Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Active Control Strategies for Chemical Sensors and Sensor Arrays  

E-Print Network [OSTI]

validated on metal-oxide (MOX) sensors. Our results show that the active sensing method obtains better classification performance than passive sensing methods, and also is more robust to additive Gaussian noise in sensor measurements. Second, we consider...

Gosangi, Rakesh

2013-07-17T23:59:59.000Z

2

Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds  

DOE Patents [OSTI]

A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

Dinh, Tuan V. (Knoxville, TN)

1996-01-01T23:59:59.000Z

3

Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds  

DOE Patents [OSTI]

A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate there through to the photo-activator and thereby form the complex. 23 figs.

Dinh, T.V.

1996-06-11T23:59:59.000Z

4

Multiple frequency method for operating electrochemical sensors  

DOE Patents [OSTI]

A multiple frequency method for the operation of a sensor to measure a parameter of interest using calibration information including the steps of exciting the sensor at a first frequency providing a first sensor response, exciting the sensor at a second frequency providing a second sensor response, using the second sensor response at the second frequency and the calibration information to produce a calculated concentration of the interfering parameters, using the first sensor response at the first frequency, the calculated concentration of the interfering parameters, and the calibration information to measure the parameter of interest.

Martin, Louis P. (San Ramon, CA)

2012-05-15T23:59:59.000Z

5

Fiber optic sensor and method for making  

DOE Patents [OSTI]

A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

2010-05-18T23:59:59.000Z

6

Sensor device and methods for using same  

DOE Patents [OSTI]

A sensor device and method of employment is provided. More specifically, a sensor device adapted to detect, identify and/or measure a chemical and/or physical characteristic upon placement of the device into an environment, especially a liquid medium for which monitoring is sought is provided.

Rothgeb, Timothy Michael; Gansle, Kristina Marie; Joyce, Jonathan Livingsto; Jordan, James Madison; Rohwer, Tedd Addison; Lockhart, Randal Ray; Smith, Christopher Lawrence; Trinh, Toan; Cipollone, Mark Gary

2005-10-25T23:59:59.000Z

7

Real-time method for establishing a detection map for a network of sensors  

DOE Patents [OSTI]

A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

2012-09-11T23:59:59.000Z

8

Wireless sensor systems and methods, and methods of monitoring structures  

DOE Patents [OSTI]

A wireless sensor system includes a passive sensor apparatus configured to be embedded within a concrete structure to monitor infiltration of contaminants into the structure. The sensor apparatus includes charging circuitry and a plurality of sensors respectively configured to measure environmental parameters of the structure which include information related to the infiltration of contaminants into the structure. A reader apparatus is communicatively coupled to the sensor apparatus, the reader apparatus being configured to provide power to the charging circuitry during measurements of the environmental parameters by the sensors. The reader apparatus is configured to independently interrogate individual ones of the sensors to obtain information measured by the individual sensors. The reader apparatus is configured to generate an induction field to energize the sensor apparatus. Information measured by the sensor apparatus is transmitted to the reader apparatus via a response signal that is superimposed on a return induction field generated by the sensor apparatus. Methods of monitoring structural integrity of the structure are also provided.

Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.; Harding, L. Dean; Klingler, Kerry M.

2007-02-20T23:59:59.000Z

9

Microwave Sensors Active and David G. Long  

E-Print Network [OSTI]

waves up through high energy gamma waves. Microwaves extend over an important part of the elec be classified as either passive (radiometers) or active (radars). Each sensor class provides unique insight instruments can be divided into two broad classes: pas- sive, known as radiometers, and active, known

Long, David G.

10

Active Sensors | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskeyEnergy InformationAclara JumpLogsEnergySensors Jump

11

Narrow field electromagnetic sensor system and method  

DOE Patents [OSTI]

A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

McEwan, Thomas E. (Livermore, CA)

1996-01-01T23:59:59.000Z

12

Embedded NDE with Piezoelectric Wafer Active Sensors in Aerospace Applications  

E-Print Network [OSTI]

1 Embedded NDE with Piezoelectric Wafer Active Sensors in Aerospace Applications Victor Giurgiutiu (NDE) is explored. Laboratory tests are used to prove that PWAS can satisfactorily perform Lamb wave method. INTRODUCTION Embedded nondestructive evaluation (NDE) is an emerging technology that will allow

Giurgiutiu, Victor

13

Carbon monoxide sensor and method of use thereof  

DOE Patents [OSTI]

Carbon monoxide sensors suitable for use in hydrogen feed streams and methods of use thereof are disclosed. The sensors are palladium metal/insulator/semiconductor (Pd-MIS) sensors which may possess a gate metal layer having uniform, Type 1, or non-uniform, Type 2, film morphology. Type 1 sensors display an increased sensor response in the presence of carbon monoxide while Type 2 sensors display a decreased response to carbon monoxide. The methods and sensors disclosed herein are particularly suitable for use in proton exchange membrane fuel cells (PEMFCs).

McDaniel; Anthony H. (Livermore, CA), Medlin; J. Will (Boulder, CO), Bastasz; Robert J. (Livermore, CA)

2007-09-04T23:59:59.000Z

14

Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures  

E-Print Network [OSTI]

1 Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures Victor Giurgiutiu, Jingjing Bao, Wei Zhao University of South Carolina ABSTRACT Active sensor wave propagation technique is a relatively new method for in-situ nondestructive evaluation (NDE). Elastic waves propagating in material

Giurgiutiu, Victor

15

Tape-cast sensors and method of making  

DOE Patents [OSTI]

A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.

Mukundan, Rangachary (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM); Garzon, Fernando H. (Santa Fe, NM)

2009-08-18T23:59:59.000Z

16

Active carbon filter health condition detection with piezoelectric wafer active sensors  

E-Print Network [OSTI]

Active carbon filter health condition detection with piezoelectric wafer active sensors Jingjing Chemical Biological Center, 5183 Blackhawk Road, APG, MD USA 21010 ABSTRACT The impregnated active carbon in active carbon filters by combining the electromechanical impedance spectroscopy (EMIS

Giurgiutiu, Victor

17

The Sandia MEMS passive shock sensor : FY07 maturation activities.  

SciTech Connect (OSTI)

This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

2008-08-01T23:59:59.000Z

18

Passive tire pressure sensor and method  

DOE Patents [OSTI]

A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

Pfeifer, Kent Bryant (Los Lunas, NM); Williams, Robert Leslie (Albuquerque, NM); Waldschmidt, Robert Lee (Calgary, CA); Morgan, Catherine Hook (Ann Arbor, MI)

2007-09-04T23:59:59.000Z

19

Passive tire pressure sensor and method  

DOE Patents [OSTI]

A surface acoustic wave device includes a micro-machined pressure transducer for monitoring tire pressure. The device is configured having a micro-machined cavity that is sealed with a flexible conductive membrane. When an external tire pressure equivalent to the cavity pressure is detected, the membrane makes contact with ridges on the backside of the surface acoustic wave device. The ridges are electrically connected to conductive fingers of the device. When the detected pressure is correct, selected fingers on the device will be grounded producing patterned acoustic reflections to an impulse RF signal. When the external tire pressure is less than the cavity reference pressure, a reduced reflected signal to the receiver results. The sensor may further be constructed so as to identify itself by a unique reflected identification pulse series.

Pfeifer, Kent Bryant; Williams, Robert Leslie; Waldschmidt, Robert Lee; Morgan, Catherine Hook

2006-08-29T23:59:59.000Z

20

Well casing-based geophysical sensor apparatus, system and method  

DOE Patents [OSTI]

A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

Daily, William D. (Livermore, CA)

2010-03-09T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Embedded Ultrasonics NDE with Piezoelectric Wafer Active Sensors  

E-Print Network [OSTI]

Embedded Ultrasonics NDE with Piezoelectric Wafer Active Sensors Victor Giurgiutiu Department (NDE) is described. PWAS structure and principle of operation are presented. The interaction between exciting certain Lamb wave modes are identified. Recent trends in guided-wave ultrasonic NDE and damage

Giurgiutiu, Victor

22

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ames, IA); Shi, Zhong-You (Ann Arbor, MI)

1997-01-01T23:59:59.000Z

23

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1997-05-06T23:59:59.000Z

24

Methods for determining infrasound phase velocity direction with an array of line sensors  

E-Print Network [OSTI]

Methods for determining infrasound phase velocity direction with an array of line sensors to the number of these point sensors; additional sensors help attenuate noise and improve direction resolution. An alternative approach is to form an array of directional line sensors, each of which emulates a line of many

Vernon, Frank

25

Sensors and Actuators B 125 (2007) 489497 A pattern recognition method for electronic noses  

E-Print Network [OSTI]

Sensors and Actuators B 125 (2007) 489­497 A pattern recognition method for electronic noses based from a chemical sensor array of electronic noses, which makes the system more bionics. This paper-two-dimensional feature vectors of a sensor array consisting of eight sensors, in which four features were extracted from

Freeman, Walter J.

26

Methods for gas detection using stationary hyperspectral imaging sensors  

DOE Patents [OSTI]

According to one embodiment, a method comprises producing a first hyperspectral imaging (HSI) data cube of a location at a first time using data from a HSI sensor; producing a second HSI data cube of the same location at a second time using data from the HSI sensor; subtracting on a pixel-by-pixel basis the second HSI data cube from the first HSI data cube to produce a raw difference cube; calibrating the raw difference cube to produce a calibrated raw difference cube; selecting at least one desired spectral band based on a gas of interest; producing a detection image based on the at least one selected spectral band and the calibrated raw difference cube; examining the detection image to determine presence of the gas of interest; and outputting a result of the examination. Other methods, systems, and computer program products for detecting the presence of a gas are also described.

Conger, James L. (San Ramon, CA); Henderson, John R. (Castro Valley, CA)

2012-04-24T23:59:59.000Z

27

Active resonant subwavelength grating for scannerless range imaging sensors.  

SciTech Connect (OSTI)

In this late-start LDRD, we will present a design for a wavelength-agile, high-speed modulator that enables a long-term vision for the THz Scannerless Range Imaging (SRI) sensor. It takes the place of the currently-utilized SRI micro-channel plate which is limited to photocathode sensitive wavelengths (primarily in the visible and near-IR regimes). Two of Sandia's successful technologies--subwavelength diffractive optics and THz sources and detectors--are poised to extend the capabilities of the SRI sensor. The goal is to drastically broaden the SRI's sensing waveband--all the way to the THz regime--so the sensor can see through image-obscuring, scattering environments like smoke and dust. Surface properties, such as reflectivity, emissivity, and scattering roughness, vary greatly with the illuminating wavelength. Thus, objects that are difficult to image at the SRI sensor's present near-IR wavelengths may be imaged more easily at the considerably longer THz wavelengths (0.1 to 1mm). The proposed component is an active Resonant Subwavelength Grating (RSG). Sandia invested considerable effort on a passive RSG two years ago, which resulted in a highly-efficient (reflectivity greater than gold), wavelength-specific reflector. For this late-start LDRD proposal, we will transform the passive RSG design into an active laser-line reflector.

Kemme, Shanalyn A.; Nellums, Robert O.; Boye, Robert R.; Peters, David William

2006-11-01T23:59:59.000Z

28

Ferroelectric Thin-Film Active Sensors for Structural Health , Victor Giurgiutiu1  

E-Print Network [OSTI]

, Structural health monitoring 1. INTRODUCTION 1.1 Background Piezoelectric wafer active sensors have beenFerroelectric Thin-Film Active Sensors for Structural Health Monitoring Bin Lin1 , Victor laboratory, Penn State University, University Park, PA 16802 ABSTRACT Piezoelectric wafer active sensors

Giurgiutiu, Victor

29

Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow  

DOE Patents [OSTI]

A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

Armstrong, William D. (Laramie, WY); Naughton, Jonathan (Laramie, WY); Lindberg, William R. (Laramie, WY)

2008-09-02T23:59:59.000Z

30

DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER SENSORS  

E-Print Network [OSTI]

DAMAGE DETECTION METHODS ON WIND TURBINE BLADE TESTING WITH WIRED AND WIRELESS ACCELEROMETER turbine blade. We compare the data collected from the wireless sensors against wired sensors for nonstationary blade excitations. KEYWORDS : Structural Health Monitoring, Damage Detection, Wind Turbine

Paris-Sud XI, Université de

31

Activity recognition with end-user sensor installation in the home  

E-Print Network [OSTI]

In this work, a system for recognizing activities in the home setting that uses a set of small and simple state-change sensors, machine learning algorithms, and electronic experience sampling is introduced. The sensors are ...

Rockinson, Randy Joseph

2008-01-01T23:59:59.000Z

32

Method of absorbance correction in a spectroscopic heating value sensor  

SciTech Connect (OSTI)

A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

2013-09-17T23:59:59.000Z

33

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

Kopelman, Raoul (Ann Arbor, MI); Tan, Weihong (Ann Arbor, MI); Shi, Zhong-You (Ann Arbor, MI)

1994-01-01T23:59:59.000Z

34

Micro optical fiber light source and sensor and method of fabrication thereof  

DOE Patents [OSTI]

This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

Kopelman, R.; Tan, W.; Shi, Z.Y.

1994-11-01T23:59:59.000Z

35

A CMOS Active Pixel Sensor for Charged Particle Detection  

SciTech Connect (OSTI)

Active Pixel Sensor (APS) technology has shown promise for next-generation vertex detectors. This paper discusses the design and testing of two generations of APS chips. Both are arrays of 128 by 128 pixels, each 20 by 20 {micro}m. Each array is divided into sub-arrays in which different sensor structures (4 in the first version and 16 in the second) and/or readout circuits are employed. Measurements of several of these structures under Fe{sup 55} exposure are reported. The sensors have also been irradiated by 55 MeV protons to test for radiation damage. The radiation increased the noise and reduced the signal. The noise can be explained by shot noise from the increased leakage current and the reduction in signal is due to charge being trapped in the epi layer. Nevertheless, the radiation effect is small for the expected exposures at RHIC and RHIC II. Finally, we describe our concept for mechanically supporting a thin silicon wafer in an actual detector.

Matis, Howard S.; Bieser, Fred; Kleinfelder, Stuart; Rai, Gulshan; Retiere, Fabrice; Ritter, Hans George; Singh, Kunal; Wurzel, Samuel E.; Wieman, Howard; Yamamoto, Eugene

2002-12-02T23:59:59.000Z

36

A Wearable Sensor for Unobtrusive, Long-Term Assessment of Electrodermal Activity  

E-Print Network [OSTI]

Electrodermal activity (EDA) is a sensitive index of sympathetic nervous system activity. Due to the lack of sensors that can be worn comfortably during normal daily activity and over extensive periods of time, research ...

Poh, Ming-Zher

37

Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors  

DOE Patents [OSTI]

A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

Levitsky, Igor A. (Fall River, MA); Krivoshlykov, Sergei G. (Shrewsbury, MA)

2004-02-03T23:59:59.000Z

38

Adaptive Sensor Activity Scheduling in Distributed Sensor Networks: A Statistical Mechanics Approach  

E-Print Network [OSTI]

of spatial-temporal events. The sensor network is modeled as a Markov random field on a graph, where concepts and wireless communications have enabled usage of inexpensive and miniaturized sensor nodes [1­3] that can #12;Effective use of sensor networks requires resource-aware operation; once deployed, energy sources

Ray, Asok

39

Method for Operating a Sensor to Differentiate Between Analytes in a Sample  

DOE Patents [OSTI]

Disclosed is a method for operating a sensor to differentiate between first and second analytes in a sample. The method comprises the steps of determining a input profile for the sensor which will enhance the difference in the output profiles of the sensor as between the first analyte and the second analyte; determining a first analyte output profile as observed when the input profile is applied to the sensor; determining a second analyte output profile as observed when the temperature profile is applied to the sensor; introducing the sensor to the sample while applying the temperature profile to the sensor, thereby obtaining a sample output profile; and evaluating the sample output profile as against the first and second analyte output profiles to thereby determine which of the analytes is present in the sample.

Kunt, Tekin; Cavicchi, Richard E.; Semancik, Stephen; McAvoy, Thomas J.

1998-07-28T23:59:59.000Z

40

System and method for improving performance of a fluid sensor for an internal combustion engine  

DOE Patents [OSTI]

A system and method for improving sensor performance of an on-board vehicle sensor, such as an exhaust gas sensor, while sensing a predetermined substance in a fluid flowing through a pipe include a structure for extending into the pipe and having at least one inlet for receiving fluid flowing through the pipe and at least one outlet generally opposite the at least one inlet, wherein the structure redirects substantially all fluid flowing from the at least one inlet to the sensor to provide a representative sample of the fluid to the sensor before returning the fluid through the at least one outlet.

Kubinski, David (Canton, MI); Zawacki, Garry (Livonia, MI)

2009-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Universal signal processing method for multimode reflective sensors  

E-Print Network [OSTI]

reference amplitude in the measurements. Generation of transmitted pulse and triggering of the monitoring satnple and hold chips was accomplished using existing PROM technology. Optical signals were received by a 600 MHz unity gain bandwidth receiver.... In the experiment, the effect of losses was introduced in the fiber by the use of bulkhead connections. The reflected pulse amplitudes of the reference and sensor pulses were measured while the sensor mirror distance was varied, and The ratio of sensor...

Larson, Robert Eugene

1988-01-01T23:59:59.000Z

42

CMOS Photodiodes with Substrate Openings for Higher Conversion Gain in Active Pixel Sensors  

E-Print Network [OSTI]

1 CMOS Photodiodes with Substrate Openings for Higher Conversion Gain in Active Pixel Sensors J. S' in photodiodes used in active pixel sensor. The discussion is based on experimental data from contact diffusion (n+ pepi) photodiodes fabricated on a standard 0.35 µm CMOS technology. I. Introduction The readout

Hornsey, Richard

43

Propagation of guided Lamb waves in bonded specimens using piezoelectric wafer active sensors  

E-Print Network [OSTI]

Propagation of guided Lamb waves in bonded specimens using piezoelectric wafer active sensors and principles used for generation and propagation of ultrasonic guided waves (Lamb waves) using piezoelectric wafer active sensors (PWAS). Keywords: Ultrasonic, Lamb waves, Damage detection, NDE, Wave propagation

Giurgiutiu, Victor

44

Alzheimer's patient activity assessment using different sensors Carlos Fernando Crispim-Junior1  

E-Print Network [OSTI]

activity assessment for the estimation of older people performance in instrumental activities of daily trials on the evaluation of older people motor functions2-3 . The patients wore a chest or wrist sensor

Paris-Sud XI, Université de

45

Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC  

E-Print Network [OSTI]

Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $\\mu$m, produced at CiS, and 100-200 $\\mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of $1.4\\times10^{16}n_{eq}/cm^{2}$.

S. Terzo; A. Macchiolo; R. Nisius; B. Paschen

2014-11-20T23:59:59.000Z

46

Surface plasmon resonance spectroscopy sensor and methods for using same  

DOE Patents [OSTI]

A surface plasmon resonance ("SPR") probe with a detachable sensor head and system and methods for using the same in various applications is described. The SPR probe couples fiber optic cables directly to an SPR substrate that has a generally planar input surface and a generally curved reflecting surface, such as a substrate formed as a hemisphere. Forming the SPR probe in this manner allows the probe to be miniaturized and operate without the need for high precision, expensive and bulky collimating or focusing optics. Additionally, the curved reflecting surface of the substrate can be coated with one or multiple patches of sensing medium to allow the probe to detect for multiple analytes of interest or to provide multiple readings for comparison and higher precision. Specific applications for the probe are disclosed, including extremely high sensitive relative humidity and dewpoint detection for, e.g., moisture-sensitive environment such as volatile chemical reactions. The SPR probe disclosed operates with a large dynamic range and provides extremely high quality spectra despite being robust enough for field deployment and readily manufacturable.

Anderson, Brian Benjamin (N. Augusta, SC); Nave, Stanley Eugene (Evans, GA)

2002-01-01T23:59:59.000Z

47

activity monitoring sensor: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

processing. Individual sensors monitor specific physiological signals (such as EEG, ECG, GSR, etc.) and communicate with each other and the personal server. Personal server...

48

Title: Corrosion Damage Detection with Piezoelectric Wafer Active Sensors Authors: Dustin T. Thomas  

E-Print Network [OSTI]

0 Title: Corrosion Damage Detection with Piezoelectric Wafer Active Sensors Authors: Dustin T structural problems is corrosion. In fact the KC-135 now costs $1.2 billion a year to repair corrosion) in a pitch-catch configuration. The sensors were placed on a grid pattern. Material loss through corrosion

Giurgiutiu, Victor

49

Pro-active Strategies for the Frugal Feeding Problem in Wireless Sensor Networks  

E-Print Network [OSTI]

Sensor Networks. The FFP attempts to find energy-efficient routes for a mobile service entity for the case of a fixed rendezvous location (i.e., service facility with limited number of docking ports) and mobile capable entities (sensors). Our pro-active solution reduces the FFP to finding energy

Lanthier, Mark

50

Mechanism for and method of biasing magnetic sensor  

DOE Patents [OSTI]

A magnetic sensor package having a biasing mechanism involving a coil-generated, resistor-controlled magnetic field for providing a desired biasing effect. In a preferred illustrated embodiment, the package broadly comprises a substrate; a magnetic sensor element; a biasing mechanism, including a coil and a first resistance element; an amplification mechanism; a filter capacitor element; and an encapsulant. The sensor is positioned within the coil. A current applied to the coil produces a biasing magnetic field. The biasing magnetic field is controlled by selecting a resistance value for the first resistance element which achieves the desired biasing effect. The first resistance element preferably includes a plurality of selectable resistors, the selection of one or more of which sets the resistance value.

Kautz, David R. (Lenexa, KS)

2007-12-04T23:59:59.000Z

51

Three dimensional stress vector sensor array and method therefor  

DOE Patents [OSTI]

A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.

Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery

2005-07-05T23:59:59.000Z

52

Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors  

DOE Patents [OSTI]

A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

Britton, C.L. Jr.; Ericson, M.N.

1999-01-19T23:59:59.000Z

53

Oxazine-based sensor for contaminant detection, fabrication method therefor, and uses thereof  

DOE Patents [OSTI]

A sensor, a method for its fabrication, and a method for its use to detect contaminants, for example, ammonia, in stagnant and dynamic fluid media, especially liquid media. The sensor is an opto-chemical sensor that includes a polymer optical fiber, a sensing layer comprising oxazine 170 perchlorate on the polymer optical fiber, and a membrane layer on the sensing layer. The membrane layer is gas permeable and not permeable to the fluid in the fluid system, and moisture is entrapped by and between the sensing and membrane layers.

Nnanna, Agbai Agwu; Jalal, Ahmed Hasnian

2014-05-27T23:59:59.000Z

54

Towards a sensor for detecting human presence and activity Y. Benezetha  

E-Print Network [OSTI]

and third proposing solutions based on an active management of power consumption. This last approach is not able to distinguish between pets and humans. The technological limits of these sensors, which are more

Paris-Sud XI, Université de

55

An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance  

E-Print Network [OSTI]

demonstrated in various elds, such as heart- beating pulse diagnosis,13 tyre pressure/speed measurement,14 wind-substrated nanogenerator (SNG) was fabricated to accomplish the monolithic integration of an active sensor device onto

Wang, Zhong L.

56

NRA-00-OES-08 A one-year pilot study for the inclusion of active optical sensors into PALACE  

E-Print Network [OSTI]

NRA-00-OES-08 1 A one-year pilot study for the inclusion of active optical sensors into PALACE, newly-developed solid-state, active optical sensors that measure chlorophyll a fluorescence of ancillary sensors as part of the ARGO program. The ARGO program, if funded at the level of effort proposed

Boss, Emmanuel S.

57

Method and apparatus for coupling seismic sensors to a borehole wall  

DOE Patents [OSTI]

A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

West, Phillip B.

2005-03-15T23:59:59.000Z

58

Methods for characterizing subsurface volatile contaminants using in-situ sensors  

DOE Patents [OSTI]

An inverse analysis method for characterizing diffusion of vapor from an underground source of volatile contaminant using data taken by an in-situ sensor. The method uses one-dimensional solutions to the diffusion equation in Cartesian, cylindrical, or spherical coordinates for isotropic and homogenous media. If the effective vapor diffusion coefficient is known, then the distance from the source to the in-situ sensor can be estimated by comparing the shape of the predicted time-dependent vapor concentration response curve to the measured response curve. Alternatively, if the source distance is known, then the effective vapor diffusion coefficient can be estimated using the same inverse analysis method. A triangulation technique can be used with multiple sensors to locate the source in two or three dimensions. The in-situ sensor can contain one or more chemiresistor elements housed in a waterproof enclosure with a gas permeable membrane.

Ho, Clifford K. (Albuquerque, NM)

2006-02-21T23:59:59.000Z

59

Active Query Forwarding in Sensor Networks Narayanan Sadagopan  

E-Print Network [OSTI]

in this paper to calculate the energy costs associated with ACQUIRE. The models permit us to characterize schemes such as flooding-based querying (FBQ) and expanding ring search (ERS), in terms of energy usage data, this simple approach can be highly inefficient. In the context of energy-starved sensor networks

Krishnamachari, Bhaskar

60

Apparatus and method for detecting electromagnetic radiation using electron photoemission in a micromechanical sensor  

DOE Patents [OSTI]

A micromechanical sensor and method for detecting electromagnetic radiation involve producing photoelectrons from a metal surface in contact with a semiconductor. The photoelectrons are extracted into the semiconductor, which causes photo-induced bending. The resulting bending is measured, and a signal corresponding to the measured bending is generated and processed. A plurality of individual micromechanical sensors can be arranged in a two-dimensional matrix for imaging applications.

Datskos, Panagiotis G. (Knoxville, TN); Rajic, Slobodan (Knoxville, TN); Datskou, Irene C. (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Comparison of POLDER Cloud Phase Retrievals to Active Remote Sensors Measurements at the ARM SGP Site  

SciTech Connect (OSTI)

In our present study, cloud boundaries derived from a combination of active remote sensors at the ARM SGP site are compared to POLDER cloud top phase index which is derived from polarimetric measurements using an innovative method. This approach shows the viability of the POLDER phase retrieval algorithm, and also leads to interesting results. In particular, the analysis demonstrates the sensitivity of polarization measurements to ice crystal shape and indicates that occurrence of polycrystalline ice clouds has to be taken into account in order to improve the POLDER phase retrieval algorithm accuracy. Secondly, the results show that a temperature threshold of 240 K could serve for cloud top particle phase classification. Considering the limitations of the analysis, the temperature threshold could be biased high, but not by more than about 5 degrees.

Riedi, J.; Goloub, P.; Marchand, Roger T.

2001-06-01T23:59:59.000Z

62

Apparatus and method for imaging metallic objects using an array of giant magnetoresistive sensors  

DOE Patents [OSTI]

A portable, low-power, metallic object detector and method for providing an image of a detected metallic object. In one embodiment, the present portable low-power metallic object detector an array of giant magnetoresistive (GMR) sensors. The array of GMR sensors is adapted for detecting the presence of and compiling image data of a metallic object. In the embodiment, the array of GMR sensors is arranged in a checkerboard configuration such that axes of sensitivity of alternate GMR sensors are orthogonally oriented. An electronics portion is coupled to the array of GMR sensors. The electronics portion is adapted to receive and process the image data of the metallic object compiled by the array of GMR sensors. The embodiment also includes a display unit which is coupled to the electronics portion. The display unit is adapted to display a graphical representation of the metallic object detected by the array of GMR sensors. In so doing, a graphical representation of the detected metallic object is provided.

Chaiken, Alison (Fremont, CA)

2000-01-01T23:59:59.000Z

63

Radiation interchange modeling for active infrared proximity sensor design  

E-Print Network [OSTI]

of the requirements for the degree of MASTER OF SCIENCE Approved as to tyle and content by: Sohi Rastegar (Co-Chair of Committee) Rai er J. Fink (Co-Chair of Committee) Hsin-i Wu (Member) ay Kuo (Head of Department) May 1999 Major Subject: Biomedical... necessitating the use of multiple source elements, sensor elements, or both. DEDICATION I dedicate this thesis to my parents and my sisters, who have always supported me in all my endeavors, however foreign to their hearts. VI ACKNOWLEDGMENTS I would like...

Piper, James Clarice

1999-01-01T23:59:59.000Z

64

Application of piezoelectric active-sensors for SHM of wind turbine blades  

SciTech Connect (OSTI)

The goal of this study is to characterize the dynamic response of a CX-100 wind blade and the design parameters of SHM techniques as they apply to wind turbine blades, and to investigate the performance of high-frequency active-sensing SHM techniques, including lamb wave and frequency response functions, as a way to monitor the health of a wind turbine blade. The results of the dynamic characterization will be used to validate a numerical model and understand the effect of structural damage on the performance of the blades. The focus of SHM study is to assess and compare the performance of each method in identifying incipient damage, with a special consideration given to field deployability. For experiments, a 9-m CX-100 blade was used. Overall, the methods yielded sufficient damage detection to warrant further investigation into field deployment. This paper also summarizes the SHM results of a full-scale fatigue test of 9-m CX-100 blade using piezoelectric active-sensors.

