor cell as a reference, we stabilize a first diode laser to the D2 transition and a second laser to a transition from the intermediate state to a Rydberg state with principal quantum number n=19 - 70. A combined laser linewidth of 280 kHz over a 0.1 ms time period is achieved. This method may be applied generally to any cascade system and allows laser stabilization to an atomic reference in the absence of strong optical transitions.

  2. Pulse retrieval and soliton formation in a non-standard scheme for dynamic electromagnetically induced transparency

    E-Print Network [OSTI]

    Amy Peng; Mattias Johnsson; Joseph J. Hope

    2004-11-09T23:59:59.000Z

    We examine in detail an alternative method of retrieving the information written into an atomic ensemble of three-level atoms using electromagnetically induced transparency. We find that the behavior of the retrieved pulse is strongly influenced by the relative collective atom-light coupling strengths of the two relevant transitions. When the collective atom-light coupling strength for the retrieval beam is the stronger of the two transitions, regeneration of the stored pulse is possible. Otherwise, we show the retrieval process can lead to creation of soliton-like pulses.

  3. Slow light of an amplitude modulated Gaussian pulse in electromagnetically induced transparency medium

    E-Print Network [OSTI]

    Wenzhuo Tang; Bin Luo; Yu Liu; Hong Guo

    2009-01-20T23:59:59.000Z

    The slow light effects of an amplitude modulated Gaussian (AMG) pulse in a cesium atomic vapor are presented. In a single-$\\Lambda$ type electromagnetically induced transparency (EIT) medium, more severe distortion is observed for an AMG pulse than a Gaussian one. Using Fourier spectrum analysis, we find that the distortion, as well as the loss, is dominantly caused by linear absorption than dispersion. Accordingly, a compensation method is proposed to reshape the slow light pulse based on the transmission spectrum. In addition, we find a novel way to obtain simultaneous slow and fast light.

  4. Development of an international standard for electromagnetic interference (EMI)/radio frequency interference (RFI)

    SciTech Connect (OSTI)

    Sarylov, V. [EMC Test Center, NUIT, FSUE RIPT, Moscow (Russian Federation); Shumov, S. [FSUE SEC SNIIP, Moscow (Russian Federation); Quinn, E. [ANS, Dana Point, CA (United States)

    2006-07-01T23:59:59.000Z

    This paper covers the development of an international standard that establishes the requirements for electromagnetic compatibility testing of instrumentation and control equipment supplied for use in systems important to safety at nuclear power plants. The standard lists the applicable IEC standards (principally the IEC 61000 series) which define the general test methods, and provides the necessary application-specific parameters and criteria to ensure that nuclear safety requirements are met. This standard was prepared with the leadership by the Russian National Committee representatives to the International Electrotechnical Commission (IEC). (authors)

  5. Final Technical Report for "Applied Mathematics Research: Simulation Based Optimization and Application to Electromagnetic Inverse Problems"

    SciTech Connect (OSTI)

    Haber, Eldad

    2014-03-17T23:59:59.000Z

    The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequal- ity constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.

  6. Precipitation of radiation belt electrons by EMIC waves, observed from ground and space

    SciTech Connect (OSTI)

    Jordanova, Vania K [Los Alamos National Laboratory; Miyoski, Y [NAGOYA UNIV; Sakaguchi, K [NAGOYA UNIV; Shiokawa, K [NAGOYA UNIV; Evans, D S [NOAA, BOULDER; Albert, Jay [AFRL; Connors, M [UNIV OF ATHABASCA

    2008-01-01T23:59:59.000Z

    We show evidence that left-hand polarised electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere. Our unique set of ground and satellite observations shows coincident precipitation of ions with energies of tens of keY and of relativistic electrons into an isolated proton aurora. The coincident precipitation was produced by wave-particle interactions with EMIC waves near the plasmapause. The estimation of pitch angle diffusion coefficients supports that the observed EMIC waves caused coincident precipitation ofboth ions and relativistic electrons. This study clarifies that ions with energies of tens of ke V affect the evolution of relativistic electrons in the radiation belts via cyclotron resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  7. Dynamics of slow light and light storage in a Doppler-broadened electromagnetically-induced-transparency medium: A numerical approach

    SciTech Connect (OSTI)

    Su, Shih-Wei; Chen, Yi-Hsin; Yu, Ite A. [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Gou, Shih-Chuan [Department of Physics, National Changhua University of Education, Changhua 50058, Taiwan (China); Horng, Tzyy-Leng [Department of Applied Mathematics, Feng Chia University, Taichung 40074, Taiwan (China)

    2011-01-15T23:59:59.000Z

    We present a numerical scheme to study the dynamics of slow light and light storage in an electromagnetically-induced-transparency (EIT) medium at finite temperatures. Allowing for the motional coupling, we derive a set of coupled Schroedinger equations describing a boosted closed three-level EIT system according to the principle of Galilean relativity. The dynamics of a uniformly moving EIT medium can thus be determined by numerically integrating the coupled Schroedinger equations for atoms plus one ancillary Maxwell-Schroedinger equation for the probe pulse. The central idea of this work rests on the assumption that the loss of ground-state coherence at finite temperatures can be ascribed to the incoherent superposition of density matrices representing the EIT systems with various velocities. Close agreements are demonstrated in comparing the numerical results with the experimental data for both slow light and light storage. In particular, the distinct characters featuring the decay of ground-state coherence can be well verified for slow light and light storage. This warrants that the current scheme can be applied to determine the decaying profile of the ground-state coherence as well as the temperature of the EIT medium.

  8. Spontaneous excitation of a circularly accelerated atom coupled to electromagnetic vacuum fluctuations

    SciTech Connect (OSTI)

    Jin, Yao; Hu, Jiawei [Institute of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Institute of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China)

    2014-05-15T23:59:59.000Z

    We study, using the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji, the contributions of the vacuum fluctuation and radiation reaction to the rate of change of the mean atomic energy for a circularly accelerated multilevel atom coupled to vacuum electromagnetic fields in the ultrarelativistic limit. We find that the balance between vacuum fluctuation and radiation reaction is broken, which causes spontaneous excitations of accelerated ground state atoms in vacuum. Unlike for a circularly accelerated atom coupled to vacuum scalar fields, the contribution of radiation reaction is also affected by acceleration, and this term takes the same form as that of a linearly accelerated atom coupled to vacuum electromagnetic fields. For the contribution of vacuum fluctuations, we find that in contrast to the linear acceleration case, terms proportional to the Planckian factor are replaced by those proportional to a non-Planck exponential term, and this indicates that the radiation perceived by a circularly orbiting observer is no longer thermal as is in the linear acceleration case. However, for an ensemble of two-level atoms, an effective temperature can be defined in terms of the atomic transition rates, which is found to be dependent on the transition frequency of the atom. Specifically, we calculate the effective temperature as a function of the transition frequency and find that in contrast to the case of circularly accelerated atoms coupled to the scalar field, the effective temperature in the current case is always larger than the Unruh temperature. -- Highlights: •We study the spontaneous excitation of a circularly accelerated atom. •Contribution of radiation reaction to the excitation is affected by acceleration. •The radiation perceived by a circularly orbiting observer is no longer thermal. •An effective temperature can be defined in terms of atomic transition rates. •Effective temperature is larger than Unruh temperature and frequency-dependent.

  9. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect (OSTI)

    Tesche, F.M. [Tesche (F.M.), Dallas, TX (United States); Barnes, P.R. [Oak Ridge National Lab., TN (United States); Meliopoulos, A.P.S. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Electrical Engineering

    1992-02-01T23:59:59.000Z

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  10. Module Grounding Module grounding still continues to be an issue with many

    E-Print Network [OSTI]

    Johnson, Eric E.

    by leaps and bounds. New module and inverter manufacturers are entering the market, and the number of PV that will be used with transformerless inverters, and those systems will not have a grounded PV DC conductor. (See so, as PV installers attempt to reduce the time and materials required to ground modules

  11. Non-dissipative electromagnetic media with two Lorentz null cones

    SciTech Connect (OSTI)

    Dahl, Matias F., E-mail: matias.dahl@aalto.fi

    2013-03-15T23:59:59.000Z

    We study Maxwell's equations on a 4-manifold where the electromagnetic medium is modeled by an antisymmetric (2/2 )-tensor with 21 real coefficients. In this setting the Fresnel surface is a fourth-order polynomial surface that describes the dynamical response of the medium in the geometric optics limit. For example, in an isotropic medium the Fresnel surface is a Lorentz null cone. The contribution of this paper is the pointwise description of all electromagnetic medium tensors {kappa} with real coefficients that satisfy the following three conditions: (i)medium {kappa} is invertible, (ii)medium {kappa} is skewon-free, or non-dissipative, (iii)the Fresnel surface of {kappa} is the union of two distinct Lorentz null cones. We show that there are only three classes of media with these properties and give explicit expressions in local coordinates for each class. - Highlights: Black-Right-Pointing-Pointer We find two new electromagnetic media classes for which the Fresnel surface decomposes into two light cones. Black-Right-Pointing-Pointer In a suitable setting we classify all electromagnetic media where this is the case. Black-Right-Pointing-Pointer We find an electromagnetic medium tensor with three different signal speeds in one direction. Black-Right-Pointing-Pointer The work is related to [5], which classifies all media with one light cone (in a suitable setting).

