National Library of Energy BETA

Sample records for methane reforming process

  1. Computational heterogeneous catalysis applied to steam methane reforming over nickel and nickel/silver catalysts

    E-Print Network [OSTI]

    Blaylock, Donnie Wayne

    2011-01-01

    The steam methane reforming (SMR) reaction is the primary industrial means for producing hydrogen gas. As such, it is a critical support process for applications including petrochemical processing and ammonia synthesis. ...

  2. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  3. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  4. Integrated solar thermochemical reaction system for steam methane reforming

    SciTech Connect (OSTI)

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; Fritz, Brad G.; Cameron, Richard J.; Humble, Paul H.; TeGrotenhuis, Ward E.; Dagle, Robert A.; Wegeng, Robert S.

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heat exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6˘/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.

  5. Integrated solar thermochemical reaction system for steam methane reforming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; Fritz, Brad G.; Cameron, Richard J.; Humble, Paul H.; TeGrotenhuis, Ward E.; Dagle, Robert A.; Wegeng, Robert S.

    2015-06-05

    Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heatmore »exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6˘/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.« less

  6. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production

    E-Print Network [OSTI]

    Anaerobic digestion for methane generation and ammonia reforming for hydrogen production to the methane potential alone indicated that at a C:N ratio of 17, the energy output was greater for the ADBH is converted to carbon dioxide and methane, and organic nitrogen is converted to ammonia. Generally, ammonia

  7. Catalytic activation and reforming of methane on supported palladium clusters Aritomo Yamaguchi, Enrique Iglesia *

    E-Print Network [OSTI]

    Iglesia, Enrique

    Catalytic activation and reforming of methane on supported palladium clusters Aritomo Yamaguchi and 13 C18 O, and 13 CO and 12 CO during CH4 reforming catalysis. This catalytic sequence, but do not contribute to steady-state catalytic reforming rates. The high reactivity of Pd surfaces in C

  8. Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts

    E-Print Network [OSTI]

    Iglesia, Enrique

    Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions reforming reactions. 1. Introduction Methane is an essential raw material in the synthesis of liquid fuels and petrochemical, but its strong C­H bonds (439 kJ molŔ1 1 ) require active catalysts and severe reaction

  9. Olefins from High Yield Autothermal Reforming Process

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2012-03-06

    The autothermal reforming method employs an improved dehydrogenation process for olefin production, utilizing platinum based dehydrogenation catalysts in the presence of oxygen. The autothermal process requires no external energy input following ignition and produces high conversions and yields from the gaseous hydrocarbon feeds. Autothermal reforming is an effective solution that meets the high demands of the chemical market industry by producing high yields...

  10. SOLAR UPGRADE OF METHANE USING DRY REFORMING IN DIRECT CONTACT BUBBLE REACTOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    SOLAR UPGRADE OF METHANE USING DRY REFORMING IN DIRECT CONTACT BUBBLE REACTOR Khalid Al-Ali 1 , Kodama S. 1 , Kaneko H. 1 , Sekiguchi H. 1 , Tamaura Y. 1 and Chiesa M. 2 1 Department of Chemical, in an alkali carbonate based molten salt system containing suspended Ni-Al2O3 catalyst. A thermodynamical

  11. Study of Methane Reforming in Warm Non-Equilibrium Plasma Discharges 

    E-Print Network [OSTI]

    Parimi, Sreekar

    2012-02-14

    ........................................................ 24 2.3.2 Plasma Reforming ........................................................................ 26 2.3.3 Effects of Kinetics and Dilution ................................................... 30 2.3.3.1 Hydrogen addition... .................................................................................. 75 6.1 Measurement methods for involving variables .............................................. 75 6.2 Tests with varying proportions of methane and hydrogen ............................ 79 6.2.1 Effect of Hydrogen Dilution...

  12. Process for separating nitrogen from methane using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  13. Reforming The Government Hiring Process

    Broader source: Energy.gov [DOE]

    The Department of Energy explains efforts made to simplify the federal hiring process within the Department, complete with video.

  14. Modeling of Pressurized Electrochemistry and Steam-Methane Reforming in Solid Oxide Fuel Cells and the Effects on Thermal and Electrical Stack Performance

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2009-03-01

    Summarizes work done to extend the electrochemical performance and methane reforming submodels to include the effects of pressurization and to demonstrate this new modeling capability by simulating large stacks operating on methane-rich fuel under pressurized and non-pressurized conditions. Pressurized operation boosts electrochemical performance, alters the kinetics of methane reforming, and effects the equilibrium composition of methane fuels. This work developed constitutive submodels that couple the electrochemistry, reforming, and pressurization to yield an increased capability of the modeling tool for prediction of SOFC stack performance.

  15. Process for separating nitrogen from methane using microchannel...

    Office of Scientific and Technical Information (OSTI)

    from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources. Authors: Tonkovich, Anna Lee 1 ;...

  16. Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon

    DOE Patents [OSTI]

    Sircar, Shivaji (Wescosville, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Nataraj, Shankar (Allentown, PA)

    2000-01-01

    In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

  17. Synthesis and characterization of catalysts containing nickel for reforming methane with carbon dioxide 

    E-Print Network [OSTI]

    Sommer, Michael Edward

    1988-01-01

    may have reacted with oxygen. This was confirmed by a thermal analysis which revealed an endothermic peak corresponding to a 15% weight loss on ignition at 600'C. Nitrogen was passed through the reactor during the warm up period. Manual adjustment... to form and to be distributed on the atomic scale, thus yielding active catalysts. CHAPTER II LITERATURE REVIEW Traditional reforming of hydrocarbons has been performed using steam. New processes are in need of a syngas with lower hydrogen content...

  18. Process Reform, Security and Suitability- December 17, 2008

    Broader source: Energy.gov [DOE]

    This is to report on the progress made to improve the timeliness and effectiveness of our hiring and clearing decisions and the specific plan to reform the process further, in accordance with our initial proposals made in April ofthis year.

  19. Role of metal-support interactions on the activity of Pt and Rh catalysts for reforming methane and butane.

    SciTech Connect (OSTI)

    Rossignol, C.; Krause, T.; Krumpelt, M.

    2002-01-11

    For residential fuel cell systems, reforming of natural gas is one option being considered for providing the H{sub 2} necessary for the fuel cell to operate. Industrially, natural gas is reformed using Ni-based catalysts supported on an alumina substrate, which has been modified to inhibit coke formation. At Argonne National Laboratory, we have developed a new family of catalysts derived from solid oxide fuel cell technology for reforming hydrocarbon fuels to generate H{sub 2}. These catalysts consist of a transition metal supported on an oxide-ion-conducting substrate, such as ceria, that has been doped with a small amount of a non-reducible element, such as gadolinium, samarium, or zirconium. Unlike alumina, the oxide-ion-conducting substrate has been shown to induce strong metal-support interactions. Metal-support interactions are known to play an important role in influencing the catalytic activity of many metals supported on oxide supports. Based on results from temperature-programmed reduction/oxidation and kinetic reaction studies, this paper discusses the role of the metal and the substrate in the metal-support interactions, and how these interactions influence the activity and the selectivity of the catalyst in reforming methane and butane to hydrogen for use in fuel cell power systems.

  20. Effect Of Preparation Methods On The Performance Of Co/Al2O3 Catalysts For Dry Reforming Of Methane

    SciTech Connect (OSTI)

    Ewbank, Jessica L.; Kovarik, Libor; Kenvin, Christian C.; Sievers, Carsten

    2014-01-06

    Two methods, dry impregnation (DI) and controlled adsorption (CA), are used for the preparation of Co/ Al2O3 catalysts for methane dry reforming reactions. Point of zero charge (PZC) measurements, pH-precipitation studies, and adsorption isotherms are used to develop a synthesis procedure in which deposition of Co2+ takes place in a more controlled manner than metal deposition during drying in synthesis by dry impregnation. The possible adsorption phenomena that occur during preparation of Co/Al2O3 catalysts by controlled adsorption are discussed. H2 chemisorption and TEM show that catalysts prepared by CA have smaller average particle sizes and higher dispersions. TPR studies show that for the sample prepared by CA a higher amount of cobalt is reduced to its metallic state and that more CoAl2O4 spinel species are present relative to DI samples. The catalyst prepared by CA shows higher activity and slower deactivation for methane dry reforming than the catalyst prepared by DI. XPS and C, H, N analysis on spent catalysts confirm two types of carbonaceous deposits are formed depending on the preparation method.

  1. CO2 Reduction by Dry Methane Reforming Over Hexaluminates: A Promising Technology for Decreasing Global Warming in a Cost Effective Manner

    SciTech Connect (OSTI)

    Salazar-Villalpando, M.D.; Gardner, T.H.

    2008-03-01

    Efficient utilization of CO2 can help to decrease global warming. Methane reforming using carbon dioxide has been of interest for many years, but recently that interest has experienced a rapid increase for both environmental and commercial reasons. The use of CO2 provides a source of clean oxygen, which eliminates the need for costly oxygen separation plants. The product of dry reforming is useful syn-gas, which can be used to generate electrical power in a SOFC or in the production of synthetic fuels (hydrocarbons and alcohols). Hexaaluminate catalysts prepared at NETL may represent a product that can be utilized for the conversion of CO2 to syn-gas. In this work, transition metals dispersed in barium hexaaluminate have shown to be promising new catalysts for dry methane reforming. In this investigation, a series of BaNixAl12-yO19-? catalysts with varying Ni content were prepared by co-precipitation followed by calcination at 1400°C. CO2 reduction by dry methane reforming was carried out to determine catalyst performance as a function of temperature and carbon formation was also quantified after the reforming tests. Results of catalysts characterization, dispersion and surface area, were correlated to catalytic performance.

  2. & CH Activation Rhodium Bis(quinolinyl)benzene Complexes for Methane

    E-Print Network [OSTI]

    Goddard III, William A.

    on using the steam-methane reformation process to convert it to syngas (a CO and H2 mixture catalytic process, many ligand frameworks have been explored for the Pt system,[6] and efforts have been

  3. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  4. Biomass reforming processes in hydrothermal media

    E-Print Network [OSTI]

    Peterson, Andrew A

    2009-01-01

    While hydrothermal technologies offer distinct advantages in being able to process a wide variety of biomass feedstocks, the composition of the feedstock will have a large effect on the processing employed. This thesis ...

  5. Highly Active and Stable MgAl2O4 Supported Rh and Ir Catalysts for Methane Steam Reforming: A Combined Experimental and Theoretical Study

    SciTech Connect (OSTI)

    Mei, Donghai; Glezakou, Vassiliki Alexandra; Lebarbier, Vanessa MC; Kovarik, Libor; Wan, Haiying; Albrecht, Karl O.; Gerber, Mark A.; Rousseau, Roger J.; Dagle, Robert A.

    2014-07-01

    In this work we present a combined experimental and theoretical investigation of stable MgAl2O4 spinel-supported Rh and Ir catalysts for the steam methane reforming (SMR) reaction. Firstly, catalytic performance for a series of noble metal catalysts supported on MgAl2O4 spinel was evaluated for SMR at 600-850°C. Turnover rate at 850°C follows the order: Pd > Pt > Ir > Rh > Ru > Ni. However, Rh and Ir were found to have the best combination of activity and stability for methane steam reforming in the presence of simulated biomass-derived syngas. It was found that highly dispersed ~2 nm Rh and ~1 nm Ir clusters were formed on the MgAl2O4 spinel support. Scanning Transition Electron Microscopy (STEM) images show that excellent dispersion was maintained even under challenging high temperature conditions (e.g. at 850°C in the presence of steam) while Ir and Rh catalysts supported on Al2O3 were observed to sinter at increased rates under the same conditions. These observations were further confirmed by ab initio molecular dynamics (AIMD) simulations which find that ~1 nm Rh and Ir particles (50-atom cluster) bind strongly to the MgAl2O4 surfaces via a redox process leading to a strong metal-support interaction, thus helping anchor the metal clusters and reduce the tendency to sinter. Density functional theory (DFT) calculations suggest that these supported smaller Rh and Ir particles have a lower work function than larger more bulk-like ones, which enables them to activate both water and methane more effectively than larger particles, yet have a minimal influence on the relative stability of coke precursors. In addition, theoretical mechanistic studies were used to probe the relationship between structure and reactivity. Consistent with the experimental observations, our theoretical modeling results also suggest that the small spinel-supported Ir particle catalyst is more active than the counterpart of Rh catalyst for SMR. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time was granted by a user proposal at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) located at PNNL. Part of the computational time was provided by the National Energy Research Scientific Computing Center (NERSC).

  6. Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge

    E-Print Network [OSTI]

    Mallinson, Richard

    and carbon monoxide, is an important raw material in chemical manufacture such as, Fischer-Tropsch synthesis and Materials Science, University of Oklahoma, Norman, Oklahoma 73019 An experimental study of synthesis gas production has been steam reforming, shown in reaction 4. It is very useful to use low-cost materials

  7. A Novel Slurry-Based Biomass Reforming Process Final Technical Report

    SciTech Connect (OSTI)

    Sean C. Emerson; Timothy D. Davis; A. Peles; Ying She; Joshua Sheffel; Rhonda R. Willigan; Thomas H. Vanderspurt; Tianli Zhu

    2011-09-30

    This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood to hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310 �������°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed Raney Ni, from 63% to 100% with correspond

  8. Applications of solar reforming technology

    SciTech Connect (OSTI)

    Spiewak, I.; Tyner, C.E.; Langnickel, U.

    1993-11-01

    Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

  9. System and process for producing fuel with a methane thermochemical cycle

    DOE Patents [OSTI]

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  10. Processes for converting methane to higher molecular weight hydrocarbons via sulfur-containing intermediates

    SciTech Connect (OSTI)

    Han, S.; Palermo, R.E.

    1989-09-05

    This patent describes a process for converting methane to higher molecular weight hydrocarbons. The process comprising the steps of contacting methane with carbonyl sulfide in the presence of UV light under conditions sufficient to generate Ch/sub 3/SH; and contacting CH/sub 3/SH with a catalyst under conditions sufficient to produce hydrogen sulfide and a mixture of hydrocarbons having at least two carbon atoms.

  11. Efficient gas-separation process to upgrade dilute methane stream for use as fuel

    DOE Patents [OSTI]

    Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

    2012-03-06

    A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

  12. Preliminary Thoughts on Copyright Reform

    E-Print Network [OSTI]

    Samuelson, Pamela

    2007-01-01

    Thoughts on Copyright Reform by Pamela Samuelson * Myriadfor undertaking a copyright reform project. For one thing,product of a copyright reform process that was initiated in

  13. Cyclic process for producing methane in a tubular reactor with effective heat removal

    DOE Patents [OSTI]

    Frost, Albert C. (Congers, NY); Yang, Chang-Lee (Spring Valley, NY)

    1986-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  14. Cyclic process for producing methane from carbon monoxide with heat removal

    DOE Patents [OSTI]

    Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  15. Fundamental kinetic modeling of the catalytic reforming process 

    E-Print Network [OSTI]

    Sotelo-Boyas, Rogelio

    2007-04-25

    model are the reduction of aromatics, mainly benzene. The results from the simulations agree with the typical performance found in the industrial process....

  16. Kinetic Consequences of Chemisorbed Oxygen Atoms during Methane Oxidation on Group VIII Metal Clusters

    E-Print Network [OSTI]

    Chin, Ya Huei

    2011-01-01

    Chin, Y-H. ; Resasco, D.E. Catalytic Oxidation of methane onreactions in catalytic partial oxidation, reforming, andoccurrence of direct catalytic partial oxidation of methane

  17. Hydrogen Production Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural gas reforming (also called steam methane reforming or SMR) Coal gasification Biomass gasification Renewable liquid fuel reforming Solar thermochemical hydrogen (STCH)....

  18. The imprint of methane seepage on the geochemical record and early diagenetic processes in cold-water coral mounds on Pen Duick Escarpment, Gulf of Cadiz

    E-Print Network [OSTI]

    Gilli, Adrian

    The imprint of methane seepage on the geochemical record and early diagenetic processes in cold Keywords: cold-water corals cold-water coral mounds sulfur isotopes sulfate-methane transition zone examined. The influence of ascending methane-rich fluids from underlying sediment strata delineated two

  19. Process Options Description for Steam Reforming Flowsheet Model of INEEL Tank Farm Waste

    SciTech Connect (OSTI)

    Taylor, D.D.; Barnes, C.M.; Nichols, T.T.

    2002-05-21

    Technical information is provided herein that is required for development of a steady-state process simulation of a baseline steam reforming treatment train for Tank Farm waste at the Idaho National Engineering and Environmental Laboratory (INEEL). This document supercedes INEEL/EXT-2001-173, produced in FY2001 to support simulation of the direct vitrification treatment train which was the previous process baseline. A process block flow diagram for steam reforming is provided, together with a list of unit operations which constitute the process. A detailed description of each unit operation is given which includes its purpose, principal phenomena present, expected pressure and temperature ranges, key chemical species in the inlet steam, and the proposed manner in which the unit operation is to be modeled in the steady state process simulation. Models for the unit operations may be mechanistic (based on first principles), empirical (based solely on pilot test data without extrapolation) , or by correlations (based on extrapolative or statistical schemes applied to pilot test data). Composition data for the expected process feed streams is provided.

  20. A review on recent advances in the numerical simulation for coalbed-methane-recovery process

    SciTech Connect (OSTI)

    Wei, X.R.; Wang, G.X.; Massarotto, P.; Golding, S.D.; Rudolph, V. [University of Queensland, Brisbane, Qld. (Australia)

    2007-12-15

    The recent advances in numerical simulation for primary coalbed methane (CBM) recovery and enhanced coalbed-methane recovery (ECBMR) processes are reviewed, primarily focusing on the progress that has occurred since the late 1980s. Two major issues regarding the numerical modeling will be discussed in this review: first, multicomponent gas transport in in-situ bulk coal and, second, changes of coal properties during methane (CH{sub 4}) production. For the former issues, a detailed review of more recent advances in modeling gas and water transport within a coal matrix is presented. Further, various factors influencing gas diffusion through the coal matrix will be highlighted as well, such as pore structure, concentration and pressure, and water effects. An ongoing bottleneck for evaluating total mass transport rate is developing a reasonable representation of multiscale pore space that considers coal type and rank. Moreover, few efforts have been concerned with modeling water-flow behavior in the coal matrix and its effects on CH{sub 4} production and on the exchange of carbon dioxide (CO{sub 2}) and CH{sub 4}. As for the second issue, theoretical coupled fluid-flow and geomechanical models have been proposed to describe the evolution of pore structure during CH{sub 4} production, instead of traditional empirical equations. However, there is currently no effective coupled model for engineering applications. Finally, perspectives on developing suitable simulation models for CBM production and for predicting CO{sub 2}-sequestration ECBMR are suggested.

  1. POST HOC STUDY OF A STATE SELECTION PROCESS TO PREDICT STATE READINESS TO PARTICIPATE IN SCHOOLWIDE INCLUSIVE SCHOOL REFORM

    E-Print Network [OSTI]

    Mitchiner, Melinda Sue

    2014-12-31

    by the national center for selecting state partners was predictive of state readiness to participate in schoolwide inclusive school reform, and to assess utility of the process for use by other national centers. The state selection process used by the national...

  2. Modeling of On-Cell Reforming Reaction for Planar SOFC Stacks

    SciTech Connect (OSTI)

    Yang, Choongmo; Lim, Hyung-Tae; Hwang, Soon Cheol; Kim, Dohyung; Lai, Canhai; Koeppel, Brian J.; Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2011-05-30

    Planar Solid Oxide Fuel Cell (SOFC) stack is known to suffer thermal problem from high stack temperature during operation to generate high current. On-Cell Reforming (OCR) phenomenon is often used to reduce stack temperature by an endothermic reaction of steam-methane reforming process. RIST conducted single-cell experiment to validate modeling tool to simulate OCR performance including temperature measurement. 2D modeling is used to check reforming rate during OCR using temperature measurement data, and 3D modeling is used to check overall thermal performance including furnace boundary conditions.

  3. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01

    AND PRODUCTION OF METHANE Lawrence Berkeley LaboratoryDIGESTION AND PRODUCTION OF METHANE Kendall F. Haven MarkArrangement Kelp to Methane Processing Plant Schematic.

  4. Performance of Ni-Fe/gadolinium-doped CeO{sub2} anode supported tubular solid oxide fuel cells using steam reforming of methane

    SciTech Connect (OSTI)

    Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Sumi, H.; Fujishiro, Y.; Ingram, B. J.; Carter, J. D.

    2012-03-15

    Iron nanoparticles (Fe{sub 2}O{sub 3}) were added to NiO/gadolinium-doped CeO{sub 2} (GDC) anode supported solid oxide fuel cell (SOFC) for the direct methane-water fuel operation. The cell was co-sintered at 1400 C, and the anode porosity is 31.8%. The main size corresponding to peak volume is around 1.5 {mu}m. When steam and methane directly fed to the cell, the power density is about 0.57 W cm{sup -2} at 650 C. It is the familiar performance for H{sub 2} operation (4 times of flow rate) with same fuel utilization. Compare with the testing temperature of 600 and 650 C, there is almost no carbon fiber deposition at 700 C with steam/methane (S/C) of 5. At the same time, fuel operation of high value of S/C (=3.3) resulted in fiber-like deposition and degradation of power performance based on loading test results.

  5. Non-catalytic recuperative reformer

    DOE Patents [OSTI]

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  6. A Process-based Analysis of Methane Exchanges Between Alaskan Terrestrial Ecosystems and the Atmosphere

    E-Print Network [OSTI]

    Zhuang, Qianlai.

