Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics 1992 Buildings Characteristics Overview Full Report Tables National and Census region estimates of the number of commercial buildings in the U.S. and...

2

2007 CBECS Large Hospital Building Methodology Report  

Gasoline and Diesel Fuel Update (EIA)

Methodology Report Main Report | Methodology Report Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Data Collection The data in the Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 report and accompanying tables were collected in the 2007 round of the Commercial Buildings Energy Consumption Survey (CBECS). CBECS is a quadrennial survey is conducted by the Energy Information Administration (EIA) to provide basic statistical information about energy consumption and expenditures in United States commercial buildings and information about energy-related characteristics of these buildings. The survey was conducted in two phases, the Building Characteristics Survey and the Energy Supplier Survey. The Building Characteristics Survey collects information about selected

3

1999 Commercial Buildings Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption Survey—Commercial Buildings Characteristics Released: May 2002 Topics: Energy Sources and End Uses | End-Use Equipment | Conservation Features and Practices Additional Information on: Survey methods, data limitations, and other information supporting the data The 1999 Commercial Buildings Energy Consumption Survey (CBECS) was the seventh in the series begun in 1979. The 1999 CBECS estimated that 4.7 million commercial buildings (± 0.4 million buildings, at the 95% confidence level) were present in the United States in that year. Those buildings comprised a total of 67.3 (± 4.6) billion square feet of floorspace. Additional information on 1979 to 1999 trends

4

Commercial Buildings Characteristics, 1992  

Science Conference Proceedings (OSTI)

Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

Not Available

1994-04-29T23:59:59.000Z

5

Commercial Buildings Characteristics 1992  

U.S. Energy Information Administration (EIA) Indexed Site

(92) (92) Distribution Category UC-950 Commercial Buildings Characteristics 1992 April 1994 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The Energy Information Administration (EIA) prepared this publication under the general direction of W. Calvin Kilgore, Director of the Office of Energy Markets and End Use (202-586-1617). The project was directed by Lynda T. Carlson, Director of the Energy End Use and Integrated Statistics Division (EEUISD) (202-586-1112) and Nancy L. Leach, Chief

6

Methodology for Validating Building Energy Analysis Simulations  

SciTech Connect

The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

Judkoff, R.; Wortman, D.; O'Doherty, B.; Burch, J.

2008-04-01T23:59:59.000Z

7

1999 Commercial Buildings Characteristics--Building Size  

U.S. Energy Information Administration (EIA) Indexed Site

Size of Buildings Size of Buildings Size of Buildings The 1999 CBECS estimated that 2,348,000 commercial buildings, or just over half (50.4 percent) of total buildings, were found in the smallest building size category (1,001 to 5,000 square feet) (Figure 1). Only 7,000 buildings occupied the largest size category (over 500,000 square feet). Detailed tables Figure 1. Distribution of Buildings by Size of Building, 1999 Figure 1. Distribution of Buildings by Size of Building, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey The middle size categories (10,001 to 100,000 square feet) had relatively more floorspace per category than smaller or larger size categories (Figure 2). The greatest amount of floorspace, about 11,153,000 square feet (or 17 percent of total floorspace) was found in the 10,001 to 25,000 square feet category. Figure 2. Distribution of Floorspace by Size of Building, 1999

8

Overview of Commercial Buildings, 2003 - Major Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Major Characteristics of All Commercial Buildings in 2003 Major Characteristics of All Commercial Buildings in 2003 CBECS data are used to answer basic questions about the commercial buildings sector, such as: What types are there? How large are they? How old are they? and Where are they? Results from the 2003 CBECS show that: The commercial buildings sector is not dominated by a single building type. Office buildings, the most common type of commercial building, account for 17 percent of buildings, floorspace, and energy consumed. Commercial buildings range widely in size and smaller buildings are much more numerous than larger buildings. The smallest buildings (1,001 to 5,000 square feet) account for 53 percent of buildings, but consume only 11 percent of total energy. The largest buildings (those larger than 500,000 square feet)

9

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

10

Residential Code Methodology | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

& Offices Consumer Information Building Energy Codes Search Search Search Help Building Energy Codes Program Home News Events About DOE EERE BTO BECP Site Map...

11

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 37. Refrigeration Equipment, Number of Buildings and Floorspace, 1995 Table 38. Water-Heating Equipment, Number of Buildings and Floorspace, 1995 Table 39. Lighting...

12

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 25. Cooling Energy Sources, Number of Buildings and Floorspace, 1995 Table 26. Water-Heating Energy Sources, Number of Buildings, 1995 Table 27. Water-Heating Energy...

13

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Tables Conservation Tables (16 pages, 86 kb) CONTENTS PAGES Table 41. Energy Conservation Features, Number of Buildings and Floorspace, 1995 Table 42. Building Shell Conservation Features, Number of Buildings, 1995 Table 43. Building Shell Conservation Features, Floorspace, 1995 Table 44. Reduction in Equipment Use During Off Hours, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

14

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Geographic Location Tables Geographic Location Tables (24 pages, 136kb) CONTENTS PAGES Table 3. Census Region, Number of Buildings and Floorspace, 1995 Table 4. Census Region and Division, Number of Buildings, 1995 Table 5. Census Region and Division, Floorspace, 1995 Table 6. Climate Zone, Number of Buildings and Floorspace, 1995 Table 7. Metropolitan Status, Number of Buildings and Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings

15

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Structure Tables Structure Tables (16 pages, 93 kb) CONTENTS PAGES Table 8. Building Size, Number of Buildings, 1995 Table 9. Building Size, Floorspace, 1995 Table 10. Year Constructed, Number of Buildings, 1995 Table 11. Year Constructed, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the United States. The 1995 CBECS was the sixth survey in a series begun in 1979. The data were collected from a sample of 6,639 buildings representing 4.6 million commercial buildings and 58.8 billion square feet of commercial floorspace in the U.S. The 1995 data are available for the four Census

16

Commercial Buildings Characteristics 1995 - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

>Commercial Buildings Home > 1995 Characteristics Data 1995 Data Executive Summary Table of Contents Overview to Detailed Tables Detailed Tables 1995 national and Census region...

17

Energy Characteristics and Energy Consumed in Large Hospital Buildings in  

Gasoline and Diesel Fuel Update (EIA)

Energy Characteristics and Energy Consumed in Large Hospital Buildings in Energy Characteristics and Energy Consumed in Large Hospital Buildings in the United States in 2007 Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 Hospitals consume large amounts of energy because of how they are run and the many people that use them. They are open 24 hours a day; thousands of employees, patients, and visitors occupy the buildings daily; and sophisticated heating, ventilation, and air conditioning (HVAC) systems control the temperatures and air flow. In addition, many energy intensive activities occur in these buildings: laundry, medical and lab equipment use, sterilization, computer and server use, food service, and refrigeration. The 2003 Commercial Building Energy Consumption Survey (CBECS) data showed

18

A Methodology for Identifying Retrofit Energy Savings in Commercial Buildings  

E-Print Network (OSTI)

Measured energy savings resulting from energy conservation retrofits in commercial buildings can be used to verify the success of the retrofits, determine the payment schedule for the retrofits, and guide the selection of future retrofits. This paper presents a structured methodology, developed for buildings in the Texas LoanSTAR program, for measuring retrofit savings in commercial buildings. This methodology identifies the pre-retrofit construction and post-retrofit periods, normalizes energy consumption data, and quantifies the uncertainty associated with the measured savings. A case study from the Texas LoanSTAR program is presented as an example.

Kissock, K.; Reddy, A.; Claridge, D.

1992-05-01T23:59:59.000Z

19

Commercial Buildings Characteristics 1992 - Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Characteristics Data > Publication and Tables Buildings Characteristics Data > Publication and Tables Publication and Tables Percent of Buildings and Floorspace by Census Region, 1992 figure on percent of building and floorspace by census region, 1992 separater bar To View and/or Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties, visit our Technical Frequently Asked Questions. You have the option of downloading the entire report or selected sections of the report. Full Report - Commercial Buildings Characteristics, 1992 with only selected tables (file size 1.34 MB) pages: 157 Selected Sections: Main Text (file size 883,980 bytes) pages: 28, includes the following: Contacts Contents Executive Summary Introduction Background Organization of the report

20

Methodology for Modeling Building Energy Performance across the Commercial Sector  

Science Conference Proceedings (OSTI)

This report uses EnergyPlus simulations of each building in the 2003 Commercial Buildings Energy Consumption Survey (CBECS) to document and demonstrate bottom-up methods of modeling the entire U.S. commercial buildings sector (EIA 2006). The ability to use a whole-building simulation tool to model the entire sector is of interest because the energy models enable us to answer subsequent 'what-if' questions that involve technologies and practices related to energy. This report documents how the whole-building models were generated from the building characteristics in 2003 CBECS and compares the simulation results to the survey data for energy use.

Griffith, B.; Long, N.; Torcellini, P.; Judkoff, R.; Crawley, D.; Ryan, J.

2008-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CBECS 1992 - Building Characteristics, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace by Census Region, 1992 The following 70 tables present extensive cross-tabulations of commercial buildings characteristics. These data are from the Buildings Characteristics Survey portion of the 1992 CBECS. The "Quick-Reference Guide," indicates the major topics of each table. Directions for calculating an approximate relative standard error (RSE) for each estimate in the tables are presented in Figure A1, "Use of RSE Row and Column Factor." The Glossary contains the definitions of the terms used in the tables. See the preceding "At A Glance" section for highlights of the detailed tables. Table Organization

22

Building Energy Performance Analysis of an Academic Building Using IFC BIM-Based Methodology  

E-Print Network (OSTI)

This paper discusses the potential to use an Industry Foundation Classes (IFC)/Building Information Modelling (BIM) based method to undertake Building Energy Performance analysis of an academic building. BIM/IFC based methodology provides a mechanism for providing quick and cost-effective feedback to building users. The paper discusses the need for IFC and BIM-based analysis of existing buildings. A case study of Building Energy Performance Analysis of an academic building is presented with a detailed discussion on various interventions undertaken to calibrate the model. The paper concludes that BIM/IFC based approaches provide a feasible alternative to conduct energy analysis of existing buildings provided various correlations are built into the model.

Aziz, Z.; Arayici, Y.; Shivachev, D.

2012-01-01T23:59:59.000Z

23

Commercial Energy and Cost Analysis Methodology | Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Development » Commercial Development » Commercial Site Map Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Commercial Energy and Cost Analysis Methodology The U.S. Department of Energy (DOE) evaluates published model codes and standards to help states and local jurisdictions better understand the impacts of updating commercial building energy codes and standards. A methodology was used for evaluating the energy and economic performance of commercial energy codes and standards and proposed changes thereto. This method serves to ensure DOE proposals are both energy efficient and cost-effective. The DOE methodology contains two primary assessments: Energy savings Cost-effectiveness Energy and economic calculations are performed through a comparison of

24

A Quasi-Dynamic HVAC and Building Simulation Methodology  

E-Print Network (OSTI)

This thesis introduces a quasi-dynamic building simulation methodology which complements existing building simulators by allowing transient models of HVAC (heating, ventilating and air-conditioning) systems to be created in an analogous way to their design and simulated in a computationally efficient manner. The methodology represents a system as interconnected, object-oriented sub-models known as components. Fluids and their local properties are modeled using discrete, incompressible objects known as packets. System wide pressure and flow rates are modeled similar to electrical circuit models. Transferring packets between components emulates fluid flow, while the system wide fluid circuit formed by the components' interconnections determines system wide pressures and flow rates. A tool named PAQS, after the PAacketized Quasi-dynamic Simulation methodology, was built to demonstrate the described methodology. Validation tests of PAQS found that its steady state energy use predictions differed less than 3% from a comparable steady state model. PAQS was also able to correctly model the transient behavior of a dynamic linear analytical system.

Davis, Clinton Paul

2012-05-01T23:59:59.000Z

25

A Methodology to Measure Retrofit Energy Savings in Commercial Buildings  

E-Print Network (OSTI)

Measured energy savings promote and sustain energy conservation retrofits by verifying the success of retrofits, determining pay-back schedules, guiding the selection of future retrofits and identifying opportunities for further savings. This dissertation develops a methodology to measure retrofit energy savings and the uncertainty of the savings in commercial buildings. The functional forms of empirical models of cooling and heating energy use in commercial buildings are derived from an engineering analysis of constant-air-volume and variable-air-volume HVAC systems. One, two, three and four parameter, temperature-dependent regression models are proposed to model baseline energy use. Retrofit savings are measured as the difference between the baseline energy use project by the models and the measured post-retrofit energy use. A hybrid ordinary least squares/autoregressive method is developed to determine the uncertainty of the predicated energy use and savings. The annual predictive ability of models based on pre-retrofit data sets of less than a full year is investigated. The energy delivery efficiency is introduced to measure the efficiency of air-side systems at meeting the net building load. A preliminary investigation of the use of artificial neural network models to measure savings is presented. The methodology is demonstrated on case study examples using software specifically developed for the analysis of commercial building energy use.

Kissock, John Kelly

2008-01-16T23:59:59.000Z

26

Aggregate Building Simulator (ABS) Methodology Development, Application, and User Manual  

SciTech Connect

As the relationship between the national building stock and various global energy issues becomes a greater concern, it has been deemed necessary to develop a system of predicting the energy consumption of large groups of buildings. Ideally this system is to take advantage of the most advanced energy simulation software available, be able to execute runs quickly, and provide concise and useful results at a level of detail that meets the users needs without inundating them with data. The resulting methodology that was developed allows the user to quickly develop and execute energy simulations of many buildings simultaneously, taking advantage of parallel processing to greatly reduce total simulation times. The result of these simulations can then be rapidly condensed and presented in a useful and intuitive manner.

Dirks, James A.; Gorrissen, Willy J.

2011-11-30T23:59:59.000Z

27

Building Technologies Office: Sensors and Controls Characteristics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings News Building Technologies Office Announces 3 Million to Advance Building Automation Software Solutions in Small to Medium-Sized Commercial Buildings March 29,...

28

1999 Commercial Buildings Characteristics--Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Principal Building Activities Principal Building Activities Principal Building Activities Three of the four activities that dominated commercial floorspace-office, warehouse and storage, and mercantile-dominated the distribution of buildings (Figure 1). Each of these three activity categories included more than 600,000 buildings, while no other building activity had more than a half-million buildings and only service buildings exceeded 350,000 buildings. Detailed tables Figure 1. Distribution of Buildings by Principal Building Activity, 1999 Figure 1. Distribution of Buildings by Principal Building Activity, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey

29

1999 Commercial Buildings Characteristics--Trends in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace Trends in Commercial Buildings and Floorspace The addition of commercial buildings and floorspace from 1995 to 1999 continued the general trends noted since 1979 (Figures 1 and 2). The size of the commercial buildings has grown steadily over the twenty years of CBECS. Each year more buildings are added to the sector (new construction or conversion of pre-existing buildings to commercial activity) than are removed (demolition or conversion to non-commercial activity). The definition for the commercial buildings population was changed for the 1995 CBECS which resulted in a slightly smaller buildings population and accounts for the data break in both Figures 1 and 2 (see report "Trends in the Commercial Buildings Sector" for complete details). Figure 1. Total Commercial Buildings, 1979 to 1999

30

1999 Commercial Buildings Characteristics--Disaggregated Principal Building  

U.S. Energy Information Administration (EIA) Indexed Site

Disaggregated Principal Building Activities Disaggregated Principal Building Activities Disaggregated Principal Building Activities The 1999 CBECS collected information for 20 general building activities. Five of the activities were aggregated and data for 16 activities are displayed in the detailed tables. Within the aggregated warehouse and storage category, nonrefrigerated warehouses greatly exceeded refrigerated warehouses both in amount of floorspace and number of buildings (compare Figure 1 with Figure 2). Within the mercantile category, the number of retail buildings greatly exceeded strip shopping buildings which, in turn, greatly exceeded enclosed shopping malls (Figure 2). The amount of mercantile floorspace was more evenly distributed (Figure 1) because of differences in average building size-enclosed malls were largest and retail buildings the smallest.

31

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

6% 25% South 5% 18% 14% 37% West 3% 9% 5% 18% 100% Source(s): EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, Oct. 2006, Table A2, p. 3-4...

32

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

that are larger than 100,000 square feet. EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, Oct. 2006, Table A1, p. 1-2. 2,586 948 810...

33

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

to 2003 9% Total 100% Source(s): Percent of Total Floorspace EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, Oct. 2006, Table A1, p. 1-...

34

1992 Commercial Buildings Characteristics -- Overview/Executive Summary  

U.S. Energy Information Administration (EIA) Indexed Site

Overview Overview Overview Percent of Buildings and Floorspace by Census Region, 1992 Percent of Buildings and Floorspace By Census Region divider line Executive Summary Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

35

1999 Commercial Buildings Characteristics--CBECS Building Types  

U.S. Energy Information Administration (EIA) Indexed Site

Description of CBECS Building Types Description of CBECS Building Types Description of CBECS Building Types In the Commercial Buildings Energy Consumption Survey (CBECS), buildings are classified according to principal activity, which is the primary business, commerce, or function carried on within each building. Buildings used for more than one of the activities described below are assigned to the activity occupying the most floorspace at the time of the interview. Thus, a building assigned to a particular principal activity category may be used for other activities in a portion of its space or at some time during the year. In the 1999 CBECS, respondents were asked to place their building into a sub-category that was a more specific activity than has been collected in prior surveys. This was done to ensure the quality of the data; after data collection, the sub-categories were combined into the more general categories that are found in the detailed tables. These categories are consistent with prior years.

36

1999 Commercial Buildings Characteristics--Year Constructed  

U.S. Energy Information Administration (EIA) Indexed Site

Year Constructed Year Constructed Year Constructed More than one-third (37 percent) of the floorspace in commercial buildings was constructed since 1980 and more than one-half (55 percent) after 1969 (Figure 1). Less than one-third of floorspace was constructed before 1960. Detailed tables Figure 1. Distribution of Floorspace by Year Constructed, 1999 Figure 1. Distribution of Floorspace by Year Constructed, 1999. If having trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Overall, relatively more buildings than floorspace were represented in the older age categories and more floorspace than buildings in the newer categories (see graphical comparison) because older buildings were smaller than more recently constructed buildings (Figure 2). Buildings constructed prior to 1960 were 11,700 square feet in size on average while those constructed after 1959 were 37 percent larger at 16,000 square feet per building.

37

2003 CBECS Building Characteristics and Consumption and ...  

U.S. Energy Information Administration (EIA)

MAINT8 Regular HVAC maintenance 188- 188 $YESNO. EMCS8 Energy management and control system 190- 190 $YESNO. ADJWT8 Final full sample building ...

38

1999 Commercial Buildings Characteristics--Census Region  

Annual Energy Outlook 2012 (EIA)

and population were found in the South region, while the Northeast had the smallest percentage of each (less than 20 percent). Detailed tables Figure 1. Percentage of Buildings,...

39

Planning ahead : characteristics of versatile buildings  

E-Print Network (OSTI)

If a building is to maintain its life-long usefulness it must be possible to alter it to accommodate different programmatic demands. This thesis investigates the spatial and material character that facilitates this ...

Mahler, Stephen N

1983-01-01T23:59:59.000Z

40

UNDERSTANDING FLOW OF ENERGY IN BUILDINGS USING MODAL ANALYSIS METHODOLOGY  

SciTech Connect

It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the buildings effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.

John Gardner; Kevin Heglund; Kevin Van Den Wymelenberg; Craig Rieger

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

to Nine 16% Unoccupied 3% Ten or More 8% Government Owned 24% Total 100% Federal 3% State 5% Local 15% Total 100% Source(s): EIA, Commercial Building Characteristics 2003, June...

42

Enhanced Sequential Search Methodology for Identifying Cost-Optimal Building Pathways  

SciTech Connect

The BEopt software is a building energy optimization tool that generates a cost-optimal path of building designs from a reference building up to zero-net energy. It employs a sequential search methodology to account for complex energy interactions between building efficiency measures. Enhancement strategies to this search methodology are developed to increase accuracy (ability to identify the true cost-optimal curve) and speed (number of required energy simulations). A test suite of optimizations is used to gauge the effectiveness of each strategy. Combinations of strategies are assembled into packages, ranging from conservative to aggressive, with so up to 71% fewer required simulations are required.

Horowitz, S.; Christensen, C.; Brandemuehl, M.; Krarti, M.

2008-06-01T23:59:59.000Z

43

Methodology for Estimating Solar Potential on Multiple Building Rooftops for Photovoltaic Systems  

SciTech Connect

In this paper, a methodology for estimating solar potential on multiple building rooftops is presented. The objective of this methodology is to estimate the daily or monthly solar radiation potential on individual buildings in a city/region using Light Detection and Ranging (LiDAR) data and a geographic information system (GIS) approach. Conceptually, the methodology is based on the upward-looking hemispherical viewshed algorithm, but applied using an area-based modeling approach. The methodology considers input parameters, such as surface orientation, shadowing effect, elevation, and atmospheric conditions, that influence solar intensity on the earth s surface. The methodology has been implemented for some 212,000 buildings in Knox County, Tennessee, USA. Based on the results obtained, the methodology seems to be adequate for estimating solar radiation on multiple building rooftops. The use of LiDAR data improves the radiation potential estimates in terms of the model predictive error and the spatial pattern of the model outputs. This methodology could help cities/regions interested in sustainable projects to quickly identify buildings with higher potentials for roof-mounted photovoltaic systems.

Kodysh, Jeffrey B [ORNL; Omitaomu, Olufemi A [ORNL; Bhaduri, Budhendra L [ORNL; Neish, Bradley S [ORNL

2013-01-01T23:59:59.000Z

44

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

1 1 Total Commercial Floorspace and Number of Buildings, by Year 1980 50.9 (1) N.A. 3.1 (3) 1990 64.3 N.A. 4.5 (3) 2000 (4) 68.5 N.A. 4.7 (5) 2008 78.8 15% N.A. 2010 81.1 26% N.A. 2015 84.1 34% N.A. 2020 89.2 43% N.A. 2025 93.9 52% N.A. 2030 98.2 60% N.A. 2035 103.0 68% N.A. Note(s): Source(s): EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127-128 for 2000 floorspace; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Summary Reference Case Tables, Table A5, p. 11-12 for 2008-2035 floorspace; EIA Commercial Building Characteristics 1989, June 1991, Table A4, p. 17 for 1990 number of buildings; EIA, Commercial Building Characteristics 1999, Aug. 2002, Table 3 for 1999 number of buildings and floorspace; and EIA, Buildings and Energy in the 1980s, June 1995, Table 2.1, p. 23 for number of buildings in 1980.

45

Methodology for adapting rigorous simulation programs to supervisory control of building HVAC&R systems: simulation, calibration and optimization.  

E-Print Network (OSTI)

??In this thesis, general and systematic methodologies were developed for simulating, calibrating and optimal control of building energy system. Based on investigation of two popular (more)

Sun, Jian

2005-01-01T23:59:59.000Z

46

Towards a unified cost optimal methodology for designing low energy buildings in the mediterranean sea region  

Science Conference Proceedings (OSTI)

The increasing sustainability problems our world faces because of the thoughtless energy consumption and emissions production puts an increasing pressure for immediate and drastic energy saving measures. Although the consumption of energy - through appropriate ... Keywords: cost optimal, design methodology, low energy building, mediterranean

Stratis Kanarachos; Ahmed Medhat; Georgette Kanarachou; Mona Fanny

2011-02-01T23:59:59.000Z

47

A methodology to pre-screen commercial buildings for potential energy savings using limited information  

E-Print Network (OSTI)

Typical energy audits are sufficiently expensive and time-consuming that many owners and managers of buildings are not willing to invest the time and money required for a full audit. This dissertation provides a methodology to identify buildings with large potential energy savings using limited information, specifically, utility bills, total area and weather data. The methodology is developed based on the hypothesis: if a commercial building is properly designed, constructed, operated, and maintained, the measured energy consumption should approximately match the simulated value for a typical building of the same size with the most efficient HVAC system; otherwise, there may be potential for energy savings. There are four steps in the methodology: 1) testing to determine whether the utility bills include both weather-dependent and weatherindependent loads; 2) separating weather-dependent and weather-independent loads when both are present in the same data; 3) determining the main type of HVAC system; 4) estimating potential energy savings and recommending an energy audit if appropriate. The Flatness Index is selected to test whether the utility bills include both weatherdependent and weather-independent loads. An approach to separate the utility bills based on thermal balance is developed to separate utility bills into weather-dependent and weather-independent loads for facilities in hot and humid climates. The average relative error in estimated cooling consumption is only 1.1% for 40 buildings in Texas, whereas it is -54.8% using the traditional 3P method. An application of fuzzy logic is used to identify the main type of HVAC system in buildings from their 12-month weatherdependent energy consumption. When 40 buildings were tested, 18 systems were identified correctly, seven were incorrect and the HVAC system type cannot be identified in 15 cases. The estimated potential savings by the screening methodology in eight large commercial buildings were compared with audit estimated savings for the same buildings. The audit estimated savings are between 25% - 150% of the potential energy savings estimated by the screening procedure in seven cases. The other two cases are less accurate, indicating that further refinement of the method would be valuable. The data required are easily obtained; the procedure can be carried out automatically, so no experience is required. If the actual type of HVAC system, measured weather-dependent, and weather-independent energy consumption are known, the methodology should work better.

Zhu, Yiwen

2005-12-01T23:59:59.000Z

48

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

49

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

50

Development of a pre-screening methodology to aid in determining potential energy savings in commercial buildings  

E-Print Network (OSTI)

This thesis presents a methodology developed to aid in the determination of potential sources and the potential scale of energy savings in commercial buildings. As a pre-screening tool, the methodology is designed to serve as the first analysis of the buildings potential for energy savings using limited data prior to a site visit. A Microsoft Excel-based tool was developed to perform this analysis semi-automatically with user operation. A fundamental concept used in this methodology is that of the energy balance load, defined as heating plus electricity minus cooling. The methodology is designed to require only historical weather data, historical whole-building energy consumption data, the total conditioned floor area, and the basic function of the building. Upon following a short procedure developed and outlined in this thesis, this limited data yields information that can lead to conclusions about the buildings energy consumption. The output information includes estimates of a major building thermal parameterthe buildings overall heat transfer coefficient including the total outside air flow rate into the building. In addition to providing this information, the Excel tool includes already-formatted plots of the energy consumption commonly used in energy analysis. These include cooling, heating, and electricity vs. both outside air temperature and time. Three case studies illustrate the utility of this methodology. The calculated energy balance loadcalculated using parameters determined through this methodologyyielded values on average within 5.4% of measured values.

Hicks, Dave C.

2008-12-01T23:59:59.000Z

51

Retrofit Options for Increasing Energy Efficiency in Office Buildings- Methodology Review  

E-Print Network (OSTI)

Portuguese Buildings represent 35% of primary energy consumption in 2006, with non-residential sector representing almost half of this number globally and around 65% in Lisbon city. Expected to grow 5% yearly in this period, non-residential buildings rehabilitation is a great opportunity for energy rehabilitation for a stock of 800.000 buildings needing medium to high interventions. For this task to be successful it is also urgent that procedures consider an accurate technical framework, where existing technologies and best case-studies can be considered, in order to drive passive measures retrofitting forward. This paper presents an overview of a methodology development which pretends to include the energy component in rehabilitation schemes with an integrated and comprehensive analysis, achieving all those directly involved in the building process (owners, consumers, public bodies, construction and project design industry) as well as new important players such as ESCOs.

Pereira, N. C.