  12. Lattice p-Form Electromagnetism and Chain Field Theory

    E-Print Network [OSTI]

    Derek K. Wise

    2005-10-08T23:59:59.000Z

    Since Wilson's work on lattice gauge theory in the 1970s, discrete versions of field theories have played a vital role in fundamental physics. But there is recent interest in certain higher dimensional analogues of gauge theory, such as p-form electromagnetism, including the Kalb-Ramond field in string theory, and its nonabelian generalizations. It is desirable to discretize such `higher gauge theories' in a way analogous to lattice gauge theory, but with the fundamental geometric structures in the discretization boosted in dimension. As a step toward studying discrete versions of more general higher gauge theories, we consider the case of p-form electromagnetism. We show that discrete p-form electromagnetism admits a simple algebraic description in terms of chain complexes of abelian groups. Moreover, the model allows discrete spacetimes with quite general geometry, in contrast to the regular cubical lattices usually associated with lattice gauge theory. After constructing a suitable model of discrete spacetime for p-form electromagnetism, we quantize the theory using the Euclidean path integral formalism. The main result is a description of p-form electromagnetism as a `chain field theory' -- a theory analogous to topological quantum field theory, but with chain complexes replacing manifolds. This, in particular, gives a notion of time evolution from one `spacelike slice' of discrete spacetime to another.

  13. In-situ measurement of ground impedances Von der Fakultt fr Mathematik und Naturwissenschaften der Carl von Ossietzky

    E-Print Network [OSTI]

    Vormann, Matthias

    In-situ measurement of ground impedances Von der Fakultät für Mathematik und Naturwissenschaften .............................................................................................22 Summary: In-situ impedance measurement.Definitions..........................................................................................................................11 VI.Surface impedance measurement methods

  14. Laser-driven deflection arrangements and methods involving charged particle beams

    DOE Patents [OSTI]

    Plettner, Tomas (San Ramon, CA); Byer, Robert L. (Stanford, CA)

    2011-08-09T23:59:59.000Z

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  15. Projectile transverse motion and stability in electromagnetic induction launchers

    SciTech Connect (OSTI)

    Shokair, I.R.

    1993-12-31T23:59:59.000Z

    The transverse motion of a projectile in an electromagnetic induction launcher is considered. The equations of motion for translation and rotation are derived assuming a rigid projectile and a flyway restoring force per unit length that is proportional to the local displacement. Linearized transverse forces and torques due to energized coils are derived for displaced or tilted armature elements based on a first order perturbation method. The resulting equations of motion for a rigid projectile composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system of equations and a simple linear stability condition is derived. The equations of motion are incorporated into the 2-D Slingshot circuit code and numerical solutions for the transverse motion are obtained. For a launcher with a 10 cm bore radius with a 40 cm long solid armature, we find that stability is achieved with a restoring force (per unit length) constant of k {approx} 1 {times} 10{sup 8} N/m{sup 2}. For k = 1.5 {times} 10{sup 8} N/m{sup 2} and sample coil misalignment modeled as a sine wave of 1 mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a maximum of 4 mm. This growth is due to resonance between the natural frequency of the projectile transverse motion and the coil displacement wavelength. This resonance does not persist because of the changing axial velocity. Random coil displacement is also found to cause roughly the same projectile displacement. For the maximum displacement a rough estimate of the transverse pressure is 50 bars. Results for a wound armature with uniform current density throughout show very similar displacements.

  16. On the Pair Electromagnetic Pulse of a Black Hole with Electromagnetic Structure

    E-Print Network [OSTI]

    Remo Ruffini; Jay D. Salmonson; James R. Wilson; She-Sheng Xue

    1999-07-02T23:59:59.000Z

    We study the relativistically expanding electron-positron pair plasma formed by the process of vacuum polarization around an electromagnetic black hole (EMBH). Such processes can occur for EMBH's with mass all the way up to $6\\cdot 10^5M_\\odot$. Beginning with a idealized model of a Reissner-Nordstrom EMBH with charge to mass ratio $\\xi=0.1$, numerical hydrodynamic calculations are made to model the expansion of the pair-electromagnetic pulse (PEM pulse) to the point that the system is transparent to photons. Three idealized special relativistic models have been compared and contrasted with the results of the numerically integrated general relativistic hydrodynamic equations. One of the three models has been validated: a PEM pulse of constant thickness in the laboratory frame is shown to be in excellent agreement with results of the general relativistic hydrodynamic code. It is remarkable that this precise model, starting from the fundamental parameters of the EMBH, leads uniquely to the explicit evaluation of the parameters of the PEM pulse, including the energy spectrum and the astrophysically unprecedented large Lorentz factors (up to $6\\cdot 10^3$ for a $10^3 M_{\\odot}$ EMBH). The observed photon energy at the peak of the photon spectrum at the moment of photon decoupling is shown to range from 0.1 MeV to 4 MeV as a function of the EMBH mass. Correspondingly the total energy in photons is in the range of $10^{52}$ to $10^{54}$ ergs, consistent with observed gamma-ray bursts. In these computations we neglect the presence of baryonic matter which will be the subject of forthcoming publications.

  17. On the pair-electromagnetic pulse from an electromagnetic Black Hole surrounded by a Baryonic Remnant

    E-Print Network [OSTI]

    Remo Ruffini; Jay D. Salmonson; James R. Wilson; She-Sheng Xue

    2000-04-18T23:59:59.000Z

    The interaction of an expanding Pair-Electromagnetic pulse (PEM pulse) with a shell of baryonic matter surrounding a Black Hole with electromagnetic structure (EMBH) is analyzed for selected values of the baryonic mass at selected distances well outside the dyadosphere of an EMBH. The dyadosphere, the region in which a super critical field exists for the creation of electron-positron pairs, is here considered in the special case of a Reissner-Nordstrom geometry. The interaction of the PEM pulse with the baryonic matter is described using a simplified model of a slab of constant thickness in the laboratory frame (constant-thickness approximation) as well as performing the integration of the general relativistic hydrodynamical equations. The validation of the constant-thickness approximation, already presented in a previous paper Ruffini, et al.(1999) for a PEM pulse in vacuum, is here generalized to the presence of baryonic matter. It is found that for a baryonic shell of mass-energy less than 1% of the total energy of the dyadosphere, the constant-thickness approximation is in excellent agreement with full general relativistic computations. The approximation breaks down for larger values of the baryonic shell mass, however such cases are of less interest for observed Gamma Ray Bursts (GRBs). On the basis of numerical computations of the slab model for PEM pulses, we describe (i) the properties of relativistic evolution of a PEM pulse colliding with a baryonic shell; (ii) the details of the expected emission energy and observed temperature of the associated GRBs for a given value of the EMBH mass; 10^3 solar masses, and for baryonic mass-energies in the range 10^{-8} to 10^{-2} the total energy of the dyadosphere.

  18. Transverse electromagnetic horn antenna with resistively-loaded exterior surfaces

    DOE Patents [OSTI]

    Aurand, John F. (Edgewood, NM)

    1999-01-01T23:59:59.000Z

    An improved transverse electromagnetic (TEM) horn antenna comprises a resistive loading material on the exterior surfaces of the antenna plates. The resistive loading material attenuates or inhibits currents on the exterior surfaces of the TEM horn antenna. The exterior electromagnetic fields are of opposite polarity in comparison to the primary and desired interior electromagnetic field, thus inherently cause partial cancellation of the interior wave upon radiation or upon reception. Reducing the exterior fields increases the radiation efficiency of the antenna by reducing the cancellation of the primary interior field (supported by the interior surface currents). This increases the transmit gain and receive sensitivity of the TEM horn antenna, as well as improving the transient (time-domain) response.

