Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Methanol production from biomass and natural gas as transportation fuel  

Science Conference Proceedings (OSTI)

Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (1) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the US, (2) minimizes emissions of criteria pollutants, (3) reduces greenhouse gas emissions from production and use, (4) is cost-competitive with petroleum fuel, and (5) is compatible with the emerging vehicle technologies, especially those powdered by fuel cells. The methanol yield, production cost, and potential for reduction of overall fuel-cycle CO{sub 2} emissions were evaluated and compared to those of reformulated gasoline. The results show that a process utilizing natural gas and biomass as cofeedstocks can meet the five requirements more effectively than individual processes utilizing those feedstocks separately. When end-use efficiencies are accounted for, the cost per vehicle mile traveled would be less than that of gasoline used in current vehicles. CO{sub 2} emissions from the vehicle fleet would be reduced 66% by methanol used in fuel cell vehicles and 8--36% in flexible-fuel or dedicated-methanol vehicles during the transition period. Methanol produced from natural gas and biomass, together in one process, and used in fuel cell vehicles would leverage petroleum displacement by a factor of about 5 and achieve twice the overall CO{sub 2} emission reduction obtainable from the use of biomass alone.

Borgwardt, R.H. [Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.

1998-09-01T23:59:59.000Z

2

Natural gas annual 1992: Supplement: Company profiles  

SciTech Connect

The data for the Natural Gas Annual 1991 Supplement : Company Profiles are taken from Form EIA-176, (open quotes) Annual Report of Natural and Supplemental Gas Supply and Disposition (close quotes). Other sources include industry literature and corporate annual reports to shareholders. The companies appearing in this report are major interstate natural gas pipeline companies, large distribution companies, or combination companies with both pipeline and distribution operations. The report contains profiles of 45 corporate families. The profiles describe briefly each company, where it operates, and any important issues that the company faces. The purpose of this report is to show the movement of natural gas through the various States served by the 45 large companies profiled.

Not Available

1994-01-01T23:59:59.000Z

3

Natural gas annual 1993 supplement: Company profiles  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. This report, the Natural Gas Annual 1993 Supplement: Company Profiles, presents a detailed profile of 45 selected companies in the natural gas industry. The purpose of this report is to show the movement of natural gas through the various States served by the companies profiled. The companies in this report are interstate pipeline companies or local distribution companies (LDC`s). Interstate pipeline companies acquire gas supplies from company owned production, purchases from producers, and receipts for transportation for account of others. Pipeline systems, service area maps, company supply and disposition data are presented.

Not Available

1995-02-01T23:59:59.000Z

4

Wisconsin Natural Gas Input Supplemental Fuels (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

Input Supplemental Fuels (Million Cubic Feet) Wisconsin Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

5

Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Input Supplemental Fuels (Million Cubic Feet) Vermont Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

6

New Mexico Natural Gas Input Supplemental Fuels (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Input Supplemental Fuels (Million Cubic Feet) New Mexico Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

7

New Mexico Natural Gas Supplemental Gas - Propane Air (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Supplemental Gas - Propane Air (Million Cubic Feet) New Mexico Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

8

Texas Natural Gas Input Supplemental Fuels (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Input Supplemental Fuels (Million Cubic Feet) Texas Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

9

New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 774 720 582 328 681 509 362 464 492 592 1990's 205 128 96 154 160 90 147 102 103 111 2000's 180 86 66 58 91 84 92 9 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas New Hampshire Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

10

Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15 13 15 11 11 9 10 21 79 154 1990's 181 154 180 4 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Washington Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

11

Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 48 106 337 1 3 11 2 1 385 315 1990's 56 49 52 78 289 194 709 172 50 64 2000's 101 118 13 42 71 154 13 54 46 47 2010's 12 20 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Minnesota Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

12

District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 2 1 46 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas District of Columbia Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition)

13

Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 484 498 984 352 332 373 155 136 743 899 1990's 24 72 126 418 987 609 882 178 80 498 2000's 319 186 48 160 124 382 41 245 181 170 2010's 115 89 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Maryland Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

14

Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 57 64 68 23 53 45 44 40 34 82 1990's 81 46 45 84 123 96 301 137 17 12 2000's 44 39 23 143 30 31 46 40 27 3 2010's 2 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Iowa Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

15

Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3,127 10,532 5,621 3,844 82 221 196 247 254 305 1990's 220 222 132 110 252 75 266 135 80 119 2000's 261 107 103 126 131 132 124 145 123 205 2010's 4 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Pennsylvania Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

16

Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 65 60 2,129 1,278 326 351 1 1 2 1,875 1990's 0 0 0 0 371 4 785 719 40 207 2000's 972 31 62 1,056 917 15 78 66 6 10 2010's 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Missouri Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

17

Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 257 951 718 594 102 130 182 109 391 219 1990's 51 92 155 126 0 27 42 18 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Rhode Island Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

18

Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 24 57 151 84 28 121 124 248 241 292 1990's 209 185 166 199 123 130 94 14 16 12 2000's 73 51 7 14 5 0 3 2 52 2010's 732 701 660 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Georgia Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

19

Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Delaware Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

20

South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 24 50 1 0 0 0 0 10 16 1990's 10 3 10 9 61 37 87 30 4 5 2000's 13 5 3 57 5 4 0 1 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas South Dakota Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 144 1,584 1,077 291 239 343 298 180 245 251 1990's 111 146 40 94 29 68 48 37 33 31 2000's 20 6 6 57 191 273 91 0 0 1 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Connecticut Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

22

South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 74 184 63 73 62 87 31 22 191 201 1990's 17 47 26 34 154 62 178 10 0 18 2000's 63 6 3 15 2 86 75 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas South Carolina Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

23

Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 12 42 90 39 25 36 13 26 36 78 1990's 3 8 12 13 84 33 73 19 4 11 2000's 13 0 1 1 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Tennessee Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

24

Total Supplemental Supply of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources &...

25

Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 1,838 63 2,006 2,470 2,689 2,142 2,199 1,948 2,088 1990's 2,361 2,032 1,437 791 890 15 315 134 11 4 2000's 339 6 1 13 39 16 19 33 28 18 2010's 12 9 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Nebraska Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

26

Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 69,169 69,850 64,812 62,032 43,866 24,444 5,182 18 44 348 1990's 849 891 1,051 992 1,432 904 1,828 1,423 1,194 1,200 2000's 1,442 1,149 79 1,002 492 579 423 608 460 522 2010's 353 296 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Ohio Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

27

Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,190 2,993 2,899 2,775 2,449 2,655 2,630 2,461 2,801 2,844 1990's 2,817 2,725 2,711 2,705 2,831 2,793 2,761 2,617 2,715 2,752 2000's 2,769 2,689 2,602 2,602 2,626 2,606 2,613 2,683 2,559 2,447 2010's 2,472 2,467 2,510 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Hawaii Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

28

Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15,366 21,828 17,586 10,732 6,545 3,668 2,379 1,404 876 692 1990's 317 120 105 61 154 420 426 147 68 134 2000's 26 16 137 324 80 46 51 15 13 10 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Massachusetts Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

29

New Jersey Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) New Jersey Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9,574 11,504 9,786 9,896 8,616 13,421 12,099 13,774 14,846 14,539 1990's 9,962 14,789 14,362 14,950 7,737 7,291 6,778 6,464 9,082 5,761 2000's 8,296 12,330 3,526 473 530 435 175 379 489 454 2010's 457 392 139 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas New Jersey Supplemental Supplies of Natural Gas

30

Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Michigan Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3 3,038 2,473 2,956 2,773 2,789 2,754 2,483 2,402 2,402 1990's 19,106 15,016 14,694 12,795 13,688 21,378 21,848 22,238 21,967 20,896 2000's 12,423 4,054 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Michigan Supplemental Supplies of Natural Gas

31

Colorado Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Colorado Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9,868 9,133 8,877 7,927 9,137 8,934 8,095 8,612 10,322 9,190 1990's 15,379 6,778 7,158 8,456 8,168 7,170 6,787 6,314 5,292 4,526 2000's 4,772 5,625 5,771 5,409 5,308 5,285 6,149 6,869 6,258 7,527 2010's 5,148 4,268 4,412 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Colorado Supplemental Supplies of Natural Gas

32

Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Indiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 1,602 5,056 3,496 4,142 4,027 2,711 2,351 3,890 4,243 3,512 1990's 3,015 3,077 3,507 3,232 2,457 3,199 3,194 3,580 3,149 5,442 2000's 5,583 5,219 1,748 2,376 2,164 1,988 1,642 635 30 1 2010's 1 5 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Indiana Supplemental Supplies of Natural Gas

33

Illinois Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Illinois Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 36,713 29,509 19,005 19,734 17,308 19,805 22,980 12,514 9,803 9,477 1990's 8,140 6,869 8,042 9,760 7,871 6,256 3,912 4,165 2,736 2,527 2000's 1,955 763 456 52 14 15 13 11 15 20 2010's 17 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Illinois Supplemental Supplies of Natural Gas

34

North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) North Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 196 417 102 0 8,335 40,370 49,847 51,543 49,014 54,408 1990's 53,144 52,557 58,496 57,680 57,127 57,393 55,867 53,179 54,672 53,185 2000's 49,190 51,004 53,184 53,192 47,362 51,329 54,361 51,103 50,536 53,495 2010's 54,813 51,303 52,541 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas

35

U.S. Natural Gas Input Supplemental Fuels (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) U.S. Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

36

Hynol -- An economic process for methanol production from biomass and natural gas with reduced CO{sub 2} emission  

DOE Green Energy (OSTI)

The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO{sub 2} emission. This new process consists of three reaction steps: (a) hydrogasification of biomass, (b) steam reforming of the produced gas with additional natural gas feedstock, and (c) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H{sub 2}-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO{sub 2} emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.

Steinberg, M. [Brookhaven National Lab., Upton, NY (United States); Dong, Yuanji [Hynol Corp., New York, NY (United States)

1993-10-01T23:59:59.000Z

37

1995 world methanol conference  

Science Conference Proceedings (OSTI)

The 20 papers contained in this volume deal with the global markets for methanol, the production of MTBE, integrating methanol production into a coal-to-SNG complex, production of methanol from natural gas, catalysts for methanol production from various synthesis gases, combined cycle power plants using methanol as fuel, and economics of the methanol industry. All papers have been processed for inclusion on the data base.

NONE

1995-12-31T23:59:59.000Z

38

U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Biomass Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Biomass Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

39

U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Propane Air (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

40

,"Arkansas Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sar_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sar_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:49 AM"

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

,"Illinois Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sil_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sil_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

42

,"Pennsylvania Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_spa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_spa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:55 AM"

43

,"Iowa Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sia_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sia_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

44

,"Alabama Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sal_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sal_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:49 AM"

45

,"Maryland Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_smd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_smd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:52 AM"

46

,"New Jersey Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snj_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snj_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:54 AM"

47

,"Hawaii Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_shi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_shi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

48

,"Rhode Island Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sri_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sri_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:55 AM"

49

,"Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet)" Input Supplemental Fuels (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_ovi_sla_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_ovi_sla_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

50

,"North Carolina Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snc_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snc_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:53 AM"

51

,"Alaska Natural Gas Input Supplemental Fuels (Million Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet)" Input Supplemental Fuels (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Input Supplemental Fuels (Million Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na_epg0_ovi_sak_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na_epg0_ovi_sak_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

52

,"Connecticut Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sct_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sct_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

53

,"Minnesota Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_smn_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_smn_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:53 AM"

54

,"New Mexico Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snm_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snm_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:54 AM"

55

,"Wyoming Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_swy_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_swy_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

56

,"Washington Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_swa_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_swa_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

57

,"Wisconsin Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_swi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_swi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

58

,"New Hampshire Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snh_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snh_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:54 AM"

59

,"Kentucky Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sky_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sky_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

60

,"Tennessee Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_stn_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_stn_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:56 AM"

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

,"Indiana Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sin_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sin_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:51 AM"

62

,"Michigan Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_smi_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_smi_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:52 AM"

63

,"Virginia Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sva_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sva_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

64

,"Georgia Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sga_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sga_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

65

,"South Dakota Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_ssd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_ssd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:56 AM"

66

,"Nebraska Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sne_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sne_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:53 AM"

67

,"Delaware Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

68

,"North Dakota Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snd_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snd_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:53 AM"

69

,"South Carolina Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_ssc_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_ssc_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:56 AM"

70

,"Massachusetts Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sma_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sma_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:52 AM"

71

,"Nevada Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_snv_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_snv_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:54 AM"

72

,"Texas Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_stx_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_stx_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:56 AM"

73

,"U.S. Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9090us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9090us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:57:08 AM"

74

,"Colorado Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sco_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sco_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:49 AM"

75

,"Oregon Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sor_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sor_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:55 AM"

76

,"Florida Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sfl_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sfl_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

77

,"Vermont Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_svt_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_svt_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:57 AM"

78

,"Maine Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sme_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sme_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:52 AM"

79

Alternative Fuels Data Center: Methanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Methanol to someone by Methanol to someone by E-mail Share Alternative Fuels Data Center: Methanol on Facebook Tweet about Alternative Fuels Data Center: Methanol on Twitter Bookmark Alternative Fuels Data Center: Methanol on Google Bookmark Alternative Fuels Data Center: Methanol on Delicious Rank Alternative Fuels Data Center: Methanol on Digg Find More places to share Alternative Fuels Data Center: Methanol on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Methanol Methanol (CH3OH), also known as wood alcohol, is an alternative fuel under the Energy Policy Act of 1992. As an engine fuel, methanol has chemical and physical fuel properties similar to ethanol. Methanol use in vehicles has declined dramatically since the early 1990s, and automakers no longer

80

Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1991-1995 Progress Report.  

DOE Green Energy (OSTI)

In this report, the National Marine Fisheries Service (NMFS), in collaboration with the Bonneville Power Administration (BPA), the Washington State Department of Fish and Wildlife (WDFW), and the US Fish and Wildlife Service (USFWS), presents research findings and guidelines for development and evaluation of innovative culture techniques to increase postrelease survival of hatchery fish. The Natural Rearing Enhancement System (NATURES) described in this report is a collection of experimental approaches designed to produce hatchery-reared chinook salmon (Oncorhynchus tshawytscha) that exhibit wild-like behavior, physiology, and morphology. The NATURES culture research for salmonids included multiple tests to develop techniques such as: raceways equipped with cover, structure, and natural substrates to promote development of proper body camouflage coloration; feed-delivery systems that condition fish to orient to the bottom rather than the surface of the rearing vessel; predator conditioning of fish to train them to avoid predators; and supplementing diets with natural live foods to improve foraging ability. The underlying assumptions are that NATURES will: (1) promote the development of natural cryptic coloration and antipredator behavior; (2) increase postrelease foraging efficiency; (3) improve fish health and condition by alleviating chronic, artificial rearing habitat-induced stress; and (4) reduce potential genetic selection pressures induced by the conventional salmon culture environment. A goal in using NATURES is to provide quality fish for rebuilding depleted natural runs.

Maynard, Desmond J.; Flagg, Thomas A.; Mahnken, Conrad V.W.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Development of Methanol Industry and Methanol Fuel in China  

Science Conference Proceedings (OSTI)

In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

Li, W.Y.; Li, Z.; Xie, K.C. [Taiyuan University of Technology, Taiyuan (China)

2009-07-01T23:59:59.000Z

82

Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1999-2003 Progress Report.  

DOE Green Energy (OSTI)

The National Marine Fisheries Service (NMFS) has been conducting Natural Rearing Enhancement System (NATURES) research since the early 1990s. NATURES studies have looked at a variety of mechanisms to enhance production of wild-like salmonids from hatcheries. The goal of NATURES research is to develop fish culture techniques that enable hatcheries to produce salmon with more wild-like characteristics and increased postrelease survival. The development of such techniques is called for in the Columbia Basin Fish and Wildlife Program. This document is the draft report for the Supplemental Fish Quality Contract DE-AI79-91BP20651 Over the history of the project, the effects of seminatural raceway habitats, automated underwater feeders, exercise current velocities, live food diets, and predator avoidance training have been investigated. The findings of these studies are reported in an earlier contract report (Maynard et al. 1996a). The current report focuses on research that has been conducted between 1999 and 2002. This includes studies on the effect of exercise on salmon and steelhead trout, effects of predator avoid training, integration of NATUES protocols into production hatcheries, and the study of social behavior of steelhead grown in enriched and conventional environments. Traditionally, salmon (Oncorhynchus spp.) are reared in barren concrete raceways that lack natural substrate, in-stream structure, or overhead cover. The fish are fed in an unnatural manner with artificial feeds mechanically or hand broadcast across the water surface. This traditional approach has increased the egg-to-smolt survival of hatchery-reared fish by an order of magnitude over that experienced by wild-reared salmon. However, once hatchery-reared fish are released into the wild their smolt-to-adult survival is usually much lower than wild-reared salmon. The reduced postrelease survival of hatchery-reared fish may stem from differences in their behavior and morphology compared to wild-reared salmon. After release, hatchery-reared fish are inefficient foragers and are often found with empty stomachs or stomachs filled with indigestible debris (Miller 1953, Hochachka 1961, Reimers 1963, Sosiak et al. 1979, Myers 1980, O'Grady 1983, Johnsen and Ugedal 1986). Their social behavior also differs, with hatchery-reared fish congregating at higher densities, being more aggressive, and displaying less territory fidelity than wild-reared fish (Fenderson et al. 1968, Bachman 1984, Swain and Riddell 1990). In the natural environment this results in hatchery-reared fish spending more time in high-risk aggressive behavior and less time in beneficial foraging behavior than their wild-reared counterparts. Hatchery-reared fish are also more surface oriented than wild-reared salmonids (Mason et al. 1967, Sosiak 1978). This increases their risk of being attacked by avian predators, such as kingfishers (Ceryle spp.), which search for fish near the surface. Although some of the differences between wild and hatchery-reared fish are innate (Reisenbichler and McIntyre 1977, Swain and Riddell 1990), many are conditioned and can be modified by altering the hatchery rearing environment. NATURES studies are aimed at developing a more natural salmon culture environment to prevent the development of these unnatural attributes in hatchery-reared fish. NATURES fish culture practices are already producing salmon with up to about 50% higher in-stream survival than conventionally-reared fish (Maynard et al. 1996b). When these techniques are incorporated into production releases, they should also translate into increased smolt-to-adult survival. Conservation and supplementation programs can use NATURES-reared salmonids to rebuild stocks currently listed as endangered and threatened into healthy self-sustaining runs more rapidly than traditional programs. Traditional production programs can also use high-survival NATURES-reared fish to reduce their impact on wild populations, while still meeting their adult mitigation goals.

Maynard, Desmond J.

2003-02-25T23:59:59.000Z

83

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

Richards, and L. Aruoux, "CNG Market DevelopmentStudy," Pub.with compressed natural gas (CNG). Weconclude that methanolrelative to methanol and CNG. ) )ASCENDANCE OF METHANOL

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

84

Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells A direct methanol fuel cell...

85

Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Energy Outlook Supplement: Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields Tuesday, September 10, 2013, 10:00AM EST Overview During July and August 2013, protests at major oil loading ports in the central-eastern region of Libya forced the complete or partial shut-in of oil fields linked to the ports. As a result of protests at ports and at some oil fields, crude oil production fell to 1.0 million barrels per day (bbl/d) in July and 600,000 bbl/d in August, although the production level at the end of August was far lower. At the end of August, an armed group blocked pipelines that connect the El Sharara and El Feel (Elephant) fields to the Zawiya and Mellitah export terminals, respectively, forcing the shutdown of those fields. El Sharara had been

86

Methane to methanol conversion  

DOE Green Energy (OSTI)

The purpose of this project is to develop a novel process by which natural gas or methane from coal gasification products can be converted to a transportable liquid fuel. It is proposed that methanol can be produced by the direct, partial oxidation of methane utilizing air or oxygen. It is anticipated that, compared to present technologies, the new process might offer significant economic advantages with respect to capital investment and methane feedstock purity requirements. Results to date are discussed. 6 refs.

Finch, F.T.; Danen, W.C.; Lyman, J.L.; Oldenborg, R.C.; Rofer, C.K.; Ferris, M.J.

1990-01-01T23:59:59.000Z

87

Method for making methanol  

DOE Patents (OSTI)

Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

Mednick, R. Lawrence (Roslyn Heights, NY); Blum, David B. (Wayne, NJ)

1986-01-01T23:59:59.000Z

88

Method for making methanol  

DOE Patents (OSTI)

Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.

Mednick, R. Lawrence (Roslyn Heights, NY); Blum, David B. (Wayne, NJ)

1987-01-01T23:59:59.000Z

89

Development of a Natural Rearing System to Improve Supplemental Fish Quality, 1996-1998 Progress Report.  

SciTech Connect

This report covers the 1996-1998 Natural Rearing Enhancement System (NATURES) research for increasing hatchery salmon postrelease survival and producing fish with more wild-like behavior, physiology, and morphology prior to release. Experiments were conducted evaluating automatic subsurface feeders; natural diets; exercise systems; seminatural raceway habitat enriched with cover, structure, and substrate; and predator avoidance conditioning for hatchery salmonids. Automatic subsurface feed delivery systems did not affect chinook salmon depth distribution or vulnerability to avian predators. Live-food diets only marginally improved the ability of chinook salmon to capture prey in stream enclosures. A prototype exercise system that can be retrofitted to raceways was developed, however, initial testing indicated that severe amounts of exercise may increase in culture mortality. Rearing chinook salmon in seminatural raceway habitat with gravel substrate, woody debris structure, and overhead cover improved coloration and postrelease survival without impacting in-culture health or survival. Steelhead fry reared in enriched environments with structure, cover, and point source feeders dominated and outcompeted conventionally reared fish. Exposing chinook salmon to caged predators increased their postrelease survival. Chinook salmon showed an antipredator response to chemical stimuli from injured conspecifics and exhibited acquired predator recognition following exposure to paired predator-prey stimuli. The report also includes the 1997 Natural Rearing System Workshop proceedings.

Maynard, Desmond J.

2001-09-13T23:59:59.000Z

90

Status and Monitoring of Natural and Supplemented Chinook Salmon in Johnson Creek, Idaho, 2006-2007 Annual Report.  

DOE Green Energy (OSTI)

The Nez Perce Tribe Johnson Creek Artificial Propagation Enhancement Project (JCAPE) has conducted juvenile and adult monitoring and evaluation studies for its 10th consecutive year. Completion of adult and juvenile Chinook salmon studies were conducted for the purpose of evaluating a small-scale production initiative designed to increase the survival of a weak but recoverable spawning aggregate of summer Chinook salmon Oncorhynchus tshawytscha. The JCAPE program evaluates the life cycle of natural origin (NOR) and hatchery origin (HOR) supplementation fish to quantify the key performance measures: abundance, survival-productivity, distribution, genetics, life history, habitat, and in-hatchery metrics. Operation of a picket style weir and intensive multiple spawning ground surveys were completed to monitor adult Chinook salmon and a rotary screw trap was used to monitor migrating juvenile Chinook salmon in Johnson Creek. In 2007, spawning ground surveys were conducted on all available spawning habitat in Johnson Creek and one of its tributaries. A total of 63 redds were observed in the index reach and 11 redds for all other reaches for a combined count of 74 redds. Utilization of carcass recovery surveys and adult captures at an adult picket weir yielded a total estimated adult escapement to Johnson Creek of 438 Chinook salmon. Upon deducting fish removed for broodstock (n=52), weir mortality/ known strays (n=12), and prespawning mortality (n=15), an estimated 359 summer Chinook salmon were available to spawn. Estimated total migration of brood year 2005 NOR juvenile Chinook salmon at the rotary screw trap was calculated for three seasons (summer, fall, and spring). The total estimated migration was 34,194 fish; 26,671 of the NOR migrants left in the summer (July 1 to August 31, 2005) as fry/parr, 5,852 left in the fall (September 1 to November 21, 2005) as presmolt, and only 1,671 NOR fish left in the spring (March 1 to June 30, 2006) as smolt. In addition, there were 120,415 HOR supplementation smolts released into Johnson Creek during the week of March 12, 2007. Life stage-specific juvenile survival from Johnson Creek to Lower Granite and McNary dams was calculated for brood year 2005 NOR and HOR supplementation juvenile Chinook salmon. Survival of NOR parr Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 16.2%. Survival of NOR presmolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 28.2% and 22.3%. Survival of NOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 44.7% and 32.9%. Survival of HOR smolt Chinook salmon migrating from Johnson Creek to Lower Granite and McNary dams was 31.9% and 26.2%. Multi-year analysis on smolt to adult return rate's (SAR's) and progeny to parent ratio's (P:P's) were calculated for NOR and HOR supplementation Brood Year 2002 Chinook salmon. SAR's were calculated from Johnson Creek to Johnson Creek (JC to JC), Lower Granite Dam to Lower Granite (LGD to LGD), and Lower Granite Dam to Johnson Creek (LGD to JC); for NOR fish SAR's were 0.16%, 1.16% and 1.12%, while HOR supplementation SAR's from JC to JC, LGD to LGD and LGD to JC were 0.04%, 0.19% and 0.13%. P:P's for all returning NOR and HOR supplemented adults were under replacement levels at 0.13 and 0.65, respectively. Recruit per spawner estimates (R/S) for Brood Year 2005 adult Chinook salmon were also calculated for NOR and HOR supplemented Chinook salmon at JC and LGD. R/S estimates for NOR and HOR supplemented fish at JC were 231 and 1,745, while R/S estimates at LGD were 67 and 557. Management recommendations address (1) effectiveness of data collection methods, (2) sufficiency of data quality (statistical power) to enable management recommendations, (3) removal of uncertainty and subsequent cessation of M&E activities, and (4) sufficiency of findings for program modifications prior to five-year review.

Rabe, Craig D.; Nelson, Douglas D. [Nez Perce Tribe

2008-11-17T23:59:59.000Z

91

Thermally integrated staged methanol reformer and method  

DOE Green Energy (OSTI)

A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

Skala, Glenn William (Churchville, NY); Hart-Predmore, David James (Rochester, NY); Pettit, William Henry (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY)

2001-01-01T23:59:59.000Z

92

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

93

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

94

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables to the Annual Energy Outlook 2005 Supplemental Tables to the Annual Energy Outlook 2005 EIA Glossary Supplemental Tables to the Annual Energy Outlook 2005 Release date: February 2005 Next release date: February 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2005 (AEO2005) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2025. Most of the tables were not published in the AEO2005, but contain regional and other more detailed projections underlying the AEO2005 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2005 Appendix tables A2 and A3, respectively. Forecasts for 2003-2005 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

95

methanol.qxd  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Methanol One in a series of fact sheets United States Environmental Protection Agency EPA420-F-00-040 March 2002 www.epa.gov Transportation and Air Quality Transportation and Regional Programs Division C L E A N A L T E R N A T I V E F U E L S C L E A N E R A I R Because of the environ- mental advantages and cost savings, Arizona Checker Leasing Company purchased its first methanol-fueled vehicles in 1993 and cur- rently counts 300 in its fleet of nearly 450 automobiles. The company leases its M85 fuel-flexible vehicles to two cab companies in the Phoenix area. The company purchases its methanol from the California Energy Com- mission, which sells it at a lower, subsidized price. According to the company, methanol has performed just as well as gasoline, providing a safe, reliable, and cost- effective fuel source for the

96

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Supplement Tables to the AEO2001 The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2001 (AEO2001) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2001, but contain regional and other more detailed projections underlying the AEO2001 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables is presented. The data for tables 10 and 20 match those published in AEO2001 Appendix tables A2 and A3, respectively. Forecasts for 1999 and 2000 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

97

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. MS Excel Viewer Spreadsheets are provided in excel Errata - August 25, 2004 1 to117 - Complete set of of Supplemental Tables PDF Table 1. Energy Consumption by Source and Sector (New England) XLS PDF Table 2. Energy Consumption by Source and Sector (Middle Atlantic) XLS PDF Table 3. Energy Consumption by Source and Sector (East North Central) XLS PDF Table 4. Energy Consumption by Source and Sector (West North Central) XLS PDF Table 5. Energy Consumption by Source and Sector (South Atlantic) XLS PDF Table 6. Energy Consumption by Source and Sector (East South Central) XLS PDF Table 7. Energy Consumption by Source and Sector (West South Central) XLS PDF Table 8. Energy Consumption by Source and Sector (Mountain)

98

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

5 5 Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format Excel logo Spreadsheets are provided in excel 1 to117 - Complete set of Supplemental Tables PDF Energy Consumption by Sector (Census Division) Table 1. New England XLS PDF Table 2. Middle Atlantic XLS PDF Table 3. East North Central XLS PDF Table 4. West North Central XLS PDF Table 5. South Atlantic XLS PDF Table 6. East South Central XLS PDF Table 7. West South Central XLS PDF Table 8. Mountain XLS PDF Table 9. Pacific XLS PDF Table 10. Total United States XLS PDF Energy Prices by Sector (Census Division) Table 11. New England XLS PDF Table 12. Middle Atlantic XLS PDF Table 13. East North Central XLS PDF Table 14. West North Central XLS PDF Table 15. South Atlantic XLS PDF Table 16. East South Central

99

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 1999 Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Contacts bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage supplemental.gif (7420 bytes) (Errata as of 9/13/99) The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 1999 (AEO99) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1997 to 2020. Most of the tables were not published in the AEO99, but contain regional and other more detailed projections underlying the AEO99 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables are presented.

100

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

December 22, 2000 (Next Release: December, 2001) Related Links Annual Energy Outlook 2001 Assumptions to the AEO2001 NEMS Conference Contacts Forecast Homepage EIA Homepage AEO Supplement Reference Case Forecast (1999-2020) (HTML) Table 1. Energy Consumption by Source and Sector (New England) Table 2. Energy Consumption by Source and Sector (Middle Atlantic) Table 3. Energy Consumption by Source and Sector (East North Central) Table 4. Energy Consumption by Source and Sector (West North Central) Table 5. Energy Consumption by Source and Sector (South Atlantic) Table 6. Energy Consumption by Source and Sector (East South Central) Table 7. Energy Consumption by Source and Sector (West South Central) Table 8. Energy Consumption by Source and Sector (Mountain)

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

in the U.S. were coal, oil shale, and biomass. Natural gas (produced from coal and oil shale, methanol produced frommethanol was rated below oil shale and other coal-liquid

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

102

Economic impact of an improved methanol catalyst. [Forecasting to 2000  

DOE Green Energy (OSTI)

The economic future of methanol is reviewed in light of its potential uses as a substitute for traditional hydrocarbon fuels and feedstocks as well as some evolving new uses. Methanol's future market position will depend strongly on its production cost in comparison with competitive products. One promising way to reduce the production cost is by use of an improved catalyst in the process by which methanol is obtained from the feedstock - which can be either natural gas or a similar product such as synthesis gas from coal gasification. To estimate the potential cost savings with an improved catalyst, we have based our analysis on a recent study which assumed use of synthesis gas from underground coal gasification as a feedstock for making methanol. The improved catalyst we studied was an actinide oxide whose features include high tolerance to sulfur and heat, and a yield of about 4 mol% methanol per pass with a 2/1 mixture of H/sub 2//CO. We calculated the effect of this catalyst on methanol production costs in a 12,000-bbl/day plant. The result was a saving of from 1 cent to 2.5 cent per gallon on the total methanol synthesis cost of 23 cents per gallon (i.e., a saving in the conversion process of 4.4% to 10.9%), excluding the cost of the raw feed gas. We conclude from this study that the improved catalyst could bring important savings in methanol production. The estimated savings range from 4.4% to 10.9% in the cost of methanol synthesis from the feedstock material. Another possibility for lowering methanol production costs in the future may lie in switching from a natural-gas-based feedstock to a coal-based feedstock - for example, using synthesis gas from underground coal gasification as the raw material. Our projections suggest that coal will eventually become a less expensive feedstock than natural gas.

Grens, J.; Borg, I.; Stephens, D.; Colmenares, C.