    We developed and used a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in Alaskan soils have changed over the past century in response to observed changes ...

  7. Producing Clean Syngas via Catalytic Reforming for Fuels Production

    SciTech Connect (OSTI)

    Magrini, K. A.; Parent, Y.; Jablonski, W.; Yung, M.

    2012-01-01

    Thermochemical biomass conversion to fuels and chemicals can be achieved through gasification to syngas. The biomass derived raw syngas contains the building blocks of carbon monoxide and hydrogen as well as impurities such as tars, light hydrocarbons, and hydrogen sulfide. These impurities must be removed prior to fuel synthesis. We used catalytic reforming to convert tars and hydrocarbons to additional syngas, which increases biomass carbon utilization. In this work, nickel based, fluidizable tar reforming catalysts were synthesized and evaluated for tar and methane reforming performance with oak and model syngas in two types of pilot scale fluidized reactors (recirculating and recirculating regenerating). Because hydrogen sulfide (present in raw syngas and added to model syngas) reacts with the active nickel surface, regeneration with steam and hydrogen was required. Pre and post catalyst characterization showed changes specific to the syngas type used. Results of this work will be discussed in the context of selecting the best process for pilot scale demonstration.

  8. The stereochemistry of excited state atom reorganization processes; the di-pi-methane rearrangement 

    E-Print Network [OSTI]

    Ko, Jan Kwei

    1972-01-01

    OF FIGURES Page HISTORICAL BACKGROUND Figure 1: General Examples of the Di-. Pi- Methane Rearrangement ~ ~ . . . . 3 Figure 2: Relationships Between Structure and Multiplicity in the Di-Pi- Nethane Rearrangement . ~ . . ~ ~ 9 Figure $I Summary... Figure 10, Non-Concerted Di-Pi-Methane Re- arrangement Pathways . . . ~ ~ . 27 Figure 11. Synthetic Sequence for 1-Phenyl- 3-methyl-3-(1-cis-propenyl)cyclo- hexene ~ , ~ . . . . . . . . . ~ 31 Figure 12: Results of Direct and Sensitized Photolysis...

  9. Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual

    SciTech Connect (OSTI)

    J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan L. Szymanski; R. Glickert

    2007-12-31

    The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

  10. Process for producing methane from gas streams containing carbon monoxide and hydrogen

    DOE Patents [OSTI]

    Frost, Albert C. (Congers, NY)

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

  11. Ritterschaft & Reformation

    E-Print Network [OSTI]

    Kallenrode, May-Britt

    Ritterschaft & Reformation Renaissancesaal im Ledenhof 23. und 24. Oktober 2014 Osnabrückgefördert deutsche Reformation in Böhmen und Mähren (1520-1620) Dr. Josef Hrdlicka, Ceské Budjovice 10:30 Kaffeepause. Olga Weckenbrock, Osnabrück 11:45 Die Bedeutung der Reichsritterschaft für Reformation und

  12. A fast hybrid start-up process for thermally self-sustained catalytic n-butane reforming in micro-SOFC power plants

    E-Print Network [OSTI]

    Daraio, Chiara

    A fast hybrid start-up process for thermally self-sustained catalytic n-butane reforming in micro at the investigation and optimization of a hybrid start-up process for a self-sustained reactor for n-butane to syngas

  13. Synthesis gas production with an adjustable H{sub 2}/CO ratio through the coal gasification process: effects of coal ranks and methane addition

    SciTech Connect (OSTI)

    Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan [Western Kentucky University (WKU), Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-05-15

    Direct production of synthesis gas using coal as a cheap feedstock is attractive but challenging due to its low H{sub 2}/CO ratio of generated synthesis gas. Three typical U.S. coals of different ranks were tested in a 2.5 in. coal gasifier to investigate their gasification reactivity and adjustability on H{sub 2}/CO ratio of generated synthesis gas with or without the addition of methane. Tests indicated that lower-rank coals (lignite and sub-bituminous) have higher gasification reactivity than bituminous coals. The coal gasification reactivity is correlated to its synthesis-gas yield and the total percentage of H{sub 2} and CO in the synthesis gas, but not to the H{sub 2}/CO ratio. The H{sub 2}/CO ratio of coal gasification was found to be correlated to the rank of coals, especially the H/C ratio of coals. Methane addition into the dense phase of the pyrolysis and gasification zone of the cogasification reactor could make the best use of methane in adjusting the H{sub 2}/CO ratio of the generated synthesis gas. The maximum methane conversion efficiency, which was likely correlated to its gasification reactivity, could be achieved by 70% on average for all tested coals. The actual catalytic effect of generated coal chars on methane conversion seemed coal-dependent. The coal-gasification process benefits from methane addition and subsequent conversion on the adjustment of the H{sub 2}/CO ratio of synthesis gas. The methane conversion process benefits from the use of coal chars due to their catalytic effects. This implies that there were likely synergistic effects on both. 25 refs., 3 figs., 3

  14. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    SciTech Connect (OSTI)

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-11-30

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

  15. Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture

    SciTech Connect (OSTI)

    Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

    2014-01-01

    Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700şC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

  16. POSSIBLE ROLE OF WETLANDS, PERMAFROST, AND METHANE HYDRATES IN THE METHANE

    E-Print Network [OSTI]

    Chappellaz, Jérôme

    POSSIBLE ROLE OF WETLANDS, PERMAFROST, AND METHANE HYDRATES IN THE METHANE CYCLE UNDER FUTURE the available scientific literature on how natural sources and the atmospheric fate of methane may be affected by future climate change. We discuss how processes governing methane wetland emissions, per- mafrost thawing

  17. Steam reforming of fuel to hydrogen in fuel cells

    DOE Patents [OSTI]

    Fraioli, Anthony V. (Hawthorne Woods, IL); Young, John E. (Woodridge, IL)

    1984-01-01

    A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  18. Steam reforming of fuel to hydrogen in fuel cell

    DOE Patents [OSTI]

    Young, J.E.; Fraioli, A.V.

    1983-07-13

    A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

  19. PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW F.K. Lu,* C.M. Roseberry, J.M. Meyers and D arc pyrolysis of methane at supersonic conditions, representative of conditions in the reformer location of an aibreathing hypersonic vehicle. The rationale for arc pyrolysis is provided. Major

  20. Bringing electricity reform to the Philippines

    SciTech Connect (OSTI)

    Fe Villamejor-Mendoza, Maria

    2008-12-15

    Electricity reforms will not translate to competition overnight. But reforms are inching their way forward in institutions and stakeholders of the Philippine electricity industry, through regulatory and competition frameworks, processes, and systems promulgated and implemented. (author)

  1. Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane, ethylene, methane, and two isotopically substituted methanes, CH2D2 and CD4, at a momentum constituent. For example, Fig. 1 of Ref. 2 shows that, for gaseous methane, above a certain momentum transfer

  2. Evaluate reformer performance at a glance

    SciTech Connect (OSTI)

    Nag, A. [Indian Oil Corporation Ltd., Gujarat (India)

    1996-02-01

    Catalytic reforming is becoming increasingly important in replacing octane lost as the removal of lead from worldwide gasoline pools continues. A method has been developed that can quickly evaluate the performance of any catalytic reformer. The catalytic naphtha reforming process primarily involves three well-known reactions. These are aromatization of naphthenes, cyclization of paraffins and hydrocracking of paraffins. Hydrogen is produced in the process of aromatization and dehydrocyclization of paraffins. Reformer performance is normally evaluated with a reformate analysis (PONA) and yield of C{sub 5{sup +}} reformate. This method of quick evaluation of reformer performance is based upon the main assumption that the increase in hydrocarbon moles in the process is equal to the number of C{single_bond}C bond ruptures and one mole of hydrogen is absorbed to saturate the same. This new method calculates aromatization efficiency, paraffin conversion, aromatic selectivity and finally the paraffin, naphthene and aromatic content of C{sub 5{sup +}} reformate.

  3. Acquisition Reform

    E-Print Network [OSTI]

    Sapolsky, Harvey

    This report reviews the six most recent major acquisition reform reports, starting in 1949 with the Hoover Commissions and including McNamara's Total Package Procurement, Fitzhugh Commission, the Commission on Government ...

  4. An analysis of the impact of the Bipartisan Campaign Reform Act of 2002 on the congressional committee assignment process

    E-Print Network [OSTI]

    Velasco, John R. (John Richard)

    2006-01-01

    With the passage of the 2002 Bipartisan Campaign Reform Act (BCRA), a flurry of research has been conducted on the impact on political parties. However, there exists a gap in the research regarding the impact of the ...

  5. Methane Activation Structural and Mechanistic Requirements for

    E-Print Network [OSTI]

    Iglesia, Enrique

    Methane Activation Structural and Mechanistic Requirements for Methane Activation and Chemical and petrochemical processes and in fuel cells. The strong bonds in CH4 (439 kJmolŔ1 [1] ) and the endothermic nature by BP as part of the Methane Conversion Cooperative Research Program at the University of California

  6. Negative Valve Overlap Reforming Chemistry in Low-Oxygen Environments

    SciTech Connect (OSTI)

    Szybist, James P [ORNL] [ORNL; Steeper, Richard R. [Sandia National Laboratories (SNL)] [Sandia National Laboratories (SNL); Splitter, Derek A [ORNL] [ORNL; Kalaskar, Vickey B [ORNL] [ORNL; Pihl, Josh A [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL

    2014-01-01

    Fuel injection into the negative valve overlap (NVO) period is a common method for controlling combustion phasing in homogeneous charge compression ignition (HCCI) and other forms of advanced combustion. When fuel is injected into O2-deficient NVO conditions, a portion of the fuel can be converted to products containing significant levels of H2 and CO. Additionally, other short chain hydrocarbons are produced by means of thermal cracking, water-gas shift, and partial oxidation reactions. The present study experimentally investigates the fuel reforming chemistry that occurs during NVO. To this end, two very different experimental facilities are utilized and their results are compared. One facility is located at Oak Ridge National Laboratory, which uses a custom research engine cycle developed to isolate the NVO event from main combustion, allowing a steady stream of NVO reformate to be exhausted from the engine and chemically analyzed. The other experimental facility, located at Sandia National Laboratories, uses a dump valve to capture the exhaust from a single NVO event for analysis. Results from the two experiments are in excellent trend-wise agreement and indicate that the reforming process under low-O2 conditions produces substantial concentrations of H2, CO, methane, and other short-chain hydrocarbon species. The concentration of these species is found to be strongly dependent on fuel injection timing and injected fuel type, with weaker dependencies on NVO duration and initial temperature, indicating that NVO reforming is kinetically slow. Further, NVO reforming does not require a large energy input from the engine, meaning that it is not thermodynamically expensive. The implications of these results on HCCI and other forms of combustion are discussed in detail.

  7. Enhanced coalbed methane recovery

    SciTech Connect (OSTI)

    Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

    2009-01-15

    The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

  8. 2009 PILOT SCALE FLUIDIZED BED STEAM REFORMING TESTING USING THE THOR (THERMAL ORGANIC REDUCTION) PROCESS: ANALYTICAL RESULTS FOR TANK 48H ORGANIC DESTRUCTION - 10408

    SciTech Connect (OSTI)

    Williams, M.; Jantzen, C.; Burket, P.; Crawford, C.; Daniel, G.; Aponte, C.; Johnson, C.

    2009-12-28

    The Savannah River Site (SRS) must empty the contents of Tank 48H, a 1.3 million gallon Type IIIA HLW storage tank, to return this tank to service. The tank contains organic compounds, mainly potassium tetraphenylborate that cannot be processed downstream until the organic components are destroyed. The THOR{reg_sign} Treatment Technologies (TTT) Fluidized Bed Steam Reforming (FBSR) technology, herein after referred to as steam reforming, has been demonstrated to be a viable process to remove greater than 99.9% of the organics from Tank 48H during various bench scale and pilot scale tests. These demonstrations were supported by Savannah River Remediation (SRR) and the Department of Energy (DOE) has concurred with the SRR recommendation to proceed with the deployment of the FBSR technology to treat the contents of Tank 48H. The Savannah River National Laboratory (SRNL) developed and proved the concept with non-radioactive simulants for SRR beginning in 2003. By 2008, several pilot scale campaigns had been completed and extensive crucible testing and bench scale testing were performed in the SRNL Shielded Cells using Tank 48H radioactive sample. SRNL developed a Tank 48H non-radioactive simulant complete with organic compounds, salt, and metals characteristic of those measured in a sample of the radioactive contents of Tank 48H. FBSR Pilot Scaled Testing with the Tank 48H simulant has demonstrated the ability to remove greater than 98% of the nitrites and greater than 99.5% of the nitrates from the Tank 48H simulant, and to form a solid product that is primarily alkali carbonate. The alkali carbonate is soluble and, thus, amenable to pumping as a liquid to downstream facilities for processing. The FBSR technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration (ESTD) pilot scale steam reformer at the Hazen Research Inc. (HRI) facility in Golden, CO. Additional ESTD tests were completed in 2008 and in 2009 that further demonstrated the TTT steam reforming process ability to destroy organics in the Tank 48 simulant and produce a soluble carbonate waste form. The ESTD was operated at varying feed rates and Denitration and Mineralization Reformer (DMR) temperatures, and at a constant Carbon Reduction Reformer (CRR) temperature of 950 C. The process produced a dissolvable carbonate product suitable for processing downstream. ESTD testing was performed in 2009 at the Hazen facility to demonstrate the long term operability of an integrated FBSR processing system with carbonate product and carbonate slurry handling capability. The final testing demonstrated the integrated TTT FBSR capability to process the Tank 48 simulant from a slurry feed into a greater than 99.9% organic free and primarily dissolved carbonate FBSR product slurry. This paper will discuss the SRNL analytical results of samples analyzed from the 2008 and 2009 THOR{reg_sign} steam reforming ESTD performed with Tank 48H simulant at HRI in Golden, Colorado. The final analytical results will be compared to prior analytical results from samples in terms of organic, nitrite, and nitrate destruction.

  9. Slab reformer

    DOE Patents [OSTI]

    Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.

  10. Slab reformer

    DOE Patents [OSTI]

    Spurrier, Francis R. (Whitehall, PA); DeZubay, Egon A. (Mt. Lebanon, PA); Murray, Alexander P. (Murrysville, PA); Vidt, Edward J. (Churchill, PA)

    1985-03-12

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  11. Slab reformer

    DOE Patents [OSTI]

    Spurrier, Francis R. (Whitehall, PA); DeZubay, Egon A. (Mt. Lebanon, PA); Murray, Alexander P. (Murrysville, PA); Vidt, Edward J. (Churchill, PA)

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  12. Direct Aromaization of Methane

    SciTech Connect (OSTI)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  13. Reforming Pyrolysis Aqueous Waste Streams to Process Hydrogen and Hydrocarbons Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service ofConditioning1: Reforming Pyrolysis

  14. Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions

    E-Print Network [OSTI]

    Schuerger, Andrew C.

    Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions Andrew C process was studied for the production of methane from carbonaceous chondrites under simulated Martian conditions. Methane evolution rates from carbonaceous chondrites were found to be positively correlated

  15. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-06-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  16. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-01-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  17. Immigration Reform: 1986 & Today

    E-Print Network [OSTI]

    Woods, Gregory

    2013-01-01

    voice has  forced immigration reform back to the  political known as the Immigration Reform and Control Act of 1986 (

  18. DIRECT DECOMPOSITION OF METHANE TO HYDROGEN ON METAL LOADED ZEOLITE CATALYST

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch; Harry W. Rollins

    2005-08-01

    The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.

  19. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  20. EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas

    Broader source: Energy.gov [DOE]

    DOE completed a final environmental assessment (EA) for a project under Area I of the Industrial Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2...

  1. Production of methane-rich syngas from hydrocarbon fuels using multi-functional catalyst/capture agent

    DOE Patents [OSTI]

    Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A

    2014-12-30

    The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.

  2. Data reconciliation and optimal operation of a catalytic naphtha reformer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Data reconciliation and optimal operation of a catalytic naphtha reformer Tore Lid Statoil Mongstad of a semiregenerative catalytic naphtha reformer, involving 35 pseudo compo- nents. They claimed that the simplified-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high

  3. Formation mechanism for polycyclic aromatic hydrocarbons in methane flames

    E-Print Network [OSTI]

    Sattler, Klaus

    applications including heating systems and gas turbines for electric power generation.62­64 The combustion of natural gas methane is a clean and efficient process. While gas turbines operating with methane pollution than other hydrocarbon fuels. Therefore, gas turbines pow- ered by methane are promising

  4. Mapping pan-Arctic methane emissions at high spatial resolution using an adjoint atmospheric transport and inversion method and process-based wetland and lake biogeochemical models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E.; Sweeney, C.; Turner, A. J.

    2015-11-18

    Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004–June 2005 ranged from 496.4 to 511.5 Tg yr?1, with wetlandmore »methane emissions ranging from 130.0 to 203.3 Tg yr?1. The Arctic methane emissions during July 2004–June 2005 were in the range of 14.6–30.4 Tg yr?1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr?1 and from 5.4 to 7.9 Tg yr?1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.« less

  5. Methane oxidation rates by AMS

    E-Print Network [OSTI]

    Pack, M; Heintz, M; ReeburGh, WS; Trumbore, SE; Valentine, DL; Xu, X

    2009-01-01

    second case. Number of cases Methane oxidation rates by AMSIn the marine environment methane (CH 4 ) oxidation consumes

  6. DOI: 10.1002/cctc.201300401 New Insights into the Oxidative Coupling of Methane from

    E-Print Network [OSTI]

    Senkan, Selim M.

    DOI: 10.1002/cctc.201300401 New Insights into the Oxidative Coupling of Methane from Spatially coupling of methane (OCM) is a high-temperature process involving the transformation of methane into ethane oxidation of methane to produce CO and H2 in a Pt- and Rh-coated a-Al2O3 foam.[11­13] Experiments were

  7. 2007 DOE Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Meeting

    E-Print Network [OSTI]

    )(organic fraction) DistillationDistillation Reformation of ethanolReformation of ethanol Biogas reformationBiogas Deactivation/Regeneration #12;Overview of the Economic Analysis Strategies Process Mass and Heat Balance for reaction and heating; Reformer is simulated as RYield with temperature at 450oC and furnace is simulated

  8. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Energy Savers [EERE]

    the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution Controlling Methane Emissions in the...

  9. Methane Fluxes Between Terrestrial Ecosystems and the Atmosphere at Northern High Latitudes During the Past Century: A retrospective analysis with a process-based biogeochemistry model

    E-Print Network [OSTI]

    Zhuang, Qianlai.

    We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century ...

  10. Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper

    SciTech Connect (OSTI)

    A.M. Gandrik

    2012-04-01

    This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

  11. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  12. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  13. Tax Reform and Real Estate

    E-Print Network [OSTI]

    Maisel, Sherman J.; Quigley, John M.

    1985-01-01

    WORKING PAPER 85-100 TAX REFORM AND REAL ESTATE BY SHERMANof wider import. TAX REFORM AND REAL ESTATE by Sherman J.B. The Initial Impact of Tax Reform IV. RESULTS: RESTORING

  14. Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt Clusters and Turnover Rate Comparisons among Noble Metals

    E-Print Network [OSTI]

    Iglesia, Enrique

    Mechanism and Site Requirements for Activation and Chemical Conversion of Methane on Supported Pt smaller than the rate of methane chemical conversion in CO2 and H2O reforming reactions; thus, C-H bond and Pt2,3,8-32 lead to H2/CO mixtures useful as precursors to fuels and petrochemicals. Pt appears

  15. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  16. Catalytic reforming methods

    SciTech Connect (OSTI)

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  17. Mixed Ionic/Electronic Conducting Ceramic Membranes for Oxygen-Assisted CO2 Reforming

    E-Print Network [OSTI]

    Slade, David

    2010-03-29

    Incorporating a SrFeCo0.5Ox (SFC) membrane into a CO2 reforming reactor doubles methane conversion with a powder Pt/ZrO2 catalyst. The deactivation of both Pt/ZrO2 and a Pt/CeZrO2 catalyst is also retarded substantially. Catalyst performance...

  18. UAE UNIVERSITY College of Engineering

    E-Print Network [OSTI]

    -Methane Reformation Process. · Coal Gasification. · Biomass Gasification. b. Non-Conventional Energy Resources

  19. NETL - Fuel Reforming Facilities

    ScienceCinema (OSTI)

    None

    2014-06-27

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  20. The Aftermath of Redistricting Reform in California

    E-Print Network [OSTI]

    Buchler, Justin

    2011-01-01

    2009. “Redistricting Reform Will Not Solve California’sMatthew. 2009. “Redistricting Reform Could Save California2. ———. 2011. “Redistricting Reform Revisited. ” California

  1. Bank Regulation and Mortgage Market Reform

    E-Print Network [OSTI]

    Jaffee, Dwight M.