2008-10-01T23:59:59.000Z

52

Buildings Energy Data Book: 4.2 Federal Buildings and Facilities Characteristics  

Buildings Energy Data Book (EERE)

2 Federal Buildings and Facilities Characteristics 2 Federal Buildings and Facilities Characteristics March 2012 4.2.1 Federal Building Gross Floorspace, by Year and Agency Fiscal Year Agency FY 1985 3.37 DOD 63% FY 1986 3.38 USPS 10% FY 1987 3.40 GSA 6% FY 1988 3.23 VA 5% FY 1989 3.30 DOE 3% FY 1990 3.40 Other 13% FY 1991 3.21 Total 100% FY 1992 3.20 FY 1993 3.20 FY 1994 3.11 FY 1995 3.04 FY 1996 3.03 FY 1997 3.02 FY 1998 3.07 FY 1999 3.07 FY 2000 3.06 FY 2001 3.07 FY 2002 3.03 FY 2003 3.04 FY 2004 2.97 FY 2005 2.96 FY 2006 3.10 FY 2007 3.01 Note(s): Source(s): 2007 Percent of Floorspace (10^9 SF) Total Floorspace The Federal Government owns/operates over 500,000 buildings, including 422,000 housing structures (for the military) and 51,000 nonresidential buildings. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table 1, p. 13; DOE/FEMP, Annual Report to Congress on FEMP, Nov. 2008, Table

53

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

8 8 2003 Average Commercial Building Floorspace, by Principal Building Type and Vintage Building Type 1959 or Prior 1960 to 1989 1990 to 2003 All Education 27.5 26.9 21.7 25.6 Food Sales N.A. N.A. N.A. 5.6 Food Service 6.4 4.4 5.0 5.6 Health Care 18.5 37.1 N.A. 24.5 Inpatient N.A. 243.6 N.A. 238.1 Outpatient N.A. 11.3 11.6 10.4 Lodging 9.9 36.1 36.0 35.9 Retail (Other Than Mall) 6.2 9.3 17.5 9.7 Office 12.4 16.4 14.2 14.8 Public Assembly 13.0 13.8 17.3 14.2 Public Order and Safety N.A. N.A. N.A. 15.4 Religious Worship 8.7 9.6 15.6 10.1 Service 6.1 6.5 6.8 6.5 Warehouse and Storage 19.7 17.2 15.4 16.9 Other N.A. N.A. N.A. 22.0 Vacant N.A. N.A. N.A. 14.1 Source(s): Average Floorspace/Building (thousand SF) EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, June 2006, Table B8, p. 63-69, and Table B9, p. 70-76

54

Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology: Preprint  

SciTech Connect

The test suite represents a set of cases applying the new Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology developed by NREL. (Judkoff et al. 2010a). The NREL team developed the test cases in consultation with the home retrofit industry (BESTEST-EX Working Group 2009), and adjusted the test specifications in accordance with information supplied by a participant with access to large utility bill datasets (Blasnik 2009).

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

2011-11-01T23:59:59.000Z

55

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Characteristics of a Typical Single-Family Home (1) Year Built | Building Equipment Fuel Age (5) Occupants 3 | Space Heating Natural Gas 12 Floorspace | Water Heating Natural Gas 8 Heated Floorspace (SF) 1,934 | Space Cooling 8 Cooled Floorspace (SF) 1,495 | Garage 2-Car | Stories 1 | Appliances Size Age (5) Foundation Concrete Slab | Refrigerator 19 Cubic Feet 8 Total Rooms (2) 6 | Clothes Dryer Bedrooms 3 | Clothes Washer Other Rooms 3 | Range/Oven Full Bathroom 2 | Microwave Oven Half Bathroom 0 | Dishwasher Windows | Color Televisions 3 Area (3) 222 | Ceiling Fans 3 Number (4) 15 | Computer 2 Type Double-Pane | Printer Insulation: Well or Adequate | Note(s): Source(s): 2-Door Top and Bottom Electric Top-Loading Electric 1) This is a weighted-average house that has combined characteristics of the Nation's stock homes. Although the population of homes with

56

Methodology of CO{sub 2} emission evaluation in the life cycle of office building facades  

SciTech Connect

The construction industry is one of the greatest sources of pollution because of the high level of energy consumption during its life cycle. In addition to using energy while constructing a building, several systems also use power while the building is operating, especially the air-conditioning system. Energy consumption for this system is related, among other issues, to external air temperature and the required internal temperature of the building. The facades are elements which present the highest level of ambient heat transfer from the outside to the inside of tall buildings. Thus, the type of facade has an influence on energy consumption during the building life cycle and, consequently, contributes to buildings' CO{sub 2} emissions, because these emissions are directly connected to energy consumption. Therefore, the aim is to help develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. The results, based on the parameters used in this study, show that facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle, followed by brick facades covered with compound aluminum panels or ACM (Aluminum Composite Material), facades using structural glazing and reflective glass and brick facades with plaster coating. On the other hand, the typology of facade that emits less CO{sub 2} is brickwork and mortar because its thermal barrier is better than structural glazing facade and materials used to produce this facade are better than brickwork and ACM. Finally, an uncertainty analysis was conducted to verify the accuracy of the results attained. - Highlights: Black-Right-Pointing-Pointer We develop a methodology for evaluating CO{sub 2} emissions generated during the life cycle of office building facades. Black-Right-Pointing-Pointer This methodology is based in LCA. Black-Right-Pointing-Pointer We use an uncertainty analysis to verify the accuracy of the results attained. Black-Right-Pointing-Pointer We study three typologies of facades. Black-Right-Pointing-Pointer Facades using structural glazing and uncolored glass emit the most CO{sub 2} throughout their life cycle.

Taborianski, Vanessa Montoro; Prado, Racine T.A., E-mail: racine.prado@poli.usp.br

2012-02-15T23:59:59.000Z

57

Development of New Methodologies for Evaluating the Energy Performance of New Commercial Buildings  

E-Print Network (OSTI)

During the past decade, utility companies and others have offered new construction programs to promote energy savings based on energy-efficient design, which maximize design flexibility as well as energy savings. For such programs, the concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if it is compared to energy baselines such as similar buildings, energy codes, and design standards (IPMVP 2003; Torcellini et. 2004). Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. In addition, many important questions remain, for example: how to simulate and calibrate a simulation with measured data, how to develop energy baselines for comparison to the new building, and how to calculate energy savings compared to energy baselines. Therefore, this study developed and demonstrated several methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas, in terms of: 1) Whole-building energy metering with in-situ measurements, 2) Simulation and calibration methods applicable to new buildings, and 3) Building energy baselines and savings assessments. Consequently, three new M&V methods were developed in this study to enhance the generic M&V framework (IPMVP 2003) for new buildings, including: 1) The development of a procedure to synthesize weather-normalized cooling energy use (i.e., Btu cooling production) from a correlation of MCC electricity use when chilled water use is unavailable, 2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including an Eppley PSP and Li-Cor sensor, and 3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new methods were also developed and analyzed in the process of the as-built model simulation and calibration, including: 1) A new percentile analysis to the previous signature method (Wei et al. 1998) for use with a DOE-2 calibration, 2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and 3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation (Duffie and Beckman 1991) on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: 1) Energy Use Index (EUI) comparisons with sub-metered data, 2) New comparisons against Standards 90.1-1989 and 90.1-2001, and 3) A new evaluation of the performance of selected ECDMs. Finally, potential energy savings were also simulated from selected improvements, including minimum supply air flow, undocumented exhaust air, and daylighting. As a result, the calibrated models were determined to have an overall 20.38% CV(RMSE) and a 0.63% MBE for the 2001 model and an overall 23.82% CV(RMSE) and a 0.61% MBE for the 2004 model, which compares well with the previous research (Kreider and Haberl 1994; Bou-Saada 1994; ASHRAE 2002). It was found that the end-use EUIs, such as cooling, heating, and Motor Control Center (MCC) electricity use can begin to provide information about the buildings heating and cooling efficiencies compared to similar buildings in a control groups. It was also determined that the REJ building is 20.79% more efficient than the Standard 90.1-1989 and approximately equal to the Standard 90.1-2001. Using an ECDM-subtraction method, the REJ building was shown to use approximately 67% less energy than the base-case building wi

Song, Suwon

2007-09-25T23:59:59.000Z

58

IFC BIM-Based Methodology for Semi-Automated Building Energy Performance Simulation  

SciTech Connect

Building energy performance (BEP) simulation is still rarely used in building design, commissioning and operations. The process is too costly and too labor intensive, and it takes too long to deliver results. Its quantitative results are not reproducible due to arbitrary decisions and assumptions made in simulation model definition, and can be trusted only under special circumstances. A methodology to semi-automate BEP simulation preparation and execution makes this process much more effective. It incorporates principles of information science and aims to eliminate inappropriate human intervention that results in subjective and arbitrary decisions. This is achieved by automating every part of the BEP modeling and simulation process that can be automated, by relying on data from original sources, and by making any necessary data transformation rule-based and automated. This paper describes the new methodology and its relationship to IFC-based BIM and software interoperability. It identifies five steps that are critical to its implementation, and shows what part of the methodology can be applied today. The paper concludes with a discussion of application to simulation with EnergyPlus, and describes data transformation rules embedded in the new Geometry Simplification Tool (GST).

Bazjanac, Vladimir

2008-07-01T23:59:59.000Z

59

Methodological Framework for Analysis of Buildings-Related Programs with BEAMS, 2008  

Science Conference Proceedings (OSTI)

The U.S. Department of Energys (DOEs) Office of Energy Efficiency and Renewable Energy (EERE) develops official benefits estimates for each of its major programs using its Planning, Analysis, and Evaluation (PAE) Team. PAE conducts an annual integrated modeling and analysis effort to produce estimates of the energy, environmental, and financial benefits expected from EEREs budget request. These estimates are part of EEREs budget request and are also used in the formulation of EEREs performance measures. Two of EEREs major programs are the Building Technologies Program (BT) and the Weatherization and Intergovernmental Program (WIP). Pacific Northwest National Laboratory (PNNL) supports PAE by developing the program characterizations and other market information necessary to provide input to the EERE integrated modeling analysis as part of PAEs Portfolio Decision Support (PDS) effort. Additionally, PNNL also supports BT by providing line-item estimates for the Programs internal use. PNNL uses three modeling approaches to perform these analyses. This report documents the approach and methodology used to estimate future energy, environmental, and financial benefits using one of those methods: the Building Energy Analysis and Modeling System (BEAMS). BEAMS is a PC-based accounting model that was built in Visual Basic by PNNL specifically for estimating the benefits of buildings-related projects. It allows various types of projects to be characterized including whole-building, envelope, lighting, and equipment projects. This document contains an overview section that describes the estimation process and the models used to estimate energy savings. The body of the document describes the algorithms used within the BEAMS software. This document serves both as stand-alone documentation for BEAMS, and also as a supplemental update of a previous document, Methodological Framework for Analysis of Buildings-Related Programs: The GPRA Metrics Effort, (Elliott et al. 2004b). The areas most changed since the publication of that previous document are those discussing the calculation of lighting and HVAC interactive effects (for both lighting and envelope/whole-building projects). This report does not attempt to convey inputs to BEAMS or the methodology of their derivation.

Elliott, Douglas B.; Dirks, James A.; Hostick, Donna J.

2008-09-30T23:59:59.000Z

60

Development of new methodologies for evaluating the energy performance of new commercial buildings  

E-Print Network (OSTI)

The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: 1) The development of a method to synthesize weathernormalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, 2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and 3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: 1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, 2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and 3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: 1) Energy Use Index (EUI) comparisons with sub-metered data, 2) New comparisons against Standards 90.1-1989 and 90.1-2001, and 3) A new evaluation of the performance of selected Energy Conservation Design Measures (ECDMs). Finally, potential energy savings were also simulated from selected improvements, including: minimum supply air flow, undocumented exhaust air, and daylighting.

Song, Suwon

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Methodology for Residential Building Energy Simulations Implemented in the International Code Compliance Calculator (IC3)  

E-Print Network (OSTI)

Since 2001, Texas has been proactive in initiating clean air and energy efficiency in building policies. The Texas Emissions Reduction Plan legislation (SB 5, 77TH Leg., 2001) mandates statewide adoption of energy codes, creates a 5% annual energy savings goal for public facilities in affected counties through 2007 and provides approximately $150 million in cash incentives for clean diesel emissions grants and energy research. The Texas Legislation extended this annual electric reduction goal in public facilities through 2013. Texas was the first state in the nation to create NOx emissions reduction credits for energy efficiency and renewable energy through the State Implementation Plan under the Federal Clean Air Act. This paper presents the methodology for calculating the energy usage from a proposed residential house and the corresponding 2001 International Energy Conservation Code baseline house. This methodology is applied in the International Code Compliance Calculator, which is a publicly accessible web-based energy code compliance software developed by the Energy Systems Laboratory based on the Texas Building Energy Performance Standards. This calculator evaluates and certifies above-code compliance for homes in Texas. It also calculates NOx, SOx and CO2 emissions reductions from the energy savings of the proposed house for the electric utility associated with the user using the data from the Emissions and Generation Resource Integrated Database provided by U.S. Environmental Protection Agency.

Liu, Z.; Mukhopadhyay, J.; Malhotra, M.; Haberl, J.; Gilman, D.; Montgomery, C.; McKelvey, K.; Culp, C.; Yazdani, B.

2008-12-01T23:59:59.000Z

62

The Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Simulation Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology Preprint Ron Judkoff, Ben Polly, and Marcus Bianchi National Renewable Energy Laboratory Joel Neymark J. Neymark & Associates To be presented at the Building Simulation 2011 Conference Sydney, Australia November 14-16, 2011 Conference Paper NREL/CP-5500-51655 November 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

63

1999 Commercial Buildings Characteristics--Energy Sources and End Uses  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Sources and End Uses Energy Sources and End Uses Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Energy Sources and End Uses CBECS collects information that is used to answer questions about the use of energy in the commercial buildings sector. Questions such as: What kind of energy sources are used? What is energy used for? and What kinds of equipment use energy? Energy Sources Nearly all commercial buildings used at least one source of energy for some end use (Figure 1). Electricity was the most commonly used energy source in commercial buildings (94 percent of buildings comprising 98 percent of commercial floorspace). More than half of commercial buildings (57 percent) and two-thirds of commercial floorspace (68 percent) were served by natural gas. Three sources-fuel oil, district heat, and district chilled water-when used, were used more often in larger buildings.

64

Model-Based Methodology for Building Confidence in a Dynamic Measuring System  

E-Print Network (OSTI)

This thesis examines the special case in which a newly developed dynamic measurement system must be characterized when an accepted standard qualification procedure does not yet exist. In order to characterize this type of system, both physical experimentation and computational simulation methods will be used to build trust in this measurement system. This process of establishing credibility will be presented in the form of a proposed methodology. This proposed methodology will utilize verification and validation methods that apply within the simulation community as the foundation for this multi-faceted approach. The methodology will establish the relationships between four key elements: physical experimentation, conceptual modeling, computational simulations, and data processing. The combination of these activities will provide a comprehensive characterization study of the system. In order to illustrate the methodology, a case study was performed on a dynamic force measurement system owned by Sandia National Laboratories. This system was designed to measure the force required to pull a specimen to failure in tension at a user-input velocity. The results of the case study found that there was a significant measurement error occurring as the pull event involved large break loads and high velocities. 100 pull events were recorded using an experimental test assembly. The highest load conditions discovered a force measurement error of over 100%. Using computational simulations, this measurement error was reduced to less than 10%. These simulations were designed to account for the inertial effects that skew the piezoelectric load cells. This thesis displays the raw data and the corrected data for five different pull settings. The simulations designed using the methodology significantly reduced the error in all five pull settings. In addition to the force analysis, the simulations provide insight into the complete system performance. This includes the analysis of the maximum system velocity as well as the analysis of several proposed design changes. The findings suggest that the dynamic measurement system has a maximum velocity of 28 fps, and that this maximum velocity is unaffected by the track length or the mass of the moving carriage.

Reese, Isaac Mark

2013-05-01T23:59:59.000Z

65

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

7 7 Commercial Building Median Lifetimes (Years) Building Type Median (1) 66% Survival (2) 33% Survival (2) Assembly 55 40 75 Education 62 45 86 Food Sales 55 41 74 Food Service 50 35 71 Health Care 55 42 73 Large Office 65 46 92 Mercantile & Service 50 36 69 Small Office 58 41 82 Warehouse 58 41 82 Lodging 53 38 74 Other 60 44 81 Note(s): Source(s): 1) PNNL estimates the median lifetime of commercial buildings is 70-75 years. 2) Number of years after which the building survives. For example, a third of the large office buildings constructed today will survive 92 years later. EIA, Assumptions for the Annual Energy Outlook 2011, July 2011, Table 5.2, p. 40; EIA, Model Documentation Report: Commercial Sector 'Demand Module of the National Energy Modeling System, May 2010, p. 30-35; and PNNL, Memorandum: New Construction in the Annual Energy Outlook 2003, Apr. 24,

66

Buildings Energy Data Book: 3.2 Commercial Sector Characteristics  

Buildings Energy Data Book (EERE)

2 2 Principal Commercial Building Types, as of 2003 (Percent of Total Floorspace) (1) Office 17% 17% 19% Mercantile 16% 14% 18% Retail 6% 9% 5% Enclosed & Strip Malls 10% 4% 13% Education 14% 8% 11% Warehouse and Storage 14% 12% 7% Lodging 7% 3% 7% Service 6% 13% 4% Public Assembly 5% 6% 5% Religious Worship 5% 8% 2% Health Care 4% 3% 8% Inpatient 3% 0% 6% Outpatient 2% 2% 2% Food Sales 2% 5% 5% Food Service 2% 6% 6% Public Order and Safety 2% 1% 2% Other 2% 2% 4% Vacant 4% 4% 1% Total 100% 100% 100% Note(s): Source(s): Total Floorspace Total Buildings Primary Energy Consumption 1) For primary energy intensities by building type, see Table 3.1.13. Total CBECS 2003 commercial building floorspace is 71.7 billion SF. EIA, 2003 Commercial Buildings Energy Consumption Survey: Consumption and Expenditures Tables, Oct. 2006, Table C1A

67

Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development concept stage report  

Science Conference Proceedings (OSTI)

Since 1985, the Pacific Northwest Laboratory (PNL) has managed the Whole-Building Energy Design Targets project for the US Department of Energy (DOE) Office of Building Technologies (formerly the Office of Buildings and Community Systems). The primary focus of the Targets project is to develop a flexible methodology for buildings industry use in setting energy performance guidelines for commercial buildings and for determining compliance with those guidelines. The project is being conducted as a two-phase effort. In Phase 1, Planning, the project team determined the research that was necessary for developing the Targets methodology. In the concept stage of Phase 2, Development, the team sought to define the technical and software development concepts upon which the overall Targets methodology will be based. The concept stage work is documented in four volumes, of which this summary volume is the first. The three other volumes are Volume 2: Technical Concept Development Task Reports, Volume 3: Workshop Summaries, and Volume 4: Software Concept Development Task Reports. 8 refs., 14 figs.

Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA))

1990-09-01T23:59:59.000Z

68

1999 Commercial Buildings Characteristics--Conservation Features and  

U.S. Energy Information Administration (EIA) Indexed Site

Conservation Features and Practices Conservation Features and Practices Topics: Energy Sources and End Uses End-Use Equipment Conservation Features and Practices Conservation Features and Practices The 1999 CBECS collected information about HVAC (heating, ventilation, and air-conditioning) system, building shell, and lighting conservation features and practices plus information on off-hour reduction of end-use equipment. In general, commercial buildings that were larger than average were more likely to have used these conservation features or measures. Detailed tables HVAC Conservation Features and Practices Among HVAC conservation features and practices, commercial buildings owners and managers widely performed maintenance on their HVAC systems (Figure 1). Approximately the same percentage of buildings and floorspace were served by other HVAC conservation features.

69

Methodological Framework for Analysis of Buildings-Related Programs: The GPRA Metrics Effort  

SciTech Connect

The requirements of the Government Performance and Results Act (GPRA) of 1993 mandate the reporting of outcomes expected to result from programs of the Federal government. The U.S. Department of Energys (DOEs) Office of Energy Efficiency and Renewable Energy (EERE) develops official metrics for its 11 major programs using its Office of Planning, Budget Formulation, and Analysis (OPBFA). OPBFA conducts an annual integrated modeling analysis to produce estimates of the energy, environmental, and financial benefits expected from EEREs budget request. Two of EEREs major programs include the Building Technologies Program (BT) and Office of Weatherization and Intergovernmental Program (WIP). Pacific Northwest National Laboratory (PNNL) supports the OPBFA effort by developing the program characterizations and other market information affecting these programs that is necessary to provide input to the EERE integrated modeling analysis. Throughout the report we refer to these programs as buildings-related programs, because the approach is not limited in application to BT or WIP. To adequately support OPBFA in the development of official GPRA metrics, PNNL communicates with the various activities and projects in BT and WIP to determine how best to characterize their activities planned for the upcoming budget request. PNNL then analyzes these projects to determine what the results of the characterizations would imply for energy markets, technology markets, and consumer behavior. This is accomplished by developing nonintegrated estimates of energy, environmental, and financial benefits (i.e., outcomes) of the technologies and practices expected to result from the budget request. These characterizations and nonintegrated modeling results are provided to OPBFA as inputs to the official benefits estimates developed for the Federal Budget. This report documents the approach and methodology used to estimate future energy, environmental, and financial benefits produced by technologies and practices supported by BT and by WIP. However, the approach is general enough for analysis of buildings-related technologies, independent of any specific program. An overview describes the GPRA process and the models used to estimate energy savings. The body of the document describes the algorithms used and the diffusion curve estimates.

Elliott, Douglas B.; Anderson, Dave M.; Belzer, David B.; Cort, Katherine A.; Dirks, James A.; Hostick, Donna J.

2004-06-18T23:59:59.000Z

70

Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development Concept Stage Report  

SciTech Connect

The primary focus of the Whole-Building Energy Design Targets project is to develop a flexible methodology for setting target guidelines with which to assess energy efficiency in commercial building design. The proposed methodology has several innovative features. In this report, the authors document their work to define the software development concepts upon which the overall Targets methodology will be based. Three task reports are included here. Development of the user interface--that critical connection through which the human end-user (architect, engineer, planner, owner) will apply the methodology--is described in Section 2. In Section 3, the use of the software engineering process in Targets model development efforts is described. Section 4 provides details on the data and system integration task, in which interactions between and among all the major components, termed modules, of the Targets model were examined to determine how to put them together to create a methodology that is effective and easy to use. 4 refs., 26 figs.

Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); Hall, J.D. (Deringer Group, Riva, MD (USA)); Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., New York, NY (USA)); McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA)); Alley, P.K. (Pacific Northwest Lab., Richland, WA (USA))

1990-09-01T23:59:59.000Z

71

Development of a methodology for defining whole-building energy design targets for commercial buildings: Phase 2, Development Concept Stage Report  

Science Conference Proceedings (OSTI)

This report documents eight tasks performed as part of the Whole-Building Energy Design Targets project, in which detailed conceptual approaches were produced for each element of the proposed Targets model. The eight task reports together describe the important modules proposed for inclusion in the Targets model: input module, energy module, characteristic development moduel, building cost module, analysis control module, energy cost module, search routines module, and economic analysis module. 16 refs., 16 figs., 5 tabs.

McKay, H.N. (Illuminating Engineering Society of North America, New York, NY (USA)); Deringer, J.J. (American Inst. of Architects, Washington, DC (USA)); Jones, J.W. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA (USA)); Hall, J.D. (Deringer Group, Riva, MD (USA))

1990-09-01T23:59:59.000Z

72

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 5 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. All Principal Buildings Activities Number of Buildings, Total Floorspace, and Total Site and Primary Energy Consumption for All Principal Building Activities, 1995

73

A look at commercial buildings in 1995: Characteristics, energy consumption, and energy expenditures  

SciTech Connect

The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of facilities that would not be considered commercial in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Nearly all energy use in the commercial sector takes place in, or is associated with, the buildings that house these commercial activities. Analysis of the structures, activities, and equipment associated with different types of buildings is the clearest way to evaluate commercial sector energy use. The Commercial Buildings Energy Consumption Survey (CBECS) is a national-level sample survey of commercial buildings and their energy suppliers conducted quadrennially (previously triennially) by the Energy Information Administration (EIA). The target population for the 1995 CBECS consisted of all commercial buildings in the US with more than 1,000 square feet of floorspace. Decision makers, businesses, and other organizations that are concerned with the use of energy--building owners and managers, regulators, legislative bodies and executive agencies at all levels of government, utilities and other energy suppliers--are confronted with a buildings sector that is complex. Data on major characteristics (e.g., type of building, size, year constructed, location) collected from the buildings, along with the amount and types of energy the buildings consume, help answer fundamental questions about the use of energy in commercial buildings.

1998-10-01T23:59:59.000Z

74

Building and occupant characteristics as determinants of residential energy consumption  

Science Conference Proceedings (OSTI)

The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation.

Nieves, L.A.; Nieves, A.L.

1981-10-01T23:59:59.000Z

75

Types of Lighting in Commercial Buildings - Lighting Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

Characteristics of Lighting Types Characteristics of Lighting Types Efficacy Efficacy is the amount of light produced per unit of energy consumed, expressed in lumens per watt (lm/W). Lamps with a higher efficacy value are more energy efficient. Average Rated Life The average rated life of a particular type of lamp is defined by the number of hours when 50 percent of a large sample of that type of lamp has failed. Color Rendering Index (CRI) The CRI is a measurement of a light source's accuracy in rendering different colors when compared to a reference light source. The highest attainable CRI is 100. Lamps with CRIs above 70 are typically used in office and living environments. Correlated Color Temperature (CCT) The CCT is an indicator of the "warmth" or "coolness" of the color

76

Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint  

SciTech Connect

Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

2012-08-01T23:59:59.000Z

77

Equilibrium thermal characteristics of a building integrated photovoltaic tiled roof  

SciTech Connect

Photovoltaic (PV) modules attain high temperatures when exposed to a combination of high radiation levels and elevated ambient temperatures. The temperature rise can be particularly problematic for fully building integrated PV (BIPV) roof tile systems if back ventilation is restricted. PV laminates could suffer yield degradation and accelerated aging in these conditions. This paper presents a laboratory based experimental investigation undertaken to determine the potential for high temperature operation in such a BIPV installation. This is achieved by ascertaining the dependence of the PV roof tile temperature on incident radiation and ambient temperature. A theory based correction was developed to account for the unrealistic sky temperature of the solar simulator used in the experiments. The particular PV roof tiles used are warranted up to an operational temperature of 85 C, anything above this temperature will void the warranty because of potential damage to the integrity of the encapsulation. As a guide for installers, a map of southern Europe has been generated indicating locations where excessive module temperatures might be expected and thus where installation is inadvisable. (author)

Mei, L.; Gottschalg, R.; Loveday, D.L. [Centre for Renewable Energy Systems Technology (CREST), Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom); Infield, D.G. [Institute of Energy and Environment, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Davies, D.; Berry, M. [Solarcentury, 91-94 Lower Marsh Waterloo, London, SE1 7AB (United Kingdom)

2009-10-15T23:59:59.000Z

78

Building and occupant characteristics as determinants of residential energy consumption  

Science Conference Proceedings (OSTI)

The major goals of the research are to gain insight into the probable effects of building energy performance standards on energy consumption; to obtain observations of actual residential energy consumption that could affirm or disaffirm comsumption estimates of the DOE 2.0A simulation model; and to investigate home owner's conservation investments and home purchase decisions. The first chapter covers the investigation of determinants of household energy consumption. The presentation begins with the underlying economic theory and its implications, and continues with a description of the data collection procedures, the formulation of variables, and then of data analysis and findings. In the second chapter the assumptions and limitations of the energy use projections generated by the DOE 2.0A model are discussed. Actual electricity data for the houses are then compared with results of the simulation. The third chapter contains information regarding households' willingness to make energy conserving investments and their ranking of various conservation features. In the final chapter conclusions and recommendations are presented with an emphasis on the policy implications of this study. (MCW)

Nieves, L.A.; Nieves, A.L.