1983-06-23T23:59:59.000Z

103

SUPPLEMENT ANALYSIS  

NLE Websites -- All DOE Office Websites (Extended Search)

812 Supplement Analysis 1 October 2013 812 Supplement Analysis 1 October 2013 SUPPLEMENT ANALYSIS for the FINAL ENVIRONMENTAL ASSESSMENT for NECO (FORMERLY HAXTUN) WIND ENERGY PROJECT LOGAN AND PHILLIPS COUNTIES, COLORADO U. S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office and U.S. Department of Energy Western Area Power Administration Rocky Mountain Customer Service Region OCTOBER 2013 DOE/EA-1812/SA-1 DOE/EA-1812 Supplement Analysis 2 October 2013 SUPPLEMENT ANALYSIS for the FINAL ENVIRONMENTAL ASSESSMENT for NECO (FORMERLY HAXTUN) WIND ENERGY PROJECT LOGAN AND PHILLIPS COUNTIES, COLORADO U. S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office and U.S. Department of Energy Western Area Power Administration

104

SUPPLEMENT ANALYSIS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement Analysis 1 October 2013 Supplement Analysis 1 October 2013 SUPPLEMENT ANALYSIS for the FINAL ENVIRONMENTAL ASSESSMENT for NECO (FORMERLY HAXTUN) WIND ENERGY PROJECT LOGAN AND PHILLIPS COUNTIES, COLORADO U. S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office and U.S. Department of Energy Western Area Power Administration Rocky Mountain Customer Service Region OCTOBER 2013 DOE/EA-1812/SA-1 DOE/EA-1812 Supplement Analysis 2 October 2013 SUPPLEMENT ANALYSIS for the FINAL ENVIRONMENTAL ASSESSMENT for NECO (FORMERLY HAXTUN) WIND ENERGY PROJECT LOGAN AND PHILLIPS COUNTIES, COLORADO U. S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office and U.S. Department of Energy Western Area Power Administration

105

Methyl Ester Sulfonates Supplement  

Science Conference Proceedings (OSTI)

Methyl Ester Sulfonates Supplement 18509 September 2006 Supplement September 2006.pdf Chemithon 3179

106

EIA - Natural Gas Publications  

Annual Energy Outlook 2012 (EIA)

and a weather snapshot. Monthly Natural Gas Monthly Natural and supplemental gas production, supply, consumption, disposition, storage, imports, exports, and prices in the...

107

Pennsylvania Natural Gas Supplemental Gas - Synthetic Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 456 6,742 1,743 1,615 1 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 2010's 0...

108

A methanol sensor for portable direct methanol fuel cells  

Science Conference Proceedings (OSTI)

An aqueous methanol sensor for portable direct methanol fuel cell applications is demonstrated. The design is based on current output limited by methanol diffusion through a Nafion 117 perfluorosulfonic acid membrane. Steady-state polarization measurements demonstrate sensitivity to concentrations of 0 to 4 M over a temperature range of 40 to 80C. Furthermore, a correlation that is first order in concentration and temperature is demonstrated for concentrations of 0 to 3 M, with an accuracy of {+-}0.1 M. Measurements of transient response to step concentration change indicate a response time of about 10 to 50 s, depending primarily on temperature.

Barton, S.A.C.; West, A.C. [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering and Applied Chemistry; Murach, B.L.; Fuller, T.F. [International Fuel Cells, South Windsor, CT (United States)

1998-11-01T23:59:59.000Z

109

Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.  

DOE Green Energy (OSTI)

This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

Hager, Robert C. (Hatchery Operations Consulting); Costello, Ronald J. (Mobrand Biometrics, Inc., Vashon Island, WA)

1999-10-01T23:59:59.000Z

110

Methanol production with elemental phosphorus byproduct gas: technical and economic feasibility  

DOE Green Energy (OSTI)

The technical and economic feasibility of using a typical, elemental, phosphorus byproduct gas stream in methanol production is assessed. The purpose of the study is to explore the potential of a substitute for natural gas. The first part of the study establishes economic tradeoffs between several alternative methods of supplying the hydrogen which is needed in the methanol synthesis process to react with CO from the off gas. The preferred alternative is the Battelle Process, which uses natural gas in combination with the off gas in an economically sized methanol plant. The second part of the study presents a preliminary basic design of a plant to (1) clean and compress the off gas, (2) return recovered phosphorus to the phosphorus plant, and (3) produce methanol by the Battelle Process. Use of elemental phosphorus byproduct gas in methanol production appears to be technically feasible. The Battelle Process shows a definite but relatively small economic advantage over conventional methanol manufacture based on natural gas alone. The process would be economically feasible only where natural gas supply and methanol market conditions at a phosphorus plant are not significantly less favorable than at competing methanol plants. If off-gas streams from two or more phosphorus plants could be combined, production of methanol using only offgas might also be economically feasible. The North American methanol market, however, does not seem likely to require another new methanol project until after 1990. The off-gas cleanup, compression, and phosphorus-recovery system could be used to produce a CO-rich stream that could be economically attractive for production of several other chemicals besides methanol.

Lyke, S.E.; Moore, R.H.

1981-01-01T23:59:59.000Z

111

DOE/EIS-0169-SA-02: Supplement Analysis for Yakima Fisheries Project --Natural Spawning Channels, Increased On-site Housing and Upgrades to the Prosser Hatchery (8/16/99)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 16, 1999 August 16, 1999 REPLY TO ATTN OF: KEWI-4 SUBJECT: Supplement Analysis for Yakima Fisheries Project, DOE/EIS-0169-SA-02 David Byrnes Project Manager - KEWN-4 Proposed Action: Yakima Fisheries Project - Natural Spawning Channels, Increased On-site Housing, and Upgrades to the Prosser Hatchery PL-6: F3204 Location: Cle Elum Supplementation and Research Facility, Cle Elum, Washington (CESRF) and Prosser Juvenile Research Facility, Prosser, Washington Proposed by: Bonneville Power Administration (BPA) and Co-Managed by the Yakama Nation (YN) and the Washington Department of Fish and Wildlife (WDFW). 1. Introduction The Bonneville Power Administration (BPA) is funding ongoing studies, research, and artificial production of several salmonid species in the Yakima and Klickitat river basins. BPA analyzed

112

The Federal Methanol Fleet: Summary of technical data  

DOE Green Energy (OSTI)

The Federal Methanol Fleet, initiated in 1985 with an appropriation from the US Congress, is now in its final stages of operation. A great deal has been learned while vehicles have accumulated approximately 1.4 million miles (2.2 million kilometers) in routine government fleet service. This paper summarizes those results that are technical in nature and that reveal the status of methanol engine technology. Specifically, results from emissions test, special lubricant tests, and cold-starting experiments are reported herein. Emissions control systems in methanol vehicles were found generally to decline somewhat in performance over time as compared to their gasoline counterpart vehicles, although this was not universally true. The severe effects on methanol engine lubricant performance resulting from cold-engine, short-trip service was demonstrated in a series of special tests of two cars, methanol and gasoline, in side-by-side service. Methanol fleet vehicles incorporated a variety of approaches to the cold-start problem -- ranging from no special engineering or systems to sophisticated systems designed to overcome the problem entirely. Cold-start systems specially designed for these vehicles did not perform as well as had been expected, probably because they were early prototype versions and were subject to some early, unforeseen problems.

McGill, R.N.; Graves, R.L.; West, B.H. (Oak Ridge National Lab., TN (USA)); Hodgson, J.W. (Tennessee Univ., Knoxville, TN (USA))

1991-04-01T23:59:59.000Z

113

Methanol fuel cell model: Anode  

Science Conference Proceedings (OSTI)

An isothermal, steady-state model of an anode in a direct methanol feed, polymer electrolyte fuel cell is presented. The anode is considered to be a porous electrode consisting of an electronically conducting catalyst structure that is thinly coated with an ion-selective polymer electrolyte. The pores are filled with a feed solution of 2 M methanol in water. Four species are transported in the anode: water, methanol, hydrogen ions, and carbon dioxide. All four species are allowed to transport in the x-direction through the depth of the electrode. Species movement in the pseudo y-direction is taken into account for water, methanol, and carbon dioxide by use of an effective mass-transfer coefficient. Butler-Volmer kinetics are observed for the methanol oxidation reaction. Predictions of the model have been fitted with kinetic parameters from experimental data, and a sensitivity analysis was performed to identify critical parameters affecting the anode`s performance. Kinetic limitations are a dominant factor in the performance of the system. At higher currents, the polymer electrolyte`s conductivity and the anode`s thickness were also found to be important parameters to the prediction of a polymer electrolyte membrane fuel cell anode`s behavior in the methanol oxidation region 0.5--0.6 V vs. a reversible hydrogen electrode.

Baxter, S.F. [Argonne National Lab., IL (United States); Battaglia, V.S.; White, R.E. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering

1999-02-01T23:59:59.000Z

114

Plenary lecture 6: influence of gasoline-methanol mixtures in a two-stroke engine  

Science Conference Proceedings (OSTI)

One of the alternative fuels that are used is methanol. Methanol (CH3OH) is an alcohol that is produced from natural gas, biomass, coal and also municipal solid wastes and sewage. It is quite corrosive and poisonous and has lower volatility compared ...

Charalampos Arapatsakos

2009-02-01T23:59:59.000Z

115

Air Breathing Direct Methanol Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Breathing Direct Methanol Fuel Cell Air Breathing Direct Methanol Fuel Cell Air Breathing Direct Methanol Fuel Cell An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Available for thumbnail of Feynman Center (505) 665-9090 Email Air Breathing Direct Methanol Fuel Cell An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol

116

Salmon Supplementation Studies in Idaho Rivers (Idaho Supplementation Studies) : Experimental Design, 1991 Technical Report.  

SciTech Connect

The purpose of this study is to help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon in Idaho. The goals are to assess the use of hatchery chinook to restore or augment natural populations, and to evaluate the effects of supplementation on the survival and fitness of existing natural populations.

Bowles, Edward C.; Leitzinger, Eric J.

1991-12-01T23:59:59.000Z

117

THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY  

E-Print Network (OSTI)

Spectral Intensity With 5% Coal (x ::: 86.9 cm) CalculatedPredictions B. Methanol/Coal Slurry as the Fuel TemperatureMethanol as the Fuel B. Methanol/Coal Slurry as the Fuel C.

Grosshandler, W.L.

2010-01-01T23:59:59.000Z

118

Rapid starting methanol reactor system  

DOE Patents (OSTI)

The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

Chludzinski, Paul J. (38 Berkshire St., Swampscott, MA 01907); Dantowitz, Philip (39 Nancy Ave., Peabody, MA 01960); McElroy, James F. (12 Old Cart Rd., Hamilton, MA 01936)

1984-01-01T23:59:59.000Z

119

Idaho Supplementation Studies, 1991-1992 Annual Report.  

DOE Green Energy (OSTI)

Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon Oncorhynchus tshawytscha in Idaho. The objectives are to monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation and; determine which supplementation strategies (broodstock and release stage) provide the quickest effects on and highest response in natural production without adverse productivity.

Leitzinger, Eric J.; Bowles, Edward C.; Plaster, Kurtis (Idaho Department of Fish and Game, Boise, ID)

1993-10-01T23:59:59.000Z

120

List of Methanol Incentives | Open Energy Information  

Open Energy Info (EERE)

Methanol Incentives Methanol Incentives Jump to: navigation, search The following contains the list of 22 Methanol Incentives. CSV (rows 1 - 22) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alcohol Fuel Credit (Federal) Corporate Tax Credit United States Commercial Industrial Ethanol Methanol No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Biodiesel and Alcohol Fuel Blend Sales Tax Exemption (Washington) Sales Tax Incentive Washington Commercial Ethanol Methanol

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 1992 Annual Report.  

SciTech Connect

This is the first annual summary of results for chinook salmon supplementation studies in Idaho Rivers conducted by the Nez Perce Tribe Department of Fisheries Management. The Nez Perce Tribe has coordinated chinook salmon supplementation research activities with the Bonneville Power Administration, Idaho Department of Fish and Game, U. S. Fish and Wildlife Service, National Marine Fisheries Service, U. S. Forest Service, and the Shoshone Bannock Tribe. The project is a cooperative effort involving members of the Idaho Supplementation Technical Advisory Committee (ISTAC). This project has also been extensively coordinated with the Supplementation Technical Work Group (STWG) which identified specific research needs and integrated and coordinated supplementation research activities through development of a five year work plan. In this study we are assessing what strategies, both brood stock and release stage, are best for supplementing natural or depleted spring and summer chinook populations and what effect supplementation has on these populations. This research should identify which of the supplementation strategies employed are beneficial in terms of increasing adult returns and the ability of these returns to sustain themselves. Biological evaluation points will be parr density, survival to Lower Granite Dam, adult return to weirs, redd counts and presmolt and smolt yield from both treatment and control streams. Genetic monitoring of treatment and control populations will also occur. The supplementation research study has the following objectives: (1) Monitor and evaluate the effect of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon. (2) Monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation. (3) Determine which supplementation strategies (brood stock and release stage) provide the quickest and highest response in natural production without adverse effects on productivity. (4) Coordinate supplementation research planning and field evaluation program activities and management recommendations for the Nez Perce Tribe.

Arnsberg, Billy D. (Nez Perce Tribe, Lapwai, ID)

1993-02-02T23:59:59.000Z

122

Supplement: Dental Forensic Data  

Science Conference Proceedings (OSTI)

Page 1. Supplement: Dental Forensic Data This is a Supplement to the ANSI/NIST-ITL 1-2011 standard. It is focused upon ...

2013-01-23T23:59:59.000Z

123

Microsoft Word - STEO Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

09 09 1 May 2009 Short-Term Energy Outlook Supplement: The Implications of Lower Natural Gas Prices for the Electric Generation Mix in the Southeast 1 Highlights * This supplement to the Energy Information Administration's (EIA) May 2009 Short-Term Energy Outlook (STEO) focuses on changes in the utilization of coal- and natural-gas-fired generation capacity in the electric utility sector as the differential between delivered fuel prices narrows. * Over the last year the price of natural gas delivered to electric generators has fallen dramatically. Current natural gas prices now present increased potential for displacing coal-fired electricity generation with natural-gas-

124

Air Breathing Direct Methanol Fuel Cell  

DOE Patents (OSTI)

A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

Ren; Xiaoming (Los Alamos, NM)

2003-07-22T23:59:59.000Z

125

Methods of Conditioning Direct Methanol Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Methods of Conditioning Direct Methanol Fuel Cells Methods of Conditioning Direct Methanol Fuel Cells Methods of Conditioning Direct Methanol Fuel Cells Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. Available for thumbnail of Feynman Center (505) 665-9090 Email Methods of Conditioning Direct Methanol Fuel Cells Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer

126

Supplement Analysis for the Transmission System Vegetation Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATTN OF: KEP-4 SUBJECT: Supplement Analysis for the Transmission System Vegetation Management Program FEIS (DOEEIS-0285SA-21) Joe Johnson - TFSKalispell - Natural Resource...

127

Air breathing direct methanol fuel cell  

DOE Patents (OSTI)

An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

Ren, Xiaoming (Los Alamos, NM)

2002-01-01T23:59:59.000Z

128

Enhanced methanol utilization in direct methanol fuel cell  

DOE Patents (OSTI)

The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

2001-10-02T23:59:59.000Z

129

Great Plains Coal Gasification Project will make 17. 5 tons/day of methanol  

SciTech Connect

The Great Plains Coal Gasification Project will make 17.5 tons/day of methanol in addition to 125 million cu ft/day of pipeline-quality substitute natural gas (SNG), making the facility the first commercial producer of methanol-from-coal in the United States, according to the consortium building the $1.5 billion facility in Beulah, North Dakota. As originally conceived, the plant would have used 17 tons/day of purchased methanol to clean the raw-gas product stream of impurities, primarily sulfur. But based on the cost of transporting methanol to the plant site and storing it for use, the consortium decided it was more economical to produce its own methanol from lignite. The construction started in July 1980, and the facility is to come on stream in 1984.

Not Available

1980-11-17T23:59:59.000Z

130

Natural  

Gasoline and Diesel Fuel Update (EIA)

Summary of U.S. Natural Gas Imports and Exports, 1992-1996 Table 1992 1993 1994 1995 1996 Imports Volume (million cubic feet) Pipeline Canada............................. 2,094,387 2,266,751 2,566,049 2,816,408 2,883,277 Mexico .............................. 0 1,678 7,013 6,722 13,862 Total Pipeline Imports....... 2,094,387 2,268,429 2,573,061 2,823,130 2,897,138 LNG Algeria .............................. 43,116 81,685 50,778 17,918 35,325 United Arab Emirates ....... 0 0 0 0 4,949 Total LNG Imports............. 43,116 81,685 50,778 17,918 40,274 Total Imports......................... 2,137,504 2,350,115 2,623,839 2,841,048 2,937,413 Average Price (dollars per thousand cubic feet) Pipeline Canada............................. 1.84 2.02 1.86 1.48 1.96 Mexico .............................. - 1.94 1.99 1.53 2.25 Total Pipeline Imports.......

131

Methanol production method and system  

DOE Patents (OSTI)

Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

Chen, Michael J. (Darien, IL); Rathke, Jerome W. (Bolingbrook, IL)

1984-01-01T23:59:59.000Z

132

Supplemental Gas Supplies  

Gasoline and Diesel Fuel Update (EIA)

. . Supplemental Gas Supplies by State, 1996 (Million Cubic Feet) Table State Synthetic Natural Gas Propane- Air Refinery Gas Biomass Gas Other Total Alabama ...................... 0 18 0 0 0 18 Colorado...................... 0 344 0 0 a 6,443 6,787 Connecticut ................. 0 48 0 0 0 48 Delaware ..................... 0 1 0 0 0 1 Georgia........................ 0 94 0 0 0 94 Hawaii.......................... 2,761 0 0 0 0 2,761 Illinois .......................... 0 488 3,423 0 0 3,912 Indiana......................... 0 539 0 0 b 2,655 3,194 Iowa............................. 0 301 0 0 0 301 Kentucky...................... 0 45 0 0 0 45 Maine........................... 0 61 0 0 0 61 Maryland...................... 0 882 0 0 0 882 Massachusetts ............ 0 426 0 0 0 426 Michigan ...................... 0 0 0 0 c 21,848 21,848 Minnesota.................... 0 709 0 0 0 709 Missouri

133

Method of steam reforming methanol to hydrogen  

DOE Patents (OSTI)

The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA)

1990-01-01T23:59:59.000Z

134

Methods of Conditioning Direct Methanol Fuel Cells  

while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

135

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scale… (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

136

Direct Methanol Fuel Cells - Energy Innovation Portal  

Our partners gain access to one of the most advanced and experienced direct methanol fuel cell ... The cured film is then transferred to the SPE ...

137

Methanol production from eucalyptus wood chips  

DOE Green Energy (OSTI)

The technical feasibility of producing methanol from wood is demonstrated and sufficient cost data is provided to allow an assessment of the economic viability.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

138

EIS-0169-SA-02: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0169-SA-02: Supplement Analysis EIS-0169-SA-02: Supplement Analysis EIS-0169-SA-02: Supplement Analysis Yakima Fisheries Project-Natural Spawning Channels, Increased On-site Housing, and Upgrades to the Prosser Hatchery. Cle Elum Supplementation and Research Facility, Cle Elum, Washington The Yakima Fisheries Project is co-managed by the Yakama Nation (YN) and the Washington Department of Fish and Wildlife (WDFW). The project consists of the collection of salmonid broodstock, incubation of eggs and rearing of fry in hatcheries, the acclimation and release of smolts, and related ecological studies in the study of natural production. DOE/EIS-0169-SA-02: Supplement Analysis for Yakima Fisheries Project-Natural Spawning Channels, Increased On-site Housing, and Upgrades to the Prosser Hatchery. Cle Elum Supplementation and Research Facility,

139

Surfactants from Biorenewable Resources Supplement  

Science Conference Proceedings (OSTI)

Surfactants from Biorenewable Resources Supplement 18508 March 2008 Supplement March 2008.pdf Desmet Ballestra S.p.A 3173

140

Partial oxidation reforming of methanol  

DOE Green Energy (OSTI)

Methanol is an attractive fuel for fuel cell-powered vehicles because it has a fairly high energy density, can be pumped into the tank of a vehicle mush like gasoline, and is relatively easy to reform. For on-board reforming, the reformer must be compact and lightweight, and have rapid start-up and good dynamic response. Steam reforming reactors with the tube-and-shell geometry that was used on the prototype fuel cell-powered buses are heat transfer limited. To reach their normal operating temperature, these types of reactors need 45 minutes from ambient temperature start-up. The dynamic response is poor due to temperature control problems. To overcome the limitations of steam reforming, ANL explored the partial oxidation concept used in the petroleum industry to process crude oils. In contrast to the endothermic steam reforming reaction, partial oxidations is exothermic. Fuel and air are passed together over a catalyst or reacted thermally, yielding a hydrogen-rich gas. Since the operating temperature of such a reactor can be controlled by the oxygen-to- methanol ratio, the rates of reaction are not heat transfer limited. Start-up and transient response should be rapid, and the mass and volume are expected to be small by comparison.

Krumpelt, M.; Ahmed, S.; Kumar, R.

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Idaho Supplementation Studies : 1993 Annual Report.  

SciTech Connect

Idaho Supplementation Studies (ISS) will help determine the utility of supplementation as a potential recovery tool for decimated stocks of spring and summer chinook salmon, Oncorhynchus tshawytscha, in Idaho as part of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. The objectives are to: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced salmon; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; and (3) determine which supplementation strategies provide the quickest and highest response in natural production without adverse effects on productivity. Field work began in 1991 with the collection of baseline data from treatment and some control streams. Full implementation began in 1992 with baseline data collection on treatment and control streams and releases of supplementation fish into several treatment streams. Field methods included snorkeling to estimate chinook salmon parr populations, PIT tagging summer parr to estimate parr-to-smolt survival, multiple redd counts to estimate spawning escapement and collect carcass information. Screw traps were used to trap and PIT tag outmigrating chinook salmon during the spring and fall outmigration. Weirs were used to trap and enumerate returning adult salmon in select drainages.

Leitzinger, Eric J.; Plaster, Kurtis; Hassemer, Peter

1996-12-01T23:59:59.000Z

142

Characterization and research investigation of methanol and methyl fuels. Final progress report  

DOE Green Energy (OSTI)

Work on several aspects of using pure methanol as an alternate fuel are reported. A stock (OEM) Pinto engine mounted on a dynamometer was used to compare methanol with Indolene in terms of power, efficiency, and emissions for a variety of speeds and loads. Although the engine was designed for use with gasoline, it was found that methanol was generally superior in power, thermal efficiency and reduced emissions with the exception of aldehydes. Three different fuel metering systems were tested for a variety of speeds and loads using the dynamometer mounted engine. They were all found to provide superior steady state performance on methanol when compared with the OEM carburetor system with enlarged fuel jets for methanol. Mileage and emissions from a Pinto vehicle equipped with the various fuel metering systems were computer predicted for the Federal emissions test procedure using laboratory engine measurements. A computer was used to simulate the test engine's thermokinetic combustion events. The computer model predicts power, fuel economy and emissions with air-fuel ratio, compression ratio, spark advance and speed as parameters. A small (60 hp) gas turbine was converted to run on methanol. The conversion was easily accomplished, but atomization of the fuel was found to be important in obtaining a reduction in CO and NO/sub x/ for methanol in comparison with jet engine fuel. Environmental factors of marine and aquatic methanol spills and photochemical smog are under study. Preliminary experimentation relative to marine spills indicates that methanol is naturally present in that environment. It appears at this early stage of investigation that damage to the ecosystem from a major coastal spill may be localized and of short duration.

Pefley, R.K.; Browning, L.H.; Hornberger, M.L.; Likos, W.E.; McCormack, M.C.; Pullman, B.

1977-01-01T23:59:59.000Z

143

Direct Methanol Fuel Cell for Portable Applications  

E-Print Network (OSTI)

A methanol fuel cell stack has at cl f is being incorporated a portable ions. 1 performance and flow rate for cell Water data, transport mechanisms fuel are discussed. Stack response has Implications slack performance and conditions addressed. Introduction 1 development a methanol fuel is presently pursued at 1 sponsorship from Research (1 A five methanol oxidizing stack has at stack incorporates liquiddirect methanol proton exchange membrane [1, 2], methanol (1 by oxidation an solution methanol at reduction at cathode. `1 focus results out stacks. form a n part of 1 cells have as storage but complicated systems to Upon of the methanol fuel many system simpler than before. In the can oxidized at thus is for fuel With the f mixture, electrolytes always at a of operation free-aqueous acid and thus corrosion issues addressed electrode assemblies consist main catalyzed cathode, and a polymer catalyst is the cathode catalyst is as a polymer `1 current state at the for is V at current d...

Narayanan Frank And; T. Valdez; S. R. Narayanan; H Frank; W. Chun

1997-01-01T23:59:59.000Z

144

The Furnace combustion and radiation characteristics of methanol and a methanol/coal slurry  

DOE Green Energy (OSTI)

An experimental facility has been built to study the combustion of methanol and a slurry of methanol plus 5% coal in an environment similar to industrial and utility boilers. The furnace is a horizontal water cooled cylinder, 20 cm in diameter by one meter long, with a firing rate of 60 kW. The measurements taken throughout the furnace include temperature and concentration of carbon monoxide, carbon dioxide, water, oxides of nitrogen, methanol and particulates. Spectral radiation intensity measurements are taken along the axis of the furnace burning methanol and the methanol/coal slurry. The effect of the fuel on flame structure is reported. The temperatures in the pure methanol flame are, in general, higher than in the methanol/coal flame. The levels of the oxides of nitrogen are low in the pure methanol flame (less than 20 ppM NO). Addition of 5% coal to the methanol causes NO concentration to increase to 100 ppM. This represents a conversion of 40% of the coal bound nitrogen to NO. Particulate levels increase from less than .001 g/m/sup 3/ for the pure methanol to over .25 g/m/sup 3/ when pulverized coal is added. The low levels of soot and particulates in the methanol flame have an effect on the spectral intensity. No continuous radiation is measured in the methanol flame, but small amounts of particulate radiation can be seen from the spectra of the methanol/coal flame. The total emittance of the flame is increased from about .10 to .135 with the addition of 5% pulverized coal, but the radiation intensity is reduced because of the lower flame temperatures. A numerical program has been written to calculate the spectral intensity from an inhomogeneous mixture of combustion products. Comparisons are made between the calculated intensity and the measured intensity for both fuel systems. The numerical results are about 25% lower than the measured results. Reasons for this are discussed.

Grosshandler, W.L.

1977-01-01T23:59:59.000Z

145

Methanol reformers for fuel cell powered vehicles: Some design considerations  

DOE Green Energy (OSTI)

Fuel cells are being developed for use in automotive propulsion systems as alternatives for the internal combustion engine in buses, vans, passenger cars. The two most important operational requirements for a stand-alone fuel cell power system for a vehicle are the ability to start up quickly and the ability to supply the necessary power on demand for the dynamically fluctuating load. Methanol is a likely fuel for use in fuel cells for transportation applications. It is a commodity chemical that is manufactured from coal, natural gas, and other feedstocks. For use in a fuel cell, however, the methanol must first be converted (reformed) to a hydrogen-rich gas mixture. The desired features for a methanol reformer include rapid start-up, good dynamic response, high fuel conversion, small size and weight, simple construction and operation, and low cost. In this paper the present the design considerations that are important for developing such a reformer, namely: (1) a small catalyst bed for quick starting, small size, and low weight; (2) multiple catalysts for optimum operation of the dissociation and reforming reactions; (3) reforming by direct heat transfer partial oxidation for rapid response to fluctuating loads; and (4) thermal independence from the rest of the fuel cell system. 10 refs., 1 fig.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1990-01-01T23:59:59.000Z

146

Idaho Supplementation Studies : Five Year Report : 1992-1996.  

SciTech Connect

In 1991, the Idaho Supplementation Studies (ISS) project was implemented to address critical uncertainties associated with hatchery supplementation of chinook salmon Oncorhynchus tshawytscha populations in Idaho. The project was designed to address questions identified in the Supplementation Technical Work Group (STWG) Five-Year-Workplan (STWG 1988). Two goals of the project were identified: (1) assess the use of hatchery chinook salmon to increase natural populations in the Salmon and Clearwater river drainages, and (2) evaluate the genetic and ecological impacts of hatchery chinook salmon on naturally reproducing chinook salmon populations. Four objectives to achieve these goals were developed: (1) monitor and evaluate the effects of supplementation on presmolt and smolt numbers and spawning escapements of naturally produced fish; (2) monitor and evaluate changes in natural productivity and genetic composition of target and adjacent populations following supplementation; (3) determine which supplementation strategies (broodstock and release stage) provide the quickest and highest response in natural production without adverse effects on productivity; and (4) develop supplementation recommendations. This document reports on the first five years of the long-term portion of the ISS project. Small-scale studies addressing specific hypotheses of the mechanisms of supplementation effects (e.g., competition, dispersal, and behavior) have been completed. Baseline genetic data have also been collected. Because supplementation broodstock development was to occur during the first five years, little evaluation of supplementation is currently possible. Most supplementation adults did not start to return to study streams until 1997. The objectives of this report are to: (1) present baseline data on production and productivity indicators such as adult escapement, redd counts, parr densities, juvenile emigrant estimates, and juvenile survival to Lower Granite Dam (lower Snake River); (2) recommend changes in methodologies and tasks to improve data collection efficiency and utility.

Walters, Jody P.

1999-08-01T23:59:59.000Z

147

Advanced direct methanol fuel cells. Final report  

DOE Green Energy (OSTI)

The goal of the program was an advanced proton-exchange membrane (PEM) for use as the electrolyte in a liquid feed direct methanol fuel cell which provides reduced methanol crossover while simultaneously providing high conductivity and low membrane water content. The approach was to use a membrane containing precross-linked fluorinated base polymer films and subsequently to graft the base film with selected materials. Over 80 different membranes were prepared. The rate of methanol crossover through the advanced membranes was reduced 90%. A 5-cell stack provided stable performance over a 100-hour life test. Preliminary cost estimates predicted a manufacturing cost at $4 to $9 per kW.

Hamdan, Monjid; Kosek, John A.

1999-11-01T23:59:59.000Z

148

Ohio Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

23 608 460 522 353 296 1967-2011 Synthetic 0 1980-2011 Propane-Air 11 271 81 66 40 27 1980-2011 Biomass 412 337 379 456 313 269 1993-2011...

149

New York Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

13 7 6 2 0 0 1967-2012 Synthetic 1980-2005 Propane-Air 13 7 6 2 1980-2010 Biomass 1993-2005 Other 1980-2005...

150

Ohio Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

608 460 522 353 296 366 1967-2012 Synthetic 0 1980-2012 Propane-Air 271 81 66 40 27 6 1980-2012 Biomass 337 379 456 313 269 360 1993-2012...

151

New Jersey Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

379 489 454 457 392 139 1967-2012 Synthetic 0 0 1980-2012 Propane-Air 0 1980-2012 Refinery Gas 1980-2005 Biomass 0 1993-2012 Other 379 489 454 457 392 139 1980-2012...

152

Illinois Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

11 15 20 17 1 1 1967-2012 Synthetic 0 1980-2012 Propane-Air 11 15 20 17 1 1 1980-2012 Refinery Gas 1980-2005 Biomass 0 1999-2012 Other 0 2005...

153

Georgia Supplemental Supplies of Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

* 52 732 701 660 1967-2012 Propane-Air 2 0 0 1980-2012 Biomass 52 732 701 660 1993-2012 Other 0 0 1980...

154

Colorado Supplemental Supplies of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

6,149 6,869 6,258 7,527 5,148 4,268 1967-2011 Propane-Air 11 3 2 3 4 21 1980-2011 Other 6,138 6,866 6,256 7,525 5,144 4,247 1980-2011...

155

South Dakota Supplemental Supplies of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

New York North Carolina North Dakota Ohio Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Vermont Virginia Washington Wisconsin Wyoming Period: Annual...