    2011-01-01

    Regulation and Mortgage Market Reform Dwight M. Jaffee Boothfinancial sector regulatory reform initiatives are currentlyset concerns bank regulatory reform as embedded in the 2010

  2. Mapping the Consequences of Electoral Reform

    E-Print Network [OSTI]

    Latner, Michael S; Roach, Kyle

    2011-01-01

    Consequences of Electoral Reform Table A2. Unrotated Matrixthe Consequences of Electoral Reform California Journal ofConsequences of Electoral Reform Michael S. Latner and Kyle

  3. Politics and Policy in State Health Reform

    E-Print Network [OSTI]

    Zelman, Walter; Melamed, Alex

    2009-01-01

    Reform . . . . . . . . . . . . . . . . . . . . . . . . . . . .and Policy in State Health Reform by Walter Zelman, Ph.D.c Greenberge, S.S. , “Healthcare reform efforts win praise

  4. Patent Reform: Aligning Reward and Contribution

    E-Print Network [OSTI]

    Shapiro, Carl

    2007-01-01

    Patent Reform: Aligning Reward and Contribution † CarlThis paper analyzes two major reforms to the patent systemthey are issued. Three additional reforms relating to patent

  5. Constitutional Reform in California: The Surprising Divides

    E-Print Network [OSTI]

    Binder, Mike; Frisby, Tammy; Kousser, Thad B

    2010-01-01

    Issue 2 Constitutional Reform in California: The Surprisingviews on constitutional reform than whites and African-and opposition to proposed reforms, such as the elimination

  6. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid (Menlo Park, CA)

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  7. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  8. Methane sources and sinks in Lake Kivu

    E-Print Network [OSTI]

    2011-01-01

    and G. T. Harvey (1973), Methane in Lake Kivu: New datagenes associated with methane? oxidizing archaea, Appl.Pace, and L. Tranvik (2004), Methane emissions from lakes:

  9. Controlling Methane Emissions in the Natural Gas Sector. A Review of Federal and State Regulatory Frameworks Governing Production, Gathering, Processing, Transmission, and Distribution

    SciTech Connect (OSTI)

    Paranhos, Elizabeth; Kozak, Tracy G.; Boyd, William; Bradbury, James; Steinberg, D. C.; Arent, D. J.

    2015-04-23

    This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supply chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.

  10. Electrochemical methane sensor

    DOE Patents [OSTI]

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  11. Electronic spectroscopy of intermediates involved in the conversion of methane to methanol by FeO

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Electronic spectroscopy of intermediates involved in the conversion of methane to methanol by Fe.1063/1.1448489 I. INTRODUCTION The direct oxidation of methane to an easily transport- able liquid such as methanol process and as the simplest model for alkane oxidation.1,2 Although no direct, efficient methane­methanol

  12. Mars long has been considered a cold, dead planet.However,recent reports of methane

    E-Print Network [OSTI]

    Manning, Craig

    investigations and flight missions. Terrestrial Methane Formation: Potential Analogues for Martian Processes Biogenic methane production results from extant biological activity (microbial metha- nogenesis) as well instance, methane is the meta- bolic by-product of a single related group of microorganisms known

  13. Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor

    E-Print Network [OSTI]

    Mallinson, Richard

    Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge to convert methane into useful products such as higher hydrocarbons, synthesis gas, and organic oxygenate is important for a process to have commercial potential. Thus, this study examines the effect methane

  14. NOVEL APROACH TO PROCESS SYNTHESIS BASED ON DYNAMIC OPTIMIZATION AND EXPLOITION OF PROCESS

    E-Print Network [OSTI]

    Van den Hof, Paul

    is industrially relevant gas phase catalytic reaction ­ methane steam reforming accompanied with water gas shift, oscillatory baffled, helix, catalytic membrane) and ways of operation (optimal reactant feeding and optimal

  15. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  16. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  17. UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2004-01-01

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

  18. Journal of Electron Spectroscopy and Related Phenomena 155 (2007) 2834 Electron Compton scattering from methane and methane-d4

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    2007-01-01

    from methane and methane-d4 G. Coopera, A.P. Hitchcocka,, C.A. Chatzidimitriou-Dreismannb, M. Vosc]. © 2006 Elsevier B.V. All rights reserved. Keywords: Quasi-elastic electron scattering; Methane; CD4

  19. Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis

    SciTech Connect (OSTI)

    T.A. Semelsberger

    2004-10-01

    The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

  20. CGIAR Reform - Why So Difficult? Review, Reform, Renewal, Restructuring, Reform Again and then "The New CGIAR" - So Much Talk and So Little Basic Structural Change - Why?

    E-Print Network [OSTI]

    McCalla, Alex F

    2014-01-01

    Secretariat, FAO CGIAR Reform-Why So Difficult? 2013 TAC/of California, Davis CGIAR Reform — Why So Difficult?Review, Reform, Renewal, Restructuring, Reform Again and

  1. Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase

    E-Print Network [OSTI]

    Baik, Mu-Hyun

    of formaldehyde to carbon dioxide provides energy that is stored for later use as NADH.2 The conversion of methane are bacteria that live on methane as their only source of carbon.1 The first step in their utilization gas (it is currently not economical17 to transport and store methane gas from remote sites

  2. ISSUE PAPER METHANE AVOIDANCE FROM

    E-Print Network [OSTI]

    Brown, Sally

    ISSUE PAPER METHANE AVOIDANCE FROM COMPOSTING An Issue Paper for the: Climate Action Reserve...........................................................................................................39 6.2. Standard Methods for Quantifying Methane from Organic Waste in Landfills...40 6.3. GHG

  3. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach HomepolarizationMeasurementsWarmingMethane BackgroundMethane

  4. The Tri--Methane Rearrangement

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Tri--Methane Rearrangement #12;Církva, Vladimír; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

  5. The Tri--Methane Rearrangement

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Tri--Methane Rearrangement #12;Cirkva, Vladimir; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

  6. Reforming using erionite catalysts

    SciTech Connect (OSTI)

    Liers, J.; Meusinger, J.; Moesch, A. (Univ. of Leipzig (Germany)); Reschetilowski, W. (Karl Winnacker Inst. of DECHEMA, Frankfurt (Germany))

    1993-08-01

    The advantage of reforming on erionite catalysts is a product with high octane numbers and low amounts of aromatics. This advantage seems to be slight at reaction pressures lower than 25 bar. But it is possible to compensate for the influence of pressure by varying the erionite content within the catalyst and the reaction temperature. When reforming on Pt/Al[sub 2]O[sub 3] catalysts, the following reactions take place: dehydrocyclization of paraffins to naphthenes, dehydrogenation of naphthenes to aromatics, isomerication of normal paraffins remains in the product, lowering its octane number. By using a Ni/H-erionite catalyst, the octane rating can be increased by 3 to 7 numbers through selective hydrocracking of n-alkanes in the reformate. Erionite catalysts favor shape-selective hydrocracking of normal paraffins and the formation of cyclopentane derivatives lowering the content of aromatics during reforming reactions. Reducing the reaction pressure decreases hydrocracking activity and cyclopentane formation. These results can be interpreted in terms of thermodynamic restrictions and deactivation.

  7. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    SciTech Connect (OSTI)

    Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

    2014-10-31

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450şC. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450şC (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300şC (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300şC. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

  8. Catalysts and process conditions favoring DME synthesis from CO, H{sub 2}, and CO{sub 2}

    SciTech Connect (OSTI)

    Stiles, A.B.

    1994-12-31

    Synthesis gas can be derived from many carbonaceous raw materials and by a large number of efficient processes. Synthesis gas can also be derived from many processes typified by the following reactions: partial oxidation; steam hydrocarbon reforming; and methanol dissociation. Because the foregoing processes are so efficient and low cost, the product gases are broadly used for hydrogenation, carbonylation, and organic synthesis. The authors will not go into further detail except in the case of synthesis gas to alcohols and dimethyl ether and methane for synthetic natural gas. The paper discusses historical aspects and more recent studies of the conversion of synthesis gas.

  9. Commodity chemicals from natural gas by methane chlorination

    SciTech Connect (OSTI)

    Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

    1987-01-01

    Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

  10. Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh,,111...

    E-Print Network [OSTI]

    Sibener, Steven

    the yield of CO from the partial oxidation of CH4 on a Rh 111 catalytic substrate, CH4+ 1/2 O2CO+2H2 to the multistep route to methane utilization, namely, steam reforming coupled with the water gas shift reaction.1

  11. Thermally efficient melting and fuel reforming for glass making

    DOE Patents [OSTI]

    Chen, Michael S. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary S. (Trexlertown, PA); Winchester, David C. (Allentown, PA)

    1991-01-01

    An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

  12. Thermally efficient melting and fuel reforming for glass making

    DOE Patents [OSTI]

    Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

    1991-10-15

    An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

  13. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    1995-08-01

    This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures US livestock operations currently employ four types of anaerobic digester technology: Slurry, plug flow, complete mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations.

  14. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  15. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Krumpelt, Michael (Naperville, IL)

    2001-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  16. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  17. Methanol partial oxidation reformer

    DOE Patents [OSTI]

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-17

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  18. Estimate of resources required for a meaningful reform of education

    E-Print Network [OSTI]

    Glazek, Stanislaw D

    2012-01-01

    A simple estimate in terms of currency units shows that a meaningful educational reform process can be launched and sustained over many generations of teachers with support of parents of students. In the estimate, the steady inflow of resources from parents provides support for advanced studies by teachers. Not to waste the resources on spurious activities, the estimated inflow proceeds directly from the parents as clients to the providers of required reform program. The providers are the experts in various disciplines who excel in helping teachers become great. Their services to teachers are ultimately assessed by parents on the basis of changes in behavior of children. The resulting reform program grows slowly from small seeds. The running cost of the reform process to parents appears surprisingly low while its development leads to the desired changes over time.

  19. Methane present in an extrasolar planet atmosphere

    E-Print Network [OSTI]

    Mark R. Swain; Gautam Vasisht; Giovanna Tinetti

    2008-02-07

    Molecules present in exoplanetary atmospheres are expected to strongly influence the atmospheric radiation balance, trace dynamical and chemical processes, and indicate the presence of disequilibrium effects. Since molecules have the potential to reveal the exoplanet atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide, and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jovian planets. Since these bands overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report on a near-infrared transmission spectrum of the planet HD 189733b showing the presence of methane. Additionally, a resolved water-vapour band at 1.9 microns confirms the recent claim of water in this object. On thermochemical grounds, carbon-monoxide is expected to be abundant in the upper atmosphere of hot-Jovian exoplanets; thus the detection of methane rather than carbon-monoxide in such a hot planet could signal the presence of a horizontal chemical gradient away from the permanent dayside, or it may imply an ill-understood photochemical mechanisms that leads to an enhancement of methane.

  20. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  1. Reforming the Power Sector in Transition: Do Institutions Matter?

    E-Print Network [OSTI]

    Nepal, Rabindra; Jamasb, Tooraj

    and Uzbekistan. Besides these countries, Turkey and Mongolia are also included in the group of transition economies as per European Bank of Reconstruction and Development (EBRD) areas of operation. 2 For instance, the oil and gas exports for Turkmenistan... ). Stiglitz (1999) argues that the enforcement mechanisms of reforms (including  power  sector  reforms) were weak  as  the  state’s  legal  and  judicial  capacities were  limited during the transition process brewing inefficient rent...

  2. The Optimization of Well Spacing in a Coalbed Methane Reservoir 

    E-Print Network [OSTI]

    Sinurat, Pahala Dominicus

    2012-02-14

    , such as rank of the coal, coal composition, micropores structure, reservoir pressure, molecular properties of gas adsorbed on the internal surface of coal seam, and reservoir temperature3,7. An idealized model of coalbed methane reservoir consists of a... making process. The uncertainties include the coal density, permeability or gas content as parameters of coal properties. Each coalbed methane reservoir property will govern production performance in a certain degree. Some parameters strongly influence...

  3. Distributed Bio-Oil Reforming

    Broader source: Energy.gov [DOE]

    Presentation by NREL's Robert Evans at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  4. Tax Reform and Real Estate

    E-Print Network [OSTI]

    Maisel, Sherman J.; Quigley, John M.

    1985-01-01

    Berkeley CENTER Eon REAL ESTATE ANDURBAN ECONOMICS WORKING85-100 TAX REFORM AND REAL ESTATE BY SHERMAN J. MAISEL JOHNADMINISTRATION CENTER FOR REAL ESTATE AND URBAN ECONOMICS

  5. AEDP & Healthcare Reform Dipti Patel, FSA, MAAA

    E-Print Network [OSTI]

    Hong, Don

    Cigna AEDP & Healthcare Reform Dipti Patel, FSA, MAAA March 19, 2012 #12; Introductions Introducing... Cigna An overview of the AEDP Healthcare Reform Questions and Answers Overview #12 Branding ­ "GO YOU" · Things are changing ­ Health Care Reform · Young, energetic, executive leadership

  6. VIBRATION->VIBRATION ENERGY TRANSFER IN METHANE

    E-Print Network [OSTI]

    Hess, Peter

    2012-01-01

    VIBRATION ENERGY TRANSFER IN METHANE Peter Hess, A. H. Kung,Rotation Spectra of Methane, U.S. Nat'L· Tech. Inform.tret t tllll. I. INTRODUCTION Methane is a relatively simple

  7. Federal Information Technology Acquisition Reform Act (FITARA...

    Energy Savers [EERE]

    Information Technology Acquisition Reform Act (FITARA) Data Resources Federal Information Technology Acquisition Reform Act (FITARA) Data Resources FITARA Resources Available for...

  8. Development of computer simulations for landfill methane recovery

    SciTech Connect (OSTI)

    Massmann, J.W.; Moore, C.A.; Sykes, R.M.

    1981-12-01

    Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

  9. ARM - Methane Background Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach HomepolarizationMeasurementsWarmingMethane Background

  10. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    ) and methane (CH4) from renewable biomass has the potential to con- tribute to reducing dependence on fossilBiofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, USA James G Ferry, Pennsylvania State University, University Park, Pennsylvania, USA The production

  11. First-Principles Study on the Origin of the Different Selectivities for Methanol Steam Reforming on Cu(111) and Pd(111)

    E-Print Network [OSTI]

    Li, Weixue

    different catalytic processes, including methanol decomposition (eq 1), methanol steam reforming (eq 2First-Principles Study on the Origin of the Different Selectivities for Methanol Steam Reforming steam reforming (MSR) is an important industrial process for hydrogen production, and fundamental

  12. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  13. Autothermal reforming catalyst having perovskite structure

    DOE Patents [OSTI]

    Krumpel, Michael (Naperville, IL); Liu, Di-Jia (Naperville, IL)

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  14. Process, including membrane separation, for separating hydrogen from hydrocarbons

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

    2001-01-01

    Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

  15. 7.4 Landfill Methane Utilization

    Broader source: Energy.gov [DOE]

    A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

  16. Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of n-Heptane

    Broader source: Energy.gov [DOE]

    The effects of blends of base fuel (n-heptane) and fuel-reformed products on the low-temperature combustion process were investigated.

  17. The development of autocatalytic structural materials for use in the sulfur-iodine process for the production of hydrogen

    E-Print Network [OSTI]

    Miu, Kevin (Kevin K.)

    2006-01-01

    The Sulfur-Iodine Cycle for the thermochemical production of hydrogen offers many benefits to traditional methods of hydrogen production. As opposed to steam methane reforming - the most prevalent method of hydrogen ...

  18. Distributed Bio-Oil Reforming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mines Bio-Derived Liquids Distributed Reforming Working Group Meeting HFC&IT Program Baltimore, MD October 24, 2006 1 Gasification Partial oxidation CH 1.46 O .67 + 0.16 O 2 ...

  19. Tax Reform and Real Estate

    E-Print Network [OSTI]

    Rosen, Kenneth T.; Lepcio, Andrea

    1986-01-01

    investment opportunities in real estate. -13- Appentlix CashBerkeley CENTER FOR REAL ESTATE S AND URBAN ECONOMICSPAPER 86-117 TAX REFORM AND REAL ESTATE_ BY KENNETH T. ROSEN

  20. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  1. The Dynamics of Reform of India’s Federal System

    E-Print Network [OSTI]

    Singh, Nirvikar

    2007-01-01

    Conflict and Economic Reform in the Developing World, Newconstraints to economic reforms that provide aggregateExpenditures and Economic Reform in India,” Journal of

  2. Essays on India’s Economy: Perspectives on Policy Reform

    E-Print Network [OSTI]

    Singh, Nirvikar

    2014-01-01

    Perspectives on Policy Reform Nirvikar Singh Professor ofwith economic policy reform. The essays are organized intofinancial inclusion and tax reform. This is followed by a

  3. Changing Tracks? The Prospect for California Pension Reform

    E-Print Network [OSTI]

    Kogan, Vladimir; McCubbins, Mathew D

    2010-01-01

    for California Pension Reform Notes We focus on the combinedfor California Pension Reform Vladimir Kogan University ofCalifornia budget, pension reform, fiscal oversight

  4. Administering Democracy: Public Opinion on Election Reform in California

    E-Print Network [OSTI]

    Bergman, Elizabeth

    2012-01-01

    Consequences of Electoral Reform in the United States. ”Turnout and Institutional Reform in Oregon. ” Social SciencePublic Opinion on Election Reform in California Elizabeth

  5. The role of the district office in instructional practice reform

    E-Print Network [OSTI]

    Rizzi, Karen Schultz

    2008-01-01

    reality: Standards-based reform in urban districts. MenloW. A. (1989). Using reform: Conceptualizing districtHow districts support school reform. Seattle: University of

  6. Methane emissions from upland forest soils and vegetation

    E-Print Network [OSTI]

    Megonigal, ABB

    2008-01-01

    Crill. 2006. A source of methane from upland forests in thecontrolling atmospheric methane con- sumption by temperateand T.B. Parkin. 2001. Methane oxidation and produc- tion

  7. Microbe-Metazoan interactions at Pacific Ocean methane seeps

    E-Print Network [OSTI]

    Thurber, Andrew R

    2010-01-01

    B) and those present within methane seep Euryarchaea ( PMI,margin: the influence of methane seeps and oxygen minimumisotope signatures and methane use by New Zealand cold seep

  8. Microbe-metazoan interactions at Pacific Ocean methane seeps

    E-Print Network [OSTI]

    Thurber, Andrew Reichmann

    2010-01-01

    B) and those present within methane seep Euryarchaea ( PMI,margin: the influence of methane seeps and oxygen minimumisotope signatures and methane use by New Zealand cold seep

  9. Methane and Methanotrophic Bacteria as a Biotechnological Platform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuels from methane: a sustainable, abundant resource that does not compete with the human food chain 3 Sustainable Methane * Methane can be captured from anaerobic digestion of...

  10. Methanation of gas streams containing carbon monoxide and hydrogen

    DOE Patents [OSTI]

    Frost, Albert C. (Congers, NY)

    1983-01-01

    Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

  11. A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry

    E-Print Network [OSTI]

    2011-01-01

    the anaerobic oxidation of methane. Environ. Microbiol. 10(Field observations of methane concentra- tions and oxidationAnaerobic oxidation of methane above gas hydrates at Hydrate

  12. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

  13. Before the House Oversight and Government Reform Subcommittee...

    Broader source: Energy.gov (indexed) [DOE]

    on Technology, Information Policy, Intergovernmental Relations and Procurement Reform, Committee on Oversight and Government Reform, United States House of Representatives...

  14. PPrroocceeddiimmiieennttoo ddee ddeeppoossiicciinn ddee bbrroonnccee mmeettlliiccoo ddee ppllaattiinnoo yy ssuu aapplliiccaacciinn eenn ccaattlliissiiss yy cclluullaass ddee ccoommbbuussttiibbllee

    E-Print Network [OSTI]

    catalytic activity in methane steam reforming reaction and water gas shift process to produce H2 and CO2

  15. Hydrogen production with a solar steammethanol reformer and colloid nanocatalyst

    E-Print Network [OSTI]

    Daraio, Chiara

    and Process Engineering, Laboratory of Thermodynamics in Emerging Technologies, CH-8092 Zurich, Switzerland carried out [7,8] to improve the reforming system efficiency. Energy for the endothermic steam rights reserved. doi:10.1016/j.ijhydene.2009.10.083 #12;Using concentrated solar energy to provide energy

  16. GLOBAL SOURCES OF METHANE AND THE BENEFITS OF

    E-Print Network [OSTI]

    Bateman, Ian J.

    ; the flaring of natural gas in oil production; in industrial processes and by the inefficient combustion (ESRC). ISSN 0967-8875 #12;Abstract Methane is an important greenhouse gas, the abatement of which-benefit analysis, such as the discount rate, the future trends in agricultural prices and the value of global

  17. ALBERTA LAW REFORM INSTITUTE EDMONTON, ALBERTA

    E-Print Network [OSTI]

    MacMillan, Andrew

    ALBERTA LAW REFORM INSTITUTE EDMONTON, ALBERTA CONTRACTS FOR THE SALE AND PURCHASE OF LAND;#12;Table of Contents ALBERTA LAW REFORM INSTITUTE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 CHAPTER 2. COMPARISON OF THE PRESENT AND PREVIOUS LAW OF ALBERTA

  18. Informationsveranstaltung zur Reform des gymnasialen Lehramtes

    E-Print Network [OSTI]

    Informationsveranstaltung zur Reform des gymnasialen Lehramtes W¨urzburg, 3. Mai 2013 ... was lange montags 16-17 Uhr und freitags 10-11 Uhr Euch und allen an der Reform Beteiligten ein herzliches Danke

  19. Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions

    E-Print Network [OSTI]

    Zhang, Youxue

    Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions quantities of CH4 are stored in marine sediment in the form of methane hydrate, bubbles, and dissolved CH4 in pore water. Here I discuss the various pathways for methane to enter the ocean and atmosphere

  20. EIA - Greenhouse Gas Emissions - Methane Emissions

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9...