Park, Gyuhae [Los Alamos National Laboratory; Taylor, Stuart G. [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

2010-10-04T23:59:59.000Z

65

Encapsulation method for maintaining biodecontamination activity  

DOE Patents [OSTI]

A method for maintaining the viability and subsequent activity of microorganisms utilized in a variety of environments to promote biodecontamination of surfaces. One application involves the decontamination of concrete surfaces. Encapsulation of microbial influenced degradation (MID) microorganisms has shown that MID activity is effectively maintained under passive conditions, that is, without manual addition of moisture or nutrients, for an extended period of time.

Rogers, Robert D. (Idaho Falls, ID); Hamilton, Melinda A. (Idaho Falls, ID); Nelson, Lee O. (Idaho Falls, ID); Benson, Jennifer (Cockermouth, GB); Green, Martin J. (Wooton, GB); Milner, Timothy N. (Centerville, VA)

2002-01-01T23:59:59.000Z

66

Encapsulation method for maintaining biodecontamination activity  

DOE Patents [OSTI]

A method for maintaining the viability and subsequent activity of microorganisms utilized in a variety of environments to promote biodecontamination of surfaces. One application involves the decontamination of concrete surfaces. Encapsulation of microbial influenced degradation (MID) microorganisms has shown that MID activity is effectively maintained under passive conditions, that is, without manual addition of moisture or nutrients, for an extended period of time.

Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.; Benson, Jennifer; Green, Martin J.; Milner, Timothy N.

2006-04-11T23:59:59.000Z

67

Maximum-Power-Point Tracking Method of Photovoltaic Using Only Single Current Sensor  

E-Print Network [OSTI]

Solar cell systems Abstract This paper describes a novel strategy of maximum-power-point tracking point using only a single current sensor, i.e., a Hall-effect CT. Output power of the photovoltaic can-climbing method is employed to seek the maximum power point, using the output power obtained from only the current

Fujimoto, Hiroshi

68

active sensor configuration: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recurrence satisfied by the Stirling numbers of the second kind. Abrams, Aaron; Hower, Valerie 2010-01-01 346 Measurements and simulations of MAPS (Monolithic Active Pixel...

69

Method of determining methane and electrochemical sensor therefor  

DOE Patents [OSTI]

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, Solomon (Hinsdale, IL); Otagawa, Takaaki (Westmont, IL); Stetter, Joseph R. (Naperville, IL)

1986-01-01T23:59:59.000Z

70

Method and system for gathering a library of response patterns for sensor arrays  

DOE Patents [OSTI]

A method of gathering a library of response patterns for one or more sensor arrays used in the detection and identification of chemical components in a fluid includes the steps of feeding samples of fluid with time-spaced separation of known components to the sensor arrays arranged in parallel or series configurations. Modifying elements such as heating filaments of differing materials operated at differing temperatures are included in the configurations to duplicate operational modes designed into the portable detection systems with which the calibrated sensor arrays are to be used. The response patterns from the known components are collected into a library held in the memory of a microprocessor for comparison with the response patterns of unknown components.

Zaromb, Solomon (Hinsdale, IL)

1992-01-01T23:59:59.000Z

71

Corrosion Damage Detection with Piezoelectric Wafer Active Sensors Dustin Thomas, John Welter  

E-Print Network [OSTI]

1 Corrosion Damage Detection with Piezoelectric Wafer Active Sensors Dustin Thomas, John Welter Air a priority issue for today's Air Force. One of the most critical structural problems is corrosion. In fact the KC-135 now costs $1.2 billion a year to repair corrosion. In this paper, we plan to show the use

Giurgiutiu, Victor

72

Implementation and Testing of Fault-Tolerant Photodiode-based Active Pixel Sensor (APS)  

E-Print Network [OSTI]

Implementation and Testing of Fault-Tolerant Photodiode-based Active Pixel Sensor (APS) Sunjaya the photodiode and readout transistors into two parallel operating devices, while keeping a common row select-tolerant photodiode APS was designed and fabricated using a CMOS 0.18µm process. Testing included both fully

Chapman, Glenn H.

73

Fault Tolerant Photodiode and Photogate Active Pixel Sensors , Glenn H. Chapmana  

E-Print Network [OSTI]

Fault Tolerant Photodiode and Photogate Active Pixel Sensors Cory Junga , Glenn H. Chapmana, this design can correct for most defects allowing for higher production yields. Fault tolerant photodiode and photogate APS' were fabricated in 0.18-micron technology. Testing showed that the photodiode APS could

Chapman, Glenn H.

74

Characteristics of Fault-Tolerant Photodiode and Photogate Active Pixel Sensor (APS)  

E-Print Network [OSTI]

Characteristics of Fault-Tolerant Photodiode and Photogate Active Pixel Sensor (APS) Michelle L. La tolerant APS design has been implemented in a 0.18µm CMOS process for both a photodiode based and photogate of 2.03 (stuck low) and 1.89 (stuck high) for the photodiode based APS, and 1.73 (stuck low) and 1

Chapman, Glenn H.

75

Context-aware energy-efficient wireless sensor architecture for body activity recognition  

E-Print Network [OSTI]

conditions [13], [15], [16], and the usage of devices with higher computing, storage and energy capabilitiesContext-aware energy-efficient wireless sensor architecture for body activity recognition Tifenn 60205 Compigne, France Abstract--In this paper, we present EEWAA, a new Energy- Efficient Wireless

Boyer, Edmond

76

A Reconfigurable Active Retrodirective/Direct Conversion Receiver Array for Wireless Sensor Systems  

E-Print Network [OSTI]

A Reconfigurable Active Retrodirective/Direct Conversion Receiver Array for Wireless Sensor Systems retrodirective/direct conversion receiver array is presented. The system can serve as both a retrodirective array transponder and a direct conversion receiver simply by changing the frequency of the LO applied to the mixers

Itoh, Tatsuo

77

LAMB-WAVE EMBEDDED NDE WITH PIEZOELECTRIC WAFER ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING OF  

E-Print Network [OSTI]

LAMB-WAVE EMBEDDED NDE WITH PIEZOELECTRIC WAFER ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING waves and enable the development of embedded NDE concepts. This paper will present two embedded NDE Embedded nondestructive evaluation (E-NDE) is an emerging technology that aims at performing NDE testing

Giurgiutiu, Victor

78

active fibre sensors: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of prototype generalise a method of Xiao Gang to construct 'prototypes' of fibred surfaces with maximal irregularity) and maximally irregular fibrations with g 4 are known...

79

BodyScope: A Wearable Acoustic Sensor for Activity Recognition  

E-Print Network [OSTI]

, speaking, laughing, and coughing. The F-measure of the Support Vector Machine classification of 12 of activities (e.g., eating, drinking, speaking, laughing and coughing) with BodyScope reveals that the system

Toronto, University of

80

Sensor, method and system of monitoring transmission lines  

DOE Patents [OSTI]

An apparatus, method, and system for measuring the magnetic field produced by phase conductors in multi-phase power lines. The magnetic field measurements are used to determine the current load on the conductors. The magnetic fields are sensed by coils placed sufficiently proximate the lines to measure the voltage induced in the coils by the field without touching the lines. The x and y components of the magnetic fields are used to calculate the conductor sag, and then the sag data, along with the field strength data, can be used to calculate the current load on the line and the phase of the current. The sag calculations of this invention are independent of line voltage and line current measurements. The system applies a computerized fitter routine to measured and sampled voltages on the coils to accurately determine the values of parameters associated with the overhead phase conductors.

Syracuse, Steven J.; Clark, Roy; Halverson, Peter G.; Tesche, Frederick M.; Barlow, Charles V.

2012-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lab 9: Sensor Characterization Lab (Digital) This lab introduces the methods and importance for characterizing sensors. Students will  

E-Print Network [OSTI]

and importance for characterizing sensors. Students will learn about how the Arduino communicates and receives the sensor with either the MakeBlock shield or just wires. Materials 1) Arduino Uno 2) MakeBlock Shield 3. For the arduino, the digital pin transitions between input and output. In the output mode, a LOW-HIGH-LOW signal

Wedeward, Kevin

82

Heavily Irradiated N-in-p Thin Planar Pixel Sensors with and without Active Edges  

E-Print Network [OSTI]

We present the results of the characterization of silicon pixel modules employing n-in-p planar sensors with an active thickness of 150 $\\mathrm{\\mu}$m, produced at MPP/HLL, and 100-200 $\\mathrm{\\mu}$m thin active edge sensor devices, produced at VTT in Finland. These thin sensors are designed as candidates for the ATLAS pixel detector upgrade to be operated at the HL-LHC, as they ensure radiation hardness at high fluences. They are interconnected to the ATLAS FE-I3 and FE-I4 read-out chips. Moreover, the n-in-p technology only requires a single side processing and thereby it is a cost-effective alternative to the n-in-n pixel technology presently employed in the LHC experiments. High precision beam test measurements of the hit efficiency have been performed on these devices both at the CERN SpS and at DESY, Hamburg. We studied the behavior of these sensors at different bias voltages and different beam incident angles up to the maximum one expected for the new Insertable B-Layer of ATLAS and for HL-LHC detectors. Results obtained with 150 $\\mathrm{\\mu}$m thin sensors, assembled with the new ATLAS FE-I4 chip and irradiated up to a fluence of 4$\\times$10$^{15}\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^2$, show that they are excellent candidates for larger radii of the silicon pixel tracker in the upgrade of the ATLAS detector at HL-LHC. In addition, the active edge technology of the VTT devices maximizes the active area of the sensor and reduces the material budget to suit the requirements for the innermost layers. The edge pixel performance of VTT modules has been investigated at beam test experiments and the analysis after irradiation up to a fluence of 5$\\times$10$^{15}\\mathrm{n}_{\\mathrm{eq}}/\\mathrm{cm}^2$ has been performed using radioactive sources in the laboratory.

S. Terzo; L. Andricek; A. Macchiolo; H. G. Moser; R. Nisius; R. H. Richter; P. Weigell

2014-02-19T23:59:59.000Z

83

A method for detecting breakthrough of organic solvent vapors in a charcoal tube using semiconductor gas sensors  

SciTech Connect (OSTI)

This study developed a method for detecting organic vapors that break through charcoal tubes, using semiconductor gas sensors as a breakthrough detector of vapors. A glass column equipped with two sensors was inserted in Teflon tubing, and air containing organic vapor was introduced at a constant flow rate. After the output signal of the sensors became stable, a charcoal tube was inserted into the tubing at the upstream of the sensors. The resistance of the sensors was collected temporally in an integrated circuit (IC) card. The vapor concentration of the air near the sensors was measured with a gas chromatograph (GC) equipped with a flame ionization detector (FID) at intervals of 5 minutes to obtain the breakthrough curve. When the relative humidity was zero, the output signals of the sensors began to change before the breakthrough point (1% breakthrough time). This tendency was almost the same for methyl acetate, ethyl acetate, isopropyl alcohol (IPA), toluene, and chloroform. For dichloromethane and 1,1,1-trichloroethane, the time when the sensor output signals began to rise was almost the same as the breakthrough point. When the relative humidity was 80 percent, the sensors could also detect many vapors before the breakthrough point, but they could not perceive dichloromethane and chloroform vapors. A personal sampling system with a breakthrough detector was developed and its availability is discussed.

Hori, Hajime; Noritake, Yuji; Murobushi, Hisako; Higashi, Toshiaki; Tanaka, Isamu

1999-08-01T23:59:59.000Z

84

Portable system and method combining chromatography and array of electrochemical sensors  

DOE Patents [OSTI]

A portable system for analyzing a fluid sample includes a small, portable, low-pressure and low-power chromatographic analyzer and a chemical parameter spectrometry monitor including an array of sensors for detecting, identifying and measuring the concentrations of a variety of components in the eluent from the chromatographic analyzer. The monitor includes one or more operating condition controllers which may be used to change one or more of the operating conditions during exposure of the sensors to the eluent from the chromatography analyzer to form a response pattern which is then compared with a library of previously established patterns. Gas and liquid chromatographic embodiments are disclosed. In the gas embodiment, the operating condition controllers include heated filaments which may convert electrochemically inactive components to electrochemically active products. In the liquid chromatography embodiment, low-power, liquid-phase equivalents of heated filaments are used with appropriate sensors. The library response patterns may be divided into subsets and the formed pattern may be assigned for comparison only with the patterns of a particular subset.

Zaromb, Solomon (Hinsdale, IL); Stetter, Joseph R. (Naperville, IL)

1989-01-01T23:59:59.000Z

85

Soil chemical sensor and precision agricultural chemical delivery system and method  

DOE Patents [OSTI]

A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

Colburn, Jr., John W. (Houston, TX)

1991-01-01T23:59:59.000Z

86

Soil chemical sensor and precision agricultural chemical delivery system and method  

DOE Patents [OSTI]

A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

Colburn, J.W. Jr.

1991-07-23T23:59:59.000Z

87

Dual stage active magnetic regenerator and method  

DOE Patents [OSTI]

A dual stage active magnetic regenerator refrigerator as well as method using the Joule-Brayton thermodynamic cycle includes a high temperature stage refrigerant comprising DyAl{sub 2} or (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than 0 and less than about 0.3 in combination with a low temperature stage comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} where x is selected to be greater than about 0.5 and less than 1 to provide significantly improved refrigeration efficiency in the liquefaction of gaseous hydrogen. 17 figs.

Pecharsky, V.K.; Gschneidner, K.A. Jr.

1999-03-30T23:59:59.000Z

88

Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors  

E-Print Network [OSTI]

One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor ...

Moon, Hi Gyu

89

Lab 8: Sensor Characterization Lab (Analog) This lab introduces the methods and importance for characterizing sensors. Students will  

E-Print Network [OSTI]

and importance for characterizing sensors. Students will learn about how the Arduino interprets an analog signal at different angles. Materials 1) Arduino Uno 2) MakeBlock Shield 3) Virtuabotix Accelerometer 4) Make which is proportional to the measured value (like a thermometer and liquid height). The arduino measures

Wedeward, Kevin

90

Actively controlled vibration welding system and method  

DOE Patents [OSTI]

A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

2013-04-02T23:59:59.000Z

91

Sharp and fast: Sensors and switches based on polymer brushes with adsorption-active minority chains  

E-Print Network [OSTI]

We propose a design for polymer-based sensors and switches with sharp switching transition and fast response time. The switching mechanism involves a radical change in the conformations of adsorption-active minority chains in a brush. Such transitions can be induced by a temperature change of only about ten degrees, and the characteristic time of the conformational change is less than a second. We present an analytical theory for these switches and support it by self-consistent field calculations and Brownian dynamics simulations.

Leonid I. Klushin; Alexander M. Skvortsov; Alexey A. Polotsky; Shuanhu Qi; Friederike Schmid

2014-12-16T23:59:59.000Z

92

Active-Space Coupled-Cluster Methods Through Connected Quadruple...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methods Through Connected Quadruple Excitations. Active-Space Coupled-Cluster Methods Through Connected Quadruple Excitations. Abstract: This abstract is currently not available...

93

Pressure sensor and Telemetry methods for measurement while drilling in geothermal wells  

Broader source: Energy.gov [DOE]

Project objective: Develop telemetry electronics and pressure sensor system for operation at 300C and demonstrate the operation of multiple pressure sensor systems at 300C.

94

DMAPS: a fully depleted monolithic active pixel sensor - analog performance characterization  

E-Print Network [OSTI]

Monolithic Active Pixel Sensors (MAPS) have been developed since the late 1990s based on silicon substrates with a thin epitaxial layer (thickness of 10-15 $\\mu$m) in which charge is collected on an electrode, albeit by disordered and slow diffusion rather than by drift in a directed electric field. As a consequence, the signal is small ($\\approx$ 1000 e$^-$) and the radiation tolerance is much below the LHC requirements by factors of 100 to 1000. In this paper we present the development of a fully Depleted Monolithic Active Pixel Sensors (DMAPS) based on a high resistivity substrate allowing the creation of a fully depleted detection volume. This concept overcomes the inherent limitations of charge collection by diffusion in the standard MAPS designs. We present results from a test chip EPCB01 designed in a commercial 150 nm CMOS technology. The technology provides a thin (50 $\\mu$m) high resistivity n-type silicon substrate as well as an additional deep p-well which allows to integrate full CMOS circuitry inside the pixel. Different matrix types with several variants of collection electrodes have been implemented. Measurements of the analog performance of this first implementation of DMAPS pixels will be presented.

Miroslav Havrnek; Tomasz Hemperek; Hans Krger; Yunan Fu; Leonard Germic; Tetsuichi Kishishita; Theresa Obermann; Norbert Wermes

2014-07-02T23:59:59.000Z

95

Active-set methods for quadratic programming  

E-Print Network [OSTI]

definite, the conjugate-gradient method can be applied.SQOPT switches to a conjugate-gradient method to solve for aand Nonlinear Conjugate Gradient-Related Methods, pages 92

Wong, Elizabeth Lai Sum

2011-01-01T23:59:59.000Z

96

Intrusion detection sensor testing tools  

SciTech Connect (OSTI)

Intrusion detection sensors must be frequently tested to verify that they are operational, and they must be periodically tested to verify that they are functioning at required performance levels. Concerns involving this testing can include: The significant amount of manpower required, inconsistent results due to variability in methods and personnel, exposure of personnel to hazardous environments, and difficulty in obtaining access to the areas containing some of the intrusion sensors. To address these concerns, the Department of Energy directed Sandia National Labs. to develop intrusion detection sensor testing tools. Over the past two years Sandia has developed several sensor testing tool prototypes. This paper describes the evolution of an exterior intrusion detection sensor tester and automatic data logger, and also describes various interior intrusion detection sensor test fixtures that can be remotely activated to simulate an intruder.

Hayward, D.R.

1994-08-01T23:59:59.000Z

97

Pipeline Structural Health Monitoring Using Macro-fiber Composite Active Sensors  

SciTech Connect (OSTI)

The United States economy is heavily dependent upon a vast network of pipeline systems to transport and distribute the nation's energy resources. As this network of pipelines continues to age, monitoring and maintaining its structural integrity remains essential to the nation's energy interests. Numerous pipeline accidents over the past several years have resulted in hundreds of fatalities and billions of dollars in property damages. These accidents show that the current monitoring methods are not sufficient and leave a considerable margin for improvement. To avoid such catastrophes, more thorough methods are needed. As a solution, the research of this thesis proposes a structural health monitoring (SHM) system for pipeline networks. By implementing a SHM system with pipelines, their structural integrity can be continuously monitored, reducing the overall risks and costs associated with current methods. The proposed SHM system relies upon the deployment of macro-fiber composite (MFC) patches for the sensor array. Because MFC patches are flexible and resilient, they can be permanently mounted to the curved surface of a pipeline's main body. From this location, the MFC patches are used to monitor the structural integrity of the entire pipeline. Two damage detection techniques, guided wave and impedance methods, were implemented as part of the proposed SHM system. However, both techniques utilize the same MFC patches. This dual use of the MFC patches enables the proposed SHM system to require only a single sensor array. The presented Lamb wave methods demonstrated the ability to correctly identify and locate the presence of damage in the main body of the pipeline system, including simulated cracks and actual corrosion damage. The presented impedance methods demonstrated the ability to correctly identify and locate the presence of damage in the flanged joints of the pipeline system, including the loosening of bolts on the flanges. In addition to damage to the actual pipeline itself, the proposed methods were used to demonstrate the capability of detecting deposits inside of pipelines. Monitoring these deposits can prevent clogging and other hazardous situations. Finally, suggestions are made regarding future research issues which are needed to advance this research. Because the research of this thesis has only demonstrated the feasibility of the techniques for such a SHM system, these issues require attention before any commercial applications can be realized.

A.B. Thien

2006-03-01T23:59:59.000Z

98

Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor  

E-Print Network [OSTI]

potential as a self-powered active gas sensor This article has been downloaded from IOPscience. Please on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor Xinyu Xue1 as a power source, but also as a response signal to the gas, demonstrating a possible approach as a self-powered

Wang, Zhong L.

99

Autonomous Correction of Sensor Data Applied to Building Technologies Utilizing Statistical Processing Methods  

E-Print Network [OSTI]

Ridge, TN outfitted with a total of 1,218 sensors. The focus of this paper is on three different types.S. ("Intergovernmental Panel," 2007). There is a need for integrated building strategies, according to the U.S. Green concerns relevant to sensors being used to collect a wide variety of variables (e.g., humidity ratio, solar

Wang, Xiaorui "Ray"

100

Minimally-invasive Wearable Sensors and Data Processing Methods for Mental Stress Detection  

E-Print Network [OSTI]

................................................................ 70 5.4 Spectral weighting .............................................................................................. 72 5.5 Summary of the proposed methods .................................................................... 73 ix Page 6... posture, and (c) SNS is dominant during tilt posture. ................................................................................. 21 Figure 13. Different activation modes and psychological markers. (a) ANS branches exhibit four different...

Choi, Jongyoon

2012-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Method and apparatus for packaging optical fiber sensors for harsh environments  

DOE Patents [OSTI]

A package for an optical fiber sensor having a metal jacket surrounding the sensor, and heat-shrink tubing surrounding the metal jacket. The metal jacket is made of a low melting point metal (e.g. lead, tin). The sensor can be disposed in a rigid tube (e.g. stainless steel or glass) that is surrounded by the metal jacket. The metal jacket provides a hermetic, or nearly hermetic seal for the sensor. The package is made by melting the metal jacket and heating the heat shrink tubing at the same time. As the heat-shrink tubing shrinks, it presses the low melting point metal against the sensor, and squeezes out the excess metal.

Pickrell, Gary; Duan, Yuhong; Wang, Anbo

2005-08-09T23:59:59.000Z

102

Method for the depth corrected detection of ionizing events from a co-planar grids sensor  

DOE Patents [OSTI]

A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.

De Geronimo, Gianluigi (Syosset, NY); Bolotnikov, Aleksey E. (South Setauket, NY); Carini, Gabriella (Port Jefferson, NY)

2009-05-12T23:59:59.000Z

103

Sensor response rate accelerator  

DOE Patents [OSTI]

An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

Vogt, Michael C. (Westmont, IL)

2002-01-01T23:59:59.000Z

104

X-RAY ACTIVE MATRIX PIXEL SENSORS BASEDON J-FET TECHNOLOGY DEVELOPED FOR THE LINAC COHERENT LIGHT SOURCE.  

SciTech Connect (OSTI)

An X-ray Active Matrix Pixel Sensor (XAMPS) is being developed for recording data for the X-ray Pump Probe experiment at the Linac Coherent Light Source (LCLS). Special attention has to be paid to some technological challenges that this design presents. New processes were developed and refined to address problems encountered during previous productions of XAMPS. The development of these critical steps and corresponding tests results are reported here.

CARINI,G.A.; CHEN, W.; LI, Z.; REHAK, P.; SIDDONS, D.P.

2007-10-29T23:59:59.000Z

105

Method for forming a potential hydrocarbon sensor with low sensitivity to methane and CO  

DOE Patents [OSTI]

A hydrocarbon sensor is formed with an electrolyte body having a first electrolyte surface with a reference electrode depending therefrom and a metal oxide electrode body contained within the electrolyte body and having a first electrode surface coplanar with the first electrolyte surface. The sensor was formed by forming a sintered metal-oxide electrode body and placing the metal-oxide electrode body within an electrolyte powder. The electrolyte powder with the metal-oxide electrode body was pressed to form a pressed electrolyte body containing the metal-oxide electrode body. The electrolyte was removed from an electrolyte surface above the metal-oxide electrode body to expose a metal-oxide electrode surface that is coplanar with the electrolyte surface. The electrolyte body and the metal-oxide electrode body were then sintered to form the hydrocarbon sensor.

Mukundan, Rangachary (Santa Fe, NM); Brosha, Eric L. (Los Alamos, NM); Garzon, Fernando (Santa Fe, NM)

2003-12-02T23:59:59.000Z

106

Activity recognition in the home setting using simple and ubiquitous sensors  

E-Print Network [OSTI]

During the past several years, researchers have demonstrated that when new wireless sensors are placed in the home environment, data collected from them can be used by software to automatically infer context, such as the ...

Munguia Tapia, Emmanuel, 1978-

2003-01-01T23:59:59.000Z

107

iCalm: Wearable Sensor and Network Architecture for Wirelessly Communicating and Logging Autonomic Activity  

E-Print Network [OSTI]

Widespread use of affective sensing in healthcare applications has been limited due to several practical factors, such as lack of comfortable wearable sensors, lack of wireless standards, and lack of low-power affordable ...

Dobson, Kelly

108

Active-set prediction for interior point methods  

E-Print Network [OSTI]

This research studies how to efficiently predict optimal active constraints of an inequality constrained optimization problem, in the context of Interior Point Methods (IPMs). We propose a framework based on shifting/perturbing ...

Yan, Yiming

2015-07-01T23:59:59.000Z

109

Autonomous Correction of Sensor Data Applied to Building Technologies Using Filtering Methods  

E-Print Network [OSTI]

and commercial buildings consume 41% of primary energy (72% electricity) used in the U.S. · Retrofitting inefficient buildings with new and innovative technologies that help to curb energy consumption will reduce filters. · Specifically, temperature, humidity, energy usage, pressure, and airflow sensor data is used

Wang, Xiaorui "Ray"

110

Recent CESAR (Center for Engineering Systems Advanced Research) research activities in sensor based reasoning for autonomous machines  

SciTech Connect (OSTI)

This paper describes recent research activities at the Center for Engineering Systems Advanced Research (CESAR) in the area of sensor based reasoning, with emphasis being given to their application and implementation on our HERMIES-IIB autonomous mobile vehicle. These activities, including navigation and exploration in a-priori unknown and dynamic environments, goal recognition, vision-guided manipulation and sensor-driven machine learning, are discussed within the framework of a scenario in which an autonomous robot is asked to navigate through an unknown dynamic environment, explore, find and dock at the panel, read and understand the status of the panel's meters and dials, learn the functioning of a process control panel, and successfully manipulate the control devices of the panel to solve a maintenance emergency problems. A demonstration of the successful implementation of the algorithms on our HERMIES-IIB autonomous robot for resolution of this scenario is presented. Conclusions are drawn concerning the applicability of the methodologies to more general classes of problems and implications for future work on sensor-driven reasoning for autonomous robots are discussed. 8 refs., 3 figs.

Pin, F.G.; de Saussure, G.; Spelt, P.F.; Killough, S.M.; Weisbin, C.R.

1988-01-01T23:59:59.000Z

111

Method and computer product to increase accuracy of time-based software verification for sensor networks  

DOE Patents [OSTI]

A recursive verification protocol to reduce the time variance due to delays in the network by putting the subject node at most one hop from the verifier node provides for an efficient manner to test wireless sensor nodes. Since the software signatures are time based, recursive testing will give a much cleaner signal for positive verification of the software running on any one node in the sensor network. In this protocol, the main verifier checks its neighbor, who in turn checks its neighbor, and continuing this process until all nodes have been verified. This ensures minimum time delays for the software verification. Should a node fail the test, the software verification downstream is halted until an alternative path (one not including the failed node) is found. Utilizing techniques well known in the art, having a node tested twice, or not at all, can be avoided.

Foo Kune, Denis (Saint Paul, MN); Mahadevan, Karthikeyan (Mountain View, CA)

2011-01-25T23:59:59.000Z

112

Advanced Detector Research - Fabrication and Testing of 3D Active-Edge Silicon Sensors: High Speed, High Yield  

SciTech Connect (OSTI)

Development of 3D silicon radiation sensors employing electrodes fabricated perpendicular to the sensor surfaces to improve fabrication yields and increasing pulse speeds.

Parker, Sherwood I

2008-09-01T23:59:59.000Z

113

Magnetic force driven six degree-of-freedom active vibration isolation system using a phase compensated velocity sensor  

SciTech Connect (OSTI)

A six-axis active vibration isolation system (AVIS) is developed using voice coil actuators. Point contact configuration is employed to have an easy assembly of eight voice coil actuators to an upper and a base plates. The velocity sensor, using an electromagnetic principle that is commonly used in the vibration control, is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. The performances of the AVIS are investigated in the frequency domain and finally validated by comparing with the passive isolation system using the atomic force microscope images.