156

Homogeneous catalyst formulations for methanol production  

DOE Patents (OSTI)

There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.-), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O' Hare, Thomas E. (Huntington Station, NY)

1991-02-12T23:59:59.000Z

157

Homogeneous catalyst formulations for methanol production  

DOE Patents (OSTI)

There is disclosed synthesis of CH.sub.3 OH from carbon monoxide and hydrogen using an extremely active homogeneous catalyst for methanol synthesis directly from synthesis gas. The catalyst operates preferably between 100.degree.-150.degree. C. and preferably at 100-150 psia synthesis gas to produce methanol. Use can be made of syngas mixtures which contain considerable quantities of other gases, such as nitrogen, methane or excess hydrogen. The catalyst is composed of two components: (a) a transition metal carbonyl complex and (b) an alkoxide component. In the simplest formulation, component (a) is a complex of nickel tetracarbonyl and component (b) is methoxide (CH.sub.3 O.sup.13 ), both being dissolved in a methanol solvent system. The presence of a co-solvent such as p-dioxane, THF, polyalcohols, ethers, hydrocarbons, and crown ethers accelerates the methanol synthesis reaction.

Mahajan, Devinder (Port Jefferson, NY); Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); O' Hare, Thomas E. (Huntington Station, NY)

1990-01-01T23:59:59.000Z

158

Natural Gas Annual, 1996  

Annual Energy Outlook 2012 (EIA)

"Annual Report of Natural and Supplemental Gas Supply and Disposition". 2. The EIA-176 Query System. This system provides a method of extracting and using the EIA-176 data, and...

159

Federal Methanol Fleet Project final report  

DOE Green Energy (OSTI)

The Federal Methanol Fleet Project concluded with the termination of data collection from the three fleet sites in February 1991. The Lawrence Berkeley Laboratory (LBL) completed five years of operation, Argonne National Laboratory (ANL) completed its fourth year in the project, and Oak Ridge National Laboratory (ORNL) completed its third. Twenty of the thirty-nine vehicles in the fleet were powered by fuel methanol (typically M85, 85 % methanol, 15 % unleaded gasoline, although the LBL fleet used M88), and the remaining control vehicles were comparable gasoline vehicles. Over 2.2 million km (1.4 million miles) were accumulated on the fleet vehicles in routine government service. Data collected over the years have included vehicle mileage and fuel economy, engine oil analysis, emissions, vehicle maintenance, and driver acceptance. Fuel economies (on an energy basis) of the methanol and gasoline vehicles of the same type were comparable throughout the fleet testing. Engine oil analysis has revealed higher accumulation rates of iron and other metals in the oil of the methanol vehicles, although no significant engine damage has been attributed to the higher metal content. Vehicles of both fuel types have experienced degradation in their emission control systems, however, the methanol vehicles seem to have degraded their catalytic converters at a higher rate. The methanol vehicles have required more maintenance than their gasoline counterparts, in most cases, although the higher levels of maintenance cannot be attributed to ``fuel-related`` repairs. According to the daily driver logs and results from several surveys, drivers of the fleet vehicles at all three sites were generally satisfied with the methanol vehicles.

West, B.H.; McGill, R.N. [Oak Ridge National Lab., TN (United States); Hillis, S.L.; Hodgson, J.W. [Tennessee Univ., Knoxville, TN (United States)

1993-03-01T23:59:59.000Z

160

Federal Methanol Fleet Project final report  

DOE Green Energy (OSTI)

The Federal Methanol Fleet Project concluded with the termination of data collection from the three fleet sites in February 1991. The Lawrence Berkeley Laboratory (LBL) completed five years of operation, Argonne National Laboratory (ANL) completed its fourth year in the project, and Oak Ridge National Laboratory (ORNL) completed its third. Twenty of the thirty-nine vehicles in the fleet were powered by fuel methanol (typically M85, 85 % methanol, 15 % unleaded gasoline, although the LBL fleet used M88), and the remaining control vehicles were comparable gasoline vehicles. Over 2.2 million km (1.4 million miles) were accumulated on the fleet vehicles in routine government service. Data collected over the years have included vehicle mileage and fuel economy, engine oil analysis, emissions, vehicle maintenance, and driver acceptance. Fuel economies (on an energy basis) of the methanol and gasoline vehicles of the same type were comparable throughout the fleet testing. Engine oil analysis has revealed higher accumulation rates of iron and other metals in the oil of the methanol vehicles, although no significant engine damage has been attributed to the higher metal content. Vehicles of both fuel types have experienced degradation in their emission control systems, however, the methanol vehicles seem to have degraded their catalytic converters at a higher rate. The methanol vehicles have required more maintenance than their gasoline counterparts, in most cases, although the higher levels of maintenance cannot be attributed to fuel-related'' repairs. According to the daily driver logs and results from several surveys, drivers of the fleet vehicles at all three sites were generally satisfied with the methanol vehicles.

West, B.H.; McGill, R.N. (Oak Ridge National Lab., TN (United States)); Hillis, S.L.; Hodgson, J.W. (Tennessee Univ., Knoxville, TN (United States))

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Integrated system for coal-methanol liquefaction and slurry pipeline transportation. Final report. [In slurry transport  

DOE Green Energy (OSTI)

The engineering economics of an integrated coal-to-methanol conversion system and coal-in-methanol transportation system are examined, under the circumstances of the western coalfields, i.e., long distances from major markets and scarcity of water in the vicinity of the mines. The transportation economics are attractive, indicating tariffs of approximately 40 cents per million Btu per thousand miles for the coal-methanol pipeline vs 60 cents via coal-water pipelines and upwards of a dollar via rail. Energy consumption is also less in the coal-methanol pipeline than in the coal-water pipeline, and about equal to rail. It is also concluded that, by a proper marriage of the synthetic fuel (methanolization) plant to the slurrification plant, most, and in some cases all, of the water required by the synthetic fuel process can be supplied by the natural moisture of the coal itself. Thus, the only technology which presently exists and by which synthetic fuel from western coal can displace petroleum in the automotive fuel market is the integrated methanol conversion and tranportation system. The key element is the ability of the methanol slurry pipeline to accept and to deliver dry (1 to 5% moisture) coal, allowing the natural coal moisture to be used as synthesis feedstock in satisfaction of the large water requirement of any synthetic fuel plant. By virtue of these unique properties, this integrated system is seen as the only means in the foreseeable future whereby western coal can be converted to synthetic fuel and moved to distant markets.

Banks, W.F.; Davidson, J.K.; Horton, J.H.; Summers, C.W.

1980-03-31T23:59:59.000Z

162

EIS-0265-SA-99: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Supplement Analysis 9: Supplement Analysis EIS-0265-SA-99: Supplement Analysis Watershed Management Program The overall objective of the project is to restore as much as possible, the natural character and function of the Longley Meadows wetland complex. This project is a joint partnership among the CTUIR, Grand Rhonda Model Watershed Program, Oregon Department of Fish and Wildlife, Natural Resource Conservation Service, U.S. Department of Agriculture, and BPA. This project involves several separate components that are part of a regionwide effort to protect and restore anadromous fish habitat in the Grand Ronde Basin Supplement Analysis for the Watershed Management Program Environmental Impact Statement (November 2002), DOE/EIS-0265-SA-99 More Documents & Publications EA-1173-SA-01: Supplement Analysis

163

Energy Information Administration (EIA) - Supplement Tables - Supplemental  

Gasoline and Diesel Fuel Update (EIA)

6 6 Supplemental Tables to the Annual Energy Outlook 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2006 (AEO2006) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2030. Most of the tables were not published in the AEO2006, but contain regional and other more detailed projections underlying the AEO2006 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2006 Appendix tables A2 and A3, respectively. Forecasts for 2004-2006 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

164

Energy Information Administration (EIA) - Supplement Tables - Supplemental  

Gasoline and Diesel Fuel Update (EIA)

7 7 Supplemental Tables to the Annual Energy Outlook 2007 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2007 (AEO2007) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2005 to 2030. Most of the tables were not published in the AEO2007, but contain regional and other more detailed projections underlying the AEO2007 projections. The files containing these tables are in spreadsheet format. A total of one hundred and eighteen tables is presented. The data for tables 10 and 20 match those published in AEO2007 Appendix tables A2 and A3, respectively. Projections for 2006 and 2007 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term projections and are based on more current information than the AEO.

165

Assessment of methanol electro-oxidation for direct methanol-air fuel cells  

DOE Green Energy (OSTI)

The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

Fritts, S.D.; Sen, R.K.

1988-07-01T23:59:59.000Z

166

Opportunities for coal to methanol conversion  

DOE Green Energy (OSTI)

The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

Not Available

1980-04-01T23:59:59.000Z

167

Supplementation in the Columbia Basin : Summary Report Series : Final Report.  

Science Conference Proceedings (OSTI)

This progress report broadly defines the scope of supplementation plans and activities in the Columbia Basin. It provides the foundation for more detailed analysis of supplementation in subsequent reports in this series. Topics included in this report are: definition of supplementation, project diversity, objectives and performance standards, uncertainties and theory. Since this is a progress report, the content is subject to modification with new information. The supplementation theory will continue to evolve throughout the duration of RASP and beyond. The other topics in this report are essentially complete and are not expected to change significantly. This is the first of a series of four reports which will summarize information contained in the larger, RASP progress and completion reports. Our goal is to make the findings of RASP more accessible by grouping related topics into smaller but complete narratives on important aspects of supplementation. We are planning to publish the following reports under the general title Supplementation in the Columbia River Basin: Part 1, Background, Description, Performance Measures, Uncertainty and Theory; Part 2, Theoretical Framework and Models; Part 3, Planning Guidelines; and Part 4, Regional Coordination of Research and Monitoring. Supplementation is expected to be a major contributor to the planned increase in salmon and steelhead production in the Columbia Basin. The Fish and Wildlife Program of the Northwest Power Planning Council (NPPC) uses three approaches to protect and enhance salmon and steelhead in the Columbia Basin: (1) enhance fish production; (2) improve passage in the mainstem rivers; and (3) revise harvest management to support the rebuilding of fish runs (NPPC 1987). The fish production segment calls for a three-part approach focused on natural production, hatchery production, and supplementation. Supplementation is planned to provide over half of the total production increases. The Regional Assessment of Supplementation Project (RASP) was initiated as a result of a request by NPPC to address long-standing concerns about the need to coordinate supplementation research, monitoring and evaluation. Such coordination was also recommended by the Supplementation Technical Work Group. In August 1990, the NPPC gave conditional approval to proceed with the final design of the Yakima Production Project. The Council called on the Bonneville Power Administration (BPA) to fund immediately a supplementation assessment to reevaluate, prioritize and coordinate all existing and planned supplementation monitoring and evaluation activities in the basin. Providing for the participation of the fishery agencies and tribes and others having expertise in this area. RASP addresses four principal objectives: (1) provide an overview of ongoing and planned supplementation activities and identify critical uncertainties associated with supplementation, (2) construct a conceptual framework and model which estimates the potential benefits and risks of supplementation and prioritizes uncertainties, (3) provide guidelines for the development of supplementation projects, (4) develop a plan for regional coordination of research and monitoring. These objectives, once attained, will provide the technical tools fishery managers need to carry out the Council's direction to protect and enhance salmon and steelhead. RASP has further divided the four broad objectives into 12 technical topics: (1) definition of supplementation; (2) description of the diversity of supplementation projects; (3) objectives and performance standards; (4) identification of uncertainties; (5) supplementation theory; (6) development of a conceptual model of supplemented populations; (7) development of spreadsheet model of risks and benefits of supplementation; (8) classification of stocks, streams, and supplementation strategies; (9) regional design of supplementation evaluation and monitoring; (10) guidelines for planning supplementation projects (11) application of the spreadsheet model to supplementation planning; and (12)

United States. Bonneville Power Administration.

1992-12-01T23:59:59.000Z

168

Supplementation in the Columbia Basin : Summary Report Series : Final Report.  

DOE Green Energy (OSTI)

This progress report broadly defines the scope of supplementation plans and activities in the Columbia Basin. It provides the foundation for more detailed analysis of supplementation in subsequent reports in this series. Topics included in this report are: definition of supplementation, project diversity, objectives and performance standards, uncertainties and theory. Since this is a progress report, the content is subject to modification with new information. The supplementation theory will continue to evolve throughout the duration of RASP and beyond. The other topics in this report are essentially complete and are not expected to change significantly. This is the first of a series of four reports which will summarize information contained in the larger, RASP progress and completion reports. Our goal is to make the findings of RASP more accessible by grouping related topics into smaller but complete narratives on important aspects of supplementation. We are planning to publish the following reports under the general title Supplementation in the Columbia River Basin: Part 1, Background, Description, Performance Measures, Uncertainty and Theory; Part 2, Theoretical Framework and Models; Part 3, Planning Guidelines; and Part 4, Regional Coordination of Research and Monitoring. Supplementation is expected to be a major contributor to the planned increase in salmon and steelhead production in the Columbia Basin. The Fish and Wildlife Program of the Northwest Power Planning Council (NPPC) uses three approaches to protect and enhance salmon and steelhead in the Columbia Basin: (1) enhance fish production; (2) improve passage in the mainstem rivers; and (3) revise harvest management to support the rebuilding of fish runs (NPPC 1987). The fish production segment calls for a three-part approach focused on natural production, hatchery production, and supplementation. Supplementation is planned to provide over half of the total production increases. The Regional Assessment of Supplementation Project (RASP) was initiated as a result of a request by NPPC to address long-standing concerns about the need to coordinate supplementation research, monitoring and evaluation. Such coordination was also recommended by the Supplementation Technical Work Group. In August 1990, the NPPC gave conditional approval to proceed with the final design of the Yakima Production Project. The Council called on the Bonneville Power Administration (BPA) to fund immediately a supplementation assessment to reevaluate, prioritize and coordinate all existing and planned supplementation monitoring and evaluation activities in the basin. Providing for the participation of the fishery agencies and tribes and others having expertise in this area. RASP addresses four principal objectives: (1) provide an overview of ongoing and planned supplementation activities and identify critical uncertainties associated with supplementation, (2) construct a conceptual framework and model which estimates the potential benefits and risks of supplementation and prioritizes uncertainties, (3) provide guidelines for the development of supplementation projects, (4) develop a plan for regional coordination of research and monitoring. These objectives, once attained, will provide the technical tools fishery managers need to carry out the Council's direction to protect and enhance salmon and steelhead. RASP has further divided the four broad objectives into 12 technical topics: (1) definition of supplementation; (2) description of the diversity of supplementation projects; (3) objectives and performance standards; (4) identification of uncertainties; (5) supplementation theory; (6) development of a conceptual model of supplemented populations; (7) development of spreadsheet model of risks and benefits of supplementation; (8) classification of stocks, streams, and supplementation strategies; (9) regional design of supplementation evaluation and monitoring; (10) guidelines for planning supplementation projects (11) application of the spreadsheet model to supplementation planning; and (12)

United States. Bonneville Power Administration.

1992-12-01T23:59:59.000Z

169

Alternative Fuels Data Center: Ethanol and Methanol Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Methanol and Methanol Tax to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Methanol Tax on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Methanol Tax on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Google Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Delicious Rank Alternative Fuels Data Center: Ethanol and Methanol Tax on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Methanol Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.08 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor

170

Methanol sensor operated in a passive mode  

DOE Patents (OSTI)

A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.

Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

2002-01-01T23:59:59.000Z

171

Process Design and Integration of Shale Gas to Methanol  

E-Print Network (OSTI)

Recent breakthroughs in horizontal drilling and hydraulic fracturing technology have made huge reservoirs of previously untapped shale gas and shale oil formations available for use. These new resources have already made a significant impact on the United States chemical industry and present many opportunities for new capital investments and industry growth. As in conventional natural gas, shale gas contains primarily methane, but some formations contain significant amounts of higher molecular weight hydrocarbons and inorganic gases such as nitrogen and carbon dioxide. These differences present several technical challenges to incorporating shale gas with current infrastructure designed to be used with natural gas. However, each shale presents opportunities to develop novel chemical processes that optimize its composition in order to more efficiently and profitably produce valuable chemical products. This paper is aimed at process synthesis, analysis, and integration of different processing pathways for the production of methanol from shale gas. The composition of the shale gas feedstock is assumed to come from the Barnett Shale Play located near Fort Worth, Texas, which is currently the most active shale gas play in the US. Process simulation and published data were used to construct a base-case scenario in Aspen Plus. The impact of different processing pathways was analyzed. Key performance indicators were assessed. These include overall process targets for mass and energy, economic performance, and environmental impact. Finally, the impact of several factors (e.g., feedstock composition, design and operating variables) is studied through a sensitivity analysis. The results show a profitable process above a methanol selling price of approximately $1.50/gal. The sensitivity analysis shows that the ROI depends much more heavily on the selling price of methanol than on the operating costs. Energy integration leads to a savings of $30.1 million per year, or an increase in ROI of 2% points. This also helps offset some of the cost required for the oxygen necessary for syngas generation through partial oxidation. For a sample shale gas composition with high levels of impurities, preprocessing costs require a price differential of $0.73/MMBtu from natural gas. The process is also environmentally desirable because shale gas does not lead to higher GHG emissions than conventional natural gas. More water is required for hydraulic fracturing, but some of these concerns can be abated through conservation techniques and regulation.

Ehlinger, Victoria M.

2013-05-01T23:59:59.000Z

172

Low temperature methanol catalyst--some aspects of process scale-up  

DOE Green Energy (OSTI)

The low temperature liquid phase methanol synthesis technology continues to be developed at Brookhaven National Laboratory (BNL). The heart of this process is a new catalyst consisting of two components: a transition metal complex (TMC) and a structured base. On dissolution in methanol, preferably methanol diluted with a cosolvent (e.g. glymes), the two components yield an active catalytic species which achieves >90% per pass syngas conversion at <150{degree}C with >95% selectivity to methanol. The catalyst performance evaluation and the process parameters optimization continue. A mimic recycle multicharge batch run has established the catalytic nature of the system and the stability of the glyme cosolvent under reaction conditions. An empirical kinetic model based on the Ultramax{reg sign} program has been proposed by solving a set of algebraic equations involving six reaction variables. Twelve additional kinetic runs were completed to test the proposed model. With prediction error of 0.031 min{sup {minus} 1} for the rate constant (k) and the R-squared of 98.5, a good agreement between actual versus predicted k values was obtained. Work continues to address other uncertainties associated with the overall methanol synthesis process scheme suggested for the new catalyst system. 9 refs., 3 figs., 2 tabs.

Mahajan, D.; Spaienza, R.S.

1991-01-01T23:59:59.000Z

173

Effect of methanol crossover in a liquid-feed polymer-electrolyte direct methanol fuel cell  

Science Conference Proceedings (OSTI)

The performance of a liquid-feed direct methanol fuel cell employing a proton-exchange membrane electrolyte with Pt-Ru/C as anode and Pt/C as cathode is reported. The fuel cell can deliver a power density of ca. 0.2 W/cm{sup 2} at 95 C, sufficient to suggest that the stack construction is well worthwhile. Methanol crossover across the polymer electrolyte at concentrations beyond 2 M methanol affects the performance of the cell which appreciates with increasing operating temperature.

Ravikumar, M.K.; Shukla, A.K. [Indiana Inst. of Science, Bangalore (India). Solid State and Structural Chemistry Unit

1996-08-01T23:59:59.000Z

174

Liquid phase methanol reactor staging process for the production of methanol  

DOE Patents (OSTI)

The present invention is a process for the production of methanol from a syngas feed containing carbon monoxide, carbon dioxide and hydrogen. Basically, the process is the combination of two liquid phase methanol reactors into a staging process, such that each reactor is operated to favor a particular reaction mechanism. In the first reactor, the operation is controlled to favor the hydrogenation of carbon monoxide, and in the second reactor, the operation is controlled so as to favor the hydrogenation of carbon dioxide. This staging process results in substantial increases in methanol yield.

Bonnell, Leo W. (Macungie, PA); Perka, Alan T. (Macungie, PA); Roberts, George W. (Emmaus, PA)

1988-01-01T23:59:59.000Z

175

Enforcement Guidance Supplements (EGS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplements (EGS) Supplements (EGS) EGS 05-01: Contractor Investigation, Causal Analysis, and Corrective Actions (09/23/2005) EGS 03-02: Revision to Occurrence Report-Based Noncompliance Tracking System Reporting Criteria (09/05/2003) EGS 03-01: Supplemental Guidance Concerning the Factual Bases for Issuing Consent Orders Pursuant to 10 CFR 820.23 (07/21/2003) EGS 02-01: Enforcement Position Relative to 10 CFR 835 Bioassay Accreditation (02/21/2002) EGS 01-02: Management and Independent Assessment (12/17/2001) EGS 01-01: Nuclear Weapons Program Enforcement Issues (10/15/2001) EGS 00-04: Factual Bases for Issuing Consent Orders Pursuant to 10 CFR 820.23 and Compliance Orders Pursuant to 10 CFR Subpart C (10/26/2000) EGS 00-03: Specific Issues on Applicability of 10 CFR 830 (09/12/2000)

176

Draft Supplemental Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Al Al b any, OR * Mo rg antow n , WV * Pitt, bu rg h , PA August 12, 20 II Dear Reader: The enclosed document, Draft Supplemental Environmental Assessment for General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative (supplemental EA; DOElEA- I 723S), was prepared by the U.S. Department of Energy (DOE) in accordance with the Council on Environmental Quality's National Environmental Policy Act (NEPA) implementing regulations (40 CFR Parts 1500 to 1508) and DOE NEPA implementing procedures (10 CFR Part 1021). DOE prepared this supplemental EA to evaluate the potential environmental consequences of providing financial assistance under the American Recovery and Reinvestment Act of 2009 (Recovery Act; Public Law 111-5, 123 Stat. liS) to General Motors Limited Liability Company (GM) for its proposed project

177

Natural gas annual 1994  

SciTech Connect

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1995-11-17T23:59:59.000Z

178

Natural gas annual 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

NONE

1996-11-01T23:59:59.000Z

179

Methanol and hydrogen from biomass for transportation  

E-Print Network (OSTI)

Methanol and hydrogen from biomass for transportation [1] Robert H. Williams, Eric D. Larson, Ryan from biomass via indirectly heated gasifiers and their use in fuel cell vehicles would make it possible for biomass to be used for road transportation, with zero or near-zero local air pollution and very low levels

180

Methanol Steam Reformer on a Silicon Wafer  

DOE Green Energy (OSTI)

A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

2004-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Counterflow Extinction of Premixed and Nonpremixed Methanol and Ethanol Flames  

E-Print Network (OSTI)

of methanol. Combustion and Flame, 25:343, 1975. [6] A. Leeand nitrogen. Combustion and Flame, 33:197–215, 1978. [4] T.Methanol and Formaldehyde Flames. Ph.d thesis, University of

Seshadri, Kalyanasundaram

2005-01-01T23:59:59.000Z

182

Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell  

Science Conference Proceedings (OSTI)

The products of methanol crossover through the acid-doped polybenzimidazole polymer electrolyte membrane (PBI PEM) to the cathode of a prototype direct methanol fuel cell (DMFC) were analyzed using multipurpose electrochemical mass spectrometry (MPEMS) coupled to the cathode exhaust gas outlet. It was found that the methanol crossing over reacts almost quantitatively to CO{sub 2} at the cathode with the platinum of the cathode acting as a heterogeneous catalyst. The cathode open-circuit potential is inversely proportional to the amount of CO{sub 2} formed. A poisoning effect on the oxygen reduction also was found. Methods for the estimation of the methanol crossover rate at operating fuel cells are suggested.

Wang, J.T.; Wasmus, S.; Savinell, R.F. [Case Western Reserve Univ., Cleveland, OH (United States)

1996-04-01T23:59:59.000Z

183

Liquid phase low temperature method for production of methanol ...  

Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor United States Patent

184

Methanol production from Eucalyptus wood chips. Final report  

DOE Green Energy (OSTI)

This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

185

A New Reference Correlation for the Viscosity of Methanol  

Science Conference Proceedings (OSTI)

... and pharmaceutical appli- cations. The oldest use of methanol is in the conversion of biomass. This process is gaining ...

2010-04-28T23:59:59.000Z

186

Natural Gas Annual 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 Released: October 31, 2007 The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. The Natural Gas Annual 2006 Summary Highlights provides an overview of the supply and disposition of natural gas in 2006 and is intended as a supplement to the Natural Gas Annual 2006. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2006 and 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

187

The densities and reaction heat of methanol synthesis System from cornstalk syngas  

Science Conference Proceedings (OSTI)

Methanol can be used as possibole replacement for conventional gasoline and Diesel fuel. In order to produce methanol

Ling?feng Zhu; Qing?ling Zhao; Jing Chen; Le Zhang; Run?tao Zhang; Li?li Liu; Zhao?yue Zhang

2010-01-01T23:59:59.000Z

188

EIS-0246-SA-18: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

246-SA-18: Supplement Analysis 246-SA-18: Supplement Analysis EIS-0246-SA-18: Supplement Analysis Wildlife Mitigation Program BPA proposes to fund the acquisition and preservation of approximately 99 acres of native wet prairie and oak woodland habitat in Lane County, Oregon. Title to the land will be held by The Nature Conservancy, who will convey permanent mitigation rights to BPA in the form of a conservation easement. These newly acquired parcels will become part of the existing 330-acre Willow Creek Wildlife Mitigation Area. Passive management practices may take place on the land until a wildlife mitigation and management plan is developed and approved for the property. Bonneville Power Administration and The Nature Conservancy, Supplement Analysis for the Wildlife Mitigation Program EIS, EIS-0246-SA-18 (October

189

Steelhead Supplementation Studies in Idaho Rivers, 1993 Annual report.  

DOE Green Energy (OSTI)

The Steelhead Supplementation Study was designed to evaluate the feasibility of using artificial production to increase natural steelhead Oncorhynchus mykiss populations and to collect baseline life history, genetic, and disease data from natural steelhead populations. To evaluate supplementation, the authors focused their experimental design on post-release survival, reproductive success, long-term fitness, and ecological interactions. They began field experiments in 1993 by outplanting hatchery adults and fingerlings to assess reproductive fitness and long-term survival. They snorkeled eight streams to estimate juvenile steelhead densities, recorded temperatures in 17 streams, and tagged natural steelhead in six streams with Passive Integrated Transponder (PIT) tags.

Byrne, Alan

1996-01-01T23:59:59.000Z

190

Enforcement Guidance Supplement 03-01 Supplemental Guidance Concerning the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement 03-01 Supplemental Guidance Supplement 03-01 Supplemental Guidance Concerning the Factual Bases for Issuing Consent Orders Pursuant to 10 CFR 820.23 Enforcement Guidance Supplement 03-01 Supplemental Guidance Concerning the Factual Bases for Issuing Consent Orders Pursuant to 10 CFR 820.23 In October 2000, the Office of Price-Anderson Enforcement (OE) issued Enforcement Guidance Supplement (EGS) 00-04, "Factual Bases for Issuing Consent Orders Pursuant to 10 CFR 820.23 and Compliance Orders Pursuant to 10 CFR subpart C." That EGS, in part, delineated a set of criteria that OE would use to determine whether to apply its enforcement discretion, in this case through the use of Consent Orders. Those criteria provided both guidance to DOE contractors regarding situations for which the use of

191

High Specific Power, Direct Methanol Fuel Cell Stack  

NLE Websites -- All DOE Office Websites (Extended Search)

High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. Available for thumbnail of Feynman Center (505) 665-9090 Email High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold

192

Enforcement Guidance Supplement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EGS:01-02 Appendix E- Operational Procedures for Enforcement Department of Energy Washington, DC 20585 December 17, 2001 MEMORANDUM FOR: DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF PRICE-ANDERSON ENFORCEMENT SUBJECT: Enforcement Guidance Supplement 01-02: Management and Independent Assessment Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. OE typically issues such guidance in the form of Enforcement Guidance Supplements (EGSs), which provide information or recommendations only and impose no requirements or actions on DOE contractors.

193

LWX-0014 Supplemental Order  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Supplemental Order Name of Petitioner: Ronald A. Sorri Date of Filing: September 26, 1994 Case Number: LWX-0014 This Decision supplements an Initial Agency Decision, dated December 16, 1993, issued by the undersigned Hearing Officer of the Office of Hearings and Appeals (OHA) of the Department of Energy in a case involving a "whistleblower" complaint filed by Ronald A. Sorri (Sorri) under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. See Ronald A. Sorri, 23 DOE & 87,503 (1993) (Sorri). In the December 16 Decision, I found that Sorri had proven by a preponderance of the evidence that he engaged in activities protected under Part 708 and that these activities were a contributing

194

Technical-economic assessment of the production of methanol from biomass. Assessment of biomass resource and methanol market. Final research report  

DOE Green Energy (OSTI)

Detailed information is presented on the following: feasibility of biomass feedstocks for methanol production, biomass availability and costs, potential demand for methanol from biomass, comparison of potential methanol demand and supply, and market penetration assessment. (MHR)

Wan, E.I.; Simmons, J.A.; Price, J.D.; Nguyen, T.D.

1979-07-12T23:59:59.000Z

195

EIS-0220: Supplemental record of decision and supplement analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20: Supplemental record of decision and supplement analysis 20: Supplemental record of decision and supplement analysis determination EIS-0220: Supplemental record of decision and supplement analysis determination Interim Management of Nuclear Materials at the Savannah River Site DOE has now further decided, because of health and safety vulnerabilities, to stabilize the remaining TRR spent nuclear fuel located in the Receiving Basin for Offsite Fuels (RBOF) at the SRS, using the F-Canyon and FB-Line facilities. The TRR spent nuclear fuel to be stabilized consists of the equivalent of 310 fuel rods (some of the rods were fragmented due to conditions in Taiwan) in 62 aluminum canisters stored underwater in RBOF. DOE has decided to stabilize the TRR spent nuclear fuel because additional TRR spent fuel in at least two of the canisters has failed, and DOE

196

A novel process for methanol synthesis. Final report  

DOE Green Energy (OSTI)

The use of methanol (MeOH) as a fuel additive and in MTBE production has renewed interest in the search for improved MeOH processes. Commercial processes are characterized by high pressures and temperatures with low per pass conversion (10--12%). Efforts are underway to find improved MeOH synthesis processes. A slurry phase ``concurrent`` synthesis of MeOH/methyl formate (MeF) which operates under relatively mild conditions (100{degrees}C lower than present commercial processes) was the subject of investigation in this work. Evidence for a reaction scheme involving the carbonylation of MeOH to MeF followed by the hydrogenolysis of MeF to two molecules of MeOH -- the net result being the reaction of H{sub 2} with CO to give MeOH via MeF, is presented. Up to 90% per pass conversion and 98% selectivity to methanol at rates comparable to commercial processes have been obtained in spite of the presence of as much as 10,000 ppM CO{sub 2} and 3000 ppM H{sub 2}O in the gas and liquid respectively. The effect of process parameters such as temperature, pressure, H{sub 2}/CO ratio in the reactor, flow rate and catalyst loading were also investigated. The use of temperatures above 170{degrees}C at a pressure of 50 atm results in MeF being the limiting reactant. Small amounts of CH{sub 4} are also formed. Significant MeOH synthesis rates at a pressure in the range of 40--50 atm makes possible the elimination of an upstream shift reactor and the use of an air-blown syngas generator. The nature of the catalysts was studied and correlated with the behavior of the various species in the concurrent synthesis.

Tierney, J.W.; Wender, I.

1994-01-25T23:59:59.000Z

197

Quick-start catalyzed methanol partial oxidation reformer  

DOE Green Energy (OSTI)

The catalytic methanol partial oxidation reformer described in this paper offers all the necessary attributes for use in transportation fuel cell systems. The bench-scale prototype methanol reformer developed at Argonne is a cylindrical reactor loaded with copper zinc oxide catalyst. Liquid methanol, along with a small amount of water, is injected as a fine spray into a flowing air stream, past an igniter onto the catalyst bed where the partial oxidation reaction takes place.

Ahmed, S.; Kumar, R.