1981-10-01T23:59:59.000Z

79

Methodology for Rating a Building's Overall Performance based on the ASHRAE/CIBSE/USGBC Performance Measurement Protocols for Commercial Buildings  

E-Print Network (OSTI)

This study developed and applied a field test to evaluate the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)/Chartered Institute of Building Services Engineers (CIBSE)/United States Green Building Council (USGBC) Performance Measurement Protocols (PMP) for Commercial Buildings in a case-study office building in central Texas. As the first integrated protocol on building performance measurement, the ASHRAE PMP accomplished its goal of providing the standardized protocols for measuring and comparing the overall performance of a building, including energy, water, thermal comfort, Indoor Air Quality (IAQ), lighting, and acoustics. However, several areas for improvement were identified such as conflicting results from different procedures or benchmarks provided in the ASHRAE PMP; limited guidelines for performing the measurements; lack of detailed modeling techniques, graphical indices, and clear benchmarks; and some practical issues (i.e., high cost requirements and time-intensive procedures). All these observations are listed as the forty issues, including thirteen for energy, five for water, and twenty-two for Indoor Environmental Quality (IEQ). Recommendations were developed for each issue identified. For the selected high-priority issues, twelve new or modified approaches were proposed and then evaluated against the existing procedures in the ASHRAE PMP. Of these twelve new or modified approaches, the following are the most significant developments: a more accurate monthly energy use regression model including occupancy; a monthly water use regression model for a weather-normalized comparison of measured water performance; a method how to use a vertical temperature profile to evaluate room air circulation; a method how to use LCeq LAeq difference as a low-cost alternative to estimate low frequency noise annoyance; a statistical decomposition method of time-varying distribution of indices; and a real-time wireless IEQ monitoring system for the continuous IEQ measurements. The application of the forty recommendations and the twelve new or modified approaches developed in this study to the ASHRAE PMP is expected to improve the applicability of the ASHRAE PMP, which aligns the overall purpose of this study. Finally, this study developed a new single figure-of-merit rating system based on the ASHRAE PMP procedures. The developed rating system is expected to improve the usability of the protocols.

Kim, Hyojin 1981-

2012-12-01T23:59:59.000Z

80

Buildings Energy Data Book: 2.2 Residential Sector Characteristics  

Buildings Energy Data Book (EERE)

1 1 Total Number of Households and Buildings, Floorspace, and Household Size, by Year 1980 80 N.A. 227 2.9 1981 83 N.A. 229 2.8 1982 84 N.A. 232 2.8 1983 85 N.A. 234 2.8 1984 86 N.A. 236 2.7 1985 88 N.A. 238 2.7 1986 89 N.A. 240 2.7 1987 91 N.A. 242 2.7 1988 92 N.A. 244 2.7 1989 93 N.A. 247 2.6 1990 94 N.A. 250 2.6 1991 95 N.A. 253 2.7 1992 96 N.A. 257 2.7 1993 98 N.A. 260 2.7 1994 99 N.A. 263 2.7 1995 100 N.A. 266 2.7 1996 101 N.A. 269 2.7 1997 102 N.A. 273 2.7 1998 104 N.A. 276 2.7 1999 105 N.A. 279 2.7 2000 106 N.A. 282 2.7 2001 107 2% 285 2.7 2002 105 3% 288 2.7 2003 106 5% 290 2.8 2004 107 7% 293 2.7 2005 109 9% 296 2.7 2006 110 11% 299 2.7 2007 110 12% 302 2.7 2008 111 13% 304 2.8 2009 111 13% 307 2.8 2010 114 14% 310 2.7 2011 115 14% 313 2.7 2012 116 15% 316 2.7 2013 117 16% 319 2.7 2014 118 17% 322 2.7 2015 119 18% 326 2.7 2016 120 19% 329 2.7 2017 122 21% 332 2.7 2018 123 22% 335 2.7 2019 125 23% 338 2.7 2020 126 25% 341 2.7 2021 127 26% 345

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Using critical chain project management methodologies to build a production schedule  

E-Print Network (OSTI)

Critical Chain project management methodologies have been used for the last ten years to manage a wide range of projects. These methods, which apply Eli Goldratt's Theory of Constraints, have demonstrated the ability to ...

Poppe, Clayton D. (Clayton Douglas)

2009-01-01T23:59:59.000Z

82

Developing a Methodology for Characterizing the Effects of Building Materials Natural Radiation Background on a Radiation Portal Monitoring System  

E-Print Network (OSTI)

Trafficking of radioactive material, particularly special nuclear material (SNM), has long been a worldwide concern. To interdict this material the US government has installed radiation portal monitors (RPMs) around the globe. Building materials surrounding an RPM can greatly effect the detectors background radiation levels due to Naturally Occurring Radioactive Material (NORM). In some cases this effect is so great that the initial RPM setup had to be rebuilt. This thesis develops a methodology for quick and efficient determination of the specific activity and composition of building materials surrounding a RPM to predict background levels, therefore determining the minimum detectable quantity (MDQ) of material. This methodology builds on previous work by Ryan et al by generating material and source cards for a detailed Monte Carlo N-Particle (MCNP) deck, based on an experimental RPM setup to predict the overall gamma background at a site. Gamma spectra were acquired from samples of building materials and analyzed to determine the specific activity of the samples. A code was developed to estimate the elemental composition of building materials using the gamma transmission of the samples. These results were compared to previous Neutron Activation Analysis (NAA) on the same samples. It was determined that densitometry provided an elemental approximation within 5% of that found through NAA. Using the specific activity and material composition, an MCNP deck was used to predict the gamma background levels in the detectors of a typical RPM. These results were compared against actual measurements at the RPM site, and shown to be within 10% of each other.

Fitzmaurice, Matthew Blake 1988-

2012-12-01T23:59:59.000Z

83

Methodology for the evaluation of natural ventilation in buildings using a reduced-scale air model  

E-Print Network (OSTI)

Commercial office buildings predominantly are designed to be ventilated and cooled using mechanical systems. In temperate climates, passive ventilation and cooling techniques can be utilized to reduce energy consumption ...

Walker, Christine E. (Christine Elaine)

2006-01-01T23:59:59.000Z

84

Characteristics of the Department of Energy's Building Inventory 2005-2010  

Science Conference Proceedings (OSTI)

The Pacific Northwest National Laboratory (PNNL) as part of their on-going support to the Department of Energy's Federal Energy Management Program (FEMP) was asked to analyze special building data for an agency to gain a better understanding of the portfolio characteristics to help better shape implementation of their alternative financing activities. This report provides information for one agency, Department of Energy (DOE), and how those characteristics have changed over time.

Loper, Susan A.; Sandusky, William F.

2012-02-01T23:59:59.000Z

85

Coupling methodology of 1D finite difference and 3D finite volume CFD codes based on the Method of Characteristics  

Science Conference Proceedings (OSTI)

This paper describes the methodology followed to perform a co-simulation between 1D (OpenWAM) and 3D (FLUENT) CFD codes. The Method of Characteristics (MoC) has been chosen to transfer the information between the two domains by properly updating the ... Keywords: 1D modeling, 1D-3D coupling, CFD simulation, Co-simulation, Method of Characteristics, User defined function

J. Galindo; A. Tiseira; P. Fajardo; R. Navarro

2011-10-01T23:59:59.000Z

86

Methodology for Analyzing the Technical Potential for Energy Performance in the U.S. Commercial Buildings Sector with Detailed Energy Modeling: Preprint  

SciTech Connect

This paper summarizes a methodology for developing quantitative answers to the question, ''How low can energy use go within the commercial buildings sector''? The basic process is to take each building in the 1999 CBECS public use data files and create a baseline building energy model for it as if it were being built new in 2005 with code-minimum energy performance.

Griffith, B.; Crawley, D.

2006-11-01T23:59:59.000Z

87

Buildings with Multiple Business and Services: Business Characteristics, Energy-Use Patterns, and Decision Criteria  

Science Conference Proceedings (OSTI)

As the electric industry restructures, providers have an increasing need to understand the energy use and other characteristics of their customers. The multi-use building market, accounting for about 20 percent of commercial electricity and 4 percent of industrial electricity consumed in the U.S., represents a unique marketing challenge to energy providers because of the presence of many individual decision makers. This report is available only to funders of Program 101A or 101.001. Funders may download ...

1998-07-20T23:59:59.000Z

88

Formal Calibration Methodology for CFD Model Development to Support the Operation of Energy Efficient Buildings  

E-Print Network (OSTI)

Computational Fluid Dynamics (CFD) is a robust tool for modeling interactions within and between fluids and solids. CFD can help understand and predict phenomena that are difficult to test experimentally leading to cleaner, healthier, and better controlled internal environments. In this research a CFD model of the internal environment of an office space will be developed. The CFD model will then be calibrated using real data taken from a well-positioned wireless sensor network and weather station. The work focuses on developing systematically calibrated CFD models for controlled environments that include clean rooms, health environments, pharmaceutical storage rooms and information and communication technology locations, utilizing wireless sensor networks. The calibrated CFD model will be used to optimize the positions of the physical sensors for the control of energy efficient internal environments by building operators. This could result in significant energy and economic savings and lead to more accurately controlled internal environments.

Hajdukiewicz, M.; Keane, M.; O'Flynn, B.; O'Grady, W.

2010-01-01T23:59:59.000Z

89

A Framework for Re-Purposing Textbooks Using Learning Outcomes/Methodology, Device Characteristics, Representation and User Dimensions  

E-Print Network (OSTI)

As digital books begin to take center stage in our lives the importance of the old printed book still lingers on. A large number of the books printed on the paper media still have much to offer to readers for various reasons (e.g. less famous authors of prose, old books with interesting and original problems). To help individuals in digitizing and reusing their physical and digital books we decided to build a framework that will help people convert physical and digital books to other formats taking into consideration four dimensions: learning outcomes or methodology, target device characteristics, representation and the user. Our focus is on textbooks in history. Consequently, we do not consider some problems like math formulas. This work has the potential of helping people deal with the huge backlog of physical books that can become invisible as the digital books take off. To show that our platform can help in repurposing books for student study activities, we have developed some transformations. The transformations we have implemented shows that the framework can be used to add study aids to books, optimize books for a target platform (e-reader device and application combination), and supplement available features of a target platform and maintain consistency across various audio/visual devices and e-book formats. One of the important steps in the thesis was determining the study activities that we would support as examples in our implementation. We have chosen to implement support for the survey, question, read and review activities of the SQ3R reading technique. We have also implemented support for additional activities like search. The chosen activities and the support implemented for these activities are examples and are not meant to be complete. Another important decision point was to decide which target platforms (e-reader device and application combination) we need to support. We decided to choose a few representatives and leave the rest as future work. The target devices were selected so as to have a variety of device capabilities like screen size, display technology (e.g. e-ink, VGA), and user interaction styles (e.g. touch-based, button based) combined with application capabilities (e.g. audio only, visual only, audio visual, grayscale, and color). The devices selected were: iPad, iPod, iPhone, Kindle 3rd generation, Kindle Fire, Sony PRS and a laptop. The e-reader applications are the ones that are available for these devices.

Ciftci, Tolga

2013-05-01T23:59:59.000Z

90

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 9 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. Complete sets of RSE tables (What is an RSE?) are also available in PDF format 1999 Summary Tables for all principal building activities Summary Tables For All Principal Building Activities Number of Buildings (thousand) Floorspace (million square feet) Square Feet per Building (thousand) Median Age of Building (years)

91

Experiences on the Implementation of the 'Energy Balance' Methodology as a Data Quality Control Tool: Application to the Building Energy Consumption of a Large University Campus  

E-Print Network (OSTI)

As the energy costs have been increasing the more energy efficient measures have been promoted in the buildings sector, the reliability of energy consumption data has been attracting significant attention. For example, the reliability of the determination of energy savings depends on that of the energy consumption data, which has to be verified before and after any efficiency measure is applied. From other perspective, verifying energy use data on a regular basis would allow the engineers to identify and assess commissioning opportunities confidently. This paper presents the application of an innovative data screening methodology as a data quality control tool for energy consumption data. The methodology has been applied to a large university campus where the monthly energy consumption, of approximately 100 buildings, must be verified. One of the main responsibilities of the Energy Management Office of the university is to provide monthly utility consumption and cost information to accounting for utility billing of individual buildings. The methodology, which is based on the first law of thermodynamics, or energy conservation, has proved to be an effective data quality screening method for verification of metering sensors when heating, cooling and electricity consumption are separately metered in a building. The methodology is anticipated to be suitable for automated application. In some cases, the methodology could also help to rehabilitate energy use data.

Baltazar-Cervantes, J. C.; Sakurai, Y.; Masuda, H.; Feinauer, D.; Liu, J.; Ji, J.; Claridge, D. E.; Deng, S.; Bruner, H.

2007-01-01T23:59:59.000Z

92

Early Lifecycle Work: Influence of Individual Characteristics,Methodological Constraints, and Interface Constraints  

Science Conference Proceedings (OSTI)

This paper reports the results of an experiment undertaken for the CADPRO (Constraints And the Decision PROject) project. Subjects with varied experience produced data flow diagrams (DFDs) using a DFD tool generated by CASEMaker, a meta-CASE ... Keywords: CASE tools, human-computer interface, methodological support

Andrew Brooks; Fredrik Utbult; Catherine Mulligan; Ross Jeffery

2000-11-01T23:59:59.000Z

93

A methodology to assess the influence of local wind conditions and building orientation on the convective heat transfer at building surfaces  

Science Conference Proceedings (OSTI)

Information on the statistical mean convective heat transfer coefficient (CHTC"S"M) for a building surface, which represents the temporally-averaged CHTC over a long time span (e.g. the lifetime of the building), could be useful for example for the optimisation ... Keywords: Building facade, Building orientation, CFD, Convective heat transfer coefficient, Low-Reynolds number modelling, RANS, Wind climate

Thijs Defraeye; Jan Carmeliet

2010-12-01T23:59:59.000Z

94

Design methodologies for energy conservation and passive heating of buildings utilizing improved building components. Progress report No. 3, January 15--April 15, 1978  

DOE Green Energy (OSTI)

The recently completed MIT Solar Building 5 demonstrates direct gain solar space heating through the use of new architectural finish materials. February 1978 measurements are summarized. Results indicate the building performed nearly as expected.

Habraken, N.J.; Johnson, T.E.

1978-04-01T23:59:59.000Z

95

Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) advances building energy performance through the development and promotion of efficient, affordable, and high impact technologies, systems, and practices. The...

96

Design methodologies for energy conservation and passive heating of buildings utilizing improved building components. Progress report, 1 August 1977--31 October 1977  

DOE Green Energy (OSTI)

Construction of the experimental building demonstrating light weight ceiling thermal storage tiles, transparent insulation assemblies, and specialized louvers is well underway. Difficulties in acquiring materials have put the building two weeks behind schedule. A superior heat mirror product is being used in place of the original proposed transparent insulation for the south windows. Negotiations are underway to acquire superior logging devices at no additional cost for monitoring the building.

Habraken, J.; Johnson, T.E.

1977-10-01T23:59:59.000Z

97

verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids  

SciTech Connect

The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the codes numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratorys Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above- listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

Azmy, Yousry; Wang, Yaqi

2013-12-20T23:59:59.000Z

98

Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics  

Science Conference Proceedings (OSTI)

In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur No.2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found.

Mueller, C. J.; Cannella, W. J.; Bruno, T. J.; Bunting, B.; Dettman, H. D.; Franz, J. A.; Huber, M. L.; Natarajan, M.; Pitz, W. J.; Ratcliff, M. A.; Wright, K.

2012-06-21T23:59:59.000Z

99

Evaluation of the Heating & Cooling Energy Demand of a Case Residential Building by Comparing The National Calculation Methodology of Turkey and EnergyPlus through Thermal Capacity Calculations  

E-Print Network (OSTI)

In all around the world, because of the rapid population growth and exhausting energy sources over time, energy efficiency and energy conservation gradually come into prominence. Hence, in 2002, a directive (EPBD) which obligates reducing energy usage and energy performance in buildings was published by European Union. In this scope, Turkey has developed a National Building Energy Performance Calculation Methodology, BepTr, which is based on simple hourly method in ISO EN 13790 Umbrella Document to determine the energy performance of buildings. The aim of the paper is to display the energy demand differences resultant from only the envelopes thermal capacity between simplified method which is projected in ISO EN 13790 Umbrella Document and EnergyPlus which is based on full dynamic simulation method.

Atamaca, Merve; Kalaycioglu, Ece; Yilmaz, Zerrin

2011-10-01T23:59:59.000Z

100

Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics  

Science Conference Proceedings (OSTI)

In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the stateof- the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two wellcharacterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found. This paper is dedicated to the memory of our friend and colleague Jim Franz. Funding for this research was provided by the U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies, and by the Coordinating Research Council (CRC) and the companies that employ the CRC members. The study was conducted under the auspices of CRC. The authors thank U.S. DOE program manager Kevin Stork for supporting the participation of the U.S. national laboratories in this study.

Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.; Bunting, Bruce G.; Dettman, Heather; Franz, James A.; Huber, Marcia L.; Natarajan, Mani; Pitz, William J.; Ratcliff, Matthew A.; Wright, Ken

2012-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Education Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Education Education Characteristics by Activity... Education Education buildings are buildings used for academic or technical classroom instruction, such as elementary, middle, or high schools, and classroom buildings on college or university campuses. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Education Buildings... Seventy percent of education buildings were part of a multibuilding campus. Education buildings in the South and West were smaller, on average, than those in the Northeast and Midwest. Almost two-thirds of education buildings were government owned, and of these, over three-fourths were owned by a local government. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

102

Disaggregating Cooling Energy Use of Commercial Buildings Into Sensible and Latent Fractions From Whole-Building Monitored Data: Methodology and Advantages  

E-Print Network (OSTI)

In hot and humid climates, where summers are both warm and humid, the latent cooling can be a significant portion of the total cooling load (as much as 40%). Typically the monitored data only includes whole-building heating and cooling energy use and total electric consumption. A method to disaggregate the latent cooling energy use from the measured whole-building heating and cooling energy use would be of particular interest. This paper presents such a method and discusses its benefits. It is shown that the overall heat transfer coefficient including the conduction, infiltration, and ventilation effects of a building, can be evaluated. Subsequently this enables the disaggregation of the total cooling energy use into sensible and latent cooling fractions. The benefits of such a method include: (i) better understanding of the sensible and latent fractions in the total cooling energy use of a building, and (ii) better regression models for energy analysis. In addition to the whole-building cooling and heating energy use and the ambient conditions, the required system parameters include: (i) cold deck supply temperature, (ii) hot deck supply temperature, (iii) mixed air temperature or ventilation rate, (iv) internal gains, and (v) total mass flow rate of the dual duct constant volume system. If continuous measurements of the system parameters are not available, then one-time measurements may be used to disaggregate the latent cooling energy use.

Katipamula, S.; Reddy, T. A.; Claridge, D. E.

1992-05-01T23:59:59.000Z

103

Sensitivity analysis of window characteristics and their interactions on thermal performance in residential buildings  

E-Print Network (OSTI)

This thesis studies the effects of different window characteristics such as area, conductance and shading on annual energy performance in residential buildings. A single parameter analysis is used to quantify the effect on annual energy due to a change in an individual parameter. However misconceptions about these effects (without regard to the values of the other parameters of the window) lead to predictions that overestimate or underestimate actual savings by neglecting interactions that exist between the parameters. The effect of interactions of two parameter changes is determined in this study using a two parameter analysis technique. This technique uses the difference between changes in annual energy of a parameter at different values of an associated parameter to determine the importance of the interaction effect between the parameters. This interaction effect is used as a measure to determine the important two parameter changes in different orientations for six different climates. The interactions were shown to have significant effects on predicted energy reductions in the six climates studied.

George, Julie N

1996-01-01T23:59:59.000Z

104

Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database  

SciTech Connect

Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stock is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.

Loper, Susan A.; Sandusky, William F.

2010-12-31T23:59:59.000Z

105

Attributes of the Federal Energy Management Program's Federal Site Building Characteristics Database  

SciTech Connect

Typically, the Federal building stock is referred to as a group of about one-half million buildings throughout the United States. Additional information beyond this level is generally limited to distribution of that total by agency and maybe distribution of the total by state. However, additional characterization of the Federal building stock is required as the Federal sector seeks ways to implement efficiency projects to reduce energy and water use intensity as mandated by legislation and Executive Order. Using a Federal facility database that was assembled for use in a geographic information system tool, additional characterization of the Federal building stock is provided including information regarding the geographical distribution of sites, building counts and percentage of total by agency, distribution of sites and building totals by agency, distribution of building count and floor space by Federal building type classification by agency, and rank ordering of sites, buildings, and floor space by state. A case study is provided regarding how the building stock has changed for the Department of Energy from 2000 through 2008.

Loper, Susan A.; Sandusky, William F.

2010-12-31T23:59:59.000Z

106

Dynamic characteristics and wind-induced responses of a super tall building.  

E-Print Network (OSTI)

??This thesis describes a combined experimental and numerical investigation of wind effects on a super tall building, Di Wang Tower (325m high with 79 floors) (more)

Liu, Pengfei (???)

2007-01-01T23:59:59.000Z

107

Mercantile Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Mercantile Mercantile Characteristics by Activity... Mercantile Mercantile buildings are those used for the sale and display of goods other than food (buildings used for the sales of food are classified as food sales). This category includes enclosed malls and strip shopping centers. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Mercantile Buildings... Almost half of all mercantile buildings were less than 5,000 square feet. Roughly two-thirds of mercantile buildings housed only one establishment. Another 20 percent housed between two and five establishments, and the remaining 12 percent housed six or more establishments. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

108

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings characteristics tables-number of buildings and amount of floorspace for major building characteristics. Energy consumption and expenditures tables-energy consumption and expenditures for major energy sources. Energy end-use tables-total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Guide to the 1992 CBECS Detailed Tables Released: Nov 1999 Column Categories Row Categories The first set of detailed tables for the 1992 CBECS, Tables A1 through A70,

109

Energy and cost analysis of commercial building shell characteristics and operating schedules  

SciTech Connect

Eight prototypical commercial buildings were considered, and estimates of the energy savings realized from various conservation measures are presented. For each of four building types (hospital, office, educational, and retail) two building designs representative of both pre- and post-embargo construction were analyzed. The ongoing program at Oak Ridge National Laboratory aims to develop an engineering-economic model to forecast annual energy use in the US commercial sector. This particular study was undertaken to define relationships among energy-conservation measures, energy savings, and capital costs. Buildings were modeled and analyzed using NECAP (NASA Energy-Cost Analysis Program) based on hourly weather data in Kansas City (selected as typical of the entire country). Energy-conservation measures considered include night and weekend thermostat setback, reduction in ventilation, reduction in lighting, window alterations (shading, dual panes, and size reduction), economizer cycle, reset of supply temperature based on zone demand, and improvements in equipment efficiencies. Results indicate energy savings as a function of the capital cost of each energy-conservation measure for each of the eight buildings considered.

Johnson, W.S.; Pierce, F.E.

1980-04-01T23:59:59.000Z

110

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

111

Other Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Other Other Characteristics by Activity... Other Other buildings are those that do not fit into any of the specifically named categories. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Other Buildings... Other buildings include airplane hangars; laboratories; buildings that are industrial or agricultural with some retail space; buildings having several different commercial activities that, together, comprise 50 percent or more of the floorspace, but whose largest single activity is agricultural, industrial/manufacturing, or residential; and all other miscellaneous buildings that do not fit into any other CBECS category. Since these activities are so diverse, the data are probably less meaningful than for other activities; they are provided here to complete

112

Energy Information Administration (EIA)- Commercial Buildings Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2003 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous 2003 CBECS Survey Data 2003 | 1999 | 1995 | 1992 | Previous Building Characteristics Consumption & Expenditures Microdata Methodology Building Characteristics In the 2003 CBECS, the survey procedures for strip shopping centers and enclosed malls ("mall buildings") were changed from those used in previous surveys, and, as a result, mall buildings are now excluded from most of the 2003 CBECS tables. Therefore, some data in the majority of the tables are not directly comparable with previous CBECS tables, all of which included mall buildings. Some numbers in the 2003 tables will be slightly lower than earlier surveys since the 2003 figures do not include mall buildings. See "Change in Data Collection Procedures for Malls" for a more detailed

113

Federal Buildings Supplemental Survey - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings 1993 Federal Buildings Supplemental Survey Overview Full Report Tables Energy usage and energy costs, by building characteristics, for federally-owned buildings in...

114

Methodology to Develop and Test an Easy-to-use Procedure for the Preliminary Selection of High-performance Systems for Office Buildings in Hot and Humid Climates  

E-Print Network (OSTI)

A procedure has been developed for the preliminary selection of high-performance systems for office buildings in hot and humid climates. High-performance building systems and components were surveyed for buildings in the U.S., which were applicable for office buildings in hot and humid climates. This research developed a calibrated DOE-2.1e simulation model of a prototypical large office building. In addition, a Simplified Geometry DOE-2.1e (SGDOE-2.1e) model, was also developed, which used a simplified geometry to demonstrate the use of a proposed easy-to-use tool. The calibrated DOE-2.1e simulation model and the SGDOE-2.1e were compared and showed a good match with each. The SGDOE-2.1e model was then further modified based on the ASHRAE Standard 90.1-1999 commercial building energy code. A code-compliant (ASHRAE Standard 90.1-1999) SGDOE-2.1e simulation model was then used as a baseline for the evaluation of the high-performance measures. A total of 14 high-performance measures were implemented including the energy savings, while the comfort level was maintained based on the ASHRAE comfort zone. In addition to the 14 high-performance measures, solar thermal and solar PV system analysis were integrated with the SGDOE-2.1e simulation model to further reduce the annual energy use. Finally, specifications of the proposed easy-to-use simulation tool were developed. This tool includes options to choose systems from the 14 high-performance measures and solar systems. The proposed easy-to-use systems selection tool can be used for new building practitioners and existing building owners as well to evaluate the performance of their new buildings compared to the ASHRAE Standard 90.1-1999 code-compliant building, and to assess the feasibility of implementing high-performance measures to their existing buildings in terms of energy and cost savings.