  19. The momentum of an electromagnetic wave inside a dielectric

    SciTech Connect (OSTI)

    Testa, Massimo, E-mail: massimo.testa@roma1.infn.it

    2013-09-15T23:59:59.000Z

    The problem of assigning a momentum to an electromagnetic wave packet propagating inside an insulator has become known under the name of the Abraham–Minkowski controversy. In the present paper we re-examine this issue making the hypothesis that the forces exerted on an insulator by an electromagnetic field do not distinguish between polarization and free charges. Under this assumption we show that the Abraham expression for the radiation mechanical momentum is highly favored. -- Highlights: •We discuss an approximation to treat electrodynamics of a dielectric material. •We support the Abraham form for the electromagnetic momentum. •We deduce Snell’s law from the conservation of the Abraham momentum. •We show how to deal with the electric field discontinuity at the dielectric boundary.

  20. Surface electromagnetic wave equations in a warm magnetized quantum plasma

    SciTech Connect (OSTI)

    Li, Chunhua; Yang, Weihong [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Wu, Zhengwei, E-mail: wuzw@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, 230026 Hefei (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Center of Low Temperature Plasma Application, Yunnan Aerospace Industry Company, Kunming, 650229 Yunnan (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2014-07-15T23:59:59.000Z

    Based on the single-fluid plasma model, a theoretical investigation of surface electromagnetic waves in a warm quantum magnetized inhomogeneous plasma is presented. The surface electromagnetic waves are assumed to propagate on the plane between a vacuum and a warm quantum magnetized plasma. The quantum magnetohydrodynamic model includes quantum diffraction effect (Bohm potential), and quantum statistical pressure is used to derive the new dispersion relation of surface electromagnetic waves. And the general dispersion relation is analyzed in some special cases of interest. It is shown that surface plasma oscillations can be propagated due to quantum effects, and the propagation velocity is enhanced. Furthermore, the external magnetic field has a significant effect on surface wave's dispersion equation. Our work should be of a useful tool for investigating the physical characteristic of surface waves and physical properties of the bounded quantum plasmas.

  1. Electromagnetic gauge invariance of chiral hybrid quark models

    SciTech Connect (OSTI)

    Koepf, W.; Henley, E.M. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1994-04-01T23:59:59.000Z

    In this work, we investigate the question whether the conventional analysis of the electromagnetic form factors of the nucleon, evaluated in the framework of the cloudy bag model (CBM) or other chirally invariant hybrid quark models utilizing the same philosophy, is gauge invariant In order to address that point, we first formulate the CBM in a style that resembles the technique of loop integrals. Evaluating the self-energy and the electromagnetic form factors of the nucleon in that manner, and comparing with the standard analysis where nonrelativistic perturbation theory is used, allows us to show that our approach is appropriate and to point out what approximations are made in the standard derivation of the model. From the form of those loop integrals, we then show that additional diagrams are needed to preserve electromagnetic gauge invariance and we assess the corresponding corrections.

  2. Electromagnetic formation flight of satellite arrays

    E-Print Network [OSTI]

    Kwon, Daniel W., 1980-

    2005-01-01T23:59:59.000Z

    Proposed methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining ...

  3. Electromagnetic Modelling of Superconducting Sensor Designs

    E-Print Network [OSTI]

    Gerra, Guido

    and the Josephson effect, and an outline of some of the most common SQUID designs. Chapter 3 is dedicated to the computational method that has been employed in the simulations, along with the mathematical formalism adopted and the analytical formulae that have... . Mikhail Khapaev of Moscow State University [16]. Finite element methods are used in a wide range of engineering applications. The basic concept is to map what is usually a continuous function into a discrete set of values, thus enabling a computer...

  4. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Mike; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

    2012-02-01T23:59:59.000Z

    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.

  5. Statistics of the electromagnetic response of a chaotic reverberation chamber

    E-Print Network [OSTI]

    J. -B. Gros; U. Kuhl; O. Legrand; F. Mortessagne; O. Picon; E. Richalot

    2014-09-20T23:59:59.000Z

    This article presents a study of the electromagnetic response of a chaotic reverberation chamber (RC) in the presence of losses. By means of simulations and of experiments, the fluctuations in the maxima of the field obtained in a conventional mode-stirred RC are compared with those in a chaotic RC in the neighborhood of the Lowest Useable Frequency (LUF). The present work illustrates that the universal spectral and spatial statistical properties of chaotic RCs allow to meet more adequately the criteria required by the Standard IEC 61000-4-21 to perform tests of electromagnetic compatibility.

  6. The NA62 Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger

    E-Print Network [OSTI]

    V. Bonaiuto; A. Fucci; G. Paoluzzi; A. Salamon; G. Salina; E. Santovetti; F. Sargeni; F. M. Scarfi'

    2012-01-16T23:59:59.000Z

    The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the proposed measurement is represented by the K+ -> pi+ pi0 decay. To suppress this background an efficient photo veto system is foreseen. In the 1-10 mrad angular region the NA48 high performance liquid krypton electromagnetic calorimeter is used. The design, implementation and current status of the Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger are presented.

  7. The NA62 Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger

    E-Print Network [OSTI]

    Vincenzo Bonaiuto; Adolfo Fucci; Giovanni Paoluzzi; Andrea Salamon; Gaetano Salina; Emanuele Santovetti; Fausto Sargeni; Francesco M. Scarfi'

    2012-01-18T23:59:59.000Z

    The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the proposed measurement is represented by the K+ -> pi+ pi0 decay. To suppress this background an efficient photo veto system is foreseen. In the 1-10 mrad angular region the NA48 high performance liquid krypton electromagnetic calorimeter is used. The design, implementation and current status of the Liquid Krypton Electromagnetic Calorimeter Level 0 Trigger are presented.

  8. Evaluation of methodologies for estimating vulnerability to electromagnetic pulse effects

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    High-altitude electromagnetic pulse (EMP) is an electromagnetic radiation of very short rise time, large amplitude, and brief duration that follows a nuclear explosion above the atmosphere. The area over which a single EMP event is experienced can be very great if the explosion if high enough and large enough. Several such nuclear explosions might render unprotected electronic equipment and systems inoperative over an area as large as the continental United States. Damage may occur when high currents and voltages, driven by EMP, reach vital internal circuits. It is therefore essential to protect the systems and to form some idea of how well they will withstand EMP.

  9. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, S.B.

    1986-04-01T23:59:59.000Z

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  10. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOE Patents [OSTI]

    Kuznetsov, Stephen B. (Pittsburgh, PA)

    1986-01-01T23:59:59.000Z

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  11. Spectrally isomorphic Dirac systems: graphene in electromagnetic field

    E-Print Network [OSTI]

    Vit Jakubsky

    2014-12-02T23:59:59.000Z

    We construct the new one-dimensional Dirac Hamiltonians that are spectrally isomorphic (not isospectral) with the known exactly solvable models. Explicit formulas for their spectra and eigenstates are provided. The operators are utilized for description of Dirac fermions in graphene in presence of an inhomogeneous electromagnetic field. We discuss explicit, physically relevant, examples of spectrally isomorphic systems with both non-periodic and periodic electromagnetic barriers. In the latter case, spectrally isomorphic two- and three-gap systems associated with the Ablowitz-Kaup-Newell-Segur hierarchy are considered.

  12. Ground states and dynamics of spin-orbit-coupled Bose-Einstein condensates

    E-Print Network [OSTI]

    Weizhu Bao; Yongyong Cai

    2014-07-22T23:59:59.000Z

    We study analytically and asymptotically as well as numerically ground states and dynamics of two-component spin-orbit-coupled Bose-Einstein condensates (BECs) modeled by the coupled Gross-Pitaevskii equations (CGPEs). In fact, due to the appearance of the spin-orbit (SO) coupling in the two-component BEC with a Raman coupling, the ground state structures and dynamical properties become very rich and complicated. For the ground states, we establish the existence and non-existence results under different parameter regimes, and obtain their limiting behaviors and/or structures with different combinations of the SO and Raman coupling strengths. For the dynamics, we show that the motion of the center-of-mass is either non-periodic or with different frequency to the trapping frequency when the external trapping potential is taken as harmonic and the initial data is chosen as a stationary state (e.g. ground state) with a shift, which is completely different from the case of a two-component BEC without the SO coupling, and obtain the semiclassical limit of the CGPEs in the linear case via the Wigner transform method. Efficient and accurate numerical methods are proposed for computing the ground states and dynamics, especially for the case of box potentials. Numerical results are reported to demonstrate the efficiency and accuracy of the numerical methods and show the rich phenomenon in the SO-coupled BECs.

  13. Photovoltaic module mounting clip with integral grounding

    DOE Patents [OSTI]

    Lenox, Carl J.