1995-12-01T23:59:59.000Z

198

EIS-0169-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0169-SA-01: Supplement Analysis EIS-0169-SA-01: Supplement Analysis EIS-0169-SA-01: Supplement Analysis Bonneville Power Administration Yakima Fisheries Project- Fall Chinook and Coho Research Program, Yakima and Klickitat River Basins, Washington BPA, YIN and WDFW are proposing to collect broodstock, incubate eggs and rear fry in hatcheries; acclimate and release smolts; and study the natural production, ecological interactions, long-term fitness, and culturing/genetics of spring and fall chinook and coho salmon in the Yakima River basin. In the Klickitat basin, salmonid life history and physical habitat data would be collected. DOE/EIS-0169-SA-1: Supplement Analysis for Bonneville Power Administration Yakima Fisheries Project- Fall Chinook and Coho Research Program, Yakima and Klickitat River Basins, Washington (May 1999)

199

EIS-0236-S1: Supplemental Environmental Impact Statement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-S1: Supplemental Environmental Impact Statement -S1: Supplemental Environmental Impact Statement EIS-0236-S1: Supplemental Environmental Impact Statement Stockpile Stewardship and Management This Supplemental Environmental Impact Statement (SEIS) was prepared pursuant to a Joint Stipulation and Order approved and entered as an order of the court on October 27, 1997, in partial settlement of the lawsuit Civ. No. 97-936 (SS) (D.D.C.), Natural Resources Defense Council [NRDC] et al. v. Richardson et al. The Joint Stipulation and Order is reproduced at the end of this document as Attachment 1. In the Joint Stipulation and Order, the U.S. Department of Energy (DOE) agreed to prepare an SEIS to the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (SSM PEIS) (DOE/EIS-0236, DOE 1996a) to evaluate the reasonably

200

EIS-0246-SA-19: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0246-SA-19: Supplement Analysis EIS-0246-SA-19: Supplement Analysis EIS-0246-SA-19: Supplement Analysis Wildlife Mitigation Program BPA proposes to purchase approximately 650 acres of private property that border the St. Joe River near Goose Heaven Lake on the Coeur d'Alene Indian Reservation as partial mitigation for fish and wildlife impacts caused by the construction and operation of Albeni Falls hydroelectric project. Title to the land will be transferred to the Coeur d'Alene Tribe for wildlife habitat protection and enhancement. The goal of this project is to protect and restore riparian, wetland, floodplain and river corridor systems to help enhance water quality and in-stream habitat in the St. Joe Watershed. Bonneville Power Administration and The Nature Conservancy, Supplement

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Wensheng He, David Mountz, Tao Zhang, Chris Roger July 17, 2012 2 Outline Background on Arkema's...

202

Design on Elevated-Temperature and Methanol-Blocking Proton ...  

Science Conference Proceedings (OSTI)

Presentation Title, Design on Elevated-Temperature and Methanol-Blocking Proton Exchange Membrane for Fuel Cell Application. Author(s), Yan Xiang.

203

Supplement Tables - Contact  

Gasoline and Diesel Fuel Update (EIA)

Supplement Tables to the AEO99 Supplement Tables to the AEO99 bullet1.gif (843 bytes) Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage furtherinfo.gif (5474 bytes) The Annual Energy Outlook 1999 (AEO99) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/586-1441), Director of the International, Economic, and Greenhouse Gas Division; Susan H. Holte (sholte@eia.doe.gov, 202/586-4838), Director of the Demand and Integration Division; James M. Kendell (jkendell@eia.doe.gov, 202/586-9646), Director of the Oil and Gas Division; Scott Sitzer (ssitzer@eia.doe.gov, 202/586-2308), Director of the Coal and Electric Power Division; or Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Modeling Analyst. Detailed questions about the forecasts and related model components may be addressed to the following analysts:

204

Methanol production from eucalyptus wood chips. Attachment IV. Health and safety aspects of the eucalypt biomass to methanol energy system  

DOE Green Energy (OSTI)

The basic eucalyptus-to-methanol energy process is described and possible health and safety risks are identified at all steps of the process. The toxicology and treatment for exposure to these substances are described and mitigating measures are proposed. The health and safety impacts and risks of the wood gasification/methanol synthesis system are compared to those of the coal liquefaction and conversion system. The scope of this report includes the health and safety risks of workers (1) in the laboratory and greenhouse, where eucalyptus seedlings are developed, (2) at the biomass plantation, where these seedlings are planted and mature trees harvested, (3) transporting these logs and chips to the refinery, (4) in the hammermill, where the logs and chips will be reduced to small particles, (5) in the methanol synthesis plant, where the wood particles will be converted to methanol, and (6) transporting and dispensing the methanol. Finally, the health and safety risks of consumers using methanol is discussed.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

205

Figure 22. Average price of natural gas delivered to U.S. residentia...  

U.S. Energy Information Administration (EIA) Indexed Site

Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey."...

206

Economic feasibility study of a wood gasification-based methanol plant: A subcontract report  

DOE Green Energy (OSTI)

This report presents an economic feasibility study for a wood-gasification-based methanol plant. The objectives were to evaluate the current commercial potential of a small-scale, wood-fed methanol plant using the SERI oxygen-blown, pressurized, down-draft gasifier technology and to identify areas requiring further R and D. The gasifier gas composition and material balance were based on a computer model of the SERI gasifier since acceptable test data were not available. The estimated capital cost was based on the Nth plant constructed. Given the small size and commercial nature of most of the equipment, N was assumed to be between 5 and 10. Only large discrepancies in gasifier output would result in significant charges in capital costs. 47 figs., 55 tabs.

Not Available

1987-04-01T23:59:59.000Z

207

Supplement Analysis Plutonium Consolidation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-SA-4 9-SA-4 SUPPLEMENT ANALYSIS STORAGE OF SURPLUS PLUTONIUM MATERIALS AT THE SAVANNAH RIVER SITE INTRODUCTION AND PURPOSE In April 2002, DOE decided to immediately consolidate long-term storage at the Savannah River Site (SRS) of surplus, non-pit weapons-usable plutonium then stored at the Rocky Flats Environmental Technology Site (RFETS) (DOE, 2002a). That 2002 decision did not affect an earlier DOE decision made in the January 21, 1997, Record of Decision (ROD, DOE, 1997) for the Storage and Disposition of Weapons-Usable Fissile Materials Programmatic Environmental Impact Statement (Storage and Disposition PEIS, DOE, 1996) to continue storage of non-pit surplus plutonium at Hanford, the Idaho National Laboratory (INL), and the Los Alamos

208

Nov 2007 STEO Supplement  

Gasoline and Diesel Fuel Update (EIA)

07 07 1 November 2007 Short-Term Energy Outlook Supplement: Why Are Oil Prices So High? 1 Crude oil prices have increased dramatically in recent years. West Texas Intermediate (WTI) prices, which remained around $20 per barrel during the 1990's, rose, on average, from about $31 per barrel in 2003 to $57 per barrel in 2005, and to $66 per barrel in 2006. In 2007, WTI crude oil prices have climbed further, to average over $85 per barrel in October, topping $90 per barrel at the end of the month. The EIA believes that the following supply and demand fundamentals are the main drivers behind recent oil price movements: 1) Strong world economic growth driving growth in oil use, 2) Moderate non-Organization of the Petroleum Exporting Countries

209

21. Average price of natural gas delivered to residential ...  

U.S. Energy Information Administration (EIA)

64 U.S. Energy Information ... Natural and Supplemental Gas Supply and ... 2005 dollars using the chain?type price indexes ...

210

Term Energy The Implications of Lower Natural Gas Prices for ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Short-Term Energy Outlook Supplement – May 2009 2 average delivered natural gas price from $4.75 to $4.25 per MMBtu ...

211

New Jersey Natural Gas- SAVEGREEN Residential Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Through the SAVEGREEN Project, New Jersey Natural Gas (NJNG) provides rebates that supplement the statewide WARMAdvantage Program. NJNG Enhanced Rebate is available for customers who upgrade to a...

212

Natural gas annual 1997  

Science Conference Proceedings (OSTI)

The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1997 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1993 to 1997 for each Census Division and each State. Annual historical data are shown at the national level. 27 figs., 109 tabs.

NONE

1998-10-01T23:59:59.000Z

213

Study on Catalytic Experiments of Methanol Synthesis from Cornstalk Syngas  

Science Conference Proceedings (OSTI)

Biomass energy is a renewable and potential resource. In order to research the conversion of cornstalk biomass (the agricultural residues) into the fuel methanol and the effective utilization of biomass energy, the low-heat-value cornstalk gas was produced ... Keywords: Cornstalk, Syngas, Catalyst, Methanol, Synthesis

Zhu Lingfeng; Gao Ruqin; Liu Lili; Wang Yan; Wang Yangyang

2011-01-01T23:59:59.000Z

214

Electrolytic synthesis of methanol from CO.sub.2  

DOE Patents (OSTI)

A method and system for synthesizing methanol from the CO.sub.2 in air using electric power. The CO.sub.2 is absorbed by a solution of KOH to form K.sub.2 CO.sub.3 which is electrolyzed to produce methanol, a liquid hydrocarbon fuel.

Steinberg, Meyer (Huntington Station, NY)

1976-01-01T23:59:59.000Z

215

The Equilibrium Compositions of Methanol Synthesis System by Cornstalk Syngas  

Science Conference Proceedings (OSTI)

Methanol can be used as a promising alternative for conventional gasoline and Diesel fuel. It is necessary to decompose biomass such as cornstalks in order to produce methanol which is a raw material from agricultural residues. A promising route for processing cornstalks is firstly to gasify cornstalks with thermo?chemical method to prepare the syngas

Ling?feng Zhu; Qing?ling Zhao; Yang?yang Wang; Jing Chen; Le Zhang; Run?tao Zhang; Li?li Liu; Zhao?yue Zhang

2010-01-01T23:59:59.000Z

216

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

217

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

218

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

219

The Carnol System for methanol production and CO{sub 2} mitigation from coal fired power plants and the transportation sector  

DOE Green Energy (OSTI)

The Carnol System consists of methanol production by C0{sub 2} recovered from coal fired power plants and natural gas and the use of the methanol as an alternative automotive fuel. The Carnol process produces hydrogen by the thermal decomposition of natural gas and reacting the hydrogen with C0{sub 2} recovered from the power plant. The carbon produced can be stored or used as a materials commodity. A design and economic evaluation of the process is presented and compared to gasoline as an automotive fuel. An evaluation of the C0{sub 2} emission reduction of the process and system is made and compared to other conventional methanol production processes is including the use of biomass feedstock and methanol fuel cell vehicles. The C0{sub 2} for the entire Carnol System using methanol in automotive IC engines can be reduced by 56% compared to conventional system of coal plants and gasoline engines and by as much as 77% C0{sub 2} emission reduction when methanol is used in fuel cells in automotive engines. The Carnol System is shown to be an environmentally attractive and economically viable system connecting the power generation sector with the transportation sector which should warrant further development.

Steinberg, M.

1996-02-01T23:59:59.000Z

220

The Carnol System for methanol production and CO{sub 2} mitigation from coal fired power plants and the transportation sector  

DOE Green Energy (OSTI)

The Carnol System consists of methanol production by CO{sub 2} recovered from coal fired power plants and natural gas and the use of the methanol as an alternative automotive fuel. The Carnol Process produces hydrogen by the thermal decomposition of natural gas and reacting the hydrogen with CO{sub 2} recovered from the power plant. The carbon produced can be stored or used as a materials commodity. A design and economic evaluation of the Carnol System is presented and compared to gasoline as an automotive fuel. An evaluation of the CO{sub 2} emission reduction of the process and system is made and compared to other conventional methanol production processes is including the use of biomass feedstock and methanol fuel cell vehicles. The CO{sub 2} for the entire Carnol System using methanol in automotive IC engines can be reduced by 56% compared to conventional system of coal plants and gasoline engines and by as much as 77% CO{sub 2} emission reduction when methanol is used in fuel cells in automotive engines. The Carnol System is shown to be an environmentally attractive and economically viable system connecting the power generation sector with the transportation sector which should warrant further development.

Steinberg, M.

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

National Supplemental Screening Program | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

National Supplemental Screening Program The National Supplemental Screening Program (NSSP) offers medical screenings at no charge for former U.S. Department of Energy (DOE) site...

222

Methanol production from Eucalyptus wood chips. Working Document 9. Economics of producing methanol from Eucalyptus in Central Florida  

DOE Green Energy (OSTI)

A detailed feasibility study of producing methanol from Eucalyptus in Central Florida encompasses all phases of production - from seedling to delivery of finished methanol. The project includes the following components: (1) production of 55 million, high quality, Eucalyptus seedlings through tissue culture; (2) establishment of a Eucalyptus energy plantation on approximately 70,000 acres; and (3) engineering for a 100 million gallon-per-year methanol production facility. In addition, the potential environmental impacts of the whole project were examined, safety and health aspects of producing and using methanol were analyzed, and site specific cost estimates were made. The economics of the project are presented here. Each of the three major components of the project - tissue culture lab, energy plantation, and methanol refinery - are examined individually. In each case a site specific analysis of the potential return on investment was conducted.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

223

Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis  

DOE Patents (OSTI)

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

1993-01-01T23:59:59.000Z

224

Natural Gas Industry and Markets  

Reports and Publications (EIA)

This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

Information Center

2006-03-03T23:59:59.000Z

225

EIS-0220: Supplemental record of decision and supplement analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

record of decision and supplement analysis record of decision and supplement analysis determination EIS-0220: Supplemental record of decision and supplement analysis determination Interim Management of Nuclear Materials at the Savannah River Site DOE has now further decided, because of health and safety vulnerabilities, to stabilize the remaining TRR spent nuclear fuel located in the Receiving Basin for Offsite Fuels (RBOF) at the SRS, using the F-Canyon and FB-Line facilities. The TRR spent nuclear fuel to be stabilized consists of the equivalent of 310 fuel rods (some of the rods were fragmented due to conditions in Taiwan) in 62 aluminum canisters stored underwater in RBOF. DOE has decided to stabilize the TRR spent nuclear fuel because additional TRR spent fuel in at least two of the canisters has failed, and DOE

226

II. GENERAL COMPLIANCE SUPPLEMENT INTRODUCTION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rather than repeat these compliance requirements, audit objectives, and suggested audit procedures for each program, they are provided once in this part. For each program in this Compliance Supplement (this Supplement), the program-specific compliance guidance section (Part III of this guidance) contains additional information about the compliance requirements that arise from laws and regulations applicable to each program, including the requirements specific to each program that should be tested using the guidance in this part. Compliance Requirements, Audit Objectives, and Suggested Audit Procedures At the end of this General Compliance Supplement is a matrix that outlines the compliance requirements, including special tests and provisions, that are applicable to programs performed under

227

Clean air program: Design guidelines for bus transit systems using alcohol fuel (methanol and ethanol) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

This report provides design guidelines for the safe use of alcohol fuel (Methanol or Ethanol). It is part of a series of individual monographs being published by the FTA providing guidelines for the safe use of Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes, for the subject fuel, the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; DeMarco, V.R.; Hathaway, W.T.; Kangas, R.

1996-08-01T23:59:59.000Z

228

FTCP Issue Paper Supplemental Competencies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Competencies DOCUMENT NUMBER FTCP-12- 003 PROBLEM: There is no approved process for issuing supplemental competencies. BACKGROUND: Supplemental competencies cover important skills and abilities that are less than an entire function or position, and for which an entire Functional Area Qualification Standard (FAQS) is not appropriate. The Human Factors Engineering (HFE) competencies issued by the FTCP in March 2012 are an example. The FTCP established a working group to develop HFE competencies, and the Panel provided them for use. Another example is the Safety System Oversight (SSO) function, which does not have (or require) a dedicated FAQS, but does need some oversight-related supplemental competencies. It is likely that other disciplines or

229

Advanced system analysis for indirect methanol fuel cell power plants for transportation applications  

DOE Green Energy (OSTI)

The indirect methanol cell fuel concept actively pursued by the USDOE and General Motors Corporation proposes the development of an electrochemical engine'' (e.c.e.), an electrical generator capable for usually efficient and clean power production from methanol fuel for the transportation sector. This on-board generator works in consort with batteries to provide electrical power to drive propulsion motors for a range of electric vehicles. Success in this technology could do much to improve impacted environmental areas and to convert part of the transportation fleet to natural gas- and coal-derived methanol as the fuel source. These developments parallel work in Europe and Japan where various fuel cell powered vehicles, often fueled with tanked or hydride hydrogen, are under active development. Transportation applications present design challenges that are distinctly different from utility requirements, the thrust of most of previous fuel cell programs. In both cases, high conversion efficiency (fuel to electricity) is essential. However, transportation requirements dictate as well designs for high power densities, rapid transients including short times for system start up, and consumer safety. The e.c.e. system is formed from four interacting components: (1) the fuel processor; (2) the fuel cell stack; (3) the air compression and decompression device; and (4) the condensing cross flow heat exchange device. 2 figs.

Vanderborgh, N.E.; McFarland, R.D.; Huff, J.R.

1990-01-01T23:59:59.000Z

230

Advanced system analysis for indirect methanol fuel cell power plants for transportation applications  

SciTech Connect

The indirect methanol cell fuel concept actively pursued by the USDOE and General Motors Corporation proposes the development of an electrochemical engine'' (e.c.e.), an electrical generator capable for usually efficient and clean power production from methanol fuel for the transportation sector. This on-board generator works in consort with batteries to provide electrical power to drive propulsion motors for a range of electric vehicles. Success in this technology could do much to improve impacted environmental areas and to convert part of the transportation fleet to natural gas- and coal-derived methanol as the fuel source. These developments parallel work in Europe and Japan where various fuel cell powered vehicles, often fueled with tanked or hydride hydrogen, are under active development. Transportation applications present design challenges that are distinctly different from utility requirements, the thrust of most of previous fuel cell programs. In both cases, high conversion efficiency (fuel to electricity) is essential. However, transportation requirements dictate as well designs for high power densities, rapid transients including short times for system start up, and consumer safety. The e.c.e. system is formed from four interacting components: (1) the fuel processor; (2) the fuel cell stack; (3) the air compression and decompression device; and (4) the condensing cross flow heat exchange device. 2 figs.

Vanderborgh, N.E.; McFarland, R.D.; Huff, J.R.

1990-01-01T23:59:59.000Z

231

Anodic oxidation of methanol using a new base electrocatalyst  

Science Conference Proceedings (OSTI)

Anodic oxidation of methanol, the reaction employed on the anode of the direct methanol fuel cell, is conventionally carried out using noble electrocatalysts. The best of these has been found to be a codeposited mixture of platinum and ruthenium. The use of base materials as anode catalysts requires, in addition to electrocatalytic activity, a low corrosion rate in the cell electrolyte. The authors present here some preliminary results of measurements of the anodic oxidation of methanol using a newly synthesized base electrocatalyst: this catalyst is passivated by the highly aggressive electrolyte.

Burstein, G.T.; Barnett, C.J.; Kucernak, A.R.J.; Williams, K.R. [Univ. of Cambridge (United Kingdom). Dept. of Materials Science and Metallurgy

1996-07-01T23:59:59.000Z

232

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 20, 2003 March 20, 2003 EIS-0285-SA-133: Supplement Analysis Transmission System Vegetation Management Program March 19, 2003 EIS-0285-SA-132: Supplement Analysis Transmission System Vegetation Management Program March 12, 2003 EIS-1069-SA-06: Supplement Analysis Yakima/Kilickitat Fisheries Project March 10, 2003 EIS-0225-SA-03: Supplement Analysis Continued Operation of the National Nuclear Security Administration, Pantex Plant and Associated Storage of Nuclear Weapon Components March 10, 2003 EIS-0285-SA-130: Supplement Analysis Transmission System Vegetation Management Program March 7, 2003 EIS-0285-SA-129: Supplement Analysis Transmission System Vegetation Management Program March 6, 2003 EIS-0285-SA-128: Supplement Analysis Transmission System Vegetation Management Program

233

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 14, 2001 September 14, 2001 EIS-0265-SA-62: Supplement Analysis Watershed Management Program and the Hood River Fisheries Project September 13, 2001 EIS-0246-SA-17: Supplement Analysis Wildlife Management Program September 11, 2001 EIS-0285-SA-26: Supplement Analysis Transmission System Vegetation Management Program September 5, 2001 EIS-0285-SA-28: Supplement Analysis Transmission System Vegetation Management Program September 5, 2001 EIS-0285-SA-25: Supplement Analysis Transmission System Vegetation Management Program August 17, 2001 EIS-0285-SA-23: Supplement Analysis Transmission System Vegetation Management Program August 17, 2001 EIS-0285-SA-22: Supplement Analysis Transmission System Vegetation Management Program, King and Snohomish Counties, WA, in the Snohomish Region

234

Low temperature catalysts for methanol production  

DOE Patents (OSTI)

A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, Richard S. (1 Miller Ave., Shoreham, NY 11786); Slegeir, William A. (7 Florence Rd., Hampton Bays, NY 11946); O' Hare, Thomas E. (11 Geiger Pl., Huntington Station, NY 11746); Mahajan, Devinder (14 Locust Ct., Selden, NY 11784)

1986-01-01T23:59:59.000Z

235

Low temperature catalysts for methanol production  

DOE Patents (OSTI)

A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

Sapienza, R.S.; Slegeir, W.A.; O' Hare, T.E.; Mahajan, D.

1985-03-12T23:59:59.000Z

236

EIS-0246-SA-38: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Supplement Analysis 8: Supplement Analysis EIS-0246-SA-38: Supplement Analysis Wildlife Mitigation Program, Flathead River System, Flathead County, Montana BPA proposes to purchase the conservation easements on the Sanders (307 acres) and Seabaugh (449 acres) parcels of the Weaver Slough to ensure that current fisheries and natural resource values remain protected, and that no development or human encroachment would occur on these parcels, in perpetuity. No planned construction or improvements are currently proposed and the project does not involve fee title land acquisition. Protection will sustain quality aquatic habitats, water quality, and fish and wildlife habitat. Wetlands protected by this easement are priority wetlands in the basin, according to the Flathead Lakers Critical Lands Study.

237

Supplement Tables to the Annual Energy Outlook - Errata  

Gasoline and Diesel Fuel Update (EIA)

2003 2003 There were two corrections to Table 117 in the Annual Energy Outlook 2003 Supplemental Tables: 1. The Total rows for all three table sections (Crude Oil, Light Refined Products, and Heavy Refined Products) were adjusted to accurately reflect the summation of the regions listed in the section. (Change made on 3/20/2003) 2. The final column, representing the growth rate from 2001 to 2025, for the Heavy Refined Products section was corrected. (Change made on 3/20/2003) 3. The regional sulfur dioxide emissions in the Annual Energy Outlook 2003 supplemental tables 60-72 were updated. Previously, this row in each table had contained the national total. (Change made on 4/7/03) 4. Supplement tables 60-73 were updated to correct Fuel Consumption for Petroleum, Natural Gas,

238

Novel Materials for High Efficiency Direct Methanol Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

* >50 mWmg precious group metal (PGM) in an MEA with 50% Pt reduction. Develop a second generation membrane with an areal * resistance <0.0375 cm 2 and a methanol permeation...

239

Direct Methanol Fuel Cell Corporation DMFCC | Open Energy Information  

Open Energy Info (EERE)

Methanol Fuel Cell Corporation DMFCC Methanol Fuel Cell Corporation DMFCC Jump to: navigation, search Name Direct Methanol Fuel Cell Corporation (DMFCC) Place Altadena, California Zip 91001 Product DMFCC is focused on providing intellectual property protection and disposable fuel cartridge for the direct methanol fuel cell industry. Coordinates 34.185405°, -118.131529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.185405,"lon":-118.131529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Demonstration of dissociated methanol as an automotive fuel: system performance  

DOE Green Energy (OSTI)

The results are presented of system performance testing of an automotive system devised to provide hydrogen-rich gases to an internal combustion engine by dissociating methanol on board the vehicle. The dissociation of methanol absorbs heat from the engine exhaust and increases the lower heating value of the fuel by 22%. The engine thermal efficiency is increased by raising the compression ratio and burning with excess air.

Finegold, J. G.; Karpuk, M. E.; McKinnon, J. T.; Passamaneck, R.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

DOE Green Energy (OSTI)

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28T23:59:59.000Z

242

Ferrocyanide tank waste stability. Supplement 2  

Science Conference Proceedings (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove {sup 137}CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

243

Final Supplemental Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1 June 2008 Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1 June 2008 Foreword COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

244

SNL/CA Supplement Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22-SA-01 22-SA-01 Supplement Analysis for the Final Site-Wide Environmental Assessment for Sandia National Laboratories/California [September 2012] U.S. Department of Energy National Nuclear Security Administration Sandia Site Office This page intentionally left blank COVER SHEET RESPONSIBLE AGENCY: U.S. DEPARTMENT OF ENERGY/NATIONAL NUCLEAR SECURITY ADMINISTRATION TITLE: Supplement Analysis for the Final Site-Wide Environmental Assessment for Sandia National Laboratories/California (DOE/EA-1422-SA-01) CONTACT: For further information concerning this Supplement Analysis, contact Ms. Susan Lacy Environmental Team Leader Sandia Site Office National Nuclear Security Administration P. O. Box 5400, MS 0184 Albuquerque, New Mexico 87185-5400 Phone: (505) 845-5542

245

Catalytic gasification of bagasse for the production of methanol  

DOE Green Energy (OSTI)

The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

Baker, E.G.; Brown, M.D.; Robertus, R.J.

1985-10-01T23:59:59.000Z

246

EIS-0312-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-SA-01: Supplement Analysis EIS-0312-SA-01: Supplement Analysis Fish and Wildlife Implementation Plan Supplement Analysis for the Fish and Wildlife Implementation Plan EIS (DOE...

247

EIS-0312-SA-03: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-SA-03: Supplement Analysis EIS-0312-SA-03: Supplement Analysis Fish and Wildlife Implementation Plan The attached Supplement Analysis for Bonneville Power Administration's...

248

Microsoft Word - Price Probabilities Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 1 April 2010 Short-Term Energy Outlook Supplement: Probabilities of Possible Future Prices 1 EIA introduced a monthly analysis of energy price volatility and forecast uncertainty in the October 2009 Short-Term Energy Outlook (STEO). Included in the analysis were charts portraying confidence intervals around the New York Mercantile Exchange (NYMEX) futures prices of West Texas Intermediate (equivalent to light sweet crude oil) and Henry Hub natural gas contracts. The March 2010 STEO added another set of charts listing the probability of the future realized price exceeding or falling below given price levels (see Figures 1A and 1B for West Texas Intermediate crude oil price probabilities). These charts are also available as spreadsheets allowing users to input their own prices to

249

Hydrogen supplemented diesel electric locomotive  

SciTech Connect

A system is disclosed for using internally generated electricity as the power to operate an electrolysis cell for the production of hydrogen gas. This hydrogen gas would be stored under pressure and used on demand as a fuel supplement as for hill ascension by a diesel locomotive.

Wilson, J.B.

1983-05-03T23:59:59.000Z

250

Aquatic Supplement Hood River Subbasin  

E-Print Network (OSTI)

crystal springs 4 Crystal Sp WD bypass reach to overflow? ? 4 dog river 3 City of TD none 3 no infoAppendix B Aquatic Supplement Contents Hood River Subbasin Tables and Figures: Table 1. Current estimated peak summer withdrawals from the Hood River Table 2. Historic lake stocking and fish introductions

251

Methanol fuel vehicle demonstration: Exhaust emission testing. Final report  

DOE Green Energy (OSTI)

Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

Hyde, J.D. [New York State Dept. of Environmental Conservation, Albany, NY (US). Automotive Emissions Lab.

1993-07-01T23:59:59.000Z

252

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2, 2003 October 2, 2003 EA-0307-SA-01: Supplement Analysis Colville Resident Trout Hatchery Project Supplement Analysis August 27, 2003 EIS-0246-SA-35: Supplement Analysis Wildlife Mitigation Program, seven miles east of Juntura, Oregon, Malheur County August 22, 2003 EIS-0246-SA-34: Supplement Analysis Wildlife Mitigation Program, Flathead County, Montana July 14, 2003 EIS-1069-SA-07: Supplement Analysis Yakima/Kilickitat Fisheries Project, Noxious Weed Control at Cle Elum and Jack Creek, Cle Elum Supplementation and Research Facility and Jack Creek Acclimation Site, Kittitas County, Washington May 21, 2003 EIS-0246-SA-33: Supplement Analysis Wildlife Mitigation Program, Flathead County, Montana May 20, 2003 EIS-0246-SA-32: Supplement Analysis Wildlife Mitigation Program

253

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 10, 2004 August 10, 2004 EIS-0265-SA-169: Supplement Analysis Watershed Management Program August 10, 2004 EIS-0265-SA-168: Supplement Analysis Watershed Management Program August 9, 2004 EIS-0265-SA-167: Supplement Analysis Watershed Management Program August 6, 2004 EIS-0265-SA-166: Supplement Analysis Watershed Management Program August 4, 2004 EIS-0310-SA-01: Supplement Analysis Accomplishing Expanded Civilian Nuclear Energy Research and Development and Isotope Production Missions in the United States August 4, 2004 EIS-0265-SA-165: Supplement Analysis Watershed Management Program - Idaho Model Watershed Habitat Projects - Welp Riparian Enhancement Fence August 4, 2004 EIS-0265-SA-163: Supplement Analysis Watershed Management Program August 2, 2004 EIS-0265-SA-164: Supplement Analysis

254

Recommendations for the Supplement Analysis Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

any information that raised a question on the need for a supplemental EIS, such as updated environmental monitoring data or research results. 3.0 Content of a Supplement...

255

Recommendations for the Supplement Analysis Process  

Energy.gov (U.S. Department of Energy (DOE))

DOE has prepared this guidance regarding Supplement Analyses.The guidance discusses decisions regarding whether to prepare a Supplement Analysis (SA), the substantive content of the analysis, procedural aspects of preparing an SA, and the outcomes that can result.

256

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » NEPA Documents » Supplement Analyses (SA) Services » NEPA Documents » Supplement Analyses (SA) Supplement Analyses (SA) A document that DOE prepares in accordance with DOE NEPA regulations (10 CFR 1021.314(c)) to determine whether a supplemental or new EIS should be prepared pursuant to CEQ NEPA regulations (40 CFR 1502.9(c). If you have any trouble finding a specific document, please contact AskNEPA@hq.doe.gov for assistance. Documents Available for Download October 10, 2013 EA-1812: Final Supplement Analysis Haxtun Wind Energy Project, Logan and Phillips Counties, CO September 10, 2013 EIS-0310-SA-02: Supplement Analysis Nuclear Infrastructure Programmatic Environmental Impact Statement Supplement Analysis Determination for Plutonium-238 Production for Radioisotope Power Systems June 14, 2013 EA-1562-SA-1: Supplement Analysis

257

Household energy and consumption and expenditures, 1990. Supplement, Regional  

Science Conference Proceedings (OSTI)

The purpose of this supplement to the Household Energy Consumption and Expenditures 1990 report is to provide information on the use of energy in residential housing units, specifically at the four Census regions and nine Census division levels. This report includes household energy consumption, expenditures, and prices for natural gas, electricity, fuel oil, liquefied petroleum gas (LPG), and kerosene as well as household wood consumption. For national-level data, see the main report, Household Energy Consumption and Expenditures 1990.

Not Available

1993-03-02T23:59:59.000Z

258

Making Emergency Supplemental Appropriations for the ...  

Science Conference Proceedings (OSTI)

Taken from PL 109-13, MAKING EMERGENCY SUPPLEMENTAL APPROPRIATIONS FOR THE FISCAL YEAR ENDING SEPTEMBER 30, 2005 ...

