Sample records for methane protection act

  1. Coal Bed Methane Protection Act (Montana)

    Broader source: Energy.gov [DOE]

    The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

  2. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  3. Shore Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Shore Protection Act is the primary legal authority for protection and management of Georgia's shoreline features including sand dunes, beaches, sandbars, and shoals, collectively known as the...

  4. Coastal Marshlands Protection Act (Georgia

    Broader source: Energy.gov [DOE]

    The Coastal Marshlands Protection Act provides the Coastal Resources Division with the authority to protect tidal wetlands. The Coastal Marshlands Protection Act limits certain activities and...

  5. Environmental Protection Act (Illinois)

    Broader source: Energy.gov [DOE]

    This Act states general provisions for the protection of the environment. It also states specific regulations for air, water and land pollution as well as atomic radiation, toxic chemical and oil...

  6. Environmental Protection Act (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Environmental Protection Act is Ontario's key legislation for environmental protection. The act grants the Ministry of the Environment broad powers to deal with the discharge of contaminants...

  7. Wetlands Protection Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act establishes regulations regarding the removal, dredging, filling, and altering of land bordering waters, allowing such activity only with permits and in certain situations. Specific...

  8. Delaware Land Protection Act (Delaware)

    Broader source: Energy.gov [DOE]

    The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the...

  9. Canadian Environmental Protection Act 2012 (Canada)

    Broader source: Energy.gov [DOE]

    The Canadian Environmental Protection Act of 1999 (CEPA 1999) provides the legislative framework for Environment Canada, and outlines the provisions for the prevention and management of risks posed...

  10. Public Power Infrastructure Protection Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute affirms the state's commitment to protecting electric generating facilities and describes prohibited acts and penalties. A special section applies to nuclear power generating facilities.

  11. Data Protection Act 1998 Guidance for

    E-Print Network [OSTI]

    Mottram, Nigel

    Data Protection Act 1998 ­ Guidance for Staff/Students v1.0 v1.0 June 2012 Elaine Forbes, registered in Scotland, number SC015263 #12;Data Protection Act 1998 ­ Guidance for Staff/Students v1.0 Page .................................................................................................... 2 2. Personal Data in the University

  12. Natural Resources Protection Act (Maine)

    Broader source: Energy.gov [DOE]

    Maine's Department of Environmental Protection requires permits for most activities that occur in a protected natural resource area or adjacent to water resources such as rivers or wetlands. An ...

  13. Data Protection The Data Protection Act 1984 has now been replaced by the Data Protection Act 1998,

    E-Print Network [OSTI]

    Data Protection The Data Protection Act 1984 has now been replaced by the Data Protection Act 1998, which is based on the European Data Protection Directive. The 1998 Act applies to both manual for privacy and access by individuals. Information on how to make a request for access to personal data under

  14. Minnesota Peatland Protection Act (Minnesota)

    Broader source: Energy.gov [DOE]

    Certain peatland core areas are designated as scientific and natural areas, and development is restricted. Currently, only two peatlands have been protected: the Pine Creek Peatland in Roseau...

  15. Florida Radiation Protection Act (Florida)

    Broader source: Energy.gov [DOE]

    The Department of Public Health is responsible for administering a statewide radiation protection program. The program is designed to permit development and utilization of sources of radiation for...

  16.  Illinois Groundwater Protection Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the policy of the State of Illinois to restore, protect, and enhance the groundwaters of the State, as a natural and public resource. The State recognizes the essential and pervasive role of...

  17. Ground Water Protection Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The purpose of the Ground Water Protection Act is to provide substantive provisions and funding mechanisms to the extent that funds are available to enable the state to take corrective action at...

  18. Flint River Drought Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The purpose of the Flint River Drought Protection Act is to maintain in-stream flow in times of drought by providing incentives for farmers to take acres out of irrigation. It allows Environmental...

  19. Wekiva River and Wekiva Parkway Protection Acts (Florida)

    Broader source: Energy.gov [DOE]

    The Wekiva River Protection Act directs the Orange, Lake, and Seminole Counties to emphasize the Wekiva River Protection Area in their planning efforts and regulations. Each county’s local...