Kim, Yongdae; Park, Kyihwan [Department of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Kim, Sangyoo [Compressor Group, Digital Appliance Laboratory LG Electronics, Gaeumjeong-Dong, Changwon, Gyeongnam 641-711 (Korea, Republic of)

2009-04-15T23:59:59.000Z

114

Elastomeric optical fiber sensors and method for detecting and measuring events occurring in elastic materials  

DOE Patents [OSTI]

Fiber optic sensing means for the detection and measurement of events such as dynamic loadings imposed upon elastic materials including cementitious materials, elastomers, and animal body components and/or the attrition of such elastic materials are provided. One or more optical fibers each having a deformable core and cladding formed of an elastomeric material such as silicone rubber are embedded in the elastic material. Changes in light transmission through any of the optical fibers due the deformation of the optical fiber by the application of dynamic loads such as compression, tension, or bending loadings imposed on the elastic material or by the attrition of the elastic material such as by cracking, deterioration, aggregate break-up, and muscle, tendon, or organ atrophy provide a measurement of the dynamic loadings and attrition. The fiber optic sensors can be embedded in elastomers subject to dynamic loadings and attrition such as commonly used automobiles and in shoes for determining the amount and frequency of the dynamic loadings and the extent of attrition. The fiber optic sensors are also useable in cementitious material for determining the maturation thereof.

Muhs, Jeffrey D. (Lenoir City, TN); Capps, Gary J. (Knoxville, TN); Smith, David B. (Oak Ridge, TN); White, Clifford P. (Knoxville, TN)

1994-01-01T23:59:59.000Z

115

Low Power Camera-on-a-Chip Using CMOS Active Pixel Sensor Technology  

E-Print Network [OSTI]

and scientific markets. The development of the solid-state charge-coupled device (CCD) in the early 1970's led to as a camera-on-a-chip, and represents a second generation solid state image sensor technology. A block diagram systems typically operate for an hour on an 1800 mA-hr 6 Y NiCad rechargeable battery, corresponding to 10

Fossum, Eric R.

116

Methods of increasing secretion of polypeptides having biological activity  

DOE Patents [OSTI]

The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

Merino, Sandra

2014-10-28T23:59:59.000Z

117

Methods of increasing secretion of polypeptides having biological activity  

DOE Patents [OSTI]

The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

Merino, Sandra

2014-05-27T23:59:59.000Z

118

Methods of increasing secretion of polypeptides having biological activity  

SciTech Connect (OSTI)

The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

Merino, Sandra

2013-10-01T23:59:59.000Z

119

Non-contact passive temperature measuring system and method of operation using micro-mechanical sensors  

DOE Patents [OSTI]

A non-contact infrared thermometer measures target temperatures remotely without requiring the ratio of the target size to the target distance to the thermometer. A collection means collects and focusses target IR radiation on an IR detector. The detector measures thermal energy of the target over a spectrum using micromechanical sensors. A processor means calculates the collected thermal energy in at least two different spectral regions using a first algorithm in program form and further calculates the ratio of the thermal energy in the at least two different spectral regions to obtain the target temperature independent of the target size, distance to the target and emissivity using a second algorithm in program form.

Thundat, Thomas G. (616 Plainfield Rd., Knoxville, TN 37923); Oden, Patrick I. (804-171 Olde Pioneer Trail, Knoxville, TN 37923); Datskos, Panagiotis G. (8444 Mecklenburg Ct., Knoxville, TN 37923)

2000-01-01T23:59:59.000Z

120

Method and apparatus for the measurement of signals from radiation sensors  

DOE Patents [OSTI]

The preferred embodiments of the present invention include a device for measuring an ionizing event in a radiation sensor. The device can include a charge amplifier and a timing shaper. The charge amplifier receives a cathode signal and is configured to output an amplified cathode signal. The timing shaper is operatively connected to the charge amplifier to receive the amplified cathode signal. The timing shaper is configured to generate a first pulse in response to a beginning of the ionizing event and a second pulse in response to an end of the ionizing event. The first and second pulses are associated with a depth of interaction of the ionizing event and are generated in response to a slope of the amplified cathode signal changing.

De Geronimo, Gianluigi

2012-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Sensor apparatus  

DOE Patents [OSTI]

A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

Deason, Vance A. (Idaho Falls, ID) [Idaho Falls, ID; Telschow, Kenneth L. (Idaho Falls, ID) [Idaho Falls, ID

2009-12-22T23:59:59.000Z

122

CHEMICAL SENSOR AND FIELD SCREENING TECHNOLOGY DEVELOPMENT: FUELS IN SOILS FIELD SCREENING METHOD VALIDATION  

SciTech Connect (OSTI)

A new screening method for fuel contamination in soils was recently developed as American Society for Testing and Materials (ASTM) Method D-583 1-95, Standard Test Method for Screening Fuels in Soils. This method uses low-toxicity chemicals and can be used to screen organic-rich soils. In addition, it is fast, easy, and inexpensive to perform. The screening method calls for extracting a sample of soil with isopropyl alcohol following treatment with calcium oxide. The resulting extract is filtered, and the ultraviolet absorbance of the extract is measured at 254 nm. Depending on the available information concerning the contaminant fuel type and availability of the contaminant fuel for calibration, the method can be used to determine the approximate concentration of fuel contamination, an estimated value of fuel contamination, or an indication of the presence or absence of fuel contamination. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and coal oil, can be determined. The screening method for fuels in soils was evaluated by conducting a collaborative study on the method and by using the method to screen soil samples at an actual field site. In the collaborative study, a sand and an organic soil spiked with various concentrations of diesel fuel were tested. Data from the collaborative study were used to determine the reproducibility (between participants) and repeatability (within participant) precision of the method for screening the test materials. The collaborative study data also provide information on the performance of portable field equipment versus laboratory equipment for performing the screening method and a comparison of diesel concentration values determined using the screening method versus a laboratory method. Data generated using the method to screen soil samples in the field provide information on the performance of the method in atypical real-world application.

Susan S. Sorini; John F. Schabron

1997-04-01T23:59:59.000Z

123

Sensor readout detector circuit  

DOE Patents [OSTI]

A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

Chu, D.D.; Thelen, D.C. Jr.

1998-08-11T23:59:59.000Z

124

Sensor readout detector circuit  

DOE Patents [OSTI]

A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

Chu, Dahlon D. (Albuquerque, NM); Thelen, Jr., Donald C. (Bozeman, MT)

1998-01-01T23:59:59.000Z

125

Sensor Network Lifetime Maximization Via Sensor Energy Balancing: Construction and Optimal Scheduling of Sensor Trees  

E-Print Network [OSTI]

in such a way that the total energy usage of the active sensor nodes in the tree is minimized. However whenSensor Network Lifetime Maximization Via Sensor Energy Balancing: Construction and Optimal Scheduling of Sensor Trees Ling Shi , Agostino Capponi , Karl H. Johansson and Richard M. Murray Abstract

Johansson, Karl Henrik

126

Measurements on HV-CMOS Active Sensors After Irradiation to HL-LHC fluences  

E-Print Network [OSTI]

During the long shutdown (LS) 3 beginning 2022 the LHC will be upgraded for higher luminosities pushing the limits especially for the inner tracking detectors of the LHC experiments. In order to cope with the increased particle rate and radiation levels the ATLAS Inner Detector will be completely replaced by a purely silicon based one. Novel sensors based on HV-CMOS processes prove to be good candidates in terms of spatial resolution and radiation hardness. In this paper measurements conducted on prototypes built in the AMS H18 HV-CMOS process and irradiated to fluences of up to $2\\cdot10^{16}\\,\\text{n}_\\text{eq}\\text{cm}^{-2}$ are presented.

B. Ristic; for the ATLAS CMOS pixel collaboration

2015-01-13T23:59:59.000Z

127

Robust activation method for negative electron affinity photocathodes  

DOE Patents [OSTI]

A method by which photocathodes(201), single crystal, amorphous, or otherwise ordered, can be surface modified to a robust state of lowered and in best cases negative, electron affinity has been discovered. Conventional methods employ the use of Cs(203) and an oxidizing agent(207), typically carried by diatomic oxygen or by more complex molecules, for example nitrogen trifluoride, to achieve a lowered electron affinity(404). In the improved activation method, a second alkali, other than Cs(205), is introduced onto the surface during the activation process, either by co-deposition, yo-yo, or sporadic or intermittent application. Best effect for GaAs photocathodes has been found through the use of Li(402) as the second alkali, though nearly the same effect can be found by employing Na(406). Suitable photocathodes are those which are grown, cut from boules, implanted, rolled, deposited or otherwise fabricated in a fashion and shape desired for test or manufacture independently supported or atop a support structure or within a framework or otherwise affixed or suspended in the place and position required for use.

Mulhollan, Gregory A. (Dripping Springs, TX); Bierman, John C. (Austin, TX)

2011-09-13T23:59:59.000Z

128

Sensors for monitoring waste glass quality and method of using the same  

DOE Patents [OSTI]

A set of three electrical probes is described for monitoring alkali and oxygen activity of a glass melt. On-line, real time measurements of the potential difference among the probes when they are placed in electrical contact with the melt yield the activity information and can be used to adjust the composition of the melt in order to produce higher quality glass. The first two probes each has a reference gas and a reference electrolyte and a pair of wires in electrical connection with each other in the reference gas but having one of the wires extending further into the reference electrolyte. The reference gases both include a known concentration of oxygen. The third electrode has a pair of wires extending through an otherwise solid body to join electrically just past the body but having one of the wires extend past this junction. Measuring the potential difference between wires of the first and second probes provides the alkali activity; measurement of the potential difference between wires of the second and third probes provides the oxygen activity of the melt. 1 figure.

Bickford, D.F.

1994-03-15T23:59:59.000Z

129

MINIMIZATION OF SENSOR USAGE FOR TARGET TRACKING IN A NETWORK OF IRREGULARLY SPACED SENSORS  

E-Print Network [OSTI]

MINIMIZATION OF SENSOR USAGE FOR TARGET TRACKING IN A NETWORK OF IRREGULARLY SPACED SENSORS Thomas address the following scenario: a single target moves through a field of stationary sensors with known locations. At each time epoch, each sensor is either active or not; each active sensor outputs either target

Morrell, Darryl

130

Method for monitoring stack gases for uranium activity  

DOE Patents [OSTI]

A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

Beverly, Claude R. (Paducah, KY); Ernstberger, Harold G. (Paducah, KY)

1988-01-01T23:59:59.000Z

131

Method for monitoring stack gases for uranium activity  

DOE Patents [OSTI]

A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

Beverly, C.R.; Ernstberger, E.G.

1985-07-03T23:59:59.000Z

132

Compositions and methods for adoptive and active immunotherapy  

DOE Patents [OSTI]

Modular aAPCs and methods of their manufacture and use are provided. The modular aAPCs are constructed from polymeric microparticles. The aAPCs include encapsulated cytokines and coupling agents which modularly couple functional elements including T cell receptor activators, co-stimulatory molecules and adhesion molecules to the particle. The ability of these aAPCs to release cytokines in a controlled manner, coupled with their modular nature and ease of ligand attachment, results in an ideal, tunable APC capable of stimulating and expanding primary T cells.

Fahmy, Tarek; Steenblock, Erin

2014-01-14T23:59:59.000Z

133

Modeling of Power and Energy Transduction of Embedded Piezoelectric Wafer Active Sensors for  

E-Print Network [OSTI]

Transmitter INPUT Transmitter PWAS A'A Electrical response (7-mm transmitter) ­ Active power ­ Reactive power ­ Reactive power is dominant · capacitive behavior 0 200 400 600 0 1000 2000 3000 4000 Electrical Reactive Power frequency (kHz) Power(mW) 21 ^ 2 active RP Y V 21 ^ 2 reactive IP Y V Piezoelectric transduction

Giurgiutiu, Victor

134

Primary Calibration of Acoustic Emission Sensors by the Method of Reciprocity, Theoretical and Experimental Considerations  

E-Print Network [OSTI]

actual vibration using contactless laser interferometry. Finally, an original method for shear wave.m.f. in the p-th branch will produce the same current in the q-th branch of a circuit as the same e-mechanical equivalence, this theorem is applied to ultrasonic transducer. McLean [2] was the first to propose

Paris-Sud XI, Université de

135

a Wireless Sensor Network for Environmental Monitoring  

E-Print Network [OSTI]

transmitters #12;Sample sensors: #12;Sample sensors: PAR: Photosynthetically Active (solar) Radiation sensora Wireless Sensor Network for Environmental Monitoring a Wireless Sensor Network for Environmental technology: a truly self configurable, low-cost, maintenance-free, ad-hoc sensor network (not based on Zig

Gburzynski, Pawel

136

Platforms: Where the sensors are mounted.  

E-Print Network [OSTI]

over the Sahara On September 18, 1994. #12;14 The sensor detects solar radiation that has been absorbed1 Platforms: Where the sensors are mounted. Sensors: Instruments on the platforms. ETM+ AVIRIS GER 1500 #12;2 Passive Sensors · Aerial Cameras · Visible or Thermal Active Sensors · Microwave (Radar

Gilbes, Fernando

137

Comparison of median frequency between traditional and functional sensor placements during activity monitoring  

E-Print Network [OSTI]

Long-term monitoring is of great clinical relevance. Accelerometers are often used to provide information about activities of daily living. The median frequency (f[subscript m]) of acceleration has recently been suggested ...

Graham, Selina

138

Mitigating container security risk using real-time monitoring with active Radio Frequency Identification and sensors  

E-Print Network [OSTI]

The global village in which we live enables increased trade and commerce across regions but also brings a complicated new set of challenges such as terrorist activity, human and drug smuggling and theft in foreign or ...

Schlesinger, Adam Ian

2005-01-01T23:59:59.000Z

139

Multi-mode Damage Detection Methods with Piezoelectric Wafer Active Sensors  

E-Print Network [OSTI]

modes structural health monitoring (SHM) and non- destructive evaluation (NDE) simply by changing the driving frequencies. This paper presents research results obtained by using PWAS transducer for SHM/NDE impedance measurements; (3) PWAS ultrasonic SHM/NDE; and (4) PWAS multi-mode corrosion detection

Giurgiutiu, Victor

140

Method for regeneration and activity improvement of syngas conversion catalyst  

DOE Patents [OSTI]

A method is disclosed for the treatment of single particle iron-containing syngas (synthes.s gas) conversion catalysts comprising iron, a crystalline acidic aluminosilicate zeolite having a silica to alumina ratio of at least 12, a pore size greater than about 5 Angstrom units and a constraint index of about 1-12 and a matrix. The catalyst does not contain promoters and the treatment is applicable to either the regeneration of said spent single particle iron-containing catalyst or for the initial activation of fresh catalyst. The treatment involves air oxidation, hydrogen reduction, followed by a second air oxidation and contact of the iron-containing single particle catalyst with syngas prior to its use for the catalytic conversion of said syngas. The single particle iron-containing catalysts are prepared from a water insoluble organic iron compound.

Lucki, Stanley J. (Runnemede, NJ); Brennan, James A. (Cherry Hill, NJ)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Compact electrochemical sensor system and method for field testing for metals in saliva or other fluids  

DOE Patents [OSTI]

Microanalytical systems based on a microfluidics/electrochemical detection scheme are described. Individual modules, such as microfabricated piezoelectrically actuated pumps and a microelectrochemical cell were integrated onto portable platforms. This allowed rapid change-out and repair of individual components by incorporating "plug and play" concepts now standard in PC's. Different integration schemes were used for construction of the microanalytical systems based on microfluidics/electrochemical detection. In one scheme, all individual modules were integrated in the surface of the standard microfluidic platform based on a plug-and-play design. Microelectrochemical flow cell which integrated three electrodes based on a wall-jet design was fabricated on polymer substrate. The microelectrochemical flow cell was then plugged directly into the microfluidic platform. Another integration scheme was based on a multilayer lamination method utilizing stacking modules with different functionality to achieve a compact microanalytical device. Application of the microanalytical system for detection of lead in, for example, river water and saliva samples using stripping voltammetry is described.

Lin, Yuehe; Bennett, Wendy D.; Timchalk, Charles; Thrall, Karla D.

2004-03-02T23:59:59.000Z

142

Title: Structural Health Monitoring with Piezoelectric Wafer Active Sensors Author: Victor Giurgiutiu  

E-Print Network [OSTI]

on the piezoelectric principle by coupling the electrical and mechanical energy fields (Figure 1). For embedded NDE. Embedded ultrasonic NDE is achieved by using the pitch-catch, pulse-echo, and phased-array NDE methods with in-situ PWAS transducers. A comprehensive study of the state of the art in embedded ultrasonic NDE

Giurgiutiu, Victor

143

Disbond detection in adhesively-bonded structures using piezoelectric wafer active sensors  

E-Print Network [OSTI]

, Structural Health Monitoring, Damage Detection, NDE 1 INTRODUCTION With an increasing use of adhesively in this direction and nondestructive evaluation (NDE) methods are successfully used for damage detection and damage, guided waves used for NDE have shown encouraging results and are becoming more popular in the NDE field

Giurgiutiu, Victor

144

E-Print Network 3.0 - activity optimization method Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

optimization method Search Powered by Explorit Topic List Advanced Search Sample search results for: activity optimization method Page: << < 1 2 3 4 5 > >> 1 Optimization 1-1...

145

Contact stress sensor  

DOE Patents [OSTI]

A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

Kotovsky, Jack

2014-02-11T23:59:59.000Z

146

Active microchannel fluid processing unit and method of making  

DOE Patents [OSTI]

The present invention is an active microchannel fluid processing unit and method of making, both relying on having (a) at least one inner thin sheet; (b) at least one outer thin sheet; (c) defining at least one first sub-assembly for performing at least one first unit operation by stacking a first of the at least one inner thin sheet in alternating contact with a first of the at least one outer thin sheet into a first stack and placing an end block on the at least one inner thin sheet, the at least one first sub-assembly having at least a first inlet and a first outlet; and (d) defining at least one second sub-assembly for performing at least one second unit operation either as a second flow path within the first stack or by stacking a second of the at least one inner thin sheet in alternating contact with second of the at least one outer thin sheet as a second stack, the at least one second sub-assembly having at least a second inlet and a second outlet.

Bennett, Wendy D [Kennewick, WA; Martin, Peter M [Kennewick, WA; Matson, Dean W [Kennewick, WA; Roberts, Gary L [West Richland, WA; Stewart, Donald C [Richland, WA; Tonkovich, Annalee Y [Pasco, WA; Zilka, Jennifer L [Pasco, WA; Schmitt, Stephen C [Dublin, OH; Werner, Timothy M [Columbus, OH

2002-12-10T23:59:59.000Z

147

Active microchannel fluid processing unit and method of making  

DOE Patents [OSTI]

The present invention is an active microchannel fluid processing unit and method of making, both relying on having (a) at least one inner thin sheet; (b) at least one outer thin sheet; (c) defining at least one first sub-assembly for performing at least one first unit operation by stacking a first of the at least one inner thin sheet in alternating contact with a first of the at least one outer thin sheet into a first stack and placing an end block on the at least one inner thin sheet, the at least one first sub-assembly having at least a first inlet and a first outlet; and (d) defining at least one second sub-assembly for performing at least one second unit operation either as a second flow path within the first stack or by stacking a second of the at least one inner thin sheet in alternating contact with second of the at least one outer thin sheet as a second stack, the at least one second sub-assembly having at least a second inlet and a second outlet.

Bennett, Wendy D. (Kennewick, WA) [Kennewick, WA; Martin, Peter M. (Kennewick, WA) [Kennewick, WA; Matson, Dean W. (Kennewick, WA) [Kennewick, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Stewart, Donald C. (Richland, WA) [Richland, WA; Tonkovich, Annalee Y. (Pasco, WA) [Pasco, WA; Zilka, Jennifer L. (Pasco, WA) [Pasco, WA; Schmitt, Stephen C. (Dublin, OH) [Dublin, OH; Werner, Timothy M. (Columbus, OH) [Columbus, OH

2001-01-01T23:59:59.000Z

148

System and method for cancelling the effects of stray magnetic fields from the output of a variable reluctance sensor  

DOE Patents [OSTI]

A sensor system for sensing a rotation of a sensing wheel is disclosed. The sensor system has a sensing coil in juxtaposition with the sensing wheel. Moreover, the sensing coil has a sensing coil output signal indicative of the rotational speed of the sensing wheel. Further, a cancellation coil is located remotely from the sensing coil and connected in series therewith. Additionally, the cancellation coil has a cancellation coil output signal indicative of an environmental disturbance which is effecting the sensing coil output signal. The cancellation coil output signal operates to cancel the effects of the environmental disturbance on the sensing coil output signal.

Chen, Chingchi (Ann Arbor, MI); Degner, Michael W. (Farmington Hills, MI)

2002-11-19T23:59:59.000Z

149

A feasible active set method for strictly convex quadratic problems ...  

E-Print Network [OSTI]

The given data yields the active-set-transition-graph depicted in Figure 1. ...... of the energy computed from the surface position and squared norm of its gradient.

2015-03-24T23:59:59.000Z

150

Optimization Online - Active-set prediction for interior point methods ...  

E-Print Network [OSTI]

May 18, 2014 ... Abstract: We propose the use of controlled perturbations to address the challenging question of optimal active-set prediction for interior point...

Coralia Cartis

2014-05-18T23:59:59.000Z

151

Large scale nuclear sensor monitoring and diagnostics by means of an ensemble of regression models based on Evolving Clustering Methods  

E-Print Network [OSTI]

Large scale nuclear sensor monitoring and diagnostics by means of an ensemble of regression models , Enrico Ziob a Institute for Energy Technology, Halden, Norway b Polytechnic of Milan, Milan, Italy actions for safely steering critical situations and preventing accidents. To avoid misleading information

Boyer, Edmond

152

System and method for collisional activation of charged particles  

DOE Patents [OSTI]

A collision cell is disclosed that provides ion activation in various selective modes. Ion activation is performed inside selected segments of a segmented quadrupole that provides maximum optimum capture and collection of fragmentation products. The invention provides collisional cooling of precursor ions as well as product fragments and further allows effective transmission of ions through a high pressure interface into a coupled mass analysis instrument.

Ibrahim, Yehia M; Belov, Mikhail E; Prior, David C

2013-09-24T23:59:59.000Z

153

Carbon Nanotube-Based Electrochemical Sensor for Assay of Salivary...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotube-Based Electrochemical Sensor for Assay of Salivary Cholinesterase Enzyme Activity: An Exposure Biomarker of Carbon Nanotube-Based Electrochemical Sensor for Assay of...

154

Activated carbon fiber composite material and method of making  

DOE Patents [OSTI]

An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

2001-01-01T23:59:59.000Z

155

Activated carbon fiber composite material and method of making  

DOE Patents [OSTI]

An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

2000-01-01T23:59:59.000Z

156

Electrocatalytic cermet sensor  

DOE Patents [OSTI]

A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.

Shoemaker, Erika L. (Westmont, IL); Vogt, Michael C. (Westmont, IL)

1998-01-01T23:59:59.000Z

157

Electrocatalytic cermet sensor  

DOE Patents [OSTI]

A sensor is described for O{sub 2} and CO{sub 2} gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer. 16 figs.

Shoemaker, E.L.; Vogt, M.C.

1998-06-30T23:59:59.000Z

158

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design,Design,  

E-Print Network [OSTI]

Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design of Freiburg #12;OverviewOverview · Sensor networks · mobile sensor · mobile robot · Mote · sensor relocation #12;Sensor networks · A wirless network . · Set of sensors. · Static Mote #12;Mobile sensor networks

Schindelhauer, Christian

159

Vibration detection in turbomachinery using non-contacting sensors  

E-Print Network [OSTI]

Recent developments have seen the introduction of multiple Eddy Current Sensors (ECS) into turbomachinery. These sensors employ an active magnetic field to monitor each blade as it passes the sensor. They generate an ...

Cohen, Eric D., M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

160

Renewable-reagent electrochemical sensor  

DOE Patents [OSTI]

A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

Wang, J.; Olsen, K.B.

1999-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Renewable-reagent electrochemical sensor  

DOE Patents [OSTI]

A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

Wang, Joseph (Las Cruces, NM); Olsen, Khris B. (Richland, WA)

1999-01-01T23:59:59.000Z

162

Real-Time Active Cosmic Neutron Background Reduction Methods  

SciTech Connect (OSTI)

Neutron counting using large arrays of pressurized 3He proportional counters from an aerial system or in a maritime environment suffers from the background counts from the primary cosmic neutrons and secondary neutrons caused by cosmic ray?induced mechanisms like spallation and charge-exchange reaction. This paper reports the work performed at the Remote Sensing LaboratoryAndrews (RSL-A) and results obtained when using two different methods to reduce the cosmic neutron background in real time. Both methods used shielding materials with a high concentration (up to 30% by weight) of neutron-absorbing materials, such as natural boron, to remove the low-energy neutron flux from the cosmic background as the first step of the background reduction process. Our first method was to design, prototype, and test an up-looking plastic scintillator (BC-400, manufactured by Saint Gobain Corporation) to tag the cosmic neutrons and then create a logic pulse of a fixed time duration (~120 ?s) to block the data taken by the neutron counter (pressurized 3He tubes running in a proportional counter mode). The second method examined the time correlation between the arrival of two successive neutron signals to the counting array and calculated the excess of variance (Feynman variance Y2F)1 in the neutron count distribution from Poisson distribution. The dilution of this variance from cosmic background values ideally would signal the presence of man-made neutrons.2 The first method has been technically successful in tagging the neutrons in the cosmic-ray flux and preventing them from being counted in the 3He tube array by electronic vetofield measurement work shows the efficiency of the electronic veto counter to be about 87%. The second method has successfully derived an empirical relationship between the percentile non-cosmic component in a neutron flux and the Y2F of the measured neutron count distribution. By using shielding materials alone, approximately 55% of the neutron flux from man-made sources like 252Cf or Am-Be was removed.

Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald; Mitchell, Stephen; Guss, Paul

2013-09-01T23:59:59.000Z

163

Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors  

E-Print Network [OSTI]

Abstract--A low noise optical sensor and biocompatible microscale optical filters for integrated fluorescence sensors were developed and tested. The sensor was fabricated in a 0.5 µm CMOS process. The measured reset noise of the sensor is reduced by a factor of 10 compared to conventional active pixel

Maryland at College Park, University of

164

A Robust Aggregation Method for Quasi-blind Robots in an Active Environment  

E-Print Network [OSTI]

A Robust Aggregation Method for Quasi-blind Robots in an Active Environment Nazim Fat is through an active environment (stigmergy) and the only information they can receive is the local detection of the waves produced by other robots. The active environment obeys a cellular automaton rule and is simulated

Paris-Sud XI, Universit de

165

Engineered enzymatically active bacteriophages and methods of uses thereof  

DOE Patents [OSTI]

The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.

Collins, James J (Newton, MA); Kobayashi, Hideki (Yokohama, JP); Kearn, Mads (Ottawa, CA); Araki, Michihiro (Minatoku, JP); Friedland, Ari (Boston, MA); Lu, Timothy Kuan-Ta (Palo Alto, CA)

2012-05-22T23:59:59.000Z

166

Method of making terbium activated yttrium aluminate phosphor  

SciTech Connect (OSTI)

This patent describes the method of making Y/sub 3/Al/sub 5/O/sub 12/:Tb phosphor, the method comprising: (a) forming a uniform mixture of source materials for Y/sub 3/Al/sub 5/O/sub 12/:Tb phosphor and barium fluoride with the barium fluoride being present in the mixture at a level of from about 0.254 to about 0.761 weight percent; and (b) firing the mixture at an elevated temperature to react the source materials to form Y/sub 3/Al/sub 5/O/sub 12/:Tb phosphor having an improved brightness of at least about 7.5% over the phosphor prepared as above the absent barium fluoride, with the 50% size of the phosphor prepared as above with BaF/sub 2/ as measured by Coulter Counter technique being from about 5 to about 7 micrometers in diameter and with from about 1% to about 6% of the phosphor having a size of greater than about 20 micrometers in diameter.

Kasenga, A.F.; Dann, J.N.

1988-08-09T23:59:59.000Z

167

Nuclear sensor signal processing circuit  

DOE Patents [OSTI]

An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

Kallenbach, Gene A. (Bosque Farms, NM); Noda, Frank T. (Albuquerque, NM); Mitchell, Dean J. (Tijeras, NM); Etzkin, Joshua L. (Albuquerque, NM)

2007-02-20T23:59:59.000Z

168

Capacitance pressure sensor  

DOE Patents [OSTI]

A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

Eaton, William P. (Tijeras, NM); Staple, Bevan D. (Albuquerque, NM); Smith, James H. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

169

The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function  

SciTech Connect (OSTI)

This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)

Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)

2011-07-01T23:59:59.000Z

170

Stellar activity as noise in exoplanet detection I. Methods and application to solar-like stars and activity cycles  

E-Print Network [OSTI]

The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused "jitter" we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations, and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 m/s and 9 m/s. With a realistic observing frequency a Neptune mass planet on a one year orbit can be reliably recovered. On the other hand, the recovery of an Ea...