2010-10-05T23:59:59.000Z

259

Recommendations for the Supplement Analysis Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recommendations Recommendations for the Supplement Analysis Process July 2005 U.S. Department of Energy Environment, Safety and Health Office of NEPA Policy and Compliance Recommendations for the Supplement Analysis Process July 2005 U.S. Department of Energy Environment, Safety and Health Office of NEPA Policy and Compliance printed on recycled paper Recommendations for the Supplement Analysis Process Contents

260

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

262

Direct methanol/air fuel cells: Systems considerations  

DOE Green Energy (OSTI)

Successful operation of a direct methanol/air fuel cell system depends upon appropriate integration of the fuel cell components and accommodation of the need for heat and mass transfer within the system. The features of the system that must be considered separately and in an interactive fashion are: (1) the physical state of the fuel feed stream, (2) electrode characteristics, (3) characteristics of the electrolyte, (4) product water removal, (5) heat transfer into our out of the stack, and (6) methanol loss modes. The operating temperature and pressure will be determined, to a large extent, by these features. An understanding of the component features and their interactions is necessary for initial system considerations for direct methanol/air fuel cells.

Huff, J.R.

1990-01-01T23:59:59.000Z

263

Density Functional Studies of Methanol Decomposition on Subnanometer Pd Clusters  

DOE Green Energy (OSTI)

A density functional theory study of the decomposition of methanol on subnanometer palladium clusters (primarily Pd4) is presented. Methanol dehydrogenation through C-H bond breaking to form hydroxymethyl (CH2OH) as the initial step, followed by steps involving formation of hydroxymethylene (CHOH), formyl (CHO), and carbon monoxide (CO), is found to be the most favorable reaction pathway. A competing dehydrogenation pathway with O-H bond breaking as the first step, followed by formation of methoxy (CH3O) and formaldehyde (CH2O), is slightly less favorable. In contrast, pathways involving C-O bond cleavage are much less energetically favorable, and no feasible pathways involving C-O bond formation to yield dimethyl ether (CH3OCH3) are found. Comparisons of the results are made with methanol decomposition products adsorbed on more extended Pd surfaces; all reaction intermediates are found to bind slightly more strongly to the clusters than to the surfaces.

Mehmood, Faisal; Greeley, Jeffrey P.; Curtiss, Larry A.

2009-12-31T23:59:59.000Z

264

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)  

Science Conference Proceedings (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The early entrance coproduction plant study conducted in Phase I of the IMPPCCT project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there are minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the synthesis gas (syngas). However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase II is to conduct RD&T as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies will address the technical concerns that will make the IMPPCCT concept competitive with natural

Albert C. Tsang

2004-03-26T23:59:59.000Z

265

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy in July 2003. The project has completed Phase I, and is currently in Phase II of development. The two project phases include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations; and (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The Phase I of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase II is supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The WREL integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The early entrance coproduction plant study conducted in Phase I of the IMPPCCT project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there are minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the synthesis gas (syngas). However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase II is to conduct RD&T as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies will address the technical concerns that will make the IMPPCCT concept competitive with natural

Albert C. Tsang

2004-03-26T23:59:59.000Z

266

Injector spray characterization of methanol in reciprocating engines  

DOE Green Energy (OSTI)

This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

Dodge, L.; Naegeli, D. [Southwest Research Inst., San Antonio, TX (United States)

1994-06-01T23:59:59.000Z

267

Direct methanol fuel cells at reduced catalyst loadings  

DOE Green Energy (OSTI)

We focus in this paper on the reduction of catalyst loading in direct methanol fuel cells currently under development at Los Alamos National Laboratory. Based on single-cell DMFC testing, we discuss performance vs. catalyst loading trade-offs and demonstrate optimization of the anode performance. We also show test data for a short five-cell DMFC stack with the average total platinum loading of 0.53 mg cm{sup -2} and compare performance of this stack with the performance of a single direct methanol fuel cell using similar total amount of precious metal.

Zelenay, P. (Piotr); Guyon, F. (Francois); Gottesfeld, Shimshon

2001-01-01T23:59:59.000Z

268

DIRECT METHANOL FUEL CELLS AT REDUCED CATALYST LOADINGS  

DOE Green Energy (OSTI)

We focus in this paper on the reduction of catalyst loading in direct methanol fuel cells currently under development at Los Alamos National Laboratory. Based on single-cell DMFC testing, we discuss performance vs. catalyst loading trade-offs and demonstrate optimization of the anode performance. We also show test data for a short five-cell DMFC stack with the average total platinum loading of 0.53 mg cm{sup {minus}2} and compare performance of this stack with the performance of a single direct methanol fuel cell using similar total amount of precious metal.

P. ZELENAY; F. GUYON; SM. GOTTESFELD

2001-05-01T23:59:59.000Z

269

Environmental information volume: Liquid Phase Methanol (LPMEOH{trademark}) project  

DOE Green Energy (OSTI)

The purpose of this project is to demonstrate the commercial viability of the Liquid Phase Methanol Process using coal-derived synthesis gas, a mixture of hydrogen and carbon monoxide. This report describes the proposed actions, alternative to the proposed action, the existing environment at the coal gasification plant at Kingsport, Tennessee, environmental impacts, regulatory requirements, offsite fuel testing, and DME addition to methanol production. Appendices include the air permit application, solid waste permits, water permit, existing air permits, agency correspondence, and Eastman and Air Products literature.

NONE

1996-05-01T23:59:59.000Z

270

Ohio Natural Gas Supplemental Gas - Biomass Gas (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

1990's 918 941 852 1,090 1,090 1,170 1,153 2000's 1,201 1,127 0 222 337 373 412 337 379 456 2010's 313 269 - No Data Reported; -- Not Applicable; NA Not Available; W ...

271

U.S. Supplemental Supplies of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012...

272

Supplies of Natural Gas Supplemental Fuels (Annual Supply & Dispositio...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011...

273

ANNUAL REPORT OF NATURAL AND SUPPLEMENTAL GAS SUPPLY AND ...  

U.S. Energy Information Administration (EIA)

consumers such as apartment buildings with commercial ... Residential: An energy-consuming sector that consists of living quarters for private households.

274

1st FY 2001 Emergency Supplemental Appropriations Act  

Science Conference Proceedings (OSTI)

“Taken from PL 107-38 1st FY 2001 Emergency Supplemental Appropriations Act…”. An Act. Making emergency supplemental ...

2010-10-05T23:59:59.000Z

275

Evaluation of dissociated and steam-reformed methanol as automotive engine fuels  

SciTech Connect

Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state are discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H/sub 2/ + CO and 3H/sub 2/ + CO/sub 2/ respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed methanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol. 36 references, 27 figures, 3 tables.

Lalk, T.R.; McCall, D.M.; McCanlies, J.M.

1984-05-01T23:59:59.000Z

276

CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA  

NLE Websites -- All DOE Office Websites (Extended Search)

r r r r r t r r t r r r * r r r r r r CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY COMMlSSION NEVADA OPERATIONS OFFICE LAS VEGAS, NEVADA September 1970 Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, Nevada 338592 ...._- _._--_ .. -- - - - - - - .. .. - .. - - .. - - - CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA FACILITY RECORDS 1970 This page intentionally left blank - - .. - - - PURPOSE This facility study has been prepared in response to a request of the AEC/NVOO Property Management Division and confirmed by letter, W. D. Smith to L. E. Rickey, dated April 14, 1970, STS Program Administrative Matters. The purpose is to identify each facility, including a brief description, the acquisition cost either purchase and/or construction, and the AE costs if identi- fiable. A narrative review of the history of the subcontracts

277

Federal Buildings Supplemental Survey -- Overview  

U.S. Energy Information Administration (EIA) Indexed Site

Survey > Overview Survey > Overview Overview Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Divider Line Highlights on Federal Buildings The Federal Buildings Supplemental Survey 1993 provides building-level energy-related characteristics for a special sample of commercial buildings owned by the Government. Extensive analysis of the data was not conducted because this report represents the 881 responding buildings (buildings for which interviews were completed) and cannot be used to generalize about Federal buildings in each region. Crosstabulations of the data from the 881 buildings are provided in the Detailed Tables section.

278

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 30, 2001 March 30, 2001 EIS-0285-SA-05: Supplement Analysis Transmission System Vegetation Management Program March 27, 2001 EIS-0285-SA-04: Supplement Analysis Transmission System Vegetation Management Program March 9, 2001 EIS-0285-SA-02: Supplement Analysis Transmission System Vegetation Management Program March 1, 2001 EIS-0189: Supplement Analysis Tank Waste Remediation System December 1, 2000 EIS-0200-SA-01: Supplement Analysis Disposal of Contact-Handled Transuranic Waste at the Waste Isolation Pilot Plant (WIPP) November 1, 2000 EIS-0169-SA-04: Supplement Analysis Yakima Fisheries Project-Construction/modification upgrades to the Prosser Hatchery and the Marion Drain Hatchery Facilities September 20, 2000 EIS-0238-SA-01: Supplement Analysis Continued Operations of Los Alamos National Laboratory

279

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 27, 2002 February 27, 2002 EIS-0285-SA-46: Supplement Analysis Transmission System Vegetation Management Program February 27, 2002 EIS-0285-SA-45: Supplement Analysis Transmission System Vegetation Management Program February 27, 2002 EIS-0285-SA-43: Supplement Analysis Transmission System Vegetation Management Program February 20, 2002 EIS-0265-SA-75: Supplement Analysis Watershed Management Program - Gourlay Creek Fish Ladder Project February 19, 2002 EIS-0285-SA-40: Supplement Analysis Transmission System Vegetation Management Program February 15, 2002 EIS-0285-SA-42: Supplement Analysis Transmission System Vegetation Management Program February 5, 2002 EIS-0229-SA-02: Supplement Analysis Storage of Surplus Plutonium Materials in the K-Area Material Storage Facility at The Savannah River Site

280

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 21, 2002 June 21, 2002 EIS-0285-SA-75: Supplement Analysis Transmission System Vegetation Management Program June 20, 2002 EIS-0170-SA-01: Supplement Analysis System Operation Review EIS, Bonneville Power Administration, and B.C. Hydro and Power Authority, British Columbia, Canada June 19, 2002 EIS-0265-SA-83: Supplement Analysis Watershed Management Program June 11, 2002 EIS-0246-SA-25: Supplement Analysis Wildlife Mitigation Program May 31, 2002 EIS-0285-SA-58: Supplement Analysis Transmission System Vegetation Management Program May 24, 2002 EIS-0183-SA-04: Supplement Analysis Klondike Wind Project - Power Purchase Agreement, Contract Number 02PB-11093 Near Wasco, Sherman County, Oregon May 23, 2002 EIS-0246-SA-24: Supplement Analysis Wildlife Mitigation Program May 21, 2002

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 15, 2011 August 15, 2011 EIS-0399-SA-01: Supplement Analysis Montana-Alberta Tie Ltd. 230-kV Transmission Line Project August 4, 2011 EIS-0348-SA-03: Supplement Analysis Continued Operation of Lawrence Livermore National Laboratory August 4, 2011 EIS-0348-SA-03: Supplement Analysis Continued Operation of Lawrence Livermore National Laboratory, CA July 12, 2011 EIS-0407-SA-01: Supplement Analysis Abengoa Biorefinery Project, near Hugoton, Stevens County, Kansas July 11, 2011 EIS-0281-SA-01: Supplemental Analysis Reestablishing Long -Term Pulse Mode Testing Capability at the Annular Core Research Reactor, Sandia National Laboratories, New Mexico July 8, 2011 EIS-0240-SA-01: Supplement Analysis Disposition of Surplus Highly Enriched Uranium July 7, 2011 EIS-0200-SA-03: Supplement Analysis

282

Federal Buildings Supplemental Survey 1993  

Reports and Publications (EIA)

The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE's Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP's specifications; therefore, these data do not statistically represent all Federal buildings in the country .

Information Center

1995-11-01T23:59:59.000Z

283

Economics of natural gas upgrading  

SciTech Connect

Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

Hackworth, J.H.; Koch, R.W.

1995-07-01T23:59:59.000Z

284

Methanol tolerant oxygen reduction catalysts based on transition metal sulfides  

Science Conference Proceedings (OSTI)

The oxygen reduction activity and methanol tolerance of a range of transition metal sulfide electrocatalysts have been evaluated in half-cell experiments and in a liquid-feed solid polymer electrolyte direct methanol fuel cell. These catalysts were prepared in high surface area form by direct synthesis onto various surface-functionalized carbon blacks. Of the materials tested, mixed-metal catalysts based on ReRuS and MoRuS were observed to give the best oxygen reduction activities. In addition, significant increases in performance were observed when employing sulfur-functionalized carbon black, which were attributed to the preferential deposition of active Ru sites in the catalyst-preparation process. Although the intrinsic activity of the best material tested, namely, Mo{sub 2}Ru{sub 5}S{sub 5} on sulfur-treated XC-72, was lower than Pt (by ca. 1545 mV throughout the entire polarization curve), its activity relative to Pt increased significantly in methanol-contaminated electrolytes. This was due to methanol oxidation side reactions reducing the net activity of the Pt, especially at low overpotentials.

Reeve, R.W.; Christensen, P.A.; Hamnett, A.; Haydock, S.A.; Roy, S.C. [Univ. of Newcastle, Newcastle upon Tyne (United Kingdom). Dept. of Chemistry

1998-10-01T23:59:59.000Z

285

The Production of Methanol by the Brookhaven National Laboratory Process  

Science Conference Proceedings (OSTI)

An important issue for electric utility planners is the need for economically attractive and environmentally acceptable fuel energy sources. The delivery of fuel values to distant markets by means of methanol produced by a more efficient and lower capital cost process merits careful consideration.

1990-11-26T23:59:59.000Z

286

ATOM-ECONOMICAL PATHWAYS TO METHANOL FUEL CELL FROM BIOMASS  

DOE Green Energy (OSTI)

An economical production of alcohol fuels from biomass, a feedstock low in carbon and high in water content, is of interest. At Brookhaven National Laboratory (BNL), a Liquid Phase Low Temperature (LPLT) concept is under development to improve the economics by maximizing the conversion of energy carrier atoms (C,H) into energy liquids (fuel). So far, the LPLT concept has been successfully applied to obtain highly efficient methanol synthesis. This synthesis was achieved with specifically designed soluble catalysts, at temperatures < 150 C. A subsequent study at BNL yielded a water-gas-shift (WGS) catalyst for the production of hydrogen from a feedstock of carbon monoxide and H{sub 2}O at temperatures < 120 C. With these LPLT technologies as a background, this paper extends the discussion of the LPLT concept to include methanol decomposition into 3 moles of H{sub 2} per mole of methanol. The implication of these technologies for the atom-economical pathways to methanol fuel cell from biomass is discussed.

MAHAJAN,D.; WEGRZYN,J.E.

1999-03-01T23:59:59.000Z

287

On direct and indirect methanol fuel cells for transportation applications  

SciTech Connect

Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

288

Neural Net Based Hybrid Modeling of the Methanol Synthesis Process  

Science Conference Proceedings (OSTI)

A Hybrid modeling approach, combining an analytical model with a radial basis function neural network is introduced in this paper. The modeling procedure is combined with genetic algorithm based feature selection designed to select informative variables ... Keywords: feature selection, genetic algorithms, hybrid modeling, methanol synthesis, neural networks

Primož Poto?nik; Marko Šetinc; Igor Grabec; Janez Levec

2000-06-01T23:59:59.000Z

289

An Investigation of Different Methods of Fabricating Membrane Electrode Assemblies for Methanol Fuel Cells  

E-Print Network (OSTI)

Methanol fuel cells are electrochemical conversion devices that produce electricity from methanol fuel. The current process of fabricating membrane electrode assemblies (MEAs) is tedious and if it is not sufficiently ...

Hall, Kwame (Kwame J.)

2009-01-01T23:59:59.000Z

290

Structure Sensitivity of Methanol Electrooxidation on Transition Metals  

DOE Green Energy (OSTI)

We have investigated the structure sensitivity of methanol electrooxidation on eight transition metals (Au, Ag, Cu, Pt, Pd, Ir, Rh, and Ni) using periodic, self-consistent density functional theory (DFTGGA). Using the adsorption energies of 16 intermediates on two different facets of these eight face-centeredcubic transition metals, combined with a simple electrochemical model, we address the differences in the reaction mechanism between the (111) and (100) facets of these metals. We investigate two separate mechanisms for methanol electrooxidation: one going through a CO* intermediate (the indirect pathway) and another that oxidizes methanol directly to CO2 without CO* as an intermediate (the direct pathway). A comparison of our results for the (111) and (100) surfaces explains the origin of methanol electrooxidation’s experimentally-established structure sensitivity on Pt surfaces. For most metals studied, on both the (111) and (100) facets, we predict that the indirect mechanism has a higher onset potential than the direct mechanism. Ni(111), Au(100), and Au(111) are the cases where the direct and indirect mechanisms have the same onset potential. For the direct mechanism, Rh, Ir, and Ni show a lower onset potential on the (111) facet, whereas Pt, Cu, Ag, and Au possess lower onset potential on the (100) facet. Pd(100) and Pd(111) have the same onset potential for the direct mechanism. These results can be rationalized by the stronger binding energy of adsorbates on the (100) facet versus the (111) facet. Using linear scaling relations, we establish reactivity descriptors for the (100) surface similar to those recently developed for the (111) surface; the free energies of adsorbed CO* and OH* can describe methanol electrooxidation trends on various metal surfaces reasonably well.

Ferrin, Peter A.; Mavrikakis, Manos

2009-10-14T23:59:59.000Z

291

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)  

DOE Green Energy (OSTI)

This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

Dinh, H.; Gennett, T.

2010-06-11T23:59:59.000Z

292

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

293

Results from the first year of operation of the Federal Methanol Fleet at Argonne National Laboratory  

DOE Green Energy (OSTI)

The Oak Ridge National Laboratory, under the auspices of the Department of Energy's Alternative Fuels Utilization Program, has managed the Federal Methanol Fleet Project since its inception in fiscal year 1985. This congressionally-mandated project directed the Department of Energy to introduce methanol-fueled vehicles into civilian government fleet operations. This interim report describes the first year of operation of a methanol fleet at Argonne National Laboratory in Argonne, Illinois. The fleet consists of five methanol-fueled 1986 Chevrolet S-10 pickup trucks along with five Chevrolet S-10s for comparison, as well as five methanol-fueled 1986 Ford Crown Victorias paired with four gasoline Fords. Data have been collected and tabulated on fuel consumption, maintenance records, oil sample analyses, and driver perceptions of vehicle operability. Energy efficiency for the methanol vehicles was slightly greater than that for the counterpart gasoline vehicles. Maintenance records reveal that the methanol vehicles required substantially more service than the gasoline vehicles, but a large proportion of the difference was due to methanol component replacements where improvements or upgrades were scheduled to be implemented after the vehicles were in service. Oil sample analyses revealed that engine wear rates were higher in the methanol vehicles. Drivers indicated that the methanol vehicles are quite acceptable, but they rated the gasoline vehicles higher. The Argonne fleet serves as the cold-weather site of the Federal Methanol Fleet and, as such, the methanol vehicles have been outfitted with special systems to aid in cold-starting and driveability.

McGill, R.N.; Hillis, S.L.; Larsen, R.P.

1988-10-01T23:59:59.000Z

294

Short Term Energy Outlook Supplement  

U.S. Energy Information Administration (EIA)

increased impacts on offshore crude oil and natural gas producers in the Gulf of Mexico ... threaten any offshore platforms.

295

Evaluation and Statistical Review of Idaho Supplementation Studies :1991-2001.  

SciTech Connect

The Idaho Supplementation Studies (ISS) was developed to evaluate the utility of supplementation as a recovery tool for Snake River basin chinook salmon (Supplementation Technical Workgroup 1987), and to help define the potential role of supplementation in managing Idaho's anadromous fisheries (IDFG 1990; IDFG 1992). Supplementation as defined by the Regional Assessment of Supplementation Project group is the use of artificial propagation in the attempt to maintain or increase natural production while maintaining the long-term fitness of the target population (RASP 1992). Poor survival has led to the decline and continued depression of upriver chinook salmon stocks due to mainstem passage and mortality factors associated with the lower Snake and Columbia river dams. Although immediate efforts should focus on alleviating the poor passage and flow conditions, supplementation may concurrently be a viable tool to meet the Northwest Power Planning Council's interim goal of doubling anadromous fish runs in the Columbia River Basin (NPPC 1987) and avoiding short-term loss of spawning aggregates.

Lutch, Jeffrey; Steinhorst, Kirk; Beasley, Chris

2003-03-01T23:59:59.000Z

296

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 2, 2002 December 2, 2002 EIS-0285-SA-113: Supplement Analysis Transmission System Vegetation Management Program November 25, 2002 EIS-0265-SA-100: Supplement Analysis Oregon Fish Screening Project, Screen Replacements November 22, 2002 EIS-0265-SA-99: Supplement Analysis Watershed Management Program November 18, 2002 EA-1282-SA-03: Supplement Analysis Mid-Columbia Coho Reintroduction Feasibility Project November 1, 2002 EIS-0203-SA-01: Supplement Analysis INEEL Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management October 31, 2002 EIS-0026-SA-03: Supplement Analysis Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant October 28, 2002

297

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process. Peroxide formation of dimethyl ether in methanol mixtures  

DOE Green Energy (OSTI)

Organic peroxides could form when dimethyl ether in methanol is stored for three to six months at a time. The objective of this work was to determine the level of peroxide formation from dimethyl ether in reagent grade methanol and raw methanol at room temperature under 3 atmospheres (45 psig) of air. Raw methanol is methanol made from syngas by the LPMEOH Process without distillation. Aliphatic ethers tend to react slowly with oxygen from the air to form unstable peroxides. However, there are no reports on peroxide formation from dimethyl ether. After 172 days of testing, dimethyl ether in either reagent methanol or raw methanol at room temperature and under 60--70 psig pressure of air does not form detectable peroxides. Lack of detectable peroxides suggests that dimethyl ether or dimethyl ether and methanol may be stored at ambient conditions. Since the compositions of {approximately} 1.3 mol% or {approximately} 4.5 mol% dimethyl ether in methanol do not form peroxides, these compositions can be considered for diesel fuel or an atmospheric turbine fuel, respectively.

Waller, F.J.

1997-11-01T23:59:59.000Z

298

Federal Buildings Supplemental Survey - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings 1993 Federal Buildings Supplemental Survey Overview Full Report Tables Energy usage and energy costs, by building characteristics, for federally-owned buildings in...

299

Draft Surplus Plutonium Disposition Supplemental Environmental...  

National Nuclear Security Administration (NNSA)

River Operations Office, Aiken, South Carolina, June 26. DOENNSA (U.S. Department of EnergyNational Nuclear Safety Administration), 2008, Supplement Analysis for the Final...

300

EIS-1069-SA-07: Supplement Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Yakima/Kilickitat Fisheries Project, Noxious Weed Control at Cle Elum and Jack Creek, Cle Elum Supplementation and Research Facility and Jack Creek Acclimation Site, Kittitas County, Washington

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Term Energy Outlook Supplement: Motor Gasoline Consumption  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Short-Term Energy Outlook Supplement – April 2008 1 ... Source: Oak Ridge National Laboratory, National Transportation Data Book.

302

Saw Palmetto Dietary Supplement Standard Reference ...  

Science Conference Proceedings (OSTI)

... is a dietary supplement material that is used to treat symptoms of benign prostatic hyperplasia, the medical term for an enlarged prostate gland. ...

2012-10-22T23:59:59.000Z

303

Recommendations for the Supplement Analysis Process  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recommendations for the Supplement Analysis Process July 2005 U.S. Department of Energy Environment, Safety and Health Office of NEPA Policy and Compliance Recommendations for the...

304

EIS-0189: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis to support a determination on the need for additional National Environmental Policy Act (NEPA) analysis. Based on this Supplement Analysis, the potential impacts for...

305

Draft Surplus Plutonium Disposition Supplemental Environmental...  

National Nuclear Security Administration (NNSA)

DOE could decide, based on programmatic, engineering, facility safety, cost, and schedule information, and on the environmental impact analysis in this SPD Supplemental EIS, which...

306

Material and Energy Balances for Methanol from Biomass Using Biomass Gasifiers  

DOE Green Energy (OSTI)

The objective of the Biomass to Methanol Systems Analysis Project is the determination of the most economically optimum combination of unit operations which will make the production of methanol from biomass competitive with or more economic than traditional processes with conventional fossil fuel feedstocks. This report summarizes the development of simulation models for methanol production based upon the Institute of Gas Technology (IGT) ''Renugas'' gasifier and the Battelle Columbus Laboratory (BCL) gasifier. This report discusses methanol production technology, the IGT and BCL gasifiers, analysis of gasifier data for gasification of wood, methanol production material and energy balance simulations, and one case study based upon each of the gasifiers.

Bain, R. L.

1992-01-01T23:59:59.000Z

307

Methanol production from eucalyptus wood chips. Attachment V. The Florida eucalyptus energy farm: environmental impacts  

DOE Green Energy (OSTI)

The overall environmental impact of the eucalyptus to methanol energy system in Florida is assessed. The environmental impacts associated with the following steps of the process are considered: (1) the greenhouse and laboratory; (2) the eucalyptus plantation; (3) transporting the mature logs; (4) the hammermill; and (5) the methanol synthesis plant. Next, the environmental effects of methanol as an undiluted motor fuel, methanol as a gasoline blend, and gasoline as motor fuels are compared. Finally, the environmental effects of the eucalypt gasification/methanol synthesis system are compared to the coal liquefaction and conversion system.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

308

Technical-economic assessment of the production of methanol from biomass. Executive summary. Final research report  

DOE Green Energy (OSTI)

The results are presented of a comprehensive systems study which assessed the engineering and economic feasibilities of the production of methanol from biomass utilizing existing technology. The three major components of the biomass to methanol system assessed are the availability of biomass feedstocks, the thermochemical conversion of biomass to methanol fuels, and the distribution and markets for methanol fuels. The results of this study show that methanol fuel can be produced from biomass using commercially available technology in the near term, and could be produced economically in significant quantities in the mid-to-late 1980's when advanced technology is available.

Wan, E.I.; Simmons, J.A.; Price, J.D.; Nguyen, T.D.

1979-07-12T23:59:59.000Z

309

Production economics for hydrogen, ammonia, and methanol during the 1980--2000 period  

SciTech Connect

Refinery hydrogen, ammonia, and methanol, the principal industrial hydrogen products, are now manufactured mainly by catalytic steam reforming of natural gas or some alternative light-hydrocarbon feed stock. Anticipated increases in the prices of hydrocarbons are expected to exceed those for coal, thus gradually increasing the incentive to use coal gasification as a source of industrial hydrogen during the 1980 to 2000 period. Although the investment in industrial hydrogen plants will exceed those for reforming by a factor of 2 or more, coal gasification will provide lower production costs (including 20%/y before tax return) for methanol manufacture in the early 1980's and for ammonia 5 years or so later. However, high costs for transporting coal to major refining centers will make it difficult to justify coal gasification for refinery hydrogen production during the 1980 to 2000 period. By the year 2000, 40 to 50% of the U.S. industrial hydrogen requirements will be provided by coal gasification thus conserving natural gas and light hydrocarbon feed stocks equivalent to about 600,000 B/D of crude oil. Electrolytic hydrogen production costs will be reduced by improved electrolysis technology such as the solid-polymer-electrolyte process. These improved processes will reduce electrolysis plant investments by a factor of 2 or more and reduce electricity requirements by about 20%. Although the production cost, including return for electrolytic hydrogen, will continue to exceed those for reforming and coal gasification, the use of electrolytic hydrogen will be attractive for many small users when the new technology is available in the early 1980's. Electrolytic hydrogen now about 0.7% of total U.S. industrial hydrogen requirements will probably increase to about 1.2% of the total by the year 2000.

Corneil, H G; Heinzelmann, F J; Nicholson, E W.S.

1977-04-01T23:59:59.000Z

310

Solar photocatalytic conversion of CO{sub 2} to methanol  

DOE Green Energy (OSTI)

This report summarizes the three-year LDRD program directed at developing catalysts based on metalloporphyrins to reduce carbon dioxide. Ultimately it was envisioned that such catalysts could be made part of a solar-driven photoredox cycle by coupling metalloporphyrins with semiconductor systems. Such a system would provide the energy required for CO{sub 2} reduction to methanol, which is an uphill 6-electron reduction. Molecular modeling and design capabilities were used to engineer metalloporphyrin catalysts for converting CO{sub 2} to CO and higher carbon reduction products like formaldehyde, formate, and methanol. Gas-diffusion electrochemical cells were developed to carry out these reactions. A tin-porphyrin/alumina photocatalyst system was partially developed to couple solar energy to this reduction process.

Ryba, G.; Shelnutt, J.; Prairie, M.R.; Assink, R.A.

1997-02-01T23:59:59.000Z

311

Catalytic conversion of methanol to low molecular weight hydrocarbons. [Dissertation  

DOE Green Energy (OSTI)

The recent demands on the available energy have stimulated the search for alternatives to oil. Methanol, because of its abundance and the availability of technology to produce it from coal, is projected as an alternative source for producing low molecular weight olefins. Utilizing chabazite ion exchanged with ammonium and rare earth chlorides, methanol is converted to ethylene, propylene and propane with carbon yields of 70 to 90% at reaction temperatures of 633 to 723/sup 0/K and pressures from 1 to 18 atmospheres. X-ray diffraction studies, using Cu-K radiation, show no permanent structural changes after a long use. No permanent deactivation was observed even though the catalyst was overheated once, and have been deactivated and regenerated as many as 21 times. The ammonium exchange coupled with the water at high temperature suggest the formation of an ultrastable zeolite. Ethylene yields increase as the temperature increases from 633/sup 0/K to 723/sup 0/K.

Singh, B.B.

1979-12-01T23:59:59.000Z

312

Alternative Fuels Data Center: Tax Refund for Methanol Used in Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Refund for Tax Refund for Methanol Used in Biodiesel Production to someone by E-mail Share Alternative Fuels Data Center: Tax Refund for Methanol Used in Biodiesel Production on Facebook Tweet about Alternative Fuels Data Center: Tax Refund for Methanol Used in Biodiesel Production on Twitter Bookmark Alternative Fuels Data Center: Tax Refund for Methanol Used in Biodiesel Production on Google Bookmark Alternative Fuels Data Center: Tax Refund for Methanol Used in Biodiesel Production on Delicious Rank Alternative Fuels Data Center: Tax Refund for Methanol Used in Biodiesel Production on Digg Find More places to share Alternative Fuels Data Center: Tax Refund for Methanol Used in Biodiesel Production on AddThis.com... More in this section... Federal State Advanced Search

313

Final technical report. Bimetallic complexes as methanol oxidation catalysts  

DOE Green Energy (OSTI)

Our work on the electrocatalyzed oxidation of methanol was initially motivated by the interest in methanol as an anodic reactant in fuel cells. The literature on electrochemical oxidation of alcohols can be roughly grouped into two sets: fuel cell studies and inorganic chemistry studies. Work on fuel cells primarily focuses on surface-catalyzed oxidation at bulk metal anodes, usually Pt or Pt/Ru alloys. In the surface science/electrochemistry approach to these studies, single molecule catalysts are generally not considered. In contrast, the inorganic community investigates the electrooxidation of alcohols in homogeneous systems. Ruthenium complexes have been the most common catalysts in these studies. The alcohol substrates are typically either secondary alcohols (e.g., isopropanol) such that the reaction stops after 2 e{sup -} oxidation to the aldehyde and 4 e{sup -} oxidation to the carboxylic acid can be observed. Methanol, which can also undergo 6 e{sup -} oxidation to CO{sub 2}, rarely appears in the homogeneous catalysis studies. Surface studies have shown that two types of metal centers with different functions result in more effective catalysts than a single metal; however, application of this concept to homogeneous systems has not been demonstrated. The major thrust of the work is to apply this insight from the surface studies to homogeneous catalysis. Even though homogeneous systems would not be appropriate models for active sites on Pt/Ru anodes, it is possible that heterobimetallic catalysts could also utilize two metal centers for different roles. Starting from that perspective, this work involves the preparation and investigation of heterobinuclear catalysts for the electrochemical oxidation of methanol.