  20. Environmental Guidance Program Reference Book: Marine Protection, Research, and Sanctuaries Act and Marine Mammal Protection Act. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1988-01-31T23:59:59.000Z

    Two laws governing activities in the marine environment are considered in this Reference Book. The Marine Protection, Research, and Sanctuaries Act (MPRSA, P.L. 92-532) regulates ocean dumping of waste, provides for a research program on ocean dumping, and provides for the designation and regulation of marine sanctuaries. The Marine Mammal Protection Act (MMPA, P.L. 92-522) establishes a federal program to protect and manage marine mammals. The Fishery Conservation and Management Act (FCMA, P.L. 94-265) establishes a program to regulate marine fisheries resources and commercial marine fishermen. Because the Department of Energy (DOE) is not engaged in any activities that could be classified as fishing under FCMA, this Act and its regulations have no implications for the DOE; therefore, no further consideration of this Act is given within this Reference Book. The requirements of the MPRSA and the MMPA are discussed in terms of their implications for the DOE.

  1. Farmland Protection Policy Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFREDJump to:FalseFarmland Protection

  2. Montana Stream Protection Act Webpage | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana:Northeast AsiaAir| OpenUseSupplyProtection Act

  3. Pennsylvania Farmland and Forest Land Assessment Act of 1974- Utilization of Land or Conveyance of Rights for Exploration or Extraction of Gas, Oil or Coal Bed Methane

    Broader source: Energy.gov [DOE]

    This act prescribes the procedure utilization of land or conveyance of rights for exploration or extraction of gas, oil or coal bed methane in agricultural and forest reserve areas.

  4. Oklahoma Whistleblower Act The Oklahoma Whistleblower Act (74 O.S. 840 -2.5) protects employees who

    E-Print Network [OSTI]

    Oklahoma, University of

    Oklahoma Whistleblower Act The Oklahoma Whistleblower Act (74 O.S. §840 -2.5) protects employees of Oklahoma shall prohibit or take disciplinary action against employees for Disclosing a violation of the Oklahoma Constitution or law or a rule promulgated pursuant to law; Reporting a violation of the Oklahoma

  5. an Recovery and Reinvestment Act of 20091 (Recovery Act) provides protections for cert

    E-Print Network [OSTI]

    Tam, Tin-Yau

    ors, subcontractors, grantees, or professional membership organizations acting in the interest ry Act vernmen ctors, sububbbbbcoonttraactctorors,s,s,s,s grantees, or proofofofofofesesesessisisis

  6. Climate Protection and Green Economy Act, Global Warming Solutions Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act requires the Department of Natural Resources to monitor and regulate the emissions of greenhouse gases in the Commonwealth of Massachusetts, to require emissions reporting and to establish...

  7. Bald and Golden Eagle Protection Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBB Umwelttechnik GmbHProtection Act Jump

  8. Federal policy and the endangered species act: the politics, perceptions, and technologies of protecting sea turtles

    E-Print Network [OSTI]

    Risenhoover, Alan Dean

    1990-01-01T23:59:59.000Z

    policies to protect sea turtles with regard to: the established template of protective regulatory policy theory; possible causes and explanations for decisionmaking; the effect of various group perceptions; and the use of a technological solution... personal interviews and extensive review of published literature. The protection of sea turtles conformed to the basic tenets of protective regulatory policy theory. Organizational ideologies and goals, types of protective programs, and differing group...

  9. Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota)

    Broader source: Energy.gov [DOE]

    The State aims to preserve and protect Minnesota rivers and adjacent lands with outstanding scenic, recreational, natural, historical, scientific and similar values. Chapter 103F defines...

  10. The Impact of the Patient Protection and Affordable Care Act on the Health Education Profession as Perceived by the Leaders of the Profession: An Exploratory Study

    E-Print Network [OSTI]

    Gastmyer, Christine 1987-

    2012-11-28T23:59:59.000Z

    The major legislation, the Patient Protection and Affordable Care Act, is attempting to overhaul the health care system in the United States. Health educators need to understand how this health care policy will impact the profession. Forecasted...