  1. VIBRATION->VIBRATION ENERGY TRANSFER IN METHANE

    E-Print Network [OSTI]

    Hess, Peter

    2012-01-01

    Submitted to the Journal of Chemical Physics VIBRATIONVIBRATION ENERGY TRANSFER IN METHANE Peter Hess, A. H. Kung,L K. Fox, Analysis of Vibration-Rotation Spectra of Methane,

  2. Nonequilibrium clumped isotope signals in microbial methane

    E-Print Network [OSTI]

    Wang, David T.

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

  3. Method of steam reforming methanol to hydrogen

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA)

    1990-01-01

    The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

  4. Plasmatron Fuel Reformer Development and Internal Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  5. Microbial diversity and dynamics during methane production from municipal solid waste

    SciTech Connect (OSTI)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-10-15

    Highlights: ? Similar bacterial communities developed following different start-up operation. ? Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ? Created correlations between methanogens, methane yield, and available substrate. ? Predominant bacteria identified with syntrophic polysaccharide degraders. ? Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.

  6. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  7. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D'Este, Joseph R. (Pittsburgh, PA)

    1998-01-01

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  8. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  9. PER-Based Reform at a Multicultural

    E-Print Network [OSTI]

    Steinberg, Richard N.

    PER-Based Reform at a Multicultural Institution Some Lessons from Physics Education Research that the most suc- cessful reform strategies require significant interactions among students, and between students and instructor. It is therefore reasonable to wonder about the extent to which PER-based reform

  10. Methane adsorption on Devonian shales 

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  11. Biogeochemistry of Microbial Coal-Bed Methane

    E-Print Network [OSTI]

    Macalady, Jenn

    Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

  12. Technical Note Methane gas migration through geomembranes

    E-Print Network [OSTI]

    PROOFS Technical Note Methane gas migration through geomembranes T. D. Stark1 and H. Choi2 1 flexible geomembranes, and to measure the methane gas transmission rate, permeance, and permeability). The measured methane gas permeability coefficient through a PVC geomembrane is 7.55 3 104 ml(STP).mil/m2.day

  13. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  14. Progress toward Biomass and Coal-Derived Syngas Warm Cleanup: Proof-of-Concept Process Demonstration of Multicontaminant Removal for Biomass Application

    SciTech Connect (OSTI)

    Howard, Christopher J.; Dagle, Robert A.; Lebarbier, Vanessa MC; Rainbolt, James E.; Li, Liyu; King, David L.

    2013-06-19

    Systems comprising of multiple sorbent and catalytic beds have been developed for the warm syngas cleanup of coal- and biomass-derived syngas. Tailored specifically for biomass application the process described here consists of six primary unit operations: 1) Na2CO3 bed for HCl removal, 2) two regenerable ZnO beds for bulk H2S removal, 3) ZnO bed for H2S polishing, 4) NiCu/SBA-16 sorbent for trace metal (e.g. AsH3) removal, 5) steam reforming catalyst bed for tars and light hydrocarbons reformation and NH3 decomposition, and a 6) Cu-based LT-WGS catalyst bed. Simulated biomass-derived syngas containing a multitude of inorganic contaminants (H2S, AsH3, HCl, and NH3) and hydrocarbon additives (methane, ethylene, benzene, and naphthalene) was used to demonstrate process effectiveness. The efficiency of the process was demonstrated for a period of 175 hours, during which no signs of deactivation were observed. Post-run analysis revealed small levels of sulfur slipped through the sorbent bed train to the two downstream catalytic beds. Future improvements could be made to the trace metal polishing sorbent to ensure complete inorganic contaminant removal (to low ppb level) prior to the catalytic steps. However, dual, regenerating ZnO beds were effective for continuous removal for the vast majority of the sulfur present in the feed gas. The process was effective for complete AsH3 and HCl removal. The steam reforming catalyst completely reformed all the hydrocarbons present in the feed (methane, ethylene, benzene, and naphthalene) to additional syngas. However, post-run evaluation, under kinetically-controlled conditions, indicates deactivation of the steam reforming catalyst. Spent material characterization suggests this is attributed, in part, to coke formation, likely due to the presence of benzene and/or naphthalene in the feed. Future adaptation of this technology may require dual, regenerable steam reformers. The process and materials described in this report hold promise for a warm cleanup of a variety of contaminant species within warm syngas.

  15. 19th Century Ballot Reform in California: A Study of the Huntington Library's Political Ephemera Collection

    E-Print Network [OSTI]

    Goodrich, Melanie

    2008-11-30

    Ballot reform is an important part of the American political process. During the 1800’s, ballots changed drastically. At the beginning of the century, voters wrote the names of the candidates for whom they wished to vote ...

  16. Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Butner, Scott S.; Zacher, Alan H.; Engelhard, Mark H.; Young, James S.; McCready, David E.

    2004-07-01

    Through the use of a metal catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In the pressurized-water environment (20 MPa) near-total conversion of the organic structure of biomass to gases has been accomplished in the presence of a ruthenium metal catalyst. The process is essentially steam reforming as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high-levels of methane, as dictated by thermodynamic equilibrium. Biomass trace components cause processing difficulties using the fixed catalyst bed tubular reactor system. Results are described for both bench-scale and scaled-up reactor systems.

  17. NEPA Contracting Reform Guidance

    Broader source: Energy.gov (indexed) [DOE]

    NEPA process costs < NEPA contractor evaluation procedures < details on the DOE NEPA Web site U.S. Department of Energy, Office of NEPA Policy and Assistance, December 1996...

  18. Integrated reformer and shift reactor

    DOE Patents [OSTI]

    Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.

    2006-06-27

    A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.

  19. Anaerobic digestion process

    SciTech Connect (OSTI)

    Ishida, M.; Haga, R.; Odawara, Y.

    1982-10-19

    An algae culture grown on the water from the digested slurry of a biogasification plant serves as a means of removing CO/sub 2/ from the methane stream while purifying the wastewater and providing more biomass for the anaerobic digestion plant. Tested on a sewage-sludge digestion system, the proposed process improved the methane yield by 32% and methane concentration by 53-98 vol % while lowering the concentration of nitrogen and phosphorus in the final water.

  20. Performance of a palladium membrane reactor using a Ni catalyst for fusion fuel impurities processing

    SciTech Connect (OSTI)

    Willm, R.S. [Los Alamos National Lab., NM (United States); Okuno, K. [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    The palladium membrane reactor (PMR) provides a means to recover hydrogen isotopes from impurities expected to be present in fusion reactor exhaust. This recovery is based on reactions such as water gas shift and steam reforming for which conversion is equilibrium limited. By including a selectively permeable membrane such as Pd/Ag in the catalyst bed, hydrogen isotopes can be removed from the reacting environment, thus promoting the reaction to complete conversion. Such a device has been built and operated at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). For the reactions listed above, earlier study with this unit has shown that hydrogen single-pass recoveries approaching 100% can be achieved. It was also determined that a nickel catalyst is a feasible choice for use with a PMR appropriate for fusion fuel impurities processing. The purpose of this study is to systematically assess the performance of the PMR using a nickel catalyst. Reactions which will be studied include the water gas shift reaction, steam reforming and methane cracking. Extended operation will be performed to detect performance degradation if it exists. The use of methane in these tests may lead to the formation of coke on the catalyst. Methods of removing the coke such as treatment with carbon dioxide or diluted oxygen will be examined.

  1. Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.

    2012-07-26

    Through the use of a metal catalyst, gasification of wet algae slurries can be accomplished with high levels of carbon conversion to gas at relatively low temperature (350 C). In a pressurized-water environment (20 MPa), near-total conversion of the organic structure of the algae to gases has been achieved in the presence of a supported ruthenium metal catalyst. The process is essentially steam reforming, as there is no added oxidizer or reagent other than water. In addition, the gas produced is a medium-heating value gas due to the synthesis of high levels of methane, as dictated by thermodynamic equilibrium. As opposed to earlier work, biomass trace components were removed by processing steps so that they did not cause processing difficulties in the fixed catalyst bed tubular reactor system. As a result, the algae feedstocks, even those with high ash contents, were much more reliably processed. High conversions were obtained even with high slurry concentrations. Consistent catalyst operation in these short-term tests suggested good stability and minimal poisoning effects. High methane content in the product gas was noted with significant carbon dioxide captured in the aqueous byproduct in combination with alkali constituents and the ammonia byproduct derived from proteins in the algae. High conversion of algae to gas products was found with low levels of byproduct water contamination and low to moderate loss of carbon in the mineral separation step.

  2. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  3. High Efficiency Solar-based Catalytic Structure for CO{sub 2} Reforming

    SciTech Connect (OSTI)

    Menkara, Hisham

    2013-09-30

    Throughout this project, we developed and optimized various photocatalyst structures for CO{sub 2} reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO{sub 2} reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solution containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO{sub 2} into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).

  4. Steam Reforming of Low-Level Mixed Waste

    SciTech Connect (OSTI)

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  5. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

  6. Methane clathrates in the Solar System

    E-Print Network [OSTI]

    Mousis, Olivier; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-01-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form in the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined.

  7. Methane-derived hydrocarbons produced under upper-mantle conditions

    SciTech Connect (OSTI)

    Kolesnikov, Anton; Kutcherov, Vladimir G.; Goncharov, Alexander F.

    2009-08-13

    There is widespread evidence that petroleum originates from biological processes. Whether hydrocarbons can also be produced from abiogenic precursor molecules under the high-pressure, high-temperature conditions characteristic of the upper mantle remains an open question. It has been proposed that hydrocarbons generated in the upper mantle could be transported through deep faults to shallower regions in the Earth's crust, and contribute to petroleum reserves. Here we use in situ Raman spectroscopy in laser-heated diamond anvil cells to monitor the chemical reactivity of methane and ethane under upper-mantle conditions. We show that when methane is exposed to pressures higher than 2 GPa, and to temperatures in the range of 1,000-1,500 K, it partially reacts to form saturated hydrocarbons containing 2-4 carbons (ethane, propane and butane) and molecular hydrogen and graphite. Conversely, exposure of ethane to similar conditions results in the production of methane, suggesting that the synthesis of saturated hydrocarbons is reversible. Our results support the suggestion that hydrocarbons heavier than methane can be produced by abiogenic processes in the upper mantle.

  8. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  9. The Methane to Markets Coal Mine Methane Subcommittee meeting

    SciTech Connect (OSTI)

    2008-07-01

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  10. Plasma-catalyzed fuel reformer

    DOE Patents [OSTI]

    Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

    2013-06-11

    A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

  11. Hydrocarbon Processing`s refining processes `96

    SciTech Connect (OSTI)

    NONE

    1996-11-01

    The paper compiles information on the following refining processes: alkylation, benzene reduction, benzene saturation, catalytic cracking, catalytic reforming, coking, crude distillation, deasphalting, deep catalytic cracking, electrical desalting, ethers, fluid catalytic cracking, hydrocracking, hydrogenation, hydrotreating, isomerization, resid catalytic cracking, treating, and visbreaking. The application, products, a description of the process, yield, economics, installation, and licensor are given for each entry.

  12. The Tri--methane Rearrangement: Mechanistic and Exploratory Organic

    E-Print Network [OSTI]

    Cirkva, Vladimir

    counterpart. Scheme 1 shows the mechanism of the di--methane rearrangement and its potential diversion allylic diradical 4, closure to tri--methane product 6 may compete with 1,3-closure to di--methane product rearrangement. On direct irradiation, tris-diphenylvinyl methane 9 led to 52% of tri--methane product 11

  13. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect (OSTI)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Asse

  14. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    SciTech Connect (OSTI)

    Valentine, David

    2012-09-30

    In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications to date, with five more circulating in draft form, and several others planned.

  15. Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier

    SciTech Connect (OSTI)

    Mann, M.K. [National Renewable Energy Lab., Golden, CO (United States). Industrial Technologies Div.

    1995-08-01

    The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus{trademark} to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product.

  16. Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study

    SciTech Connect (OSTI)

    Christopher Orme

    2012-08-01

    Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

  17. Hydrogen from Biomass by Autothermal Reforming

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Lanny D. Schmidt at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  18. Welfare reform and liberal governance: disciplining Cambodian-American bodies

    E-Print Network [OSTI]

    Truong, Michael H.

    2007-01-01

    Should Know About Welfare Reform (Series A, No. A- 52).2001). The Impact of Welfare Reform on Asians and PacificPunishment: How Welfare Reform Punishes the Poor. Oakland,

  19. State Finances in India: A Case for Systemic Reform

    E-Print Network [OSTI]

    Singh, Nirvikar

    2006-01-01

    M. Govinda (2000), “Tax Reform in India: Achievements andState Level Fiscal Reforms in India”, paper presented aton Indian Economic Reform, April 19-20. M. Govinda Rao and

  20. Inquiry-Based Learning: An Educational Reform Based

    E-Print Network [OSTI]

    McLoughlin, Padraig

    -Based Learning: An Educational Reform Based Upon Content-Centred Teaching. 1046-Centred Educational Reform 3 III Inquiry-Based Learning Pedagogy is Content 27 #12; ii Abstract Inquiry-Based Learning: An Educational Reform

  1. A second opinion on U.S. health care reform

    E-Print Network [OSTI]

    Chaufan, Claudia MD, PhD

    2010-01-01

    Cost Implications of Health Care Reform. N Engl J Med: p.opinion on U.S. health care reform Posted by PNHP on Friday,Obama argued that a model of reform as that implemented by

  2. Swimming Upstream: The Hard Politics of Health Reform in California

    E-Print Network [OSTI]

    Zelman, Walter

    2009-01-01

    The Hard Politics of Health Reform in California June 2009Report on State Health Access Reform,” Health Affairs, WebPolicy in State Health Reform,” Zelman, W. A. , and Melamed,

  3. Analysis of Senate Bill 92: Health Care Reform

    E-Print Network [OSTI]

    2009-01-01

    CJ. Effects of State Reforms on Health Insurance Coverage ofMorrisey MA. Small Group Reform and Insurance Provision byInterest Groups and Health Reform: Lessons from California.

  4. What is "Comprehensive Immigration Reform"? Taking the Long View

    E-Print Network [OSTI]

    Motomura, Hiroshi

    2010-01-01

    Stumpf. 1. Immigration Reform and Control Act of 1986, Pub.8 U.S.C. ). 35. Immigration Reform and Control Act of 1986,about “comprehensive immigration reform”—in the way the next

  5. A conduit dilation model of methane venting from lake sediments

    E-Print Network [OSTI]

    Ruppel, Carolyn

    Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the ...

  6. High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions

    SciTech Connect (OSTI)

    G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

    2011-12-31

    The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

  7. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  8. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  9. Making Sense of Reform in Mathematics Education : : The Impact on Practice by Interactions Between Teachers' Beliefs, Reform Policy and Collaboration

    E-Print Network [OSTI]

    Javier, Laura R.

    2014-01-01

    L. , & Cohen, D. K. (1996). Reform by the book: What is: Orlearning and instructional reform? Educational Researcher,school mathematics: The anti-reform of 1997-99. Phi Delta

  10. The Definitive Reform. How the 1996 Electoral Reform Triggered the Demise of the PRI's Dominant-Party Regime

    E-Print Network [OSTI]

    Garrido de Sierra, Sebastián

    2014-01-01

    the PRI Approve the Reform? . . . . . . . . . . . . . . .vi 4 How the 1996 Reform Triggered the End of the PRI’seffect of the 1996 electoral reform on the PRI’s unity . The

  11. Hydropyrolysis process

    DOE Patents [OSTI]

    Ullman, Alan Z. (Northridge, CA); Silverman, Jacob (Woodland Hills, CA); Friedman, Joseph (Huntington Beach, CA)

    1986-01-01

    An improved process for producing a methane-enriched gas wherein a hydrogen-deficient carbonaceous material is treated with a hydrogen-containing pyrolysis gas at an elevated temperature and pressure to produce a product gas mixture including methane, carbon monoxide and hydrogen. The improvement comprises passing the product gas mixture sequentially through a water-gas shift reaction zone and a gas separation zone to provide separate gas streams of methane and of a recycle gas comprising hydrogen, carbon monoxide and methane for recycle to the process. A controlled amount of steam also is provided which when combined with the recycle gas provides a pyrolysis gas for treatment of additional hydrogen-deficient carbonaceous material. The amount of steam used and the conditions within the water-gas shift reaction zone and gas separation zone are controlled to obtain a steady-state composition of pyrolysis gas which will comprise hydrogen as the principal constituent and a minor amount of carbon monoxide, steam and methane so that no external source of hydrogen is needed to supply the hydrogen requirements of the process. In accordance with a particularly preferred embodiment, conditions are controlled such that there also is produced a significant quantity of benzene as a valuable coproduct.

  12. Diesel Reformers for On-board Hydrogen Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reformers for On-board Hydrogen Applications Diesel Reformers for On-board Hydrogen Applications 2003 DEER Conference Presentation: Hydrogen Source 2003deermauss.pdf More...

  13. Agenda for the Derived Liquids to Hydrogen Distributed Reforming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reforming Targets Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Kick-Off Meeting Proceedings Hilton Garden Inn-BWI,Baltimore, MD October 24, 2006...

  14. Hydrogen generation from plasmatron reformers and use for diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation from plasmatron reformers and use for diesel exhaust aftertreatment Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment 2003 DEER...

  15. Secretary Moniz to Present Project Management Reforms to the...

    Office of Environmental Management (EM)

    Moniz to Present Project Management Reforms to the National Academy of Public Administration Secretary Moniz to Present Project Management Reforms to the National Academy of Public...

  16. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT,...

  17. Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements...

  18. Secretary Moniz's Remarks on Project Management Reform at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Reform at the National Academy of Public Administration -- As Delivered Secretary Moniz's Remarks on Project Management Reform at the National Academy of Public...

  19. Design, Modeling, and Validation of a Flame Reformer for LNT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration Design, Modeling, and Validation of a Flame Reformer for LNT External Bypass Regeneration...

  20. Before the House Oversight and Government Reform Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oversight and Government Reform Subcommittee on Government Management, Organization, and Procurement Before the House Oversight and Government Reform Subcommittee on Government...

  1. Regulatory and Financial Reform of Federal Research Policy: Recommenda...

    Energy Savers [EERE]

    Regulatory and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities Regulatory and Financial Reform of Federal Research...

  2. STEM education reform A public research university imperative!

    E-Print Network [OSTI]

    Sin, Peter

    STEM education reform A public research university imperative! University of Florida A significant education reform initiative for introductory courses. Will these -- and a growing number of other national

  3. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007...

  4. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targets (Presentation) Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming...

  5. Methane and Methanotrophic Bacteria as a Biotechnological Platform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: NewEmerging Pathways...

  6. Scientists detect methane levels three times larger than expected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

  7. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  8. Enabling Informed Adaptation of Reformed Instructional Materials

    E-Print Network [OSTI]

    Elby, Andy

    Enabling Informed Adaptation of Reformed Instructional Materials Rachel E. Scherr and Andrew Elby 20742 USA Abstract. Instructors inevitably need to adapt even the best reform materials to suit instructors, and video clips of students working on the materials. Our materials thus facilitate their own

  9. In Njeri Wamukonya, ed., Electricity Reform

    E-Print Network [OSTI]

    Delaware, University of

    electricity consumption in industrial countries has caused major air pollution problems. In fact, power plantsIn Njeri Wamukonya, ed., Electricity Reform: Social and Environmental Challenges Roskilde, Denmark: UNEP-RISĂ? Centre. Rethinking reform in the electricity sector: Power liberalisation or energy

  10. Methanol Steam Reformer on a Silicon Wafer

    SciTech Connect (OSTI)

    Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

    2004-04-15

    A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

  11. Fuel cell integrated with steam reformer

    DOE Patents [OSTI]

    Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  12. HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS

    SciTech Connect (OSTI)

    Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

    2003-08-24

    Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

  13. Methane Hydrate Advisory Committee Meeting

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof EnergyPresentation:DaisStatesEMCHIEFMeltingMethane

  14. Coalbed Methane (CBM) is natural

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof the CleanClient educationCoalbed Methane

  15. "Reform" or "Opening"? Reform of China's State-Owned Enterprises and WTO Accession - The Dilemma of Applying GATT to Marketing Economies

    E-Print Network [OSTI]

    Blumental, David

    1998-01-01

    China's Assurances on Reform Please U.S. , AsIAN WALL ST.REFORM" OR "OPENING"?REFORM OF CHINA'S STATE-OWNED ENTERPRISES AND WTO

  16. Closing the Gaps in the Budgets of Methane and Nitrous Oxide

    SciTech Connect (OSTI)

    Khalil, Aslam; Rice, Andrew; Rasmussen, Reinhold

    2013-11-22

    Together methane and nitrous oxide contribute almost 40% of the estimated increase in radiative forcing caused by the buildup of greenhouse gases during the last 250 years (IPCC, 2007). These increases are attributed to human activities. Since the emissions of these gases are from biogenic sources and closely associated with living things in the major terrestrial ecosystems of the world, climate change is expected to cause feedbacks that may further increase emissions even from systems normally classified as natural. Our results support the idea that while past increases of methane were driven by direct emissions from human activities, some of these have reached their limits and that the future of methane changes may be determined by feedbacks from warming temperatures. The greatly increased current focus on the arctic and the fate of the carbon frozen in its permafrost is an example of such a feedback that could exceed the direct increases caused by future human activities (Zimov et al. 2006). Our research was aimed at three broad areas to address open questions about the global budgets of methane and nitrous oxide. These areas of inquiry were: The processes by which methane and nitrous oxide are emitted, new sources such as trees and plants, and integration of results to refine the global budgets both at present and of the past decades. For the process studies the main research was to quantify the effect of changes in the ambient temperature on the emissions of methane and nitrous oxide from rice agriculture. Additionally, the emissions of methane and nitrous oxide under present conditions were estimated using the experimental data on how fertilizer applications and water management affect emissions. Rice was chosen for detailed study because it is a prototype system of the wider terrestrial source, its role in methane emissions is well established, it is easy to cultivate and it represents a major anthropogenic source. Here we will discuss the highlights of the results that were obtained.