Cho, Sool Yeon

2009-08-01T23:59:59.000Z

115

Methodology to Develop and Test an Easy-To-Use Procedure for the Preliminary Selection of High-Performance Systems for Office Buildings in Hot and Humid Climates  

E-Print Network (OSTI)

A procedure has been developed for the preliminary selection of high-performance systems for office buildings in hot and humid climates. High-performance building systems and components were surveyed for buildings in the U.S., which were applicable for office buildings in hot and humid climates. This research developed a calibrated DOE-2.1e simulation model of a prototypical large office building. In addition, a Simplified Geometry DOE-2.1e (SGDOE-2.1e) model, was also developed, which used a simplified geometry to demonstrate the use of a proposed easy-to-use tool. The calibrated DOE-2.1e simulation model and the SGDOE-2.1e were compared and showed a good match with each. The SGDOE-2.1e model was then further modified based on the ASHRAE Standard 90.1-1999 commercial building energy code. A code-compliant (ASHRAE Standard 90.1-1999) SGDOE-2.1e simulation model was then used as a baseline for the evaluation of the high-performance measures. A total of 14 high-performance measures iv were implemented including the energy savings, while the comfort level was maintained based on the ASHRAE comfort zone. In addition to the 14 high-performance measures, solar thermal and solar PV system analysis were integrated with the SGDOE-2.1e simulation model to further reduce the annual energy use. Finally, specifications of the proposed easy-to-use simulation tool were developed. This tool includes options to choose systems from the 14 high-performance measures and solar systems. The proposed easy-to-use systems selection tool can be used for new building practitioners and existing building owners as well to evaluate the performance of their new buildings compared to the ASHRAE Standard 90.1-1999 code-compliant building, and to assess the feasibility of implementing high-performance measures to their existing buildings in terms of energy and cost savings.

Cho, S.

2009-08-01T23:59:59.000Z

116

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Assembly Assembly Characteristics by Activity... Public Assembly Public assembly buildings are those in which people gather for social or recreational activities, whether in private or non-private meeting halls. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Assembly Buildings... Most public assembly buildings were not large convention centers or entertainment arenas; about two-fifths fell into the smallest size category. About one-fifth of public assembly buildings were government-owned, mostly by local governments; examples of these types of public assembly buildings are libraries and community recreational facilities. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

117

Food Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Food Service Food service buildings are those used for preparation and sale of food and beverages for consumption. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Food Service Buildings... An overwhelming majority (72 percent) of food service buildings were small buildings (1,001 to 5,000 square feet). Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Food Service Buildings by Predominant Building Size Categories Figure showing number of food service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Food Service Buildings

118

Trends in Commercial Buildings--Overview  

Gasoline and Diesel Fuel Update (EIA)

Home > Trends in Commercial Buildings > Commercial Buildings Energy Consumption Survey Survey Methodology Sampling Error, Standard Errors, and Relative Standard Errors The...

119

Religious Worship Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Religious Worship Religious Worship Characteristics by Activity... Religious Worship Religious worship buildings are those in which people gather for religious activities. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Religious Worship Buildings... 93 percent of religious worship buildings were less than 25,000 square feet. The oldest religious worship buildings were found in the Northeast, where the median age was over two and half times older than those in South, where religious worship buildings were the newest. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Top Number of Religious Worship Buildings by Predominant Building Size Categories Figure showing number of worship buildings by size. If you need assistance viewing this page, please call 202-586-8800.

120

Beyond Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

without compromising future generations SUSTAINABLE INL Buildings Beyond Buildings Sustainability Beyond Buildings INL is taking sustainability efforts "beyond buildings" by...

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

REDUCING ENERGY USE IN FLORIDA BUILDINGS  

E-Print Network (OSTI)

The 2007 Florida Building Code (ICC, 2008) requires building designers and architects to achieve a minimum energy efficiency rating for commercial buildings located throughout Florida. Although the Florida Building Code is strict in the minimum requirements for new construction, several aspects of building construction can be further improved through careful thought and design. This report outlines several energy saving features that can be used to ensure that new buildings meet a new target goal of 85% energy use compared to the 2007 energy code in order to achieve Governor Crists executive order to improve the energy code by 15%. To determine if a target goal of 85% building energy use is attainable, a computer simulation study was performed to determine the energy saving features available which are, in most cases, stricter than the current Florida Building Code. The energy savings features include improvements to building envelop, fenestration, lighting and equipment, and HVAC efficiency. The impacts of reducing outside air requirements and employing solar water heating were also investigated. The purpose of the energy saving features described in this document is intended to provide a simple, prescriptive method for reducing energy consumption using the methodology outlined in ASHRAE Standard 90.1 (ASHRAE, 2007). There are two difficulties in trying to achieve savings in non-residential structures. First, there is significant energy use caused by internal loads for people and equipment and it is difficult to use the energy code to achieve savings in this area relative to a baseline. Secondly, the ASHRAE methodology uses some of the same features that are proposed for the new building, so it may be difficult to claim savings for some strategies that will produce savings such as improved ventilation controls, reduced window area, or reduced plug loads simply because the methodology applies those features to the comparison reference building. Several measures to improve the building envelope characteristics were simulated. Simply using the selected envelope measures resulted in savings of less than 10% for all building types. However, if such measures are combined with aggressive lighting reductions and improved efficiency HVAC equipment and controls, a target savings of 15% is easily attainable.

Raustad, R.; Basarkar, M.; Vieira, R.

2008-12-01T23:59:59.000Z

122

methodology | OpenEI  

Open Energy Info (EERE)

methodology methodology Dataset Summary Description (Abstract): The main object of the SUNY task for SWERA is to prepare high resolution global irradiance (GHI) and direct irradiance (DNI) data sets for the countries of Cuba, El Salvador, Guatemala, Honduras and Nicaragua.Much of our initial effort focused on building up the satellite data tx_metadatatool, and in strengthening and validating the models capable of converting that data into ground surface irradiances. Three research articles, acknowledging all or partial funding from UNEP & SWERA have been published on this subject. Source SUNY Albany Date Released July 31st, 2003 (11 years ago) Date Updated August 29th, 2003 (11 years ago) Keywords Cuba methodology solar SWERA UNEP Data application/pdf icon Download Report (pdf, 2.6 MiB)

123

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis of solution characteristics using a two-body system  

E-Print Network (OSTI)

of innovative integrated HVAC systems in buildings, infor building envelope and HVAC systems simu- lation - WillIntegrated simulation for HVAC performance prediction: State

Trcka, Marija

2010-01-01T23:59:59.000Z

124

1999 CBECS Principal Building Activities  

U.S. Energy Information Administration (EIA) Indexed Site

Data Reports > 2003 Building Characteristics Overview Data Reports > 2003 Building Characteristics Overview A Look at Building Activities in the 1999 Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey, or CBECS, covers a wide variety of building types—office buildings, shopping malls, hospitals, churches, and fire stations, to name just a few. Some of these buildings might not traditionally be considered "commercial," but the CBECS includes all buildings that are not residential, agricultural, or industrial. For an overview of definitions and examples of the CBECS building types, see Description of Building Types. Compare Activities by... Number of Buildings Building size Employees Building Age Energy Conservation Number of Computers Electricity Generation Capability

125

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

4.1 Federal Buildings Energy Consumption 4.1 Federal Buildings Energy Consumption 4.2 Federal Buildings and Facilities Characteristics 4.3 Federal Buildings and Facilities Expenditures 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables This chapter provides information on Federal building energy consumption, characteristics, and expenditures, as well as information on legislation affecting said consumption. The main points from this chapter are summarized below: In FY 2007, Federal buildings accounted for 2.2% of all building energy consumption and 0.9% of total U.S. energy consumption.

126

Electrical Energy Conservation and Peak Demand Reduction Potential for Buildings in Texas: Preliminary Results  

E-Print Network (OSTI)

This paper presents preliminary results of a study of electrical energy conservation and peak demand reduction potential for the building sector in Texas. Starting from 1980 building stocks and energy use characteristics, technical conservation potentials were calculated relative to frozen energy efficiency stock growth over the 1980-2000 period. The application of conservation supply methodology to Texas utilities is outlined, and then the energy use and peak demand savings, and their associated costs, are calculated using a prototypical building technique. Representative results are presented, for residential and commercial building types, as conservation supply curves for several end use categories; complete results of the study are presented in Ref. 1.

Hunn, B. D.; Baughman, M. L.; Silver, S. C.; Rosenfeld, A. H.; Akbari, H.

1985-01-01T23:59:59.000Z

127

Automatic computation for optimum height planning of apartment buildings to improve solar access  

SciTech Connect

The objective of this study is to suggest a mathematical model and an optimal algorithm for determining the height of apartment buildings to satisfy the solar rights of survey buildings or survey housing units. The objective is also to develop an automatic computation model for the optimum height of apartment buildings and then to clarify the performance and expected effects. To accomplish the objective of this study, the following procedures were followed: (1) The necessity of the height planning of obstruction buildings to satisfy the solar rights of survey buildings or survey housing units is demonstrated by analyzing through a literature review the recent trend of disputes related to solar rights and to examining the social requirements in terms of solar rights. In addition, the necessity of the automatic computation system for height planning of apartment buildings is demonstrated and a suitable analysis method for this system is chosen by investigating the characteristics of analysis methods for solar rights assessment. (2) A case study on the process of height planning of apartment buildings will be briefly described and the problems occurring in this process will then be examined carefully. (3) To develop an automatic computation model for height planning of apartment buildings, geometrical elements forming apartment buildings are defined by analyzing the geometrical characteristics of apartment buildings. In addition, design factors and regulations required in height planning of apartment buildings are investigated. Based on this knowledge, the methodology and mathematical algorithm to adjust the height of apartment buildings by automatic computation are suggested and probable problems and the ways to resolve these problems are discussed. Finally, the methodology and algorithm for the optimization are suggested. (4) Based on the suggested methodology and mathematical algorithm, the automatic computation model for optimum height of apartment buildings is developed and the developed system is verified through the application of some cases. The effects of the suggested model are then demonstrated quantitatively and qualitatively. (author)

Seong, Yoon-Bok [Department of Architecture, Graduate School, College of Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Yong-Yee [Department of Architecture and Building Engineering, Kunsan National University, Kunsan (Korea, Republic of); Seok, Ho-Tae [ArchiPro Construction, 1520 S. Alameda Street, Compton, CA 90221 (United States); Choi, Jeong-Min [School of Architecture, Changwon National University, Changwon (Korea, Republic of); Yeo, Myoung-Souk; Kim, Kwang-Woo [Department of Architecture and Architectural Engineering, Seoul National University, Seoul (Korea, Republic of)

2011-01-15T23:59:59.000Z

128

DOE Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

129

Methodology for building an intelligent tutoring system  

Science Conference Proceedings (OSTI)

Over the past 6 years we have been developing a computer program to teach medical diagnosis. Our research synthesizes and extends results in artlficlal intelligence (Al), medicine, and cognitive psychology. This paper describes the progression of the ...

William J. Clancey

1981-10-01T23:59:59.000Z

130

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

and Services Users can view and download selected pages, sections, or entire reports, search for information, download data and analysis applications, and find out about new...

131

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

132

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

133

Health Care Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Health Care Health Care Characteristics by Activity... Health Care Health care buildings are those used as diagnostic and treatment facilities for both inpatient and outpatient care. Doctor's and dentist's offices are considered health care if they use any type of diagnostic medical equipment and office if they do not. Skilled nursing or other residential care buildings are categorized as lodging. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Health Care Buildings... Health care buildings in the South tended to be smaller and were more numerous than those in other regions of the country. Buildings on health care complexes tended to be newer than those not on multibuilding facilities. The median age for buildings on health care complexes was 9.5 years, compared to 29.5 years for health care buildings not on a multibuilding facility.

134

A Buildings Module for the Stochastic Energy Deployment System  

E-Print Network (OSTI)

F.W. Dodge 1991: Building Stock Database Methodology andEnd-Use Flow Maps for the Buildings Sector, D.B. Belzer,N ATIONAL L ABORATORY A Buildings Module for the Stochastic

Marnay, Chris

2008-01-01T23:59:59.000Z

135

Building Technologies Office: Commercial Building Energy Asset...  

NLE Websites -- All DOE Office Websites (Extended Search)

TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings...

136

Methodology for modeling geothermal district heating for residential markets  

DOE Green Energy (OSTI)

Methodology is presented for geothermal district heat service and for evaluating the economic market potential for such nonelectrical utilization of the geothermal resource. It is based upon accurate determination of the heating demand and its spatial and temporal profile in each potential market, determination of the cost to provide such service, and correlation of markets and resource sites. Two components of the model are discussed in this report. the residential demand submodel and data base, which includes building characteristics and population distribution on a census tract or minor civil division grid for the nation, projects heating demand densities, and temporal profiles along with the building service modifications and costs. The service submodel and data base designs and costs a subtransmission and distribution network, and it evaluates operating losses at design conditions.

Karkheck, J.; Tessmer, R.G. Jr.

1978-08-01T23:59:59.000Z

137

Building Energy Codes News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes News Building Energy Codes News News Category: National Policy DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Posted: Tuesday, August 6, 2013 On August 6, DOE published an RFI on its methodology for assessing code compliance into the Federal Register. Based on feedback received from the individual state compliance pilot studies in 2011-2012, the RFI seeks input on DOE's methodology and fundamental assumptions from the general public. Read the full article... Source: U.S. Department of Energy Building Energy Codes Program Energy 2030 Report Calls for Stricter Energy Building Codes Posted: Tuesday, February 12, 2013 The Alliance Commission on National Energy Efficiency Policy aims to double US energy productivity by 2030, and one of its many ways to achieve that

138

Buildings and energy in the 1980`s  

SciTech Connect

Many energy programs were put into place during the 1970`s and 1980`s to lessen the dependence upon foreign oil supplies and to improve how all forms of energy are used. A significant percent of total energy consumption occurred in the residential and commercial sectors. This report concentrates on the physical makeup of the residential and commercial buildings sectors and their use of energy, and examines changes that occurred during the 1980`s. Chapter 1 presents a summary of major findings. The following three chapters focus on different aspects of the overarching theme of buildings and energy in the 1980`s. Chapter 2 discusses major characteristics of residential and commercial buildings. Chapter 3 considers the major energy sources and end uses in terms of number of buildings and floorspace. Chapter 4 focuses on energy consumption and expenditures. Chapters 2, 3, and 4 contain tables at the end of each chapter that summarize data from detailed tables that are available separately on diskette or via EIA`s Electronic Publishing System (EPUB). Following the body of the report, appendices and a glossary provide additional information on the methodologies used in this report and on the residential and commercial building consumption surveys on which this report is based. 62 figs., 30 tabs.

1995-06-01T23:59:59.000Z

139

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > Overview of Commercial Buildings Print Report: PDF Overview of Commercial Buildings, 2003 Introduction | Trends | Major Characteristics Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1)

140

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Commercial Building Ventilation and Indoor Environmental Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Infiltration modeling guidelines for commercial building energy analysis  

SciTech Connect

This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistent with building location and weather data.

Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

2009-09-30T23:59:59.000Z

142

Federal Buildings Supplemental Survey -- Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Survey > Overview Survey > Overview Overview Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Divider Line Highlights on Federal Buildings The Federal Buildings Supplemental Survey 1993 provides building-level energy-related characteristics for a special sample of commercial buildings owned by the Government. Extensive analysis of the data was not conducted because this report represents the 881 responding buildings (buildings for which interviews were completed) and cannot be used to generalize about Federal buildings in each region. Crosstabulations of the data from the 881 buildings are provided in the Detailed Tables section.

143

Building Technologies Office: Building America: Bringing Building  

NLE Websites -- All DOE Office Websites (Extended Search)

America: Bringing Building Innovations to Market America: Bringing Building Innovations to Market Building America logo The U.S. Department of Energy's (DOE) Building America program has been a source of innovations in residential building energy performance, durability, quality, affordability, and comfort for more than 15 years. This world-class research program partners with industry (including many of the top U.S. home builders) to bring cutting-edge innovations and resources to market. For example, the Solution Center provides expert building science information for building professionals looking to gain a competitive advantage by delivering high performance homes. At Building America meetings, researchers and industry partners can gather to generate new ideas for improving energy efficiency of homes. And, Building America research teams and DOE national laboratories offer the building industry specialized expertise and new insights from the latest research projects.

144

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

145

Energy End-Use Intensities in Commercial Buildings1992 -- Overview/End-Use  

U.S. Energy Information Administration (EIA) Indexed Site

> Overview > Overview 1992 Energy End-Use Intensities Overview Energy Consumption by End Use, 1992 Figure on Energy Consumption By End Use, 1992 Source: Energy Information Administration, Office of Energy Markets and End Use, Forms EIA-871A through F of the 1992 Commercial Buildings Energy Consumption Survey. End-Use Estimation Methodology The end-use estimates had two main sources: (1) survey data collected by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The CBECS provided data on building characteristics and total energy consumption (i.e., for all end uses) for a national sample of commercial buildings. Using data collected by the CBECS, the FEDS engineering modules were used to produce estimates of energy consumption by end use. The FEDS engineering estimates were then statistically adjusted to match the CBECS total energy consumption.

146

NFI Forecasts Methodology NFI Forecasts Methodology  

E-Print Network (OSTI)

NFI Forecasts Methodology NFI Forecasts Methodology Overview Issued by: National Forest Inventory.brewer@forestry.gsi.gov.uk Website: www.forestry.gov.uk/inventory 1 NFI Softwood Forecasts Methodology Overview #12;NFI Forecasts ........................................................................................................4 Rationale behind the new approach to the GB Private sector production forecast ........4 Volume

147

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Current and Past EditionsGlossaryPopular TablesQuery Tools Contact Us Search What Is the Buildings Energy Data Book? The Data Book includes statistics on residential and commercial building energy consumption. Data tables contain statistics related to construction, building technologies, energy consumption, and building characteristics. The Building Technologies Program within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy developed this resource to provide a current and accurate set of comprehensive buildings- and energy-related data. The Data Book is an evolving document and is updated periodically. Each data table is presented in HTML, Microsoft Excel, and PDF formats. Download Excel Viewer Download Adobe Reader

148

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

The Energy Index for Commercial Buildings The Energy Index for Commercial Buildings Welcome to the Energy Index for Commercial Buildings. Data for this tool comes from the Energy Information Administration's (EIA) 2003 Commercial Buildings Energy Consumption Survey (CBECS). Select categories from the CBECS micro data allow users to search on common building characteristics that impact energy use. Users may select multiple criteria, however if the resulting sample size is too small, the data will be unreliable. If nothing is selected results yield national totals for commercial buildings. For more information on CBECS, visit EIA's website. Location Census Division View Map New England West North Central West South Central Middle Atlantic South Atlantic Mountain East North Central East South Central Pacific

149

Building Technologies Office: Commercial Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Commercial Building Activities on Google Bookmark Building Technologies Office: Commercial Building Activities on Delicious...

150

Building Technologies Office: Buildings Performance Database  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Buildings Performance Database on Google Bookmark Building Technologies Office: Buildings Performance Database on Delicious...

151

Building Energy Software Tools Directory: TRACE Load 700  

NLE Websites -- All DOE Office Websites (Extended Search)

Load 700 Load 700 TRACE Load 700 logo. Use TRACE Load 700 software - the building and load design modules of TRACE 700, Trane Air Conditioning Economics - to evaluate the effect of building orientation, size, shape, and mass based on hourly weather data and the resulting heat-transfer characteristics of air and moisture. To assure calculation integrity, the program uses algorithms recommended by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Choose from eight different ASHRAE cooling and heating methodologies, including the Exact Transfer Function. The program encourages "what if" analyses, allowing the user to enter construction details in any order and then easily change the resulting building model as the design progresses. Multiple project views and "drag-and-drop"

152

Around Buildings  

E-Print Network (OSTI)

Around Buildings W h y startw i t h buildings and w o r k o u t wa r d ? For one, buildings are difficult t o a v o i d these

Treib, Marc

1987-01-01T23:59:59.000Z

153

Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings  

SciTech Connect

This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

Polly, B.; Kruis, N.; Roberts, D.

2011-07-01T23:59:59.000Z

154

Assessing and Improving the Accuracy of Energy Analysis for Residential Buildings  

SciTech Connect

This report describes the National Renewable Energy Laboratory's (NREL) methodology to assess and improve the accuracy of whole-building energy analysis for residential buildings.

Polly, B.; Kruis, N.; Roberts, D.

2011-07-01T23:59:59.000Z

155

BUILDING INSPECTION Building, Infrastructure, Transportation  

E-Print Network (OSTI)

BUILDING INSPECTION Building, Infrastructure, Transportation City of Redwood City 1017 Middlefield Sacramento, Ca 95814-5514 Re: Green Building Ordinance and the Building Energy Efficiency Standards Per of Redwood City enforce the current Title 24 Building Energy Efficiency Standards as part

156

Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings  

E-Print Network (OSTI)

Buildings Energy Consumption Survey (CBECS) and Nationalnational survey of energy-related building characteristics, and energy consumption,

Kiliccote, Sila; Piette, Mary Ann; Hansen, David

2006-01-01T23:59:59.000Z

157

Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior glass windows of office tower Commercial Buildings Commercial building systems research explores different ways to integrate the efforts of research in windows, lighting,...

158

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

159

EERE: Buildings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Commercial Building Initiative works with commercial builders and owners to reduce energy use and optimize building performance, comfort, and savings. Solid-State Lighting...

160

Development of an energy-use estimation methodology for the revised Navy Manual MO-303  

SciTech Connect

The U.S. Navy commissioned Pacific Northwest Laboratory (PNL) to revise and/or update the Navy Utilities Targets Manual, NAVFAC MO-303 (U.S. Navy 1972b). The purpose of the project was to produce a current, applicable, and easy-to-use version of the manual for use by energy and facility engineers and staff at all Navy Public Works Centers (PWCs), Public Works Departments (PWDs), Engineering Field Divisions (EFDs), and other related organizations. The revision of the MO-303 manual involved developing a methodology for estimating energy consumption in buildings and ships. This methodology can account for, and equitably allocate, energy consumption within Navy installations. The analyses used to develop this methodology included developing end-use intensities (EUIs) from a vast collection of Navy base metering and billing data. A statistical analysis of the metering data, weather data, and building energy-use characteristics was used to develop appropriate EUI values for use at all Navy bases. A complete Navy base energy reconciliation process was also created for use in allocating all known energy consumption. Initial attempts to use total Navy base consumption values did not produce usable results. A parallel effort using individual building consumption data provided an estimating method that incorporated weather effects. This method produced a set of building EUI values and weather adjustments for use in estimating building energy use. A method of reconciling total site energy consumption was developed based on a {open_quotes}zero-sum{close_quotes} principle. This method provides a way to account for all energy use and apportion part or all of it to buildings and other energy uses when actual consumption is not known. The entire text of the manual was also revised to present a more easily read understood and usable document.

Richman, E.E.; Keller, J.M.; Wood, A.G.; Dittmer, A.L.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

3.1 Commercial Sector Energy Consumption 3.1 Commercial Sector Energy Consumption 3.2 Commercial Sector Characteristics 3.3 Commercial Sector Expenditures 3.4 Commercial Environmental Emissions 3.5 Commercial Builders and Construction 3.6 Office Building Markets and Companies 3.7 Retail Markets and Companies 3.8 Hospitals and Medical Facilities 3.9 Educational Facilities 3.10 Hotels/Motels 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 3 focuses on energy use in the commercial sector. Section 3.1 covers primary and site energy consumption in commercial buildings, as well as the delivered energy intensities of various building types and end uses. Section 3.2 provides data on various characteristics of the commercial sector, including floorspace, building types, ownership, and lifetimes. Section 3.3 provides data on commercial building expenditures, including energy prices. Section 3.4 covers environmental emissions from the commercial sector. Section 3.5 briefly addresses commercial building construction and retrofits. Sections 3.6, 3.7, 3.8, 3.9, and 3.10 provide details on select commercial buildings types, specifically office and retail space, medical facilities, educational facilities, and hotels and motels.

162

ENERGY-EFFICIENT NEW COMMERCIAL BUILDINGS IN THE NORTHWEST REGION: A COMPILATION OF MEASURED DATA  

E-Print Network (OSTI)

buildings' energy use and operating characteristics, in which we compare these buildings to the estimates for new "efficient" buildings and other benchmarks.

Piette, M.A.

2010-01-01T23:59:59.000Z

163

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

Buildings Energy Consumption Survey (CBECS) and NationalBuilding Energy Consumption Survey (CBECS) and 2) Nationalnational survey of energy-related building characteristics, energy consumption,

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

164

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

building sector by at least 50%. Photo of people walking around a new home. Visitors Tour Solar Decathlon Homes Featuring the Latest in Energy Efficient Building Technology...

165

Buildings Performance Database Helps Building Owners, Investors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Database Helps Building Owners, Investors Evaluate Energy Efficient Buildings Buildings Performance Database June 2013 A new database of building features and...

166

Building Technologies Office: Buildings NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

NewsDetail on Twitter Bookmark Building Technologies Office: Buildings NewsDetail on Google Bookmark Building Technologies Office: Buildings NewsDetail on Delicious Rank Building...

167

Offshore software maintenance methodology  

Science Conference Proceedings (OSTI)

Keywords: maintenance methodology, offshore maintenance, remote maintenance, software economics, software maintenance

M. Pavan Kumar; V. Sita Rama Das; N. Netaji

1996-05-01T23:59:59.000Z

168

Development of an automated methodology for calibration of simplified air-side HVAC system models and estimation of potential savings from retrofit/commissioning measures  

E-Print Network (OSTI)

This dissertation provides one methodology to determine potential energy savings of buildings with limited information. This methodology is based upon the simplified energy analysis procedure of HVAC systems and the control of the comfort conditions. Numerically, the algorithm is a tailored exhaustive search over all the independent variables that are commonly controlled for a specific type of HVAC system. The potential energy savings methodology has been applied in several buildings that have been retrofitted and/or commissioned previously. Results from the determined savings for the Zachry building at Texas A&M after being commissioned show a close agreement to the calculated potential energy savings (about 85%). Differences are mainly attributed to the use of simplified models. Due to the restriction of limited information about the building characteristics and operational control, the potential energy savings method requires the determination of parameters that characterize its thermal performance. Thus, a calibrated building is needed. A general procedure has been developed to carry out automated calibration of building energy use simulations. The methodology has been tested successfully on building simulations based on the simplified energy analysis procedure. The automated calibration is the minimization of the RMSE of the energy use over daily conditions. The minimization procedure is fulfilled with a non-canonical optimization algorithm, the Simulated Annealing, which mimics the Statistical Thermodynamic performance of the annealing process. That is to say, starting at a specified temperature the algorithm searches variable-space states that are steadier, while heuristically, by the Boltzmann distribution, the local minima is avoided. The process is repeated at a new lower temperature that is determined by a specific schedule until the global minimum is found. This methodology was applied to the most common air-handler units producing excellent results for ideal cases or for samples modified with a 1% white noise.

Baltazar Cervantes, Juan Carlos

2006-12-01T23:59:59.000Z

169

Table 2.10 Commercial Buildings Energy Consumption and Expenditure ...  

U.S. Energy Information Administration (EIA)

Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003: Energy Source and Year: Building Characteristics

170

Development | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Printable Version Development Commercial Residential Adoption Compliance Regulations Resource Center Development The U.S. Department of Energy (DOE) supports and participates in the model building energy code development processes administered by the ASHRAE and the International Code Council (ICC). DOE activities include developing and submitting code change proposals, conducting analysis of building energy efficiency and cost savings, and formulating underlying evaluation methodologies. Through participation in model energy code development for both commercial and residential buildings, DOE strives to make cost-effective, energy efficient upgrades to current model codes. DOE also establishes energy efficiency standards for federal buildings and manufactured housing. Further information on this process is defined under

171

Burnup Credit Methodology  

Science Conference Proceedings (OSTI)

This report describes a practical methodology for actinide-only and fission product burnup credit in concert with a methodology to validate the isotopic and reactivity calculations. The methodology supports initial enrichments up to 5.0 wt 235U and burnup beyond 50 gigawatt-days per metric ton of uranium (GWd/MTU). The validation methodologies are all based upon standard methodologies, including extensions beyond traditional radiochemistry assays (RCAs) for isotopic concentrations and critical experiment...