McElwee-White, Lisa

2002-01-21T23:59:59.000Z

314

Methanol synthesis gas from catalytic steam reforming of wood  

DOE Green Energy (OSTI)

Laboratory studies were successful in developing catalyst systems and operating conditions for generation of a methanol synthesis gas, a mixture of hydrogen, carbon monoxide and carbon dioxide. Some methane remained in the gas mixture. Wood was reacted with steam at a steam-to-wood weight ratio of about 0.9 and a temperature of 750/sup 0/C (1380/sup 0/F) in the presence of several catalysts. Results are presented for two different catalyst systems.

Mudge, L.K.; Mitchell, D.H.; Robertus, R.J.; Weber, S.L.; Sealock, L.J. Jr.

1981-01-01T23:59:59.000Z

315

IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES  

DOE Green Energy (OSTI)

This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

Jason M. Keith

2005-02-01T23:59:59.000Z

316

Crow Tribe of Indians: synfuels feasibility study. Volume II. Process design and cost estimate. Book III. Sections 6. 5 through 6. 9. [Crow Synfuels Project; coproducts (methanol and SNG)  

Science Conference Proceedings (OSTI)

The principal difference in the design for the Coproduction Case is that methanol and substitute natural gas (SNG) are the major products as opposed to only SNG in the Base Case. The pure syngas is fed to a methanol synthesis unit producing methanol which is purified. The purge gas from the Methanol Synthesis unit is converted to SNG by methanation. Other process and utility/offsite units are similar to the Base Case except there is no requirement for a CO Shift unit and there is a slight variation in size of some units to accommodate the change in processing scheme. Coal feed to gasification and boilers is identical to the Base Case. Feed and product rates for this case are given in Section 6.5.2. Other than the methanol and SNG products, the byproduct rates are only marginally different from the Base Case. Power available for export is less than the Base Case, due mainly to the additional energy consumed in the Methanol Synthesis unit.

Not Available

1982-08-01T23:59:59.000Z

317

Figure 23. Average price of natural gas delivered to U.S. commercial...  

Annual Energy Outlook 2012 (EIA)

Natural and Supplemental Gas Supply and Disposition," and Form EIA-910, "Monthly Natural Gas Marketer Survey." IN OH TN WV VA KY MD PA NY VT NH MA CT ME RI DE DC NC SC GA FL NJ AL...

318

EIS-0491: Supplemental Notice of Intent to Prepare an Environmental Impact  

NLE Websites -- All DOE Office Websites (Extended Search)

1: Supplemental Notice of Intent to Prepare an Environmental 1: Supplemental Notice of Intent to Prepare an Environmental Impact Statement EIS-0491: Supplemental Notice of Intent to Prepare an Environmental Impact Statement Lake Charles Liquefaction Project, Calcasieu Parish, Louisiana The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas liquefaction and exportation capabilities. FERC is now announcing a second scoping period to invite scoping comments on modifications to the initial proposal (additional pipeline, compression, and metering facilities). EIS-0491-FERC-SNOI-2013.pdf

319

Short-term energy outlook: Annual supplement, 1987  

SciTech Connect

The Energy Information Administration (EIA) publishes forecasts of short-term energy supply, demand, and prices in the Short-Term Energy Outlook (Outlook). This volume, Short-Term Energy Outlook, Annual Supplement, (Supplement) discusses major changes in the forecasting methodology, analyzes previous forecast errors, and examines current issues that affect EIA's short-term energy forecasts. The principal users of the Supplement are managers and energy analysts in private industry and government. Chapter 2 evaluates the accuracy of previous short-term energy forecasts and the major assumptions underlying these forecasts published in the last 13 issues of the Outlook. Chapter 3 compares the EIA's present energy projections with past projections and with recent projections made by other forecasting groups. Chapter 4 analyzes the 1986 increase in residual fuel oil demand after 8 consecutive years of decline. Sectoral analysis shows where and why this increase occurred. Chapter 5 discusses the methodology, estimation, and forecasts of fossil fuel shares used in the generation of electricity. Chapter 6 presents an update of the methodology used to forecast natural gas demand, with an emphasis on sectoral disaggregation. Chapter 7 compares the current use of generation data as a representation of short-term electricity demand with proposed total and sectoral sales equations. 8 refs., 7 figs., 63 tabs.

1987-12-11T23:59:59.000Z

320

Final Supplemental Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Volume II Appendices A through J U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S 1 June 2008 ACRONYMS AND ABBREVIATIONS To ensure a more reader-friendly document, the U.S. Department of Energy (DOE) limited the use of acronyms and abbreviations in this Repository supplemental environmental impact statement. In addition, acronyms and abbreviations are defined the first time they are used in each chapter or appendix. The acronyms and abbreviations used in the text of this document are listed below. Acronyms and abbreviations used in tables and figures because of

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Supplement to AEO99 - Errata  

Gasoline and Diesel Fuel Update (EIA)

1999 1999 as of 9/13/99 1. Tables 36-43 which contain supplementary data for the industrial sector have been revised. These revisions were made to better reflect energy consumption that had been incorrectly allocated to the individual industrial sectors. The revisions do not affect the total industrial consumption reported in the Annual Energy Outlook 1999. (change made on 2/9/99) 2. Tables 59-71 which contain regional electric generator data have been revised. These revisions were made to cogeneration and net energy for load values. (change made on 3/19/99) 3. The historical Lower 48 average and regional crude oil wellhead prices for 1997 were incorrectly reported in Table 79 of the Supplemental Tables to the Annual Energy Outlook 1999. The correct prices are as follows:

322

Stakeholder Engagement and Outreach: Renewable Energy Supplemental  

Wind Powering America (EERE)

Renewable Energy Supplemental Environmental Projects Renewable Energy Supplemental Environmental Projects Supplemental Environmental Projects are a policy vehicle that can provide funding for renewable energy projects. Renewable energy projects can stimulate the economy, help ensure energy security, and improve the quality of the air and water. The U.S. Environmental Protection Agency designed Supplemental Environmental Projects to give companies that violate environmental regulations an alternative to standard fines. When a company violates environmental regulations, it has the option to pay a fine to the state or federal government or volunteer to fund environmentally friendly projects. These projects can provide a positive outcome for the company and the community. For more information on supplemental environmental projects,

323

Supplement Analyses (SA) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 5, 2008 February 5, 2008 EIS-0378-SA-01: Supplement Analysis Port Angeles-Juan de Fuca Transmssion Project September 5, 2007 EIS-0229: Supplement Analysis (September 2007) Storage of Surplus Plutonium Materials at the Savannah River Site September 3, 2007 EIS-0026-SA-06: Supplement Analysis Transportation of Transuranic Waste in TRUPACT-III Containers, Carlsbad Field Office March 29, 2007 EIS-0359-SA-01: Draft Supplement Analysis Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted Uranium Hexafluoride (DOE/EIS-0359-SA-01 and DOE/EIS-0360-SA-01) March 29, 2007 EIS-0360-SA-01: Draft Supplement Analysis Location(s) to Dispose of Depleted Uranium Oxide Conversion Product Generated from DOE's Inventory of Depleted Uranium Hexafluoride

324

Regional Assessment of Supplementation Project. Status report  

DOE Green Energy (OSTI)

The Fish and Wildlife Program of the Northwest Power Planning Council (NPPC) prescribes several approaches to achieve its goal of doubling the salmon and steelhead runs of the Columbia River. Among those approaches are habitat restoration, improvements in adult and juvenile passage at dams and artificial propagation. Supplementation will be a major part of the new hatchery programs. The purpose of the Regional Assessment of Supplementation Project (RASP) is to provide an overview of ongoing and planned supplementation activities, to construct a conceptual framework and model for evaluating the potential benefits and risks of supplementation and to develop a plan for better regional coordination of research and monitoring and evaluation of supplementation. RASP has completed its first year of work. Progress toward meeting the first year`s objectives and recommendations for future tasks are contained in this report.

Not Available

1991-10-01T23:59:59.000Z

325

FTCP-12-003, Supplemental Competencies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12-003, Supplemental Competencies FTCP-12-003, Supplemental Competencies FTCP Issue Paper: FTCP-12-003 Approved by FTCP Chair, December 19, 2012 FTCP-12-003 Supplemental...

326

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Two project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, DOE approved the RD&T Plan submitted in the previous quarter. The RD&T Plan forms the basis for the Continuation Application to initiate the transition of the project from Phase I to Phase II. Potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis will be tested in slipstream units at the WREL facility during Phase II. A supplemental information package consisting of a revised Work Breakdown Structure and Budget Plan for Phase II and other necessary forms was also submitted. Agreement is being reached with DOE's patent attorney on the scope of the limited rights data to be provided under the Cooperative Agreement. Preparation of a comprehensive Final Report for Phase I of the project, which will consolidate the remaining deliverables including the Initial Feasibility Report, Concept Report, Site Analysis Report, Economic Analysis, and Preliminary Project Financing Plan, continued during the reporting period. Significant progress was made in the Subsystem Design Specification section of the report.

Albert Tsang

2003-10-14T23:59:59.000Z

327

EIS-0323-S1: Draft Supplement Environmental Impact Statement...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-S1: Draft Supplement Environmental Impact Statement EIS-0323-S1: Draft Supplement Environmental Impact Statement Sacramento Area Voltage Support Construction and operation has...

328

EIS-0312-SA-02: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Supplement Analysis EIS-0312-SA-02: Supplement Analysis Fish and Wildlife Implementation Plan Columbia Basin Riparian Conservation Easement Program. The action area for the...

329

Building Biodiesel - a guide to renewable resources Supplement  

Science Conference Proceedings (OSTI)

Building Biodiesel - a guide to renewable resources Supplement Biofuels and Bioproducts and Biodiesel Inform Archives Inform Magazine News 18504 August 2006 Supplement August 2006.pdf Desmet Ballestra 3180

330

Building Biodiesel - a guide to renewable resources Supplement  

Science Conference Proceedings (OSTI)

Building Biodiesel - a guide to renewable resources Supplement Biofuels and Bioproducts and Biodiesel Inform Archives Inform Magazine News 18511 September 2007 Supplement September 2007.pdf Desmet Ballestra 3178

331

EIS-0310-SA-02: Notice of Availability of Supplement Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Notice of Availability of Supplement Analysis and Determination EIS-0310-SA-02: Notice of Availability of Supplement Analysis and Determination Nuclear Infrastructure Programmatic...

332

EIS-0250: EPA Notice of Availability of the Draft Supplemental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Notice of Availability of the Draft Supplemental Environmental Impact Statement EIS-0250: EPA Notice of Availability of the Draft Supplemental Environmental Impact Statement...

333

EIS-0119-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-SA-01: Supplement Analysis EIS-0119-SA-01: Supplement Analysis Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington, Richland Operations...

334

DOE Plans Supplemental Environmental Impact Statement for New...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans Supplemental Environmental Impact Statement for New Petroleum Reserve Site in Mississippi DOE Plans Supplemental Environmental Impact Statement for New Petroleum Reserve Site...

335

EIS-0265-SA-90: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis EIS-0265-SA-90: Supplement Analysis Watershed Management Program Naches River Water Treatment Plant Intake Screening Project (September 2002) Supplement Analysis for...

336

EIS-0285-SA-75: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Supplement Analysis EIS-0285-SA-75: Supplement Analysis Transmission System Vegetation Management Program BPA proposes to remove danger trees as well as unwanted vegetation in...

337

Military Construction Appropriations and Emergency Hurricane Supplemental Appropriations Act, 2005 (released in AEO2005)  

Reports and Publications (EIA)

H.R. 4837, The Military Construction Appropriations and Emergency Hurricane Supplemental Appropriations Act, 2005 [19], was signed into law on October 13, 2004. The Act provides for construction to support the operations of the U.S. Armed Forces and for military family housing. It also provides funds to help citizens in Florida and elsewhere in the aftermath of multiple hurricanes and other natural disasters. In addition, it authorizes construction of an Alaska Natural Gas Pipeline.

Information Center

2005-02-01T23:59:59.000Z

338

Methanol as an alternative transportation fuel in the U.S.  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Methanol as an alternative transportation fuel in the US: Methanol as an alternative transportation fuel in the US: Options for sustainable and/or energy-secure transportation L. Bromberg and W.K. Cheng Prepared by the Sloan Automotive Laboratory Massachusetts Institute of Technology Cambridge MA 02139 September 27, 2010 Finalized November 2, 2010 Revised November 28, 2010 Final report UT-Battelle Subcontract Number:4000096701 1 Abstract Methanol has been promoted as an alternative transportation fuel from time to time over the past forty years. In spite of significant efforts to realize the vision of methanol as a practical transportation fuel in the US, such as the California methanol fueling corridor of the 1990s, it did not succeed on a large scale. This white paper covers all important aspects of methanol as a transportation fuel.

339

Interaction of alkanes with an amorphous methanol film at 15-180 K  

SciTech Connect

The hydrogen-bond imperfections and glass-liquid transition of the amorphous methanol film have been investigated on the basis of the film dewetting and the incorporation/desorption of alkane molecules adsorbed on the surface. The butane is incorporated completely in the bulk of the porous methanol film up to 70 K. At least two distinct states exist for the incorporated butane; one is assignable to solvated molecules in the bulk and the other is weakly bound species at the surface or in the subsurface site. For the nonporous methanol film, the uptake of butane in the bulk is quenched but butane forms a surface complex with methanol above 80 K. The butane incorporated in the bulk of the glassy methanol film is released at 120 K, where dewetting of the methanol film occurs simultaneously due to evolution of the supercooled liquid phase.

Souda, Ryutaro [Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2005-09-15T23:59:59.000Z

340

Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996  

SciTech Connect

The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Catalytic steam gasification of bagasse for the production of methanol  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) tested the catalytic gasification of bagasse for the production of methanol synthesis gas. The process uses steam, indirect heat, and a catalyst to produce synthesis gas in one step in fluidized bed gasifier. Both laboratory and process development scale (nominal 1 ton/day) gasifiers were used to test two different catalyst systems: (1) supported nickel catalysts and (2) alkali carbonates doped on the bagasse. This paper presents the results of laboratory and process development unit gasification tests and includes an economic evaluation of the process. 20 references, 6 figures, 9 tables.

Baker, E.G.; Brown, M.D.

1983-12-01T23:59:59.000Z

342

Microsoft Word - supplement Analysis SWEIS82302.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

38SA2 38SA2 Supplement Analysis Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory Modification of Management Methods for Transuranic Waste Characterization at Los Alamos National Laboratory August 13, 2002 Department of Energy National Nuclear Security Administration Los Alamos Site Office Supplement Analysis for the SWEIS Page 1 August 13, 2002 Introduction This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of a waste management proposal for installing and operating modular units for the

343

Enforcement Guidance Supplement (EGS) 00-04  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Guidance Supplement Enforcement Guidance Supplement EGS: 00-04 Appendix E- Operational Procedures for Enforcement Department of Energy Washington, DC 20585 October 23, 2000 MEMORANDUM FOR: DOE PAAA COORDINATORS CONTRACTOR PAAA COORDINATORS FROM: R. KEITH CHRISTOPHER DIRECTOR OFFICE OF ENFORCEMENT AND INVESTIGATION SUBJECT: Enforcement Guidance Supplement 00-04: Factual Bases for Issuing Consent Orders Pursuant to 10 CFR 820.23 and Compliance Orders Pursuant to 10 CFR Subpart C DOE' s Operational Procedures for Enforcement (June 1998), which supercede the DOE Enforcement Handbook (1087-95), provides the Office of Enforcement and Investigation with the opportunity to issue interim enforcement guidance from time to time with

344

Federal Buildings Supplemental Survey 1993  

SciTech Connect

The Energy Information Administration (EIA) of the US Department of Energy (DOE) is mandated by Congress to be the agency that collects, analyzes, and disseminates impartial, comprehensive data about energy including the volume consumed, its customers, and the purposes for which it is used. The Federal Buildings Supplemental Survey (FBSS) was conducted by EIA in conjunction with DOE`s Office of Federal Energy Management Programs (OFEMP) to gain a better understanding of how Federal buildings use energy. This report presents the data from 881 completed telephone interviews with Federal buildings in three Federal regions. These buildings were systematically selected using OFEMP`s specifications; therefore, these data do not statistically represent all Federal buildings in the country. The purpose of the FBSS was threefold: (1) to understand the characteristics of Federal buildings and their energy use; (2) to provide a baseline in these three Federal regions to measure future energy use in Federal buildings as required in EPACT; and (3) to compare building characteristics and energy use with the data collected in the CBECS.

NONE

1995-11-01T23:59:59.000Z

345

Formaldehyde yields from methanol electrochemical oxidation on carbon-supported platinum catalysts  

Science Conference Proceedings (OSTI)

The formation of formaldehyde during methanol electrochemical oxidation on supported Pt and Pt-Ru catalysts was investigated. While on solid platinum electrodes, the formaldehyde yields from methanol oxidation are near 30% at low potentials; the yields fall below 2% for methanol electrochemical oxidation on carbon-supported catalysts in Nafion. The lower formaldehyde yields, which result from more complete methanol oxidation, are believed to arise from the ability of partial oxidation products to be transported to an array of active catalyst sites dispersed within the three-dimensional network of the Nafion film.

Childers, C.L.; Huang, H.; Korzeniewski, C. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemistry and Biochemistry

1999-02-02T23:59:59.000Z

346

Comparison of Methanol Exposure Routes Reported to Texas Poison Control Centers  

E-Print Network (OSTI)

school students in Texas: prevalence and characteristics ofExposure Routes Reported to Texas Poison Control Centersof methanol cases reported to Texas Poison Centers. Methods:

Givens, Melissa; Kalbfleisch, Kristine; Bryson, Scott

2008-01-01T23:59:59.000Z

347

Process simulation, economic analysis and synthesis of biodiesel from waste vegetable oil using supercritical methanol.  

E-Print Network (OSTI)

??Biodiesel production using supercritical methanol received attention as an alternative method to replace the conventional alkali-catalyzed method being practiced in industry. Due to its flexibility… (more)

Lee, Soo Jin

2010-01-01T23:59:59.000Z

348

Technical and Economic Assessment of Hydrogen and Methanol Poweredd Fuel Cell Electric Vehicles  

E-Print Network (OSTI)

The purpose of this thesis is to assess and compare the technical and economic status and prospects of hydrogen and methanol powered fuel cell electric vehicles.

Patrick Jung; Chalmers Tekniska Hgskola; Kristian Lindgren; Ingrid Rde

1999-01-01T23:59:59.000Z

349

NMR studies of methanol transport in membranes for fuel cell applications.  

DOE Green Energy (OSTI)

Characterization of the methanol diffusion process in Nafion 117 was achieved with the use of a modified pulsed field gradient NMR technique. To ensure that the concentration of methanol was constant throughout the entire experiment, the membrane was continually immersed in the methanol solution. When using the standard pulsed field gradient NMR method, the diffusion of the methanol in the membrane is strongly influenced by the diffusion of methanol in solution. Application of a filter gradient suppresses the signal from the methanol in solution, enabling the methanol diffusion in the membrane to be observed unambiguously. Complete suppression of the solution signal was achieved when a 60% filter gradient was employed. Under such circumstances, the coefficient for diffusion of methanol within the membrane was calculated to be 4x10-6cm2s-1, which is similar to the values reported in the literature. Consequently, the use of NMR filter gradient measurements is a valid method for studying the diffusion coefficient of methanol within fuel cell membranes.

Every, H. A. (Hayley A.); Zawodzinski, T. A. (Thomas A.), Jr.

2001-01-01T23:59:59.000Z

350

Supplemental Tables to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Released Date: February 2006 Released Date: February 2006 Next Release Date: February 2007 Supplemental Tables to the Annual Energy Outlook 2006 Table 1. Energy Consumption by Sector and Source (quadrillion Btu, unless otherwise noted) New England 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Energy Consumption Residential Distillate Fuel 0.313 0.330 0.337 0.301 0.294 0.294 0.293 0.293 0.292 0.291 0.288 0.286 0.284 0.282 0.278 Kerosene 0.012 0.014 0.014 0.016 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.014 0.014 0.014 0.014 Liquefied Petroleum Gas 0.029 0.030 0.030 0.029 0.029 0.030 0.030 0.031 0.031 0.031 0.032 0.032 0.032 0.033 0.033 Petroleum Subtotal 0.354 0.375 0.381 0.346 0.338 0.339 0.338 0.338 0.337 0.337 0.334 0.332 0.330 0.328 0.325 Natural Gas 0.200 0.191 0.193 0.191 0.191 0.193 0.193 0.195 0.196 0.197 0.197

351

DEVELOPMENT OF A SUPPLEMENTAL RESIDUAL CONTAMINATION GUIDELINE  

Office of Legacy Management (LM)

DEVELOPMENT OF A SUPPLEMENTAL RESIDUAL CONTAMINATION GUIDELINE DEVELOPMENT OF A SUPPLEMENTAL RESIDUAL CONTAMINATION GUIDELINE FOR THE NFSS CENTRAL DRAINAGE DITCH DECEMBER 1986 Prepared for UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-81OR20722 By Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501 I 1.0 INTRODUCTION AND SUMMARY 1.1 OBJECTIVE AND SCOPE The objective of this report is to describe the methodology used for establishing a supplemental residual contamination guideline for the NFSS vicinity property known as the Central Drainage Ditch (CDD). Supplemental guidelines may exceed authorized guidelines if the resultant dose will not exceed the DOE radiation protection standard of 100 mrem/yr (Ref. 1). This evaluation is based on realistic exposure pathways that were

352

COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT  

E-Print Network (OSTI)

COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT _________________________________________________________ Applicants for positions involving the operation of a commercial motor vehicle must comply with Title 49 CFR: _______________ Please list the following information for each unexpired commercial motor vehicle operator license

Roy, Subrata

353

Theoretical validation of chemical kinetic mechanisms : combustion of methanol.  

DOE Green Energy (OSTI)

A new technique is proposed that uses theoretical methods to systematically improve the performance of chemical kinetic mechanisms. Using a screening method, the chemical reaction steps that most strongly influence a given kinetic observable are identified. The associated rate coefficients are then improved by high-level quantum chemistry and transition-state-theory calculations, which leads to new values for the coefficients and smaller uncertainty ranges. This updating process is continued as new reactions emerge as the most important steps in the target observable. The screening process employed is a global sensitivity analysis that involves Monte Carlo sampling of the full N-dimensional uncertainty space of rate coefficients, where N is the number of reaction steps. The method is applied to the methanol combustion mechanism of Li et al. (Int. J. Chem. Kinet. 2007, 39, 109.). It was found that the CH{sub 3}OH + HO{sub 2} and CH{sub 3}OH + O{sub 2} reactions were the most important steps in setting the ignition delay time, and the rate coefficients for these reactions were updated. The ignition time is significantly changed for a broad range of high-concentration methanol/oxygen mixtures in the updated mechanism.

Skodje, R. T.; Tomlin, A. S.; Klippenstein, S. J.; Harding, L. B.; Davis, M. J.; Chemical Sciences and Engineering Division; Univ. of Colorado; Univ. of Leeds

2010-08-19T23:59:59.000Z

354

Synthesis of cresols and xylenols from phenol and methanol  

DOE Green Energy (OSTI)

This report is the first of two reports that concern the manufacture of the same chemicals using two processes -- a conventional catalytic process and a solar photothermal catalytic process -- to determine the relative process economics. The results of a process study and evaluation for the synthesis of cresols and xylenols using a conventional catalytic process are presented in this report. (The solar photothermal catalytic process is evaluated in the second report, Synthesis of Cresols and Xylenols from Benzene and Methanol.) The process was a vapor-phase methylation of phenol using a high mole ratio of methanol over a solid acidic catalyst. An arbitrary base case plant size (fresh feed) of about 7 million kg/y (15.3 million lbm/y) was chosen and then escalated to a breakeven size. It was concluded that if a chemical company could obtain a fair share of the market, an estimated profitable operation would result for a plant size greater than 12.80 E6 kg/y of fresh feed.

Prengle, H.W. Jr.; van Tran, X.; Moinzadeh, K.; Bricout, F.A.; Alam, S. (Houston Univ., TX (United States))

1992-04-01T23:59:59.000Z

355

High Resolution FIR and IR Spectroscopy of Methanol Isotopologues  

Science Conference Proceedings (OSTI)

New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.

Lees, R. M.; Xu, Li-Hong [Centre for Laser, Atomic and Molecular Studies (CLAMS), University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5 (Canada); Appadoo, D. R. T.; Billinghurst, B. [Canadian Light Source, Univ. of Saskatchewan, 101 Perimeter Rd, Saskatoon, SK S7N 0X4 (Canada)

2010-02-03T23:59:59.000Z

356

2.1E Supplement  

E-Print Network (OSTI)

o. (o. (o. (o. (o- (o. UTILITY-RATE RESOURCE = NATURAL-GAS •CHG In this example, two utility rates have been defined3 / 9 2.1E- 8 1 / 3 E - UTILITY-RATE MINOR-OVHL-COST MIN-O-C

Winkelmann, F.C.

2010-01-01T23:59:59.000Z

357

EIS-0423-S1: Draft Supplemental Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

Supplemental Environmental Impact Statement for the Long-Term Management and Storage of Elemental Mercury

358

Searching, naturally  

Science Conference Proceedings (OSTI)

Keywords: artificial intelligence, computational linguistics, information retrieval, knowledge representation, natural language processing, text processing

Eileen E. Allen

1998-06-01T23:59:59.000Z

359

MTBE Prices Responded to Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: On top of the usual factors impacting gasoline prices, natural gas has had some influence recently. MTBE is an oxygenate used in most of the RFG consumed in the U.S. Generally, it follows gasoline prices and its own supply/demand balance factors. But this winter, we saw it respond strongly to natural gas prices. MTBE is made from methanol and isobutylene, which in turn come from methane and butane. Both methane and butane come from natural gas streams. Until this year, the price of natural gas has been so low that it had little effect. But the surge that occurred in December and January pulled MTBE up . Keep in mind that about 11% MTBE is used in a gallon of RFG, so a 30 cent increase in MTBE is only about a 3 cent increase in the price of RFG. While we look ahead at this summer, natural gas prices should be

360

Natural Gas Monthly August 1998  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. Explanatory notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication.

NONE

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report  

DOE Green Energy (OSTI)

In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

1993-09-01T23:59:59.000Z

362

Selective oxidation of methanol and ethanol on supported ruthenium oxide clusters at low temperatures  

DOE Green Energy (OSTI)

RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99 percent) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable ability of RuO2-based catalysts to oxidize CH3OH to HCHO at unprecedented low temperatures introduce significant opportunities for new routes to complex oxygenates, including some containing C-C bonds, using methanol or ethanol as intermediates derived from natural gas or biomass.

Liu, Haichao; Iglesia, Enrique

2004-03-04T23:59:59.000Z

363

Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 2000-2001 Annual Report.  

DOE Green Energy (OSTI)

This report summarizes brood year 1999 juvenile production and emigration data and adult return information for 2000 for streams studied by the Nez Perce Tribe for the cooperative Idaho Salmon Supplementation Studies in Idaho Rivers (ISS) project. In order to provide inclusive juvenile data for brood year 1999, we include data on parr, presmolt, smolt and yearling captures. Therefore, our reporting period includes juvenile data collected from April 2000 through June 2001 for parr, presmolts, and smolts and through June 2002 for brood year 1999 yearling emigrants. Data presented in this report include; fish outplant data for treatment streams, snorkel and screw trap estimates of juvenile fish abundance, juvenile emigration profiles, juvenile survival estimates to Lower Granite Dam (LGJ), redd counts, and carcass data. There were no brood year 1999 treatments in Legendary Bear or Fishing Creek. As in previous years, snorkeling methods provided highly variable population estimates. Alternatively, rotary screw traps operated in Lake Creek and the Secesh River provided more precise estimates of juvenile abundance by life history type. Juvenile fish emigration in Lake Creek and the Secesh River peaked during July and August. Juveniles produced in this watershed emigrated primarily at age zero, and apparently reared in downstream habitats before detection as age one or older fish at the Snake and Columbia River dams. Over the course of the ISS study, PIT tag data suggest that smolts typically exhibit the highest relative survival to Lower Granite Dam (LGJ) compared to presmolts and parr, although we observed the opposite trend for brood year 1999 juvenile emigrants from the Secesh River. SURPH2 survival estimates for brood year 1999 Lake Creek parr, presmolt, and smolt PIT tag groups to (LGJ) were 27%, 39%, and 49% respectively, and 14%, 12%, and 5% for the Secesh River. In 2000, we counted 41 redds in Legendary Bear Creek, 4 in Fishing Creek, 5 in Slate Creek, 153 in the Secesh River, and 180 in Lake Creek. We recovered 19 carcasses (11 natural 8 hatchery) in Legendary Bear Creek, one hatchery carcass in Fishing Creek, zero carcasses in Slate Creek, 82 carcasses (19 of unknown origin and 63 natural) in the Secesh River, and 178 carcasses (2 hatchery 176 natural) from Lake Creek. In 2000 the majority (82%) of carcasses were recovered in index spawning reaches. Preliminary analysis of brood year 1997 PIT tag return data for the Secesh River and Lake Creek yields LGJ to Lower Granite Dam (LGD) juvenile to adult survival rates of, 0.00% for parr, 0.20% for presmolts, and 3.13% for smolts. LGJ to LGD juvenile to adult return rates for brood year 1997 Legendary Bear Creek were 2.98% for naturally produced PIT tagged smolts and 0.89% for PIT tagged supplementation smolts. No adults were detected at LGD from brood year 1997 parr released in Fishing Creek.

Beasley, Chris; Tabor, R.A.; Kinzer, Ryan (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2003-04-01T23:59:59.000Z

364

Planar micro-direct methanol fuel cell prototyped by rapid powder blasting  

Science Conference Proceedings (OSTI)

We present a planar micro-direct methanol fuel cell (@m-DMFC) fabricated by rapid prototyping-powder blasting technology. Using an elastomeric mask, we pattern two parallel microfluidic channels in glass. The anode and cathode of the fuel cell are formed ... Keywords: Direct methanol fuel cell, Microchannel, Nafion, Powder blasting

M. Shen; S. Walter; L. Dovat; M. A. M. Gijs

2011-08-01T23:59:59.000Z

365

Fabrication of silicon nanopillar arrays and application on direct methanol fuel cell  

Science Conference Proceedings (OSTI)

We present a simple method that combines self-assembled nanosphere lithography (SANL) and photo-assisted electrochemical etching (PAECE) to fabricate near-perfect and orderly arranged nanopillar arrays for the direct methanol fuel cells electrode (DMFCs) ... Keywords: Direct methanol fuel cell, Nanopillar, Photo-assisted electrochemical etching, Self-assembled nanosphere lithography

Yu-Hsiang Tang; Mao-Jung Huang; Ming-Hua Shiao; Chii-Rong Yang

2011-08-01T23:59:59.000Z

366

A carbon riveted Pt/Graphene catalyst with high stability for direct methanol fuel cell  

Science Conference Proceedings (OSTI)

Pt/Graphene catalyst was prepared by microwave-assisted polyol process, and carbonization was riveted onto the catalyst surface to enhance the catalyst stability. The physical properties of the obtained catalysts were characterized by X-ray diffraction ... Keywords: Direct methanol fuel cell, Methanol electrooxidation, Pt/Graphene, Stability

Xiaowei Liu, Jialin Duan, Hailong Chen, Yufeng Zhang, Xuelin Zhang

2013-10-01T23:59:59.000Z

367

Alkali compounds catalyzed low temperature methanol synthesis over Cu-based catalyst  

Science Conference Proceedings (OSTI)

A novel mixed catalyst system containing alkali compounds over Cu/MgO-Na catalyst was developed to synthesize methanol from syngas via ethyl formate in a slurry reactor. The results exhibited that among the used alkali formates (HCOOM, M=Li, Na, Cs, ... Keywords: CuMgO-Na/HCOONa/catalysis system, low temperature methanol synthesis, slurry phase

Baoshan Hu

2007-12-01T23:59:59.000Z

368

The Influence of Chain Dynamics on the Far Infrared Spectrum of Liquid Methanol-Water Mixtures  

DOE Green Energy (OSTI)

Far-infrared absorption spectroscopy has been used to study the low frequency ({center_dot} 100 cm{sup -1}) intermolecular modes of methanol in mixtures with water. With the aid of a first principles molecular dynamics simulation on an equivalent system, a detailed understanding about the origin of the low frequency IR modes has been established. The total dipole spectrum from the simulation suggests that the bands appearing in the experimental spectra at approximately 55 cm{sup -1} and 70 cm{sup -1} in methanol and methanol-rich mixtures arise from both fluctuations and torsional motions occurring within the methanol hydrogen-bonded chains. The influence of these modes on both the solvation dynamics and the relaxation mechanisms in the liquid are discussed within the context of recent experimental and theoretical results that have emerged from studies focusing on the short time dynamics in the methanol hydrogen bond network.