    2010-08-24T23:59:59.000Z

    An electrically conductive mounting/grounding clip, usable with a photovoltaic (PV) assembly of the type having an electrically conductive frame, comprises an electrically conductive body. The body has a central portion and first and second spaced-apart arms extending from the central portion. Each arm has first and second outer portions with frame surface-disrupting element at the outer portions.

  14. Unattended ground sensor situation assessment workstation

    SciTech Connect (OSTI)

    Jeppesen, D.; Trellue, R.

    1997-04-01T23:59:59.000Z

    Effective utilization of unattended ground sensors (UGSs) in a theater reconnaissance, surveillance, target acquisition, and kill assessment environment requires that a human operator be able to interpret, and collectively assess, the significance of real time data obtained from UGS emplacements over large geographical regions of interest. The products of this UGS data interpretation and assessment activity can then be used in the decision support process for command level evaluation of appropriate courses of action. Advancements in both sensor hardware technology and in software systems and processing technology have enabled the development of practical real time situation assessment capabilities based upon information from unattended ground sensors. A decision support workstation that employs rule-based expert system processing of reports from unattended ground sensors is described. The primary goal of this development activity is to produce a suite of software to track vehicles using data from unattended ground sensors. The situational assessment products from this system have stand-alone utility, but are also intended to provide cueing support for overhead sensors and supplementary feeds to all-source fusion centers. The conceptual framework, developmental architecture, and demonstration field tests of the system are described.

  15. GROUND-BASED FACILITIES REVIEW CONSULTATIVE DOCUMENT

    E-Print Network [OSTI]

    Crowther, Paul

    has been withdrawal from the AAO and significant reduction in the running costs at ING and JAC the benefits of joining ESO. Initially the UK decided to enter the 8-metre era by joining the Gemini wavebands, and needing both space and ground-based facilities to achieve new science goals. It also stresses

  16. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30T23:59:59.000Z

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  17. Site survey method and apparatus

    DOE Patents [OSTI]

    Oldham, J.G.; Spencer, C.R.; Begley, C.L.; Meyer, H.R.

    1991-06-18T23:59:59.000Z

    The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow somewhat irregular terrain to allow consistent and accurate detection, and autolocation equipment. 19 figures.

  18. Site survey method and apparatus

    DOE Patents [OSTI]

    Oldham, James G. (Albuquerque, NM); Spencer, Charles R. (Boise, ID); Begley, Carl L. (Albuquerque, NM); Meyer, H. Robert (Albuquerque, NM)

    1991-06-18T23:59:59.000Z

    The disclosure of the invention is directed to a site survey ground vehicle based apparatus and method for automatically detecting source materials, such as radioactivity, marking the location of the source materials, such as with paint, and mapping the location of the source materials on a site. The apparatus of the invention is also useful for collecting and analyzing samples. The apparatus includes a ground vehicle, detectors mounted at the front of the ground vehicle, and individual detector supports which follow somewhat irregular terrain to allow consistent and accurate detection, and autolocation equipment.

  19. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01T23:59:59.000Z

    CO 2 sequestration; In Salah; geomechanics; ground surfaceCO 2 injection, geomechanics, and ground surface

  20. Rayleigh-Taylor-Induced electromagnetic fields in laser-produced plasmas

    E-Print Network [OSTI]

    Manuel, Mario John-Errol

    2013-01-01T23:59:59.000Z

    Spontaneous electromagnetic fields can be important to the dynamic evolution of a plasma by directing heat flow as well as providing additional pressures on the conducting fluids through the Lorentz force. Electromagnetic ...

  1. Electromagnetic signatures of far-field gravitational radiation in the 1+3 approach

    E-Print Network [OSTI]

    Alvin J. K. Chua; Priscilla Cañizares; Jonathan R. Gair

    2014-12-06T23:59:59.000Z

    Gravitational waves from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1+3 approach to relativity. Linearised equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshtein conversion of gravitational waves in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetised pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave-wave resonances previously described in the literature are absent when the electric-magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the gravitational wave strength increases towards the gravitational-electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources.

  2. Recoil polarization measurements of the proton electromagnetic form factor ratio to high momentum transfer

    E-Print Network [OSTI]

    Puckett, Andrew James Ruehe

    2010-01-01T23:59:59.000Z

    The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electronnucleon scattering. These form factors are functions ...

  3. Effect of ellipticity on Hanle electromagnetically induced absorption and transparency resonances with longitudinal and transverse magnetic fields

    SciTech Connect (OSTI)

    Ram, Nibedita; Pattabiraman, M.; Vijayan, C. [Department of Physics, Indian Institute of Technology, Madras, Chennai 600036 (India)

    2010-09-15T23:59:59.000Z

    The effect of incident light field ellipticity on the electromagnetically induced absorption (EIA) and electromagnetically induced transparency (EIT) resonances has been studied experimentally and computationally in Hanle configuration with longitudinal and transverse magnetic fields. We identify the Zeeman coherences that influence the resonance profile and study the role of coherence-transfer from excited to ground state via spontaneous emission as a function of ellipticity for the F{sub g}=2{yields}F{sub e}=3 transition of {sup 87}Rb. The EIT resonance observed with the light field locked on the F{sub g}=1{yields}F{sub e}=2 transition of {sup 87}Rb is an influence of the nearby F{sub g}=1{yields}F{sub e}=0 closed and F{sub g}=1{yields}F{sub e}=1 open transitions. With increase in ellipticity the observed EIA and EIT resonances diminish in amplitude for a longitudinal magnetic field and are enhanced for a transverse magnetic field. We computationally account for these observations and discuss the factors that influence the EIA and EIT resonance amplitudes as a function of ellipticity and show that for a transverse field scan the ellipticity dependence of the EIA resonance amplitude can be accounted for without invoking the Doppler effect unlike for a longitudinal field scan. We also show that the maximum in the EIA resonance amplitude obtained for nonzero ellipticities with a longitudinal magnetic field depends on the closedness of the atomic system.

  4. Lie-Santilli isoapproach to the unification of gravity and electromagnetism

    SciTech Connect (OSTI)

    Animalu, A.O.E. [Univ. of Nigeria, Nsukka (Nigeria)]|[Istituto per la Ricerca di Base, Monteroduni (Italy)

    1996-06-01T23:59:59.000Z

    The author reviews the problem of Einstein`s original proposal for the unification of gravity and electromagnetism in space-time differential geometry along the lines of the recent contributions by A.A. Logunov, R.M. Santilli, D.F. Lopez and others. The author presents a new method of unification based on the Lie-Santilli isotopic theory whereby the unified field tensor g = (g{sub {mu}{nu}}) is constructed from the symmetric Riemannian gravitational tensor, g = (g{mu}{nu}), and the antisymmetric electromagnetic field tensor F = (F{sub {mu}{nu}}) via an isotopic lifting g {yields} {cflx g} = Fg of the type of Lax pairing, where det F {ne} 0, the unified field {cflx g} satisfies Logunov-Santilli equations while g and F are treated as Lax pair. Because of Santilli`s isotopic equivalence between Minkowskian and Riemannian geometries, the author infers that in the Minkowskian limit F = f, g = {eta}, the metric {eta} satisfies Lax`s equation of motion {partial_derivative}{eta}/{partial_derivative}t = f{eta} {minus} {eta}f which insures the conservation of the eigenvalues of g. The invariance of the electromagnetic group of transformations (F) in Minkowski space is determined by the eigenvalue equations, det (F{sub {mu}{nu}}){minus}{lambda}{eta}{sub {mu}{nu}} = 0, from which the author deduces a Lie-isotopic {open_quotes}extended{close_quotes} relativity principle. A wave equation for a spin-2 particle in the unified field is derived, and the experimental consequences of the theory are discussed.