Korhonen, H; Piskunov, N; Hackman, T; Juncher, D; Jarvinen, S P; Joergensen, U G

2015-01-01T23:59:59.000Z

171

Double active shielded magnetic field gradient design with minimum inductance method  

E-Print Network [OSTI]

DOUBLE ACTIVE SHIELDED MAGNETIC FIELD GRADIENT DESIGN WITH MINIMUM INDUCTANCE METHOD A Thesis by XU WANG Submitted to the Oflice of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1992 Major Subject: Physics DOUBLE ACTIVE SHIELDED MAGNETIC FIELD GRADIENT DESIGN WITH MINIMUM INDUCTANCE METHOD A Thesis by XU WANG Approved as to style and content by: F. R. Huson (Chair of Committee) Steve Wry (Member) Edward...

Wang, Xu

1992-01-01T23:59:59.000Z

172

Distributed Sensor Coordination for Advanced Energy Systems  

SciTech Connect (OSTI)

The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called agents from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards what to observe rather than how to observe in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using sensor teams, system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

Tumer, Kagan

2013-07-31T23:59:59.000Z

173

Method for non-referential defect characterization using fractal encoding and active contours  

DOE Patents [OSTI]

A method for identification of anomalous structures, such as defects, includes the steps of providing a digital image and applying fractal encoding to identify a location of at least one anomalous portion of the image. The method does not require a reference image to identify the location of the anomalous portion. The method can further include the step of initializing an active contour based on the location information obtained from the fractal encoding step and deforming an active contour to enhance the boundary delineation of the anomalous portion.

Gleason, Shaun S. (Knoxville, TN); Sari-Sarraf, Hamed (Lubbock, TX)

2007-05-15T23:59:59.000Z

174

System and method for coproduction of activated carbon and steam/electricity  

DOE Patents [OSTI]

A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

Srinivasachar, Srivats (Sturbridge, MA); Benson, Steven (Grand Forks, ND); Crocker, Charlene (Newfolden, MN); Mackenzie, Jill (Carmel, IN)

2011-07-19T23:59:59.000Z

175

Method for improved selectivity in photo-activation and detection of molecular diagnostic agents  

DOE Patents [OSTI]

A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method includes the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention is also a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent. 13 figs.

Wachter, E.A.; Fisher, W.G.; Dees, H.C.

1998-11-10T23:59:59.000Z

176

Method and apparatus for actively controlling a micro-scale flexural plate wave device  

DOE Patents [OSTI]

An actively controlled flexural plate wave device provides a micro-scale pump. A method of actively controlling a flexural plate wave device produces traveling waves in the device by coordinating the interaction of a magnetic field with actively controlled currents. An actively-controlled flexural plate wave device can be placed in a fluid channel and adapted for use as a micro-scale fluid pump to cool or drive micro-scale systems, for example, micro-chips, micro-electrical-mechanical devices, micro-fluid circuits, or micro-scale chemical analysis devices.

Dohner, Jeffrey L. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

177

Evaluation of magnetic flux distribution from magnetic domains in [Co/Pd] nanowires by magnetic domain scope method using contact-scanning of tunneling magnetoresistive sensor  

SciTech Connect (OSTI)

Current-driven magnetic domain wall motions in magnetic nanowires have attracted great interests for physical studies and engineering applications. The magnetic force microscope (MFM) is widely used for indirect verification of domain locations in nanowires, where relative magnetic force between the local domains and the MFM probe is used for detection. However, there is an occasional problem that the magnetic moments of MFM probe influenced and/or rotated the magnetic states in the low-moment nanowires. To solve this issue, the magnetic domain scope for wide area with nano-order resolution (nano-MDS) method has been proposed recently that could detect the magnetic flux distribution from the specimen directly by scanning of tunneling magnetoresistive field sensor. In this study, magnetic domain structure in nanowires was investigated by both MFM and nano-MDS, and the leakage magnetic flux density from the nanowires was measured quantitatively by nano-MDS. Specimen nanowires consisted from [Co (0.3)/Pd (1.2)]{sub 21}/Ru(3) films (units in nm) with perpendicular magnetic anisotropy were fabricated onto Si substrates by dual ion beam sputtering and e-beam lithography. The length and the width of the fabricated nanowires are 20??m and 150?nm. We have succeeded to obtain not only the remanent domain images with the detection of up and down magnetizations as similar as those by MFM but also magnetic flux density distribution from nanowires directly by nano-MDS. The obtained value of maximum leakage magnetic flux by nano-MDS is in good agreement with that of coercivity by magneto-optical Kerr effect microscopy. By changing the protective diamond-like-carbon film thickness on tunneling magnetoresistive sensor, the three-dimensional spatial distribution of leakage magnetic flux could be evaluated.

Okuda, Mitsunobu, E-mail: okuda.m-ky@nhk.or.jp; Miyamoto, Yasuyoshi; Miyashita, Eiichi; Hayashi, Naoto [NHK Science and Technology Research Laboratories, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan)

2014-05-07T23:59:59.000Z

178

Non-parametric geodesic active regions: Method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA  

E-Print Network [OSTI]

Non-parametric geodesic active regions: Method and evaluation for cerebral aneurysms segmentation compares to other alternative techniques based on deformable models, namely parametric geodesic active aneurysm; Geodesic active regions; Differential invariants; Non-parametric probability estimation; Model

Frangi, Alejandro

179

Lean blowoff detection sensor  

SciTech Connect (OSTI)

Apparatus and method for detecting incipient lean blowoff conditions in a lean premixed combustion nozzle of a gas turbine. A sensor near the flame detects the concentration of hydrocarbon ions and/or electrons produced by combustion and the concentration monitored as a function of time are used to indicate incipient lean blowoff conditions.

Thornton, Jimmy (Morgantown, WV); Straub, Douglas L. (Morgantown, WV); Chorpening, Benjamin T. (Morgantown, WV); Huckaby, David (Morgantown, WV)

2007-04-03T23:59:59.000Z

180

Final report on the PNL program to develop an alumina sensor. Sensors Development Program  

SciTech Connect (OSTI)

An alumina concentration sensor was required to ensure safe operating conditions for cermet inert anodes that were under development at the Pacific Northwest Laboratory (PNL)(a) for the electrolytic production of aluminum metal. The Sensors Development Program at PNL was conducted in response to this need for an alumina sensor. In all, eight different approaches to developing an alumina sensor were evaluated as part of this program. Each approach sought to correlate alumina concentration either to some spectral, physical, or electrical property of the molten electrolytic, or alternatively, to some operational characteristic of the reduction cell such as the integrity of the cermet anodes or the electrical noise generated by them during cell operation. The studies on electrical noise were performed using a large number of digital signal analysis (DSA) methods. There were two primary requirements for success for an alumina sensor to be used in conjunction with cermet anodes: (1) adequate sensitivity to alumina concentration at concentrations close to saturation, and (2) ease of use in an industrial setting. After numerous laboratory experiments as well as field studies in some cases, it was concluded that none of the approaches sufficiently satisfied the two criteria to serve as the basis for an alumina sensor. If further work is to continue in this area, it is recommended that the research focus on altemative DSA approaches, primarily because DSA methods would be so easy to use in an industrial environment. Due to the lack of correlation using DSA in the present work, however, it is recommended that altemative strategies for data collection and analysis be used in any further development activities.

Windisch, C.F. Jr.; Brenden, B.B.; Koski, O.H.; Williford, R.E.

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hierarchical Nanoceramics for Industrial Process Sensors  

SciTech Connect (OSTI)

This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

2011-07-15T23:59:59.000Z

182

Optical sensing elements for nitrogen dioxide (NO.sub.2) gas detection, a sol-gel method for making the sensing elements and fiber optic sensors incorporating nitrogen dioxide gas optical sensing elements  

DOE Patents [OSTI]

A sensing element, a method of making a sensing element, and a fiber optic sensor incorporating the sensing element are described. The sensor can be used for the quantitative detection of NO.sub.2 in a mixture of gases. The sensing element can be made by incorporating a diazotizing reagent which reacts with nitrous ions to produce a diazo compound and a coupling reagent which couples with the diazo compound to produce an azo dye into a sol and allowing the sol to form an optically transparent gel. The sensing element changes color in the presence of NO.sub.2 gas. The temporal response of the absorption spectrum at various NO.sub.2 concentrations has also been recorded and analyzed. Sensors having different design configurations are described. The sensing element can detect NO.sub.2 gas at levels of parts per billion.

Mechery, Shelly John (Mississippi State, MS); Singh, Jagdish P. (Starkville, MS)

2007-07-03T23:59:59.000Z

183

Method for improved selectivity in photo-activation of molecular agents  

DOE Patents [OSTI]

A method for the treatment of a particular volume of plant or animal tissue comprising the steps of treating the plant or animal tissue with at least one photo-active molecular agent, wherein the particular volume of the plant or animal tissue retains at least a portion of the at least one photo-active molecular agent, and then treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of at least one of the at least one photo-active molecular agent retained in the particular volume of the plant or animal tissue, wherein the at least one photo-active molecular agent becomes active in the particular volume of the plant or animal tissue. There is also disclosed a method for the treatment of cancer in plant or animal tissue and a method for producing at least one photo-activated molecular agent in a particular volume of a material.

Fisher, Walter G. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN); Dees, H. Craig (Knoxville, TN)

1999-01-01T23:59:59.000Z

184

Method for improved selectivity in photo-activation of molecular agents  

DOE Patents [OSTI]

A method for the treatment of a particular volume of plant or animal tissue comprising the steps of treating the plant or animal tissue with at least one photo-active molecular agent, wherein the particular volume of the plant or animal tissue retains at least a portion of the at least one photo-active molecular agent, and then treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of at least one of the at least one photo-active molecular agent retained in the particular volume of the plant or animal tissue, wherein the at least one photo-active molecular agent becomes active in the particular volume of the plant or animal tissue. There is also disclosed a method for the treatment of cancer in plant or animal tissue and a method for producing at least one photo-activated molecular agent in a particular volume of a material.

Fisher, Walter G. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN); Dees, H. Craig (Knoxville, TN)

1998-01-01T23:59:59.000Z

185

Method for improved selectivity in photo-activation of molecular agents  

DOE Patents [OSTI]

A method for the treatment of a particular volume of plant or animal tissue comprising the steps of treating the plant or animal tissue with at least one photo-active molecular agent, wherein the particular volume of the plant or animal tissue retains at least a portion of the at least one photo-active molecular agent, and then treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of at least one of the at least one photo-active molecular agent retained in the particular volume of the plant or animal tissue, wherein the at least one photo-active molecular agent becomes active in the particular volume of the plant or animal tissue. There is also disclosed a method for the treatment of cancer in plant or animal tissue and a method for producing at least one photo-activated molecular agent in a particular volume of a material. 23 figs.

Fisher, W.G.; Wachter, E.A.; Dees, H.C.

1998-11-03T23:59:59.000Z

186

Methods, microfluidic devices, and systems for detection of an active enzymatic agent  

DOE Patents [OSTI]

Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.

Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

2014-10-28T23:59:59.000Z

187

Variable Radii Connected Sensor Cover in Sensor ZONGHENG ZHOU, SAMIR R. DAS, HIMANSHU GUPTA  

E-Print Network [OSTI]

is to maintain the fidelity of the gathered data while minimizing energy usage in the network. Energy is spent to be monitored. The set of active sensors should also form a connected communication graph, so that they can of selecting a minimum energy-cost connected sensor cover, when each sensor node can vary its sensing

Gupta, Himanshu

188

Variable Radii Connected Sensor Cover in Sensor Networks Zongheng Zhou, Samir Das, Himanshu Gupta  

E-Print Network [OSTI]

of the gathered data while minimizing energy usage in the network. Energy is spent due to message transmissions of active sensors should also form a connected communication graph, so that they can autonomously respond energy-cost connected sensor cover, when each sensor node can vary its sensing and transmission radius

Das, Samir R.

189

Sensors and Controls Workshop Summary Report  

SciTech Connect (OSTI)

Higher operating efficiencies, emission reductions, improved reliability, and lower operating costs are benefits that the power industry can realize with the utilization of sensors and controls. However, for the power industry to derive the maximum benefit from sensors and controls, improvements in existing technologies and novel approaches to challenging measurements are needed. Recognizing the importance of sensors and controls, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) sponsored a sensors and controls workshop on April 17 to 18, 2001, in Washington, DC. The workshop focused on identifying technology needs in sensors and controls for existing fossil-energy power plants as well as future facilities conceived under the Vision 21 Program. Forty-six experts from 29 organizations, including private industry, research laboratories, academia, and government agencies, attended the workshop. The meeting opened with keynote speakers from NETL and the private sector. NETL officials spoke of the Vision 21 and advanced research programs. Speakers from the Electric Power Research Institute (EPRI) and Delphi Automotive Systems Research Laboratory discussed the improvements realized with their respective operation through the use of sensors and controls. NETL keynote speakers Robert Romanosky and Carl Bauer emphasized that developing sensor and control systems plays a critical role in DOE Office of Fossil Energy Vision 21 Program, clean coal activities under the Power Plant Improvement Initiative, and the proposed Clean Coal Power Initiative. The Vision 21 Program is aimed at providing technologies for ultra-clean fossil-fuel-based energy production with 60- to 75-percent efficiencies and near zero emissions. The program also uses a modular approach to present opportunities to not only generate power, but also co-produce clean fuels, chemicals, steam, and other useful products. The ultra-high efficiency and environmental performance goals of the Vision 21 Program mean that facilities must operate at optimum conditions, while adapting in real-time to changes in load and feedstock. These are challenging performance goals. They will require advanced control and sensing systems that can be adapted and optimized in real time. To improve the overall plant performance of existing power plants, one of the most cost-effective methods is to update the sensor and control systems.

Susan Maley; Robert R. Romanosky

2001-11-30T23:59:59.000Z

190

E-Print Network 3.0 - airborne hyperspectral sensors Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imaging activities in Europe, ranging from sensor design and flight operation to data collection... directed towards the improvement of hyperspectral sensor and mission...

191

Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO{sub 2} gas sensor applications  

SciTech Connect (OSTI)

Graphical abstract: Display Omitted Highlights: ? Mesoporous WO{sub 3} nanoplate monoliths were obtained by direct templating synthesis. ? Enable effective accession of the analytic molecules for the sensor applications. ? The WO{sub 3} sensor exhibited a high performance to NO{sub 2} gas at low temperature. -- Abstract: Controllable synthesis of nanostructured metal oxide semiconductors with nanocrystalline size, porous structure, and large specific surface area is one of the key issues for effective gas sensor applications. In this study, crystalline mesoporous tungsten oxide nanoplate-like monoliths with high specific surface areas were obtained through instant direct-templating synthesis for highly sensitive nitrogen dioxide (NO{sub 2}) sensor applications. The copolymer soft template was converted into a solid carbon framework by heat treatment in an inert gas prior to calcinations in air to sustain the mesoporous structure of tungsten oxide. The multidirectional mesoporous structures of tungsten oxide with small crystalline size, large specific surface area, and superior physical characteristics enabled the rapid and effective accession of analytic gas molecules. As a result, the sensor response was enhanced and the response and recovery times were reduced, in which the mesoporous tungsten oxide based gas sensor exhibited a superior response of 21,155% to 5 ppm NO{sub 2}. In addition, the developed sensor exhibited selective detection of low NO{sub 2} concentration in ammonia and ethanol at a low temperature of approximately 150 C.

Hoa, Nguyen Duc, E-mail: ndhoa@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Duy, Nguyen Van [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam)] [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST) (Viet Nam)

2013-02-15T23:59:59.000Z

192

Noisy clocks and silent sunrises: measurement methods of daily activity pattern  

E-Print Network [OSTI]

intensity or ambient temperature and thus of the sun's position in the sky: time of sunrise, zenith; distribution of activity. Correspondence Pierre Nouvellet. Current address: Biology and Environmental Science with the actual position of the sun. To demonstrate the important difference between these methods of analysis, we

Courchamp, Franck

193

ACCEPTED FOR PUBLICATION IN THE IEEE/ASME TRANSACTIONS ON MECHATRONICS, OCTOBER 2008 1 The Sensor-based Random Graph Method  

E-Print Network [OSTI]

ACCEPTED FOR PUBLICATION IN THE IEEE/ASME TRANSACTIONS ON MECHATRONICS, OCTOBER 2008 1 The Sensor. An interesting multi-robot architecture in which robots are guided through the exploration by a market economy

194

Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).  

SciTech Connect (OSTI)

The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

2005-05-01T23:59:59.000Z

195

Gas sensor  

DOE Patents [OSTI]

A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

2014-09-09T23:59:59.000Z

196

Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548  

SciTech Connect (OSTI)

The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactive waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)

Kim, HakSoo; Chung, SungHwan; Maeng, SungJun [Central Research Institute, Korea Hydro and Nuclear Power Co. Ltd., 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)] [Central Research Institute, Korea Hydro and Nuclear Power Co. Ltd., 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

2013-07-01T23:59:59.000Z

197

Reverberation mapping of active galactic nuclei : The SOLA method for time-series inversion  

E-Print Network [OSTI]

In this paper a new method is presented to find the transfer function of the broad-line region in active galactic nuclei. The subtractive optimally localized averages (SOLA) method is a modified version of the Backus-Gilbert method and is presented as an alternative to the more often used maximum-entropy method. The SOLA method has been developed for use in helioseismology. It has been applied to the solar oscillation frequency splitting data currently available to deduce the internal rotation rate of the sun. The original SOLA method is reformulated in the present paper to cope with the slightly different problem of inverting time series. We use simulations to test the viability of the method and apply the SOLA method to the real data of the Seyfert-1 galaxy NGC 5548. We investigate the effects of measurement errors and how the resolution of the TF critically depends upon both the sampling rate and the photometric accuracy of the data. A uuencoded compressed postscript file of the paper which includes the figures is available by anonymous ftp at ftp://solaris.astro.uu.se/pub/articles/atmos/frank/PijWan.uue

Frank P. Pijpers; Ignaz Wanders

1994-06-27T23:59:59.000Z

198

Sensors 2009, 9, 8336-8348; doi:10.3390/s91008336 ISSN 1424-8220  

E-Print Network [OSTI]

Sensors 2009, 9, 8336-8348; doi:10.3390/s91008336 sensors ISSN 1424-8220 www.mdpi.com/journal/sensors. Under the identified biasing condition, the signal-to-noise ratio of the ISFET as a pH sensor is proved, biomolecules, neural activity, etc. [1-6]. In these applications, a large sensor array is becoming essential

Huang, Haimei

199

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT  

SciTech Connect (OSTI)

The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2007-08-08T23:59:59.000Z

200

Virtual Sensors: Abstracting Data from Physical Sensors  

E-Print Network [OSTI]

Virtual Sensors: Abstracting Data from Physical Sensors TR-UTEDGE-2006-001 Sanem Kabadayi Adam Pridgen Christine Julien © Copyright 2006 The University of Texas at Austin #12;Virtual Sensors: Abstracting Data from Physical Sensors Sanem Kabadayi, Adam Pridgen, and Christine Julien The Center

Julien, Christine

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Design & implementation of a wireless sensor prototyping kit  

E-Print Network [OSTI]

In recent years, wireless sensor networks (WSN) has become an active area of research among computer scientists. In this work, JONA, a prototyping kit for wireless sensors, will be described. The intention of this kit is ...

Hope, Jamison Roger

2005-01-01T23:59:59.000Z

202

Methods and apparatuses for preparing a surface to have catalytic activity  

DOE Patents [OSTI]

The invention provides methods and apparatuses that utilize mass spectrometry for preparation of a surface to have catalytic activity through molecular soft-landing of mass selected ions. Mass spectrometry is used to generate combinations of atoms in a particular geometrical arrangement, and ion soft-landing selects this molecular entity or combination of entities and gently deposits the entity or combination intact onto a surface.

Cooks, Robert G. (West Lafayette, IN); Peng, Wen-Ping (West Lafayette, IN); Ouyang, Zheng (West Lafayette, IN); Goodwin, Michael P. (West Lafayette, IN)

2011-03-22T23:59:59.000Z

203

UNCORRECTEDPROOF 2 A method to evaluate the level of solar activity at  

E-Print Network [OSTI]

UNCORRECTEDPROOF 2 A method to evaluate the level of solar activity at 3 the remainder of a progressing solar cycle 4 K.J. Li a,b,*, J. Qiu b , F.Y. Xiang c , P.X. Gao a , T.W. Su a 5 a Solar Physics Division, National Astronomical Observatories/Yunnan Observatory, CAS, Kunming 650011, China 6 b Big Bear

204

Carbon dioxide sensor  

DOE Patents [OSTI]

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

205

Corrosion sensor  

DOE Patents [OSTI]

A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

Glass, Robert S. (Livermore, CA); Clarke, Jr., Willis L. (San Ramon, CA); Ciarlo, Dino R. (Livermore, CA)

1994-01-01T23:59:59.000Z

206

Corrosion sensor  

DOE Patents [OSTI]

A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

1994-04-26T23:59:59.000Z

207

NOx Sensor Development  

SciTech Connect (OSTI)

The objectives of this report are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements; (3) Explore designs and manufacturing methods that could be compatible with mass fabrication; and (4) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization.

Woo, L Y; Glass, R S

2009-10-27T23:59:59.000Z

208

Measurement of neutron spectra in varied environments by the foil-activation method with arbitrary trials  

SciTech Connect (OSTI)

Neutron spectra have been measured by the foil-activation method in 13 different environments in and around the Sandia Pulsed Reactor, the White Sands Missile Range Fast Burst Reactor, and the Sandia Annular Core Research Reactor. The spectra were obtained by using the SANDII code in a manner that was not dependent on the initial trial. This altered technique is better suited for the determination of spectra in environments that are difficult to predict by calculation, and it tends to reveal features that may be biased out by the use of standard trial-dependent methods. For some of the configurations, studies have also been made of how well the solution is determined in each energy region. The experimental methods and the techniques used in the analyses are thoroughly explained. 34 refs., 51 figs., 40 tabs.

Kelly, J.G.; Vehar, D.W.

1987-12-01T23:59:59.000Z

209

NSTX High Temperature Sensor Systems  

SciTech Connect (OSTI)

The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

1999-11-01T23:59:59.000Z

210

Micro-Machined Thin Film Sensor Arrays For The Detection Of H2, Containing Gases, And Method Of Making And Using The Same.  

DOE Patents [OSTI]

The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.

DiMeo, Jr., Frank (Danbury, CT); Baum, Thomas H. (New Fairfield, CT)

2003-07-22T23:59:59.000Z

211

Hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

2010-11-23T23:59:59.000Z

212

Carbon nanotube temperature and pressure sensors  

DOE Patents [OSTI]

The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

Ivanov, Ilia N; Geohegan, David Bruce

2013-10-29T23:59:59.000Z

213

Emissive sensors and devices incorporating these sensors  

DOE Patents [OSTI]

The present invention generally relates to luminescent and/or optically absorbing compositions and/or precursors to those compositions, including solid films incorporating these compositions/precursors, exhibiting increased luminescent lifetimes, quantum yields, enhanced stabilities and/or amplified emissions. The present invention also relates to sensors and methods for sensing analytes through luminescent and/or optically absorbing properties of these compositions and/or precursors. Examples of analytes detectable by the invention include electrophiles, alkylating agents, thionyl halides, and phosphate ester groups including phosphoryl halides, cyanides and thioates such as those found in certain chemical warfare agents. The present invention additionally relates to devices and methods for amplifying emissions, such as those produced using the above-described compositions and/or precursors, by incorporating the composition and/or precursor within a polymer having an energy migration pathway. In some cases, the compositions and/or precursors thereof include a compound capable of undergoing a cyclization reaction.

Swager, Timothy M; Zhang, Shi-Wei

2013-02-05T23:59:59.000Z

214

Monitoring Energy Consumption In Wireless Sensor Networks  

E-Print Network [OSTI]

Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

Turau, Volker

215

Design and characterization of a low cost dual differential proving ring force sensor utilizing Hall-effect sensors  

E-Print Network [OSTI]

A novel dual differential hall-effect based proving ring force sensor has been designed, manufactured, and tested. Strain gauge based force sensors are among the most common methods of measuring static and dynamic forces, ...

Rivest, Christopher W. (Christopher Warren)

2006-01-01T23:59:59.000Z

216

Online Sensor Calibration Assessment in Nuclear Power Systems  

SciTech Connect (OSTI)

Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

2013-06-01T23:59:59.000Z

217

3.5 Nanowire Sensors 3.5.1 Background  

E-Print Network [OSTI]

117 3.5 Nanowire Sensors 3.5.1 Background Nanowires are solid, rod-like materials with diameters that similar commercial products will eventually be available. 3.5.2 Description Nanowire sensors have et al. 2003). A comprehensive review of current research activities on chemical sensors based

218

Method and apparatus for sampling low-yield wells  

DOE Patents [OSTI]

An apparatus and method for collecting a sample from a low-yield well or perched aquifer includes a pump and a controller responsive to water level sensors for filling a sample reservoir. The controller activates the pump to fill the reservoir when the water level in the well reaches a high level as indicated by the sensor. The controller deactivates the pump when the water level reaches a lower level as indicated by the sensors. The pump continuously activates and deactivates the pump until the sample reservoir is filled with a desired volume, as indicated by a reservoir sensor. At the beginning of each activation cycle, the controller optionally can select to purge an initial quantity of water prior to filling the sample reservoir. The reservoir can be substantially devoid of air and the pump is a low volumetric flow rate pump. Both the pump and the reservoir can be located either inside or outside the well.

Last, George V. (Richland, WA); Lanigan, David C. (Kennewick, WA)

2003-04-15T23:59:59.000Z

219

Photogrammetry & Machine Vision 1. Image sensors  

E-Print Network [OSTI]

Photogrammetry & Machine Vision 1. Image sensors (a) Fundamentals of image sensors (b) CCD image. Remondino, N. D'Apuzzo Photogrammetry and Machine Vision ­ 2. Camera calibration and orientation (b) Camera and Machine Vision ­ 2. Camera calibration and orientation (b) Calibration methods (reference object, point

Giger, Christine

220

Configurable dynamic privacy for pervasive sensor networks  

E-Print Network [OSTI]

Ubiquitous computing sensor networks have greatly augmented the functionality of interactive media systems by adding the ability to capture and store activity-related information. Analyzing the information recorded from ...

Gong, Nan-Wei

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Remotely Deployed Virtual Sensors  

E-Print Network [OSTI]

Remotely Deployed Virtual Sensors TR-UTEDGE-2007-010 Sanem Kabadayi Christine Julien © Copyright 2007 The University of Texas at Austin #12;Remotely Deployed Virtual Sensors Sanem Kabadayi that run on mobile client devices connect to the sensors of a multihop sensor network. For emerging

Julien, Christine

222

Methods of communicating activities in pollution abatement by five hundred major industrial corporations in the United States  

E-Print Network [OSTI]

METHODS OF COMMUNICATING ACTIVITIES IN POLLUTION ABATEMENT BY FIVE HUNDRED MAJOR INDUSTRIAL CORPORATIONS IN THE UNITED STATES A Thesis by CHRISTINE ANN OUINN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1973 Major Subject: Educational Administration (Public Relations) METHODS OF COMMUNICATING ACTIVITIES IN POLLUTION ABATEMENT BY FIVE HUNDRED MAJOR INDUSTRIAL CORPORATIONS IN THE UNITED STATES A...

Quinn, Christine Ann

1973-01-01T23:59:59.000Z

223

Application of electrical methods to measure microbial activity in soils: Preliminary microcosm results  

SciTech Connect (OSTI)

The application of the geophysical technique known as self-potential to the measurement of microbial activity was tested on laboratory microcosms containing ferric iron and iron-reducing bacteria Shewanella alga BrY. Measurements of the electrical response of silver-coated copper electrodes distributed along a Teflon probe inserted into sterile and inoculated layers containing either ferric chloride, ferric citrate, or ferric oxide rich soil were recorded over hours or days. Strong electrical signals reached values more negative than {minus}400 mV for all types of inoculated ferric iron layers. Electric signals in sterile control layers, by contrast, rarely reached values more negative than {minus}150 mV. These preliminary experiments indicate that it may be possible to apply the self-potential geophysical method to monitor bioremediation in the field.

Cox, B.L. Sweet, A.; Majer, E.