2010-07-09T23:59:59.000Z

172

Public Order and Safety Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Order and Safety Order and Safety Characteristics by Activity... Public Order and Safety Public order buildings are those used for the preservation of law and order or public safety. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Public Order and Safety Buildings... Volunteer fire stations tend not to be government owned, which probably explains why 33 percent of public order and safety buildings were not owned by Federal, state, or local governments. Only 7 percent of all public order and safety buildings were constructed in the 1990's. The Northeast Census region had a high concentration of public order and safety buildings—43 percent of these buildings are in the Northeast (while the Northeast region contained only 9 percent of all commercial buildings).

173

2007 CBECS Large Hospital Building FAQs  

Gasoline and Diesel Fuel Update (EIA)

FAQs Main Report | Methodology | FAQ | FAQs Main Report | Methodology | FAQ | List of Tables CBECS 2007 - Release date: August 17, 2012 How were the data collected for this study? These data were collected with the 2007 Commercial Building Energy Consumption Survey (CBECS). See the 2007 CBECS Large Hospital Building Methodology Report for details. Why are you publishing estimates only for large hospitals and not the rest of the commercial building population? A majority of the 2007 CBECS buildings were sampled from a frame that used a less expensive experimental method to update the 2003 frame for new construction. After careful analysis, EIA determined that the buildings sampled from this experimental frame were not representative of the commercial building population and therefore the 2007 CBECS sample as a

174

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 8. Primary Space-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",4645,3982,1258,1999,282,63 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,699,955,171,"Q" "5,001 to 10,000 ..............",889,782,233,409,58,"Q" "10,001 to 25,000 .............",738,659,211,372,32,"Q" "25,001 to 50,000 .............",241,225,63,140,8,9

175

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 6. Space Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",4645,3982,1766,2165,360,65,372,113 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,2100,888,1013,196,"Q",243,72 "5,001 to 10,000 ..............",889,782,349,450,86,"Q",72,"Q" "10,001 to 25,000 .............",738,659,311,409,46,18,38,"Q"

176

Buildings*","Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" 1. Water-Heating Energy Sources, Number of Buildings for Non-Mall Buildings, 2003" ,"Number of Buildings (thousand)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",4645,3472,1910,1445,94,27,128 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2552,1715,1020,617,41,"N",66 "5,001 to 10,000 ..............",889,725,386,307,"Q","Q",27 "10,001 to 25,000 .............",738,607,301,285,16,"Q",27

177

Overview of Commercial Buildings, 2003 - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Full Report Full Report Energy Information Administration > Commercial Buildings Energy Consumption Survey > Overview of Commercial Buildings Overview of Commercial Buildings, 2003 Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: ● total nearly 4.9 million buildings ● comprise more than 71.6 billion square feet of floorspace ● consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) ●

178

Vacant Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

of 275 thousand cubic feet per building, 29.9 cubic feet per square foot, at an average cost of 475 per thousand cubic feet. Energy Consumption in Vacant Buildings by Energy...

179

Building America  

SciTech Connect

IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

Brad Oberg

2010-12-31T23:59:59.000Z

180

The object as a vessel for vitality : a design methodology  

E-Print Network (OSTI)

"To Build, form blocks, like a ladder into the sky, into the Earth,to bind the elements, Water and Fire". Like Wittgenstein's this is an attempt to define a personal methodology, which when documented and left behind might ...

Schwarz, Allan David

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Proposed Methodology for LEED Baseline Refrigeration Modeling (Presentation)  

SciTech Connect

This PowerPoint presentation summarizes a proposed methodology for LEED baseline refrigeration modeling. The presentation discusses why refrigeration modeling is important, the inputs of energy models, resources, reference building model cases, baseline model highlights, example savings calculations and results.

Deru, M.

2011-02-01T23:59:59.000Z

182

Prototype Buildings  

Science Conference Proceedings (OSTI)

... The SDC D buildings, designed for Seattle, Washington, used special moment frames (SMFs) with reduced beam section (RBS) connections. ...

2013-02-08T23:59:59.000Z

183

Buildings Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en EnergyPlus Boosts Building Efficiency with Help from Autodesk http://energy.gov/eere/articles/energyplus-boosts-building-efficiency-help-autodesk building-efficiency-help-autodesk" class="title-link">EnergyPlus Boosts Building Efficiency with Help from Autodesk

184

Building Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Science The "Enclosure" Joseph Lstiburek, Ph.D., P.Eng, ASHRAE Fellow www.buildingscience.com * Control heat flow * Control airflow * Control water vapor flow * Control rain * Control ground water * Control light and solar radiation * Control noise and vibrations * Control contaminants, environmental hazards and odors * Control insects, rodents and vermin * Control fire * Provide strength and rigidity * Be durable * Be aesthetically pleasing * Be economical Building Science Corporation Joseph Lstiburek 2 Water Control Layer Air Control Layer Vapor Control Layer Thermal Control Layer Building Science Corporation Joseph Lstiburek 3 Building Science Corporation Joseph Lstiburek 4 Building Science Corporation Joseph Lstiburek 5 Building Science Corporation

185

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Building Residential Building Activities to someone by E-mail Share Building Technologies Office: Residential Building Activities on Facebook Tweet about Building Technologies Office: Residential Building Activities on Twitter Bookmark Building Technologies Office: Residential Building Activities on Google Bookmark Building Technologies Office: Residential Building Activities on Delicious Rank Building Technologies Office: Residential Building Activities on Digg Find More places to share Building Technologies Office: Residential Building Activities on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals

186

Better Buildings Neighborhood Program: Better Buildings Neighborhood  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Neighborhood Program Search Better Buildings Neighborhood Program Search Search Help Better Buildings Neighborhood Program HOME ABOUT BETTER BUILDINGS PARTNERS INNOVATIONS RUN A PROGRAM TOOLS & RESOURCES NEWS EERE » Building Technologies Office » Better Buildings Neighborhood Program Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Better Buildings Neighborhood Program to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Neighborhood Program on Delicious

187

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes Building Energy Codes Printable Version Share this resource Send a link to Building Technologies Office: Advancing Building Energy Codes to someone by E-mail Share Building Technologies Office: Advancing Building Energy Codes on Facebook Tweet about Building Technologies Office: Advancing Building Energy Codes on Twitter Bookmark Building Technologies Office: Advancing Building Energy Codes on Google Bookmark Building Technologies Office: Advancing Building Energy Codes on Delicious Rank Building Technologies Office: Advancing Building Energy Codes on Digg Find More places to share Building Technologies Office: Advancing Building Energy Codes on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat.

188

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America Building America Meetings to someone by E-mail Share Building Technologies Office: Building America Meetings on Facebook Tweet about Building Technologies Office: Building America Meetings on Twitter Bookmark Building Technologies Office: Building America Meetings on Google Bookmark Building Technologies Office: Building America Meetings on Delicious Rank Building Technologies Office: Building America Meetings on Digg Find More places to share Building Technologies Office: Building America Meetings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR

189

Cranfield University Building 41 (Stafford Cripps Building)  

E-Print Network (OSTI)

Cranfield University Building 41 (Stafford Cripps Building) Building 41, formally known as the Stafford Cripps Building, has been transformed into a new Learning and Teaching Facility. Proposed ground

190

Better Buildings Neighborhood Program: Better Buildings Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Residential Network to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network on Facebook Tweet about Better Buildings...

191

Building Technologies Office: Better Buildings Challenge  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Building Technologies Office: Better Buildings Challenge on Google Bookmark Building Technologies Office: Better Buildings Challenge on Delicious Rank...

192

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Building Energy Optimization Software to someone by E-mail Share Building Technologies Office: Building Energy Optimization Software on Facebook Tweet about Building Technologies Office: Building Energy Optimization Software on Twitter Bookmark Building Technologies Office: Building Energy Optimization Software on Google Bookmark Building Technologies Office: Building Energy Optimization Software on Delicious Rank Building Technologies Office: Building Energy Optimization Software on Digg Find More places to share Building Technologies Office: Building Energy Optimization Software on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

193

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

194

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

195

A knowledge level software engineering methodology for agent oriented programming  

Science Conference Proceedings (OSTI)

Our goal in this paper is to introduce and motivate a methodology, called \\emph{Tropos}, for building agent oriented software systems. Tropos is based on two key ideas. First, the notion of agent and all the related mentalistic notions (for instance: ... Keywords: agent-based software engineering, design methodologies

Paolo Bresciani; Anna Perini; Paolo Giorgini; Fausto Giunchiglia; John Mylopoulos

2001-05-01T23:59:59.000Z

196

Energy Efficiency Indicators Methodology Booklet  

SciTech Connect

This Methodology Booklet provides a comprehensive review and methodology guiding principles for constructing energy efficiency indicators, with illustrative examples of application to individual countries. It reviews work done by international agencies and national government in constructing meaningful energy efficiency indicators that help policy makers to assess changes in energy efficiency over time. Building on past OECD experience and best practices, and the knowledge of these countries' institutions, relevant sources of information to construct an energy indicator database are identified. A framework based on levels of hierarchy of indicators -- spanning from aggregate, macro level to disaggregated end-use level metrics -- is presented to help shape the understanding of assessing energy efficiency. In each sector of activity: industry, commercial, residential, agriculture and transport, indicators are presented and recommendations to distinguish the different factors affecting energy use are highlighted. The methodology booklet addresses specifically issues that are relevant to developing indicators where activity is a major factor driving energy demand. A companion spreadsheet tool is available upon request.

Sathaye, Jayant; Price, Lynn; McNeil, Michael; de la rue du Can, Stephane

2010-05-01T23:59:59.000Z

197

Analysis of Building Envelope Construction in 2003 CBECS  

SciTech Connect

The purpose of this analysis is to determine "typical" building envelope characteristics for buildings built after 1980. We address three envelope components in this paper - roofs, walls, and window area. These typical building envelope characteristics were used in the development of DOEs Reference Buildings .

Winiarski, David W.; Halverson, Mark A.; Jiang, Wei

2007-06-01T23:59:59.000Z

198

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

199

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

200

Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Since they comprised 18 percent of commercial floorspace, this means that their total energy intensity was just slightly above average. Office buildings predominantly used...

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

News | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

News News A variety of resources and news from BECP, states, and other news sources are available for anyone interested in learning more about building energy codes. This includes newsletters, articles, links and more. To receive BECP News and other updates from the Building Energy Codes Program via email, join our mailing list. Featured Codes News DOE Activities and Methodology for Assessing Compliance With Building Energy Codes RFI Mayors Urge Cities to Strengthen Energy Code AZ Legislature Preserves Local Control of Building Energy Efficiency Codes Washington State Home Builders Lead the Nation in Energy Code Compliance Mississippi Invests in Future Growth With Adoption of Best-in-Class Energy Efficiency Legislation Energy 2030 Report Calls for Stricter Energy Building Codes

202

Better Buildings Neighborhood Program: Better Buildings Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Partners to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Partners on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Partners on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Partners on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Partners on AddThis.com... Better Buildings Residential Network Progress Stories Interviews Videos Events Quick Links to Partner Information AL | AZ | CA | CO | CT FL | GA | IL | IN | LA ME | MD | MA | MI | MO NE | NV | NH | NJ | NY

203

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

204

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

205

DOE Challenge Home Label Methodology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2012 1 October 2012 1 Label Methodology DOE Challenge Home Label Methodology October 2012 DOE Challenge Home October 2012 2 Label Methodology Contents Background ............................................................................................................................................... 3 Methodology ............................................................................................................................................. 5 Comfort/Quiet .......................................................................................................................................... 5 Healthy Living ........................................................................................................................................... 7

206

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

207

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

208

Better Buildings Neighborhood Program: Better Buildings Residential  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Better Buildings Residential Network-Current Members to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Facebook Tweet about Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Twitter Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Google Bookmark Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Delicious Rank Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on Digg Find More places to share Better Buildings Neighborhood Program: Better Buildings Residential Network-Current Members on AddThis.com...

209

Building Technologies Office: About Residential Building Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

About Residential About Residential Building Programs to someone by E-mail Share Building Technologies Office: About Residential Building Programs on Facebook Tweet about Building Technologies Office: About Residential Building Programs on Twitter Bookmark Building Technologies Office: About Residential Building Programs on Google Bookmark Building Technologies Office: About Residential Building Programs on Delicious Rank Building Technologies Office: About Residential Building Programs on Digg Find More places to share Building Technologies Office: About Residential Building Programs on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat.

210

Building Technologies Office: Bookmark Notice  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Commercial Buildings Printable Version...

211

Building Technologies Office: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Contacts on Twitter Bookmark Building Technologies Office: Contacts on Google Bookmark Building Technologies Office: Contacts on Delicious Rank Building...

212

Building Technologies Office: Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webmaster on Twitter Bookmark Building Technologies Office: Webmaster on Google Bookmark Building Technologies Office: Webmaster on Delicious Rank Building...

213

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... high rise buildings; building collapse; disasters; fire ... adhesive strength; building codes; cohesive ... materials; thermal conductivity; thermal insulation ...

214

Building America Building Science Education Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Building America Building Science Education Roadmap April 2013 Contents Introduction ................................................................................................................................ 3 Background ................................................................................................................................. 4 Summit Participants .................................................................................................................... 5 Key Results .................................................................................................................................. 6 Problem ...................................................................................................................................... 7

215

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Energy Efficiency Meeting The U.S. Department of Energy (DOE) Building America program held the Residential Buildings Energy Efficiency Meeting in Denver, Colorado, on...

216

Building Technologies Office: Residential Buildings Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Meeting to someone by E-mail Share Building Technologies Office: Residential Buildings Energy Efficiency Meeting on Facebook Tweet about Building Technologies...

217

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

218

Building debris  

E-Print Network (OSTI)

This thesis relates architectural practices to intelligent use of resources and the reuse of derelict spaces. The initial investigation of rammed earth as a building material is followed by site-specific operations at the ...

Dahmen, Joseph (Joseph F. D.)

2006-01-01T23:59:59.000Z

219

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

220

Technical Support Document: Development of the Advanced Energy Design Guide for Small Office Buildings  

Science Conference Proceedings (OSTI)

This Technical Support Document (TSD) describes the process and methodology for the development of the Advanced Energy Design Guide for Small Office Buildings (AEDG-SO), a design guidance document intended to provide recommendations for achieving 30% energy savings in small office buildings over levels contained in ANSI/ASHRAE/IESNA Standard 90.1-1999, Energy Standard for Buildings Except Low-Rise Residential Buildings. The AEDG-SO is the first in a series of guides being developed by a partnership of organizations, including the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE), the American Institute of Architects (AIA), the Illuminating Engineering Society of North America (IESNA), the New Buildings Institute (NBI), and the U.S. Department of Energy (DOE). Each of the guides in the AEDG series will provide recommendations and user-friendly design assistance to designers, developers and owners of small commercial buildings that will encourage steady progress towards net-zero energy buildings. The guides will provide prescriptive recommendation packages that are capable of reaching the energy savings target for each climate zone in order to ease the burden of the design and construction of energy-efficient small commercial buildings The AEDG-SO was developed by an ASHRAE Special Project committee (SP-102) made up of representatives of each of the partner organizations in eight months. This TSD describes the charge given to the committee in developing the office guide and outlines the schedule of the development effort. The project committee developed two prototype office buildings (5,000 ft2 frame building and 20,000 ft2 two-story mass building) to represent the class of small office buildings and performed an energy simulation scoping study to determine the preliminary levels of efficiency necessary to meet the energy savings target. The simulation approach used by the project committee is documented in this TSD along with the characteristics of the prototype buildings. The prototype buildings were simulated in the same climate zones used by the prevailing energy codes and standards to evaluate energy savings. Prescriptive packages of recommendations presented in the guide by climate zone include enhanced envelope technologies, lighting and day lighting technologies and HVAC and SWH technologies. The report also documents the modeling assumptions used in the simulations for both the baseline and advanced buildings. Final efficiency recommendations for each climate zone are included, along with the results of the energy simulations indicating an average energy savings over all buildings and climates of approximately 38%.

Jarnagin, Ronald E.; Liu, Bing; Winiarski, David W.; McBride, Merle F.; Suharli, L.; Walden, D.

2006-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Federal Buildings Supplemental Survey 1993  

SciTech Connect

The Energy Information Administration (EIA) of the US Department of Energy (DOE) is mandated by Congress to be the agency that collects, analyzes, and disseminates impartial, comprehensive data about energy including the volume consumed, its customers, and the purposes for which it is used. The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE`s Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP`s specifications; therefore, these data do not statistically represent all Federal buildings in the country. The purpose of the FBSS was threefold: (1) to understand the characteristics of Federal buildings and their energy use; (2) to provide a baseline in these three Federal regions to measure future energy use in Federal buildings as required in EPACT; and (3) to compare building characteristics and energy use with the data collected in the CBECS.

NONE

1995-11-01T23:59:59.000Z

222

FCT Systems Analysis: Analysis Methodologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Methodologies to Analysis Methodologies to someone by E-mail Share FCT Systems Analysis: Analysis Methodologies on Facebook Tweet about FCT Systems Analysis: Analysis Methodologies on Twitter Bookmark FCT Systems Analysis: Analysis Methodologies on Google Bookmark FCT Systems Analysis: Analysis Methodologies on Delicious Rank FCT Systems Analysis: Analysis Methodologies on Digg Find More places to share FCT Systems Analysis: Analysis Methodologies on AddThis.com... Home Analysis Methodologies Resource Analysis Technological Feasibility & Cost Analysis Environmental Analysis Delivery Analysis Infrastructure Development & Financial Analysis Energy Market Analysis DOE H2A Analysis Scenario Analysis Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

223

Ventilation, temperature, and HVAC characteristics in small and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California Title Ventilation, temperature, and HVAC characteristics in small and...

224

Building Energy Software Tools Directory: SBEM  

NLE Websites -- All DOE Office Websites (Extended Search)

SBEM SBEM SBEM screen Simplified tool which provides an analysis of a building's energy consumption primarily for the purposes of assessing compliance with Part L (England & Wales), Section 6 (Scotland) and Part F (Northern Ireland) of Building Regulations and eventually for building performance certification EPBD in UK. SBEM (Simplified Building Energy Model) calculates monthly energy use and carbon dioxide emissions of a building given a description of the building’s geometry, construction, use, and HVAC and lighting equipment. It was originally based on the Dutch methodology NEN 2916:1998 (Energy Performance of Non-Residential Buildings) and has since been modified to comply with the emerging CEN Standards. SBEM makes use of standard sets of data for different activity areas and calls on databases

225

Virtual building environments (VBE) - Applying information modeling to buildings  

SciTech Connect

A Virtual Building Environment (VBE) is a ''place'' where building industry project staffs can get help in creating Building Information Models (BIM) and in the use of virtual buildings. It consists of a group of industry software that is operated by industry experts who are also experts in the use of that software. The purpose of a VBE is to facilitate expert use of appropriate software applications in conjunction with each other to efficiently support multidisciplinary work. This paper defines BIM and virtual buildings, and describes VBE objectives, set-up and characteristics of operation. It informs about the VBE Initiative and the benefits from a couple of early VBE projects.

Bazjanac, Vladimir

2004-06-21T23:59:59.000Z

226

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Measured Performance of Building Integrated Photovoltaic Panels. Round 2. Measured Performance of Building Integrated Photovoltaic Panels. ...

227

Energy Efficiency Indicators Methodology Booklet  

NLE Websites -- All DOE Office Websites (Extended Search)

Indicators Methodology Booklet Title Energy Efficiency Indicators Methodology Booklet Publication Type Report LBNL Report Number LBNL-3702E Year of Publication 2010 Authors...

228

Building Technologies Office: Building America Research Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools to someone by E-mail Tools to someone by E-mail Share Building Technologies Office: Building America Research Tools on Facebook Tweet about Building Technologies Office: Building America Research Tools on Twitter Bookmark Building Technologies Office: Building America Research Tools on Google Bookmark Building Technologies Office: Building America Research Tools on Delicious Rank Building Technologies Office: Building America Research Tools on Digg Find More places to share Building Technologies Office: Building America Research Tools on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score

229

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

230

Building Technologies Office: Home Energy Score Calculation Methodolog...  

NLE Websites -- All DOE Office Websites (Extended Search)

translate into points on the scale in each of more than 240 climate regions by viewing Home Energy Score-Energy Usage Points. See also: Research and Background Publications...

231

Building Technologies Office: Home Energy Score Calculation Methodolog...  

NLE Websites -- All DOE Office Websites (Extended Search)

levels translate into points on the scale in each of more than 240 climate regions by viewing Home Energy Score-Energy Usage Points. See also: Research and Background Publications...

232

Residential Energy and Cost Analysis Methodology | Building Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

types. National energy savings are reported, in addition to economic metrics by state and climate zone. In considering cost-effectiveness, longer term energy savings are balanced...

233

Building Energy Data Exchange Specification (BEDES) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Building Energy Data Exchange Specification Commercial Buildings » Building Energy Data Exchange Specification (BEDES) Building Energy Data Exchange Specification (BEDES) The Building Energy Data Exchange Specification (BEDES, pronounced "beads" or /bi:ds/) is designed to support analysis of the measured energy performance of commercial, multifamily, and residential buildings, by providing a common data format, definitions, and an exchange protocol for building characteristics, efficiency measures, and energy use. Challenge One of the primary challenges to expanding the building energy efficiency retrofit market is the lack of empirical data on the energy performance and physical and operational characteristics of commercial, multifamily, and residential buildings. This makes it difficult for building-level

234

Resource assessment methodologies and applications  

Science Conference Proceedings (OSTI)

Resource assessment refers to the estimation and evaluation of mineral materials in the ground, both discovered and undiscovered. In such as an assessment, attention is centered on materials in such form, concentration, and location that they might be extractable under foreseeable economic and technological conditions. In practical terms, there is no such thing as an all-purpose resource assessment. Diverse groups of people interested in such assessments, be they mineral exploration planners, economic analysts, land use planners, or policymakers, will look for aspects that are most pertinent to their own field and time frame of interest. For example, exploration analysts would be most interested in the geological potential for discovering certain types of deposits in a region; mining engineers in the physical and chemical characteristics of deposits already discovered; and economists in the possible mineral-supply stream that might be generated in the future. No single assessment can throw light on all aspects of conceivable interest, and every type of assessment will have its conceptual and analytical limitations. Six major resource assessment methodologies are presented: areal value, crustal abundance, volumetric, deposit modeling, Delphi, and intergrated synthesis. Each methodology has certain strengths and weaknesses and type of resource estimate, factos which must be considered before application of any one technique. Each of these methods is discussed.

Dorian, J.P.; Zwartendyk, J.

1984-01-01T23:59:59.000Z

235

Office Buildings - Types of Office Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

PDF Office Buildings PDF Office Buildings Types of Office Buildings | Energy Consumption | End-Use Equipment Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the

236

EMPS-2.1 Computer Program for Residential Building Energy Analysis, Engineering Manual  

Science Conference Proceedings (OSTI)

Evaluating the projected energy efficiency of residential building designs and equipment options requires a sophisticated analytic methodology. Techniques described in this manual analyze building thermal loads, heating and cooling systems, water heaters, and life-cycle costs and electric rates.

1988-02-08T23:59:59.000Z

237

Building Technologies Program: Building America Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program HOME ABOUT ENERGY EFFICIENT TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Program » Residential Buildings About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Guidelines for Home Energy Professionals Technology Research, Standards, & Codes Feature featured product thumbnail Building America Best Practices Series Volume 14 - HVAC: A Guide for Contractors to Share with Homeowners Details Bookmark &

238

DOE Systems Engineering Methodology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Engineering Methodology (SEM) In-Stage Assessment Process Guide Version 3 September 2002 U.S. Department of Energy Office of the Chief Information Officer In-Stage Assessment Process Date: September 2002 Page i Rev Date: Table of Contents Section Page 1.0 Overview .......................................................................................................................................... 1 Introduction........................................................................................................................ 1 Purpose .............................................................................................................................. 1 Who Conducts ...................................................................................................................

239

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book (EERE)

20.6 33% Halogen 17.7 29% Note(s): Source(s): EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, June 2006, Table B44, p. 220. Lighted...

240

Autotune E+ Building Energy Models  

SciTech Connect

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Commercial Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and...

242

48 the building is.  

U.S. Energy Information Administration (EIA)

48 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

243

59 the building is.  

U.S. Energy Information Administration (EIA)

59 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

244

83 the building is.  

U.S. Energy Information Administration (EIA)

83 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... This certificate shows the energy rating of this building.

245

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies...

246

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Events on Twitter Bookmark Building Technologies Office: Events on Google Bookmark Building Technologies Office: Events on Delicious Rank Building Technologies...

247

Building Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: About on Twitter Bookmark Building Technologies Office: About on Google Bookmark Building Technologies Office: About on Delicious Rank Building Technologies...

248

Building Technologies Office: Advancing Building Energy Codes  

NLE Websites -- All DOE Office Websites (Extended Search)

Advancing Building Energy Codes Advancing Building Energy Codes The Building Technologies Office (BTO) supports greater adoption of residential and commercial building energy codes through collaborative efforts with local governments and industry groups, and by providing key tools and assistance for code development, adoption, and implementation. Through advancing building codes, we aim to improve building energy efficiency by 50%, and to help states achieve 90% compliance with their energy codes. 75% of U.S. Buildings will be New or Renovated by 2035, Building Codes will Ensure They Use Energy Wisely. Learn More 75% of U.S. Buildings will be New or Renovated by 2035; Building Codes will Ensure They Use Energy Wisely Learn More Energy Codes Ensure Efficiency in Buildings We offer guidance and technical resources to policy makers, compliance verification professionals, architects, engineers, contractors, and other stakeholders who depend on building energy codes.

249

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Codes OVERVIEW BUILDING TECHNOLOGIES PROGRAM Buildings account for almost 40% of the energy used in the United States and, as a direct result of that use, our...

250

Better Buildings Neighborhood Program: Better Buildings Partners...  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Partners Gather to Plan for the Future to someone by E-mail Share Better Buildings Neighborhood Program: Better Buildings Partners Gather to Plan for the Future...

251

Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation  

SciTech Connect

The U.S. National Institute for Building Sciences (NIBS) started the development of the National Building Information Model Standard (NBIMS). Its goal is to define standard sets of data required to describe any given building in necessary detail so that any given AECO industry discipline application can find needed data at any point in the building lifecycle. This will include all data that are used in or are pertinent to building energy performance simulation and analysis. This paper describes the background that lead to the development of NBIMS, its goals and development methodology, its Part 1 (Version 1.0), and its probable impact on building energy performance simulation and analysis.

Bazjanac, Vladimir

2007-08-01T23:59:59.000Z

252

Summary of UTMB O&M Project: Energy Conservation Potential in Five Buildings  

E-Print Network (OSTI)

This report is a summary of five reports (references 1 to 5) which provided detailed descriptions of an O&M investigation of the following five buildings on the UTMB campus: 1) John Sealy North Building(JSN); 2) Clinical Science Building(CSB); 3) Basic Science Building(BSB); 4)Moody Library Building(MLB); and 5) John Sealy South Building(JSS). In these five buildings, the soft tune up is the major O&M measure identified. This report briefly describes the buildings, summarizes the methodology used and the O&M measures identified for each building, presents simulated energy savings, measured savings and conclusions.

Liu, M.; Athar, A.; Reddy, T. A.; Claridge, D. E.; Haberl, J. S.