  5. Early detection of critical material degradation by means of electromagnetic multi-parametric NDE

    SciTech Connect (OSTI)

    Szielasko, Klaus; Tschuncky, Ralf; Rabung, Madalina; Altpeter, Iris; Dobmann, Gerd [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken (Germany); Seiler, Georg; Herrmann, Hans-Georg; Boller, Christian [Fraunhofer Institute for Nondestructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken, Germany and Saarland University, Chair of NDT and Quality Assurance, Campus E3 1, 66123 Saarbrücken (Germany)

    2014-02-18T23:59:59.000Z

    With an increasing number of power plants operated in excess of their original design service life an early recognition of critical material degradation in components will gain importance. Many years of reactor safety research allowed for the identification and development of electromagnetic NDE methods which detect precursors of imminent damage with high sensitivity, at elevated temperatures and in a radiation environment. Regarding low-alloy heat-resistant steel grade WB 36 (1.6368, 15NiCuMoNb5), effects of thermal and thermo-mechanical aging on mechanical-technological properties and several micromagnetic parameters have been thoroughly studied. In particular knowledge regarding the process of copper precipitation and its acceleration under thermo-mechanical load has been enhanced. Whilst the Cu-rich WB 36 steel is an excellent model material to study and understand aging effects related to neutron radiation without the challenge of handling radioactive specimens in a hot cell, actually neutron-irradiated reactor pressure vessel materials were investigated as well. The neutron fluence experienced and the resulting shift of the ductile-brittle transition temperature were determined electromagnetically, and it was shown that weld and base material can be distinguished from the cladded side of the RPV wall. Low-cycle fatigue of the austenitic stainless steel AISI 347 (1.4550, X6CrNiNb18-10) has been characterized with electromagnetic acoustic transducers (EMATs) at temperatures of up to 300 °C. Time-of-flight and amplitude of the transmitted ultrasound signal were evaluated against the number of load cycles applied and observed as an indication of the imminent material failure significantly earlier than monitoring stresses or strains.

  6. College of Engineering Electromagnetically Enhanced Hydrocyclone for Magnetite Separation during

    E-Print Network [OSTI]

    Demirel, Melik C.

    during Overview Magnetite is used by Consol Energy to separate coal from waste rock by increasing the magnetic field patterns · An impeller was installed to continuously mix the slurry to keep the mixture Electromagnetically Enhanced Hydrocyclone for Magnetite Separation during Coal Beneficiation Magnetite is used

  7. Electromagnetic radiation and motion of arbitrarily shaped particle

    E-Print Network [OSTI]

    Jozef Klacka

    2001-07-06T23:59:59.000Z

    Covariant form of equation of motion for arbitrarily shaped particle in the electromagnetic radiation field is presented. Equation of motion in the proper frame of the particle uses the radiation pressure cross section 3 $\\times$ 3 matrix. The obtained equation of motion is compared with known result.

  8. Behavior of Electric Current Subjected to ELF Electromagnetic Radiation

    E-Print Network [OSTI]

    Fran De Aquino

    2002-10-05T23:59:59.000Z

    Gravitational effects produced by ELF electromagnetic radiation upon the electric current in a conductor are studied. An apparatus has been constructed to test the behavior of current subjected to ELF radiation. The experimental results are in agreement with theoretical predictions and show that ELF radiation can cause transitory interruptions in electric current conduction.

  9. ECE 341: Electromagnetic Fields I EM devices and systems

    E-Print Network [OSTI]

    Schumacher, Russ

    - Power systems - Electromagnetic compatibility - Modeling of transmission lines - Communications model electric and magnetic properties of material media in relation with field equations - Understands and appreciates EM field theory as a foundation of circuit theory and electrical engineering as a whole Maxwell

  10. Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation

    E-Print Network [OSTI]

    Santolik, Ondrej

    12 Propagation Analysis of Electromagnetic Waves: Application to Auroral Kilometric Radiation, containing waves which simultaneously propagate in different directions and/or wave modes the concept emission is found to propagate predominantly in the R-X mode with wave energy distributed in relatively

  11. Electromagnetic Waves Propagation in 3D Plasma Configurations

    E-Print Network [OSTI]

    Electromagnetic Waves Propagation in 3D Plasma Configurations Pavel Popovich, W. Anthony Cooper in a plasma strongly depends on the frequency, therefore the tools used for wave propagation studies are very that will allow for the calculation of the fields and energy deposition of a low-frequency wave propagating

  12. Hanbury BrownTwiss effect with partially coherent electromagnetic beams

    E-Print Network [OSTI]

    Visser, Taco D.

    Hanbury Brown­Twiss effect with partially coherent electromagnetic beams Gaofeng Wu1,2 and Taco D fluctuations (the Hanbury Brown­Twiss effect) at two points in the same cross section of a random electro; (260.5430) Polarization. http://dx.doi.org/10.1364/OL.39.002561 Ever since Hanbury Brown­Twiss (HBT

  13. Optical geometry analysis of the electromagnetic self-force

    E-Print Network [OSTI]

    Sebastiano Sonego; Marek A. Abramowicz

    2006-02-17T23:59:59.000Z

    We present an analysis of the behaviour of the electromagnetic self-force for charged particles in a conformally static spacetime, interpreting the results with the help of optical geometry. Some conditions for the vanishing of the local terms in the self-force are derived and discussed.

  14. Electromagnetic source localization with finite set of frequency measurements

    E-Print Network [OSTI]

    Abdul Wahab; Amer Rasheed; Rab Nawaz; Saman Anjum

    2014-09-16T23:59:59.000Z

    A phase conjugation algorithm for localizing an extended radiating electromagnetic source from boundary measurements of the electric field is presented. Measurements are taken over a finite number of frequencies. The artifacts related to the finite frequency data are tackled with $l_1-$regularization blended with the fast iterative shrinkage-thresholding algorithm with backtracking of Beck & Teboulle.

  15. Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    ) Electromagnetically and Thermally Driven Flow Phenomena in Electroslag Welding A. H. DILAWARI, J for the Electroslag Welding Process. In the formulation, allowance has been made {or both etee- tromagnetic and b in the use of electroslag welding (ESW), particularly for the construction of thick walled pressure vessels

  16. Electromagnetic pump stator frame having power crossover struts

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Olich, Eugene E. (Aptos, CA)

    1995-01-01T23:59:59.000Z

    A stator frame for an electromagnetic pump includes a casing joined to a hub by a plurality of circumferentially spaced apart struts. At least one electrically insulated power crossover lead extends through the hub, through a crossover one of the struts, and through the casing for carrying electrical current therethrough.

  17. Examination of Contemporary Electromagnetic Software Capable of Modeling Problems of

    E-Print Network [OSTI]

    Yakovlev, Vadim

    Heating Vadim V. Yakovlev Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester the database of the modern electromagnetic (EM) software suitable for the modeling of microwave heating. Software Database The database of the EM software available in the market and applicable to the majority

  18. Practical Electromagnetic Template Attack on Pierre-Alain Fouque1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Practical Electromagnetic Template Attack on HMAC Pierre-Alain Fouque1 , Gaëtan Leurent1 , Denis efficient side channel attack against HMAC. Our attack assumes the presence of a side channel that reveals and can configure it, the attack recovers the secret key by monitoring a single execution of HMAC- SHA-1

  19. Design and sizing of electromagnetic linear actuators for valve applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Page 1/9 Design and sizing of electromagnetic linear actuators for valve applications J.C Vannier1. These structures have been studied in order to drive the valves of a car motor. According to general specifications magnet, valves. 1. Introduction, general specifications The valves which can be found in thermal engines

  20. Measurement of Electromagnetic Parameters and FDTD Modeling of Ferrite Cores

    E-Print Network [OSTI]

    Koledintseva, Marina Y.

    Measurement of Electromagnetic Parameters and FDTD Modeling of Ferrite Cores Jianfeng Xu #1 products based on magneto-dielectric (ferrite) materials with desirable frequency responses that satisfy simulation tool that could deal with frequency- dispersive materials. An example of a ferrite material

  1. Interactions of hadrons in the CALICE silicon tungsten electromagnetic calorimeter

    E-Print Network [OSTI]

    Roman Pöschl; for the CALICE Collaboration

    2012-03-07T23:59:59.000Z

    The CALICE collaboration develops prototypes for highly granular calorimeters for detectors at a future linear electron positron collider. The highly granular electromagnetic calorimeter prototype was tested in particle beams. We present the study of the interactions of hadrons in this prototype.

  2. Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations

    E-Print Network [OSTI]

    Kuhn, Markus

    Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations Markus G. Kuhn and Ross J, a trusted screen driver can display sensitive information using fonts which minimise the energy the data being processed. Known as compromising emanations or Tempest radiation, a code word for a U.S. gov

  3. Classification of Electromagnetic and Gravitational Hopfions by Algebraic Type

    E-Print Network [OSTI]

    Amy Thompson; Alexander Wickes; Joe Swearngin; Dirk Bouwmeester

    2015-05-02T23:59:59.000Z

    We extend the definition of hopfions to include a class of spin-$h$ fields and use this to introduce the electromagnetic and gravitational hopfions of different algebraic types. The fields are constructed through the Penrose contour integral transform, thus the singularities of the generating functions are directly related to the geometry of the resulting physical fields. We discuss this relationship and how the topological structure of the fields is related to the Robinson congruence. Since the topology appears in the lines of force for both electromagnetism and gravity, the gravito-electromagnetic formalism is used to analyze the gravitational hopfions and describe the time evolution of their tendex and vortex lines. The correspondence between fields of different spin results in analogous configurations based on the same topological structure. The null and type N fields propagate at the speed of light, while the non-null and type D fields radiate energy outward from the center. Finally we discuss the type III gravitational hopfion, which has no direct electromagnetic analog, but find that it still exhibits some of the characteristic features common to the other hopfion fields.