1997-12-01T23:59:59.000Z

224

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network [OSTI]

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

225

Leak Detection and H2 Sensor Development  

SciTech Connect (OSTI)

Low-cost, durable, and reliable Hydrogen safety sensor for vehicle, stationary, and infrastructure applications. A new zirconia, electrochemical-based sensor technology is being transitioned out of the laboratory and into an advanced testing phase for vehicular and stationary H{sub 2} safety applications. Mixed potential sensors are a class of electrochemical devices that develop an open-circuit electromotive force due to the difference in the kinetics of the redox reactions of various gaseous species at each electrode/electrolyte/gas interface, referred to as the triple phase boundary (TPB). Therefore, these sensors have been considered for the sensing of various reducible or oxidizable gas species in the presence of oxygen. Based on this principle, a unique sensor design was developed by LANL and LLNL. The uniqueness of this sensor derives from minimizing heterogeneous catalysis (detrimental to sensor response) by avoiding gas diffusion through a catalytically active material and minimizing diffusion path to the TPB. Unlike the conventional design of these devices that use a dense solid electrolyte and porous thin film electrodes (similar to the current state-of-the-art zirconia-based sensors and fuel cells), the design of this sensor uses dense electrodes and porous electrolytes. Such a sensor design facilitates a stable and reproducible device response, since dense electrode morphologies are easy to reproduce and are significantly more stable than the conventional porous morphologies. Moreover, these sensors develop higher mixed potentials since the gas diffusion is through the less catalytically active electrolyte than the electrode. Lastly, the choice of electrodes is primarily based on their O2 reduction kinetics and catalytic properties vis-a-vis the target gas of interest.

Brosha, Eric L. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

226

Fiber-Optic Long-Line Position Sensor  

Energy Innovation Portal (Marketing Summaries) [EERE]

Sandia National Laboratories has developed a side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. Non-electrical position sensors like the one developed by Sandia are desirable for use in hazardous environment, e.g., for measuring the liquid level in gasoline or jet fuel tanks. This sensor is an attractive option because it does notintroduce electrical energy, is insensitive to electromagnetic interference,...

2013-03-12T23:59:59.000Z

227

DOI: 10.1002/adem.200700076 Novel Method for Synthesis of Nano-Materials: Combustion of Active  

E-Print Network [OSTI]

DOI: 10.1002/adem.200700076 Novel Method for Synthesis of Nano-Materials: Combustion of Active- and combustion synthesis. A combination of combustion and reactive solution approaches leads to so- called solution (aqueous) combustion synthesis (SCS) method.[1­3] Typically SCS involves a self-sustained reaction

Mukasyan, Alexander

228

Connected K-Coverage Problem in Sensor Networks Zongheng Zhou, Samir Das, Himanshu Gupta  

E-Print Network [OSTI]

energy usage in the network. Energy is spent due to message transmissions among sensor nodes, or due-- In overdeployed sensor networks, one approach to conserve energy is to keep only a small subset of sensors active" by at least K different sensors in M, and the communication graph induced by M is connected. For the above

Das, Samir R.

229

Connected K-Coverage Problem in Sensor Networks Zongheng Zhou, Samir Das, Himanshu Gupta  

E-Print Network [OSTI]

energy usage in the network. Energy is spent due to message transmissions among sensor nodes, or due-- In overdeployed sensor networks, one approach to conserve energy is to keep only a small subset of sensors active" by at least different sensors in ¡ , and the communication graph induced by ¡ is connected. For the above

Gupta, Himanshu

230

A FRAMEWORK FOR DESIGNING SENSOR-BASED INTERACTIONS TO PROMOTE EXPLORATION AND REFLECTION IN PLAY  

E-Print Network [OSTI]

with a discussion of the core properties of sensor technologies. 1. INTRODUCTION Originally, sensor technology uses of sensors were monitoring activities, such as the thermostat of a central heating system. If the building was too cold the heating was switched on. Nowadays, sensors are being used in a range

231

Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods  

DOE Patents [OSTI]

A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

Gerts, David W; Bean, Robert S; Metcalf, Richard R

2013-02-19T23:59:59.000Z

232

Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities  

SciTech Connect (OSTI)

The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation of the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.

Reindl, W.; Deng, K.; Gladden, J.M.; Cheng, G.; Wong, A.; Singer, S.W.; Singh, S.; Lee, J.-C.; Yao, J.-S.; Hazen, T.C.; Singh, A.K; Simmons, B.A.; Adams, P.D.; Northen, T.R.

2011-05-01T23:59:59.000Z

233

Fiber optic temperature sensor  

SciTech Connect (OSTI)

Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

Rabold, D.

1995-12-01T23:59:59.000Z

234

Oxygen partial pressure sensor  

DOE Patents [OSTI]

A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

Dees, D.W.

1994-09-06T23:59:59.000Z

235

{sup 3}He+{sup 4}He astrophysical factor study using activation method  

SciTech Connect (OSTI)

In 1998, [2] pointed out the big difference for the S{sub 34}(0) ('old' experimental data) when experimental results were grouped starting from the main two methods: S{sub 34}(0) = 0.507(16)keVb for the direct capture and S{sub 34}(0) = 0.572(26)keVb for the activation. Its importance for the Standard Solar Model was the reason to ask for new measurements to understand the discrepancy. 'New' results solved this issue by equalizing the above values, but introduced a new situation to clarify: a discrepancy between the S{sub 34}(E) variations for 'old' and 'new' data at higher energies than E{sub CM} 1.0MeV. 'Old' theoretical models, used for extrapolating the S{sub 34}(E) to the stellar energies, couldn't explain this new behavior. New experimental data was required, again, by theorists. We started this project with the main goal to clarify the situation. Here are the results.

Bordeanu, C. [Institute of Nuclear Research (ATOMKI), H-4001 Debrecen, POB.51 (Hungary)

2012-10-20T23:59:59.000Z

236

Z .Sensors and Actuators B 65 2000 270272 www.elsevier.nlrlocatersensorb  

E-Print Network [OSTI]

Z .Sensors and Actuators B 65 2000 270­272 www.elsevier.nlrlocatersensorb Semiconductor sensors For the detection of fluorine, two different preparation methods for semiconductor gas sensors were developed.01 and 10 ppm type II . The sensitivity of Z Z ..type I sensors is about 116 mVrlg p F . It is possible

Moritz, Werner

237

Vibration welding system with thin film sensor  

DOE Patents [OSTI]

A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

2014-03-18T23:59:59.000Z

238

Radionuclide Sensors for Water Monitoring  

SciTech Connect (OSTI)

Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particles in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

2003-06-01T23:59:59.000Z

239

Radionuclide Sensors for Water Monitoring  

SciTech Connect (OSTI)

Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

2004-06-29T23:59:59.000Z

240

Building Adaptable Sensor Networks with Sensor Cubes  

E-Print Network [OSTI]

of layers allows easy experiments, upgrades and extensions Small-scale sensor network Example sensor module- world network algorithm and power management behavior · Results from small scale tests can be compared (short packets and high bit rate reduce collision probability); Transmitter's MAC table logic: Small

Roussos, George

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

Homuth, Emil F. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

242

Digital Sensor Technology  

SciTech Connect (OSTI)

The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

2013-07-01T23:59:59.000Z

243

Giant magnetoresistive sensor  

DOE Patents [OSTI]

A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA); Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA)

1999-01-01T23:59:59.000Z

244

active magnetic regenerative: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position...

245

Sensor system scaling issues  

SciTech Connect (OSTI)

A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.

Canavan, G.H.

1996-07-01T23:59:59.000Z

246

Sensors for Environmental Observatories  

E-Print Network [OSTI]

Sensors for Environmental Observatories Report of the NSF-Sponsored Workshop December 2004 #12 States of America. 2005. #12;Sensors for Environmental Observatories Report of the NSF Sponsored Workshop sensor technology and the networks that collect data from them. Present work clearly demonstrates

Hamilton, Michael P.

247

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

248

New functional polymers for sensors, smart materials and solar cells  

E-Print Network [OSTI]

Organic polymers can be used as the active component of sensors, smart materials, chemical-delivery systems and the active layer of solar cells. The rational design and modification of the chemical structure of polymers ...

Lobez Comeras, Jose Miguel

2012-01-01T23:59:59.000Z

249

Radioactive Target Detection Using Wireless Sensor Network  

E-Print Network [OSTI]

. By using the physical law for nuclear radiation isotopes, this chapter proposes a statistical method for wireless sensor network data to detect and locate a hidden nuclear target in a large study area. The method shown that the proposed method is effective and efficient in detection and location of the nuclear

Zhang, Tonglin

250

E-Print Network 3.0 - active power method Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Nonlinear Loads Jos Mahomar, Luis Morn... active power filters. The algorithm is proved by simulation in a multibus industrial power distribution... system and...

251

Unattended ground sensor situation assessment workstation  

SciTech Connect (OSTI)

Effective utilization of unattended ground sensors (UGSs) in a theater reconnaissance, surveillance, target acquisition, and kill assessment environment requires that a human operator be able to interpret, and collectively assess, the significance of real time data obtained from UGS emplacements over large geographical regions of interest. The products of this UGS data interpretation and assessment activity can then be used in the decision support process for command level evaluation of appropriate courses of action. Advancements in both sensor hardware technology and in software systems and processing technology have enabled the development of practical real time situation assessment capabilities based upon information from unattended ground sensors. A decision support workstation that employs rule-based expert system processing of reports from unattended ground sensors is described. The primary goal of this development activity is to produce a suite of software to track vehicles using data from unattended ground sensors. The situational assessment products from this system have stand-alone utility, but are also intended to provide cueing support for overhead sensors and supplementary feeds to all-source fusion centers. The conceptual framework, developmental architecture, and demonstration field tests of the system are described.

Jeppesen, D.; Trellue, R.

1997-04-01T23:59:59.000Z

252

Micromechanical potentiometric sensors  

DOE Patents [OSTI]

A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.

Thundat, Thomas G. (Knoxville, TN)

2000-01-01T23:59:59.000Z

253

Analysis methods for solar heating and cooling applications: passive and active systems. 2nd edition  

SciTech Connect (OSTI)

Brief descriptions of analysis methods and design tools which are valuable in performing parametric studies of candidate designs are presented in this brochure. The methods included range from rules-of-thumb for builders to the simulation packages used by researchers. (MHR)

None

1980-01-01T23:59:59.000Z

254

Working Group Report: Sensors  

SciTech Connect (OSTI)

Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

Artuso, M.; et al.,

2013-10-18T23:59:59.000Z

255

Capacitive chemical sensor  

DOE Patents [OSTI]

A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

2014-05-27T23:59:59.000Z

256

Remote electrochemical sensor  

DOE Patents [OSTI]

An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

Wang, Joseph (Las Cruces, NM); Olsen, Khris (Richland, WA); Larson, David (Las Cruces, NM)

1997-01-01T23:59:59.000Z

257

Thermal Protection of an Inductive Proximity Sensor Utilizing Low-Density Ceramic Composition Tile.  

E-Print Network [OSTI]

??This thesis presents the results of a unique method for protecting inductive proximity (IP) sensors from extreme thermal exposure. The method presented in this study (more)

Anger, Kim

2010-01-01T23:59:59.000Z

258

Electrode-active material for electrochemical batteries and method of preparation  

DOE Patents [OSTI]

A battery electrode material comprises a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

Varma, R.

1983-11-07T23:59:59.000Z

259

Electrode-active material for electrochemical batteries and method of preparation  

DOE Patents [OSTI]

A battery electrode material comprising a non-stoichiometric electrode-active material which forms a redox pair with the battery electrolyte, an electrically conductive polymer present in the range of from about 2% by weight to about 5% by weight of the electrode-active material, and a binder. The conductive polymer provides improved proton or ion conductivity and is a ligand resulting in metal ion or negative ion vacancies of less than about 0.1 atom percent. Specific electrodes of nickel and lead are disclosed.

Varma, Ravi (Hinsdale, IL)

1987-01-01T23:59:59.000Z

260

Diffractive laser beam homogenizer including a photo-active material and method of fabricating the same  

SciTech Connect (OSTI)

A method of manufacturing a plurality of diffractive optical elements includes providing a partially transmissive slide, providing a first piece of PTR glass, and directing first UV radiation through the partially transmissive slide to impinge on the first piece of PTR glass. The method also includes exposing predetermined portions of the first piece of PTR glass to the first UV radiation and thermally treating the exposed first piece of PTR glass. The method further includes providing a second piece of PTR glass and directing second UV radiation through the thermally treated first piece of PTR glass to impinge on the second piece of PTR glass. The method additionally includes exposing predetermined portions of the second piece of PTR glass to the second UV radiation, thermally treating the exposed second piece of PTR glass, and repeating providing and processing of the second piece of PTR glass using additional pieces of PTR glass.

Bayramian, Andy J; Ebbers, Christopher A; Chen, Diana C

2014-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A method for using polyethylene passive samplers to measure polycyclic aromatic hydrocarbon chemical activity in sediments  

E-Print Network [OSTI]

In order to aid in the determination of the hazards posed by hydrophobic organic compounds (HOCs) in sediment beds, a method for the use of polyethylene (PE) sheets as passive sampling devices for measuring chemical ...

Fernandez, Loretta A. (Loretta Ana)

2005-01-01T23:59:59.000Z

262

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

Homuth, E.F.

1991-03-19T23:59:59.000Z

263

Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors  

DOE Patents [OSTI]

Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

Johnson, Jr., Alan T. (Philadelphia, PA); Gelperin, Alan (Princeton, NJ); Staii, Cristian (Madison, WI)

2011-07-12T23:59:59.000Z

264

A new method to estimate annual solar wind parameters and contributions of different solar wind structures to geomagnetic activity  

E-Print Network [OSTI]

In this paper, we study two sets of local geomagnetic indices from 26 stations using the principal component (PC) and the independent component (IC) analysis methods. We demonstrate that the annually averaged indices can be accurately represented as linear combinations of two first components with weights systematically depending on latitude. We show that the annual contributions of coronal mass ejections (CMEs) and high speed streams (HSSs) to geomagnetic activity are highly correlated with the first and second IC. The first and second ICs are also found to be very highly correlated with the strength of the interplanetary magnetic field (IMF) and the solar wind speed, respectively, because solar wind speed is the most important parameter driving geomagnetic activity during HSSs while IMF strength dominates during CMEs. These results help in better understanding the long-term driving of geomagnetic activity and in gaining information about the long-term evolution of solar wind parameters and the different sol...

Holappa, Lauri; Asikainen, Timo

2015-01-01T23:59:59.000Z

265

Final report on the PNL program to develop an alumina sensor  

SciTech Connect (OSTI)

An alumina concentration sensor was required to ensure safe operating conditions for cermet inert anodes that were under development at the Pacific Northwest Laboratory (PNL)(a) for the electrolytic production of aluminum metal. The Sensors Development Program at PNL was conducted in response to this need for an alumina sensor. In all, eight different approaches to developing an alumina sensor were evaluated as part of this program. Each approach sought to correlate alumina concentration either to some spectral, physical, or electrical property of the molten electrolytic, or alternatively, to some operational characteristic of the reduction cell such as the integrity of the cermet anodes or the electrical noise generated by them during cell operation. The studies on electrical noise were performed using a large number of digital signal analysis (DSA) methods. There were two primary requirements for success for an alumina sensor to be used in conjunction with cermet anodes: (1) adequate sensitivity to alumina concentration at concentrations close to saturation, and (2) ease of use in an industrial setting. After numerous laboratory experiments as well as field studies in some cases, it was concluded that none of the approaches sufficiently satisfied the two criteria to serve as the basis for an alumina sensor. If further work is to continue in this area, it is recommended that the research focus on altemative DSA approaches, primarily because DSA methods would be so easy to use in an industrial environment. Due to the lack of correlation using DSA in the present work, however, it is recommended that altemative strategies for data collection and analysis be used in any further development activities.

Windisch, C.F. Jr.; Brenden, B.B.; Koski, O.H.; Williford, R.E.

1992-10-01T23:59:59.000Z

266

Energy Conservation in Sensor and  

E-Print Network [OSTI]

Chapter 4 Energy Conservation in Sensor and Sensor-Actuator Networks Ivan Stojmenovic 4 wireless network, and must work unattended. The limited energy budget at the individual sensor level

Stojmenovic, Ivan

267

Molecular sieve sensors for selective detection at the nanogram level  

DOE Patents [OSTI]

The invention relates to a selective chemical sensor for selective detection of chemical entities even at the nanogram level. The invention further relates to methods of using the sensor. The sensor comprises: (a) a piezoelectric substrate capable of detecting mass changes resulting from adsorption of material thereon; and (b) a coating applied to the substrate, which selectively sorbs chemical entities of a size smaller than a preselected magnitude.

Bein, Thomas (Albuquerque, NM); Brown, Kelly D. (Albuquerque, NM); Frye, Gregory C. (Albuquerque, NM); Brinker, Charles J. (Albuquerque, NM)

1992-01-01T23:59:59.000Z

268

Adaptive Sampling for Wireless Sensor Networks Rebecca M. Willett  

E-Print Network [OSTI]

net- work that can significantly reduce energy consumption. Under a piecewise smooth field assumption activating only n3/4 of the sensors in the net- work. This approach can save significant energy compared acquisition, and communication contribute significantly to the energy ex- penditure of wireless sensor

Willett, Rebecca

269

Modeling Human Behavior from Simple Sensors in the Home  

E-Print Network [OSTI]

Modeling Human Behavior from Simple Sensors in the Home Ryan Aipperspach, Elliot Cohen, and John {ryanaip, jfc}@cs.berkeley.edu, emcohen3@berkeley.edu Abstract. Pervasive sensors in the home have a variety of applications including energy minimization, activity monitoring for elders, and tutors

Canny, John

270

Detecting Eating Using a Wrist Mounted Device During Normal Daily Activities  

E-Print Network [OSTI]

Detecting Eating Using a Wrist Mounted Device During Normal Daily Activities Yujie Dong1, Adam method for automated monitoring of eating. Our method uses a single sensor that is worn on the wrist, similar in form to a watch. Wrist orientation was captured at a rate of 60 Hz for an entire day while four

Hoover, Adam

271

Methods for preparing comparative standards and field samples for neutron activation analysis of soil  

SciTech Connect (OSTI)

One of the more difficult problems associated with comparative neutron activation analysis (CNAA) is the preparation of standards which are tailor-made to the desired irradiation and counting conditions. Frequently, there simply is not a suitable standard available commercially, or the resulting gamma spectrum is convoluted with interferences. In a recent soil analysis project, the need arose for standards which contained about 35 elements. In response, a computer spreadsheet was developed to calculate the appropriate amount of each element so that the resulting gamma spectrum is relatively free of interferences. Incorporated in the program are options for calculating all of the irradiation and counting parameters including activity produced, necessary flux/bombardment time, counting time, and appropriate source-to-detector distance. The result is multi-element standards for CNAA which have optimal concentrations. The program retains ease of use without sacrificing capability. In addition to optimized standard production, a novel soil homogenization technique was developed which is a low cost, highly efficient alternative to commercially available homogenization systems. Comparative neutron activation analysis for large scale projects has been made easier through these advancements. This paper contains details of the design and function of the NAA spreadsheet and innovative sample handling techniques.

Glasgow, D.C.; Dyer, F.F.; Robinson, L.

1994-06-01T23:59:59.000Z

272

Sensors and actuators 1990  

SciTech Connect (OSTI)

This book contains the proceedings on sensors and actuators 1990. Topics covered include: Hot wire air flow meter for engine control systems, A technique for the real-time estimation of air-fuel ratio using molecular weight ratios, combustion knock sensing: Sensor selection and application issues, and An indirect sensing technique for closed-loop diesel fuel quantity control.

Not Available

1990-01-01T23:59:59.000Z

273

Time-dependent restricted-active-space self-consistent-field singles method for many-electron dynamics  

E-Print Network [OSTI]

The time-dependent restricted-active-space self-consistent-field singles (TD-RASSCF-S) method is presented for investigating TD many-electron dynamics in atoms and molecules. Adopting the SCF notion from the muticonfigurational TD Hartree-Fock (MCTDHF) method and the RAS scheme (single-orbital excitation concept) from the TD configuration-interaction singles (TDCIS) method, the TD-RASSCF-S method can be regarded as a hybrid of them. We prove that, for closed-shell $N_{\\rm e}$-electron systems, the TD-RASSCF-S wave function can be fully converged using only $N_{\\rm e}/2+1\\le M\\le N_{\\rm e}$ spatial orbitals. Importantly, based on the TD variational principle, the converged TD-RASSCF-S wave function with $M= N_{\\rm e}$ is more accurate than the TDCIS wave function. The accuracy of the TD-RASSCF-S approach over the TDCIS is illustrated by the calculation of high-order harmonic generation spectra for one-dimensional models of atomic helium, beryllium, and carbon in an intense laser pulse. The electronic dynamics during the process is investigated by analyzing the behavior of electron density and orbitals. The TD-RASSCF-S method is accurate, numerically tractable, and applicable for large systems beyond the capability of the MCTDHF method.

Haruhide Miyagi; Lars Bojer Madsen

2014-05-21T23:59:59.000Z

274

Time-dependent restricted-active-space self-consistent-field singles method for many-electron dynamics  

SciTech Connect (OSTI)

The time-dependent restricted-active-space self-consistent-field singles (TD-RASSCF-S) method is presented for investigating TD many-electron dynamics in atoms and molecules. Adopting the SCF notion from the muticonfigurational TD Hartree-Fock (MCTDHF) method and the RAS scheme (single-orbital excitation concept) from the TD configuration-interaction singles (TDCIS) method, the TD-RASSCF-S method can be regarded as a hybrid of them. We prove that, for closed-shell N{sub e}-electron systems, the TD-RASSCF-S wave function can be fully converged using only N{sub e}/2 + 1 ? M ? N{sub e} spatial orbitals. Importantly, based on the TD variational principle, the converged TD-RASSCF-S wave function with M = N{sub e} is more accurate than the TDCIS wave function. The accuracy of the TD-RASSCF-S approach over the TDCIS is illustrated by the calculation of high-order harmonic generation spectra for one-dimensional models of atomic helium, beryllium, and carbon in an intense laser pulse. The electronic dynamics during the process is investigated by analyzing the behavior of electron density and orbitals. The TD-RASSCF-S method is accurate, numerically tractable, and applicable for large systems beyond the capability of the MCTDHF method.

Miyagi, Haruhide; Bojer Madsen, Lars [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)] [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C (Denmark)

2014-04-28T23:59:59.000Z

275

Fabrication of 3D Silicon Sensors  

SciTech Connect (OSTI)

Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

2012-06-06T23:59:59.000Z

276

A simple synthesis method of sulfur-free Fe-N-C catalyst witih high ORR activity  

SciTech Connect (OSTI)

To try to deconvolute which factors affect the activity and durability of metal-nitrogen-carbon (M-N-C) type non-precious catalysts for oxygen reduction reaction (ORR), M-N-C catalysts based on ion chloride, polyaniline (PANI) and Ketjen Black carbon support were synthesized using different synthetic conditions. The catalysts were characterized electrochemically and tested as cathodes for Hydrogen fuel cells. PANI is usually chemically oxidative polymerized using ammonium persulfate (APS) as oxidant. To eliminate sulfur in the synthesized catalysts, a simple synthesis method using ion chloride as oxidant for aniline polymerization was developed. Two different aniline polymerization conditions led to very different product morphologies. Synthesized at low initial proton concentration, the final product was composed of dense micrometer sized particles. A decomposable salt was found to be able to prohibit PANI cross linking during the drying and annealing process and thus led to porous product. The porous catalyst has much higher ORR activity than the dense product due to more accessible active sites. Synthesized at high proton concentration, the catalyst appeared to be porous. The decomposable salt treatment did not make too much improvement in the porous structure and electrochemical activity. However, fuel cell testing using air as cathode feeder indicates that the salt treatment improves mass transfer in the cathode layer. Catalyst synthesized using this simple method has performance comparable to our state-of-the art catalyst synthesized in a much more complicated procedure. The factor that sulfur sources are completely eliminated in the synthesis suggests that sulfur is not necessary for the ORR catalysis activity.

Ding, Zhongfen [Los Alamos National Laboratory; Johnston, Christina M [Los Alamos National Laboratory; Zelenay, Piotr [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

277

Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction  

DOE Patents [OSTI]

The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

2012-11-06T23:59:59.000Z

278

Passive in-situ chemical sensor  

DOE Patents [OSTI]

A chemical sensor for assessing a chemical of interest. In typical embodiments the chemical sensor includes a first thermocouple and second thermocouple. A reactive component is typically disposed proximal to the second thermal couple, and is selected to react with the chemical of interest and generate a temperature variation that may be detected by a comparison of a temperature sensed by the second thermocouple compared with a concurrent temperature detected by the first thermocouple. Further disclosed is a method for assessing a chemical of interest and a method for identifying a reaction temperature for a chemical of interest in a system.

Morrell, Jonathan S. (Farragut, TN); Ripley, Edward B. (Knoxville, TN)

2012-02-14T23:59:59.000Z

279

We propose a wearable PIR thermal sensor system that can help users to perceive the  

E-Print Network [OSTI]

We propose a wearable PIR thermal sensor system that can help users to perceive the surrounding environment from a thermal perspective. Wireless PIR sensor network technology has been developed to track and recognize multiple moving human subjects, as well as understand their activities. However, the PIR sensor

Zhu, Zhigang

280

Towards optimal energy-quality tradeoff in tracking via sensor Alessio Benavoli and Luigi Chisci  

E-Print Network [OSTI]

proportional to the number of active sensors, energy efficiency calls for the implementation, inside about the current sensor energy status. This is certainly efficient in terms of tracking qualityTowards optimal energy-quality tradeoff in tracking via sensor networks Alessio Benavoli and Luigi

Chisci, Luigi

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Properties of tungsten oxide thin films formed by ion-plasma and laser deposition methods for MOSiC-based hydrogen sensors  

SciTech Connect (OSTI)

Thin-film structures based on gas-sensitive tungsten oxide and catalytic platinum are fabricated by room-temperature deposition on a silicon carbide wafer using pulsed laser and ion-plasma methods. Oxide layer annealing in air to 600 Degree-Sign C caused the formation of microstructured and nanostructured crystalline states depending on the deposition conditions. Structural differences affect the electrical parameters and the stability of characteristics. The maximum response to hydrogen is detected in the structure fabricated by depositing a low-energy laser-induced flow of tungsten atoms in oxygen. The voltage shift of the currentvoltage curves for 2% H{sub 2} in air at 350 Degree-Sign C was 4.6 V at a current of {approx}10 {mu}A. The grown structures' metastability caused a significant decrease in the shift after long-term cyclic testing. The most stable shifts of {approx}2 V at positive bias on the Pt contact were detected for oxide films deposited by ion-plasma sputtering.

Fominski, V. Y., E-mail: vyfominskij@mephi.ru [National Research Nuclear University 'MEPhI' (Russian Federation); Grigoriev, S. N. [Moscow State Technological University 'Stankin' (Russian Federation); Romanov, R. I.; Zuev, V. V.; Grigoriev, V. V. [National Research Nuclear University 'MEPhI' (Russian Federation)

2012-03-15T23:59:59.000Z

282

Report on Non-Contact DC Electric Field Sensors  

SciTech Connect (OSTI)

This document reports on methods used to measure DC electrostatic fields in the range of 100 to 4000 V/m using a non-contact method. The project for which this report is written requires this capability. Non-contact measurements of DC fields is complicated by the effect of the accumulation of random space-charges near the sensors which interfere with the measurement of the field-of-interest and consequently, many forms of field measurements are either limited to AC measurements or use oscillating devices to create pseudo-AC fields. The intent of this document is to report on methods discussed in the literature for non-contact measurement of DC fields. Electric field meters report either the electric field expressed in volts per distance or the voltage measured with respect to a ground reference. Common commercial applications for measuring static (DC) electric fields include measurement of surface charge on materials near electronic equipment to prevent arcing which can destroy sensitive electronic components, measurement of the potential for lightning to strike buildings or other exposed assets, measurement of the electric fields under power lines to investigate potential health risks from exposure to EM fields and measurement of fields emanating from the brain for brain diagnostic purposes. Companies that make electric field sensors include Trek (Medina, NY), MKS Instruments, Boltek, Campbell Systems, Mission Instruments, Monroe Electronics, AlphaLab, Inc. and others. In addition to commercial vendors, there are research activities continuing in the MEMS and optical arenas to make compact devices using the principles applied to the larger commercial sensors.