1993-01-01T23:59:59.000Z

253

Building Systems Diagnostics and Predictive Maintenance  

Science Conference Proceedings (OSTI)

There has been an increasing interest in the development of methods and tools for automated fault detection and diagnostics (FDD) of building systems and components in the 1990s. This chapter, written for the CRC Handbook for HVAC&R Engineering, will describe the status of these methods and and methodologies as applied to HVAC&R and building systems and present certain illustrative case studies.

Katipamula, Srinivas; Pratt, Robert G.; Braun, J.

2001-01-01T23:59:59.000Z

254

LES Analysis of the Aerodynamic Surface Properties for Turbulent Flows over Building Arrays with Various Geometries  

Science Conference Proceedings (OSTI)

This paper describes aerodynamic roughness properties for turbulent flows over various building arrays that represent realistic urban surface geometries. First, building morphological characteristics such as roughness density ?f and building ...

Hiromasa Nakayama; Tetsuya Takemi; Haruyasu Nagai

2011-08-01T23:59:59.000Z

255

Review of California and National Methods for Energy Performance Benchmarking of Commercial Buildings  

E-Print Network (OSTI)

Energy Star Ratings Using Building Occupancy CharacteristicsDefaults and Whole Building Energy Use Intensity andCalifornia CEUS Office Buildings (n=109) C-6 % of Cal-Arch

Matson, Nance E.; Piette, Mary Ann

2005-01-01T23:59:59.000Z

256

Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Analyze Data to Evaluate Greenhouse Gas Emissions Profile for Buildings October 7, 2013 - 10:47am Addthis YOU ARE HERE Step 2 Once the relevant data have been collected, the next step is to identify the biggest building energy users and their greenhouse gas (GHG) emissions contribution. Ideally would be done at the program level using actual building characteristic and performance data. However, assumptions may be established about energy performance of buildings based on general location and building type. Ultimately, building efficiency measures need to be evaluated at the building level before implementing them, but facility energy managers can evaluate the relative impact of different GHG reduction approaches using assumptions about the building characteristics and estimates of efficiency

257

Building Technologies Office: Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

to power our country's commercial buildings. Unfortunately, much of this energy and money is wasted; a typical commercial building could save 20% on its energy bills simply by...

258

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

for technical information on building products, materials, new technologies, business management, and housing systems. DOE's Residential Building Energy Codes - Resource for...

259

Building Technologies Office: Commercial Building Research and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

260

Building Technologies Office: Building America Market Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Building Technologies Office Search Search Help Building Technologies Office HOME...

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Building Technologies Office: Building Energy Software Tools...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Links This directory provides information on 404 building software tools for evaluating energy efficiency, renewable energy, and sustainability in buildings. The energy tools...

262

Building Technologies Office: Building America Research Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science...

263

Building Technologies Office: Building Envelope Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy efficiency. Research in building envelope technologies includes: Foundations Insulation Roofing and Attics Walls Foundations Photo of the concrete foundation of a building...

264

Building Technologies Office: Contact the Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tax Incentives for Residential Buildings Tax Incentives for Commercial Buildings News Energy Department Invests in Heating, Cooling, and Lighting August 21, 2013 Energy Department...

265

Commercial Building Energy Asset Scoring Tool Application Programming Interface  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Building Energy Asset Scoring Tool Commercial Building Energy Asset Scoring Tool Application Programming Interface NORA WANG GEOFF ELLIOTT JUSTIN ALMQUIST EDWARD ELLIS Pacific Northwest National Laboratory JUNE 14, 2013 Commercial Building Energy Asset Score Energy asset score evaluates the as- built physical characteristics of a building Energy Asset Score and its overall energy efficiency, independent of occupancy and operational choices. The physical characteristics include Building envelope (window, wall, roof) HVAC systems (heating, cooling, air distribution) Lighting system (luminaire and lighting control systems) Service hot water system Other major energy-using equipment (e.g. commercial refrigerator, commercial kitchen appliances, etc.) Building energy use is affected by many factors.

266

Safeguards Envelope Methodology  

E-Print Network (OSTI)

Nuclear safeguards are intrinsic and extrinsic features of a facility which reduce probability of the successful acquisition of special nuclear material (SNM) by hostile actors. Future bulk handling facilities in the United States will include both domestic and international safeguards as part of a voluntary agreement with the International Atomic Energy Agency. A new framework for safeguards, the Safeguards Envelope Methodology, is presented. A safeguards envelope is a set of operational and safeguards parameters that define a range, or envelope, of operating conditions that increases confidence as to the location and assay of nuclear material without increasing costs from security or safety. Facilities operating within safeguards envelopes developed by this methodology will operate with a higher confidence, a lower false alarm rate, and reduced safeguards impact on the operator. Creating a safeguards envelope requires bringing together security, safety, and safeguards best practices. This methodology is applied to an example facility, the Idaho Chemical Processing Plant. An example diversion scenario in the front-end of this nuclear reprocessing facility, using actual operating data, shows that the diversion could have been detected more easily by changing operational parameters, and these changed operational parameters would not sacrifice the operational efficiency of the facility, introduce security vulnerabilities, or create a safety hazard.

Metcalf, Richard

2011-12-01T23:59:59.000Z

267

Development of a data base and forecasting model for commercial-sector electricity usage and demand. Volume VII. Detailed survey, sampling methodology  

Science Conference Proceedings (OSTI)

This report describes the work performed toward obtaining two sets of primary data, from which econometric and engineering parameters for the model were to be derived. The first type will be collected in a mail survey of utility-company customers determined by an analysis of customer-account data. These data have been collected from Pacific Gas and Electric, Los Angeles Div. of Water and Power, San Diego Gas and Electric, and Sacramento Municipal Utility District (SMUD) and have been analyzed and the survey customers selected. The second type will consist of detailed technical data on buildings in the SMSA's of Los Angeles, San Diego, San Francisco, and Sacramento. This report presents the final methodology for the selection of building samples, by type and location, for the detailed building data collection. Eleven tables present the results of the analysis. Within service areas and/or SMSA's, significant establishment classifications are illustrated with their energy characteristics. The allocation of the detailed survey-sample members is illustrated, according to establishment classifications and the 24 different building types. This specification is further detailed as to allocations within the SMUD service area and those to be taken from other areas. The methodology presented in this final report is being used to select sample members for the detailed survey.

Not Available

1980-02-01T23:59:59.000Z

268

Energy use in office buildings  

SciTech Connect

This is the report on Task IB, Familiarization with Additional Data Collection Plans of Annual Survey of BOMA Member and Non-Member Buildings in 20 Cities, of the Energy Use in Office Buildings project. The purpose of the work was to monitor and understand the efforts of the Building Owners and Managers Association International (BOMA) in gathering an energy-use-oriented data base. In order to obtain an improved data base encompassing a broad spectrum of office space and with information suitable for energy analysis in greater detail than is currently available, BOMA undertook a major data-collection effort. Based on a consideration of geographic area, climate, population, and availability of data, BOMA selected twenty cities for data collection. BOMA listed all of the major office space - buildings in excess of 40,000 square feet - in each of the cities. Tax-assessment records, local maps, Chamber of Commerce data, recent industrial-development programs, results of related studies, and local-realtor input were used in an effort to assemble a comprehensive office-building inventory. In order to verify the accuracy and completeness of the building lists, BOMA assembled an Ad-Hoc Review Committee in each city to review the assembled inventory of space. A questionnaire on office-building energy use and building characteristics was developed. In each city BOMA assembled a data collection team operating under the supervision of its regional affiliate to gather the data. For each city a random sample of buildings was selected, and data were gathered. Responses for over 1000 buildings were obtained.

None

1980-10-01T23:59:59.000Z

269

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficient Buildings Hub Efficient Buildings Hub This model of a renovated historic building-Building 661-in Philadelphia will house the Energy Efficient Buildings Hub. The facility's renovation will serve as a best practices model for commercial building design, historic adaptive re-use, and energy efficiency innovation through continuous retrofit. The U.S. Department of Energy created the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial buildings. Established in 2011, the Energy Efficient Buildings Hub seeks to demonstrate how innovating technologies can help building owners and operators can save money by adopting energy efficient technologies and techniques. The goal is to enable the nation to cut energy use in the commercial buildings sector by 20% by 2020.

270

AIAA 2001-1535 A SYMBOLIC METHODOLOGY FOR THE  

E-Print Network (OSTI)

of Structural Dynamics of Lagerwey LW-50/750 Wind Turbine," Wind En- gineering, Vol. 22, No. 6, 1998, pp. 253 is applied to a Horizontal-Axis Wind Turbine. The pa- per presents a new methodology for modeling, wind turbines, etc. Over the last decade the advent of composites and the pursuit to build lighter

Patil, Mayuresh

271

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ... structures; thermal response; flameproofing; radiative ...

272

84 the building is.  

U.S. Energy Information Administration (EIA)

84 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: LCEA009449 Keywords:

273

87 the building is.  

U.S. Energy Information Administration (EIA)

87 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: STRO000469 Keywords:

274

80 the building is.  

U.S. Energy Information Administration (EIA)

80 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

275

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC400003 Keywords:

276

75 the building is.  

U.S. Energy Information Administration (EIA)

75 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

277

97 the building is.  

U.S. Energy Information Administration (EIA)

97 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC500027 Keywords:

278

78 the building is.  

U.S. Energy Information Administration (EIA)

78 the building is. ... Non-Domestic Building Energy Performance Asset Rating ... Asset Rating. Author: BRE Subject: BREC200470 Keywords:

279

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Emergency Response Operations ... Safety Investigation of the World Trade Center Disaster. ... high rise buildings; building collapse; disasters; fire safety ...

280

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of the World Trade Center Disaster. ... rise buildings; building collapse; disasters; fire safety ... structural analysis; structural damage; structural response ...

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Safety of Building Occupants  

Science Conference Proceedings (OSTI)

... systems have evolved in response to specific ... behavior, needs of emergency responders, or ... behavior during building emergencies, the Building ...

2013-07-17T23:59:59.000Z

282

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... systems; surface temperature; deflection; insulation; thermometers; structural ... effects of fires in buildings, for use ... the analysis of building response to ...

283

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building materials; thermal conductivity; databases; insulation; building technology; density; fibrous glass; guarded hot plate; heat flow; insulation ...

284

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1....

285

Buildings Energy Data Book: 5.5 Thermal Distribution Systems  

Buildings Energy Data Book (EERE)

Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and...

286

Analysis of Harmonic Distortion Levels in Commercial Buildings  

Science Conference Proceedings (OSTI)

This case study describes harmonic distortion concerns for commercial buildings and presents a method for evaluating these concerns based on typical load characteristics.

2003-12-31T23:59:59.000Z

287

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140  

SciTech Connect

Ideally, whole-building energy simulation programs model all aspects of a building that influence energy use and thermal and visual comfort for the occupants. An essential component of the development of such computer simulation models is a rigorous program of validation and testing. This paper describes a methodology to evaluate the accuracy of whole-building energy simulation programs. The methodology is also used to identify and diagnose differences in simulation predictions that may be caused by algorithmic differences, modeling limitations, coding errors, or input errors. The methodology has been adopted by ANSI/ASHRAE Standard 140, Method of Test for the Evaluation of Building Energy Analysis Computer Programs (ASHRAE 2001a, 2004). A summary of the method is included in the 2005 ASHRAE Handbook--Fundamentals (ASHRAE 2005). This paper describes the ASHRAE Standard 140 method of test and its methodological basis. Also discussed are possible future enhancements to ASHRAE Standard 140 and related research recommendations.

Judkoff, R.; Neymark, J.

2006-01-01T23:59:59.000Z

288

Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140; Preprint  

Science Conference Proceedings (OSTI)

Ideally, whole-building energy simulation programs model all aspects of a building that influence energy use and thermal and visual comfort for the occupants. An essential component of the development of such computer simulation models is a rigorous program of validation and testing. This paper describes a methodology to evaluate the accuracy of whole-building energy simulation programs. The methodology is also used to identify and diagnose differences in simulation predictions that may be caused by algorithmic differences, modeling limitations, coding errors, or input errors. The methodology has been adopted by ANSI/ASHRAE Standard 140 (ANSI/ASHRAE 2001, 2004), Method of Test for the Evaluation of Building Energy Analysis Computer Programs. A summary of the method is included in the ASHRAE Handbook of Fundamentals (ASHRAE 2005). This paper describes the ANSI/ASHRAE Standard 140 method of test and its methodological basis. Also discussed are possible future enhancements to Standard 140 and related research recommendations.

Judkoff, R.; Neymark, J.

2006-07-01T23:59:59.000Z

289

Regulations & Rulemaking | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Determinations Federal Buildings Manufactured Housing Resource Center Regulations & Rulemaking The U.S. Department of Energy (DOE) is required by law to establish mandatory energy efficiency requirements for new federal commercial and residential buildings and to develop energy efficiency standards for manufactured homes. Federal law also requires that DOE publish determinations as to whether new editions of ASHRAE Standard 90.1 and the International Energy Conservation Code will improve energy efficiency. In response, DOE, through the Building Energy Codes Program (BECP) undertakes rulemaking processes to facilitate full disclosure of DOE's analyses and development methodologies, to solicit public input, and to publish final rules. DOE's rulemaking process involves

290

Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for  

Open Energy Info (EERE)

Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for Impact Evaluation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for Impact Evaluation Focus Area: Energy Efficiency Topics: Potentials & Scenarios Website: www.scribd.com/doc/34712276/Energy-efficiency-standards-for-refrigerat Equivalent URI: cleanenergysolutions.org/content/energy-efficiency-standards-refrigera Language: English Policies: Regulations Regulations: "Appliance & Equipment Standards and Required Labeling,Emissions Standards" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

291

Buildings Performance Database | OpenEI  

Open Energy Info (EERE)

Buildings Performance Database Buildings Performance Database Dataset Summary Description This is a non-proprietary subset of DOE's Buildings Performance Database. Buildings from the cities of Dayton, OH and Gainesville, FL areas are provided as an example of the data in full database. Sample data here is formatted as CSV Source Department of Energy's Buildings Performance Database Date Released July 09th, 2012 (2 years ago) Date Updated Unknown Keywords Buildings Performance Database Dayton Electricity Gainesville Natural Gas open data Residential Data application/zip icon BPD Dayton and Gainesville Residential csv files in a zip file (zip, 2.8 MiB) text/csv icon BPD Dayton and Gainesville Residential Building Characteristics data (csv, 1.4 MiB) text/csv icon BPD Dayton and Gainesville Residential data headers (csv, 5.8 KiB)

292

Building Energy Software Tools Directory: ISOVER Energi  

NLE Websites -- All DOE Office Websites (Extended Search)

ISOVER Energi ISOVER Energi ISOVER Energi logo Calculates: U-value, for constructions with and without thermal bridges; total heat loss for buildings; and energy demand for buildings. ISOVER Energi compares heat loss to the heat loss frame in the Danish Building Regulations. The energy demand is compared to the energy frame in the Danish Building Regulations. Furthermore ISOVER Energi calculates the profitability of activities e.g. retrofit, renewing of windows, to improve the energy performance of existing buildings. The profitability is compared to the criteria in the Danish Building Regulations. Access to databases with characteristics for common building materials and with linear heat losses for typical solutions for connections. The database facility is planned to be enlarged with databases for windows, boilers,

293

Building America Analysis Spreadsheets | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America Analysis Spreadsheets America Analysis Spreadsheets Building America Analysis Spreadsheets The Building America Analysis Spreadsheets are companions to the House Simulation Protocols, and can assist with many of the calculations and look-up tables found in the report. The spreadsheets provide the set of standard operating conditions-including hourly and monthly profiles for occupancy, lighting, appliances, and miscellaneous electric loads (MELs)-developed by Building America to objectively compare energy use before and after a retrofit, and against a Benchmark new construction building. Building America analysts may also find the spreadsheets useful for documenting and comparing building characteristics for the Building America projects (pre-retrofit vs. post-retrofit, or new construction test

294

Sensor Characteristics Reference Guide  

Science Conference Proceedings (OSTI)

The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

2013-04-01T23:59:59.000Z

295

Energy Conservation Through Demand-Side Management (DSM): A Methodology to Characterize Energy Use Among commercial Market Segments  

E-Print Network (OSTI)

Managing energy demand can be beneficial for both the energy consumer and the energy supplier. By reducing energy use, the consumer reduces operating costs and improves production efficiency and competitiveness. Similarly, the supplier may reduce the need for costly capacity expansion and wholesale power purchasing, especially if energy reductions occur during peak loading conditions. Energy reductions may also lessen global climate change and reduce many other consequences of fossil-fuel energy use. The following research highlights a methodology to characterize energy use and optimize a DSM program for different types of commercial buildings. Utilizing publicly available records, such as utility billing data and property tax records, the diverse commercial building market was characterized. The commercial building types were matched to relevant submarkets of the North American Industry Classification System (NAICS). These sources were combined to prioritize building type submarket energy use intensity (kWh/sf/yr), load factor and many other energy use characteristics for each market segment. From this information, lower tier performers in each NAICS submarket can be identified and appropriate DSM alternatives selected specific to each.

Grosskopf, K. R.; Oppenheim, P.; Barclay, D

2007-01-01T23:59:59.000Z

296

Building Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Webinars to someone by E-mail Share Building Technologies Office: Webinars on Facebook Tweet about Building Technologies Office: Webinars on Twitter Bookmark Building Technologies Office: Webinars on Google Bookmark Building Technologies Office: Webinars on Delicious Rank Building Technologies Office: Webinars on Digg Find More places to share Building Technologies Office: Webinars on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database

297

Trends in Commercial Buildings--Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Home > Trends in Commercial Buildings > Commercial Home > Trends in Commercial Buildings > Commercial Buildings Energy Consumption Survey Survey Methodology Sampling Error, Standard Errors, and Relative Standard Errors The Commercial Buildings Energy Consumption Survey The commercial sector consists of business establishments and other organizations that provide services. The sector includes service businesses, such as retail and wholesale stores, hotels and motels, restaurants, and hospitals, as well as a wide range of buildings that would not be considered “commercial” in a traditional economic sense, such as public schools, correctional institutions, and religious and fraternal organizations. Excluded from the sector are the goods-producing industries: manufacturing, agriculture, mining, forestry and fisheries, and construction.

298

Building Energy Software Tools Directory: HVACSIM+  

NLE Websites -- All DOE Office Websites (Extended Search)

HVACSIM+ HVACSIM+ Simulation model of a building HVAC (heating, ventilation, and air-conditioning ) system plus HVAC controls, the building shell, the heating/cooling plant, and energy management and control system (EMCS) algorithms. The main program of HVACSIM+ (HVAC SIMulation PLUS other systems employs a hierarchical, modular approach and advanced equation solving techniques to perform dynamic simulations of building/HVAC/control systems. The modular approach is based upon the methodology used in the TRNSYS program. Keywords HVAC equipment, systems, controls, EMCS, complex systems Validation/Testing N/A Expertise Required High level of computer literacy. Users More than 100. Audience Building technology researchers, graduate schools, consultants. Input Building system component model configuration, simulation setup work file,

299

RHIC DATA CORRELATION METHODOLOGY.  

SciTech Connect

A requirement for RHIC data plotting software and physics analysis is the correlation of data from all accelerator data gathering systems. Data correlation provides the capability for a user to request a plot of multiple data channels vs. time, and to make meaningful time-correlated data comparisons. The task of data correlation for RHIC requires careful consideration because data acquisition triggers are generated from various asynchronous sources including events from the RHIC Event Link, events from the two Beam Sync Links, and other unrelated clocks. In order to correlate data from asynchronous acquisition systems a common time reference is required. The RHIC data correlation methodology will allow all RHIC data to be converted to a common wall clock time, while still preserving native acquisition trigger information. A data correlation task force team, composed of the authors of this paper, has been formed to develop data correlation design details and provide guidelines for software developers. The overall data correlation methodology will be presented in this paper.

MICHNOFF,R.; D' OTTAVIO,T.; HOFF,L.; MACKAY,W.; SATOGATA,T.

1999-03-29T23:59:59.000Z

300

Transforming Commercial Building Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Transforming Commercial Building Operations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transforming Commercial Building Operations Transforming Commercial Building Operations Transforming Commercial Building Operations Ron Underhill Pacific Northwest National Laboratory ronald.underhill@pnnl.gov (509)375-9765 April 4, 2013 2 | Building Technologies Office eere.energy.gov * Most buildings are not commissioned (Cx) before occupancy, including HVAC and lighting systems * Buildings often are poorly operated and maintained leading to significant energy waste of 5 to 20%, even when they have building automation systems (BASs)

302

Energy consumption in commerical buildings: a comparison with BEPS budgets  

SciTech Connect

Metered energy consumption data have been collected on existing commercial buildings to help establish the proposed Building Energy Performance Standards (BEPS). The search has identified 84 buildings whose metered energy consumption is equal to or less than that proposed for their BEPS budgets and another 7 buildings whose metered consumption is less than 20% above their BEPS budgets. The methodology used to identify the buildings and to collect their metered energy consumption data are described. The data are analyzed and summarized and conclusions are drawn.

1980-09-22T23:59:59.000Z

303

Whole-building energy targets ``A`` prototype, initial version  

SciTech Connect

The Whole-Building Energy Targets project, sponsored by the US Department of Energy (DOE), is developing a methodology for generating energy performance targets for commercial buildings. The methodology and implementing software have potential applications to energy standards and guidelines, advanced building design tools, energy retrofit analysis, demand-side management programs, and the planning and assessment of building energy research. Pacific Northwest Laboratory (PNL) is conducting the Targets project with assistance from three leading building-industry associations -- the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE); the Illuminating Engineering Society of North America (IES); and the American Institute of Architects/Association of Collegiate Schools of Architecture (AIA/ACSA) Council on Architectural Research. The project`s objective is to develop a methodology to generate energy performance targets for design, check the compliance of commercial-building designs with those targets, and evaluate design alternatives. Two previous phases of the project have been completed -- Phase 1 Planning and Phase 2 Concept Development. The current phase is called Phase 3 System Development. Key elements of the technical approach are that targets will be based on space functions (i.e., the collection of activities and corresponding areas within a building) rather than building types, generated using economic optimization methods, and custom-generated for specific building projects. Pacific Northwest Laboratory is developing computer software, referred to as the ``Targets software,`` that implements this methodology. The Targets software will enable the methodology to be demonstrated and tested and is intended to provide the basis for final computer applications incorporating the methodology.

Briggs, R.S.

1994-09-01T23:59:59.000Z

304

Building America  

Science Conference Proceedings (OSTI)

Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

Brad Oberg

2010-12-31T23:59:59.000Z

305

Evaluating the performance of passive-solar-heated buildings  

DOE Green Energy (OSTI)

Methods of evaluating the thermal performance of passive-solar buildings are reviewed. Instrumentation and data logging requirements are outlined. Various methodologies that have been used to develop an energy balance for the building and various performance measures are discussed. Methods for quantifying comfort are described. Subsystem and other special-purpose monitoring are briefly reviewed. Summary results are given for 38 buildings that have been monitored.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

306

Commercial Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings Buildings Integration Program Arah Schuur Program Manager arah.schuur@ee.doe.gov April 2, 2013 Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Commercial Buildings Integration Program Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings. 3 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce

307

Home | Better Buildings Workforce  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Logo Better Buildings Logo EERE Home | Programs & Offices | Consumer Information Search form Search Search Better Buildings Logo Better Buildings Workforce Home Framework Resources Projects Participate Home Framework Resources Projects Better Buildings Workforce Guidelines Buildings Re-tuning Training ANSI Energy Efficiency Standards Collaborative Energy Performance-Based Acquisition Training Participate For a detailed project overview, download the Better Buildings Workforce Guidelines Fact Sheet Home The Better Buildings Initiative is a broad, multi-strategy initiative to make commercial and industrial buildings 20% more energy efficient over the next 10 years. DOE is currently pursuing strategies across five pillars to catalyze change and accelerate private sector investment in energy

308

Buildings without energy bills  

Science Conference Proceedings (OSTI)

In European Union member states, by 31 december 2020, all new buildings shall be nearly zero-energy consumption building. For new buildings occupied and owned by public authorities this shall comply by 31 december 2018. The buildings sectors represents ... Keywords: energy efficiency, low energy buildings, passive houses design, sustainable development

Ruxandra Crutescu

2011-04-01T23:59:59.000Z

309

Buildings Performance Database Analysis Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » Buildings Commercial Buildings » Buildings Performance Database » Buildings Performance Database Analysis Tools Buildings Performance Database Analysis Tools The Buildings Performance Database will offer four analysis tools for exploring building data and forecasting financial and energy savings: a Peer Group Tool, a Retrofit Analysis Tool, a Data Table Tool, and a Financial Forecasting Tool. Available now: Peer Group Tool The Peer Group Tool allows users to peruse the BPD, define peer groups, and analyze their performance. Users can create Peer Groups by filtering the dataset based on parameters such as building type, location, floor area, age, occupancy, and system characteristics such as lighting and HVAC type. The graphs show the energy performance distribution of those

310

Building Technologies Office: Subscribe to Building America Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to Building Subscribe to Building America Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building America Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building America Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building America Updates on Google Bookmark Building Technologies Office: Subscribe to Building America Updates on Delicious Rank Building Technologies Office: Subscribe to Building America Updates on Digg Find More places to share Building Technologies Office: Subscribe to Building America Updates on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance

311

Comparison of Building Energy Modeling Programs: Building Loads  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Building Energy Modeling Programs: Building Loads Title Comparison of Building Energy Modeling Programs: Building Loads Publication Type Report LBNL Report Number...

312

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes...  

NLE Websites -- All DOE Office Websites (Extended Search)

A N OTE S BUILDING TECHNOLOGIES PROGRAM Building Energy Codes Resource Guide: COMMERCIAL BUILDINGS for Architects Prepared by: Building Energy Codes Program (BECP) and the American...

313

Historic Building Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historic Building Renovations Historic Building Renovations Historic Building Renovations October 16, 2013 - 4:52pm Addthis Renewable Energy Options for Historical Building Renovations Photovoltaics (PV) Solar Water Heating Geothermal Heat Pumps Biomass Heating When a Federal agency undertakes a renovation to an historic building, the renovation team must consider not only the uses and needs of the facility, but also a range of issues related to historic preservation. Integrating renewable energy such as solar and wind into an historic renovation has been accomplished successfully by agencies; the design and placement of any renewable energy system must be closely integrated with the overall design plans. Any renewable energy additions must maintain the integrity and defining characteristics of the building.

314

Overview of Commercial Buildings, 2003 - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States. In 2003, CBECS reports that commercial buildings: total nearly 4.9 million buildings comprise more than 71.6 billion square feet of floorspace consumed more than 6,500 trillion Btu of energy, with electricity accounting for 55 percent and natural gas 32 percent (Figure 1) consumed 36 percent of energy for space heating and 21 percent for lighting (Figure 2) The CBECS is a national-level sample survey conducted quadrennially of buildings greater than 1,000 square feet in size that devote more than 50

315

Types of Lighting in Commercial Buildings - Introduction  

U.S. Energy Information Administration (EIA) Indexed Site

Introduction Introduction Lighting is a major consumer of electricity in commercial buildings and a target for energy savings through use of energy-efficient light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the amount of floorspace that is lit, and the percentage of floorspace lit by each type. In addition, CBECS data are used to model end-use consumption, including energy consumed for lighting in commercial buildings. CBECS building characteristics data can answer a wide range of questions about lighting from the most basic, "How many buildings are lit?" to more detailed questions such as, "How many office buildings have compact

316

Energy Efficiency Standards for Federal Buildings | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Site Map Printable Version Development Adoption Compliance Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards...