  4. Remote Sensing Ayman F. Habib Electro-Magnetic Radiation

    E-Print Network [OSTI]

    Habib, Ayman

    Remote Sensing Ayman F. Habib 1 Chapter 2 Electro-Magnetic Radiation #12;Remote Sensing Ayman F. Habib 2 Elements of Remote Sensing #12;Remote Sensing Ayman F. Habib 3 Chapter 2 Radiation: nature & source #12;Remote Sensing Ayman F. Habib 4 Chapter 2 Interaction with the atmosphere #12;Remote Sensing

  5. Remote Sensing Ayman F. Habib Electro-Magnetic Radiation

    E-Print Network [OSTI]

    Habib, Ayman

    Remote Sensing Ayman F. Habib 1 Chapter 2 Electro-Magnetic Radiation Remote Sensing Ayman F. Habib 2 Elements of Remote Sensing #12;Remote Sensing Ayman F. Habib 3 Chapter 2 Radiation: nature & source Remote Sensing Ayman F. Habib 4 Chapter 2 Interaction with the atmosphere #12;Remote Sensing Ayman

  6. "Light" or the Electromagnetic spectrum www.nasa.gov

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    #12;"Light" or the Electromagnetic spectrum www.nasa.gov #12;Diffraction and Light · When passed through a prism or grating, light is separated into its component wavelengths · This looks like a rainbow in visible light · There are wavelengths we can't see with our eyes · White light contains all visible colors

  7. Improved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets

    E-Print Network [OSTI]

    for cryogenic refrigeration plants needed to maintain the magnets' temperature near absolute zero, direct costsImproved Magnetic Fusion Energy Economics Via Massive Resistive Electromagnets Robert D. Woolley for magnetic fusion reactors and instead using resistive magnet designs based on cheap copper or aluminum

  8. Active absorption of electromagnetic pulses in a cavity

    E-Print Network [OSTI]

    Horsley, S A R; Tyc, T; Philbin, T G

    2014-01-01T23:59:59.000Z

    We show that a pulse of electromagnetic radiation launched into a cavity can be completely absorbed into an infinitesimal region of space, provided one has a high degree of control over the current flowing through this region. We work out explicit examples of this effect in a cubic cavity and a cylindrical one, and experimentally demonstrate the effect in the microwave regime.

  9. Asymptotic description of pulsed ultrawideband electromagnetic beam field

    E-Print Network [OSTI]

    Oughstun, Kurt

    Asymptotic description of pulsed ultrawideband electromagnetic beam field propagation in dispersive of a pulsed ultrawideband electro- magnetic beam field as it propagates through a dispersive, attenuative evolution of the pulsed-beam field through a single-contour integral that is of the same form

  10. ELECTROMAGNETIC RADIATION FROM A STRONG DC ELECTRIC FIELD

    E-Print Network [OSTI]

    Guedel, Manuel

    ELECTROMAGNETIC RADIATION FROM A STRONG DC ELECTRIC FIELD Manuel G¨udel 1 and Donat G. Wentzel 2 1 accelerated by a strong dc electric field show not only very efficient generation of beam waves but also emission of o­mode radiation. We present a set of particle simulations for which we study the behavior

  11. Electromagnetically Induced Guiding of Counter-Propagating Lasers in Plasmas

    E-Print Network [OSTI]

    - propagating laser pulses and (ii) guiding of an ultra-short tightly focused laser pulse by a counterElectromagnetically Induced Guiding of Counter-Propagating Lasers in Plasmas G. Shvets Princeton for Quantenoptik, D-85748 Garching, Germany Abstract The interaction of counter-propagating laser pulses

  12. 1D subsurface electromagnetic fields excited by energized steel casing

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    1D subsurface electromagnetic fields excited by energized steel casing Wei Yang1 , Carlos Torres the possibility of enabling steel-cased wells as galvanic sources to detect and quantify spatial variations of electrical conductivity in the subsurface. The study assumes a vertical steel-cased well that penetrates

  13. Construction, assembly and tests of the ATLAS electromagnetic barrel calorimeter

    E-Print Network [OSTI]

    Aubert, B; Colas, Jacques; Delebecque, P; Di Ciaccio, L; El-Kacimi, M; Ghez, P; Girard, C; Gouanère, M; Goujdami, D; Jérémie, A; Jézéquel, S; Lafaye, R; Massol, N; Perrodo, P; Przysiezniak, H; Sauvage, G; Thion, J; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Alforque, R; Chen, H; Farrell, J; Gordon, H; Grandinetti, R; Hackenburg, R W; Hoffmann, A; Kierstead, J A; Köhler, J; Lanni, F; Lissauer, D; Ma, H; Makowiecki, D S; Müller, T; Norton, S; Radeka, V; Rahm, David Charles; Rehak, M; Rajagopalan, S; Rescia, S; Sexton, K; Sondericker, J; Stumer, I; Takai, H; Belymam, A; Benchekroun, D; Driouichi, C; Hoummada, A; Hakimi, M; Knee, Michael; Stroynowski, R; Wakeland, B; Datskov, V I; Drobin, V; Aleksa, Martin; Bremer, J; Carli, T; Chalifour, M; Chevalley, J L; Djama, F; Ema, L; Fabre, C; Fassnacht, P; Gianotti, F; Gonidec, A; Hansen, J B; Hervás, L; Hott, T; Lacaste, C; Marin, C P; Pailler, P; Pleskatch, A; Sauvagey, D; Vandoni, Giovanna; Vuillemin, V; Wilkens, H; Albrand, S; Belhorma, B; Collot, J; de Saintignon, P; Dzahini, D; Ferrari, A; Fulachier, J; Gallin-Martel, M L; Hostachy, J Y; Laborie, G; Ledroit-Guillon, F; Martin, P; Muraz, J F; Ohlsson-Malek, F; Saboumazrag, S; Viret, S; Othegraven, R; Zeitnitz, C; Banfi, D; Carminati, L; Cavalli, D; Citterio, M; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Tartarelli, F; Augé, E; Baffioni, S; Bonis, J; Bonivento, W; Bourdarios, C; de La Taille, C; Fayard, L; Fournier, D; Guilhem, G; Imbert, P; Iconomidou-Fayard, L; Le Meur, G; Mencik, M; Noppe, J M; Parrour, G; Puzo, P; Rousseau, D; Schaffer, A C; Seguin-Moreau, N; Serin, L; Unal, G; Veillet, J J; Wicek, F; Zerwas, D; Astesan, F; Bertoli, W; Canton, B; Fleuret, F; Imbault, D; Lacour, D; Laforge, B; Schwemling, P; Abouelouafa, M; Ben-Mansour, A; Cherkaoui, R; El-Mouahhidi, Y; Ghazlane, H; Idrissi, A; Bazizi, K; England, D; Glebov, V; Haelen, T; Lobkowicz, F; Slattery, P F; Belorgey, J; Besson, N; Boonekamp, M; Durand, D; Ernwein, J; Mansoulié, B; Molinie, F; Meyer, J P; Perrin, P; Schwindling, J; Taguet, J P; Zaccone, Henri; Lund-Jensen, B; Rydström, S; Tayalati, Y; Botchev, B; Finocchiaro, G; Hoffman, J; McCarthy, R L; Rijssenbeek, M; Steffens, J; Zdrazil, M; Braun, H M

    2006-01-01T23:59:59.000Z

    The construction and assembly of the two half barrels of the ATLAS central electromagnetic calorimeter and their insertion into the barrel cryostat are described. The results of the qualification tests of the calorimeter before installation in the LHC ATLAS pit are given.