  17. Methane and methanol oxidation in supercritical water: Chemical kinetics and hydrothermal flame studies

    SciTech Connect (OSTI)

    Steeper, R.R.

    1996-01-01

    Supercritical water oxidation (SCWO) is an emerging technology for the treatment of wastes in the presence of a large concentration of water at conditions above water`s thermodynamic critical point. A high-pressure, optically accessible reaction cell was constructed to investigate the oxidation of methane and methanol in this environment. Experiments were conducted to examine both flame and non-flame oxidation regimes. Optical access enabled the use of normal and shadowgraphy video systems for visualization, and Raman spectroscopy for in situ measurement of species concentrations. Flame experiments were performed by steadily injecting pure oxygen into supercritical mixtures of water and methane or methanol at 270 bar and at temperatures from 390 to 510{degrees}C. The experiments mapped conditions leading to the spontaneous ignition of diffusion flames in supercritical water. Above 470{degrees}C, flames spontaneously ignite in mixtures containing only 6 mole% methane or methanol. This data is relevant to the design and operation of commercial SCWO processes that may be susceptible to inadvertent flame formation. Non-flame oxidation kinetics experiments measured rates of methane oxidation in supercritical water at 270 bar and at temperatures from 390 to 442{degrees}C. The initial methane concentration was nominally 0.15 gmol/L, a level representative of commercial SCWO processes. The observed methane concentration histories were fit to a one-step reaction rate expression indicating a reaction order close to two for methane and zero for oxygen. Experiments were also conducted with varying water concentrations (0 to 8 gmol/L) while temperature and initial reactant concentrations were held constant. The rate of methane oxidation rises steadily with water concentration up to about 5 gmol/L and then abruptly falls off at higher concentrations.

  18. Steam reforming of low-level mixed waste. Final report

    SciTech Connect (OSTI)

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  19. Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2008-08-11

    The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

  20. American Institute of Aeronautics and Astronautics Experimental Evaluation of Methane Fuel Reformation Feasibility

    E-Print Network [OSTI]

    Texas at Arlington, University of

    are presented. The goal is to obtain the high energy density of gaseous hydrogen fuel for combustion while still in the combustion chamber kinetic energy bypass sys- tem. Thus, the high energy density of hydrogen would, the extremely low density of hydrogen results in excessive tankage, thereby causing adverse effects on ve- hicle

  1. SOFC Long Term Operation in Pure Methane by Gradual Internal Reforming S. Georgesa

    E-Print Network [OSTI]

    Boyer, Edmond

    , syngas) or renewable fuels (biogas, waste fuels, bioethanol), is a huge actual challenge whose success

  2. Process for separating nitrogen from methane using microchannel process

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers'(x≤2)Article) |Nuclearand Implications for Test

  3. Process for separating nitrogen from methane using microchannel process

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding accessusers'(x≤2)Article) |Nuclearand Implications for

  4. Integrated hydrocarbon reforming system and controls

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian

    2003-11-04

    A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.

  5. September 25, 2013 AFSCME Continues to Object to Pension Reform;

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    September 25, 2013 AFSCME Continues to Object to Pension Reform; UC Implements Latest Bargaining working conditions and reasonable pension reform. However, AFSCME has rejected UC's proposals. From the start, AFSCME leadership has objected to UC's responsible pension reform -- the kind of reform that

  6. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    SciTech Connect (OSTI)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

    2011-06-01

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

  7. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  8. Internal reforming fuel cell assembly with simplified fuel feed

    DOE Patents [OSTI]

    Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  9. Steam Reforming Technology for Denitration and Immobilization of DOE Tank Wastes

    SciTech Connect (OSTI)

    Mason, J. B.; McKibbin, J.; Ryan, K.; Schmoker, D.

    2003-02-26

    THOR Treatment Technologies, LLC (THOR) is a joint venture formed in June 2002 by Studsvik, Inc. (Studsvik) and Westinghouse Government Environmental Services Company LLC to further develop, market, and deploy Studsvik's patented THORSM non-incineration, steam reforming waste treatment technology. This paper provides an overview of the THORSM steam reforming process as applied to the denitration and conversion of Department of Energy (DOE) tank wastes to an immobilized mineral form. Using the THORSM steam reforming technology to treat nitrate containing tank wastes could significantly benefit the DOE by reducing capital and life-cycle costs, reducing processing and programmatic risks, and positioning the DOE to meet or exceed its stakeholder commitments for tank closure. Specifically, use of the THORSM technology can facilitate processing of up to 75% of tank wastes without the use of vitrification, yielding substantial life-cycle cost savings.

  10. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore »(Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less

  11. Nicholas Barr: USS reform directions Ver. 2 1 26 March 2015 What reform directions for USS?1

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Nicholas Barr: USS reform directions Ver. 2 1 26 March 2015 What reform directions for USS?1 Nicholas Barr2 Summary This note discusses reform of USS as simply as possible (see glossary at end why and how a wider view of de-risking is both feasible and desirable. Some of the reforms of USS

  12. Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet at Supercritical Pressures

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet in laminar jet flames of methane at elevated pressures in a high-pressure combustion chamber, we have MPa, after the laminar methane jet flame had been stabilized on a co-flow circular nozzle-type burner

  13. Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID (flame ionization)

    E-Print Network [OSTI]

    Vallino, Joseph J.

    Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID the methane between the air and water. With the syringe pointing down, eject all the water from the syringe in the syringe We will now move to the GC lab in Starr 332 to measure methane. Repeat the above procedure

  14. Device for cooling and humidifying reformate

    DOE Patents [OSTI]

    Zhao, Jian Lian (Belmont, MA); Northrop, William F. (Ann Arbor, MI)

    2008-04-08

    Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.

  15. Bank Regulation and Mortgage Market Reform

    E-Print Network [OSTI]

    Jaffee, Dwight M.

    2011-01-01

    July 2008. U.S. Treasury/HUD (2011), “Reforming America’sthe recent U.S. Treasury/HUD (2011) White Paper. The Whitepresented in the Treasury/HUD (2011) White paper. I then

  16. Electricity reform abroad and US investment

    SciTech Connect (OSTI)

    1997-10-01

    This report reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom (UK) to illustrate how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries in these countries, which have become the largest targets of U.S. foreign investment in electricity. Two calculations of foreign investment are used. One is the foreign direct investment series produced by the U.S. Department of Commerce. The other is based on transactions in electric utilities of the three countries. The electricity reform and privatization experiences reviewed may offer some insight as to how the U.S. electricity industry might develop as a result of recent domestic reform efforts and deregulation at the state and national levels. 126 refs., 23 figs., 27 tabs.

  17. Copyright Law Reform: Some Achievable Goals 

    E-Print Network [OSTI]

    MacQueen, Hector L

    2007-01-01

    Copyright law reform in the European Union. The chapter discusses possible actions in light of new and amended EU Directives and whether these balances rights' holders and users' interests....

  18. A High-Yield, Liquid-Phase Approach for the Partial Oxidation of Methane to Methanol using SO3 as the Oxidant

    E-Print Network [OSTI]

    Bell, Alexis T.

    A High-Yield, Liquid-Phase Approach for the Partial Oxidation of Methane to Methanol using SO3 approach for producing methanol from methane in a three-step, liquid phase process is reported is hydrolyzed in the presence of an organic solvent, to produce an organic phase con- taining methanol

  19. Techno-Economic Analysis of Bioconversion of Methane into Biofuel and Biochemical (Poster)

    SciTech Connect (OSTI)

    Fei, Q.; Tao, L.; Pienkos, P .T.; Guarnieri, M.; Palou-Rivera, I.

    2014-10-01

    In light of the relatively low price of natural gas and increasing demands of liquid transportation fuels and high-value chemicals, attention has begun to turn to novel biocatalyst for conversion of methane (CH4) into biofuels and biochemicals [1]. A techno-economic analysis (TEA) was performed for an integrated biorefinery process using biological conversion of methane, such as carbon yield, process efficiency, productivity (both lipid and acid), natural gas and other raw material prices, etc. This analysis is aimed to identify research challenges as well provide guidance for technology development.

  20. The Ambiguous Transition: Building State Capacity and Expanding Popular Participation in Venezuela's Agrarian Reform

    E-Print Network [OSTI]

    Page, Tiffany Linton

    2011-01-01

    the Democracy? Crisis and Reform in Venezuela. ” Journal ofLaura. 1997. Agrarian Reform and Class Consciousness inCristóbal. 1978. “Agrarian Reform and the Class Struggle in

  1. The politics of criminal law reform : a comparative analysis of lower court decision-making

    E-Print Network [OSTI]

    Tiede, Lydia Brashear

    2008-01-01

    the Goals of Sentencing Reform. Washington, DC: USSC.1991. “The Sentencing Reform Act of 1984: A Bold Approach to2008. “The Constitutional Reform Act 2005. ” Available at

  2. What Charter Reform Commissions Can Teach Us About a Proposed Constitutional Convention in California

    E-Print Network [OSTI]

    Sonenshein, Raphael

    2010-01-01

    eds. 1995. Constitutional Reform in California. Berkeley:The Reemergence of Municipal Reform. New York: Academy ofin the Los Angeles Charter Reform of 1996-1999. ” In David

  3. Excellence through General Education: The Status of General Education Reform in Chinese Universities

    E-Print Network [OSTI]

    Liao, Xuehong

    2012-01-01

    of General Education Reform in Two Chinese Universities”.of general education reform. Change, 29(4), 18- AssociationGlobalization and educational reforms in Anglo-American

  4. The Political Economy of India’s Fiscal Federal System and its Reform

    E-Print Network [OSTI]

    Rao, M. Govinda; Singh, Nirvikar

    2006-01-01

    Political Economy and Issues for Reform, eds. , SatuIncentives, and Economic Reforms in India, New Delhi: Sageon Indian Economic Reform, June. Musgrave, Richard A. (

  5. The Resurgence of Land Reform Policy and Agrarian Movements in Indonesia

    E-Print Network [OSTI]

    Rachman, Noer Fauzi

    2011-01-01

    2006. Tafsir(an) Land Reform dalam Alur Sejarah Indonesia:Bibingka Strategy in Land Reform Implementation: Autonomous2006a. “Redistributive Land Reform in ‘Public (Forest) Land?

  6. You Must Learn! Hip-Hop Steps Into the Educational Reform Discourse

    E-Print Network [OSTI]

    Allahjah, Yusuf

    2012-01-01

    in School: Afrocentric reform, urban youth & the promise of2005). Standards-Based Reform and Low Performing Schools: AIn F. Hess, Urban School Reform: Lessons From San Diego,

  7. School Reform for Students of Color and English Learners: Leaving Pedagogy Behind

    E-Print Network [OSTI]

    Trujillo, Tina

    2011-01-01

    School Reform for Students of Color and English Learners:non-profit school reform organizations, universities, for-non- profit school reform organizations have proliferated in

  8. The Politics of Revenue-Raising Tax Reform in Latin America

    E-Print Network [OSTI]

    Fairfield, Tasha

    2010-01-01

    George, ed. 1998. “Fiscal Reforms in Low-Income Countries:Markets, and Structural Reform in Latin America. Miami:Imperatives and Tax Reform: Lessons from Postcommunist

  9. Is California Different? State-Specific Risk Adjustment Needs under Health Reform

    E-Print Network [OSTI]

    Fulton, Brent D.; Dow, William H.

    2011-01-01

    Adjustment Needs under Health Reform Brent D. Fulton andinsurance market under reform is the use of risk adjustmentplans. Keywords: health care reform, The Affordable Health

  10. Mayors, Markets and Municipal Reform: The Politics of Water Delivery in Mexico

    E-Print Network [OSTI]

    Herrera, Veronica Maria Sol

    2011-01-01

    Economy of Water Pricing Reforms. Washington, DC: WorldEconomy of Policy Reform. Washington, DC: Institute for2001. “Constructing Reform Coalitions: The Politics of

  11. Reform or Radicalism: Left Social Movements from the Battle of Seattle to Occupy Wall Street

    E-Print Network [OSTI]

    Rowe, James K; Carroll, Myles

    2014-01-01

    abstract antipathy towards ‘tepid reform’ and ‘unrealisticReform or Radicalism: Left Social Movements from the Battledynamism between radical and reform wings drove gains. This

  12. Prospects for Comprehensive Immigration Reform in 2012-2013: Accounting for Trends in Immigration Public Opinion

    E-Print Network [OSTI]

    Abrejano, Marisa

    2013-01-01

    Comprehensive Immigration Reform in 2012-2013: Accountingpromised to make immigration reform a priority in his firstComprehensive Immigration Reform in 2012-2013 Accounting for

  13. Diffusional methane fluxes within continental margin sediments and depositional constraints on formation factor estimates

    E-Print Network [OSTI]

    Berg, Richard D.

    2008-01-01

    Goldberg, E.D. , 1976. Methane production and consumption inanaerobic oxidation of methane. Nature, 407 , 623-626.profiles indicate in situ methane flux from underlying gas

  14. Methane oxidation in the eastern tropical North Pacific Ocean water column

    E-Print Network [OSTI]

    2015-01-01

    PACK ET AL. EASTERN PACIFIC METHANE OXIDATIONA method for measuring methane oxidation rates using low-levels of C-labeled methane and accelerator mass

  15. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEEVEN BEYOND MANURE-ASSOCIATED METHANE EMISSIONS, INDUSTRIAL

  16. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues

    E-Print Network [OSTI]

    2015-01-01

    of thermogenic and biogenic methane. Science 344, 1500-1503.2014c. Clumped isotopes of methane: applications to both lowEmerging topics in marine methane biogeochemistry. Annu.

  17. Marine methane cycle simulations for the period of early global warming

    E-Print Network [OSTI]

    Elliott, S.

    2011-01-01

    aspects of atmospheric methane, Global Biogeochem. Cycles 2,Budeus, Fate of vent derived methane in seawater above theHanfland, Pathways of methane in seawater: Plume spreading

  18. Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources

    E-Print Network [OSTI]

    Kai, FM; Kai, FM; Tyler, SC; Tyler, SC; Randerson, JT; Blake, DR

    2011-01-01

    rate of the atmospheric methane burden. Nature 393, 447–of global tropospheric methane. Geophys. Res. Lett. 33,M. J. in Atmospheric Methane: its Role in the Global

  19. Environmental impacts on the diversity of methane-cycling microbes and their resultant function

    E-Print Network [OSTI]

    Aronson, Emma L; Allison, Steven D; Helliker, Brent R

    2013-01-01

    on methane- consuming microbes in rice field and forestof methane- cycling microbes and their resultant function.diversity of methane-cycling microbes and their resultant

  20. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    E-Print Network [OSTI]

    Green, Michael A.

    2005-01-01

    Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

  1. Methane storage capabilities of diamond analogues

    SciTech Connect (OSTI)

    Haranczyk, M; Lin, LC; Lee, K; Martin, RL; Neaton, JB; Smit, B

    2013-01-01

    Methane can be an alternative fuel for vehicular usage provided that new porous materials are developed for its efficient adsorption-based storage. Herein, we search for materials for this application within the family of diamond analogues. We used density functional theory to investigate structures in which tetrahedral C atoms of diamond are separated by-CC-or-BN-groups, as well as ones involving substitution of tetrahedral C atoms with Si and Ge atoms. The adsorptive and diffusive properties of methane are studied using classical molecular simulations. Our results suggest that the all-carbon structure has the highest volumetric methane uptake of 280 VSTP/V at p = 35 bar and T = 298 K. However, it suffers from limited methane diffusion. Alternatively, the considered Si and Ge-containing analogies have fast diffusive properties but their adsorption is lower, ca. 172-179 VSTP/V, at the same conditions.

  2. Methane Hydrate Advisory Committee (MHAC) Meeting

    Broader source: Energy.gov (indexed) [DOE]

    to establish the resource potential of methane hydrates via a sustained, long-term production test in the Arctic. DFO Gant reminded the Committee that on May 1, the MHAC members...

  3. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  4. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect (OSTI)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

  5. Hydrocarbon Processing`s process design and optimization `96

    SciTech Connect (OSTI)

    NONE

    1996-06-01

    This paper compiles information on hydrocarbon processes, describing the application, objective, economics, commercial installations, and licensor. Processes include: alkylation, ammonia, catalytic reformer, crude fractionator, crude unit, vacuum unit, dehydration, delayed coker, distillation, ethylene furnace, FCCU, polymerization, gas sweetening, hydrocracking, hydrogen, hydrotreating (naphtha, distillate, and resid desulfurization), natural gas processing, olefins, polyethylene terephthalate, refinery, styrene, sulfur recovery, and VCM furnace.

  6. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOE Patents [OSTI]

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  7. Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation

    SciTech Connect (OSTI)

    Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

    2012-05-01

    Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

  8. What product might a renewal of Heavy Ion Fusion development offer that competes with methane microbes and hydrogen HTGRs

    E-Print Network [OSTI]

    2006-01-01

    competes with methane microbes and hydrogen HTGRs? Grantknown. The economics of microbe methane and HTGR hydrogen

  9. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

    SciTech Connect (OSTI)

    Hong, Wei-Li; Torres, Marta E.; Kim, Ji-Hoon; Choi, Jiyoung; Bahk, Jang-Jun

    2014-09-01

    We present a kinetic model based upon pore water data collected from eight sites drilled during the second Ulleung Basin gas hydrate drilling expedition (UBGH2) in 2010. Three sites were drilled at locations where acoustic chimneys were identified in seismic data, and the rest were drilled on non-chimney (i.e. background) environments. Our model, coupled a comprehensive compositional and isotopic data set, is used to illustrate the different biogeochemical processes at play in those two environments, in terms of reactions around the sulfate-methane-transition-zone (SMTZ). Organic matter decomposition is an important process for production of methane, dissolved inorganic carbon (DIC) and consumption of sulfate in the non-chimney sites, whereas anaerobic oxidation of methane (AOM) dominates both carbon and sulfur cycles in the chimney environment. Different sources of methane mediate AOM in the two settings. Internally produced methane through CO? reduction (CR) and methanogenesis fuels AOM in the non-chimney sites, whereas AOM is sustained by methane from external sources in the chimney sites. We also simulate the system evolution from non-chimney to chimney conditions by increasing the bottom methane supply to a non-chimney setting. We show that the higher CH? flux leads to a higher microbial activity of AOM, and more organic matter decomposition through methanogenesis. A higher methanogenesis rate and a smaller CR contribution relative to AOM in the chimney sites is responsible for the isotopically light DIC and heavy methane in this environment, relative to the non-chimney sites.

  10. Feasibility Analysis of Steam Reforming of Biodiesel by-product Glycerol to Make Hydrogen 

    E-Print Network [OSTI]

    Joshi, Manoj

    2009-06-09

    ) reaction where it reacts with excess steam in presence of catalyst to form hydrogen and carbon dioxide. In general, 8 Co/MgO, Co/Al2O3, Ni/MgO is used as catalyst for steam reforming because they are cheaper and easily available. During... hydrogen. This process consists of 850oC reformer, 350oC and 210oC shift reactors for water gas shift reaction, flash tanks, and a separator. It is considered to be the least expensive method. iv At 850oC and 1 atm pressure, glycerol reacts...

  11. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    SciTech Connect (OSTI)

    Burket, P

    2009-02-24

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  12. Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis Oils

    E-Print Network [OSTI]

    and Performance Carbon Deposit Removal and Catalyst Regeneration Management Process Energy Integration Integrated and 7 2007 R. J. Evans, NREL D. M. Steward, NREL #12;Innovation / Overview Biomass pyrolysis produces.31 O2 + 0.26 H2O 0.71 CO2 + 0.96 H2 #12;Key Performance Metrics Catalytic Steam Reforming of Bio

  13. Electricity reform in Chile : lessons for developing countries

    E-Print Network [OSTI]

    Pollitt, Michael G.

    2004-01-01

    Chile was the first country in the world to implement a comprehensive reform of its electricity sector in the recent period. Among developing countries only Argentina has had a comparably comprehensive and successful reform. ...

  14. Promoting Public Policy Reform from Inside and Outside Government

    E-Print Network [OSTI]

    Promoting Public Policy Reform from Inside and Outside Government Sponsored by SF-makers who have had the unique opportunity to fight for social policy reforms from both the inside

  15. The Role of Informatics in Health Care Reform

    E-Print Network [OSTI]

    Rubin, Daniel L.

    The Role of Informatics in Health Care Reform Yueyi I. Liu, MD, PhD, Daniel L. Rubin, MD, MS reform. Informatics is crucial in tackling this challenge. The American Recovery and Reinvestment Act

  16. How Did Health Care Reform in Massachusetts Impact Insurance Premiums?

    E-Print Network [OSTI]

    Graves, John A.

    It is widely recognized that the 2006 Massachusetts health reforms served as a blueprint for national reform under the 2010 Affordable Care Act (ACA). As such, there is interest in using the Massachusetts experience to ...

  17. Voting Systems and Election Reform: What Do Election Officials Think? 

    E-Print Network [OSTI]

    2007-01-01

    This dissertation contains two essays on the effect of welfare reform on child- birth, marriage, and divorce. In the first essay, I exploit the cross state variation in welfare reform implementation to identify its effect on birth rates. The results...