Miles, R; Bond, T; Meyer, G

2009-06-16T23:59:59.000Z

283

Standard Test Method for Oxygen Content Using a 14-MeV Neutron Activation and Direct-Counting Technique  

E-Print Network [OSTI]

1.1 This test method covers the measurement of oxygen concentration in almost any matrix by using a 14-MeV neutron activation and direct-counting technique. Essentially, the same system may be used to determine oxygen concentrations ranging from over 50 % to about 10 g/g, or less, depending on the sample size and available 14-MeV neutron fluence rates. Note 1 - The range of analysis may be extended by using higher neutron fluence rates, larger samples, and higher counting efficiency detectors. 1.2 This test method may be used on either solid or liquid samples, provided that they can be made to conform in size, shape, and macroscopic density during irradiation and counting to a standard sample of known oxygen content. Several variants of this method have been described in the technical literature. A monograph is available which provides a comprehensive description of the principles of activation analysis using a neutron generator (1). 1.3 The values stated in either SI or inch-pound units are to be regarded...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

284

A ROBUST ABSOLUTE DETECTION EFFICIENCY CALIBRATION METHOD UTILIZING BETA/GAMMA COINCIDENCE SIGNATURES AND ISOTOPICALLY PURIFIED NEUTRON ACTIVATED RADIOXENON ISOTOPES  

SciTech Connect (OSTI)

Efforts to calibrate the absolute efficiency of gas cell radiations detectors have utilized a number of methodologies which allow adequate calibration but are time consuming and prone to a host of difficult-to-determine uncertainties. A method that extrapolates the total source strength from the measured beta and gamma gated beta coincidence signal was developed in the 1960s and 1970s. It has become clear that it is possible to achieve more consistent results across a range of isotopes and a range of activities using this method. Even more compelling is the ease with which this process can be used on routine samples to determine the total activity present in the detector. Additionally, recent advances in the generation of isotopically pure radioxenon samples of Xe-131m, Xe-133, and Xe-135 have allowed these measurement techniques to achieve much better results than would have been possible before when using mixed isotopic radioxenon source. This paper will discuss the beta/gamma absolute detection efficiency technique that utilizes several of the beta-gamma decay signatures to more precisely determine the beta and gamma efficiencies. It will than compare these results with other methods using pure sources of Xe-133, Xe-131m, and Xe-135 and a Xe-133/Xe-133m mix.

McIntyre, Justin I.; Cooper, Matthew W.; Ely, James H.; Haas, Derek A.; Schrom, Brian T.

2012-09-21T23:59:59.000Z

285

Multi-modal Video Surveillance Aided by Pyroelectric Infrared Sensors  

E-Print Network [OSTI]

camera and a Pyroelectric InfraRed (PIR) sensor exploited to reduce remarkably the power consumption analytics which deploys synergically a PIR sensor and a smart camera. The aim of our method or removed objects in the scene. This class of events is often of critical importance for security reasons

Paris-Sud XI, Université de

286

Syncob: Collaborative Time Synchronization in Wireless Sensor Networks  

E-Print Network [OSTI]

an independent power sup- ply like a battery and use methods of energy harvesting like solar cells. To control the limited energy resources efficiently, wireless sensor networks typically undergo pe- riodic sleep-cycles to save energy. To collaborate for a common application, wireless sensor nodes have to be pre- cisely

Beigl, Michael

287

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer.

Buchanan, Bruce R. (1985 Willis, Batesburg, SC 29006); Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)

1992-01-01T23:59:59.000Z

288

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

Buchanan, B.R.; Prather, W.S.

1991-01-01T23:59:59.000Z

289

Fiber optic hydrogen sensor  

DOE Patents [OSTI]

An apparatus and method are described for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading by a single spectrophotometer. 4 figs.

Buchanan, B.R.; Prather, W.S.

1992-10-06T23:59:59.000Z

290

Remote electrochemical sensor  

DOE Patents [OSTI]

An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

Wang, J.; Olsen, K.; Larson, D.

1997-10-14T23:59:59.000Z

291

Electrochemical micro sensor  

DOE Patents [OSTI]

A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

Setter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

1989-09-12T23:59:59.000Z

292

Wireless passive radiation sensor  

DOE Patents [OSTI]

A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

2013-12-03T23:59:59.000Z

293

Aircraft as a meteorological sensor  

E-Print Network [OSTI]

Meteorological Institute 2 | The aircraft as a meteorological sensor Photo cover: A KLM Airbus A330-200 landsAircraft as a meteorological sensor Using Mode-S Enhanced Surveillance data to derive upper air Meteorological Institute 3 | The aircraft as a meteorological sensor Aircraft as a meteorological sensor Using

Haak, Hein

294

Movement behaviour of traditionally managed cattle in the Eastern Province of Zambia: investigations using two-dimensional motion sensors  

E-Print Network [OSTI]

Two-dimensional (2-D) motion sensors are activity motion sensors that use electronic accelerometers to record the lying, standing and walking behaviour of animals. They were used in this study with the aim of monitoring and quantifying the movement...

Lubaba, Caesar Himbayi

2011-06-27T23:59:59.000Z

295

Geographically distributed environmental sensor system  

DOE Patents [OSTI]

The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

French, Patrick; Veatch, Brad; O'Connor, Mike

2006-10-03T23:59:59.000Z

296

Volatile organic compound sensor system  

DOE Patents [OSTI]

Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY); Bomstad, Theresa M. (Waxahachie, TX); Sorini-Wong, Susan S. (Laramie, WY); Wong, Gregory K. (Laramie, WY)

2011-03-01T23:59:59.000Z

297

1250 IEEE SENSORS JOURNAL VOL. 6, NO. 5, OCTOBER 2006 Room-Temperature Hydrogen Sensitivity  

E-Print Network [OSTI]

1250 IEEE SENSORS JOURNAL VOL. 6, NO. 5, OCTOBER 2006 Room-Temperature Hydrogen Sensitivity sensors for room-temperature hydrogen monitoring. The Pt/LaF3 interface leads to a Nernst-type response s and was independent of hydrogen concentration. A method for the stabilization of a long-term behavior of the sensor

Moritz, Werner

298

Using Micro-Genetic Algorithms to Improve Localization in Wireless Sensor Networks  

E-Print Network [OSTI]

Using Micro-Genetic Algorithms to Improve Localization in Wireless Sensor Networks Vincent Tam methods, micro- genetic algorithms, distance measures. I. INTRODUCTION A wireless sensor network of Hong Kong, Hong Kong. Email: {vtam, kycheng, kslui}@eee.hku.hk Abstract-- Wireless sensor networks

Tam, Vincent W. L.

299

An Asynchronous Event-Driven Data Transmitter for Wireless ECG Sensor Nodes  

E-Print Network [OSTI]

An Asynchronous Event-Driven Data Transmitter for Wireless ECG Sensor Nodes Andre L. Mansano for wireless ECG sensors node. Unlike current solutions for ECG monitoring with autonomous wireless sensors, we propose an asynchronous method to transmit data from an ECG front-end, which is designed with a 2-bit

Serdijn, Wouter A.

300

Complex pendulum biomass sensor  

DOE Patents [OSTI]

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Remote Sensor Placement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

developed to place the sensor nodes in the field. Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

302

Integrated optical sensor  

DOE Patents [OSTI]

An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

1994-01-04T23:59:59.000Z

303

Integrated optical sensor  

DOE Patents [OSTI]

An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

304

Modular sensor network node  

DOE Patents [OSTI]

A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

Davis, Jesse Harper Zehring (Berkeley, CA); Stark, Jr., Douglas Paul (Tracy, CA); Kershaw, Christopher Patrick (Hayward, CA); Kyker, Ronald Dean (Livermore, CA)

2008-06-10T23:59:59.000Z

305

Magnetic infrasound sensor  

DOE Patents [OSTI]

A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

2006-11-14T23:59:59.000Z

306

NOx Sensor Development  

Broader source: Energy.gov (indexed) [DOE]

needed to meet emission targets and enable widespread use of diesel vehicles with better fuel economies: We are developing a novel sensor with the potential to meet OEM cost and...

307

Thermal microphotonic sensor and sensor array  

DOE Patents [OSTI]

A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

Watts, Michael R. (Albuquerque, NM); Shaw, Michael J. (Tijeras, NM); Nielson, Gregory N. (Albuquerque, NM); Lentine, Anthony L. (Albuquerque, NM)

2010-02-23T23:59:59.000Z

308

Sensor Fault Diagnosis Using Principal Component Analysis  

E-Print Network [OSTI]

The purpose of this research is to address the problem of fault diagnosis of sensors which measure a set of direct redundant variables. This study proposes: 1. A method for linear senor fault diagnosis 2. An analysis of isolability and detectability...

Sharifi, Mahmoudreza

2010-07-14T23:59:59.000Z

309

The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches  

SciTech Connect (OSTI)

In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also given as a full complement of this work.

Zhuo, Ye

2011-05-15T23:59:59.000Z

310

Microbend fiber-optic chemical sensor  

DOE Patents [OSTI]

A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

Weiss, Jonathan D. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

311

MULTIPLE SENSOR PERIODIC NONDESTRUCTIVE EVALUATION OF A CONCRETE BRIDGE DECK  

E-Print Network [OSTI]

decades, various non- destructive evaluation (NDE) techniques and methods emerged; some of them have been of the art and advanced methods at the US FHWA NDE Center. 2. BRIEF INTRODUCTION OF INVOLVED NONDESTRUCTIVE, GPR, anode ladder sensor and ultrasonic methods are primary NDE and monitoring methods that were

Huston, Dryver R.

312

Sensors and Automated Analyzers for Radionuclides  

SciTech Connect (OSTI)

The production of nuclear weapons materials has generated large quantities of nuclear waste and significant environmental contamination. We have developed new, rapid, automated methods for determination of radionuclides using sequential injection methodologies to automate extraction chromatographic separations, with on-line flow-through scintillation counting for real time detection. This work has progressed in two main areas: radionuclide sensors for water monitoring and automated radiochemical analyzers for monitoring nuclear waste processing operations. Radionuclide sensors have been developed that collect and concentrate radionuclides in preconcentrating minicolumns with dual functionality: chemical selectivity for radionuclide capture and scintillation for signal output. These sensors can detect pertechnetate to below regulatory levels and have been engineered into a prototype for field testing. A fully automated process monitor has been developed for total technetium in nuclear waste streams. This instrument performs sample acidification, speciation adjustment, separation and detection in fifteen minutes or less.

Grate, Jay W.; Egorov, Oleg B.

2003-03-27T23:59:59.000Z

313

Method of making active magnetic refrigerant, colossal magnetostriction and giant magnetoresistive materials based on Gd-Si-Ge alloys  

DOE Patents [OSTI]

Method of making an active magnetic refrigerant represented by Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4 alloy for 0.ltoreq.x.ltoreq.1.0 comprising placing amounts of the commercially pure Gd, Si, and Ge charge components in a crucible, heating the charge contents under subambient pressure to a melting temperature of the alloy for a time sufficient to homogenize the alloy and oxidize carbon with oxygen present in the Gd charge component to reduce carbon, rapidly solidifying the alloy in the crucible, and heat treating the solidified alloy at a temperature below the melting temperature for a time effective to homogenize a microstructure of the solidified material, and then cooling sufficiently fast to prevent the eutectoid decomposition and improve magnetocaloric and/or the magnetostrictive and/or the magnetoresistive properties thereof.

Gschneidner, Jr., Karl A. (Ames, IA); Pecharsky, Alexandra O. (Ames, IA); Pecharsky, Vitalij K. (Ames, IA)

2003-07-08T23:59:59.000Z

314

Sensor Characteristics Reference Guide  

SciTech Connect (OSTI)

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

315

Optical displacement sensor  

DOE Patents [OSTI]

An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

Carr, Dustin W. (Albuquerque, NM)

2008-04-08T23:59:59.000Z

316

Fiber optic vibration sensor  

DOE Patents [OSTI]

A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

1995-01-01T23:59:59.000Z

317

Capacitive proximity sensor  

DOE Patents [OSTI]

A proximity sensor based on a closed field circuit. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change.

Kronberg, James W. (Aiken, SC)

1994-01-01T23:59:59.000Z

318

Chemiresistor urea sensor  

DOE Patents [OSTI]

A sensor to detect and quantify urea in fluids resulting from hemodialysis procedures, and in blood and other body fluids. The sensor is based upon a chemiresistor, which consists of an interdigitated array of metal fingers between which a resistance measured. The interdigitated array is fabricated on a suitable substrate. The surface of the array of fingers is covered with a coating containing the enzyme urease which catalyzes the hydrolysis of urea to form the ammonium ion, the bicarbonate ion, and hydroxide-chemical products which provide the basis for the measured signal. In a typical application, the sensor could be used at bedside, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. Also, the chemiresistor used to detect urea, can be utilized with a reference chemiresistor which does not contain urease, and connected in a differential measurement arrangement, such that the reference chemiresistor would cancel out any fluctuations due to background effects.

Glass, Robert S. (Livermore, CA)

1997-01-01T23:59:59.000Z

319

Fiber optic vibration sensor  

DOE Patents [OSTI]

A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

1995-01-10T23:59:59.000Z

320

Capacitive proximity sensor  

DOE Patents [OSTI]

A proximity sensor based on a closed field circuit is disclosed. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change. 14 figs.

Kronberg, J.W.

1994-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fluorescent temperature sensor  

DOE Patents [OSTI]

The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

2009-03-03T23:59:59.000Z

322

Sensors as Information Transducers  

E-Print Network [OSTI]

This chapter reviews the mechanisms by which sensors gather information from the physical world and transform it into the electronic signals that are used in today's information and control systems. It introduces a new methodology for describing sensing mechanisms based on the process of information flow and applies it to the broad spectrum of sensors, instruments and data input devices in current use. We identify four distinct elemental transduction processes: energy conversion, energy dispersion, energy modulation and modulation of a material property. We posit that these four mechanisms form a complete set for describing information transduction in sensing systems.

J. David zook; Norbert Schroeder

2008-04-04T23:59:59.000Z

323

Magnetic differential torque sensor  

SciTech Connect (OSTI)

A new torque sensor structure is presented. The basic idea is a simple torque sensor with a variable magnetic circuit excited by an axially magnetized permanent magnet ring. The circuit is constituted by iron toothed rings, whose teeth relative position changes whenever an applied torque twists the rotating shaft. A Hall probe measures the induction in an airgap where the induction is uniform. The new structure is an association of two previous ones, thus creating a differential system with the related advantages: diminution of thermal drifts, zero mean value for the signal. The new magnetic circuit is studied by calculating equivalent reluctances through energy calculations and by using electrical analogies.

Lemarquand, V.; Lemarquand, G. [Univ. de Savoie, Annecy-le-Vieux (France)] [Univ. de Savoie, Annecy-le-Vieux (France)

1995-11-01T23:59:59.000Z

324

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

325

Intrinsic Fabry-Perot optical fiber sensors and their multiplexing  

DOE Patents [OSTI]

An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

Wang, Anbo (Blacksburg, VA)

2007-12-11T23:59:59.000Z

326

Controlled mobility in sensor networks  

E-Print Network [OSTI]

K. Gupta. Optimizing energy-latency trade- o? in sensoras Optimizing Energy-Latency Trade-o? in Sensor NetworksK. Gupta, Optimizing Energy-Latency Trade-o? in Sensor

Sugihara, Ryo

2009-01-01T23:59:59.000Z

327

Sensor Fusion for Nuclear Proliferation Activity Monitoring  

SciTech Connect (OSTI)

The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

Adel Ghanem, Ph D

2007-03-30T23:59:59.000Z

328

Category:Active Sensors | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade Sierra SolutionsGeothermalpower.jpg Looking for the

329

Nanotechnology-Based Electrochemical Sensors for Biomonitoring...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures . Nanotechnology-Based Electrochemical Sensors for Biomonitoring Chemical Exposures . Abstract:...

330

Sensors & Measurement | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Research Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sensors & Measurement...

331

A Wireless Sensor Network Air Pollution Monitoring System  

E-Print Network [OSTI]

Sensor networks are currently an active research area mainly due to the potential of their applications. In this paper we investigate the use of Wireless Sensor Networks (WSN) for air pollution monitoring in Mauritius. With the fast growing industrial activities on the island, the problem of air pollution is becoming a major concern for the health of the population. We proposed an innovative system named Wireless Sensor Network Air Pollution Monitoring System (WAPMS) to monitor air pollution in Mauritius through the use of wireless sensors deployed in huge numbers around the island. The proposed system makes use of an Air Quality Index (AQI) which is presently not available in Mauritius. In order to improve the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithm named Recursive Converging Quartiles (RCQ). The algorithm is used to merge data to eliminate duplicates, filter out invalid readings and summarise them into a simpler form which significantly reduce the amount of dat...

Khedo, Kavi K; Mungur, Avinash; Mauritius, University of; Mauritius,; 10.5121/ijwmn.2010.2203

2010-01-01T23:59:59.000Z

332

Low-Cost Spectral Sensor Development Description.  

SciTech Connect (OSTI)

Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

Armijo, Kenneth Miguel; Yellowhair, Julius

2014-11-01T23:59:59.000Z

333

Open Standards for Sensor Information Processing  

SciTech Connect (OSTI)

This document explores sensor standards, sensor data models, and computer sensor software in order to determine the specifications and data representation best suited for analyzing and monitoring computer system health using embedded sensor data. We review IEEE 1451, OGC Sensor Model Language and Transducer Model Language (TML), lm-sensors and Intelligent Platform Management Inititative (IPMI).

Pouchard, Line Catherine [ORNL; Poole, Stephen W [ORNL; Lothian, Josh [ORNL

2009-07-01T23:59:59.000Z

334

Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets  

DOE Patents [OSTI]

Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

Duncan, Paul G. (8544 Electric Ave., Vienna, VA 22182)

2002-01-01T23:59:59.000Z

335

Future Directions for Magnetic Sensors  

E-Print Network [OSTI]

and Engineering Laboratory Magnetic tunnel junction (MTJ) sensors are rapidly becoming the technology of choiceFuture Directions for Magnetic Sensors: HYBRIDMATERIALS Our goal is to develop the scientific expertise needed to allow modeling and simulation to become the driving force in improving magnetic sensors

336

Sensor system for web inspection  

DOE Patents [OSTI]

A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

Sleefe, Gerard E. (1 Snowcap Ct., Cedar Crest, NM 87008); Rudnick, Thomas J. (626 E. Jackson Rd., St. Louis, MO 63119); Novak, James L. (11048 Malaguena La. NE., Albuquerque, NM 87111)

2002-01-01T23:59:59.000Z

337

Using Sensor Technology to Augment Traditional Healthcare Marilyn J. Rantz, Marjorie Skubic, Member, IEEE and Steven J. Miller  

E-Print Network [OSTI]

motion, door sensors and load cells on the bed [4]. A monitoring system of 8 passive motion sensors mixture model analysis [5]. Another pilot study used motion and door sensors to extract a 24 hour activity profile; an alert could be generated if newly logged data deviated from the stored profile [6]. Heart

He, Zhihai "Henry"

338

Thick film hydrogen sensor  

DOE Patents [OSTI]

A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

339

Energy Management in Wireless Sensor Network Operations  

E-Print Network [OSTI]

) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 9 Comparison of long-run average costs of policies in 4-node line network (ct = 1 and T = 1) . . . . . . . . . . . . . . . . . . . . . . . 61 10 Fluid- ow model of an energy harvesting sensor . . . . . . . . . . . . 66 11 Sample path of X(t...) under threshold-based node activation policy . . 69 12 Sample path of X(t) in an exponential on-o environment . . . . . . 76 13 Limiting availability for di erent values of threshold (L) . . . . . . . 78 14 Energy ow model of an energy harvesting...

Mohapatra, Arupa Kumar

2013-07-26T23:59:59.000Z

340

Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations were awarded by the Department of Energy to allow Enertechnix to conduct extended testing of the sensor at the Wabash River facility. In February, 2008 the sensor was installed on the gasifier in preparation for a long-term test. During the initial testing of the sensor a stainless steel tube on the sensor failed and allowed syngas to escape. The syngas self-ignited and the ensuing small fire damaged some of the components on the sensor. There was no damage to the gasifier or other equipment and no injuries resulted from this incident. Two meetings were held to identify the root causes of the incident-one at Wabash River and one at Enertechnix. A list of recommended improvements that would have addressed the causes of the incident was created and presented to the Department of Energy on May 2, 2008. However, the DOE decided not to pursue these improvements and terminated the project. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated i

Peter Ariessohn

2008-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Intelligent Sensor Validation and Fusion with distributed "MEMS Dust" Sensors Shijun Qiu*  

E-Print Network [OSTI]

Intelligent Sensor Validation and Fusion with distributed "MEMS Dust" Sensors (Abstract) Shijun Qiu, Berkeley aagogino@euler.berkeley.edu Key Words : sensor networks, sensor fusion, sensor validation, micro-electromechanical systems, MEMS MEMS sensors make a rich design space of networked sensors viable. They can be deeply

Agogino, Alice M.

342

IN-LINE CHEMICAL SENSOR DEPLOYMENT IN A TRITIUM PLANT  

SciTech Connect (OSTI)

The Savannah River Tritium Plant (TP) relies on well understood but aging sensor technology for process gas analysis. Though new sensor technologies have been brought to various readiness levels, the TP has been reluctant to install technologies that have not been tested in tritium service. This gap between sensor technology development and incorporating new technologies into practical applications demonstrates fundamental challenges that exist when transitioning from status quo to state-of-the-art in an extreme environment such as a tritium plant. These challenges stem from three root obstacles: 1) The need for a comprehensive assessment of process sensing needs and requirements; 2) The lack of a pick-list of process-compatible sensor technologies; and 3) The need to test technologies in a tritium-contaminated process environment without risking production. At Savannah River, these issues are being addressed in a two phase project. In the first phase, TP sensing requirements were determined by a team of process experts. Meanwhile, Savannah River National Laboratory sensor experts identified candidate technologies and related them to the TP processing requirements. The resulting roadmap links the candidate technologies to actual plant needs. To provide accurate assessments of how a candidate sensor technology would perform in a contaminated process environment, an instrument demonstration station was established within a TP glove box. This station was fabricated to TP process requirements and designed to handle high activity samples. The combination of roadmap and demonstration station provides the following assets: ? Creates a partnership between the process engineers and researchers for sensor selection, maturation, and insertion, ? Selects the right sensors for process conditions ? Provides a means for safely inserting new sensor technology into the process without risking production, and ? Provides a means to evaluate off normal occurrences where and when they occur. This paper discusses the process to identify and demonstrate new sensor technologies for the Savannah River TP.

Tovo, L.; Wright, J.; Torres, R.; Peters, B.

2013-10-02T23:59:59.000Z

343

Remotely deployable aerial inspection using tactile sensors  

SciTech Connect (OSTI)

For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

MacLeod, C. N.; Cao, J.; Pierce, S. G.; Dobie, G.; Summan, R. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Sullivan, J. C.; Pipe, A. G. [Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY (United Kingdom)

2014-02-18T23:59:59.000Z

344

Hydrocarbon sensors and materials therefor  

DOE Patents [OSTI]

An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

345

Two terminal micropower radar sensor  

DOE Patents [OSTI]

A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

McEwan, T.E.

1995-11-07T23:59:59.000Z

346

Two terminal micropower radar sensor  

DOE Patents [OSTI]

A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

McEwan, Thomas E. (Livermore, CA)

1995-01-01T23:59:59.000Z

347

Leak Detection and H2 Sensor Development for Hydrogen Applications  

SciTech Connect (OSTI)

The objectives of this report are: (1) Develop a low cost, low power, durable, and reliable hydrogen safety sensor for a wide range of vehicle and infrastructure applications; (2) Continually advance test prototypes guided by materials selection, sensor design, electrochemical R&D investigation, fabrication, and rigorous life testing; (3) Disseminate packaged sensor prototypes and control systems to DOE Laboratories and commercial parties interested in testing and fielding advanced prototypes for cross-validation; (4) Evaluate manufacturing approaches for commercialization; and (5) Engage an industrial partner and execute technology transfer. Recent developments in the search for sustainable and renewable energy coupled with the advancements in fuel cell powered vehicles (FCVs) have augmented the demand for hydrogen safety sensors. There are several sensor technologies that have been developed to detect hydrogen, including deployed systems to detect leaks in manned space systems and hydrogen safety sensors for laboratory and industrial usage. Among the several sensing methods electrochemical devices that utilize high temperature-based ceramic electrolytes are largely unaffected by changes in humidity and are more resilient to electrode or electrolyte poisoning. The desired sensing technique should meet a detection threshold of 1% (10,000 ppm) H{sub 2} and response time of {approx_equal}1 min, which is a target for infrastructure and vehicular uses. Further, a review of electrochemical hydrogen sensors by Korotcenkov et.al and the report by Glass et.al suggest the need for inexpensive, low power, and compact sensors with long-term stability, minimal cross-sensitivity, and fast response. This view has been largely validated and supported by the fuel cell and hydrogen infrastructure industries by the NREL/DOE Hydrogen Sensor Workshop held on June 8, 2011. Many of the issues preventing widespread adoption of best-available hydrogen sensing technologies available today outside of cost, derive from excessive false positives and false negatives arising from signal drift and unstable sensor baseline; both of these problems necessitate the need for unacceptable frequent calibration.

Brosha, Eric L. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

348

Embedded sensor having an identifiable orientation  

DOE Patents [OSTI]

An apparatus and method is described wherein a sensor, such as a mechanical strain sensor, embedded in a fiber core, is "flagged" to identify a preferred orientation of the sensor. The identifying "flag" is a composite material, comprising a plurality of non-woven filaments distributed in a resin matrix, forming a small planar tab. The fiber is first subjected to a stimulus to identify the orientation providing the desired signal response, and then sandwiched between first and second layers of the composite material. The fiber, and therefore, the sensor orientation is thereby captured and fixed in place. The process for achieving the oriented fiber includes, after identifying the fiber orientation, carefully laying the oriented fiber onto the first layer of composite, moderately heating the assembled layer for a short period in order to bring the composite resin to a "tacky" state, heating the second composite layer as the first, and assembling the two layers together such that they merge to form a single consolidated block. The consolidated block achieving a roughly uniform distribution of composite filaments near the embedded fiber such that excess resin is prevented from "pooling" around the periphery of the fiber.

Bennett, Thomas E. (31 Portola Ct., Danville, CA 94506); Nelson, Drew V. (840 Cabot Ct., San Carlos, CA 94070)

2002-01-01T23:59:59.000Z

349

Silicon Sensors for Trackers at High-Luminosity Environment  

E-Print Network [OSTI]

The planned upgrade of the LHC accelerator at CERN, namely the high luminosity (HL) phase of the LHC (HL-LHC foreseen for 2023), will result in a more intense radiation environment than the present tracking system was designed for. The required upgrade of the all-silicon central trackers at the ALICE, ATLAS, CMS and LHCb experiments will include higher granularity and radiation hard sensors. The radiation hardness of the new sensors must be roughly an order of magnitude higher than the one of LHC detectors. To address this, a massive R&D program is underway within the CERN RD50 collaboration "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" to develop silicon sensors with sufficient radiation tolerance. Research topics include the improvement of the intrinsic radiation tolerance of the sensor material and novel detector designs with benefits like reduced trapping probability (thinned and 3D sensors), maximized sensitive area (active edge sensors) and enhanced charge carrier generation (sensors with intrinsic gain). A review of the recent results from both measurements and TCAD simulations of several detector technologies and silicon materials at radiation levels expected for HL-LHC will be presented.

Timo Peltola

2014-11-26T23:59:59.000Z

350

INSENS sensor system  

SciTech Connect (OSTI)

This paper describes an unattended ground sensor system that has been developed for the immigration and Naturalization Service (INS). The system, known as INSENS, was developed at the Lawrence Livermore National Laboratory for use by the United States Border Patrol. This system assists in the detection of illegal entry of aliens and contraband (illegal drugs, etc.) into the United States along its land borders. Key to the system is its flexible modular design which allows future software and hardware enhancements to the system without altering the fundamental architecture of the system. Elements of the system include a sensor system capable of processing signals from multiple directional probes, a repeater system, and a handheld monitor system. Seismic, passive infrared (PIR), and magnetic probes are currently supported. The design of the INSENS system elements and their performance are described.

Myers, D.W.; Baker, J.; Benzel, D.M.; Fuess, D.A.

1993-09-29T23:59:59.000Z

351

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

1994-11-22T23:59:59.000Z

352

A Climatological measurement methods This appendix describes the methods of climatological variable measurement at the  

E-Print Network [OSTI]

and a comparison of sensors employed. The measurement methods section describes the sensors used-wave A sensor used to measure the energy flux density of short-wave radiation is referred to as a pyranometer can be ±3 to 5% because of the relatively constant proportions of solar radiation at different

353

Small, Inexpensive Combined NOx Sensor and O2 Sensor  

SciTech Connect (OSTI)

It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NOx sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NOx from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5 - $10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NOx. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650 - 700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NOx sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NOx sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NOx and oxygen sensors yields the NOx content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

W. N. Lawless; C. F. Clark, Jr.

2008-09-08T23:59:59.000Z

354

Ultra-wideband impedance sensor  

DOE Patents [OSTI]

The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

McEwan, Thomas E. (Livermore, CA)

1999-01-01T23:59:59.000Z

355

Ultra-wideband impedance sensor  

DOE Patents [OSTI]

The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

McEwan, T.E.

1999-03-16T23:59:59.000Z

356

Remotely controlled sensor apparatus for use in dig-face characterization system  

DOE Patents [OSTI]

A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.

Josten, N.E.; Svoboda, J.M.

1999-05-25T23:59:59.000Z

357

Remotely controlled sensor apparatus for use in dig-face characterization system  

DOE Patents [OSTI]

A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.