  14. Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .O. Box 224, 18001 Nis, Serbia and Montenegro 2 Vinca Institute of Nuclear Sciences, P.O.Box 522, 11001 Belgrade, Serbia and Montenegro Abstract. A case of moving one-dimensional electromagnetic (EM) solitons pulses, up to 40% of the laser energy can be trapped by relativistic solitons, creating a significant

  15. Electromagnetism-like Mechanism with Force Decay Rate Great Deluge for the Course Timetabling Problem

    E-Print Network [OSTI]

    McCollum, Barry

    Electromagnetism-like Mechanism with Force Decay Rate Great Deluge for the Course Timetabling called Electromagnetism-like mechanism with force decay rate great deluge algorithm for university course on these benchmark problems. Keywords: Electromagnetism-like mechanism, force decay rate great deluge, course

  16. Radio Science, Volume ???, Number , Pages 110, Time Reversal of Electromagnetic Waves and

    E-Print Network [OSTI]

    Paris 7 - Denis Diderot, Université

    electromagnetic pulse at a central frequency of 2.45 GHz in a high-Q cavity. Another antenna records the stronglyRadio Science, Volume ???, Number , Pages 1­10, Time Reversal of Electromagnetic Waves demonstration of time-reversal focusing with electromagnetic waves in a SISO scheme. An antenna transmits a 1 µs

  17. Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. Mc. In­ tense electromagnetic pulses of astrophysical origin can lead to very energetic photons via potential'' associated with the envelope of the electromagnetic pulse [3]. The resulting temporary energy

  18. Progress in Electromagnetics Research, PIER 26, 89110, 2000 PULSE PROPAGATION IN SEA WATER

    E-Print Network [OSTI]

    Margetis, Dionisios

    Progress in Electromagnetics Research, PIER 26, 89­110, 2000 PULSE PROPAGATION IN SEA WATER of different layers inside the earth [3­5]. In more recent years, electromagnetic pulses are studied: What is the form of the electromagnetic pulse that travels downward into the sea at any practical

  19. A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics

    E-Print Network [OSTI]

    of transmitting subpicosecond pulses in the transverse electromagnetic TEM mode over arbitrarily long paths near the cutoff fre- quency. Such pulse broadening does not occur for the trans- verse electromagneticA THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi

  20. Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma

    E-Print Network [OSTI]

    Boyer, Edmond

    by the ponderomotive force [1] associated with a standing electromagnetic pulse. Be- cause of the nonlinear response of the plasma to the electromagnetic pulse, a zero frequency electron den- sity perturbation is created with a wave number twice the electromagnetic one. Then, after the pulse, the plasma relaxes towards

  1. Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. McDonald

    E-Print Network [OSTI]

    McDonald, Kirk

    Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse Kirk T. Mc. In- tense electromagnetic pulses of astrophysical origin can lead to very energetic photons via of the electromagnetic pulse [3]. The resulting temporary energy transfer to the longitudinal motion of the electron can

  2. Slow electromagnetic pulse propagation through a narrow transmission band in a coaxial photonic crystal

    E-Print Network [OSTI]

    Robertson, William

    Slow electromagnetic pulse propagation through a narrow transmission band in a coaxial photonic the slow group-velocity propagation of electromagnetic pulses through a narrow transmission band describe a simple experimental configuration that leads to slow-group-velocity electromagnetic pulse

  3. An improved model of the lightning electromagnetic field interaction with the D-region ionosphere

    E-Print Network [OSTI]

    14 March 2012. [1] We present an improved time-domain model of the lightning electromagnetic pulse. Introduction [2] Lightning discharges produce both an electromagnetic pulse (EMP), due to the rapid lightningAn improved model of the lightning electromagnetic field interaction with the D-region ionosphere R

  4. Solar tracker motor having a fixed caliper and a translating caliper each with an electromagnetic brake system

    DOE Patents [OSTI]

    Rau, Scott James

    2013-01-29T23:59:59.000Z

    Concepts and technologies described herein provide for an accurate and cost-effective method for rotating a solar array disk for tracking the movement of the sun. According to various aspects, a motor includes a fixed caliper and a translating caliper positioned adjacent to one another. Electromagnetically controlled brakes on the translating caliper grip the solar array disk while adjacent, but spaced apart, electromagnets on the fixed caliper and the translating caliper are energized to create an attractive force that pulls the translating caliper with the solar array disk toward the fixed caliper. After reaching the fixed caliper, brakes on the fixed caliper are engaged with the disk, brakes on the translating caliper are released from the disk, and the translating caliper is pushed back to the starting location where the process repeats until the desired rotation is completed.

  5. Did high-altitude EMP (electromagnetic pulse) cause the Hawaiian streetlight incident

    SciTech Connect (OSTI)

    Vittitoe, C N

    1989-04-01T23:59:59.000Z

    Studies of electromagnetic pulse (EMP) effects on civilian and military systems predict results ranging from severe destruction to no damage. Convincing analyses that support either extreme are rare. The Hawaiian streetlight incident associated with the Starfish nuclear burst is the most widely quoted observed damage. We review the streetlight characteristics and estimate the coupling between the Starfish EMP and a particular streetlight circuit identified as one of the few that failed. Evidence indicates that the damage was EMP-generated. The main contributing factors were the azimuthal angle of the circuit relative to the direction of EMP propagation, and the rapid rise of the EMP signal. The azimuthal angle provided coherent buildup of voltage as the EMP swept across the transmission line. The rapid rise allowed substantial excitation before the canceling effects of ground reflections limited the signals. Resulting voltages were at the threshold for causing the observed fuse damage and are consistent with this damage occurring in only some of the strings in the systems. 15 refs., 16 figs., 4 tabs.

  6. Electromagnetically induced absorption due to transfer of population in degenerate two-level systems

    SciTech Connect (OSTI)

    Goren, C.; Rosenbluh, M. [Department of Physics, Bar-Ilan University, Ramat Gan 52900 (Israel); Wilson-Gordon, A.D.; Friedmann, H. [Department of Chemistry, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2004-10-01T23:59:59.000Z

    We predict the occurrence of electromagnetically induced absorption (EIA) in cycling degenerate two-level transitions where F{sub e}=F{sub g}+1 and F{sub g}>0, interacting with pump and probe lasers with the same polarization. The EIA is due to transfer of population (TOP) between the Zeeman levels of the ground hyperfine state, rather than transfer of coherence (TOC) which occurs for perpendicularly polarized lasers. We model EIA-TOP using a double two-level system (TLS) which we compare with the four-level N system, which models EIA-TOC. When the pump intensity is low, both models give an EIA peak at line center. The effect of introducing phase-changing collisions is studied, in the presence and absence of Doppler broadening, for both the double TLS and N systems. In the presence of phase-changing collisions, the central EIA peaks are narrowed in both models and persist to higher pump Rabi frequencies than in the absence of collisions. In the double TLS, in the presence of Doppler broadening, the central EIA-TOP peak becomes narrower and does not develop a dip in its center, in contrast to the N system. The central dip that appears in the Doppler-broadened EIA-TOC spectrum can be wiped out by adding phase-changing collisions. We demonstrate that EIA-TOP can be obtained for realistic atomic transitions interacting with lasers that have the same polarization.

  7. Prediction of buried mine-like target radar signatures using wideband electromagnetic modeling

    SciTech Connect (OSTI)

    Warrick, A.L.; Azevedo, S.G.; Mast, J.E.

    1998-04-06T23:59:59.000Z

    Current ground penetrating radars (GPR) have been tested for land mine detection, but they have generally been costly and have poor performance. Comprehensive modeling and experimentation must be done to predict the electromagnetic (EM) signatures of mines to access the effect of clutter on the EM signature of the mine, and to understand the merit and limitations of using radar for various mine detection scenarios. This modeling can provide a basis for advanced radar design and detection techniques leading to superior performance. Lawrence Livermore National Laboratory (LLNL) has developed a radar technology that when combined with comprehensive modeling and detection methodologies could be the basis of an advanced mine detection system. Micropower Impulse Radar (MIR) technology exhibits a combination of properties, including wideband operation, extremely low power consumption, extremely small size and low cost, array configurability, and noise encoded pulse generation. LLNL is in the process of developing an optimal processing algorithm to use with the MIR sensor. In this paper, we use classical numerical models to obtain the signature of mine-like targets and examine the effect of surface roughness on the reconstructed signals. These results are then qualitatively compared to experimental data.

  8. Did high-altitude EMP (electromagnetic pulse) cause the Hawaiian streetlight incident

    SciTech Connect (OSTI)

    Vittitoe, C.N.

    1988-01-01T23:59:59.000Z

    Studies of electromagnetic pulse (EMP) effects on civilian and military systems predict results ranging from severe destruction to no damage. Convincing analyses that support either extreme are rare. The Hawaiian streetlight incident associated with Starfish nuclear burst is the most widely quoted observed damage. We review the streelight characteristics and estimate the coupling between the Starfish EMP and a particular streelight circuit identified as one of the few that failed. Evidence indicates that the damage was EMP-generated. The main contributing factors were the azimuthal angle of the circuit relative to the direction of EMP propagation, and the rapid rise of the EMP signal. The azimuthal angle provided coherent buildup of voltage as the EMP swept across the transmission line. The rapid rise allowed substantial excitation before the canceling effects of ground reflections limited the signals. Resulting voltage were beyond the threshold for causing the observed fuse damage and are consistent with this damage occurring in only some do the strings in the systems. 15 refs., 10 figs., 3 tabs.