  18. INDIVIDUAL REFORM ELEMENTS .63Average course exam score

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    INDIVIDUAL REFORM ELEMENTS .63Average course exam score .11In class clicker score .02Lecture: · Correlations with effort/curricular elements are positive but not high, indicating no individual course reform

  19. Online appendix for Teacher Pay Reform and Productivity

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    Online appendix for Teacher Pay Reform and Productivity by Sojourner, Mykerezi & West September 26 Figure 1: Effects of P4P-centered HRM reform on reading and math achievement as measured by the MCA

  20. Split-estate negotiations: the case of coal-bed methane

    SciTech Connect (OSTI)

    Hayley H. Chouinard; Christina Steinhoff [Washington State University, WA (United States)

    2008-01-15

    Coal-bed methane is an emerging contributor to the US energy supply. Split estates, where landowners control the surface and the energy companies lease the rights to the underground gas from the federal government, often impede successful negotiations for methane extraction. We provide an extensive form representation of the dynamic game of the negotiation process for subsurface access. We then solve for a set of Nash equilibrium outcomes associated with the split estate negotiations. By examining the optimal offers we can identify methods to improve the likelihood of negotiations that do not break down and result in the gas developer resorting to the use of a bond. We examine how changes in transaction costs or entitlements will affect the outcomes, and support our finds with anecdotal evidence from actual negotiations for coal-bed methane access. 55 refs.

  1. Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project

    SciTech Connect (OSTI)

    Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

    2014-07-01

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered to capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.

  2. Auxiliary reactor for a hydrocarbon reforming system

    DOE Patents [OSTI]

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  3. Thermally integrated staged methanol reformer and method

    DOE Patents [OSTI]

    Skala, Glenn William (Churchville, NY); Hart-Predmore, David James (Rochester, NY); Pettit, William Henry (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY)

    2001-01-01

    A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

  4. Pyrochlore catalysts for hydrocarbon fuel reforming

    DOE Patents [OSTI]

    Berry, David A.; Shekhawat, Dushyant; Haynes, Daniel; Smith, Mark; Spivey, James J.

    2012-08-14

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A2B2-y-zB'yB"zO7-.DELTA., where y>0 and z.gtoreq.0. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H2+CO) for fuel cells, among other uses.

  5. Process for preparing a liquid fuel composition

    DOE Patents [OSTI]

    Singerman, Gary M. (Monroeville, PA)

    1982-03-16

    A process for preparing a liquid fuel composition which comprises liquefying coal, separating a mixture of phenols from said liquefied coal, converting said phenols to the corresponding mixture of anisoles, subjecting at least a portion of the remainder of said liquefied coal to hydrotreatment, subjecting at least a portion of said hydrotreated liquefied coal to reforming to obtain reformate and then combining at least a portion of said anisoles and at least a portion of said reformate to obtain said liquid fuel composition.

  6. Numerical modeling of methane venting from lake sediments

    E-Print Network [OSTI]

    Scandella, Benjamin P. (Benjamin Paul)

    2010-01-01

    The dynamics of methane transport in lake sediments control the release of methane into the water column above, and the portion that reaches the atmosphere may contribute significantly to the greenhouse effect. The observed ...

  7. Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

    E-Print Network [OSTI]

    Texas at Austin, University of

    Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane 1 Funded by Environmental-infrared absorption spectrum of methane at 1665.5nm. · Guided mode design in SOI wafer #12;9 Device Fabrication Steps

  8. Conversion of methane and acetylene into gasoline range hydrocarbons 

    E-Print Network [OSTI]

    Alkhawaldeh, Ammar

    2000-01-01

    Conversion of methane and acetylene to higher molecular weight hydrocarbons over zeolite catalyst (HZSM-5) was studied The reaction between methane and acetylene successfully produced high molecular weight hydrocarbons, such as naphthalene, benzene...

  9. Preliminary relative permeability estimates of methane hydrate-bearing sand

    E-Print Network [OSTI]

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

    2006-01-01

    through methane hydrate-bearing sand. X-ray CT was usedin partially saturated sand, 229th ACS National Meeting, SanOF METHANE HYDRATE- BEARING SAND Yongkoo Seol, Timothy J.

  10. METHANE IN SUBSURFACE: MATHEMATICAL MODELING AND COMPUTATIONAL CHALLENGES

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    hydrates in subsea sediments where the major challenge comes from implemen- tation of solubility, and mod- eling methane hydrate evolution in subsea sediments (MH). Coalbed methane is a form of natural

  11. ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

  12. CHARM COST-EFFECTIVE HIGH-EFFICIENCY ADVANCED REFORMING MODULE FINAL TECHNICAL REPORT

    SciTech Connect (OSTI)

    Pollica, Darryl; Cross, James C; Sharma, Atul; Shi, Yanlong; Clawson, Lawrence; O'Brien, Chris; Gilhooly, Kara; Kim, Changsik; Quet, Pierre-Francois

    2009-09-02

    Background Creation of a hydrogen infrastructure is an important prerequisite of widespread fuel cell commercialization, especially for the automotive market. Hydrogen is an attractive fuel since it offers an opportunity to replace petroleum-based fuels, but hydrogen occurs naturally only in chemical compounds like water or hydrocarbons that must be chemically converted to produce it. While an ultimate goal is to produce hydrogen through renewable energy sources, steam methane reforming (SMR) of natural gas is currently the most economical solution to initiate the transition to a hydrogen economy. Centralized hydrogen generation using large industrial SMR plants is already in place to serve customers. Yet, because of the weight and size of cylinders needed to contain hydrogen gas or liquid, transportation of hydrogen may only be economical for short distances. Consequently, distributed natural gas reforming, which trades off the economies of scale of large plants for simplified delivery logistics, is an attractive alternative that could address immediate problems with the lack of hydrogen infrastructure.

  13. Supported metal catalysts for alcohol/sugar alcohol steam reforming

    SciTech Connect (OSTI)

    Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

    2014-08-21

    Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

  14. Data reconciliation and optimal operation of a catalytic naphtha reformer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Data reconciliation and optimal operation of a catalytic naphtha reformer Tore Lid Statoil Mongstad model of a semiregenerative catalytic naphtha reformer, involving five pseudo components, was presented) developed a more de- tailed model of a semiregenerative catalytic naphtha reformer, involving 35 pseudo

  15. Longevity, Life-cycle Behavior and Pension Reform , Victoria Prowse

    E-Print Network [OSTI]

    Alexandrova, Ivana

    Longevity, Life-cycle Behavior and Pension Reform Peter Haan , Victoria Prowse July 4, 2011 Abstract How can public pension systems be reformed to ensure fiscal stability in the face of increasing and retirement behavior. Keywords: Life Expectancy; Public Pension Reform; Retirement; Employment; Life

  16. Wellcome Trust CONSULTATION RESPONSE Ofqual: A level Reform Consultation

    E-Print Network [OSTI]

    Rambaut, Andrew

    Wellcome Trust CONSULTATION RESPONSE Ofqual: A level Reform Consultation September 2012 1 Ofqual: A Level Reform Consultation Response by the Wellcome Trust September 2012 Key Points National Subject to university. We are therefore pleased to respond to this consultation on reforming A levels. Our comments

  17. The Myth of "Broken Britain": Welfare Reform and the Production

    E-Print Network [OSTI]

    The Myth of "Broken Britain": Welfare Reform and the Production of Ignorance Tom Slater School, dependency) is repeatedly invoked by the architects of welfare reform to manufacture ignorance of alternative. Keywords: agnotology, welfare reform, Broken Society, Big Society, Iain Duncan-Smith, think tanks

  18. Reformation and Revolution in Early Modern England History 418

    E-Print Network [OSTI]

    Fletcher, Robin

    1 Reformation and Revolution in Early Modern England History 418 Consider Resources Primary (Online) Oxford Encyclopedia of the Reformation (Online) Oxford Dictionary of National Biography (Online and reformation B. Look up Historical Figures, Organizations, and Agencies... If you know of a person involved

  19. the triple aim MEETING THE GOAL OF HEALTH REFORM

    E-Print Network [OSTI]

    Chapman, Michael S.

    the triple aim MEETING THE GOAL OF HEALTH REFORM Produced by OHSU Strategic Communications -- emphasizing shared decision-making and coordination between providers -- could influence reform in a big way care. health reform is about getting better health outcomes for our communities, improving access

  20. Introduction In the past two centuries, atmospheric methane

    E-Print Network [OSTI]

    Haak, Hein

    of methane in the atmosphere is controlled by oxidation, mainly in chemical reaction with the hydroxyl by the combination of pre-industrial methane concentration levels from ice cores and bottom-up estimates based important terms in the global methane budget. Anthropogenic source estimates are mainly based on socio

  1. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate

    E-Print Network [OSTI]

    Kennedy, Martin J.

    LETTERS Snowball Earth termination by destabilization of equatorial permafrost methane clathrate-gassing during post-glacial oceanic overturn7 or methane hydrate destabilization8­10 . Here we report the broadest range of oxygen isotope values yet measured in mar- ine sediments (225% to 112%) in methane seeps

  2. ORIGINAL PAPER The influence of plants on atmospheric methane

    E-Print Network [OSTI]

    Minnesota, University of

    ORIGINAL PAPER The influence of plants on atmospheric methane in an agriculture-dominated landscape on atmospheric methane (CH4) in an agriculture-dominated landscape in the Upper Mid- west of the United States role in the landscape-scale CH4 budget. Keywords Methane . Corn . Soybean . Agriculture . Land surface

  3. Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands

    E-Print Network [OSTI]

    Goddard III, William A.

    Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands Jason M. Gonzales, Jonas, California 90089 ReceiVed July 31, 2006 Trends in methane activation have been explored for rhenium complexes proceeds with methane activation through a barrier of less than 35 kcal mol-1 . Study

  4. Carbon and Hydrogen Isotopic Effects in Microbial Methane

    E-Print Network [OSTI]

    Saleska, Scott

    6 Carbon and Hydrogen Isotopic Effects in Microbial Methane from Terrestrial Environments Jeffrey Chanton, Lia Chaser, Paul Glasser,Don Siegel Methane is the ultimate end-product of anaerobic respiration. Methane production via CO2 reduction does not consume CO2. Also, acetate can be written as 2CH20, so Eq. 6

  5. The Production of Non-Methane Hydrocarbons by Marine Plankton

    E-Print Network [OSTI]

    The Production of Non-Methane Hydrocarbons by Marine Plankton Stephanie Lyn Shaw Center for Global://web.mit.edu/cgcs/ Printed on recycled paper #12;1 The Production of Non-Methane Hydrocarbons by Marine Plankton by Stephanie of Non-Methane Hydrocarbons by Marine Plankton by Stephanie Lyn Shaw Submitted to the Department of Earth

  6. Physical Controls on Methane Ebullition from Reservoirs and Lakes

    E-Print Network [OSTI]

    Johnson, Cari

    of methane production and flux in aquatic sediments has important geochemical, geotechnical, and global; Anselmann and Crutzen, 1989; and Reeburgh et al., 1993). Because methane has the potential to con- tributePhysical Controls on Methane Ebullition from Reservoirs and Lakes JENNIFER JOYCE PAUL W. JEWELL

  7. Measurements of Methane Emissions at Natural Gas Production Sites

    E-Print Network [OSTI]

    Lightsey, Glenn

    Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why to estimates based on this work (Gg/yr) Production emissions reported in 2011 greenhouse gas inventory (annual is methane important? The role of methane in the national greenhouse gas inventory · Most recent national

  8. Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the

    E-Print Network [OSTI]

    Toohey, Darin W.

    Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the atmosphere. o Accounts for 20% of methane emissions from human sources. Globally cattle produce about 80 million metric tons of methane annually. o Accounts for 28% of global methane emissions

  9. Navigating the tension between the master narrative of the academy and the counter-narrative of reform: personal case studies from within an engineering education coalition 

    E-Print Network [OSTI]

    Merton, Prudence

    2006-08-16

    attempted to reform undergraduate engineering curricula at six U.S. institutions of higher education. Through analysis of occupational life histories, and data from a larger study of curricular change processes, two dominant social narratives emerged...

  10. Reaction dynamics of atomic chlorine with methane: Importance of methane bending and torsional excitation in controlling reactivity

    E-Print Network [OSTI]

    Reaction dynamics of atomic chlorine with methane: Importance of methane bending and torsional with methane vibrationally excited in trace quantities into low-energy bending and torsional modes­7 and detailed the effect on reactivity of C­H stretch vibrational excitation.5­7 This paper concerns our most

  11. Factors influencing methane distribution in Texas ground water

    SciTech Connect (OSTI)

    Zhang, C.; Grossman, E.L.; Ammerman, J.W. [Texas A and M Univ., College Station, TX (United States)

    1998-01-01

    To determine the factors that influence the distribution of methane in Texas ground water, water samples were collected from 40 wells in east-central and central Texas aquifers. Among the chemical parameters examined, sulfate is most important in controlling methane distribution. Methane occurs in high concentration in east-central Texas only where sulfate concentration is low, supporting the hypothesis that abundant microbial methane production does not begin until sulfate is depleted. Because water samples from central Texas are high in either oxygen or sulfate, methane concentrations are low in these waters. A positive correlation between methane and sulfate in these waters indicates a different, perhaps thermogenic, origin for the trace methane. The {sup 13}C/{sup 12}C ratios of dissolved methane ranged from {minus}80{per_thousand} to {minus}21{per_thousand} in east-central Texas and {minus}41.2{per_thousand} to {minus}8.5{per_thousand} in central Texas. Low values of < {minus}50{per_thousand} in the east-central Texas ground water indicate a microbial origin for methane and are consistent with the observed sulfate-methane relationship; high {sup 13}C/{sup 12}C ratios of > {minus}31{per_thousand} likely result from bacterial methane oxidation. Similarly, methane with high {sup 13}C/{sup 12}C ratios in central Texas may reflect partial oxidation of the methane pool. Overall, water samples from both regions show a positive correlation between sulfate concentration and the {sup 13}C/{sup 12}C ratio of methane, suggesting that methane oxidation may be associated with sulfate reduction in Texas ground water.

  12. Patent Reform: Aligning Reward and Contribution

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    4 Patent Reform: Aligning Reward and Contribution Carl Shapiro, University of California the current U.S. patent system allows patent holders to capture private rewards that exceed their social with the patent system and discourage in- novation by others. Economic efficiency is promoted if rewards to patent

  13. 2, 11971241, 2005 Control of methane

    E-Print Network [OSTI]

    Boyer, Edmond

    Version Interactive Discussion EGU Abstract The North Sea hosts large coal, oil and gas reservoirs of giant sulphide- oxidizing bacteria above patches of black sediments and carbonate crusts, which are exposed 10 to 50 cm above seafloor forming small reefs. These Methane-Derived Au- thigenic Carbonates

  14. Hydroelectric Reservoirs -the Carbon Dioxide and Methane

    E-Print Network [OSTI]

    Fischlin, Andreas

    Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

  15. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  16. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  17. Potential Cost-Effective Opportunities for Methane Emission Abatement

    SciTech Connect (OSTI)

    Warner, Ethan; Steinberg, Daniel; Hodson, Elke; Heath, Garvin

    2015-08-01

    The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted to quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain segments provide the greatest opportunities for low cost abatement.

  18. Hydrocarbon reforming catalyst material and configuration of the same

    DOE Patents [OSTI]

    Singh, Prabhakar (Export, PA); Shockling, Larry A. (Plum Borough, PA); George, Raymond A. (Pittsburgh, PA); Basel, Richard A. (Plub Borough, PA)

    1996-01-01

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

  19. Hydrocarbon reforming catalyst material and configuration of the same

    DOE Patents [OSTI]

    Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

    1996-06-18

    A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

  20. Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel

    SciTech Connect (OSTI)

    Mavila Chathoth, Suresh; He, Lilin; Mamontov, Eugene; Melnichenko, Yuri B

    2012-01-01

    The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

  1. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  2. Deep oxidation of methane on particles derived from YSZ-supported Pd-Pt-(O) coatings synthesized by pulsed filtered cathodic arc

    E-Print Network [OSTI]

    Horwat, D.

    2009-01-01

    2009) Deep oxidation of methane on particles derived fromAbstract Methane conversion tests were performed on Pd, PdOFigure captions Figure 1: Methane conversion a), methane

  3. Thermodynamic properties and diffusion of water + methane binary mixtures

    SciTech Connect (OSTI)

    Shvab, I.; Sadus, Richard J.

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.

  4. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the methane reforming process (for hydrogen production), blowdown from the steam and cooling water systems, and evaporation and drift from the cooling towers. It is assumed that...

  5. Catalytic Reduction of Nitrogen Oxides by Methane over Pd(110) S. M. Vesecky, J. Paul, and D. W. Goodman*

    E-Print Network [OSTI]

    Goodman, Wayne

    the reduction of NOx species and the oxidation of CO and volatile organic compounds (VOC's) produced in mobile involves the selective catalytic reduction (SCR) or NOx with NH3 4 Although this process is efficient concern. If too much methane is oxidized to CO2, the efficiency of the NOx reduction process will suffer

  6. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that anaerobic methane oxidizing (AOM) microorganisms are predominantly found in marine habitats and grow poorly under most laboratory conditions. One path for future research would be to use a small rotary rig to collect samples from deeper soil horizons, possibly adjacent to the coal-bearing horizons that may be more anaerobic.

  7. Non-linear response of carbon dioxide and methane emissions to oxygen availability in a drained histosol

    E-Print Network [OSTI]

    McNicol, Gavin; Silver, Whendee L

    2015-01-01

    Keywords: Soil respiration; methane; carbon dioxide; oxygen;response of carbon dioxide and methane emissions to oxygenof carbon dioxide (CO 2 ) and methane (CH 4 ) greenhouse gas

  8. Medicaid Expansion and the Patient Protection and Affordable Care Act: Lessons and Hopes for Implementation of Healthcare Reform

    E-Print Network [OSTI]

    Kieber-Emmons, Autumn; Bodenheimer, Thomas; Grumbach, Kevin

    2011-01-01

    Coverage under Health Care Reform. UCLA Center for HealthHow Will Health Care Reform Affect Costs and Coverage? – Ex-Implementing Healthcare Reform in California. ” NEJM Epub. (

  9. Effect of bubble size and density on methane conversion to hydrate

    SciTech Connect (OSTI)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  10. Methane production from marine biomass

    SciTech Connect (OSTI)

    Chynoweth, D.P.; Srivastava, V.J.

    1980-01-01

    The overall concept of the giant brown kelp farm and conversion system, the integrated research program engaged in its study, and IGT's work on biogasification process development are discussed. A summary of results to date on anaerobic digestion will be emphasized. (MHR)

  11. Autothermal hydrodesulfurizing reforming method and catalyst

    DOE Patents [OSTI]

    Krumpelt, Michael; Kopasz, John P.; Ahmed, Shabbir; Kao, Richard Li-chih; Randhava, Sarabjit Singh

    2005-11-22

    A method for reforming a sulfur-containing carbonaceous fuel in which the sulfur-containing carbonaceous fuel is mixed with H.sub.2 O and an oxidant, forming a fuel/H.sub.2 O/oxidant mixture. The fuel H.sub.2 O/oxidant mixture is brought into contact with a catalyst composition comprising a dehydrogenation portion, an oxidation portion and a hydrodesulfurization portion, resulting in formation of a hydrogen-containing gas stream.

  12. Self-Diffusion Coefficients of Methane or Ethane Mixtures with Hydrocarbons at High Pressure by NMR

    E-Print Network [OSTI]

    Dysthe, Dag Kristian

    Self-Diffusion Coefficients of Methane or Ethane Mixtures with Hydrocarbons at High Pressure by NMR in homogeneous mixtures of methane + hexane, ethane + hexane, methane + octane, ethane + octan, methane + decane, ethane + decane, and methane + hexane + benzene over the whole concentration range, at 303.2 K and 333

  13. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    SciTech Connect (OSTI)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

  14. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    SciTech Connect (OSTI)

    Mitchell, Jonathan L.

    2012-09-10

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  15. Methane Hydrate Program Annual Report to Congress

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessageFY 2010 Methane Hydrate

  16. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect (OSTI)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  17. Will electricity market reform likely reduce retail rates?

    SciTech Connect (OSTI)

    Woo, C.K.; Zarnikau, Jay

    2009-03-15

    To win public support, proponents for electricity market reform to introduce competition often promise that the post-reform retail rates will be lower than the average embedded cost rates that would have prevailed under the status quo of a regulated monopoly. A simple economic analysis shows that such a promise is unlikely to occur without the critical assumption that the post-reform market has marginal costs below average costs. (author)

  18. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect (OSTI)

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  19. Pyrochem Catalysts for Diesel Fuel Reforming - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Return to Search Pyrochem Catalysts for Diesel Fuel Reforming National Energy Technology...

  20. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Short Contact Time Hydrogen Generator, Wei Wei, GE Global Research Distributed Bio-Oil Reforming, Darlene Steward, National Renewable Energy Laboratory High-Pressure Steam...

  1. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Hydrogen Distributed Reforming Working Group (BILIWG) on October 24, 2006, in Baltimore, Maryland. The Working Group is addressing technical challenges to distributed...

  2. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Arlene Anderson at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  3. Before the House Oversight and Government Reform Subcommittee...