Josten, Nicholas E. (Idaho Falls, ID); Svoboda, John M. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

358

Unsupervised Activity Analysis and Monitoring Algorithms for Effective Surveillance Systems  

E-Print Network [OSTI]

in escalators and at platforms as well as human presence at lift ) that provide a global view of the activ- ity of sensors deployed in the real world, being it in large scale sensor networks or closed-circuit television

359

Sensor Development and Readout Prototyping for the STAR Pixel Detector  

SciTech Connect (OSTI)

The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

2009-01-14T23:59:59.000Z

360

Sensor Network Demonstration for In Situ Decommissioning - 13332  

SciTech Connect (OSTI)

Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single inte

Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)] [Department of Energy - DOE, Environmental Management Office (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

HOMOLOGICAL SENSOR Vin de Silva 1  

E-Print Network [OSTI]

HOMOLOGICAL SENSOR NETWORKS Vin de Silva 1 and Robert Ghrist 2 Sensors and sense-ability A sensor) as well as vast networks of local sensors (for touch). 1Department of Mathematics, Pomona College. 2 possibilities lie in the domain of the small. Swarms of local sensors at micro- or nano- scale have

Ghrist, Robert W.

362

Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same  

DOE Patents [OSTI]

Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani; Manivannan, Venkatesan

2004-07-13T23:59:59.000Z

363

Europium-activated phosphors containing oxides of rare-earth and group-IIIB metals and method of making the same  

DOE Patents [OSTI]

Europium-activated phosphors comprise oxides of at least a rare-earth metal selected from the group consisting of gadolinium, yttrium, lanthanum, and combinations thereof and at least a Group-IIIB metal selected from the group consisting of aluminum, gallium, indium, and combinations thereof. A method for making such phosphors comprises adding at least a halide of at least one of the selected Group-IIIB metals in a starting mixture. The method further comprises firing the starting mixture in an oxygen-containing atmosphere. The phosphors produced by such a method exhibit improved absorption in the UV wavelength range and improved quantum efficiency.

Comanzo, Holly Ann; Setlur, Anant Achyut; Srivastava, Alok Mani

2006-04-04T23:59:59.000Z

364

Special Issue "Underwater Sensor Nodes and Underwater Sensor Networks" A special issue of Sensors (ISSN 1424-8220)  

E-Print Network [OSTI]

aquatic environments. Marine surveillance, pollution detection and monitoring, and oceanographic data (salinity, conductivity, turbidity, pH, oxygen, temperature, depth, etc.) - Sediments and pollution sensor nodes - Acoustic sensors - Underwater sensor network architectures - Wired and wireless protocols

Chen, Min

365

Wireless Sensor Network for Electric Transmission Line Monitoring  

SciTech Connect (OSTI)

Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver real-time information to federal agencies and others tasked with grid reliability (Tasks 6,8)

Alphenaar, Bruce

2009-06-30T23:59:59.000Z

366

Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery  

SciTech Connect (OSTI)

The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

Wang, a.; Pickrell, G.; Xiao, H.; May, r.

2003-02-27T23:59:59.000Z

367

Health monitoring method for composite materials  

DOE Patents [OSTI]

An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

Watkins, Jr., Kenneth S. (Dahlonega, GA); Morris, Shelby J. (Hampton, VA)

2011-04-12T23:59:59.000Z

368

Microfabricated AC impedance sensor  

DOE Patents [OSTI]

A microfabricated instrument for detecting and identifying cells and other particles based on alternating current (AC) impedance measurements. The microfabricated AC impedance sensor includes two critical elements: 1) a microfluidic chip, preferably of glass substrates, having at least one microchannel therein and with electrodes patterned on both substrates, and 2) electrical circuits that connect to the electrodes on the microfluidic chip and detect signals associated with particles traveling down the microchannels. These circuits enable multiple AC impedance measurements of individual particles at high throughput rates with sufficient resolution to identify different particle and cell types as appropriate for environmental detection and clinical diagnostic applications.

Krulevitch, Peter (Pleasanton, CA); Ackler, Harold D. (Sunnyvale, CA); Becker, Frederick (Houston, TX); Boser, Bernhard E. (Berkeley, CA); Eldredge, Adam B. (Austin, TX); Fuller, Christopher K. (Livermore, CA); Gascoyne, Peter R. C. (Bellaire, TX); Hamilton, Julie K. (Tracy, CA); Swierkowski, Stefan P. (Livermore, CA); Wang, Xiao-Bo (San Diego, CA)

2002-01-01T23:59:59.000Z

369

Fluorescent sensor for mercury  

DOE Patents [OSTI]

The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

Wang, Zidong (Urbana, IL); Lee, Jung Heon (Evanston, IL); Lu, Yi (Champaign, IL)

2011-11-22T23:59:59.000Z

370

Solid state oxygen sensor  

DOE Patents [OSTI]

Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

371

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

1999-03-23T23:59:59.000Z

372

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

373

Use of sensors in monitoring civil structures  

E-Print Network [OSTI]

This thesis surveys the use of sensors and sensor networks in monitoring civil structures, with particular emphasis on the monitoring of bridges and highways using fiber optic sensors. Following a brief review of the most ...

Daher, Bassam William, 1979-

2004-01-01T23:59:59.000Z

374

On the robustness of clustered sensor networks  

E-Print Network [OSTI]

or fault tolerance capability of a sensor system. The redundancy degree of sensors plays two important roles pertaining to the robustness of a sensor network. First, the redundancy degree provides proper parameter values for robust estimator; second, we can...

Cho, Jung Jin

2009-05-15T23:59:59.000Z

375

Massively Deployed Sensors Final Project Report  

E-Print Network [OSTI]

Massively Deployed Sensors Final Project Report Power Systems Engineering Research Center Systems Engineering Research Center Massively Deployed Sensors Final Project Report Editors Jonathan project titled "Massively Deployed Sensors," PSERC project T-31. We express our appreciation

376

CHEMICAL SENSORS School of Chemistry and Biochemistry  

E-Print Network [OSTI]

CHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors physics and electronics or a chemical instrumentation course. The topics covered will include general theory of chemical recognition, electrochemical, optical, mass sensors and data reduction. Text: J

Sherrill, David

377

Sensors 2010, 10, 5872-5887; doi:10.3390/s100605872 ISSN 1424-8220  

E-Print Network [OSTI]

a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines; sensorial fusion; RFID; autonomous vehicle OPEN ACCESS #12;Sensors 2010, 10 5873 1. Introduction Road.mdpi.com/journal/sensors Article An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals Joshué Pérez

Paris-Sud XI, Université de

378

Telehealth using ECG Sensor and Accelerometer Hristijan Gjoreski*, Aleksandra Rashkovska**, Simon Kozina*, Mitja Lustrek*, Matjaz Gams*,  

E-Print Network [OSTI]

Telehealth using ECG Sensor and Accelerometer Hristijan Gjoreski*, Aleksandra Rashkovska**, Simon are important components of such systems. Moreover, the monitoring of vital signs, like the ECG, has a key role by combining an ECG sensor and two accelerometers. Our system recognizes the user's activities and detects

Lu?trek, Mitja

379

Spatiotemporal learning and geo-visualization methods for constructing activity-travel patterns from transit card transaction data  

E-Print Network [OSTI]

The study of human activity-travel patterns for transportation demand forecast has evolved a long way in theories, methodologies and applications. However, the scarcity of data has become a major barrier for the advancement ...

Zhu, Yi, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

380

Integrated Process Monitoring based on Systems of Sensors for Enhanced Nuclear Safeguards Sensitivity and Robustness  

SciTech Connect (OSTI)

This paper illustrates safeguards benefits that process monitoring (PM) can have as a diversion deterrent and as a complementary safeguards measure to nuclear material accountancy (NMA). In order to infer the possible existence of proliferation-driven activities, the objective of NMA-based methods is often to statistically evaluate materials unaccounted for (MUF) computed by solving a given mass balance equation related to a material balance area (MBA) at every material balance period (MBP), a particular objective for a PM-based approach may be to statistically infer and evaluate anomalies unaccounted for (AUF) that may have occurred within a MBP. Although possibly being indicative of proliferation-driven activities, the detection and tracking of anomaly patterns is not trivial because some executed events may be unobservable or unreliably observed as others. The proposed similarity between NMA- and PM-based approaches is important as performance metrics utilized for evaluating NMA-based methods, such as detection probability (DP) and false alarm probability (FAP), can also be applied for assessing PM-based safeguards solutions. To this end, AUF count estimates can be translated into significant quantity (SQ) equivalents that may have been diverted within a given MBP. A diversion alarm is reported if this mass estimate is greater than or equal to the selected value for alarm level (AL), appropriately chosen to optimize DP and FAP based on the particular characteristics of the monitored MBA, the sensors utilized, and the data processing method employed for integrating and analyzing collected measurements. To illustrate the application of the proposed PM approach, a protracted diversion of Pu in a waste stream was selected based on incomplete fuel dissolution in a dissolver unit operation, as this diversion scenario is considered to be problematic for detection using NMA-based methods alone. Results demonstrate benefits of conducting PM under a system-centric strategy that utilizes data collected from a system of sensors and that effectively exploits known characterizations of sensors and facility operations in order to significantly improve anomaly detection, reduce false alarm, and enhance assessment robustness under unreliable partial sensor information.

Humberto E. Garcia

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

\\ms\\fahmeed\\ryota-et-al-2007-r2008 in Dynamic Brain Imaging, ed by F. Hyder, in Methods in Molecular Medicine, Humana  

E-Print Network [OSTI]

terminals of these cells in the olfactory bulb glomeruli. There the population signals can be used as a measure of the input from the nose to the bulb. Three kinds of noise in measuring light intensity. Most of these efforts center around fluorescent protein sensors of activity because transgenic methods

Paris-Sud XI, Université de

382

Passive blast pressure sensor  

DOE Patents [OSTI]

A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

King, Michael J.; Sanchez, Roberto J.; Moss, William C.

2013-03-19T23:59:59.000Z

383

Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt  

SciTech Connect (OSTI)

Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium chloride (GdCl3) in LiCl-KCl eutectic molten salts through measurement of the potential difference between a reference and working electrode.

Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

2010-07-01T23:59:59.000Z

384

Intelligent Software Agents: Sensor Integration and Response  

SciTech Connect (OSTI)

Abstract In a post Macondo world the buzzwords are Integrity Management and Incident Response Management. The twin processes are not new but the opportunity to link the two is novel. Intelligent software agents can be used with sensor networks in distributed and centralized computing systems to enhance real-time monitoring of system integrity as well as manage the follow-on incident response to changing, and potentially hazardous, environmental conditions. The software components are embedded at the sensor network nodes in surveillance systems used for monitoring unusual events. When an event occurs, the software agents establish a new concept of operation at the sensing node, post the event status to a blackboard for software agents at other nodes to see , and then react quickly and efficiently to monitor the scale of the event. The technology addresses a current challenge in sensor networks that prevents a rapid and efficient response when a sensor measurement indicates that an event has occurred. By using intelligent software agents - which can be stationary or mobile, interact socially, and adapt to changing situations - the technology offers features that are particularly important when systems need to adapt to active circumstances. For example, when a release is detected, the local software agent collaborates with other agents at the node to exercise the appropriate operation, such as: targeted detection, increased detection frequency, decreased detection frequency for other non-alarming sensors, and determination of environmental conditions so that adjacent nodes can be informed that an event is occurring and when it will arrive. The software agents at the nodes can also post the data in a targeted manner, so that agents at other nodes and the command center can exercise appropriate operations to recalibrate the overall sensor network and associated intelligence systems. The paper describes the concepts and provides examples of real-world implementations including the Threat Detection and Analysis System (TDAS) at the International Port of Memphis and the Biological Warning and Incident Characterization System (BWIC) Environmental Monitoring (EM) Component. Technologies developed for these 24/7 operational systems have applications for improved real-time system integrity awareness as well as provide incident response (as needed) for production and field applications.

Kulesz, James J [ORNL; Lee, Ronald W [ORNL

2013-01-01T23:59:59.000Z

385

Wireless Magnetic Sensor Applications in Transportation Infrastructure  

E-Print Network [OSTI]

and fourth vehicle downstream signature (five vehicleof Figures Upstream and downstream middle sensor raw signals2.2 Upstream and downstream middle sensor signature

Sanchez, Rene Omar

2012-01-01T23:59:59.000Z

386

Flexible Pressure Sensors: Modeling and Experimental Characterization  

E-Print Network [OSTI]

Flexible capacitive pressure sensors fabricated with nanocomposites were experimentally characterized and results compared with simulations from analytical modeling. Unlike traditional diaphragm silicon pressure sensors, ...

Viana, J.C.

387

Detectors and Sensors | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detectors and Sensors SHARE Detectors and Sensors 201303163 Extreme Filter for Low-Output Thermocouples in High EMI Environments 201303179 Internal Tube Inspection System...

388

A MECHANICAL STRAIN SENSOR FOR POLYMERIC MATERIALS  

E-Print Network [OSTI]

A MECHANICAL STRAIN SENSOR FOR POLYMERIC MATERIALS AND PHOTOPHYSICAL INVESTIGATIONS OF LARGE ...................................................................................................... 17 A MECHANICAL STRAIN SENSOR FOR POLYMERIC MATERIALS ....... 21 3.1 Introduction

389

Gas sensor incorporating a porous framework  

DOE Patents [OSTI]

The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

Yaghi, Omar M; Czaja, Alexander U; Wang, Bo; Galatsis, Kosmas; Wang, Kang L; Furukawa, Hiroyasu

2014-05-27T23:59:59.000Z

390

Gas sensor incorporating a porous framework  

SciTech Connect (OSTI)

The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

Yaghi, Omar M.; Czaja, Alexander U.; Wang, Bo; Furukawa, Hiroyasu; Galatsis, Kosmas; Wang, Kang L.

2013-07-09T23:59:59.000Z

391

Nanostructured Electrochemical Sensors Based on Functionalized...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors Based on Functionalized Nanoporous Silica for Voltammetric Analysis of Lead, Mercury and Nanostructured Electrochemical Sensors Based on Functionalized Nanoporous Silica...

392

Enabling Long-Lived Sensor Networks Through Solar Energy Harvesting  

E-Print Network [OSTI]

Long - Lived Sensor Networks through Solar Energy Harvestingsolar energy harvesting and storage device for sensor

Jason Hsu; Sadaf Zahedi; Jonathan Friedman; Aman Kansal; Vijay Raghunathan; Mani Srivastava

2005-01-01T23:59:59.000Z

393

Energy efficient sensor network implementations  

SciTech Connect (OSTI)

In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

Frigo, Janette R [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Kulathumani, Vinod [WEST VIRGINIA UNIV.; Rosten, Ed [CAMBRIDGE UNIV.; Wolinski, Christophe [IRISA; Wagner, Charles [IRISA; Charot, Francois [IRISA

2009-01-01T23:59:59.000Z

394

Device and method for self-verifying temperature measurement and control  

DOE Patents [OSTI]

A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

Watkins, Arthur D. (Idaho Falls, ID); Cannon, Collins P. (Kearney, MO); Tolle, Charles R. (Idaho Falls, ID)

2002-10-29T23:59:59.000Z

395

Time Synchronization in Hierarchical TESLA Wireless Sensor Networks  

SciTech Connect (OSTI)

Time synchronization and event time correlation are important in wireless sensor networks. In particular, time is used to create a sequence events or time line to answer questions of cause and effect. Time is also used as a basis for determining the freshness of received packets and the validity of cryptographic certificates. This paper presents secure method of time synchronization and event time correlation for TESLA-based hierarchical wireless sensor networks. The method demonstrates that events in a TESLA network can be accurately timestamped by adding only a few pieces of data to the existing protocol.

Jason L. Wright; Milos Manic

2009-08-01T23:59:59.000Z

396

Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors  

SciTech Connect (OSTI)

This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

Nabeel Riza

2010-09-01T23:59:59.000Z

397

Practical Experiences from the USE of a Method for Active Functional Tests and Optimization of Coil Energy Recovery Loop Systems in AHUs  

E-Print Network [OSTI]

PRACTICAL EXPERIENCES FROM THE USE OF A METHOD FOR ACTIVE FUNCTIONAL TESTS AND OPTIMIZATION OF COIL ENERGY RECOVERY LOOP SYSTEMS IN AHUS. J?rgen Eriksson* * ?F-Installation AB, Box 1551 SE 401 51 G?teborg, Sweden. Summary A method...-commissioning, ventilation, energy, efficiency, EES INTRODUCTION The reason to study coil energy recovery loop systems is that they are very common in Sweden and mainly used in cases with high air flow rates such as in hospitals and pharmaceutical industries. The heat...

Eriksson, J.

2004-01-01T23:59:59.000Z

398

Transformer current sensor for superconducting magnetic coils  

DOE Patents [OSTI]

A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

Shen, Stewart S. (Oak Ridge, TN); Wilson, C. Thomas (Norris, TN)

1988-01-01T23:59:59.000Z

399

Novel, fiber optic, hybrid pressure and temperature sensor designed for high-temperature gen-IV reactor applications  

SciTech Connect (OSTI)

A novel, fiber optic, hybrid pressure-temperature sensor is presented. The sensor is designed for reliable operation up to 1050 C, and is based on the high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were also tested for operability in a relatively high neutron radiation environment up to 6.9x10{sup 17} n/cm{sup 2}. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for nuclear power applications including small size, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future nuclear power plant designs would provide a substantial improvement in system health monitoring and safety instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to emerging nuclear power plants. Successes and lessons learned will be highlighted. (authors)

Palmer, M. E.; Fielder, R. S.; Davis, M. A. [Luna Innovations, Incorporated, 2851 Commerce St., Blacksburg, VA 24060 (United States)

2006-07-01T23:59:59.000Z

400

Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity  

DOE Patents [OSTI]

Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation).

Wright, Randy B. (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ion mobility sensor system  

DOE Patents [OSTI]

An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

Xu, Jun; Watson, David B.; Whitten, William B.

2013-01-22T23:59:59.000Z

402

Fuel cell CO sensor  

DOE Patents [OSTI]

The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

Grot, Stephen Andreas (Rochester, NY); Meltser, Mark Alexander (Pittsford, NY); Gutowski, Stanley (Pittsford, NY); Neutzler, Jay Kevin (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY); Weisbrod, Kirk (Los Alamos, NM)

1999-12-14T23:59:59.000Z

403

Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same  

DOE Patents [OSTI]

The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

Gerald, II, Rex E. (Brookfield, IL); Ruscic, Katarina J. (Chicago, IL); Sears, Devin N. (Spruce Grove, CA); Smith, Luis J. (Natick, MA); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL)

2012-02-21T23:59:59.000Z

404

Unique battery with a multi-functional, physicochemically active membrane separator/electrolyte-electrode monolith and a method making the same  

DOE Patents [OSTI]

The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al.sub.2O.sub.3 wall are available for positive ion coordination (i.e. Li.sup.+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.

Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klinger, Robert J; Rathke, Jerome W

2013-11-26T23:59:59.000Z

405

Monday, March 29, 2010 A Bendable Heart Sensor  

E-Print Network [OSTI]

Monday, March 29, 2010 A Bendable Heart Sensor New flexible electronics can better chart the heart a more detailed picture of the electrical activity of a beating heart. This high-resolution electrical map could help improve the diagnosis and treatment of heart abnormalities by pinpointing areas

Rogers, John A.

406

Single walled carbon nanotubes with functionally adsorbed biopolymers for use as chemical sensors  

DOE Patents [OSTI]

Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA or RNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

Johnson, Jr., Alan T

2013-12-17T23:59:59.000Z

407

Vehicle Re-Identification using Wireless Magnetic Sensors: Algorithm Revision, Modifications and Performance Analysis  

E-Print Network [OSTI]

Vehicle Re-Identification using Wireless Magnetic Sensors: Algorithm Revision, Modifications, CA 94305, US. Email: ram.rajagopal@stanford.edu Abstract--A vehicle re-identification method based on match- ing vehicle signatures obtained from wireless magnetic sensors was studied on a single lane loop

Horowitz, Roberto

408

Nonparametric modelling of ECG: Applications to denoising and to single sensor  

E-Print Network [OSTI]

Nonparametric modelling of ECG: Applications to denoising and to single sensor fetal ECG extraction the problem of fetal electrocardio- gram (ECG) extraction from a single sensor. The proposed method is based on non-parametric modelling of the ECG signal described thanks to its second order statistics. Each

Boyer, Edmond

409

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect (OSTI)

Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also, an unclad sapphire fiber was tested as a temperature sensor at moderate temperatures (up to 775 C).

Russell G. May; Tony Peng; Tom Flynn

2004-12-01T23:59:59.000Z

410

RealTime SpatioTemporal Query Processing in Mobile AdHoc Sensor Networks  

E-Print Network [OSTI]

that has multiple sensors (e.g., mo tion sensors, acoustic sensors, infrared light emitting diodes,

411

Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method  

E-Print Network [OSTI]

We present a new development of the force-coupling method (FCM) to address the accurate simulation of a large number of interacting micro-swimmers. Our approach is based on the squirmer model, which we adapt to the FCM framework, resulting in a method that is suitable for simulating semi-dilute squirmer suspensions. Other effects, such as steric interactions, can be readily considered with our model. We test our method by comparing the velocity field around a single squirmer and the pairwise interactions between two squirmers with exact solutions to the Stokes equations and results given by other numerical methods. We also illustrate our method's ability to describe spheroidal swimmer shapes and biologically-relevant time-dependent swimming gaits. We detail the numerical algorithm used to compute the hydrodynamic coupling between a large collection ($10^4-10 ^5$) of micro-swimmers. Using this methodology, we investigate the emergence of polar order in a suspension of squirmers and show that for large domains,...

Delmotte, Blaise; Plouraboue, Franck; Climent, Eric

2015-01-01T23:59:59.000Z

412

Method and apparatus for measuring solar radiation in a vegetative canopy  

DOE Patents [OSTI]

An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

Gutschick, Vincent P. (Los Alamos, NM); Barron, Michael H. (Los Alamos, NM); Waechter, David A. (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

413

Method and apparatus for measuring solar radiation in a vegetative canopy  

DOE Patents [OSTI]

An apparatus and method for measuring solar radiation received in a vegetative canopy. A multiplicity of sensors selectively generates electrical signals in response to impinging photosynthetically active radiation in sunlight. Each sensor is attached to a plant within the canopy and is electrically connected to a separate port in a junction box having a multiplicity of ports. Each port is connected to an operational amplifier. Each amplifier amplifies the signals generated by the sensors. Each amplifier is connected to an analog-to-digital convertor which digitizes each signal. A computer is connected to the convertors and accumulates and stores solar radiation data. A data output device such as a printer is connected to the computer and displays the data.

Gutschick, V.P.; Barron, M.H.; Waechter, D.A.; Wolf, M.A.

1985-04-30T23:59:59.000Z

414

HandWave : design and manufacture of a wearable wireless skin conductance sensor and housing  

E-Print Network [OSTI]

This thesis report details the design and manufacture of HandWave, a wearable wireless Bluetooth skin conductance sensor, and dedicated housing. The HandWave collects Electrodermal Activity (EDA) data by measuring skin ...

Strauss, Marc D

2005-01-01T23:59:59.000Z

415

Enhancement of a fluorescent sensor for monitoring glucose concentration in diabetic patients  

E-Print Network [OSTI]

procedure, but unforeseen complications in lyophilization of the new sensor assay restricted its completion. Due to instability of Con A in solution, it was hypothesized that the immobilization of it onto the surface of an active substrate would increase its...

Ibey, Bennett Luke

2007-04-25T23:59:59.000Z

416

Ultra-Sensitive biochemical Sensor based on Circular Bragg Micro-Cavities  

E-Print Network [OSTI]

an SEM micrograph of an ABR sensor realized within a thin membrane of InGaAsP active material. The device with high spectral resolution and excellent sensitivity to changes in the absorption or refractive index

Scheuer, Jacob (Koby)

417

Expert system for testing industrial processes and determining sensor status  

DOE Patents [OSTI]

A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

Gross, Kenneth C. (Bolingbrook, IL); Singer, Ralph M. (Naperville, IL)

1998-01-01T23:59:59.000Z

418

Electromagnetic and nuclear radiation detector using micromechanical sensors  

DOE Patents [OSTI]

Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

Thundat, Thomas G. (Knoxville, TN); Warmack, Robert J. (Knoxville, TN); Wachter, Eric A. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

419

UAV sensor and survivability issues  

SciTech Connect (OSTI)

This report discusses the most significant tradeoffs between the operating altitude and the complexity and cost of UAVs and sensors. Low altitudes allow less complex, smaller sensors and platforms, but are vulnerable to ground fire. High altitudes require more numerous and capable sensors, but provide wider swaths for more rapid coverage and reduced vulnerability to ground fire. It is shown that for mission requirements and air defenses that higher is not necessarily better and that optimal flight altitudes exist that can be determined analytically.

Canavan, G.H.

1996-07-01T23:59:59.000Z

420

Method of treating intermetallic alloy hydrogenation/oxidation catalysts for improved impurity poisoning resistance, regeneration and increased activity  

DOE Patents [OSTI]

Alternate, successive high temperature oxidation and reduction treatments, in either order, of intermetallic alloy hydrogenation and intermetallic alloy oxidation catalysts unexpectedly improves the impurity poisoning resistance, regeneration capacity and/or activity of the catalysts. The particular alloy, and the final high temperature treatment given alloy (oxidation or reduction) will be chosen to correspond to the function of the catalyst (oxidation or hydrogenation). 23 figs.

Wright, R.B.

1992-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sensors for Safety & Performance Stationary Systems  

E-Print Network [OSTI]

for PEM Fuel Cell Vehicles · Interfacial Stability of Thin Film H2 Sensors · Sensors for Automotive Fuel Cell Systems · Micro-Machined Thin Film H2 Gas Sensors · Sensor Development for PEM Fuel Cell Systems for Fuel Cell Monitoring #12;Discussion Points Barriers ·Cost ·Application ·Lifetime ·Flexibility ·Public

422

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic  

E-Print Network [OSTI]

IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004 395 Sensor Technologies for Monitoring Metabolic Michelle Wilson, Member, IEEE Abstract--A review of optical, chemical, and biological sensors to detect-on-a-chip research instrumentation. The sensors reviewed include optical sensors, at both research and commercial

Wilson, Denise

423

Vibration suppression in cutting tools using collocated piezoelectric sensors/actuators with an adaptive control algorithm  

SciTech Connect (OSTI)

The machining process is very important in many engineering applications. In high precision machining, surface finish is strongly correlated with vibrations and the dynamic interactions between the part and the cutting tool. Parameters affecting these vibrations and dynamic interactions, such as spindle speed, cut depth, feed rate, and the part's material properties can vary in real-time, resulting in unexpected or undesirable effects on the surface finish of the machining product. The focus of this research is the development of an improved machining process through the use of active vibration damping. The tool holder employs a high bandwidth piezoelectric actuator with an adaptive positive position feedback control algorithm for vibration and chatter suppression. In addition, instead of using external sensors, the proposed approach investigates the use of a collocated piezoelectric sensor for measuring the dynamic responses from machining processes. The performance of this method is evaluated by comparing the surface finishes obtained with active vibration control versus baseline uncontrolled cuts. Considerable improvement in surface finish (up to 50%) was observed for applications in modern day machining.

Radecki, Peter P [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Bement, Matthew T [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

424

Sensors and Actuators for the Advanced LIGO Mirror Suspensions  

E-Print Network [OSTI]

We have developed, produced and characterised integrated sensors, actuators and the related read-out and drive electronics that will be used for the control of the Advanced LIGO suspensions. The overall system consists of the BOSEMs (displacement sensor with integrated electro-magnetic actuator), the satellite boxes (BOSEM readout and interface electronics) and six different types of coil-driver units. In this paper we present the design of this read-out and control system, we discuss the related performance relevant for the Advanced LIGO suspensions, and we report on the experimental activity finalised at the production of the instruments for the Advanced LIGO detectors.

L. Carbone; S. M. Aston; R. M. Cutler; A. Freise; J. Greenhalgh; J. Heefner; D. Hoyland; N. A. Lockerbie; D. Lodhia; N. A. Robertson; C. C. Speake; K. A. Strain; A. Vecchio

2012-05-25T23:59:59.000Z

425

Mining Users' Significant Driving Routes with Low-power Sensors  

E-Print Network [OSTI]

sensing [38] from low power sensors, the energy cost of location sensing is high when location sensors are active. It is also possible for the phone to be plugged in a charging port in the vehi- cle during journeys but this places an extra constraint... on the user to remember to plug the phone in during each journey for energy intensive location sensing. Significantly lower- ing the energy consumption of sensing these journeys will relieve the user of this requirement and thus make it more likely...