317

Buildings Operations and ETS Exposure  

E-Print Network (OSTI)

Mechanical systems are used in buildings to provide conditioned air, dissipate thermal loads, dilute contaminants, and maintain pressure differences. The characteristics of these systems and their operations have implications for the exposures of workers to environmental tobacco smoke (ETS) and for the control of these exposures. This review describes the general features of building ventilation systems and the efficacy of ventilation for controlling contaminant concentrations. Ventilation can reduce the concentration of ETS through dilution, but central heating, ventilating, and air conditioning (HVAC) can also move air throughout a building that has been contaminated by ETS. An understanding of HVAC systems is needed to develop models for exposures of workers to ETS.- Environ Health Perspect 107(Suppl 2):313-317 (1999).

John D. Spengler

1998-01-01T23:59:59.000Z

318

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

Office Buildings - Full Report Office Buildings - Full Report file:///C|/mydocs/CBECS2003/PBA%20report/office%20report/office_pdf.html[9/24/2010 3:33:25 PM] Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a

319

Thick Buildings [Standards  

E-Print Network (OSTI)

on Occupant Behavior in Buildings, New Directions forSacramento, is a thin building that surrounds an atrium. (Performance of a Green Building," Urban UndQune 1992): 23-

Coffin, Christie Johnson

1995-01-01T23:59:59.000Z

320

Kentucky Transmission Line Siting Methodology  

Science Conference Proceedings (OSTI)

EPRI, in conjunction with Georgia Transmission Corporation (GTC) and Photo Science, Inc. (PSI), developed a standardized methodology for siting overhead electric transmission lines. EPRI report 1013080, EPRI-GTC Overhead Electric Transmission Line Siting Methodology, published February 2006, provides additional information. This methodology has been applied in Georgia and currently is being applied to projects in Kentucky by East Kentucky Power Cooperative and E.ON U.S. on behalf of Louisville Gas and El...

2007-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Systems Integration Methodology  

Science Conference Proceedings (OSTI)

A multi-disciplinary team led by the Advanced Power and Energy Program (APEP) of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into power plant systems that meet performance and emission goals of VISION 21. The myriad of fuels, fuel processing, power generation, and emission control technologies are narrowed down to selected scenarios by a screening analysis to identify those combinations that have the potential to achieve the VISION 21 goals consisting of 60% efficiency (HHV) for coal based systems and 75% efficiency (LHV) for gas-based systems. The selected promising cycle scenarios are then analyzed in detail to develop the performance and costs for each. The methodology used in arriving at these promising cases and the preliminary results of the cycle analyses are presented. The technology levels considered are based on projected technical and manufacturing advances being made in industry and on advances identified in current and future government supported research such as the Clean Coal Program, Combustion 2000 (LEBS and HIPPS), Advanced Turbine Systems program, Low-Cost Advanced Fuel Cell programs, and the Flexible Gas Turbine Systems program. Examples of systems included in these advanced cycles are solid oxide and molten carbonate fuel cells, advanced gas turbines, ion transport membrane separation and hydrogen-oxygen combustion.

Samuelsen, Scott; Rao, Ashok

2001-11-06T23:59:59.000Z

322

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

323

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Planning for Construction and Building R&D. National Planning for Construction and Building R&D. (576 K) Wright ...

324

Better Buildings Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Kristen Taddonio DOEEEREBTOCommercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office...

325

Buildings Energy Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building windows, clean room, infrared thermograph, data graphic Buildings Energy Efficiency Researchers, in close cooperation with industry, develop technologies for...

326

Building Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Building America Residential Research Better Buildings Alliance Solid-State Lighting Events ICMA 99th Annual Conference September 22-25, 2013 Register Now for the 2013...

327

Food Sales Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings, though they comprised only 1 percent of commercial floorspace. Their total energy intensity was the third highest of all the building types, and their electricity...

328

Public Assembly Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

buildings. Since they comprised 7 percent of commercial floorspace, this means that their energy intensity was just slightly below the commercial average. Public assembly buildings...

329

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of this building in two challenging North American climates. ... building in its native climate were performed ... were formulated-a single-zone model with ...

330

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... These estimates, and other analyses of energy consumption in office buildings, are based on building energy analysis programs such as DOE-2. ...

331

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... keynote address entitled "Green Buildings - The White House Perspective ... in the areas of building materials, lighting, and indoor air ... Selected Papers. ...

332

Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading to Lessons Learned 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Program Problem Statement: Buildings consume 40% of energy in the United...

333

Building Technologies Program - Energy  

2 Background And Outline Background Building Technology Program (BTP) focused on a goal of zero-net energy homes (2020) and commercial buildings (2025)

334

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... will build an instrument that will provide the building industry with better measurement capabilities to judge the effectiveness of thermal insulation ...

335

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

336

PNNL-21294 Methodology for Evaluating Cost- Effectiveness of Residential Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

1294 1294 Methodology for Evaluating Cost- Effectiveness of Residential Energy Code Changes ZT Taylor N Fernandez RG Lucas April 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Contents 1.0 Introduction .................................................................................................................................. 1.1 2.0 Estimating Energy Savings of Code Changes .............................................................................. 2.1 2.1 Building Energy Use Simulation Assumptions and Methodology ....................................... 2.1 2.1.1 Energy Simulation Tool ............................................................................................ 2.1

337

Energy Efficiency Indicators Methodology Booklet  

E-Print Network (OSTI)

methodological issues. Energy Policy 24, 377390. Phylipsen,the preferred method? , Energy Policy 32 (2004), pp. 1131efficiency index, Energy Policy (2006), Volume: 34, Issue:

Sathaye, Jayant

2010-01-01T23:59:59.000Z

338

Buildings Energy Data Book  

Buildings Energy Data Book (EERE)

2.1 Residential Sector Energy Consumption 2.1 Residential Sector Energy Consumption 2.2 Residential Sector Characteristics 2.3 Residential Sector Expenditures 2.4 Residential Environmental Data 2.5 Residential Construction and Housing Market 2.6 Residential Home Improvements 2.7 Multi-Family Housing 2.8 Industrialized Housing 2.9 Low-Income Housing 3Commercial Sector 4Federal Sector 5Envelope and Equipment 6Energy Supply 7Laws, Energy Codes, and Standards 8Water 9Market Transformation Glossary Acronyms and Initialisms Technology Descriptions Building Descriptions Other Data Books Biomass Energy Transportation Energy Power Technologies Hydrogen Download the Entire Book Skip down to the tables Chapter 2 focuses on energy use in the U.S. residential buildings sector. Section 2.1 provides data on energy consumption by fuel type and end use, as well as energy consumption intensities for different housing categories. Section 2.2 presents characteristics of average households and changes in the U.S. housing stock over time. Sections 2.3 and 2.4 address energy-related expenditures and residential sector emissions, respectively. Section 2.5 contains statistics on housing construction, existing home sales, and mortgages. Section 2.6 presents data on home improvement spending and trends. Section 2.7 describes the industrialized housing industry, including the top manufacturers of various manufactured home products. Section 2.8 presents information on low-income housing and Federal weatherization programs. The main points from this chapter are summarized below:

339

Solar buildings. Overview: The Solar Buildings Program  

DOE Green Energy (OSTI)

Buildings account for more than one third of the energy used in the United States each year, consuming vast amounts of electricity, natural gas, and fuel oil. Given this level of consumption, the buildings sector is rife with opportunity for alternative energy technologies. The US Department of Energy`s Solar Buildings Program was established to take advantage of this opportunity. The Solar Buildings Program is engaged in research, development, and deployment on solar thermal technologies, which use solar energy to produce heat. The Program focuses on technologies that have the potential to produce economically competitive energy for the buildings sector.

Not Available

1998-04-01T23:59:59.000Z

340

Research on Building Energy Consumption Situation in Shanghai  

E-Print Network (OSTI)

This paper surveys the present situation of building energy consumption in Shanghai and points out the problems of insufficient energy consumption statistics based on the survey data. We analyze the relationships of energy consumption between the building and the whole society, and between the building and the air conditioning system. Eight public buildings in Shanghai have been chosen for analyzing the characteristics of energy consumption of the air conditioning system in real time.

Yang, X.; Tan, H.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Building Energy Software Tools Directory: Tools by Country - Canada  

NLE Websites -- All DOE Office Websites (Extended Search)

Canada Canada A C D E F H I M P R S V Tool Applications Free Recently Updated Athena Model life cycle assessment, environment, building materials, buildings Free software. CATALOGUE windows, fenestration, product information, thermal characteristics Free software. DAYSIM annual daylight simulations, electric lighting energy use, lighting controls Free software. Software has been updated. EE4 CBIP whole building performance, building incentives Free software. Software has been updated. EE4 CODE standards and code compliance, whole building energy performance Free software. Software has been updated. Energy Profile Tool benchmarking, energy efficiency screening, end-use energy analysis, building performance analysis, utility programs ENERPASS

342

"Building Energy Data Exchange Specification"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Energy Data Exchange Specification" Building Energy Data Exchange Specification" "Version 2.3" "application/vnd.ms-excel" "Overview:" "This document describes the DOE Building Energy Data Exchange Specification (BEDES). BEDES is designed to support analysis of the measured energy performance of commercial and residential buildings, with data fields for building characteristics, efficiency measures and energy use. BEDES defines and describes these data fields and their relationships. " "BEDES is used for the DOE Building Performance Database (BPD) as well as the Standard Energy Efficiency Disclosure (SEED) platform, as shown below. Note that SEED includes additional fields that are outside BPD scope (e.g. property address and auditor contact information)."

343

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

344

Building Technologies Office: Building America 2013 Technical Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Building America 2013 Building America 2013 Technical Update Meeting to someone by E-mail Share Building Technologies Office: Building America 2013 Technical Update Meeting on Facebook Tweet about Building Technologies Office: Building America 2013 Technical Update Meeting on Twitter Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Google Bookmark Building Technologies Office: Building America 2013 Technical Update Meeting on Delicious Rank Building Technologies Office: Building America 2013 Technical Update Meeting on Digg Find More places to share Building Technologies Office: Building America 2013 Technical Update Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research

345

Building Green in Greensburg: City Hall Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Hall Building City Hall Building Destroyed in the tornado, City Hall was completed in October 2009 and built to achieve the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum designation. The 4,700-square-foot building serves as a symbol of Greensburg's vitality and leadership in becoming a sustainable community where social, environmental, and economic concerns are held in balance. It houses the City's administrative offices and council chambers, and serves as a gathering place for town meetings and municipal court sessions. According to energy analysis modeling results, the new City Hall building is 38% more energy efficient than an ASHRAE-compliant building of the same size and shape. ENERGY EFFICIENCY FEATURES * A well-insulated building envelope with an

346

Building Technologies Office: Building America Meetings  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings Meetings Photo of people watching a presentation on a screen; the foreground shows a person's hands taking notes on a notepad. The Department of Energy's (DOE) Building America program hosts open meetings and webinars for industry partners and stakeholders that provide a forum to exchange information about various aspects of residential building research. Upcoming Meetings Past Technical and Stakeholder Meetings Webinars Expert Meetings Upcoming Meetings There are no Building America meetings scheduled at this time. Please subscribe to Building America news and updates to receive notification of future meetings. Past Technical and Stakeholder Meetings Building America 2013 Technical Update Meeting: April 2013 This meeting showcased world-class building science research for high performance homes in a dynamic new format. Researchers from Building America teams and national laboratories presented on key issues that must be resolved to deliver homes that reduce whole house energy use by 30%-50%. View the presentations.

347

Building Technologies Office: Better Buildings Neighborhood Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Neighborhood Program logo. Better Buildings Neighborhood Program logo. The Better Buildings Neighborhood Program is helping over 40 competitively selected state and local governments develop sustainable programs to upgrade the energy efficiency of more than 100,000 buildings. These leading communities are using innovation and investment in energy efficiency to expand the building improvement industry, test program delivery business models, and create jobs. New Materials and Resources January 2014 Read the January issue of the Better Buildings Network View See the new story about Austin Energy Read the new Focus Series with Chicago's EI2 See the new webcast Read the latest DOE blog posts Get Inspired! Hear why Better Buildings partners are excited to bring the benefits of energy upgrades to their neighborhoods.

348

Building Green in Greensburg: Business Incubator Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Incubator Building Business Incubator Building Completed in May 2009, the SunChips ® Business Incubator building not only achieved the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED ® ) Platinum status with greater than 50% energy savings-it became the first LEED Platinum certified municipal building in Kansas. The 9,580-square-foot building features five street-level retail shops and nine second-level professional service offices. It provides an affordable, temporary home where businesses can grow over a period of several years before moving out on their own to make way for new start-up businesses. The building was funded by the United States Department of Agriculture (USDA), Frito-Lay SunChips division, and actor Leonardo DiCaprio.

349

Office Buildings - Full Report  

U.S. Energy Information Administration (EIA) Indexed Site

PDF PDF Office Buildings Although no one building type dominates the commercial buildings sector, office buildings are the most common and account for more than 800,000 buildings or 17 percent of total commercial buildings. Offices comprised more than 12 billion square feet of floorspace, 17 percent of total commercial floorspace, the most of any building type. Types of Office Buildings The 2003 CBECS Detailed Tables present data for office buildings along with other principal building activities (see Detailed Tables B13 and B14, for example). Since office buildings comprise a wide range of office-related activities, survey respondents were presented with a follow-up list of specific office types to choose from. Although we have not presented the office sub-category information in the detailed tables we make information

350

building | OpenEI  

Open Energy Info (EERE)

building building Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

351

Office Buildings - Energy Consumption  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity, and natural gas consumed by office buildings was consumed by administrative or professional office buildings (Figure 2). Table 4. Energy Consumed by Office Buildings for Major Fuels, 2003 All Buildings Total Energy Consumption (trillion Btu) Number of Buildings (thousand) Total Floorspace (million sq. ft.) Sum of Major Fuels Electricity Natural Gas Fuel Oil District Heat All Buildings 4,859 71,658 6,523 3,559 2,100 228 636 All Non-Mall Buildings 4,645 64,783 5,820 3,037 1,928 222 634 All Office Buildings 824 12,208 1,134 719 269 18 128 Type of Office Building

352

Cogeneration Assessment Methodology for Utilities  

E-Print Network (OSTI)

A methodology is presented that enables electric utilities to assess the cogeneration potential among industrial, commercial, and institutional customers within the utility's service area. The methodology includes a survey design, analytic assessment model, and a data base to track customers over time. A case study is presented describing the background, procedures, and results of a cogeneration investigation for Northeast Utilities.

Sedlik, B.

1983-01-01T23:59:59.000Z

353

Strategies and Methodologies for Integrating Design Computation into the  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategies and Methodologies for Integrating Design Computation into the Strategies and Methodologies for Integrating Design Computation into the Design of High Density Quality Living Environment Speaker(s): Jin Yeu Tsou Date: October 9, 2002 - 12:00pm Location: Bldg. 90 Through rapid urbanization process, Hong Kong and other cities located in the Pearl River Delta region face serious challenges in establishing effective method to overcome the deterioration of the urban living condition. The environmental problems that brought about have not only been treated as environmental science issues, but also drawn a lot of attention at the political level. One important step took by the HKSAR is to announce the Joint Practice Notes for Green and Innovative Buildings I & II (JPN I & II). China government also released her Healthy Building Design Guideline

354

Glass as a Building Element A Sustainable Approach: A Study of an Existing Academic Building  

E-Print Network (OSTI)

In the aspects of global sustainability, buildings are known to be one of the largest energy consumers. Though sustainable building construction through technological advances is helping in achieving environment friendly buildings, a considerable amount of energy is also being consumed by existing buildings. While many factors at all different stages of building life are responsible for this, the building material is one of the most important considerations. Glass being the most sensitive building material can lead to high energy consumption in the building if used in an improper way. This study takes this factor into account, and tries to investigate the potential of energy savings in buildings through the simple and basic considerations in design. An energy analysis model of an existing academic building in College Station, Texas was developed using Design Builder computer simulation software. This model was then analyzed for the total amount of energy consumption in the base case. The existing building model was then modified by replacing the glass used for external fenestrations. Latest building codes and standards for the site location, glass properties, and parametric simulation results were taken into consideration. Again the model was simulated for annual energy consumption and the results are noted. This formed the first option for the retrofitting scenario. A hypothetical redesign scenario was also established in which the revision of building orientation was taken into consideration. The building was re-oriented to suit the weather conditions and recommendations by Advanced Energy Design Guidelines (30 percent energy savings over ASHRAE Standard 90.1-1999). The building was then simulated for annual energy consumption. A comparative analysis was performed between the three cases and the study concluded by showing 23 percent savings in the annual fuel consumption, 23.35 percent reduction in CO2 emission of the building and 25 percent reduction in annual solar heat gain under Modified case 1. Modified case 2, however, did not show any further savings due to the form of the building (almost square). However, modified case 1 settings emitted 31.8 percent more CO2 over the Energy Star office building in Texas. This methodology sets up a set of guidelines which can be followed while investigating a building for minimum annual energy consumption.

Jori, Swapnil Shriram

2010-12-01T23:59:59.000Z

355

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... economic analysis; energy conservation; energy economics; life cycle cost analysis; public buildings; renewable energy; water conservation ...

356

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: roofs; building integrated photovoltaics; photovoltaic cells; renewable energy; single-crystalline; solar energy Abstract: ...

357

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... building technology; concretes; durability; effective medium theory; electrical conductivity; interfacial zone; mortar; percolation; fluid flow; sand ...

358

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Keywords: building technology; brazed plate; compact heat exchanger; evaporator; condenser; gravity Abstract: This study ...

359

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Results discussed include whole building air change rates, energy consumption and contaminant concentrations. The ...

360

Building Songs 3  

E-Print Network (OSTI)

. Sman shad building song 3.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 2.WAV Title of track Building Songs 3 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Building Songs 2  

E-Print Network (OSTI)

. Sman shad building song 2.WAV Length of track 00:03:42 Related tracks (include description/relationship if appropriate) Sman shad building song 1.WAV Sman shad building song 3.WAV Title of track Building Songs 2 Translation of title...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

362

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management systems. GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ...

363

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal insulation; building technology; guarded hot plate; thermal conductivity; thermal resistance; uncertainty; transmission; mathematical models ...

364

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... heaters; water heaters; blowing agents; insulation; residential buildings; physical properties; thermal conductivity; polyurethane foams Abstract: ...

365

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... computer simulation; technology utilization; insulation; thermal resistance; evaluation ... to the widespread use of building integrated photovoltaic ...

366

About the Buildings Performance Database | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings » Buildings Performance Database » About the Commercial Buildings » Buildings Performance Database » About the Buildings Performance Database About the Buildings Performance Database "Upgrading the energy efficiency of America's buildings is one of the fastest, easiest, and cheapest ways to save money, cut down on harmful pollution, and create good jobs right now." -President Obama Open data has fueled entrepreneurship and transformed fields such as weather, GPS and health. Yet in the energy efficiency market, one of the primary challenges is the lack of empirical data demonstrating the relationship between building characteristics and energy performance. Rigorous performance risk assessments of potential energy efficiency measures could support better decision-making among building owners and

367

Energy Information Administration (EIA)- About the Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

About the Commercial Buildings Energy Consumption Survey About the Commercial Buildings Energy Consumption Survey The Commercial Buildings Energy Consumption Survey (CBECS) is a national sample survey that collects information on the stock of U.S. commercial buildings, their energy-related building characteristics, and their energy consumption and expenditures. Commercial buildings include all buildings in which at least half of the floorspace is used for a purpose that is not residential, industrial, or agricultural, so they include building types that might not traditionally be considered "commercial," such as schools, correctional institutions, and buildings used for religious worship. The CBECS was first conducted in 1979; the tenth, and most recent survey, will be fielded starting in April 2013 to provide data for calendar year

368

Building Technologies Office: Building America Climate-Specific Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

America America Climate-Specific Guidance to someone by E-mail Share Building Technologies Office: Building America Climate-Specific Guidance on Facebook Tweet about Building Technologies Office: Building America Climate-Specific Guidance on Twitter Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Google Bookmark Building Technologies Office: Building America Climate-Specific Guidance on Delicious Rank Building Technologies Office: Building America Climate-Specific Guidance on Digg Find More places to share Building Technologies Office: Building America Climate-Specific Guidance on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education

369

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

370

Building Technologies Office: Buildings Performance Database Analysis Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Performance Buildings Performance Database Analysis Tools to someone by E-mail Share Building Technologies Office: Buildings Performance Database Analysis Tools on Facebook Tweet about Building Technologies Office: Buildings Performance Database Analysis Tools on Twitter Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Google Bookmark Building Technologies Office: Buildings Performance Database Analysis Tools on Delicious Rank Building Technologies Office: Buildings Performance Database Analysis Tools on Digg Find More places to share Building Technologies Office: Buildings Performance Database Analysis Tools on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

371

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

372

Building Technologies Office: Building Energy Data Exchange Specification  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Data Building Energy Data Exchange Specification to someone by E-mail Share Building Technologies Office: Building Energy Data Exchange Specification on Facebook Tweet about Building Technologies Office: Building Energy Data Exchange Specification on Twitter Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Google Bookmark Building Technologies Office: Building Energy Data Exchange Specification on Delicious Rank Building Technologies Office: Building Energy Data Exchange Specification on Digg Find More places to share Building Technologies Office: Building Energy Data Exchange Specification on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

373

A Look at Commercial Buildings in 1995  

U.S. Energy Information Administration (EIA) Indexed Site

site. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page site. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Commercial Buildings Home > A Look at Commercial Buildings in 1995 “A Look at Commercial Buildings in 1995: Characteristics, Energy Consumption, and Energy Expenditures” The report can be downloaded in its entirety, or in sections (all in PDF format): Full report (includes all detailed tables; 402 pages, 5.7 MB) Contents: At A Glance (4 pages, 315 KB) Chapters 1 through 5 (61 pages, 363 KB) 1. Overview 2. Major Characteristics of Commercial Buildings 3. End Uses, Energy Sources, and Energy Consumption 4. End-Use Equipment and Energy Conservation 5. Detailed Tables (introductory text) How to Read the Tables Categories of Data in the Tables

374

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Buildings Consortium Commercial Buildings Consortium Sandy Fazeli National Association of State Energy Officials sfazeli@naseo.org; 703-299-8800 ext. 17 April 2, 2013 Supporting Consortium for the U.S. Department of Energy Net-Zero Energy Commercial Buildings Initiative 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Many energy savings opportunities in commercial buildings remain untapped, underserved by the conventional "invest-design-build- operate" approach * The commercial buildings sector is siloed, with limited coordination

375

Residential Buildings Integration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

376

Residential Buildings Integration Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

David Lee David Lee Program Manager David.Lee@ee.doe.gov 202-287-1785 April 2, 2013 Residential Buildings Integration Program Building Technologies Office Program Peer Review 2 | Building Technologies Office eere.energy.gov Sub-Programs for Review Better Buildings Neighborhood Program Building America Challenge Home Home Energy Score Home Performance with ENERGY STAR Solar Decathlon 3 | Building Technologies Office eere.energy.gov How Residential Buildings Fits into BTO Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers

377

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News to someone by News to someone by E-mail Share Building Technologies Office: News on Facebook Tweet about Building Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies Office: News on Digg Find More places to share Building Technologies Office: News on AddThis.com... Popular Links Success Stories Previous Next Lighten Energy Loads with System Design. Warming Up to Pump Heat. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program Building Energy Software Tools Directory High Performance Buildings Database Financial Opportunities Office of Energy Efficiency and Renewable Energy Funding Opportunities Tax Incentives for Residential Buildings

378

Buildings | Open Energy Information  

Open Energy Info (EERE)

Buildings Buildings Jump to: navigation, search Building Energy Technologies NREL's New Energy-Efficient "RSF" Building Buildings provide shelter for nearly everything we do-we work, live, learn, govern, heal, worship, and play in buildings-and they require enormous energy resources. According to the U.S. Energy Information Agency, homes and commercial buildings use nearly three quarters of the electricity in the United States. Opportunities abound for reducing the huge amount of energy consumed by buildings, but discovering those opportunities requires compiling substantial amounts of data and information. The Buildings Energy Technologies gateway is your single source of freely accessible information on energy usage in the building industry as well as tools to improve

379

DOE - Better Building  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy | Energy Efficiency & Renewable Energy logo U.S. Department of Energy | Energy Efficiency & Renewable Energy logo EERE Home | Programs & Offices | Consumer Information Better Buildings Logo Better Buildings Update July 2013 Inside this edition: Highlights from the 2013 Efficiency Forum Recap: Better Buildings Summit for State & Local Communities Launching the Better Buildings Webinar Series Better Buildings Challenge Implementation Models and Showcase Projects Updated Better Buildings Websites New Members Highlights from the 2013 Efficiency Forum More than 170 people attended the second annual Better Buildings Efficiency Forum for commercial and higher education Partners in May at the National Renewable Energy Laboratory (NREL) in Golden, Colorado-the nation's largest net-zero energy office building. DOE thanks all Better Buildings Alliance Members and Better Buildings Challenge Partners that participated in the Efficiency Forum.

380

Integration of Real-Time Data Into Building Automation Systems  

SciTech Connect

The project goal was to investigate the possibility of using predictive real-time information from the Internet as an input to building management system algorithms. The objectives were to identify the types of information most valuable to commercial and residential building owners, managers, and system designers. To comprehensively investigate and document currently available electronic real-time information suitable for use in building management systems. Verify the reliability of the information and recommend accreditation methods for data and providers. Assess methodologies to automatically retrieve and utilize the information. Characterize equipment required to implement automated integration. Demonstrate the feasibility and benefits of using the information in building management systems. Identify evolutionary control strategies.

Mark J. Stunder; Perry Sebastian; Brenda A. Chube; Michael D. Koontz

2003-04-16T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

382

Building America System Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America System Building America System Research Eric Werling, DOE Ren Anderson, NREL eric.werling@ee.doe.gov, 202-586-0410 ren.anderson@nrel.gov, 303-384-7443 April 2, 2013 Building America System Innovations: Accelerating Innovation in Home Energy Savings 2 | Program Name or Ancillary Text eere.energy.gov Project Relevance 3 | Building Technologies Office eere.energy.gov Building America Fills Market Need for a High-Performance Homes HUB of Innovation

383

A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask  

Science Conference Proceedings (OSTI)

This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

Sanders, T.L. (Sandia National Labs., Albuquerque, NM (United States)); Jordan, H. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant); Pasupathi, V. (Battelle, Columbus, OH (United States)); Mings, W.J. (USDOE Idaho Field Office, Idaho Falls, ID (United States)); Reardon, P.C. (GRAM, Inc., Albuquerque, NM (United States))

1991-09-01T23:59:59.000Z

384

Honest Buildings | Open Energy Information  

Open Energy Info (EERE)

Honest Buildings Honest Buildings Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Honest Buildings Agency/Company /Organization: Honest Buildings Sector: Energy Focus Area: Buildings Resource Type: Software/modeling tools User Interface: Website Website: www.honestbuildings.com/ Web Application Link: www.honestbuildings.com/ Cost: Free Honest Buildings Screenshot References: Honest Buildings[1] Logo: Honest Buildings Honest Buildings is a software platform focused on buildings. It brings together building service providers, occupants, owners, and other stakeholders onto a single portal to exchange information, offerings, and needs. It provides a voice for everyone who occupies buildings, works with buildings, and owns buildings globally to comment, display projects, and

385

Building Technologies Office: About the Commercial Buildings...  