    Broader source: Energy.gov (indexed) [DOE]

    Oversight and Government Reform ubcommittee on Government Management, Organization, and Procurement By: Kathleen Hogan, Deputy Assistant Secretary Office of Energy Efficiency and...

  4. Distributed Reforming of Renewable Liquids via Water Splitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Oxygen Transport Membrane (OTM) (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in...

  5. Bio-Derived Liquids to Hydrogen Distributed Reforming Working...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Purification Working Group (PURIWG) & Hydrogen Production Technical Team Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen Separation...

  6. Coupling of nitrous oxide and methane by global atmospheric chemistry

    E-Print Network [OSTI]

    Prather, MJ; Hsu, J

    2010-01-01

    supported by NSF’s Atmospheric Chemistry program (grant ATM-Methane by Global Atmospheric Chemistry Michael J. Prathergas, through atmospheric chemistry that en- hances the

  7. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"06301989"...

  8. ,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"0...

  9. Microbe-metazoan interactions at Pacific Ocean methane seeps

    E-Print Network [OSTI]

    Thurber, Andrew Reichmann

    2010-01-01

    lipid biomarkers for microbes with chemoautotrophicOF CALIFORNIA, SAN DIEGO Microbe-Metazoan Interactions atxiv xvii xviii Chapter 3. Microbes, Macrofauna, and Methane:

  10. Microbe-Metazoan interactions at Pacific Ocean methane seeps

    E-Print Network [OSTI]

    Thurber, Andrew R

    2010-01-01

    lipid biomarkers for microbes with chemoautotrophicOF CALIFORNIA, SAN DIEGO Microbe-Metazoan Interactions atxiv xvii xviii Chapter 3. Microbes, Macrofauna, and Methane:

  11. Critical Factors Driving the High Volumetric Uptake of Methane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Factors Driving the High Volumetric Uptake of Methane in Cu-3(btc)(2) Previous Next List Hulvey, Zeric; Vlaisavljevich, Bess; Mason, Jarad A.; Tsivion, Ehud; Dougherty,...

  12. Prospects for Comprehensive Immigration Reform in 2012-2013: Accounting for Trends in Immigration Public Opinion

    E-Print Network [OSTI]

    Abrejano, Marisa

    2013-01-01

    Reform in 2012-2013: Accounting for Trends in ImmigrationReform in 2012-2013 Accounting for Trends in ImmigrationReform in 2012-2013 Accounting for Trends in Immigration

  13. Negotiating Education Reform: Teacher Evaluations and Incentives in Chile (1990-2010)

    E-Print Network [OSTI]

    Mizala, Alejandra

    Reforms designed to improve the quality of teaching by reforming personnel practices, such as pay for performance arrangements, usually run into opposition from well-organized teacher unions that can either block reform ...

  14. Statutory Damages in Copyright Law: A Remedy in Need of Reform

    E-Print Network [OSTI]

    Samuelson, Pamela; Wheatland, Tara

    2009-01-01

    consider whether legislative reform of U.S. statutory damagewe consider whether statutory reform might be desirable toTo put our suggestions for reform of U.S. statutory damages

  15. The rules of ruling : charter reform in Los Angeles, 1850-2008

    E-Print Network [OSTI]

    Ingram, James Warren

    2008-01-01

    the Challenges of Charter Reform, Kevin F. McCarthy, Stevenof Los Angeles Charter Reform,” Appendix B of Meetingthe Challenges of Charter Reform, Kevin F. McCarthy, Steven

  16. Californians Newly Eligible for Medi-Cal under Health Care Reform

    E-Print Network [OSTI]

    Pourat, Nadereh; Martinez, Ana E.; Kominski, Gerald F.

    2011-01-01

    for Medi-Cal under Health Care Reform Nadereh Pourat, Ana E.implementation of health care reform by incorporating manyCal under Health Care Reform. Los Angeles, CA: UCLA Center

  17. Modernization and Post-1978 Chinese Educational Reform: Impact on a Migrating Population

    E-Print Network [OSTI]

    Deng, Weiling

    2013-01-01

    upon the new curricular reform in China. Curriculum,A. Park (Eds. ). Education and Reform in China, (pp. 27-43).in Chinese educational reform. Journal of Education Studies,

  18. Managing Multiple Mandates : : Teachers' Practice in the Nexus of Educational Reform

    E-Print Network [OSTI]

    Hasselbrink, Stephanie Lynn

    2014-01-01

    M. B. (1992). Getting reform right: What works and whatfor comprehensive school reform. In G. Orfield & E. H.Facts, not fads, in Title I reform (pp. 111-119). Cambridge,

  19. The Politics of School Reform: A Broader and Bolder Approach for Newark

    E-Print Network [OSTI]

    Noguera, Pedro A.; Wells, Lauren

    2011-01-01

    economy of urban educational reform. New York, NY: TeachersR. F. (2004). School reform from the inside out: Policy,The Politics of School Reform 23 Gonzalez, J. (2010, May

  20. Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells 

    E-Print Network [OSTI]

    West, Margrit Evelyn

    1995-01-01

    Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

  1. Stable carbon and hydrogen isotope measurements on Black Sea water-column methane

    E-Print Network [OSTI]

    Reeburgh, WS; Tyler, SC; Carroll, J

    2006-01-01

    M.A. , Lee, C. , 1994. Methane production during zooplanktonDickens, G.R. , 2003. A methane trigger for global warming?Quinby-Hunt, M.S. , 1994. Methane stability in seawater.

  2. Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions

    E-Print Network [OSTI]

    Holmes, C. D; Prather, M. J; Sovde, O. A; Myhre, G.

    2013-01-01

    in tropospheric ozone and methane; global 3-D model studies,hydroxyl radical and methane life- time from the Atmosphericof meteorology and emissions on methane trends, 1990–2004,

  3. Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations

    E-Print Network [OSTI]

    Kneafsey, T.

    2012-01-01

    S.S.H. , 1987. Kinetics of Methane Hydrate Decomposition,T. J. , et al. (2007), Methane Hydrate Formation andCharting the future of methane hydrate research in the

  4. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    E-Print Network [OSTI]

    Reagan, M.

    2012-01-01

    Potential distribution of methane hydrate in the world'sisotopic evidence for methane hydrate instability duringHendy, L.L. , and R.J. Behl, Methane hydrates in quaternary

  5. Analysis of a direct methane conversion to high molecular weight hydrocarbons 

    E-Print Network [OSTI]

    Al-Ghafran, Moh'd. J.

    2000-01-01

    Methane conversion to heavier hydrocarbons was studied using electrical furnaces and a plasma apparatus. The experiments were performed with pure methane for the electrical furnace experiments while pure methane and additions such as hydrogen...

  6. Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase

    E-Print Network [OSTI]

    Kopp, Daniel Arthur

    2003-01-01

    Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

  7. SUESS ET AL.: SEA FLOOR METHANE HYDRATES AT HYDRATE RIDGE, CASCADIA MARGIN Sea Floor Methane Hydrates at Hydrate Ridge, Cascadia Margin

    E-Print Network [OSTI]

    Goldfinger, Chris

    SUESS ET AL.: SEA FLOOR METHANE HYDRATES AT HYDRATE RIDGE, CASCADIA MARGIN 1 Sea Floor Methane are exposed at the sea floor. A methane-oxidizing bacterial consortium populates the exposures of hydrate; colonies of vent macro-fauna are abundant as well. Discharge of methane from destabilized hydrate

  8. Diffusive Evolution of Gaseous and Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in SeabedHydrate Horizons of Methane in Seabed

    E-Print Network [OSTI]

    Banaji,. Murad

    Diffusive Evolution of Gaseous and Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in SeabedHydrate Horizons of Methane in Seabed Denis S. Goldobin (University of Leicester),Denis S. Goldobin"")) MethaneNetMethaneNet Early Career Workshop Early Career Workshop MiltonMilton KeynesKeynes 2929

  9. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation) Presented at the 2007...

  10. Olefins from High Yield Autothermal Reforming Process - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctober 1996 -Workers'OfficialSanFoot)Oklahoma99Portal

  11. Catalytic Reforming Downstream Processing of Fresh Feed Input

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101 (Million Short6RUBUFFALO PENNELProcess:

  12. Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions

    SciTech Connect (OSTI)

    Huang, J.; Bushe, W.K.

    2006-01-01

    The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

  13. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  14. Presentations from the March 27th - 28th Methane Hydrates Advisory...

    Office of Environmental Management (EM)

    the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate...

  15. 1870 Organometallics 1994,13,1870-1877 Mechanism and Energetics for Dehydrogenation of Methane

    E-Print Network [OSTI]

    Goddard III, William A.

    1870 Organometallics 1994,13,1870-1877 Mechanism and Energetics for Dehydrogenation of Methane also activate CHI. 1. Introduction Becauseof the enormousworldwidereservesof methane (CH4)andthe

  16. Development of Atmospheric Tracer Methods To Measure Methane Emissions from Natural Gas Facilities and Urban Areas

    E-Print Network [OSTI]

    1995-01-01

    an urban area is used with crosswind integrated tracerCWI,) and the average crosswind concen- tration of methane (directly, and the crosswind average methane concentration

  17. Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions

    E-Print Network [OSTI]

    Holmes, C. D; Prather, M. J; Sovde, O. A; Myhre, G.

    2013-01-01

    of present-day and future OH and methane lifetime, Atmos.Chemistry and Physics Future methane, hydroxyl, and theirand emission parameters for future predictions C. D. Holmes

  18. Title: Functioning of wetlands as a source of atmospheric methane: a multi-scale and multi-disciplinary approach

    E-Print Network [OSTI]

    is to determine how climate change affects the interacting processes that determine net CH4 and CO2 emissions from Laboratory Methane (CH4) is an important greenhouse gas, twenty times more potent than CO2 climate-sensitive ecosystems release both CH4 and carbon dioxide (CO2) and it is unknown how these systems

  19. DOE THREE-DIMENSIONAL STRUCTURE AND PHYSICAL PROPERTIES OF A METHANE HYDRATE DEPOSIT AND GAS RESERVOIR, BLAKE RIDGE

    SciTech Connect (OSTI)

    W. Steven Holbrook

    2004-11-11

    This report contains a summary of work conducted and results produced under the auspices of award DE-FC26-00NT40921, ''DOE Three-Dimensional Structure and Physical Properties of a Methane Hydrate Deposit and Gas Reservoir, Blake Ridge.'' This award supported acquisition, processing, and interpretation of two- and three-dimensional seismic reflection data over a large methane hydrate reservoir on the Blake Ridge, offshore South Carolina. The work supported by this project has led to important new conclusions regarding (1) the use of seismic reflection data to directly detect methane hydrate, (2) the migration and possible escape of free gas through the hydrate stability zone, and (3) the mechanical controls on the maximum thickness of the free gas zone and gas escape.

  20. Detection and Production of Methane Hydrate

    SciTech Connect (OSTI)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation.

  1. Coke profile and effect on methane/ethylene conversion process 

    E-Print Network [OSTI]

    Al-Solami, Bandar

    2002-01-01

    experiment data on product flow rate, reactor temperature, and product distribution were collected. And at the end of each run, the amount of coke deposited on the catalyst was measured. Hydrogen concentration in the product distribution decreased as a...

  2. Electricity reform in developing and transition countries: A reappraisal

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Electricity reform in developing and transition countries: A reappraisal J.H. Williams, R. Ghanadan-3050, USA Abstract Since about 1990, many developing and transition countries have undertaken market-oriented reforms in their electric power sectors. Despite the widespread adoption of a standard policy model

  3. ISSN 1745-9648 Electricity Sector Reform in Greece

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Electricity Sector Reform in Greece by Ekaterini Iliadou Lawyer - Legal Department of the electricity market reform in Greece which started in 2001 and is still developing slowly. This is related to the persisting dominance of the incumbent company and the specificities of the electricity sector of Greece

  4. Electricity Reform Abroad and U.S. Investment

    Reports and Publications (EIA)

    1997-01-01

    Reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom in an attempt to better understand how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries of Argentina, Australia, and the United Kingdom.

  5. Oxidative Reforming of Biodiesel Over Molybdenum (IV) Oxide

    E-Print Network [OSTI]

    Collins, Gary S.

    molybdenum dioxide displays excellent behavior as catalytic material for the oxidative reforming of bothOxidative Reforming of Biodiesel Over Molybdenum (IV) Oxide Jessica Whalen, Oscar Marin Flores, Su candidate as an effective catalyst for biodiesel. Few papers have been published on the topic of catalytic

  6. Methane Stakeholder Roundtables | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing Swimming PoolCommercial IndustrialDepartment of68Methane

  7. Kentucky Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReservesReserves (BillionCoalbed Methane

  8. File:Methane.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA JumpGmbHFerris State UniversityMethane.pdf Jump

  9. MethaneHydrateRD_FC.indd

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Methane Hydrate Program Annual Report to Congress

  10. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  11. Homogeneous Catalysis Selective Oxidation of Methane to Methanol

    E-Print Network [OSTI]

    Goddard III, William A.

    Homogeneous Catalysis Selective Oxidation of Methane to Methanol Catalyzed, with CŔH Activation (generated by dissolution[6] of Au2O3) react with methane at 1808C to selectively generate methanol (as a mixture of the ester and methanol) in high yield (Table 1, entries 1 and 2). As expected, the irreversible

  12. Engineering Methane is a major component of shale gas. Recent

    E-Print Network [OSTI]

    Chemical Engineering Methane is a major component of shale gas. Recent oversupply of shale gas has 30% of electricity from natural and shale gas, increasing from 15% in 2010. US chemical industries have begun using ethane from shale gas as a feedstock. The low methane price is expected to push its

  13. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hong, Wei-Li; Torres, Marta E.; Kim, Ji-Hoon; Choi, Jiyoung; Bahk, Jang-Jun

    2014-09-01

    We present a kinetic model based upon pore water data collected from eight sites drilled during the second Ulleung Basin gas hydrate drilling expedition (UBGH2) in 2010. Three sites were drilled at locations where acoustic chimneys were identified in seismic data, and the rest were drilled on non-chimney (i.e. background) environments. Our model, coupled a comprehensive compositional and isotopic data set, is used to illustrate the different biogeochemical processes at play in those two environments, in terms of reactions around the sulfate-methane-transition-zone (SMTZ). Organic matter decomposition is an important process for production of methane, dissolved inorganic carbon (DIC) and consumptionmore »of sulfate in the non-chimney sites, whereas anaerobic oxidation of methane (AOM) dominates both carbon and sulfur cycles in the chimney environment. Different sources of methane mediate AOM in the two settings. Internally produced methane through CO? reduction (CR) and methanogenesis fuels AOM in the non-chimney sites, whereas AOM is sustained by methane from external sources in the chimney sites. We also simulate the system evolution from non-chimney to chimney conditions by increasing the bottom methane supply to a non-chimney setting. We show that the higher CH? flux leads to a higher microbial activity of AOM, and more organic matter decomposition through methanogenesis. A higher methanogenesis rate and a smaller CR contribution relative to AOM in the chimney sites is responsible for the isotopically light DIC and heavy methane in this environment, relative to the non-chimney sites.« less

  14. Monte Carlo model for electron degradation in methane

    E-Print Network [OSTI]

    Bhardwaj, Anil

    2015-01-01

    We present a Monte Carlo model for degradation of 1-10,000 eV electrons in an atmosphere of methane. The electron impact cross sections for CH4 are compiled and analytical representations of these cross sections are used as input to the model.model.Yield spectra, which provides information about the number of inelastic events that have taken place in each energy bin, is used to calculate the yield (or population) of various inelastic processes. The numerical yield spectra, obtained from the Monte Carlo simulations, is represented analytically, thus generating the Analytical Yield Spectra (AYS). AYS is employed to obtain the mean energy per ion pair and efficiencies of various inelastic processes.Mean energy per ion pair for neutral CH4 is found to be 26 (27.8) eV at 10 (0.1) keV. Efficiency calculation showed that ionization is the dominant process at energies >50 eV, for which more than 50% of the incident electron energy is used. Above 25 eV, dissociation has an efficiency of 27%. Below 10 eV, vibrational e...

  15. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    SciTech Connect (OSTI)

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Grundy, W. M.; Romanishin, W.; Vilas, F. E-mail: David.Cornelison@nau.ed E-mail: wjr@nhn.ou.ed

    2010-12-10

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

  16. Separation process using microchannel technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Dublin, OH); Perry, Steven T. (Galloway, OH); Arora, Ravi (Dublin, OH); Qiu, Dongming (Bothell, WA); Lamont, Michael Jay (Hilliard, OH); Burwell, Deanna (Cleveland Heights, OH); Dritz, Terence Andrew (Worthington, OH); McDaniel, Jeffrey S. (Columbus, OH); Rogers, Jr.; William A. (Marysville, OH); Silva, Laura J. (Dublin, OH); Weidert, Daniel J. (Lewis Center, OH); Simmons, Wayne W. (Dublin, OH); Chadwell, G. Bradley (Reynoldsburg, OH)

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  17. Solar thermal hydrogen production process: Final report, January 1978-December 1982

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    Under sponsorship by the United States Department of Energy, Westinghouse Advanced Energy-Systems Division has investigated the potential for using solar thermal energy to split water into hydrogen and oxygen. A hybrid thermochemical/electrochemical process, known as the Sulfur Cycle, has been the focus of these investigations. Process studies have indicated that, with adequate and ongoing research and development, the Sulfur Cycle can be effectively driven with solar heat. Also, economic analyses have indicated that the cycle has the potential to produce hydrogen in economic competitiveness with conventional methods (e.g. methane/steam reforming) by the turn of the century. A first generation developmental system has been defined along with its critical components, i.e. those components that need substantial engineering development. Designs for those high temperature components that concentrate, vaporize and decompose the process circulating fluid, sulfuric acid, have been prepared. Extensive experimental investigations have been conducted with regard to the selection of construction materials for these components. From these experiments, which included materials endurance tests for corrosion resistance for periods up to 6000 hours, promising materials and catalysts have been identified.

  18. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect (OSTI)

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  19. Phase Equilibria Studies in Water-Methane System: Structural Memory-Effect of Water On Hydrate Re-Formation 

    E-Print Network [OSTI]

    Kim, Brice Yoonshik

    2014-12-08

    of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Ibrahim Yucel Akkutlu Committee Members, Maria Antonieta Barrufet Marcelo-Javier Sanchez Head of Department, Alfred Daniel Hill December 2014 Major Subject: Petroleum...

  20. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    SciTech Connect (OSTI)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

  1. Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)

    SciTech Connect (OSTI)

    Ian MacDonald

    2011-05-31

    A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation, respectively. Based on the contemporaneous wind speeds at this site, contemporary estimates of the diffusive fluxes from the mixed layer to the atmosphere for methane, ethane, and propane are 26.5, 2.10, and 2.78 {micro}mol/m{sup 2}d, respectively. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 ppm and 2.40 ppm during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Considering that the majority of seeps in the GOM are deep (>500 m), elevated CH{sub 4} concentrations in near-surface waters resulting from bubble-mediated CH4 transport in the water column are expected to be widespread in the Gulf of Mexico.

  2. Fuel Cell Distributed Power Package Unit: Fuel Processing Based On

    E-Print Network [OSTI]

    have been metAll milestones have been met #12;4 Autothermal Cyclic Reforming for PEM Fuel Cell CH4 + H2Fuel Cell Distributed Power Package Unit: Fuel Processing Based On Autothermal Cyclic Reforming-2000) Bread-Board Fuel Processor Development DOE (2001-3) Integrated Fuel Processor Development CEC/ARB (2002

  3. Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO2

    SciTech Connect (OSTI)

    Miller, Duane D.; Siriwardane, Ranjani

    2013-08-01

    Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion that produces sequestration-ready CO{sub 2} stream, reducing the energy penalty of CO{sub 2} separation from flue gases. An effective oxygen carrier for CLC will readily react with the fuel gas and will be reoxidized upon contact with oxygen. This study investigated the development of a CeO{sub 2}-promoted Fe{sub 2}O{sub 3}?hematite oxygen carrier suitable for the methane CLC process. Composition of CeO{sub 2} is between 5 and 25 wt % and is lower than what is generally used for supports in Fe{sub 2}O{sub 3} carrier preparations. The incorporation of CeO{sub 2} to the natural ore hematite strongly modifies the reduction behavior in comparison to that of CeO{sub 2} and hematite alone. Temperature-programmed reaction studies revealed that the addition of even 5 wt % CeO{sub 2} enhances the reaction capacity of the Fe{sub 2}O{sub 3} oxygen carrier by promoting the decomposition and partial oxidation of methane. Fixed-bed reactor data showed that the 5 wt % cerium oxides with 95 wt % iron oxide produce 2 times as much carbon dioxide in comparison to the sum of carbon dioxide produced when the oxides were tested separately. This effect is likely due to the reaction of CeO{sub 2} with methane forming intermediates, which are reactive for extracting oxygen from Fe{sub 2}O{sub 3} at a considerably faster rate than the rate of the direct reaction of Fe{sub 2}O{sub 3} with methane. These studies reveal that 5 wt % CeO{sub 2}/Fe{sub 2}O{sub 3} gives stable conversions over 15 reduction/oxidation cycles. Lab-scale reactor studies (pulsed mode) suggest the methane reacts initially with CeO{sub 2} lattice oxygen to form partial oxidation products (CO + H{sub 2}), which continue to react with oxygen from neighboring Fe{sub 2}O{sub 3}, leading to its complete oxidation to form CO{sub 2}. The reduced cerium oxide promotes the methane decomposition reaction to form C + H{sub 2}, which continue to react with Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} to form CO/CO{sub 2} and H{sub 2}O. This mechanism is supported by the characterization studies, which also suggest that the formation of carbonaceous intermediates may affect the reaction rate and selectivity of the oxygen carrier.