Nawaz, Sarfraz; Mascolo, Cecilia

2014-01-01T23:59:59.000Z

426

Transit Vehicles as Traffic Probe Sensors F.W. Cathey, University of Washington, Dept. of Electrical Engineering, Box 352500, Seattle, WA, 98195-2500,  

E-Print Network [OSTI]

TRB 02-2228 Transit Vehicles as Traffic Probe Sensors F.W. Cathey, University of Washington, Dept vehicle position and speed. We also describe a system of "virtual" probe sensors that measure transit loop speed trap data are presented. We also present a method that uses probe sensor data to define

427

Compact orthogonal NMR field sensor  

DOE Patents [OSTI]

A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL)

2009-02-03T23:59:59.000Z

428

Sensor applications of carbon nanotubes  

E-Print Network [OSTI]

A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, ...

Rushfeldt, Scott I

2005-01-01T23:59:59.000Z

429

Nuclear magnetic resonance readable sensors  

E-Print Network [OSTI]

The monitoring of physiological biomarkers is fundamental to the diagnosis and treatment of disease. We describe here the development of molecular sensors which can be read by magnetic resonance (MR) relaxometry. MR is an ...

Ling, Yibo

2010-01-01T23:59:59.000Z

430

Modeling green fluorescent protein transcription, translation and modification as a method to obtain NF-kappaB activation profiles  

E-Print Network [OSTI]

Jayaraman Committee Members, Juergen Hahn Mike McShane Head of Department, N.K. Anand August 2007 Major Subject: Chemical Engineering iii ABSTRACT Modeling Green Fluorescent Protein Transcription, Translation and Modification as a Method... my profound thanks to my advisor, Dr. Arul Jayaraman, and my committee members, Dr. Juergen Hahn and Dr. Mike McShane, for their guidance and support throughout the course of this research. I would like to extend my gratitude to Jacky Huang who...

Laible, Allyson Marie

2009-05-15T23:59:59.000Z

431

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

432

Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control  

SciTech Connect (OSTI)

Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

Eric D. Wachsman

2006-12-31T23:59:59.000Z

433

Clustering of metal atoms in organic media. 9. High-activity Ni/MgO catalysts prepared by metal vapor methods. Surface area and particle size effects  

SciTech Connect (OSTI)

A metal vapor method was employed to prepare highly dispersed Ni metal catalysts (solvated metal atom dispersed = SMAD catalyst) supported on MgO. Compared with conventional Ni/MgO compositions, the SMAD catalysts showed much greater activities for all reactions studied (hydrogenolysis of methylcyclopentane, MCP; hydrogenation/hydrogenolysis of toluene, TOL; methanation of carbon monoxide, CO; dehydration of isopropyl alcohol, IPA). These high activities for the SMAD catalysts are attributed to the high surface area of Ni on MgO and the high percentage of this Ni in a zero-valent state (reduction degree). Conventional methods for preparing Ni/MgO catalysts did not yield nearly such favorable surface areas or reduction degrees. Nickel particle size effects were observed during hydrogenolysis studies of MCP and hydrogenation studies of TOL. These phenomena are explained by assuming the size of an active Ni particle to be largest for hydrogenolysis of MCP > hydrogenation of TOL > methanation of CO approx. = dehydrogenation of IPA. 8 figures, 2 tables.

Matsuo, K.; Klabunde, K.J.

1982-02-01T23:59:59.000Z

434

VEHICLE TRACKING USING MOBILE WIRELESS SENSOR NETWORKS DURING DYNAMIC LOAD  

E-Print Network [OSTI]

and put into service, engineers lack cost-effective methods for measuring the actual loads imposedVEHICLE TRACKING USING MOBILE WIRELESS SENSOR NETWORKS DURING DYNAMIC LOAD TESTING OF HIGHWAY in the understanding of vehicle-bridge interactions. Direct measurement of the complex coupling that naturally exists

Lynch, Jerome P.

435

Sensor Management Problems of Nuclear Detection Tamra Carpenter  

E-Print Network [OSTI]

or naturally occurring radioactive materials like the clay found in pottery and kitty litter. The need to distinguish true threats from commonly occurring benign sources and background sources of radiation of greatest emphasis in the project: 1) methods to exploit data from radiation sensors and shipping manifests

436

Tactile measurement with a GelSight sensor  

E-Print Network [OSTI]

This thesis introduces a method of measuring contact force with GelSight. GelSight is an optical-based tactile sensor that uses a piece of coated elastomer as the contact medium. A camera records the distortion of the ...

Yuan, Wenzhen, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

437

Beam current sensor  

DOE Patents [OSTI]

A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

Kuchnir, M.; Mills, F.E.

1984-09-28T23:59:59.000Z

438

Beam current sensor  

DOE Patents [OSTI]

A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

Kuchnir, Moyses (Elmhurst, IL); Mills, Frederick E. (Elburn, IL)

1987-01-01T23:59:59.000Z

439

Micromechanical calorimetric sensor  

DOE Patents [OSTI]

A calorimeter sensor apparatus is developed utilizing microcantilevered spring elements for detecting thermal changes within a sample containing biomolecules which undergo chemical and biochemical reactions. The spring element includes a bimaterial layer of chemicals on a coated region on at least one surface of the microcantilever. The chemicals generate a differential thermal stress across the surface upon reaction of the chemicals with an analyte or biomolecules within the sample due to the heat of chemical reactions in the sample placed on the coated region. The thermal stress across the spring element surface creates mechanical bending of the microcantilever. The spring element has a low thermal mass to allow detection and measuring of heat transfers associated with chemical and biochemical reactions within a sample placed on or near the coated region. A second surface may have a different material, or the second surface and body of microcantilever may be of an inert composition. The differential thermal stress between the surfaces of the microcantilever create bending of the cantilever. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers. The microcantilever is extremely sensitive to thermal changes in samples as small as 30 microliters.

Thundat, Thomas G. (Knoxville, TN); Doktycz, Mitchel J. (Knoxville, TN)

2000-01-01T23:59:59.000Z

440

active human visceral: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

walk, wave (one hand), wave (2 hands) Ta : Pekee II (Wany robotics, France) PTZ camera, motors + odometers, distance sensors, Kinect Ta Wolf, Christian 15 Human activity...

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

active noise control: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

significant noise ... Hong, Seung Hyuck 2009-01-01 2 Design of an Active Noise Control System using Plasma Actuators Engineering Websites Summary: and analysed from sensors located...

442

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is concluding the first year of work on a projected three-year development effort. In this first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. This second semiannual report focuses on the development of a second inspection methodology, based on rotating permanent magnets. During this period, a rotating permanent magnet exciter was designed and built. The exciter unit produces strong eddy currents in the pipe wall. The tests have shown that at distances of a pipe diameter or more, the currents flow circumferentially, and that these circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall.

J. Bruce Nestleroth

2004-11-05T23:59:59.000Z

443

FY2011 Progress Report: Agreement 8697 - NOx Sensor Development  

SciTech Connect (OSTI)

Objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) OBD II systems; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing methods that are compatible with mass fabrication; and (3) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization. Approach used is: (1) Use an ionic (O{sup 2-}) conducting ceramic as a solid electrolyte and metal or metal-oxide electrodes; (2) Correlate NO{sub x} concentration with changes in cell impedance; (3) Evaluate sensing mechanisms and aging effects on long-term performance using electrochemical techniques; and (4) Collaborate with Ford Research Center to optimize sensor performance and perform dynamometer and on-vehicle testing. Work in FY2011 focused on using an algorithm developed in FY2010 in a simplified strategy to demonstrate how data from controlled laboratory evaluation could be applied to data from real-world engine testing. The performance of a Au wire prototype sensor was evaluated in the laboratory with controlled gas compositions and in dynamometer testing with diesel exhaust. The laboratory evaluation indicated a nonlinear dependence of the NO{sub x} and O{sub 2} sensitivity with concentration. For both NO{sub x} and O{sub 2}, the prototype sensor had higher sensitivity at concentrations less than {approx}20 ppm and {approx}7%, respectively, compared to lower NO{sub x} and O{sub 2} sensitivity at concentrations greater than {approx}50 ppm and {approx}10.5%, respectively. Results in dynamometer diesel exhaust generally agreed with the laboratory results. Diesel exhaust after-treatment systems will likely require detection levels less than {approx}20 ppm in order to meet emission regulations. The relevant mathematical expressions for sensitivity in different concentration regimes obtained from bench-level laboratory evaluation were used to adjust the sensor signal in dynamometer testing. Both NO{sub x} and O{sub 2} exhibited non-linear responses over the concentration regimes examined (0-100 ppm for NO{sub x} and 4-7% for O{sub 2}). Adjusted sensor signals had better agreement with both a commercial NO{sub x} sensor and FTIR measurements. However, the lack of complete agreement indicated that it was not possible to completely account for the nonlinear sensor behavior in certain concentration regimes. The agreement at lower NO{sub x} levels (less than 20 ppm) was better than at higher levels (50-100 ppm). Other progress in FY2011 included dynamometer testing of sensors with imbedded heaters and protective housings that were mounted directly into the exhaust manifold. Advanced testing protocols were used to evaluate the sensors. These experiments confirmed the potential for sensor robustness and durability. Advanced material processing methods appropriate for mass manufacturing, such as sputtering, are also being evaluated. A major milestone for this past year was the licensing of the LLNL NO{sub x} sensor technology to EmiSense Technologies, LLC. EmiSense has extensive experience and resources for the development of emission control sensors. A CRADA is in development that will allow LLNL to work in partnership with EmiSense to bring the LLNL NO{sub x} sensor technology to commercialization. Ford Motor Company is also a partner in this effort.

Woo, L Y; Glass, R S

2011-11-01T23:59:59.000Z

444

Sensitivity enhancement of grating interferometer based two-dimensional sensor arrays using two-wavelength readout  

SciTech Connect (OSTI)

Diffraction gratings integrated with microelectromechanical systems (MEMS) sensors offer displacement measurements with subnanometer sensitivity. However, the sensitivity of the interferometric readout may drop significantly based on the gap between the grating and the reference surface. A two-wavelength (2-{lambda}) readout method was previously tested using a single MEMS sensor for illustrating increased displacement measurement capability. This work demonstrates sensitivity enhancement on a sensor array with large scale parallelization ({approx}20,000 sensors). The statistical representation, which is developed to model sensitivity enhancement within a grating based sensor array, is supported by experimental results using a thermal sensor array. In the experiments, two lasers at different wavelengths (633 and 650 nm) illuminate the thermal sensor array from the backside, time-sequentially. The diffracted first order light from the array is imaged onto a single CCD camera. The target scene is reconstructed by observing the change in the first diffracted order diffraction intensity for both wavelengths. Merging of the data from two measurements with two lasers was performed by taking the larger of the two CCD measurements with respect to the reference image for each sensor. {approx}30% increase in the average sensitivity was demonstrated for a 160x120 pixel IR sensor array. Proposed architecture is also applicable to a variety of sensing applications, such as parallel biosensing and atomic force microscopy, for improved displacement measurements and enhanced sensitivity.

Ferhanoglu, Onur; Urey, Hakan

2011-07-01T23:59:59.000Z

445

Development Of An Acoustice Sensor For On-Line Gas Temperature Measurement In Gasifiers  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated into the prototype sensor. This port rodding mechanism operated flawlessly during the field testing, but because these tests were performed in a region of the gasifier that experiences little slagging, the effectiveness of the rodding mechanism in dealing with highly slagging conditions was not fully demonstrated. This report describes the design and operation of the automated Gasifier Acoustic Pyrometer (autoGAP) which was tested at the Wabash River facility. The results of the tests are reported and analyzed in detail. All of the objectives of the project have been achieved. A field prototype acoustic pyrometer sensor has been successfully tested at the Wabash River gasifier plant. Acoustic signals were propagated through the gases inside the gasifier and were detected by the receiver unit, the times of flight of these sound pulses were measured and these propagation times were converted into temperatures which agreed very well with thermocouple measurements m

Peter Ariessohn; Hans Hornung

2006-10-01T23:59:59.000Z

446

Detection of magnetic resonance signals using a magnetoresistive sensor  

DOE Patents [OSTI]

A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.

Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S

2013-10-01T23:59:59.000Z

447

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

448

Information-based self-organization of sensor nodes of a sensor network  

DOE Patents [OSTI]

A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

Ko, Teresa H. (Castro Valley, CA); Berry, Nina M. (Tracy, CA)

2011-09-20T23:59:59.000Z

449

Development of Agile Titania Sensors Via High-Temperature Reductive Etching Process (HiTREPr  

E-Print Network [OSTI]

-life are much sought-after features in solid-state chemical sensors for the detection and metering of gas to recreate the smart nanofeatures to impart the desired accentuation effect. This surface modification method

Azad, Abdul-Majeed

450

Label-free carbon nanotube sensors for glycan and protein detection  

E-Print Network [OSTI]

Nanoengineered glycan sensors may help realize the long-held goal of accurate and rapid glycoprotein profiling without labeling or glycan liberation steps. Current methods of profiling oligosaccharides displayed on protein ...

Reuel, Nigel F. (Nigel Forest)

2014-01-01T23:59:59.000Z

451

On Energy for Progressive and Consensus Estimation in Multihop Sensor Networks  

E-Print Network [OSTI]

energy and power plan- ning, multihop sensor networks, network with routing tree,with routing tree. Using the exact energy model and takingenergy planning algorithm for a progressive estimation method which exploits routing tree

Huang, Yi; Hua, Yingbo

2011-01-01T23:59:59.000Z

452

Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks  

E-Print Network [OSTI]

Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of human's physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (facebook, coauthor and email social networks), we find that the excitable senor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-wor...

Pei, Sen; Zheng, Zhiming

2015-01-01T23:59:59.000Z

453

DESIGN OF TEMPERATURE SENSOR ARRAY IN SMART ELECTRIC GRID BASED ON SAW RESONATORS  

E-Print Network [OSTI]

and electrical equipment connected at high voltage switchgear contacts, dry-type transformers, the overhead line, discrete Hartley Transform (DHT) and the method of fast searching center frequency of sensors by comparison

Wang, Ji

454

Method of making gold thiolate and photochemically functionalized microcantilevers  

DOE Patents [OSTI]

Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

Boiadjiev, Vassil I. (Knoxville, TN) [Knoxville, TN; Brown, Gilbert M. (Knoxville, TN) [Knoxville, TN; Pinnaduwage, Lal A. (Knoxville, TN) [Knoxville, TN; Thundat, Thomas G. (Knoxville, TN) [Knoxville, TN; Bonnesen, Peter V. (Knoxville, TN) [Knoxville, TN; Goretzki, Gudrun (Nottingham, GB) [Nottingham, GB

2009-08-25T23:59:59.000Z

455

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect (OSTI)

Accomplishments during the first six months of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers.

Russell G. May; Tony Peng; Tom Flynn

2004-04-01T23:59:59.000Z

456

Acoustic and Seismic Modalities for Unattended Ground Sensors  

SciTech Connect (OSTI)

In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

1999-03-31T23:59:59.000Z

457

Energy Aware Self-Organizing Density Management in Wireless Sensor Networks  

E-Print Network [OSTI]

Energy consumption is the most important factor that determines sensor node lifetime. The optimization of wireless sensor network lifetime targets not only the reduction of energy consumption of a single sensor node but also the extension of the entire network lifetime. We propose a simple and adaptive energy-conserving topology management scheme, called SAND (Self-Organizing Active Node Density). SAND is fully decentralized and relies on a distributed probing approach and on the redundancy resolution of sensors for energy optimizations, while preserving the data forwarding and sensing capabilities of the network. We present the SAND's algorithm, its analysis of convergence, and simulation results. Simulation results show that, though slightly increasing path lengths from sensor to sink nodes, the proposed scheme improves significantly the network lifetime for different neighborhood densities degrees, while preserving both sensing and routing fidelity.

Merrer, Erwan Le; Kermarrec, Anne-Marie; Viana, Aline; Bertier, Marin

2008-01-01T23:59:59.000Z

458

New Electronic Sensors Stick to Your Skin -Heart Rate Monitors -Popular Mechanics http://www.popularmechanics.com/science/health/breakthroughs/new-electronic-sensors-stick-to-your-skin?click=pm_latest[8/14/2011 5:59:45 AM  

E-Print Network [OSTI]

New Electronic Sensors Stick to Your Skin - Heart Rate Monitors - Popular Mechanics http://www Electronic Sensors That Stick to Your Skin Like Temporary Tattoos Nice tattoo. Or is it a heart-rate monitor to measure the electrical activity of the heart, muscles and brain. And using the same principles behind

Rogers, John A.

459

Ferroelectric infrared detector and method  

DOE Patents [OSTI]

An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

Lashley, Jason Charles (Sante Fe, NM); Opeil, Cyril P. (Chestnut Hill, MA); Smith, James Lawrence (Los Alamos, NM)

2010-03-30T23:59:59.000Z

460

Seismic Activity of the Earth, the Cosmological Vectorial Potential And Method of a Short-term Earthquakes Forecasting  

E-Print Network [OSTI]

To the foundation of a principally new short-term forecasting method there has been laid down a theory of surrounding us world's creation and of physical vacuum as a result of interaction of byuons - discrete objects. The definition of the byuon contains the cosmological vector-potential A_g - a novel fundamental vector constant. This theory predicts a new anisotropic interaction of nature objects with the physical vacuum. A peculiar "tap" to gain new energy (giving rise to an earthquake) are elementary particles because their masses are proportional to the modulus of some summary potential A_sum that contains potentials of all known fields. The value of A_sum cannot be larger than the modulus of A_g. In accordance with the experimental results a new force associated with A_sum ejects substance from the area of the weakened A_sum along a conical formation with the opening of 100 +- 10 and the axis directed along the vector A_sum. This vector has the following coordinates in the second equatorial coordinate system: right ascension alpha = 293 +- 10, declination delta = 36 +- 10. Nearly 100% probability of an earthquake (earthquakes of 6 points strong and more by the Richter scale) arises when in the process of the earth rotation the zenith vector of a seismically dangerous region and/or the vectorial potential of Earth's magnetic fields are in a certain way oriented relative to the vector A_g. In the work, basic models and standard mechanisms of earthquakes are briefly considered, results of processing of information on the earthquakes in the context of global spatial anisotropy caused by the existence of the vector A_g, are presented, and an analysis of them is given.

Yu. A. Baurov; Yu. A. Baurov; Yu. A. Baurov Jr.; A. A. Spitalnaya; A. A. Abramyan; V. A. Solodovnikov

2008-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

752 IEEE SENSORS JOURNAL, VOL. 9, NO. 7, JULY 2009 Which Photodiode to Use: A Comparison of  

E-Print Network [OSTI]

752 IEEE SENSORS JOURNAL, VOL. 9, NO. 7, JULY 2009 Which Photodiode to Use: A Comparison of CMOS architecture and the photosensitive structure. This paper presents a comparison of three photodiode structures active pixel sensor, where the output depends on the photodiode capacitance, and one incorporating an in

Cauwenberghs, Gert

462

Activity Based Costing  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Activity Based Costing (ABC) is method for developing cost estimates in which the project is subdivided into discrete, quantifiable activities or a work unit. This chapter outlines the Activity Based Costing method and discusses applicable uses of ABC.

1997-03-28T23:59:59.000Z

463

Innovative Electromagnetic Sensors for Pipeline Crawlers  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle is in the final year on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this reporting period, a general design of the rotating permanent magnet inspection system is presented. The rotating permanent magnet inspection system is feasible for pipes ranging in diameter from 8 to 18 inches using a two pole configuration. Experimental results and theoretical calculations provide the basis for selection of the critical design parameters. The parameters include a significant magnet to pipe separation that will facilitate the passage of pipeline features. With the basic values of critical components established, the next step is a detailed mechanical design of a pipeline ready inspection system.

J. Bruce Nestleroth

2006-05-04T23:59:59.000Z

464

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. The Applied Energy Systems Group at Battelle is in the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In this third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted.

J. Bruce Nestleroth; Richard J. Davis

2005-05-23T23:59:59.000Z

465

INNOVATIVE ELECTROMAGNETIC SENSORS FOR PIPELINE CRAWLERS  

SciTech Connect (OSTI)

Internal inspection of pipelines is an important tool for ensuring safe and reliable delivery of fossil energy products. Current inspection systems that are propelled through the pipeline by the product flow cannot be used to inspect all pipelines because of the various physical barriers they encounter. Recent development efforts include a new generation of powered inspection platforms that crawl slowly inside a pipeline and are able to maneuver past the physical barriers that can limit inspection. At Battelle, innovative electromagnetic sensors are being designed and tested for these new pipeline crawlers. The various sensor types can be used to assess a wide range of pipeline anomalies including corrosion, mechanical damage, and cracks. Battelle has completed the second year of work on a projected three-year development effort. In the first year, two innovative electromagnetic inspection technologies were designed and tested. Both were based on moving high-strength permanent magnets to generate inspection energy. One system involved translating permanent magnets towards the pipe. A pulse of electric current would be induced in the pipe to oppose the magnetization according to Lenz's Law. The decay of this pulse would indicate the presence of defects in the pipe wall. This inspection method is similar to pulsed eddy current inspection methods, with the fundamental difference being the manner in which the current is generated. Details of this development effort were reported in the first semiannual report on this project. The second inspection methodology is based on rotating permanent magnets. The rotating exciter unit produces strong eddy currents in the pipe wall. At distances of a pipe diameter or more from the rotating exciter, the currents flow circumferentially. These circumferential currents are deflected by pipeline defects such as corrosion and axially aligned cracks. Simple sensors are used to detect the change in current densities in the pipe wall. The second semiannual report on this project reported on experimental and modeling results. The results showed that the rotating system was more adaptable to pipeline inspection and therefore only this system will be carried into the second year of the sensor development. In the third reporting period, the rotating system inspection was further developed. Since this is a new inspection modality without published fundamentals to build upon, basic analytical and experimental investigations were performed. A closed form equation for designing rotating exciters and positioning sensors was derived from fundamental principles. Also signal processing methods were investigated for detection and assessment of pipeline anomalies. A lock in amplifier approach was chosen as the method for detecting the signals. Finally, mechanical implementations for passing tight restrictions such as plug valves were investigated. This inspection concept is new and unique; a United States patent application has been submitted. In this fourth reporting period, the rotating system inspection was further developed. A multichannel real-time data recorder system was implemented and fundamental experiments were conducted to provide data to aid in the design of the rotating magnetizer system. An unexpected but beneficial result was achieved when examining the separation between the rotating magnet and the pipe wall; separations of over an inch could be tolerated. Essentially no change in signal from corrosion anomalies could be detected for separations up to 1.35 inches. The results presented in this report will be used to achieve the next deliverable, designs of components of the rotating inspection system that will function with inspection crawlers in a pipeline environment.

J. Bruce Nestleroth

2005-11-30T23:59:59.000Z

466

Low noise optical position sensor  

DOE Patents [OSTI]

A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments.

Spear, Jonathan David (Berkeley, CA)

1999-01-01T23:59:59.000Z

467

Low noise optical position sensor  

DOE Patents [OSTI]

A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments. 14 figs.

Spear, J.D.

1999-03-09T23:59:59.000Z

468

Pressure sensor for sealed containers  

DOE Patents [OSTI]

A magnetic pressure sensor for sensing a pressure change inside a sealed container. The sensor includes a sealed deformable vessel having a first end attachable to an interior surface of the sealed container, and a second end. A magnet mounted to the vessel second end defining a distance away from the container surface provides an externally detectable magnetic field. A pressure change inside the sealed container causes deformation of the vessel changing the distance of the magnet away from the container surface, and thus the detectable intensity of the magnetic field.

Hodges, Franklin R. (Loudon, TN)

2001-01-01T23:59:59.000Z

469

Underwater Data Collection Using Robotic Sensor Networks  

E-Print Network [OSTI]

We examine the problem of utilizing an autonomous underwater vehicle (AUV) to collect data from an underwater sensor network. The sensors in the network are equipped with acoustic modems that provide noisy, range-limited ...

Hollinger, Geoffrey A.

470

Sensor network localization based on natural phenomena  

E-Print Network [OSTI]

Autonomous localization is crucial for many sensor network applications. The goal of this thesis is to develop a distributed localization algorithm for the PLUG indoor sensor network by analyzing sound and light sensory ...

Kim, Daniel Sang

2006-01-01T23:59:59.000Z

471

Obtaining accurate measurement using redundant sensors  

E-Print Network [OSTI]

Conventional wisdom suggests to accomplish accurate measurement, the sensors used must have high precision and excellent dynamic range. This generally results in sensor systems that are complex, costly, and often sensitive to environmental factors...

Burnett, Michael Scott

2012-06-07T23:59:59.000Z

472

Design guidelines for optical resonator biochemical sensors  

E-Print Network [OSTI]

In this paper, we propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor ...

Kimerling, Lionel C.

473

Automatic Calibration of Multiple Coplanar Sensors  

E-Print Network [OSTI]

This paper describes an algorithm for recovering the rigid 3-DOF transformation (offset and rotation) between pairs of sensors mounted rigidly in a common plane on a mobile robot. The algorithm requires only a set of sensor ...

Brookshire, Jonathan

474

A standalone capacitively coupled occupancy sensor  

E-Print Network [OSTI]

This thesis presents the design and implementation of a standalone, capacitively coupled, occupancy sensor. Unlike previous iterations, the new sensor is decoupled from the fluorescent lamp. A well controlled, high voltage ...

Thompson, William H., M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

475

Adaptive sampling in autonomous marine sensor networks  

E-Print Network [OSTI]

In this thesis, an innovative architecture for real-time adaptive and cooperative control of autonomous sensor platforms in a marine sensor network is described in the context of the autonomous oceanographic network scenario. ...

Eickstedt, Donald Patrick

2006-01-01T23:59:59.000Z

476

Field matric potential sensor  

DOE Patents [OSTI]

A method of determining matric potential of a sample, the method comprising placing the sample in a container, the container having an opening; and contacting the sample with a tensiometer via the opening. An apparatus for determining matric potential of a sample, the apparatus comprising a housing configured to receive a sample; a portable matric potential sensing device extending into the housing and having a porous member; and a wall closing the housing to insulate the sample and at least a portion of the matric potential sensing device including the porous member.

Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

477

Excitation energies with cost-reduced variant of the active-space EOMCCSDT method: the EOMCCSDt-(3) over-bar approach  

SciTech Connect (OSTI)

In this paper we discuss the performance of the several simplified variants of equation-of-motion coupled cluster method (EOMCC) with iterative inclusion of singles, doubles and active-space triples (EOMCCSDt). In particular, we explore simplified EOMCCSDt approaches which enable one to generate the triply excited amplitudes in on-the-fly manner. The original EOMCCSDt formulation has already demonstrated a great success in encapsulating the most important excited-state correlation effects due to triples. In analogy to the original EOMCCSDT formulation, the proposed approach can by-pass the typical bottlenecks associated with the need for storing triply-excited amplitudes. In this paper, we illustrate the performance of several approximate EOMCCSDt methods, named EOMCCSDt-3 and EOMCCSdt-3x, on typical benchmark systems including C2, N2, and the ozone molecules. These new methods yield excitation energies close to the EOMCCSDt ones. The extrapolation of excitation energies for basis sets ranging from cc-pVDZ to cc-pV6Z for N2 and C2 shows very good convergence to the experimental results for states dominated by single excitations.

Hu, Hanshi; Kowalski, Karol

2013-11-12T23:59:59.000Z

478

IEEE SENSORS JOURNAL, VOL. 13, NO. 9, SEPTEMBER 2013 3405 A Soft Strain Sensor Based on  

E-Print Network [OSTI]

IEEE SENSORS JOURNAL, VOL. 13, NO. 9, SEPTEMBER 2013 3405 A Soft Strain Sensor Based on Ionic and Vincent Duchaine Abstract--A novel soft strain sensor capable of withstand- ing strains of up to 100% is described. The sensor is made of a hyperelastic silicone elastomer that contains embedded microchannels

Park, Yong-Lae

479

Sensors and Actuators A xxx (2004) xxxxxx Micromachined silicon force sensor based on diffractive optical  

E-Print Network [OSTI]

Sensors and Actuators A xxx (2004) xxx­xxx Micromachined silicon force sensor based on diffractive-based force sensor integrated with a surface micromachined silicon-nitride probe for penetration and injection that is designed to only be sensitive to axial deflections of the probe. The optical-encoder force sensor exhibits

Quake, Stephen R.

480

CCEC Seminar Wireless Sensors for SemiconductorWireless Sensors for Semiconductor  

E-Print Network [OSTI]

CCEC Seminar Wireless Sensors for SemiconductorWireless Sensors for Semiconductor Manufacturing perhaps. In this talk, we describe our efforts in developing a new class of wireless sensors for use in semiconductor manufacturing. These sensors are fully self-contained with on board power, communications

Akhmedov, Azer

Note: This page contains sample records for the topic "methods active sensors" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.