  11. The Plant Variety Protection Act: Information for Texas Small Grain Producers

    E-Print Network [OSTI]

    Brown, Steve; Morgan, Gaylon

    2005-01-26T23:59:59.000Z

    . Infringement of the variety owner?s rights under the 1994 PVPA includes: ? Selling, offering, delivering, consigning, exchanging or advertising for sale a protected variety ? Dispensing the variety to another person without inform- ing that person the variety... toward marketing a variety protected under the PVPA potentially can infringe upon a variety own- er?s rights. A farmer may have a third party clean and condi- tion seed without violating the PVAP, so long as seed will be planted on his/her holdings...

  12. Data Protection and the Right to Reputation: Filling the “Gaps” After the Defamation Act 2013

    E-Print Network [OSTI]

    Erdos, David

    2014-01-01T23:59:59.000Z

    non-exhaustive, multi-factorial and illustrative indicia which might be taken into account in this regard.45 Reynolds’ “lack of hard edges in respect both of its reach and its effect”46 led to a rather uncertain legal landscape for the media... 95/46, which was designed to “give substance to and amplify” the Convention’s provisions, essentially mirrored this objective referring specifically to the protection of “the fundamental rights and freedoms of natural persons, and in particular...

  13. MethaneHydrateRD_FC.indd

    Office of Environmental Management (EM)

    source of natural gas in 1983. The Methane Hydrate Research and Development Act of 2000 established DOE as the lead U.S. agency for R&D in this fi eld. Early phases of...

  14. Data Protection Act

    E-Print Network [OSTI]

    Journal:  Wader Study Group Bulletin Attachment Size p00001-p00001.pdf 102.82 KB Issue:  51 Year:  1987 Pages:  1

  15. Is the coal industry worth protecting? an examination of the effects of competing advocacy coalitions on implementation of the Surface Mining Control and Reclamation Act (SMCRA) of 1977

    E-Print Network [OSTI]

    Pennington, Michael Sean

    2008-10-10T23:59:59.000Z

    . Their argument centered on the belief that the surface mining of coal had a large impact on interstate commerce, and as such a strong national policy was needed to level the playing field among coal industries in different states. Clearly this position... IS THE COAL INDUSTRY WORTH PROTECTING? AN EXAMINATION OF THE EFFECTS OF COMPETING ADVOCACY COALITIONS ON IMPLEMENTATION OF THE SURFACE MINING CONTROL AND RECLAMATION ACT (SMCRA) OF 1977 A Dissertation by MICHAEL SEAN PENNINGTON...

  16. Fire Protection Program Metrics

    Broader source: Energy.gov [DOE]

    Presenter: Perry E. D ’Antonio, P.E., Acting Sr. Manager, Fire Protection - Sandia National Laboratories

  17. DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES

    SciTech Connect (OSTI)

    J. Daniel Arthur

    2003-04-01T23:59:59.000Z

    During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

  18. Water Quality Act (Montana)

    Broader source: Energy.gov [DOE]

    The Water Quality Act establishes water conservation and protection, as well as the prevention, abatement, and control of water pollution, as the policy of the state of Montana. The Act establishes...

  19. Protection 1 Protection 1

    E-Print Network [OSTI]

    Lampson, Butler W.

    Protection 1 Protection 1 Butler W. Lampson Xerox Corporation Palo Alto, California Abstract is a malicious act or accident that crashes the system--- this might be considered the ultimate degradation. 1, p 437. It was reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), p 18. This version

  20. Protection 1 Protection1

    E-Print Network [OSTI]

    Lampson, Butler W.

    Protection 1 Protection1 Butler W. Lampson Xerox Corporation Palo Alto, California Abstract is a malicious act or accident that crashes the system-- this might be considered the ultimate degradation. 1, p 437. It was reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), p 18. This version

  1. Compliance with the Clean Air Act Title VI Stratospheric Ozone Protection Program requirements at U.S. DOE Oak Ridge Reservation Facilities

    SciTech Connect (OSTI)

    Humphreys, M.P.; Atkins, E.M.