  4. HealtH reform and oHsu how we'll change

    E-Print Network [OSTI]

    Chapman, Michael S.

    HealtH reform and oHsu how we'll change Health reform will touch all of oHsu's missions. the coming will have to grow and adapt to meet new challenges. For years, health reform has been a political football for academic health centers like OHSU to truly lead. Reform will touch all of OHSU's missions. Our hospitals

  5. Paper ID #10519 Sustainable Reform of "Introductory Dynamics" Driven by a Community of

    E-Print Network [OSTI]

    West, Matthew

    Paper ID #10519 Sustainable Reform of "Introductory Dynamics" Driven by a Community of Practice;Sustainable Reform of Introductory Dynamics Driven by a Community of Practice Abstract The Strategic to initiate reforms, SIIP aims to improve the sustainability of reforms by forming Communities of Practice (Co

  6. Large-eddy simulation of lean hydrogenemethane turbulent premixed flames in the methane-

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Large-eddy simulation of lean hydrogenemethane turbulent premixed flames in the methane- dominated to available experimental data. The enriched flame has 20% H2 in terms of mole fraction and lies in the methane methane flame in the methane- dominated regime. Copyright Ş 2014, Hydrogen Energy Publications, LLC

  7. Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory-phase transition metal oxide cations can convert methane to methanol. Methane activation by MO+ is discussed reaction are also presented. Introduction The direct oxidation of methane to an easily transportable liquid

  8. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands

    E-Print Network [OSTI]

    A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands M E R R I of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature

  9. Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers

    E-Print Network [OSTI]

    Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers November 2006; published 4 May 2007. [1] Understanding factors that control methane exchange between soils-scale variations in soil methane emissions: (1) consumption of methane by methanotrophic bacteria, (2) quantity

  10. Global inventory of methane clathrate: sensitivity to changes in the deep ocean

    E-Print Network [OSTI]

    Global inventory of methane clathrate: sensitivity to changes in the deep ocean Bruce Buffett of methane clathrate in marine sediments, and use it to predict the sensitivity of the steady-state methane inventory to changes in the deep ocean. The methane inventory is determined by binning the seafloor area

  11. CO2 sequestration by methanogens in activated sludge for methane Nazlina Haiza Mohd Yasin a

    E-Print Network [OSTI]

    Wood, Thomas K.

    CO2 sequestration by methanogens in activated sludge for methane production Nazlina Haiza Mohd WAS have significant potential for converting the greenhouse gas CO2 into the fuel methane. Methane biofuel (methane) or other valuable products using this single carbon atom. Ó 2015 Elsevier Ltd. All

  12. Methane Planets and their Mass-Radius Relation

    E-Print Network [OSTI]

    Helled, Ravit; Vos, Eran

    2015-01-01

    Knowledge of both the mass and radius of an exoplanet allows us to estimate its mean density, and therefore, its composition. Exoplanets seem to fill a very large parameter space in terms of mass and composition, and unlike the solar-system's planets, exoplanets also have intermediate masses (~5-50 M_Earth) with various densities. In this letter, we investigate the behavior of the Mass-Radius relation for methane (CH_4) planets and show that when methane planets are massive enough (M_planet > ~15 M_Earth) the methane can dissociate and lead to a differentiated planet with a carbon core, a methane envelope, and a hydrogen atmosphere. The contribution of a rocky core to the behavior of CH_4 planet is considered as well. We also develop interior models for several detected intermediate-mass planets that could, in principle, be methane/methane-rich planets. The example of methane planets emphasizes the complexity of the Mass-Radius relation and the challenge in inferring the planetary composition uniquely.

  13. Methane coupling by membrane reactor. First quarterly report, 1997

    SciTech Connect (OSTI)

    Ma, Yi Hua

    1997-05-01

    The Mn-W-Na/SiO{sub 2} catalyst was studied by running the methane coupling reactions at different methane to oxygen ratios, temperatures and dilution gas flow rates. For methane to oxygen ratios less than 3, the C{sub 2} yield was almost the same; and C{sub 2} yield began to decrease as the methane to oxygen ratio was further increased. The optimal temperature observed was around 800{degrees}C, where the C{sub 2} yield reached a maximum value. Increasing the dilution gas (helium) flow rate resulted in higher C{sub 2} selectivity; however, after a certain dilution gas flow rate the C{sub 2} yield began to decrease due to a decrease in methane conversion as a result of the reduced contact time. The stability study of the catalyst showed that, after five successive run cycles, the C{sub 2} yield obtained decreased from 24% to 19% at 780 {degrees}C, and methane, oxygen and helium flow rates of 12.2, 4.1, and 44. 3 mm/min, respectively. XRD analysis showed that, after the reaction, the XRD peaks of the cristabolite and Na{sub 2}WO{sub 4} phases in the catalyst became smaller than those in the fresh catalyst, and that at least one new, unidentified phase was observed. Mn-W-Na/SiO{sub 2} catalyst was used as the methane oxidative coupling catalyst in a porous membrane reactor and its performance was compared with a packed reactor operated at similar conditions. Although the membrane reactor showed lower methane conversion at the same reaction conditions, it gave higher C{sub 2} selectivity and C{sub 2} yield at similar methane conversions.

  14. Velocity of sound in solid methane near melting temperatures 

    E-Print Network [OSTI]

    Whitehead, John Martin

    1968-01-01

    . At this point, the bellows valve, E, was closed and the thermocouple pressure elements monitored for an increase in pressure; and if after several hours no increase in pressure was registered, the system was considered thoroughly out-gassed and free of leaks... PPM 0. 5 PPM Figure 3 is a block diagram of the system into which methane was admitted. From the storage cylinder the methane passed through a Hoke-Phoenix gas-ballast high purity regulator. From needle valve, A, the integrity of the methane...

  15. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  16. The electronic spectra and structure of bis(2,2'biphenylene) methane 

    E-Print Network [OSTI]

    Hofer, Owen Charles

    1965-01-01

    Transit ion Sysssetries ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ 12 Theuretioal Calculation uf Fluorene and Bis(2iiR bipheuyleme) Methane . ~ ~ ~ ~ ~ ~ 13 Theoretioal Caloulatiun and Experimental Beta Sf Flugrene and Bis(2 2 bkpMenylsne) Methane ~ ~ ~ ~ . ~ e... Calouiation of Fluorene ~ ~ . ~ ~ ~ . ~ ~ 22 P Matrix of Bis(2~2 biphemyleue) Methane ~ ~ ~ 23 P Matrix of Bis(2, 2 biphewylene) Methane (Continued) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 24 P Matrix of Fluorene ~ ~ 25 Gesssa Matrix of Bis(2, 2 biphenyleue) Methane ~ ~ 26...

  17. The Clean Development Mechanism and Power Sector Reforms in Developing

    E-Print Network [OSTI]

    2), methane (CH4), nitrous oxide (N2O), sulphur hexafluoride (SF6), perfluorocarbons (PCFs inventories · CDM projects must lead to real, measurable and long-term climate change benefits · Eligible CDM

  18. The stability of coerced economic reform : the case of IPR

    E-Print Network [OSTI]

    Wilcox, Trudy

    2005-01-01

    Theories in international relations posit, and empirical evidence has verified, that unwilling states can be compelled by another state or by an international institution to enact domestic policy reform. However, these ...

  19. School Finance Reform: Do Equalized Expenditures Imply Equalized Teacher Salaries?

    E-Print Network [OSTI]

    Streams, Meg; Butler, J.S.; Cowen, Joshua; Fowles, Jacob; Toma, Eugenia T.

    2011-10-01

    school finance and curricular reform is highly salient for understanding teacher labor market dynamics. This study examines the time path of teacher salaries in Appalachian and non-Appalachian Kentucky using a novel teacher-level administrative data set...

  20. The NCAA's Academic Performance Program: Academic Reform or Academic Racism?

    E-Print Network [OSTI]

    Blackman, Phillip C.

    2008-01-01

    Academic Reform or Academic Racism? Phillip C. Blackman* I.or Merely to Promote Racism? ,14 N.Y.L Sch. J. Hum. Rts.and sorrowful continuation of racism in this country, this

  1. High Pressure Ethanol Reforming for Distributed Hydrogen Production

    Broader source: Energy.gov [DOE]

    Presentation by S. Ahmed and S.H.D. Lee at the October 24, 2006 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Kick-Off Meeting.

  2. Before the House Committee on Oversight and Government Reform...

    Broader source: Energy.gov (indexed) [DOE]

    Office of Nuclear Energy Before the House Committee on Oversight and Government Reform Subcommittee on the Interior 4-22-15JohnKotek FT HOGR.pdf More Documents &...

  3. Faculty perceptions of presidential leadership in urban school reform 

    E-Print Network [OSTI]

    McClendon, Rodney Prescott

    2009-06-02

    The study examined urban university faculty members’ perceptions of their presidents’ leadership role in urban school reform. The population for this study consisted of faculty members from five urban research universities. All of the universities...

  4. LAND REFORM IN NAMIBIA: AN ANALYSIS OF MEDIA COVERAGE

    E-Print Network [OSTI]

    Engelbrecht, Petrus J.

    2014-08-31

    in ensuring that land reform is successfully designed and executed. The media informs the public, sets the public and political agenda, holds the government accountable, and serves as a public sphere. This project analyses Namibia's three primary daily...

  5. A survey of methane isotope abundance (14C, 13C, 2H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters

    E-Print Network [OSTI]

    2008-01-01

    Carbon pool analysis of methane hydrate regions in theAerobic production of methane in the sea, Nat. Geosci. , 1(R. Varela (2005), Fossil methane source dominates Cariaco

  6. Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data

    E-Print Network [OSTI]

    Gupta, A.

    2010-01-01

    of predicted and measured methane gas production data within the heterogeneous porous methane hydrate sample.Global Distribution of Methane Hydrate in Ocean Hydrate.

  7. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    E-Print Network [OSTI]

    2013-01-01

    al. : Changes in tropospheric hydroxyl radical and methaneal. : Changes in tropospheric hydroxyl radical and methaneal. : Changes in tropospheric hydroxyl radical and methane

  8. The effects of dissolved methane upon liquid argon scintillation light

    E-Print Network [OSTI]

    Alexander, T

    In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly ...

  9. Diurnal variations in methane emission from rice plants 

    E-Print Network [OSTI]

    Laskowski, Nicholas Aaron

    2004-11-15

    with uncontrolled soil temperature than for plants with controlled soil temperature. Soil temperature at a 5 cm depth explained 46% of the emission variation. Soil temperature affects the source of methane in the soil while transpiration promotes the uptake...

  10. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 93% methane by mass. NETL, 2012. Role of Alternative Energy Sources: Natural Gas Technology Assessment. See ICF, supra note 11 at 78, fn. 40. 39 This report is available...

  11. Biomass Gasification and Methane Digester Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In order to be eligible for the exemption, methane digester equipment must be certified by the Michigan Department of Agriculture (MDA) and the farm must be verified as compliant under the Michig...

  12. New Voices in U.S. Immigration Debates: Latino and Asian American Attitudes Toward the Building Blocks of Comprehensive Immigration Reform

    E-Print Network [OSTI]

    DeSipio, Louis

    2014-01-01

    Louis. 2013. “Immigration Reforms from the Perspective ofthe Target of the Reform: Immigrant Generation and LatinoPreferences on Immigration Reform. ” In Gary P. Freeman,

  13. Media Framing Of U.S. Health Care Reform: A New Era Or Reinforcing Dominant Ideologies Of Health And The Health Care System?

    E-Print Network [OSTI]

    Jaworski, Beth Kristen

    2012-01-01

    values shaping today’s health reform debate. Health Affairs,back on health care reform: “No easy choices. ” Healthopinion and health care reform. Defining Ideas. Retrieved

  14. Hydrogen recovery process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Union City, CA); He, Zhenjie (Fremont, CA); Pinnau, Ingo (Palo Alto, CA)

    2000-01-01

    A treatment process for a hydrogen-containing off-gas stream from a refinery, petrochemical plant or the like. The process includes three separation steps: condensation, membrane separation and hydrocarbon fraction separation. The membrane separation step is characterized in that it is carried out under conditions at which the membrane exhibits a selectivity in favor of methane over hydrogen of at least about 2.5.

  15. Tetrahedral Symmetry for Methane The infrared spectrum of methane shows two absorptions: a bend at 1306 cm-1 and a stretch at 3019 cm-1. Demonstrate that a

    E-Print Network [OSTI]

    Rioux, Frank

    Tetrahedral Symmetry for Methane The infrared spectrum of methane shows two absorptions: a bend symmetry for methane is consistent with this spectroscopic data. Also predict how many Raman active modes methane should have. E C3 C2 S4 A1 : x2 + y2 + z2 A2 C Td 1 1 2 3 3 1 1 1 0 0 1 1 2 1 1 1 1 0 1 1 1 1 0 1

  16. 5616 J. Phys. Chem. 1987, 91, 5616-5623 (parent methane), 105633-27-0;6,109745-47-3;6 (parent methane),

    E-Print Network [OSTI]

    Goddard III, William A.

    5616 J. Phys. Chem. 1987, 91, 5616-5623 (parent methane), 105633-27-0;6,109745-47-3;6 (parent methane), 105633-31-6;7, 109745-48-4;8, 109745-49-5;8 (parent methane), 109745-52-0;9,109745-50-8;9 (parent methane), 105633-32-7;10, 109745-53-1;11, 109745-51-9;1,2,3,4-tetrachlorobenzene,634

  17. Method of determining methane and electrochemical sensor therefor

    DOE Patents [OSTI]

    Zaromb, Solomon (Hinsdale, IL); Otagawa, Takaaki (Westmont, IL); Stetter, Joseph R. (Naperville, IL)

    1986-01-01

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  18. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Dublin, OH); Litt, Robert D. (Westerville, OH); Dongming, Qiu (Dublin, OH); Silva, Laura J. (Plain City, OH); Lamont, Micheal Jay (Plain City, OH); Fanelli, Maddalena (Plain City, OH); Simmons, Wayne W. (Plain city, OH); Perry, Steven (Galloway, OH)

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  19. Direct production of hydrogen and aromatics from methane or natural gas: Review of recent U.S. patents

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar

    2012-03-01

    Since the year 2000, the United States Patent and Trademark Office (USPTO) has granted a dozen patents for inventions related to methane dehydroaromatization processes. One of them was granted to UOP LLC (Des Plaines). It relates to a catalyst composition and preparation method. Two patents were granted to Conoco Phillips Company (Houston, TX). One was aimed at securing a process and operating conditions for methane aromatization. The other was aimed at securing a process that may be integrated with separation of wellhead fluids and blending of the aromatics produced from the gas with the crude. Nine patents were granted to ExxonMobil Chemical Patents Inc. (Houston, TX). Most of these were aimed at securing a dehydroaromatization process where methane-containing feedstock moves counter currently to a particulate catalyst. The coked catalyst is heated or regenerated either in the reactor, by cyclic operation, or in annex equipment, and returned to the reactor. The reactor effluent stream may be separated in its main components and used or recycled as needed. A brief summary of those inventions is presented in this review.

  20. Field Exploration of Methane Seep Near Atqasuk

    SciTech Connect (OSTI)

    Katey Walter, Dennis Witmer, Gwen Holdmann

    2008-12-31

    Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.

  1. From the Frontlines to the Bottom Line: Medical Marijuana, the War on Drugs, and the Drug Policy Reform Movement

    E-Print Network [OSTI]

    Heddleston, Thomas Reed

    2012-01-01

    1993. “Cannabis: Legal Reform, Medicinal Use and HarmBruce 2004. "Drug Policy Reform and Its Detractors: TheRobins. 2003. Cannabis Law Reform in Canada: Is the “Saga of

  2. Identifying mistakes to discipline a New State : the rectification campaigns in China's land reform, 1946-1952

    E-Print Network [OSTI]

    He, Jiangsui

    2008-01-01

    de tudi gaige [The land reform during the war of liberation,Projects…………………………………..84 Chapter Three Land Reform andMistakes: Land Reform in Xigou………………………………87 I. Xigou and

  3. New Orleans Education Reform: A Guide for Cities or a Warning for Communities? (Grassroots Lessons Learned, 2005-2012)

    E-Print Network [OSTI]

    Buras, Kristen L.; Urban South Grassroots Research Collective, Members

    2013-01-01

    Orleans-style education reform: A guide for cities (Lessonspolitics of corporate school reform (pp. 160–188). New York,April 26). New Orleans school reform: Pass or fail? (Askwith

  4. A Family Affair: The Marriage of Elizabeth Cady and Henry Brewster Stanton and the Development of Reform Politics

    E-Print Network [OSTI]

    Frank, Linda Christine

    2012-01-01

    and the Crusade for Social Reform Hamilton, NY: Log Cabinof the splits within the reform-minded congregations. InElizur Wright and the Reform Impulse Kent, Ohio: The Kent

  5. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    Greater focus needed on methane leakage from natural gasAnthropogenic emissions of methane in the United States,A. R. , et al. (2014), Methane leaks from North American

  6. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    E-Print Network [OSTI]

    Rees, E.V.L.

    2012-01-01

    Deep Ocean Field Test of Methane Hydrate Formation from aW.J. , and Mason, D.H. , Methane Hydrate Formation inNatural and Laboratory--Formed Methane Gas Hydrate. American

  7. Electrochemistry of soluble methane monooxygenase on a modified gold electrode : implications for chemical sensing in natural waters

    E-Print Network [OSTI]

    Chuang, Janet Duanping

    2005-01-01

    This work explored the possibility of using the soluble methane monooxygenase (MMO) enzyme, a three-component enzyme which catalyzes the oxygenation of methane and other substrates, to design a methane sensor for use in ...

  8. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    SciTech Connect (OSTI)

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  9. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    SciTech Connect (OSTI)

    Collett, Tim; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta; Myers, Greg; Divins, David; Morell, Margo

    2013-11-30

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these e?orts have been episodic in nature. To further our understanding, these e?orts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and o?ers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  10. Reformer assisted lean NO.sub.x catalyst aftertreatment system and method

    DOE Patents [OSTI]

    Kalyanaraman, Mohan (Media, PA); Park, Paul W. (Peoria, IL); Ragle, Christie S. (Havana, IL)

    2010-06-29

    A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver-containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, a second catalyst composed of a copper-containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range, a hydrocarbon compound for injection into the gas stream upstream of the first catalyst to provide a reductant, and a reformer for reforming a portion of the hydrocarbon compound into H.sub.2 and/or oxygenated hydrocarbon for injection into the gas stream upstream of the first catalyst. The second catalyst is adapted to facilitate the reaction of reducing NOx into N.sub.2, whereby the intermediates are produced via the first catalyst reacting with NOx and hydrocarbons.

  11. Production of Biogas from Wastewaters of Food Processing Industries 

    E-Print Network [OSTI]

    Sax, R. I.; Holtz, M.; Pette, K. C.

    1980-01-01

    An Upflow Anaerobic Sludge Blanket Process used in converting biodegradable, soluble, organic pollutants in industrial wastewaters to a directly-burnable biogas composed mainly of methane has been developed, tested, and commercially applied...

  12. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect (OSTI)

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  13. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect (OSTI)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  14. Identifying and Developing New, Carbon Dioxide Consuming Processes , Sudheer Indalaa

    E-Print Network [OSTI]

    Pike, Ralph W.

    acceptable, catalytic processes have been identified that can use excess high purity carbon dioxide as a raw in the ethylbenzene-to-styrene reaction, and it can be used in dehydrogenation and reforming reactions. The criteria

  15. 49 new T dwarfs identified using methane imaging

    E-Print Network [OSTI]

    Cardoso, C V; Smart, R L; van Spaandonk, L; Baker, D; Smith, L C; Andrei, A H; Bucciarelli, B; Dhital, S; Jones, H R A; Lattanzi, M G; Magazzu, A; Pinfield, D J; Tinney, C G

    2015-01-01

    We present the discovery of 49 new photometrically classified T dwarfs from the combination of large infrared and optical surveys combined with follow-up TNG photometry. We used multi-band infrared and optical photometry from the UKIRT and Sloan Digital Sky Surveys to identify possible brown dwarf candidates, which were then confirmed using methane filter photometry. We have defined a new photometric conversion between CH4s - CH4l colour and spectral type for T4 to T8 brown dwarfs based on a part of the sample that has been followed up using methane photometry and spectroscopy. Using methane differential photometry as a proxy for spectral type for T dwarfs has proved to be a very efficient technique. Of a subset of 45 methane selected brown dwarfs that were observed spectroscopically, 100% were confirmed as T dwarfs. Future deep imaging surveys will produce large samples of faint brown dwarf candidates, for which spectroscopy will not be feasible. When broad wavelength coverage is unavailable, methane imaging...

  16. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  17. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

  18. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

  19. Self-determination and student involvement in standards-based reform

    E-Print Network [OSTI]

    Wehmeyer, Michael L.; Field, Sharon; Doren, Bonnie; Jones, Bonnie; Mason, Christine

    2004-01-01

    of the current educational context. We particularly examine the role of promoting self-determination in light of federal standards-based reform initiatives. We conclude that school reform efforts provide an opportunity to infuse instruction in self...

  20. Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis Heavy-Duty NOx Emissions Control: Reformer-Assisted vs. Plasma-Facilitated Lean NOx Catalysis...