  9. Method and apparatus for measuring stress

    DOE Patents [OSTI]

    Thompson, R. Bruce (Ames, IA)

    1985-06-11T23:59:59.000Z

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  10. Method and apparatus for measuring stress

    DOE Patents [OSTI]

    Thompson, R.B.

    1983-07-28T23:59:59.000Z

    A method and apparatus for determining stress in a material independent of micro-structural variations and anisotropies. The method comprises comparing the velocities of two horizontally polarized and horizontally propagating ultrasonic shear waves with interchanged directions of propagation and polarization. The apparatus for carrying out the method comprises periodic permanent magnet-electromagnetic acoustic transducers for generating and detecting the shear waves and means for determining the wave velocities.

  11. Electromagnetic dissociation of relativistic {sup 28}Si by nucleon emission

    SciTech Connect (OSTI)

    Sonnadara, U.J.

    1992-12-01T23:59:59.000Z

    A detailed study of the electromagnetic dissociation of {sup 28}Si by nucleon emission at E{sub lab}/A = 14.6 (GeV/nucleon was carried out with {sup 28}Si beams interacting on {sup 208}Pb). {sup 120}Sn. {sup 64}C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z{sub T} and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of {sup 28}Si {yields} p+{sup 27}Al and {sup 28}Si {yields} n+{sup 27}Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in {sup 28}Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear {sup 28}Si({sub {gamma},p}){sup 27}Al and {sup 28}Si({sub {gamma},n}){sup 27}Si. The possibilities of observing double giant dipole resonance excitations in {sup 28}Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  12. Electromagnetic dissociation of relativistic [sup 28]Si by nucleon emission

    SciTech Connect (OSTI)

    Sonnadara, U.J.

    1992-12-01T23:59:59.000Z

    A detailed study of the electromagnetic dissociation of [sup 28]Si by nucleon emission at E[sub lab]/A = 14.6 (GeV/nucleon was carried out with [sup 28]Si beams interacting on [sup 208]Pb). [sup 120]Sn. [sup 64]C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z[sub T] and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of [sup 28]Si [yields] p+[sup 27]Al and [sup 28]Si [yields] n+[sup 27]Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in [sup 28]Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear [sup 28]Si([sub [gamma],p])[sup 27]Al and [sup 28]Si([sub [gamma],n])[sup 27]Si. The possibilities of observing double giant dipole resonance excitations in [sup 28]Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  13. Variational calculation of 4He tetramer ground and excited states using a realistic pair potential

    E-Print Network [OSTI]

    E. Hiyama; M. Kamimura

    2012-01-11T23:59:59.000Z

    We calculated the 4He trimer and tetramer ground and excited states with the LM2M2 potential using our Gaussian expansion method (GEM) for ab initio variational calculations of few-body systems. The method has extensively been used for a variety of three-, four- and five-body systems in nuclear physics and exotic atomic/molecular physics. The trimer (tetramer) wave function is expanded in terms of symmetric three-(four-)body Gaussian basis functions, ranging from very compact to very diffuse, without assuming any pair correlation function. Calculated results of the trimer ground and excited states are in excellent agreement with the literature. Binding energies of the tetramer ground and excited states are obtained to be 558.98 mK and 127.33 mK (0.93 mK below the trimer ground state), respectively. Precisely the same shape of the short-range correlation (r_ij tetramer. Analyzing the asymptotic wave functions (accurate up to 1000 \\AA) of those excited states, we propose a model which predicts the binding energy of the first excited state of 4He_N measured from the 4He_{N-1} ground state to be N/2(N-1)xB_2 using dimer binding energy B_2 only; fit in N=3 and 4 is excellent.

  14. Ground motion data for International Collider models

    SciTech Connect (OSTI)

    Volk, J.T.; LeBrun, P.; Shiltsev, V.; Singatulin, S.; /Fermilab

    2007-11-01T23:59:59.000Z

    The proposed location for the International Linear Collider (ILC) in the Americas region is Fermilab in Batavia Illinois. If built at this location the tunnels would be located in the Galena Platteville shale at a depth of 100 or more meters below the surface. Studies using hydro static water levels and seismometers have been conducted in the MINOS hall and the LaFrange Mine in North Aurora Illinois to determine the level of ground motion. Both these locations are in the Galena Platteville shale and indicate the typical ground motion to be expected for the ILC. The data contains both natural and cultural noise. Coefficients for the ALT law are determined. Seismic measurements at the surface and 100 meters below the surface are presented.

  15. Thermal ground state and nonthermal probes

    E-Print Network [OSTI]

    Grandou, Thierry

    2015-01-01T23:59:59.000Z

    The Euclidean formulation of SU(2) Yang-Mills thermodynamics admits periodic, (anti)selfdual solutions to the fundamental, classical equation of motion which possess one unit of topological charge: (anti)calorons. A spatial coarse graining over the central region in a pair of such localised field configurations with trivial holonomy generates an inert adjoint scalar field $\\phi$, effectively describing the pure quantum part of the thermal ground state in the induced quantum field theory. The latter's local vertices are mediated by just-not-resolved (anti)caloron centers of action $\\hbar$. This is the basic reason for a rapid convergence of the loop expansion of thermodynamical quantities, polarization tensors, etc., their effective loop momenta being severely constrained in entirely fixed and physical unitary-Coulomb gauge. Here we show for the limit of zero holonomy how (anti)calorons associate a temperature independent electric permittivity and magnetic permeability to the thermal ground state of SU(2)$_{\\t...

  16. SRS Burial Ground Complex: Remediation in Progress

    SciTech Connect (OSTI)

    Griffin, M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Crapse, B.; Cowan, S.

    1998-01-21T23:59:59.000Z

    Closure of the various areas in the Burial Ground Complex (BGC) represents a major step in the reduction of risk at the Savannah River Site (SRS) and a significant investment of resources. The Burial Ground Complex occupies approximately 195 acres in the central section of the SRS. Approximately 160 acres of the BGC consists of hazardous and radioactive waste disposal sites that require remediation. Of these source acres, one-third have been remediated while two-thirds are undergoing interim or final action. These restoration activities have been carried out in a safe and cost effective manner while minimizing impact to operating facilities. Successful completion of these activities is in large part due to the teamwork demonstrated by the Department of Energy, contractor/subcontractor personnel, and the regulatory agencies. The experience and knowledge gained from the closure of these large disposal facilities can be used to expedite closure of similar facilities.

  17. Ground motion: An introduction for accelerator builders

    SciTech Connect (OSTI)

    Fischer, G.E.

    1992-02-01T23:59:59.000Z

    In this seminar we will review some of the characteristics of the major classes of ground motion in order to determine whether their effects must be considered or place fundamental limits on the sitting and/or design of modern storage rings and linear colliders. The classes discussed range in frequency content from tidal deformation and tectonic motions through earthquakes and microseisms. Countermeasures currently available are briefly discussed.

  18. Hylleraas-configuration-interaction study of the {sup 1}S ground state of neutral beryllium

    SciTech Connect (OSTI)

    Sims, James S.; Hagstrom, Stanley A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20878-9957 (United States); Departments of Chemistry and Computer Science, Indiana University, Bloomington, Indiana 47405 (United States)

    2011-03-15T23:59:59.000Z

    Hylleraas-configuration-interaction (Hy-CI) method variational calculations are reported for the {sup 1}S ground state of neutral beryllium. The best nonrelativistic energy obtained was -14.667 356 4 hartree, which is estimated to be accurate to a tenth of a microhartree.

  19. Two microphone technique for ground impedance measurements: Uncertainties and their reduction

    E-Print Network [OSTI]

    Vormann, Matthias

    is not specific to in-situ measurements but also applies to impedance tube measurements [8]. The common solutionTwo microphone technique for ground impedance measurements: Uncertainties and their reduction-microphone (level difference) method is a well-known procedure for the in-situ determination of surface impedances

  20. ESTIMATING GROUND-LEVEL SOLAR RADIATION AND EVAPOTRANSPIRATION IN PUERTO RICO

    E-Print Network [OSTI]

    Gilbes, Fernando

    1 ESTIMATING GROUND-LEVEL SOLAR RADIATION AND EVAPOTRANSPIRATION IN PUERTO RICO USING SATELLITE between the methods. A comparison between estimated and observed solar radiation is also presented for the period April 1 through June 21, 2009, which indicates a need for calibration of the solar radiation