    1999-07-01T23:59:59.000Z

    The Title VI Stratospheric Ozone Protection Program of the Clean Air Act (CAA) requires promulgation of regulations to reduce and prevent damage to the earth's protective ozone layer. Regulations pursuant to Title VI of the CAA are promulgated in the Code of Federal Regulations (CFR) at Title 40 CFR, Part 822. The regulations include ambitious production phaseout schedules for ozone depleting substances (ODS) including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), halons, carbon tetrachloride, and methyl chloroform under 40 CFR 82, Subpart A. The regulations also include requirements for recycling and emissions reduction during the servicing of refrigeration equipment and technician certification requirements under Subpart F; provisions for servicing of motor vehicle air conditioners under Subpart B; a ban on nonessential products containing Class 1 ODS under Subpart C; restrictions on Federal procurement of ODS under Subpart D; labeling of products using ODS under Subpart E; and the Significant New Alternatives Policy Program under Subpart G. This paper will provide details of initiatives undertaken at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title VI Stratospheric Ozone Protection Program. The Stratospheric Ozone Protection Plans include internal DOE requirements for: (1) maintenance of ODS inventories; (2) ODS procurement practices; (3) servicing of refrigeration and air conditioning equipment; (4) required equipment modifications or replacement; (5) technician certification training; (6) labeling of products containing ODS; (7) substitution of chlorinated solvents; and (8) replacement of halon fire protection systems. The plans also require establishment of administrative control systems which assure that compliance is achieved and maintained as the regulations continue to develop and become effective.

  2. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  3. Methane Hydrate Program

    Office of Environmental Management (EM)

    Biofilms in Fracture-Dominated Sediment that Anaerobically Oxidize Methane. Applied and Environmental Microbiology, 77, 7 pp. Brunner, C., Ingram, W., Meyers, S.,...

  4. Methane Digester Loan Program

    Broader source: Energy.gov [DOE]

    Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by...

  5. RMOTC - News - Methane Test 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy (DOE), Los Alamos National Laboratory (LANL) and Chevron Corporation. The test was a methane controlled-release experiment and was designed to measure methane...

  6. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24T23:59:59.000Z

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  7. Safety of Dams and Reservoirs Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act regulates dams and associated reservoirs to protect health and public safety and minimize adverse consequences associated with potential dam failure. The act describes the responsibilities...

  8. New Health Insurance Marketplace Coverage Options and Your Health Coverage Key parts of the Patient Protection and Affordable Care Act, also known as the health care reform law, go into effect January 1, 2014. When this

    E-Print Network [OSTI]

    Protection and Affordable Care Act, also known as the health care reform law, go into effect January 1, 2014 by the health care reform law (i.e., the plan's share of the total allowed benefit costs covered by the planNew Health Insurance Marketplace Coverage Options and Your Health Coverage Key parts of the Patient

  9. DOE National Environmental Policy Act Implementing Procedures...

    Office of Environmental Management (EM)

    species or their habitat; and Federally-protected marine mammals and Essential Fish Habitat (Marine Mammals Protection Act; Magnuson-Stevens Fishery Conservation and...

  10. Forest Conservation Act (Maryland)

    Broader source: Energy.gov [DOE]

    The main purpose of Maryland's Forest Conservation Act is to minimize the loss of Maryland's forest resources during land development by making the identification and protection of forests and...

  11. Massachusetts Clean Waters Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act establishes a Division of Water Pollution Control within the Massachusetts Department of Environmental Protection. The Division is responsible for establishing a program for the prevention...

  12. Hazardous Sites Cleanup Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste...

  13. Massachusetts Rivers Protection Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    The law creates a 200-foot riverfront area that extends on both sides of rivers and streams. The riverfront area is 25 feet in the following municipalities: Boston, Brockton, Cambridge, Chelsea,...

  14. Wellhead Protection Area Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This section regulates activities which can occur on or below the land surface of the area surrounding a wellhead. The purpose of these regulations is to limit well contamination and preserve...