Woods, K.N.; /Stanford U., Phys. Dept.; Wiedemann, H.; /SLAC, SSRL

2005-07-12T23:59:59.000Z

369

Development and demonstration of advanced technologies for direct electrochemical oxidation of hydrocarbons (methanol, methane, propane)  

SciTech Connect

Direct methanol fuel cells use methanol directly as a fuel, rather than the reformate typically required by fuel cells, thus eliminating the reformer and fuel processing train. In this program, Giner, Inc. advanced development of two types of direct methanol fuel cells for military applications. Advancements in direct methanol proton-exchange membrane fuel cell (DMPEMFC) technology included developement of a Pt-Ru anode catalyst and an associated electrode structure which provided some of the highest DMPEMFC performance reported to date. Scale-up from a laboratory-scale single cell to a 5-cell stack of practical area, providing over 100 W of power, was also demonstrated. Stable stack performance was achieved in over 300 hours of daily on/off cycling. Direct methanol aqueous carbonate fuel cells were also advanced with development of an anode catalyst and successful operation at decreased pressure. Improved materials for the cell separator/matrix and the hardware were also identified.

Kosek, J.A.; LaConti, A.B.

1994-07-01T23:59:59.000Z

370

Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite  

DOE Patents (OSTI)

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, J.W.; Wender, I.; Palekar, V.M.

1995-01-24T23:59:59.000Z

371

Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite  

DOE Patents (OSTI)

The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

Tierney, John W. (Pittsburgh, PA); Wender, Irving (Pittsburgh, PA); Palekar, Vishwesh M. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

372

Modeling of the anode side of a direct methanol fuel cell with analytical solutions  

E-Print Network (OSTI)

In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...

Mosquera, Martín A

2010-01-01T23:59:59.000Z

373

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Dinh (PI) Dinh (PI) Thomas Gennett National Renewable Energy Laboratory October 1, 2009 Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts This presentation does not contain any proprietary, confidential, or otherwise restricted information Objectives Develop cost-effective, reliable, durable fuel cells for portable power applications (e.g., cell phones, computers, etc.) that meet all DOE targets. Note that the energy density (Wh/L), volumetric (W/L), and specific power (W/kg) all depend on knowing the weight and volume of the entire DMFC system as well as the volume and concentration of fuel, which are system specific (power application and manufacturer dependent). In our model study the surface power density levels on HOPG will allow for indirect evaluation of our system to DOE's energy density

374

Membrane reactor advantages for methanol reforming and similar reactions  

Science Conference Proceedings (OSTI)

Membrane reactors achieve efficiencies by combining in one unit a reactor that generates a product with a semipermeable membrane that extracts it. One well-known benefit of this is greater conversion, as removal of a product drives reactions toward completion, but there are several potentially larger advantages that have been largely ignored. Because a membrane reactor tends to limit the partial pressure of the extracted product, it fundamentally changes the way that total pressure in the reactor affects equilibrium conversion. Thus, many gas-phase reactions that are preferentially performed at low pressures in a conventional reactor are found to have maximum conversion at high pressures in a membrane reactor. These higher pressures and reaction conversions allow greatly enhanced product extraction as well. Further, membrane reactors provide unique opportunities for temperature management which have not been discussed previously. These benefits are illustrated for methanol reforming to hydrogen for use with PEM (polymer electrolyte membrane) fuel cells.

Buxbaum, R.E. [REB Research and Consulting Co., Ferndale, MI (United States)

1999-07-01T23:59:59.000Z

375

Removal of sulfur contaminants in methanol for fuel cell applications  

DOE Green Energy (OSTI)

Equilibrium adsorption isotherm and breakthrough data were used to assess feasibility of developing a granular activated carbon (GAC) adsorber for use as a sulfur removal subsystem in transportation fuel cell systems. Results suggest that an on-board GAC adsorber may not be attractive due to size and weight constraints. However, it may be feasible to install this GAC adsorber at methanol distribution stations, where space and weight are not a critical concern. Preliminary economic analysis indicated that the GAC adsorber concept will be attractive if the spent AC can be regenerated for reuse. These preliminary analyses were made on basis of very limited breakthrough data obtained from the bench-scale testing. Optimization on dynamic testing parameters and study on regeneration of spent AC are needed.

Lee, S.H.D.; Kumar, R. [Argonne National Lab., IL (United States); Sederquist, R. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

376

The efficient use of natural gas in transportation  

DOE Green Energy (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-01-01T23:59:59.000Z

377

The efficient use of natural gas in transportation  

DOE Green Energy (OSTI)

Concerns over air quality and greenhouse gas emissions have prompted discussion as well as action on alternative fuels and energy efficiency. Natural gas and natural gas derived fuels and fuel additives are prime alternative fuel candidates for the transportation sector. In this study, we reexamine and add to past work on energy efficiency and greenhouse gas emissions of natural gas fuels for transportation (DeLuchi 1991, Santini et a. 1989, Ho and Renner 1990, Unnasch et al. 1989). We add to past work by looking at Methyl tertiary butyl ether (from natural gas and butane component of natural gas), alkylate (from natural gas butanes), and gasoline from natural gas. We also reexamine compressed natural gas, liquified natural gas, liquified petroleum gas, and methanol based on our analysis of vehicle efficiency potential. We compare the results against nonoxygenated gasoline.

Stodolsky, F.; Santini, D.J.

1992-04-01T23:59:59.000Z

378

Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing  

SciTech Connect

ABSTRACT Project Title: Recovery Act: Advanced Direct Methanol Fuel Cell for Mobile Computing PROJECT OBJECTIVE The objective of the project was to advance portable fuel cell system technology towards the commercial targets of power density, energy density and lifetime. These targets were laid out in the DOE’s R&D roadmap to develop an advanced direct methanol fuel cell power supply that meets commercial entry requirements. Such a power supply will enable mobile computers to operate non-stop, unplugged from the wall power outlet, by using the high energy density of methanol fuel contained in a replaceable fuel cartridge. Specifically this project focused on balance-of-plant component integration and miniaturization, as well as extensive component, subassembly and integrated system durability and validation testing. This design has resulted in a pre-production power supply design and a prototype that meet the rigorous demands of consumer electronic applications. PROJECT TASKS The proposed work plan was designed to meet the project objectives, which corresponded directly with the objectives outlined in the Funding Opportunity Announcement: To engineer the fuel cell balance-of-plant and packaging to meet the needs of consumer electronic systems, specifically at power levels required for mobile computing. UNF used existing balance-of-plant component technologies developed under its current US Army CERDEC project, as well as a previous DOE project completed by PolyFuel, to further refine them to both miniaturize and integrate their functionality to increase the system power density and energy density. Benefits of UNF’s novel passive water recycling MEA (membrane electrode assembly) and the simplified system architecture it enabled formed the foundation of the design approach. The package design was hardened to address orientation independence, shock, vibration, and environmental requirements. Fuel cartridge and fuel subsystems were improved to ensure effective fuel containment. PROJECT OVERVIEW The University of North Florida (UNF), with project partner the University of Florida, recently completed the Department of Energy (DOE) project entitled “Advanced Direct Methanol Fuel Cell for Mobile Computing”. The primary objective of the project was to advance portable fuel cell system technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a 20-watt, direct methanol fuel cell (DMFC), portable power supply based on the UNF innovative “passive water recovery” MEA. Extensive component, sub-system, and system development and testing was undertaken to meet the rigorous demands of the consumer electronic application. Numerous brassboard (nonpackaged) systems were developed to optimize the integration process and facilitating control algorithm development. The culmination of the development effort was a fully-integrated, DMFC, power supply (referred to as DP4). The project goals were 40 W/kg for specific power, 55 W/l for power density, and 575 Whr/l for energy density. It should be noted that the specific power and power density were for the power section only, and did not include the hybrid battery. The energy density is based on three, 200 ml, fuel cartridges, and also did not include the hybrid battery. The results show that the DP4 system configured without the methanol concentration sensor exceeded all performance goals, achieving 41.5 W/kg for specific power, 55.3 W/l for power density, and 623 Whr/l for energy density. During the project, the DOE revised its technical targets, and the definition of many of these targets, for the portable power application. With this revision, specific power, power density, specific energy (Whr/kg), and energy density are based on the total system, including fuel tank, fuel, and hybridization battery. Fuel capacity is not defined, but the same value is required for all calculations. Test data showed that the DP4 exceeded all 2011 Technical Status values; for example, the DP4 energy density was 373 Whr/l versus the DOE 2011 status of 200 Whr/l. For the

Fletcher, James H. [University of North Florida; Cox, Philip [University of North Florida; Harrington, William J [University of North Florida; Campbell, Joseph L [University of North Florida

2013-09-03T23:59:59.000Z

379

Electron-Stimulated Reactions and O-2 Production in Methanol-Covered Amorphous Solid Water Films  

DOE Green Energy (OSTI)

The low-energy, electron-stimulated desorption (ESD) of molecular products from amorphous solid water (ASW) films capped with methanol is investigated versus methanol coverage (0 - 4 x 1015 cm-2) at 50 K using 100 eV incident electrons. The major ESD products from a monolayer of methanol on ASW are quite similar to the ESD products from bulk methanol film: H2, CH4, H2O, C2H6, CO, CH2O, and CH3OH. For 40 ML ASW films, the molecular oxygen, hydrogen, and water ESD yields from the ASW are suppressed with increasing methanol coverage, while the CH3OH ESD yield increases proportionally to the methanol coverage. The suppression of the water ESD products by methanol is consistent with the non-thermal reactions occurring preferentially at or near the ASW/vacuum interface and not in the interior of the film. The water and molecular hydrogen ESD yields from the water layer decrease exponentially with the methanol cap coverage with 1/e constants of ~ 0.6 x 1015 cm-2 and 1.6 x 1015 cm-2, respectively. In contrast, the O2 ESD from the water layer is very efficiently quenched by small amounts of methanol (1/e ~ 6.5 x 1013 cm-2). The rapid suppression of O2 production by small amounts of methanol is due to reactions between CH3OH and the precursors for the O2 - mainly OH radicals. A kinetic model for the O2 ESD which semi-quantitatively accounts for the observations is presented.

Akin, Minta C.; Petrik, Nikolay G.; Kimmel, Gregory A.

2009-03-14T23:59:59.000Z

380

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

coal, oil shale, and biomass. Natural gas (NG)was virtuallytight gas-bearing sands, coal seams, shales, geopressurtzed

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The effect of Ru and Sn additions to Pt on the electrocatalysis of methanol oxidation: An in situ XAS investigation  

DOE Green Energy (OSTI)

Elements such as Ru and Sn used as ad-atoms or as alloying elements are known to enhance methanol oxidation reaction (MOR). Ru, both as alloying element as well as upd deposited on Pt/C is widely acknowledged for enhancing MOR. Sn on the other hand is more controversial, with evidence indicating enhancements for MOR when present as upd layer and marginally effective when present as an alloying element. In situ XAS is used to investigate some of these inconsistencies in the electrocatalysis of MOR. Results indicate that alloying Sn with Pt (Pt{sub 3}Sn primary phase) causes partial filling of the Pt 5 d-band vacancies and increase in the Pt-Pt bond distances which is directly opposite to a similar situation with Ru. Upd Sn however does not perturb Pt structurally or electronically. Ru and Sn (both as alloying element and as upd ad-layer) are associated with oxygenated species, the nature and strength of the Ru. and Sn - oxygen interactions are potential dependent. Hence alloying with Sn renders Pt surface unfavorable for methanol adsorption in contrast to alloying with Ru. Both Ru and Sn however promote MOR via their ability to nucleate oxygenated species on their surface at lower potentials as compared to pure Pt.

Mukerjee, S.; McBreen, J.

1997-07-01T23:59:59.000Z

382

Theoretical study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO(0001) surface  

Science Conference Proceedings (OSTI)

Methanol synthesis from syngas (CO/CO2/H2) hydrogenation on the perfect Zn–terminated polar ZnO(0001) surface have been investigated using periodic density functional theory calculations. Our results show that direct CO2 hydrogenation to methanol on the perfect ZnO(0001) surface is unlikely because in the presence of surface atomic H and O the highly stable formate (HCOO) and carbonate (CO3) readily produced from CO2 with low barriers 0.11 and 0.09 eV will eventually accumulate and block the active sites of the ZnO(0001) surface. In contrast, methanol synthesis from CO hydrogenation is thermodynamically and kinetically feasible on the perfect ZnO(0001) surface. CO can be consecutively hydrogenated into formyl (HCO), formaldehyde (H2CO), methoxy (H3CO) intermediates, leading to the final formation of methanol (H3COH). The reaction route via hydroxymethyl (H2COH) intermediate, a previously proposed species on the defected O–terminated ZnO( ) surface, is kinetically inhibited on the perfect ZnO(0001) surface. The rate-determining step in the consecutive CO hydrogenation route is the hydrogenation of H3CO to H3COH. We also note that this last hydrogenation step is pronouncedly facilitated in the presence of water by lowering the activation barrier from 1.02 to 0.55 eV. This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences, and performed at EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). Computational resources were provided at EMSL and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory. J. Li and Y.-F. Zhao were also financially supported by the National Natural Science Foundation of China (Nos. 20933003 and 91026003) and the National Basic Research Program of China (No. 2011CB932400). Y.-F. Zhao acknowledges the fellowship from PNNL.

Zhao, Ya-Fan; Rousseau, Roger J.; Li, Jun; Mei, Donghai

2012-08-02T23:59:59.000Z

383

,"U.S. Natural Gas Annual Supply and Disposition Balance"  

U.S. Energy Information Administration (EIA) Indexed Site

cekey","N9070US2","N9090US2","NA1240NUS2","NA1270NUS2","N5060US2" "Date","U.S. Dry Natural Gas Production (MMcf)","U.S. Natural Gas Input Supplemental Fuels (MMcf)","U.S....

384

Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.  

DOE Green Energy (OSTI)

In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

2004-11-01T23:59:59.000Z

385

Supplement: Commodity Index Report | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Supplement: Commodity Index Report Supplement: Commodity Index Report Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Supplement: Commodity Index Report Dataset Summary Description Shows index traders in selected agricultural markets. These traders are drawn from the noncommercial and commercial categories. The noncommercial category includes positions of managed funds, pension funds, and other investors that are generally seeking exposure to a broad index of commodity prices as an asset class in an unleveraged and passively-managed manner. The commercial category includes positions for entities whose trading predominantly reflects hedging of over-the-counter transactions involving commodity indices, for example, a swap dealer holding long futures positions to hedge a short commodity index exposure opposite institutional traders, such as pension funds.

386

Definition: Operating Reserve - Supplemental | Open Energy Information  

Open Energy Info (EERE)

Supplemental Supplemental Jump to: navigation, search Dictionary.png Operating Reserve - Supplemental The portion of Operating Reserve consisting of: Generation (synchronized or capable of being synchronized to the system) that is fully available to serve load within the Disturbance Recovery Period following the contingency event; or, Load fully removable from the system within the Disturbance Recovery Period following the contingency event.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the

387

SUPPLEMENT ANALYSIS FOR THE NUCLEAR INFRASTRUCTURE PROGRAMMATIC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-SA-02 0-SA-02 September 2013 SUPPLEMENT ANALYSIS FOR THE NUCLEAR INFRASTRUCTURE PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT FOR PLUTONIUM-238 PRODUCTION FOR RADIOISOTOPE POWER SYSTEMS (DOE/EIS-031 0-SA-02) U.S. DEPARTMENT OF ENERGY 1.0 1.6 2.0 3.0 4.0 1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 TABLE OF CONTENTS INTRODUCTION ............................................................................................................ 1 Overview ........................................................................................................................ . 1 Background ..................................................................................................................... 2 Purpose and Need for this Supplement Analysis ............................................................ 6

388

SUPPLEMENT ANALYSIS FOR THE NUCLEAR INFRASTRUCTURE PROGRAMMATIC  

NLE Websites -- All DOE Office Websites (Extended Search)

1 0-SA-02 1 0-SA-02 September 2013 SUPPLEMENT ANALYSIS FOR THE NUCLEAR INFRASTRUCTURE PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT FOR PLUTONIUM-238 PRODUCTION FOR RADIOISOTOPE POWER SYSTEMS (DOE/EIS-031 0-SA-02) U.S. DEPARTMENT OF ENERGY 1.0 1.6 2.0 3.0 4.0 1.1 1.2 1.3 1.4 1.5 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 TABLE OF CONTENTS INTRODUCTION ............................................................................................................ 1 Overview ........................................................................................................................ . 1 Background ..................................................................................................................... 2 Purpose and Need for this Supplement Analysis ............................................................ 6

389

Results from the second year of operation of the federal methanol fleet at Lawrence Berkeley Laboratory  

DOE Green Energy (OSTI)

This interim report describes the second year's operation of the methanol fleet at Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The fleet consists of five 1984 methanol-fueled Chevrolet Citation sedans paired with five comparable gasoline-fueled Citations for comparison. Data have been collected and tabulated on fuel consumption, maintenance records, oil sample analyses, and driver perceptions of vehicle operability. Fuel efficiency was slightly improved as compared to the first year for both the methanol and gasoline vehicles. The methanol vehicles continued to experience slightly less energy efficiency than the gasoline vehicles. Maintenance data reveal that the methanol vehicles required substantially more service than the gasoline vehicles, which may be due partially to a greater sensitivity on the part of users about methanol vehicle problems. Oil sample analyses revealed that engine wear rates are lower for the second year as compared to the first year and are probably not cause for great alarm. Drivers still rate all of the vehicles quite highly, but the methanol vehicles were rated not as highly during the second year of operation as in the first year. 5 refs., 1 figs., 16 tabs.

McGill, R.N.; Hillis, S.L.

1988-08-01T23:59:59.000Z

390

THE ROLE OF METHANOL IN THE CRYSTALLIZATION OF TITAN'S PRIMORDIAL OCEAN  

SciTech Connect

A key parameter that controls the crystallization of primordial oceans in large icy moons is the presence of anti-freeze compounds, which may have maintained primordial oceans over the age of the solar system. Here we investigate the influence of methanol, a possible anti-freeze candidate, on the crystallization of Titan's primordial ocean. Using a thermodynamic model of the solar nebula and assuming a plausible composition of its initial gas phase, we first calculate the condensation sequence of ices in Saturn's feeding zone, and show that in Titan's building blocks methanol can have a mass fraction of {approx}4 wt% relative to water, i.e., methanol can be up to four times more abundant than ammonia. We then combine available data on the phase diagram of the water-methanol system and scaling laws derived from thermal convection to estimate the influence of methanol on the dynamics of the outer ice I shell and on the heat transfer through this layer. For a fraction of methanol consistent with the building blocks composition we determined, the vigor of convection in the ice I shell is strongly reduced. The effect of 5 wt% methanol is equivalent to that of 3 wt% ammonia. Thus, if methanol is present in the primordial ocean of Titan, the crystallization may stop, and a sub-surface ocean may be maintained between the ice I and high-pressure ice layers. A preliminary estimate indicates that the presence of 4 wt% methanol and 1 wt% ammonia may result in an ocean of thickness at least 90 km.

Deschamps, Frederic [Institute of Geophysics, Swiss Federal Institute of Technology Zurich, 8092 Zurich (Switzerland); Mousis, Olivier [Universite de Franche-Comte, Institut UTINAM, CNRS/INSU, UMR 6213, 25030 Besancon Cedex (France); Sanchez-Valle, Carmen [Institute of Geochemistry and Petrology, Swiss Federal Institute of Technology Zurich, 8092 Zurich (Switzerland); Lunine, Jonathan I., E-mail: frederic.deschamps@erdw.ethz.c [Dipartimento di Fisica, Universita degli Studi di Roma 'Tor Vergata', Rome (Italy)

2010-12-01T23:59:59.000Z

391

Steelhead Supplementation Studies; Steelhead Supplementation in Idaho Rivers, Annual Report 2002.  

DOE Green Energy (OSTI)

The Steelhead Supplementation Study (SSS) has two broad objectives: (1) investigate the feasibility of supplementing depressed wild and natural steelhead populations using hatchery populations, and (2) describe the basic life history and genetic characteristics of wild and natural steelhead populations in the Salmon and Clearwater Basins. Idaho Department of Fish and Game (IDFG) personnel stocked adult steelhead from Sawtooth Fish Hatchery into Frenchman and Beaver creeks and estimated the number of age-1 parr produced from the outplants since 1993. On May 2, 2002, both Beaver and Frenchman creeks were stocked with hatchery adult steelhead. A SSS crew snorkeled the creeks in August 2002 to estimate the abundance of age-1 parr from brood year (BY) 2001. I estimated that the yield of age-1 parr per female stocked in 2001 was 7.3 and 6.7 in Beaver and Frenchman creeks, respectively. SSS crews stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 in the Red River drainage to assess which life stage produces more progeny when the adults return to spawn. In 2002, Clearwater Fish Hatchery personnel operated the Red River weir to trap adults that returned from these stockings. Twelve PIT-tagged adults from the smolt releases and one PIT-tagged adult from fingerling releases were detected during their migration up the mainstem Columbia and Snake rivers, but none from either group were caught at the weir. The primary focus of the study has been monitoring and collecting life history information from wild steelhead populations. An adult weir has been operated annually since 1992 in Fish Creek, a tributary of the Lochsa River. The weir was damaged by a rain-on-snow event in April 2002 and although the weir remained intact, some adults were able to swim undetected through the weir. Despite damage to the weir, trap tenders captured 167 adult steelhead, the most fish since 1993. The maximum likelihood estimate of adult steelhead escapement was 242. A screw trap has been operated annually in Fish Creek since 1994 to estimate the number of emigrating parr and smolts. I estimated that 18,687 juvenile steelhead emigrated from Fish Creek in 2002, the lowest number of migrants since 1998. SSS crews snorkeled three streams in the Selway River drainage and 10 streams in the Lochsa River drainage to estimate juvenile steelhead densities. The densities of age-1 steelhead parr declined in all streams compared to the densities observed in 2001. The age-1 densities in Fish Creek and Gedney Creek were the lowest observed since this project began monitoring those populations in 1994. The SSS crews and other cooperators tagged more than 12,000 juvenile steelhead with passive integrated transponder (PIT) tags in 2002. In 2002, technicians mounted and aged steelhead scales that were collected from 1998 to 2001. A consensus was reached among technicians for age of steelhead juveniles from Fish Creek. Scales that were collected in other streams were aged by at least one reader; however, before a final age is assigned to these fish, the age needs to be verified by another reader and any age differences among readers resolved. Dr. Jennifer Nielsen, at the U.S. Geological Survey Alaska Biological Science Center, Anchorage continued the microsatellite analysis of the steelhead tissue samples that were collected from Idaho streams in 2000. Two thousand eighteen samples from 40 populations were analyzed. The analysis of the remaining 39 populations is continuing.

Byrne, Alan

2003-03-01T23:59:59.000Z

392

Methanol Synthesis over Cu/ZnO/Al2O3: The Active Site in Industrial Catalysis  

DOE Green Energy (OSTI)

Unlike homogeneous catalysts, heterogeneous catalysts that have been optimized through decades are typically so complex and hard to characterize that the nature of the catalytically active site is not known. This is one of the main stumbling blocks in developing rational catalyst design strategies in heterogeneous catalysis. We show here how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. Using a combination of experimental evidence from bulk-, surface-sensitive and imaging methods collected on real high-performance catalytic systems in combination with DFT calculations. We show that the active site consists of Cu steps peppered with Zn atoms, all stabilized by a series of well defined bulk defects and surface species that need jointly to be present for the system to work.

Behrens, Malte

2012-03-28T23:59:59.000Z

393

Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Polyvinylidene Fluoride-Based Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Wensheng He, David Mountz, Tao Zhang, Chris Roger July 17, 2012 2 Outline Background on Arkema's polyvinylidene fluoride (PVDF) blend membrane technology Overview of membrane properties and performance Summary 3 Membrane Technology Polymer Blend * Kynar ® PVDF * Chemical and electrochemical stability * Mechanical strength * Excellent barrier against methanol * Polyelectrolyte * H + conduction and water uptake Flexible Blending Process  PVDF can be compatibilized with a number of polyelectrolytes  Process has been scaled to a pilot line Property Control * Morphology: 10-100s nm domains * Composition can be tailored to minimize methanol permeation, while optimizing

394

X-ray absorption and electrochemical studies of direct methanol fuel cell catalysts  

DOE Green Energy (OSTI)

In order for polymer electrolyte fuel cells to operate directly on methanol instead of hydrogen, methanol oxidation must be catalyzed in the acidic cell environment. Pt-Ru and Pt-Ru oxide are considered to be the most active catalysts for this purpose; Ru enhances the Pt activity for reasons not yet fully understood. XAS and electrochemical techniques were used to study this enhancement. Preliminary results indicate that Ru does effect the d-band occupancy of Pt, which in turn may effect the kinetics of the methanol oxidation reaction on this metal by altering the strength of the Pt-CO bond. Further research is needed.

Zurawski, D.J.; Aldykiewicz, A.J. Jr.; Baxter, S.F.; Krumpelt, M.

1996-12-31T23:59:59.000Z

395

Supplemental Tables to the Annual Energy Outlook  

Reports and Publications (EIA)

The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook (AEO) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

2013-05-01T23:59:59.000Z

396

Building Biodiesel - a guide to renewable resources Supplement  

Science Conference Proceedings (OSTI)

Building Biodiesel - a guide to renewable resources Supplement Biofuels and Bioproducts and Biodiesel Inform Archives Inform Magazine News 18506 May 2005 Supplement May 2006.pdf Crown Iron Works 3181

397

EIS-0243-SA-02: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home EIS-0243-SA-02: Supplement Analysis EIS-0243-SA-02: Supplement Analysis Nevada Test Site and Off-Site Locations in the State of Nevada to Address the Increase in...

398

EIS-0281-SA-03: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Supplement Analysis EIS-0281-SA-03: Supplement Analysis Installation of a Petawatt Laser System in TA-IV Department of Energy has identified a need to revitalize High Energy...

399

EIS-0399-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-SA-01: Supplement Analysis EIS-0399-SA-01: Supplement Analysis Montana-Alberta Tie Ltd. 230-kV Transmission Line Project Proposed Action: Modification to relocate four segments...

400

EIS-0229-SA-02: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-SA-02: Supplement Analysis EIS-0229-SA-02: Supplement Analysis Storage of Surplus Plutonium Materials in the K-Area Material Storage Facility at The Savannah River Site This SA...

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity  

Science Conference Proceedings (OSTI)

Pt-Ru is the favored anode catalyst for the oxidation of methanol in direct methanol fuel cells (DMFCs). The nanoscale Pt-Ru blacks are accepted to be bimetallic alloys as based on their X-ray diffraction patterns. These bulk and surface analyses show that although practical Pt-Ru blacks have diffraction patterns consistent with an alloy assignment, they are primarily a mix of Pt metal and Ru oxides plus some Pt oxides and only small amounts of Ru metal. Thermogravimetric analysis and X-ray photoelectron spectroscopy of as-received Pt-Ru electrocatalysts indicate that DMFC materials contain substantial amounts of hydrous ruthenium oxide (RuO{sub x}H{sub y}). A potential misidentification of nanoscale Pt-Ru blacks arises because RuO{sub x}H{sub y} is amorphous and cannot be discerned by X-ray diffraction. Hydrous ruthenium oxide is a mixed proton and electron conductor and innately expresses Ru-OH speciation. These properties are of key importance in the mechanism of methanol oxidation, in particular, Ru-OH is a critical component of the bifunctional mechanism proposed for direct methanol oxidation in that it is the oxygen-transfer species that oxidatively dissociates {single_bond}C{triple_bond}O fragments from the Pt surface. The catalysts and membrane-electrode assemblies of DMFCs should not be processed at or exposed to temperatures >150 C, as such conditions deleteriously lower the proton conductivity of hydrous ruthenium oxide and thus affect the ability of the Ru component of the electrocatalyst to dissociate water. With this analytical understanding of the true nature of practical nanoscale Pt-Ru electrocatalysts, the authors can now recommend that hydrous ruthenium oxide, rather than Ru metal or anhydrous RuO{sub 2}, is the preferred Ru speciation in these catalysts.

Rolison, D.R.; Hagans, P.L.; Swider, K.E.; Long, J.W. [Naval Research Lab., Washington, DC (United States). Surface Chemistry Branch

1999-02-02T23:59:59.000Z

402

Natural gas annual 1992: Volume 1  

Science Conference Proceedings (OSTI)

This document provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and education institutions. The 1992 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production top its end use. Tables summarizing natural gas supply and disposition from 1988 to 1992 are given for each Census Division and each State. Annual historical data are shown at the national level. Volume 2 of this report presents State-level historical data.

Not Available

1993-11-22T23:59:59.000Z

403

SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS  

DOE Green Energy (OSTI)

While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

Murph, S.

2012-09-12T23:59:59.000Z

404

PL 107-117, Making emergency supplemental appropriations ...  

Science Conference Proceedings (OSTI)

"Taken from PL 107-117 2002 Defense Appropriations - FEMA Emergency Supplemental section… Federal Emergency Management Agency. ...

2010-10-05T23:59:59.000Z

405

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

406

Results from the second year of operation of the Federal Methanol Fleet at Oak Ridge National Laboratory  

DOE Green Energy (OSTI)

The Oak Ridge National Laboratory has completed its second year of operation of ten vehicles for the Federal Methanol Fleet Project; five of the vehicles are fueled with methanol. Over 56,000 miles were accumulated on the vehicles in the second year bringing the total to over 152,000 miles. Energy consumption for the methanol cars was slightly higher than that of the gasoline cars again this year, most likely as a result of shorter average trip lengths for the methanol gas. Iron and lead have accumulated at greater rates in the lubricating oil of the methanol cars. Driver's ratings of vehicles reflected some dissatisfaction with the cold-weather performance of the methanol cars, but the cars have no special provisions for cold weather starting, and the fuel vapor pressure has not been tailored to the season as at other test sites. Otherwise, drivers' opinions of the methanol cars have been favorable. 13 refs., 4 figs., 10 tabs.

West, B.H.; McGill (Oak Ridge National Lab., TN (USA)); Hillis, S.L. (Tennessee Univ., Knoxville, TN (USA))

1990-09-01T23:59:59.000Z

407

Short-term energy outlook annual supplement, 1993  

SciTech Connect

The Short-Term Energy Outlook Annual Supplement (supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

NONE

1993-08-06T23:59:59.000Z

408

Protein and Energy Supplementation to Beef Cows Grazing  

E-Print Network (OSTI)

with a higher energy content. Urea Usage in Protein Supplements Nonprotein nitrogen (NPN) in the form of urea) if it is not possible to correct the short supply of energy by reducing stocking rates. Typically, energy supplementsProtein and Energy Supplementation to Beef Cows Grazing New Mexico Rangelands Cooperative Extension

Castillo, Steven P.