NLE Websites -- All DOE Office Websites (Extended Search)

and others to implement real-world energy saving opportunities. Commercial Building Basics Federal, state, and local governments as well as private companies, own, operate...

386

Better Buildings Partners: Better Buildings Residential Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Network The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to dramatically increase the...

387

Building Technologies Office: Building Energy Optimization Software  

NLE Websites -- All DOE Office Websites (Extended Search)

website to download. To help meet Building America's goal to develop market-ready energy solutions that improve efficiency of new and existing homes, the National Renewable...

388

Building Technologies Office: Energy Efficient Buildings Hub  

NLE Websites -- All DOE Office Websites (Extended Search)

the Energy Efficient Buildings Hub in Philadelphia, Pennsylvania to promote regional job creation and economic growth while also improving the energy efficiency of commercial...

389

Building Technologies Office: Commercial Building Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

390

Building Technologies Office: About the Buildings Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

391

Building Technologies Office: High Performance Green Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange...

392

Building Technologies Program: Building America Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

search Most Popular Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report) The addition of insulation to the exterior of buildings is an effective...

393

Better Buildings Partners: Better Buildings Residential Network...  

NLE Websites -- All DOE Office Websites (Extended Search)

work they are doing to advance energy efficiency. AFC First Alabama Energy Doctors Austin Energy BC Hydro Boulder County, Colorado Building Sustainable Solutions, LLC California...

394

Residential and commercial buildings data book. Second edition  

SciTech Connect

This Data Book updates and expands the previous Data Book originally published by the Department of Energy in October, 1984 (DOE/RL/01830/16). Energy-related information is provided under the following headings: Characteristics of Residential Buildings in the US; Characteristics of New Single Family Construction in the US; Characteristics of New Multi-Family Construction in the US; Household Appliances; Residential Sector Energy Consumption, Prices, and Expenditures; Characteristics of US Commercial Buildings; Commercial Buildings Energy Consumption, Prices, and Expenditures; Additional Buildings and Community Systems Information. This Data Book complements another Department of Energy document entitled ''Overview of Building Energy Use and Report of Analysis-1985'' October, 1985 (DOE/CE-0140). The Data Book provides supporting data and documentation to the report.

Crumb, L.W.; Bohn, A.A.

1986-09-01T23:59:59.000Z

395

Methodologies for Determining Persistence of Commissioning Benefits  

E-Print Network (OSTI)

Studies on the persistence of commissioning benefits to date have used a variety of methods to evaluate this persistence. This paper proposes a consistent framework for describing and evaluating the persistence of commissioning benefits. It begins by splitting commissioning benefits into two broad categories: 1) benefits that inherently persist; and 2) benefits that may not persist. The study of persistence then considers only the benefits that may not persist. These benefits are critical, since the top five reasons cited for performing commissioning in both new buildings and existing buildings are benefits that may not persist. These benefits are then further divided into benefits that may be quantified and benefits that are generally difficult to quantify. This paper proposes that benefits that may be quantified should generally be evaluated for persistence using approaches that are already widely accepted and used for other purposes, with adaptations where needed. Specifically, it proposes that energy and water savings be evaluated using methods consistent with the International Performance Measurement and Verification Protocol (adapted with additional weather normalization), that comfort and indoor air quality improvements be evaluated using relevant standards, specifically ASHRAE Standard 55 and ASHRAE Standard 62, but goes further and proposes a methodology for economic quantification of these benefits as well. Finally, it is proposed that the persistence of measures whose benefit is difficult to quantify be evaluated simply by determining whether the measure is still in place or performing.

Claridge, D. E.

2006-01-01T23:59:59.000Z

396

Meteorological modeling applications in building energy simulations  

SciTech Connect

Researchers use sophisticated computer models to predict building energy use. These models require extensive input data including building characteristics and dimensions, load schedules, and weather data. The typical source for weather data is the weather station at the nearest airport. Specifically, hourly values of ambient air temperature are necessary. The data obtained from local airports, however, may be significantly different from the actual weather experienced by a nearby residential building. Thus, using local airport data when simulating a residential building may yield inaccurate results. Furthermore, researchers interested in evaluating the potential for heat island mitigation schemes (such as urban tree planting programs) to decrease building air-conditioning energy use need a method for modifying the local airport data accordingly.

Sailor, D.J.; Akbari, H.

1992-08-01T23:59:59.000Z

397

Paducah DUF6 Conversion Final EIS - Appendix F: Assessment Methodologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX F: ASSESSMENT METHODOLOGIES Assessment Methodologies F-2 Paducah DUF 6 Conversion Final EIS Assessment Methodologies F-3 Paducah DUF 6 Conversion Final EIS APPENDIX F: ASSESSMENT METHODOLOGIES In general, the activities assessed in this environmental impact statement (EIS) could affect workers, members of the general public, and the environment during construction of new facilities, during routine operation of facilities, during transportation, and during facility or transportation accidents. Activities could have adverse effects (e.g., human health impairment) or positive effects (e.g., regional socioeconomic benefits, such as the creation of jobs). Some impacts would result primarily from the unique characteristics of the uranium and other chemical

398

Economic Energy Savings Potential in Federal Buildings  

Science Conference Proceedings (OSTI)

The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

2000-09-04T23:59:59.000Z

399

Microsoft Word - 42651 UCI System Study Methodology r051215.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

SYSTEMS STUDY METHODOLOGY SYSTEMS ANALYSES OF ADVANCED BRAYTON CYCLES FOR HIGH EFFICIENCY ZERO EMISSION PLANTS DOE Award No. DE-FC26-05NT42652 Prepared by: Advanced Power and Energy Program University of California Irvine, California 92697-3550 December 15, 2005 0 Table of Contents Introduction ................................................................................................ 1 Process Design Procedure ....................................................................... 1 Site Conditions and Feedstock Characteristics ........................................................................... 1 Site Conditions........................................................................................................................

400

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

402

Building energy modeling programs comparison Research on HVAC systems  

NLE Websites -- All DOE Office Websites (Extended Search)

energy modeling programs comparison Research on HVAC systems energy modeling programs comparison Research on HVAC systems simulation part Title Building energy modeling programs comparison Research on HVAC systems simulation part Publication Type Journal Year of Publication 2013 Authors Zhou, Xin, Da Yan, Tianzhen Hong, and Dandan Zhu Keywords Building energy modeling programs, comparison tests, HVAC system simulation, theory analysis Abstract Building energy simulation programs are effective tools for the evaluation of building energy saving and optimization of design. The fact that large discrepancies exist in simulated results when different BEMPs are used to model the same building has caused wide concern. Urgent research is needed to identify the main elements that contribute towards the simulation results. This technical report summarizes methodologies, processes, and the main assumptions of three building energy modeling programs (BEMPs) for HVAC calculations: EnergyPlus, DeST, and DOE-2.1E, and test cases are designed to analyze the calculation process in detail. This will help users to get a better understanding of BEMPs and the research methodology of building simulation. This will also help build a foundation for building energy code development and energy labeling programs.

403

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... methodology; fire safety; fire investigations; wind tunnels ... towers to withstand unanticipated events such as ... wind tunnel studies conducted in 2002 ...

404

Energy Efficient Buildings Hub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Henry C. Foley Henry C. Foley April 3, 2013 Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting Purpose and Objectives * Problem Statement - Building energy efficiency has not increased in recent decades compared to other sectors especially transportation - Building component technologies have become more energy efficient but buildings as a whole have not * Impact of Project - A 20% reduction in commercial building energy use could save the nation four quads of energy annually * Project Focus - This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists - The Hub approach is to comprehensively and systematically address

405

Building Energy Software Tools Directory: Tools by Subject - Whole Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy A B C D E F G H I L M N O P R S T U Z Tool Applications Free Recently Updated AEPS System Planning electrical system, renewable energy system, planning and design software, modeling, simulation, energy usage, system performance, financial analysis, solar, wind, hydro, behavior characteristics, usage profiles, generation load storage calculations, on-grid, off-grid, residential, commercial, system sizing, utility rate plans, rate comparison, utility costs, energy savings Software has been updated. Archelios PRO Photovoltaic simulation, 3D design, economics results BlueSol PV system sizing, PV system simulation, grid-connected PV systems, electrical components, shading, economic analysis. COMFIE energy performance, design, retrofit, residential buildings, commercial buildings, passive solar Software has been updated.

406

Evolutionary Tuning of Building Models to Monthly Electrical Consumption  

SciTech Connect

Building energy models of existing buildings are unreliable unless calibrated so they correlate well with actual energy usage. Calibrating models is costly because it is currently an art which requires significant manual effort by an experienced and skilled professional. An automated methodology could significantly decrease this cost and facilitate greater adoption of energy simulation capabilities into the marketplace. The Autotune project is a novel methodology which leverages supercomputing, large databases of simulation data, and machine learning to allow automatic calibration of simulations to match measured experimental data on commodity hardware. This paper shares initial results from the automated methodology applied to the calibration of building energy models (BEM) for EnergyPlus (E+) to reproduce measured monthly electrical data.

Garrett, Aaron [Jacksonville State University; New, Joshua Ryan [ORNL; Chandler, Theodore [Jacksonville State University

2013-01-01T23:59:59.000Z

407

NREL: Buildings Research - Residential Buildings Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Research Staff Residential Buildings Research Staff Members of the Residential Buildings research staff have backgrounds in architectural, civil, electrical, environmental, and mechanical engineering, as well as environmental design and physics. Ren Anderson Dennis Barley Chuck Booten Jay Burch Sean Casey Craig Christensen Dane Christensen Lieko Earle Cheryn Engebrecht Mike Gestwick Mike Heaney Scott Horowitz Kate Hudon Xin Jin Noel Merket Tim Merrigan David Roberts Joseph Robertson Stacey Rothgeb Bethany Sparn Paulo Cesar Tabares-Velasco Jeff Tomerlin Jon Winkler Jason Woods Support Staff Marcia Fratello Kristy Usnick Photo of Ren Anderson Ren Anderson, Ph.D., Manager, Residential Research Group ren.anderson@nrel.gov Research Focus: Evaluating the whole building benefits of emerging building energy

408

Building Technologies Office: Building America Research Teams  

NLE Websites -- All DOE Office Websites (Extended Search)

Teams Teams Building America research projects are completed by industry consortia (teams) comprised of leading experts from across the country. The research teams design, test, upgrade and build high performance homes using strategies that significantly cut energy use. Building America research teams are selected through a competitive process initiated by a request for proposals. Team members are experts in the field of residential building science, and have access to world-class research facilities, partners, and key personnel, ensuring successful progress toward U.S. Department of Energy (DOE) goals. This page provides a brief description of the teams, areas of focus, and key team members. Advanced Residential Integrated Energy Solutions Alliance for Residential Building Innovation

409

Building Technologies Office: Residential Building Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Activities Building Activities The Department of Energy (DOE) is leading several different activities to develop, demonstrate, and deploy cost-effective solutions to reduce energy consumption across the residential building sector by at least 50%. The U.S. DOE Solar Decathlon is a biennial contest which challenges college teams to design and build energy efficient houses powered by the sun. Each team competes in 10 contests designed to gauge the performance, livability and affordability of their house. The Building America program develops market-ready energy solutions that improve the efficiency of new and existing homes while increasing comfort, safety, and durability. Guidelines for Home Energy Professionals foster the growth of a high quality residential energy upgrade industry and a skilled and credentialed workforce.

410

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

411

NREL's Field Data Repository Supports Accurate Home Energy Analysis (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Data Field Data Repository Supports Accurate Home Energy Analysis The Residential Buildings Research Group at the National Renewable Energy Laboratory (NREL) has developed a repository of research-level residential building characteristics and historical energy use data to support ongoing efforts to improve the accuracy of residential energy analysis tools and the efficiency of energy assessment processes. The Field Data Repository currently includes data collected from historical programs where residential building characteristics (building geometry, insulation levels, equipment types, etc.), generally collected through energy audits, have been connected to measured energy use. With an emphasis on older homes, the repository contains datasets from Home Energy Rating System

412

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

413

City of Scottsdale - Green Building Policy for Public Buildings...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Savings City of Scottsdale - Green Building Policy for Public Buildings City of Scottsdale - Green Building Policy for...

414

Trends in Commercial Buildings--Buildings and Floorspace  

U.S. Energy Information Administration (EIA) Indexed Site

activity. Number of Commercial Buildings In 1979, the Nonresidential Buildings Energy Consumption Survey estimated that there were 3.8 million commercial buildings in the...

415

Building Energy Software Tools Directory: SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox SIMBAD Building and HVAC Toolbox logo. Performs transient simulations of HVAC plants with short time steps. SIMBAD Building and HVAC Toolbox is the...

416

Building Energy Software Tools Directory : SIMBAD Building and...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIMBAD Building and HVAC Toolbox Back to Tool Screenshot for SIMBAD Building and HVAC Toolbox. Screenshot for SIMBAD Building and HVAC Toolbox...

417

Building America Top Innovations 2013 Profile - Building America...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Building America Top Innovations 2013 Profile - Building America Solution Center PNNL set up the framework for the Building America Solution Center, a web tool connecting...

418

Energy Efficiency and Green Building Standards for State Buildings...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

419

High-Performance Building Requirements for State Buildings (South...  

Open Energy Info (EERE)

State Buildings Incentive Type Energy Standards for Public Buildings Applicable Sector State Government Eligible Technologies Comprehensive MeasuresWhole Building, Biomass,...

420

About Building Energy Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings account for approximately 41% of all energy consumption and 72% of electricity usage. Building energy codes increase energy efficiency in buildings, resulting in...

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building Technologies Office: Building America's Top Innovations Advance  

NLE Websites -- All DOE Office Websites (Extended Search)

America's Top America's Top Innovations Advance High Performance Homes to someone by E-mail Share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Facebook Tweet about Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Twitter Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Google Bookmark Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Delicious Rank Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on Digg Find More places to share Building Technologies Office: Building America's Top Innovations Advance High Performance Homes on AddThis.com...

422

Building Technologies Office: Subscribe to Building Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

423

Commercial Building Energy Asset Score Features | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Score Score Features Commercial Building Energy Asset Score Features The Asset Scoring Tool evaluates buildings by use type. The initial version of the Asset Scoring Tool included: office, school, retail, and unrefrigerated warehouse buildings. Phase II currently under development, which will be used for the 2013 Pilot, includes library, lodging, multi-family housing, and courthouse buildings, as well as mixed-use types of buildings that incorporate Phase I and II. You can enter small and large commercial buildings, and an Asset Score will be equally applicable to new and existing buildings. Inputs You can enter these building characteristics: General information-number of floors, footprint dimension, orientation, and use type Envelope components-roof, exterior wall, and floor types and

424

Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

425

Change in historic buildings  

E-Print Network (OSTI)

Change in historic buildings is inevitable. If these changes are not well-managed, the cityscape will be threatened because a city is composed of buildings. A good city should combine both growth and preservation. Controlling ...

Yin, Chien-Ni

1992-01-01T23:59:59.000Z

426

Building condition monitoring  

E-Print Network (OSTI)

The building sector of the United States currently consumes over 40% of the United States primary energy supply. Estimates suggest that between 5 and 30% of any building's annual energy consumption is unknowingly wasted ...

Samouhos, Stephen V. (Stephen Vincent), 1982-

2010-01-01T23:59:59.000Z

427

BUILDING PROCTOR December 2009  

E-Print Network (OSTI)

­ 1 Facilities Management Directory.......................................................................Maintenance ...............................................Maintenance ­ 15 Building Audit System to Facilities Management Dispatch Office (491-0077) who, in turn, addresses the maintenance needs. The building

428

Model Building Energy Code  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

429

Building, landscape and section  

E-Print Network (OSTI)

All buildings have in their section a relationship to the landscape on which they are sited. Therefore we as inhabitants of these buildings may or may not have a relationship with the landscape. It is the supposition of ...

Johnson, Daniel B. (Daniel Bryant)

1992-01-01T23:59:59.000Z

430

Building Energy Standards  

Energy.gov (U.S. Department of Energy (DOE))

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

431

Buildings Performance Database  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Buildings Performance DOE Buildings Performance Database Paul Mathew Lawrence Berkeley National Laboratory pamathew@lbl.gov (510) 486 5116 April 3, 2013 Standard Data Spec API 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * Large-scale high-quality empirical data on building energy performance is critical to support decision- making and increase confidence in energy efficiency investments. * While there are a many potential sources for such data,

432

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Cost-Effective Responses to Terrorist Risks in Constructed Facilities. ... building economics; disaster mitigation; economic analysis; homeland security ...

433

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... to the World Trade Center Disaster. ... World Trade Center; disasters; building collapse ... fires; flameproofing; steels; evacuation; response time; roofs ...

434

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... State Solar Energy Legislation of 1976: A Review of Statutes Relating to Buildings. Final Report. State Solar Energy Legislation ...

435

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... GSA Guide to Specifying Interoperable Building Automation and Control Systems Using ANSI/ASHRAE Standard 135-1995, BACnet. ...

436

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... office buildings; air intake; systems engineering; maintenance; occupants; air flow; diffusers; air quality; ventilation systems; ASHRAE 62-2007 ...

437

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use. Investigation of the Impact ...

438

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... of Entombment as a Decommission Option. ... Safety of Existing Federal Buildings: A Handbook. ... Madrzykowski, D. Manual of Evaluation Procedures ...

439

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Armed Forces Scientific Institute for Protection Technologies in the Field ... National Institute of Standards and Technology. ... Energy and Buildings, Vol. ...

440

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... in Operations, Maintenance, and Energy Costs for ... Strengthening, and Repair Technologies for Buildings ... Combustion Science and Technology, Vol. ...

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... residential energy consumption. Field Study of the Effect of Wall Mass on the Heating and Cooling Loads of Residential Buildings. ...

442

Construction and Building  

Science Conference Proceedings (OSTI)

... in building sector energy consumption by improving ... housing construction: improving energy efficiency and ... Reinforced Soil Bridge Pier Load Test ...

2000-03-07T23:59:59.000Z

443

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... energy management system. Friend or Foe? ... Bushby, ST; Information Model for Building Automation Systems. Automation in Construction, Vol. ...

444

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... insulation technologies are being developed in order to meet increasing stringent minimum efficiency standards for appliances and building ...

445

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Unfortunately, the equipment used to determine the thermal resistance of traditional building, insulation materials is not well suited for measuring ...

446

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... thermal conductance; thermal insulation; test methods Abstract: Calibration measurements of thin heat flux sensors for building applications are ...

447

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... Thermal Expansion 17th Symposium. Proceedings. Chapter 2: Building Insulation Materials. June 24-27, 2007, Birmingham ...

448

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... sprinklers; egress; fire spread; fire models; polyurethane foams; pyrotechnics; smoke; insulation; death; fire fatalities; building codes; fire codes ...

449

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... National Institute of Standards and Technology is building an advanced ... thermal transmission properties for specimens of thermal insulation 500 mm ...

450

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... 1993. Journal of Thermal Insulation and Building Environments, Vol. 17, 330-350, April 1994. Keywords: polyisocyanurate ...

451

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

452

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... emergency plans. Stairwell Evacuation From Buildings: What We Know We Don't Know. NIST TN 1624; NIST Technical ...

453

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... F. NISTIR 7193; Appendix F; January 2005.Workshop to Define Information Needed by Emergency Responders During Building Emergencies. ...

454

Building Technologies Office: Appliance and Equipment Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE Building Technologies Office Appliance & Equipment Standards...

455

Building Energy Software Tools Directory: STE  

NLE Websites -- All DOE Office Websites (Extended Search)

STE STE Software with two modules, one for the verification of the regulation aimed essentially at residential and small commercial buildings (RCCTE), and another for the verification of the regulation aimed essentially at buildings with HVAC power higher than 25 kW (RSECE). Both modules are single zone. The RCCTE module is based on steady state assumptions, while the method for RSECE is based on a dynamic hourly simulation for a complete year, in line with the methodology adopted by the newly revised EN ISO 13790. Screen Shots Keywords thermal regulations, residential and commercial buildings, energy certification Validation/Testing The hourly simulation module was compared to detailed ESP-r simulations and proven to be quite precise (within 5% for most cases).

456

Building Energy Software Tools Directory: DPClima  

NLE Websites -- All DOE Office Websites (Extended Search)

DPClima DPClima DPClima logo. Helps size any system for heating and air conditioning of a building, i.e., the terminal units, the zone units and the total capacity of the cooling or heating plants. DPClima performs a 24 hour calculation of the steady state value of the cooling and heating loads of a building for a typical day of each month (either the coldest or the hottest). DPClima organizes the spaces into several zones inside the building so that the designer is able to adapt its system best to the thermal response of those zones. The calculations are done using the heat transfer functions methodology. Inside the spaces schedules are defined for; occupancy, lights and other loads. A database is distributed with information about types of walls, glasses, human activities, type of lights, etc. Screen Shots

457

Building Songs 1  

E-Print Network (OSTI)

. Sman shad building song 1.WAV Length of track 00:01:36 Related tracks (include description/relationship if appropriate) Sman shad building song 2 Title of track Building Songs Translation of title Description (to be used in archive entry...

Zla ba sgrol ma

2009-11-06T23:59:59.000Z

458

Axioms of affine buildings  

E-Print Network (OSTI)

We prove equivalence of certain axiom sets for affine buildings. Along the lines a purely combinatorial proof of the existence of a spherical building at infinity is given. As a corollary we obtain that ``being an affine building'' is independent of the metric structure of the space.

Schwer, Petra N

2009-01-01T23:59:59.000Z

459

Building application stack (BAS)  

Science Conference Proceedings (OSTI)

Many commercial buildings have digital controls and extensive sensor networks that can be used to develop novel applications for saving energy, detecting faults, improving comfort, etc. However, buildings are custom designed, leading to differences in ... Keywords: building applications, controls, energy efficiency

Andrew Krioukov; Gabe Fierro; Nikita Kitaev; David Culler

2012-11-01T23:59:59.000Z

460

PROGRESS IN ENERGY EFFICIENT BUILDINGS  

E-Print Network (OSTI)

I Figure 21. Sample building energy use label expressed inanalyses of actual buildings energy consumption data confirm1983. PROGRESS IN ENERGY EFFICIENT BUILDINGS Leonard W. Wall

Wall, L.W.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Buildings Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Buildings Blog RSS November 5, 2013 The Building Technologies Office's Emerging Technologies Program works to advance new commerical building technologies that are expected to...

462

Buildings News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings News Buildings News RSS November 6, 2013 Milwaukee Showcases Leadership in Energy Efficiency, Better Buildings Challenge National Program to Reduce Energy Use and Save...

463

California commercial building energy benchmarking  

E-Print Network (OSTI)

querying (building type, climate zone, etc) sufficient forBuilding Type Floor Area Climate Zone Building Age Heatingtype, and zip code/climate zone. A memo describing the

Kinney, Satkartar; Piette, Mary Ann

2003-01-01T23:59:59.000Z

464

Building Technologies Program: ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Program: ENERGY STAR on Google Bookmark Building Technologies Program: ENERGY STAR on Delicious Rank Building...

465

Building Technologies Office: News Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

News Archives on Twitter Bookmark Building Technologies Office: News Archives on Google Bookmark Building Technologies Office: News Archives on Delicious Rank Building...

466

Building Technologies Office: Schedule Setting  

NLE Websites -- All DOE Office Websites (Extended Search)

Schedule Setting on Twitter Bookmark Building Technologies Office: Schedule Setting on Google Bookmark Building Technologies Office: Schedule Setting on Delicious Rank Building...

467

Building Technologies Office: ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR on Twitter Bookmark Building Technologies Office: ENERGY STAR on Google Bookmark Building Technologies Office: ENERGY STAR on Delicious Rank Building...

468

Building Technologies Program: Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Program: Peer Review on Twitter Bookmark Building Technologies Program: Peer Review on Google Bookmark Building Technologies Program: Peer Review on Delicious Rank Building...

469

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building...

470

Building Technologies Office: Process Rule  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Process Rule on Twitter Bookmark Building Technologies Office: Process Rule on Google Bookmark Building Technologies Office: Process Rule on Delicious Rank Building...

471

Building Technologies Office: Bookmark Notice  

NLE Websites -- All DOE Office Websites (Extended Search)

in Commercial Buildings Commercial Building Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Energy Asset Score Building...

472

Building Insulation | Open Energy Information  

Open Energy Info (EERE)

Building Insulation Jump to: navigation, search TODO: Add description List of Building Insulation Incentives Retrieved from "http:en.openei.orgwindex.php?titleBuildingInsulat...

473

A Platform-Independent Methodology for Performance Estimation of Multimedia Signal Processing Applications  

Science Conference Proceedings (OSTI)

A methodological framework for performance estimation of multimedia signal processing applications on different implementation platforms is presented. The methodology derives a complexity profile which is characteristic for an application, but completely ... Keywords: MPEG-4, bitstream analysis, complexity, digital signal processor, multimedia signal processing, performance estimation

Hans-Joachim Stolberg; Mladen Berekovi?; Peter Pirsch

2005-09-01T23:59:59.000Z

474

Chapter 3: Building Siting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Building Siting : Building Siting Site Issues at LANL Site Inventory and Analysis Site Design Transportation and Parking LANL | Chapter 3 Site Issues at LANL Definitions and related documents Building Siting Laboratory site-wide issues include transportation and travel distances for building occupants, impacts on wildlife corridors and hydrology, and energy supply and distribution limitations. Decisions made during site selec- tion and planning impact the surrounding natural habitat, architectural design integration, building energy con- sumption, occupant comfort, and occupant productivity. Significant opportunities for creating greener facilities arise during the site selection and site planning stages of design. Because LANL development zones are pre- determined, identify the various factors affecting devel-

475

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

476

Better Buildings Alliance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kristen Taddonio DOE/EERE/BTO/Commercial Program Kristen.Taddonio@ee.doe.gov April 2, 2013 Better Buildings Alliance BTO Program Peer Review 2 | Building Technologies Office eere.energy.gov BTO Goals: BTO supports the development and deployment of technologies and systems to reduce building energy use by 50 percent, saving ~$2.2 trillion in energy-related costs. CBI Program Goals: New Buildings - Demonstrate 50% cost-effective savings at a convincing scale by 2020 (EISA 2007) - Demonstrate 100% cost-effective savings at a convincing scale by 2030 (EISA 2007) Existing Buildings

477

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

478

Autotune Building Energy Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

479

NREL: Buildings Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL publishes a variety of documents related to its research, including technical reports, brochures, and presentations. Read the information below to find out how to find a publication about buildings research at NREL. Accessing Research Papers Buildings Technical Highlights Research Papers - Commercial Research Papers - Residential Accessing Buildings Research Documents Documents produced by NREL related to buildings technologies may be accessed online in several different ways. National Renewable Energy Laboratory Publications Database The NREL Publications Database covers building technology documents written or edited by NREL staff and subcontractors from 1977 to the present. The database includes technical reports as well as outreach publications such

480

Green Building Codes | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Building Codes Green Building Codes Green building codes go beyond minimum code requirements, raising the bar for energy efficiency. They can serve as a proving ground for future standards, and incorporate elements beyond the scope of the model energy codes, such as water and resource efficiency. As regional and national green building codes and programs become more available, they provide jurisdictions with another tool for guiding construction and development in an overall less impactful, more sustainable manner. ICC ASHRAE Beyond Codes International Green Construction Code (IgCC) The International Code Council's (ICC's) International Green Construction code (IgCC) is an overlay code, meaning it is written in a manner to be used with all the other ICC codes. The IgCC contains provisions for site

Note: This page contains sample records for the topic "methodology building characteristics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.