409

Short-term energy outlook, annual supplement 1994  

SciTech Connect

The Short-Term Energy Outlook Annual Supplement (Supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

Not Available

1994-08-01T23:59:59.000Z

410

Design of high-ionic conductivity electrodes for direct methanol fuel cells  

E-Print Network (OSTI)

Carbon-supported porous electrodes are used in low-temperature fuel cells to provide maximum catalyst surface area, while taking up little volume and using minimum catalyst material. In Direct Methanol Fuel Cells (DMFCs), ...

Schrauth, Anthony J

2011-01-01T23:59:59.000Z

411

Synthesis and characterization of 1D ceria nanomaterials for CO oxidation and steam reforming of methanol  

Science Conference Proceedings (OSTI)

Novel one-dimensional (1D) ceria nanostructure has been investigated as a promising and practical approach for the reforming of methanol reaction. Size and shape of the ceria nanomaterials are directly involved with the catalytic activities. Several ...

Sujan Chowdhury; Kuen-Song Lin

2011-01-01T23:59:59.000Z

412

Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution  

E-Print Network (OSTI)

MAR, Metzger JO, Schäfer HJ: Oils and fats as renewable rawJ, Liu DH: Conversion of soybean oil to biodiesel fuel usingdielectric environment of the oil and methanol mixture used

Korman, Tyler P; Sahachartsiri, Bobby; Charbonneau, David M; Huang, Grace L; Beauregard, Marc; Bowie, James U

2013-01-01T23:59:59.000Z

413

CH Activation and Oxidation of Methane to Methanol in High Yield...  

NLE Websites -- All DOE Office Websites (Extended Search)

CH Activation and Oxidation of Methane to Methanol in High Yield with Novel Pt Complexes Speaker(s): Roy Periana Date: April 27, 1999 - 12:00pm Location: Bldg. 90 Seminar Host...

414

WATER AND METHANOL MASER ACTIVITIES IN THE NGC 2024 FIR 6 REGION  

Science Conference Proceedings (OSTI)

The NGC 2024 FIR 6 region was observed in the water maser line at 22 GHz and the methanol class I maser lines at 44, 95, and 133 GHz. The water maser spectra displayed several velocity components and month-scale time variabilities. Most of the velocity components may be associated with FIR 6n, while one component was associated with FIR 4. A typical lifetime of the water maser velocity components is about eight months. The components showed velocity fluctuations with a typical drift rate of about 0.01 km s{sup -1} day{sup -1}. The methanol class I masers were detected toward FIR 6. The methanol emission is confined within a narrow range around the systemic velocity of the FIR 6 cloud core. The methanol masers suggest the existence of shocks driven by either the expanding H II region of FIR 6c or the outflow of FIR 6n.

Choi, Minho; Kang, Miju; Byun, Do-Young [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun, E-mail: minho@kasi.re.kr [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

2012-11-10T23:59:59.000Z

415

The Influence of Chain Dynamics on theFar-Infrared Spectrum of Liquid Methanol  

DOE Green Energy (OSTI)

Far-infrared absorption spectroscopy is used to investigate the low frequency ({center_dot} 100 cm{sup -1}) intermolecular interactions in liquid methanol. Using an intense source of far-infrared radiation, modes are elucidated at approximately 30 cm{sup -1} and 70 cm{sup -1} in the absorption spectrum. These modes are believed to arise from intermolecular bending and librational motions respectively and are successfully reproduced in an ab initio molecular dynamics simulation of methanol.

Woods, K.N.; /Stanford U., Phys. Dept.; Wiedemann, H.; /SLAC, SSRL

2005-07-11T23:59:59.000Z

416

Conversion of biomass to methanol and its effect on CO sub 2 emissions  

DOE Green Energy (OSTI)

The purpose for this report is to present a preliminary analysis of various processes for conversion of biomass to methanol fuel with the objective of determining the effect of these processes on net CO{sub 2} emissions. The analysis is made primarily on the basis of first principles of mass and energy balances. There are at least four systems that can produce methanol from biomass (defined as wood or lignocellulose). These are reviewed and assessed. 5 refs., 3 figs., 1 tab.

Steinberg, M.

1990-10-01T23:59:59.000Z

417

Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment  

DOE Green Energy (OSTI)

A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

Fishkind, H.H.

1982-04-01T23:59:59.000Z

418

Natural gas monthly, July 1995  

Science Conference Proceedings (OSTI)

The Natural Gas Monthly (NGM) highlights activities, events, and analyses of interest to public and private sector organizations associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer-related activities and underground storage data are also reported. From time to time, the NGM features articles designed to assist readers in using and interpreting natural gas information. The data in this publication are collected on surveys conducted by the EIA to fulfill its responsibilities for gathering and reporting energy data. Some of the data are collected under the authority of the Federal Energy Regulatory Commission (FERC), an independent commission within the DOE, which has jurisdiction primarily in the regulation of electric utilities and the interstate natural gas industry. Geographic coverage is the 50 States and the District of Columbia. Explanatory Notes supplement the information found in tables of the report. A description of the data collection surveys that support the NGM is provided in the Data Sources section. A glossary of the terms used in this report is also provided to assist readers in understanding the data presented in this publication. All natural gas volumes are reported at a pressure base of 14.73 pounds per square inch absolute (psia) and at 60 degrees Fahrenheit. Cubic feet are converted to cubic meters by applying a factor of 0.02831685.

NONE

1995-07-21T23:59:59.000Z

419

Compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Supplement E  

Science Conference Proceedings (OSTI)

In the Supplement to the Fourth Edition of AP-42 Volume I, new or revised emissions data are presented for Anthracite Coal Combustion; Natural Gas Combustion; Liquified Petroleum Gas Combustion; Wood Waste Combustion In Boilers; Bagasse Combustion In Sugar Mills; Residential Fireplaces; Residential Wood Stoves; Waste Oil Combustion; Automobile Body Incineration; Conical Burners; Open Burning; Stationary Gas Turbines for Electricity Generation; Heavy Duty Natural Gas Fired Pipeline Compressor Engines; Gasoline and Diesel Industrial Engines; Large Stationary Diesel and All Stationary Dual Fuel Engines; Soap and Detergents; and Storage of Organic Liquids.

Not Available

1992-10-01T23:59:59.000Z

420

EIS-0407-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-SA-01: Supplement Analysis -SA-01: Supplement Analysis EIS-0407-SA-01: Supplement Analysis Proposed Abengoa Biorefinery Project, near Hugoton, Stevens County, Kansas This EIS analyzed the potential direct, indirect, and cumulative environmental impacts of the design, construction, and startup of a biomass-to-ethanol and energy production facility--the Biorefinery Project. The Supplement Analysis examines the potential environmental impacts of the Modified Proposed Action and addresses whether the potential environmental impacts are within the range of the potential environmental impacts analyzed in the FEIS. Supplement Analysis for the Final environmental Impact Statement for the Proposed Abengoa Biorefinery Project, near Hugoton, Stevens County, Kansas (EIS-0407-SA-1) (July 2011)

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Federal Buildings Supplemental Survey -- Publication and Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Overview > Publication and Tables Overview > Publication and Tables Publication and Tables Percent of FBSS Buildings and Floorspace by Selected Agencies, FY 1993 Percent of FBSS buildings and floorspace by selected agencies, FY 1993 Sources: Energy Information Administration, Energy Markets and End Use, 1993 Federal Buildings Supplemental Survey. Separater Bar Separater Bar You have the option of downloading the entire report or selected sections of the report. Full Report - Federal Buildings Supplemental Survey, 1993 (file size 1.15 MB) pages: 183 Selected Sections Main Text (file size 161,775 bytes) pages: 17. - Requires Adobe Acrobat Reader Contacts Preface Contents Introduction At a Glance Highlights on Federal Buildings Detailed Tables Appendices Appendix A. How the Survey Was Conducted (file size 45,191 bytes) pages: 8.

422

Energy Information Administration (EIA) - Supplement Tables  

Gasoline and Diesel Fuel Update (EIA)

6 6 1 to 116 Complete set of Supplemental Tables Complete set of Supplemental Tables. Need help, please contact the National Energy Information Center at 202-586-8800. Regional Energy Consumption and Prices by Sector Energy Consumption by Sector Table 1. New England Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 2. Middle Atlantic Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 3. East North Central Consumption & Prices by Sector & Census Division Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table 4. West North Central

423

Supplement to the annual energy outlook 1994  

Science Conference Proceedings (OSTI)

This report is a companion document to the Annual Energy Outlook 1994 (AEO94), (DOE/EIA-0383(94)), released in Jan. 1994. Part I of the Supplement presents the key quantitative assumptions underlying the AEO94 projections, responding to requests by energy analysts for additional information on the forecasts. In Part II, the Supplement provides regional projections and other underlying details of the reference case projections in the AEO94. The AEO94 presents national forecasts of energy production, demand and prices through 2010 for five scenarios, including a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices. These forecasts are used by Federal, State, and local governments, trade associations, and other planners and decisionmakers in the public and private sectors.

NONE

1994-03-01T23:59:59.000Z

424

Supplement to the Annual Energy Outlook 1993  

Science Conference Proceedings (OSTI)

The Supplement to the Annual Energy Outlook 1993 is a companion document to the Energy Information Administration`s (EIA) Annual Energy Outlook 1993 (AEO). Supplement tables provide the regional projections underlying the national data and projections in the AEO. The domestic coal, electric power, commercial nuclear power, end-use consumption, and end-use price tables present AEO forecasts at the 10 Federal Region level. World coal tables provide data and projections on international flows of steam coal and metallurgical coal, and the oil and gas tables provide the AEO oil and gas supply forecasts by Oil and Gas Supply Regions and by source of supply. All tables refer to cases presented in the AEO, which provides a range of projections for energy markets through 2010.

Not Available

1993-02-17T23:59:59.000Z

425

EA-1792-S1: Draft Supplemental Environmental Assessment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

792-S1: Draft Supplemental Environmental Assessment 792-S1: Draft Supplemental Environmental Assessment EA-1792-S1: Draft Supplemental Environmental Assessment DOE's Golden Field Office has prepared the supplemental EA in accordance with the National Environmental Policy Act (NEPA). The University of Maine is proposing to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE/EA 1792). EA-1792-S1: Draft Supplemental Environmental Assessment EA-1792-S1: Draft Supplemental Environmental Assessment - Appendix A More Documents & Publications EA-1792-S1: Final Supplemental Environmental Assessment

426

EIS-0203-SA-02: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Supplement Analysis 2: Supplement Analysis EIS-0203-SA-02: Supplement Analysis INL Site Portion of the April 1995 Programmatic Spent Nuclear Fule Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs This second Supplement Analysis (2005 SA) examined the changes to activities at the INL Site since the 2002 SA. The 2005 Supplement Analysis did not re-do the analyses conducted in the 2002 SA but evaluated actions from that time forward. The 2005 SA reviewed all NEPA documentation prepared since the 2002 Supplement Analysis to determine what operations have already received NEPA analysis and where previously existing analysis had been supplemented. It also examined INL Site operations program by program to determine what changes had taken place and whether they were

427

EA-1792-S1: Draft Supplemental Environmental Assessment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Supplemental Environmental Assessment Draft Supplemental Environmental Assessment EA-1792-S1: Draft Supplemental Environmental Assessment DOE's Golden Field Office has prepared the supplemental EA in accordance with the National Environmental Policy Act (NEPA). The University of Maine is proposing to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE/EA 1792). EA-1792-S1: Draft Supplemental Environmental Assessment EA-1792-S1: Draft Supplemental Environmental Assessment - Appendix A More Documents & Publications EA-1792-S1: Final Supplemental Environmental Assessment

428

EIS-0265-SA-165: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

65-SA-165: Supplement Analysis 65-SA-165: Supplement Analysis EIS-0265-SA-165: Supplement Analysis Watershed Management Program - Idaho Model Watershed Habitat Projects - Welp Riparian Enhancement Fence The Bonneville Power Administration is proposing to fund the installation of approximately 1.5 miles of post and wire fence along Valley Creek in Stanley, Idaho. The goal of this project is to enhance salmon and steelhead rearing and migration habitat through exclusion fencing. Supplement Analysis for the Watershed Management Program EIS, - Idaho Model Watershed Habitat Projects - Welp Riparian Enhancement Fence, DOE/EIS-0265-SA-165 (August 2004) More Documents & Publications EIS-0265-SA-169: Supplement Analysis EIS-0265-SA-57: Supplement Analysis EIS-0265-SA-58: Supplement Anlalysis

429

EIS-0225-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Supplement Analysis 1: Supplement Analysis EIS-0225-SA-01: Supplement Analysis Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components - AL-R8 Sealed Insert Container This SA is submitted according to the requirements for determining the need for supplemental EISs (10 CFR 1021.3(4) in DOE's regulations for NEPA implementation. This SA specifically addresses the issue of another type of container for the pit repackaging system. DOE/EIS-0225, Supplement Analysis for Final Environmental Impact Statement for the Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components - AL-R8 Sealed Insert Container (August 1998) More Documents & Publications EIS-0225-SA-03: Supplement Analysis EIS-0225-SA-04: Supplement Analysis

430

EA-1173-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

73-SA-01: Supplement Analysis 73-SA-01: Supplement Analysis EA-1173-SA-01: Supplement Analysis Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program The Confederated Tribes of the Umatilla Indian Reservation and Oregon Department of Fish and Wildlife propose to expand their monitoring and evaluation for the Grande Ronde spring chinook supplementation program to take additional data on summer steelhead that are trapped at the existing adult collection weirs on the upper Grande Ronde River and Catherine Creek. Supplement Analysis for the Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program EA (DOE/EA-1173/SA-01) (December 2003) More Documents & Publications EA-1173: Final Environmental Assessment EIS-0340: Draft Environmental Impact Statement

431

EIS-0203-SA-02: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

203-SA-02: Supplement Analysis 203-SA-02: Supplement Analysis EIS-0203-SA-02: Supplement Analysis INL Site Portion of the April 1995 Programmatic Spent Nuclear Fule Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs This second Supplement Analysis (2005 SA) examined the changes to activities at the INL Site since the 2002 SA. The 2005 Supplement Analysis did not re-do the analyses conducted in the 2002 SA but evaluated actions from that time forward. The 2005 SA reviewed all NEPA documentation prepared since the 2002 Supplement Analysis to determine what operations have already received NEPA analysis and where previously existing analysis had been supplemented. It also examined INL Site operations program by program to determine what changes had taken place and whether they were

432

DLA Energy: Your Supplemental Energy Contracting Venue  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WARFIGHTER SUPPORT STEWARDSHIP EXCELLENCE WORKFORCE DEVELOPMENT WARFIGHTER SUPPORT STEWARDSHIP EXCELLENCE WORKFORCE DEVELOPMENT WARFIGHTER-FOCUSED, GLOBALLY RESPONSIVE, FISCALLY RESPONSIBLE SUPPLY CHAIN LEADERSHIP DEFENSE LOGISTICS AGENCY AMERICA'S COMBAT LOGISTICS SUPPORT AGENCY WARFIGHTER SUPPORT STEWARDSHIP EXCELLENCE WORKFORCE DEVELOPMENT DLA Energy Your Supplemental Energy Contracting Avenue Cynthia Obermeyer Contracting Officer DLA Energy April 2012 2 WARFIGHTER SUPPORT STEWARDSHIP EXCELLENCE WORKFORCE DEVELOPMENT WARFIGHTER-FOCUSED, GLOBALLY RESPONSIVE, FISCALLY RESPONSIBLE SUPPLY CHAIN LEADERSHIP WARFIGHTER-FOCUSED, GLOBALLY RESPONSIVE, FISCALLY RESPONSIBLE SUPPLY CHAIN LEADERSHIP

433

Cell Metabolism, Volume 16 Supplemental Information  

E-Print Network (OSTI)

S2. Metabolic parameters of iDeptor mice. (A) Deptor mRNA expression in response to doxycycline in iDeptor mice in vivo. iDeptor mice were euthanized and tissues were collected 6 hours after PBS or doxycycline of control or iDeptor mice fed chow diet supplemented with doxycycline (200mg/kg food) for 6-7 weeks. Data

Sabatini, David M.

434

Institutional plan: Supplements, FY 1998--FY 2003  

SciTech Connect

This supplement contains summaries of the projects, both DOE and non-DOE, that the Argonne National Laboratory conducts. DOE projects include nuclear energy, energy research, energy efficiency, fossil energy, defense programs, non-proliferation and national security, environmental management, and civilian radioactive waste management. The second part of this report contains descriptions of the Argonne National Lab site and facilities. Budget information is also presented.

NONE

1997-07-01T23:59:59.000Z

435

Short-term energy outlook: Annual supplement 1989  

SciTech Connect

This Supplement is published once a year as a complement to the Short-Term Energy Outlook, Quarterly Projections (Outlook). The purpose is to review the accuracy of the forecasts presented in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts. A brief description of the content of each chapter follows below: Chapter 2 evaluates the accuracy of the short-term energy forecasts published in the last 6 issues of the Outlook, for 1988/1989. Chapter 3 discusses the economics of the petrochemical feedstock market, and describes a new model which more fully captures the determinants of feedstock demand. Chapter 4 examines present and proposed new methods of forecasting short-term natural gas prices at the wellhead and spot prices. Chapter 5 discusses the modeling of natural demand in the short term. Chapter 6 discusses regional trends in the demand for fuel by electric utilities. Chapter 7 focuses on industrial coal use trends in recent years. Chapter 8 compares EIA's base case energy projections as published in the Outlook (89/2Q) with recent projections made by three other major forecasting groups. The chapter focuses on macroeconomic assumptions, primary energy demand, and primary energy supply, showing the differences and similarities in the four forecasts.

1989-10-31T23:59:59.000Z

436

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

437

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

438

Natural Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

originate? I need to give the intitial natural source of this energy. Replies: The energy source for most known organisms is the sun. Some organisms, such as deep-sea vent fauna...

439

Density Functional Theory Study of Methanol Decomposition on the CeO2(110) Surface  

Science Conference Proceedings (OSTI)

Methanol decomposition on the stoichiometric CeO2(110) surface has been investigated using density functional theory slab calculations. Three possible initial steps to decompose methanol by breaking one of three bonds (O?H, C?O and C?H) of methanol were examined. The relative order of thermodynamic stability for the three possible bond scission steps is: C?H > O?H > C?O. We further isolated transition state and determined activation energy for each bond-breaking mode using the nudged elastic method. The activation barrier for the most favorable dissociation mode, the O?H bond scission, is 0.3 eV on the (110) surface. An even lower activation barrier ( C?O > C?H. Our results are consistent with the previous experimental observation that methoxy is the dominant surface species after a stoichiometric CeO2 surface was exposed to methanol. The experimentally observed methanol chemistry was determined by the kinetics of initial dissociation steps rather than the thermodynamic stability of product states. Surface coverage of methanol was found to affect the relative stability between molecular and dissociative adsorption modes. Dissociative adsorption modes are preferred thermodynamically for methanol coverage up to 0.5 ML but only molecular adsorption was stable at full monolayer coverage. This work was supported by a Laboratory Directed Research and Development (LDRD) project of the Pacific Northwest National Laboratory (PNNL). The computations were performed using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington. Computing time was made under a Computational Grand Challenge “Computational Catalysis”. Part of the computing time was also granted by the National Energy Research Scientific Computing Center (NERSC).

Mei, Donghai; Deskins, N. Aaron; Dupuis, Michel; Ge, Qingfeng

2008-03-20T23:59:59.000Z

440

Importance of Diffusion in Methanol Photochemistry on TiO2(110)  

Science Conference Proceedings (OSTI)

The photoactivity of methanol on the rutile TiO2(110) surface is shown to depend on the ability of methanol to diffuse on the surface and find sites active for its thermal dissociation to methoxy. Temperature programmed desorption (TPD) results show that the extent of methanol photodecomposition to formaldehyde is negligible on the clean TiO2(110) surface at 100 K due to a scarcity of sites that can convert (photoinactive) methanol to (photoactive) methoxy. The extent of photoactivity at 100 K significantly increases when methanol is coadsorbed with oxygen, however only those molecules able to adsorb near (next to) a coadsorbed oxygen species are active. Preannealing coadsorbed methanol and oxygen to above 200 K prior to UV irradiation results in a significant increase in photoactivity. Scanning tunneling microscopy (STM) images clearly show that the advent of increased photoactivity in TPD correlates with the onset of methanol diffusion along the surface’s Ti4+ rows at ~200 K. These results demonstrate that optimizing thermal processes (such as diffusion or proton transfer reactions) can be critical to maximizing photocatalytic reactivity on TiO2 surfaces. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle under contract DEAC05-76RL01830. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Shen, Mingmin; Acharya, Danda P.; Dohnalek, Zdenek; Henderson, Michael A.

2012-12-06T23:59:59.000Z

Note: This page contains sample records for the topic "methanol supplemental natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Techno-economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process  

DOE Green Energy (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). With gasification technology, biomass can be converted to gasoline via methanol synthesis and methanol-to-gasoline (MTG) technologies. Producing a gasoline product that is infrastructure ready has much potential. Although the MTG technology has been commercially demonstrated with natural gas conversion, combining MTG with biomass gasification has not been shown. Therefore, a techno-economic evaluation for a biomass MTG process based on currently available technology was developed to provide information about benefits and risks of this technology. The economic assumptions used in this report are consistent with previous U.S. Department of Energy Office of Biomass Programs techno-economic assessments. The feedstock is assumed to be wood chips at 2000 metric ton/day (dry basis). Two kinds of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. The gasoline selling prices (2008 USD) excluding taxes were estimated to be $3.20/gallon and $3.68/gallon for indirectly-heated gasified and directly-heated. This suggests that a process based on existing technology is economic only when crude prices are above $100/bbl. However, improvements in syngas cleanup combined with consolidated gasoline synthesis can potentially reduce the capital cost. In addition, improved synthesis catalysts and reactor design may allow increased yield.

Jones, Susanne B.; Zhu, Yunhua

2009-05-01T23:59:59.000Z

442

Dietary Supplement Laboratory Quality Assurance Program  

Science Conference Proceedings (OSTI)

... MD Food and Drug Administration, Atlanta, GA Food and ... Wheatridge, CO Medallion Laboratories, Minneapolis, MN Natural Factors Nutritional ...

2013-09-24T23:59:59.000Z

443

Natural System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural System Natural System Evaluation and Tool Development - FY11 Progress Report Prepared for U.S. Department of Energy Used Fuel Disposition Program Yifeng Wang (SNL) Michael Simpson (INL) Scott Painter (LANL) Hui-Hai Liu (LBNL) Annie B. Kersting (LLNL) July 15, 2011 FCRD-USED-2011-000223 UFD Natural System Evaluation - FY11 Year-End Report July 15, 2011 2 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

444

Communication China's growing methanol economy and its implications for energy  

E-Print Network (OSTI)

in the environment. 3.7. Global energy economy Historically, coal prices have been more stable than oil and natural gas prices. In recent years, however, coal prices have been unusually volatile. The expansion of China gas emissions, and jeopardize consumer safety, while possibly increasing coal price volatility. China

Jackson, Robert B.

445

Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-35)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2003 7, 2003 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-35) Joe Deherrera Fish and Wildlife Project Manager Proposed Action: Malheur Wildlife Mitigation Project- Denny Jones Ranch Project No: 200002700 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 2.0 Plant Propagation Techniques; 4.0 Water Development and Management; 5.0 Water Distribution Techniques; 6.0 Fire Management Techniques (prompt fire suppression and fuels management, natural fire management), 7.0 Vegetation Management (herbicide, hand pulling, prescribed burns, water level manipulation); 8.2 Control of Predators and

446

Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-36)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 10, 2003 October 10, 2003 REPLY TO ATTN OF: KEC-4 SUBJECT: Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-36) Joe DeHerrera- KEWN-4 Fish and Wildlife Project Manager Proposed Action: Logan Valley Wildlife Mitigation Project-Implemetation of Wildlife Mitigation Plan Project No: 200000900 Wildlife Management Techniques or Actions Addressed Under This Supplement Analysis (See App. A of the Wildlife Mitigation Program EIS): 2.0 Plant Propagation Techniques; 4.0 Water Development and Management; 5.0 Water Distribution Techniques; 6.0 Fire Management Techniques (prompt fire suppression and fuels management, natural fire management), 7.0 Vegetation Management (herbicide, hand pulling, prescribed burns, water level manipulation); 8.0 Species Manangement

447

Direct methanol fuel cells for transportation applications. Quarterly technical report, April--June 1997  

DOE Green Energy (OSTI)

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in Phase 2 of the program. Progress in these areas is described.

Fuller, T.F. [International Fuel Cells Corp., South Windsor, CT (United States); Kunz, H.R. [Univ. of Connecticut, Storrs, CT (United States); Moore, R. [Univ. of Southern Mississippi, Hattiesburg, MS (United States)

1997-11-01T23:59:59.000Z

448

Methanol electro-oxidation on unsupported Pt-Ru alloys at different temperatures  

Science Conference Proceedings (OSTI)

A wide compositional range of unsupported platinum-ruthenium alloy catalysts were prepared by thermal decomposition of the chlorides and chloroacids. The electrocatalysts were characterized by cyclic voltammetry, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The BET surface area of the electrocatalysts increases with increasing Ru content up to {approximately}70 atomic percent (a/o) and then reaches a plateau value. Electrodes fabricated from the electrocatalysts were also evaluated as anodes for methanol electro-oxidation in sulfuric acid over a range of temperatures. Unlike the situation for pure Pt, Ru is inactive for methanol electro-oxidation at 25 C but becomes active at higher temperatures. The peak current observed during an anodic potential scan gradually shifts to more cathodic potentials with increasing temperature. When a comparison is made on the basis of electrode geometric surface area, a {approximately}50 a/o ruthenium electrocatalyst provides the highest activity for methanol electro-oxidation at both 25 and 60C. The methanol electro-oxidation rate is 0.5 orders with respect to methanol concentration (between 0.1 and 2 M) for the Pt-Ru ({approximately}50:50) electrode.

Chu, D.; Gilman, S. [Army Research Lab., Fort Monmouth, NJ (United States). Physical Sciences Directorate

1996-05-01T23:59:59.000Z

449

Automotive storage of hydrogen as a mixture of methanol and water. Final report  

SciTech Connect

The concept of steam-reforming methanol on-board an automobile was evaluated as a candidate method of storing fuel for the hydrogen engine. This method uses low-temperature, engine waste heat to evaporate a 1:1 molar water-methanol mixture at 373/sup 0/K (212/sup 0/F) and to provide endothermic reaction heat at 505/sup 0/K (450/sup 0/F) to convert this mixture to hydrogen and carbon dioxide. By using engine waste heat, a fuel combustion enrichment of 8% (LHV) or 18% (HHV) is obtained when the reactor effluents are compared with those from the tanked fuel. Defining system efficiency as the product of the generator chemical efficiency (108%) and the engine thermal efficiency (assumed to be 30%) yields a value of 32.4%. Conservative estimates indicate that an additional volume of 44 to 49 liters and an additional weight of 110 to 140 kg would be required, compared with a conventional 20 gal gasoline tank. A 500 hour endurance test of this system with a Girdler G-66B catalyst was conducted at 505/sup 0/K (450/sup 0/F), atmospheric pressure, and low space velocity--compared with automotive requirements--at wide-open-throttle conditions with laboratory-grade methanol; there was no loss of activity. However, when fuel-grade methanol containing small amounts of higher alcohols was substituted for the laboratory-grade methanol, significant catalyst deactivation occurred. (auth)

Kester, F.L.; Konopka, A.J.; Camara, E.

1975-11-01T23:59:59.000Z

450

Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996  

DOE Green Energy (OSTI)

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

Fuller, T.F.; Kunz, H.R.; Moore, R.

1996-11-01T23:59:59.000Z

451

Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs{sup +} and H{sup +} cations  

Science Conference Proceedings (OSTI)

Poly(perfluorosulfonate acid) membranes were doped with cesium ions to several degrees. These, along with the H{sup +}-form membrane, were investigated in relation to methanol permeability as well as hydrogen ion conductivity. While retaining considerable conductivity, the cesium-doped membranes are highly impermeable to methanol. The author found that methanol permeability in the membrane reduced by over one order of magnitude, owing to the presence of cesium ions. These findings are discussed on the basis of alterations produced by cesium in the membrane microstructure. Also discussed is the potential implication of these results in the direct methanol fuel cell technology.

Tricoli, V. [Univ. of Pisa (Italy)

1998-11-01T23:59:59.000Z

452

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of

453

EA-1374-SA-05: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Supplement Analysis 5: Supplement Analysis EA-1374-SA-05: Supplement Analysis Avian Predation on Juvenile Salmonids in the Lower Columbia River Research Project The Bonneville Power Administration (BPA) is funding ongoing research on Caspian terns, double-crested cormorants, and several species of gulls (glaucous-winged, western, California, and ring-billed) begun in 1996. BPA analyzed environmental impacts of the research in an Environmental Assessment (EA) completed in 2001 (DOE/EA-1374). The purpose of this Supplement Analysis (SA) is to determine if a supplemental EA is needed to analyze additional research activities proposed as part of that project. Avian Predation on Juvenile Salmonids in the Lower Columbia River Research Project, Supplement Analysis DOE/EA-1374-SA-05 (March 2006)

454

EA-1792-S1: Final Supplemental Environmental Assessment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2-S1: Final Supplemental Environmental Assessment 2-S1: Final Supplemental Environmental Assessment EA-1792-S1: Final Supplemental Environmental Assessment DOE's Golden Field Office has prepared this supplemental EA in accordance with the National Environmental Policy Act (NEPA). The University of Maine is proposing to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine, Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE/EA 1792). EA-1792-S1: Final Supplemental Environmental Assessment More Documents & Publications EA-1792-S1: Draft Supplemental Environmental Assessment EA-1792: Draft Environmental Assessment EA-1792-S1: Finding of No Significant Impact

455

EIS-0220-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0220-SA-01: Supplement Analysis EIS-0220-SA-01: Supplement Analysis EIS-0220-SA-01: Supplement Analysis Seismic Activity on H-Canyon Incorporating up-to-date seismic data, WSRC completed a detailed evaluation of the likelihood of a severe earthquake and the estimated resulting structural damage of H-Canyon. This evaluation indicated that a severe earthquake capable of producing structural damage comparable to that described in the IMNM EIS would not occur more frequently than once in 5500 years. That is less frequent than the severe earthquake occurrence assumed in the IMNM EIS (1/5000 years). DOE/EIS-0220, Supplement Analysis of Seismic Activity on H-Canyon (January 1997) More Documents & Publications EIS-0220-SA-01: Supplement Analysis EIS-0220: Supplemental Record of Decision EIS-0220: Final Environmental Impact Statement

456

EIS-0082-SA-01: Supplement Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SA-01: Supplement Analysis SA-01: Supplement Analysis EIS-0082-SA-01: Supplement Analysis Salt Processing Alternatives at the Savannah River Site, Savannah River Operations Office, Aiken, South Carolina The purpose of this Supplement Analysis (SA) is to evaluate the potential impacts associated with the proposed modified processing and disposition pathway and compare those impacts with those described in the SPA SEIS to determine if the SPA SEIS should be supplemented. Interim Salt Processing followed by High Capacity Salt Processing would result in processing and disposal of actinides in slightly higher concentrations than those evaluated in the SPA SEIS. DOE/EIS-0082-S2-SA-01: Supplement Analysis for Salt Processing Alternatives at the Savannah River Site, Savannah River Operations Office, Aiken, South

457

Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance Supplement 01-01: Nuclear Weapon Program Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Section 1.3 of the Operational Procedures for Enforcement, published in June 1998, provides the opportunity for the Office of Price-Anderson Enforcement (OE) to periodically issue clarifying guidance regarding the processes used in its enforcement activities. This enforcement guidance focuses on the applicability of 10 CFR Part 830 to nuclear weapon programs and several related enforcement issues. Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues More Documents & Publications Enforcement Guidance Supplement 01-01: Nuclear Weapon Program Enforcement Issues Enforcement Guidance Supplement 00-03: Specific Issues on Applicability of