  15. Arbeidslivets lover Act relating to working environment,

    E-Print Network [OSTI]

    Johansen, Tom Henning

    Arbeidslivets lover Act relating to working environment, working hours and employment protection, etc. (Working Environment Act). as subsequently amended, last by the Act of 14. December 2012 No. 80.notification................................................................... 6 Chapter 3. Working environment measures..................................... 6 Section.3

  16. SOLAR UPGRADE OF METHANE USING DRY REFORMING IN DIRECT CONTACT BUBBLE REACTOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    process of a solar reformer of dry methane reforming was proposed to operate in a temperature range of 600SOLAR UPGRADE OF METHANE USING DRY REFORMING IN DIRECT CONTACT BUBBLE REACTOR Khalid Al-Ali 1 including lower melting point, thermal and chemical stability, acting simultaneously as heat transport

  17. Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase

    E-Print Network [OSTI]

    Baik, Mu-Hyun

    a relatively small transition metal- based active site28,29 to achieve a difficult chemical transformationMechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase Mu-Hyun Baik, Martin 2393 3.1. KIE in Methane Oxidations 2394 3.2. Primary and Secondary KIEs 2396 3.3. Other KIEs 2396 3

  18. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    Biofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, Thomas K; and Ferry, James G (March 2013) Biofuels: Microbially Generated Methane and Hydrogen. In: e

  19. American Recovery and Reinvestment Act Federal Energy Management Program Technical Assistance Project 184 U.S. Customs and Border Protection Data Center, Springfield, Virginia

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-09-30T23:59:59.000Z

    This report documents the findings of an on-site energy audit of the U.S. Customs and Border Protection (CBP) Data Center in Springfield, Virginia.

  20. American Recovery and Reinvestment Act Federal Energy Management Program Technical Assistance Project 184 U.S. Customs and Border Protection Administrative and Laboratory Building, Springfield, Virginia

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-09-30T23:59:59.000Z

    This report documents the findings of an on-site energy audit of the U.S. Customs and Border Protection Laboratory in Springfield, Virginia.

  1. Data Protection Policy Page 1 DATA PROTECTION POLICY

    E-Print Network [OSTI]

    Greenlees, John

    Data Protection Policy Page 1 DATA PROTECTION POLICY POLICY STATEMENT The University intends to fully comply with all requirements of the Data Protection Act 1998 (,,Act) in so far as it affects the Universitys activities. SCOPE This Data Protection Policy: Covers the processing of all personal information

  2. In March 2010, Congress enacted laws, including the Patient Protection and Affordable Care Act and the Health Care and Education Affordability Reconciliation Act of 2010, as well as amendments thereto

    E-Print Network [OSTI]

    Hardy, Christopher R.

    (collectively, Health Care Reform Law) that impose significant new requirements on health plans. The Health Care and the Health Care and Education Affordability Reconciliation Act of 2010, as well as amendments thereto Reform Law requires group health plans that cover children to extend coverage to those children up to age

  3. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25T23:59:59.000Z

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  4. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23T23:59:59.000Z

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  5. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01T23:59:59.000Z

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  6. Lakes and Rivers Improvement Act (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Lakes and Rivers Improvement Act proscribes the management, protection, preservation and use of the waters of the lakes and rivers of Ontario and the land under them. The Act also details...

  7. Texas Clean Air Act (Texas)

    Broader source: Energy.gov [DOE]

    This Act is designed to safeguard the state's air resources from pollution by requiring the control and abatement of air pollution and emissions of air contaminants, consistent with the protection...

  8. IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    it to a gas hydrate formation. In fact, the gas hydrate formation in the remaining free porosity after manuscript, published in "Fifth International Conference on Gas Hydrates (ICGH 5),, Tromdheim : Norway (2005IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE M.L. Zanota(1) , L. Perier

  9. Enhanced Renewable Methane Production System | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

  10. Montana Major Facility Siting Act (Montana)

    Broader source: Energy.gov [DOE]

    The Montana Major Facility Siting Act aims to protect the environment from unreasonable degradation caused by irresponsible siting of electric transmission, pipeline, and geothermal facilities. The...

  11. Massachusetts Endangered Species Act Regulations (Massachusetts)

    Broader source: Energy.gov [DOE]

    The regulations that accompany the Massachusetts Endangered Species Act list three categories of animals and plants in need of protection: endangered, threatened, and species of special concern....

  12. Water Pollution Control Act (West Virginia)

    Broader source: Energy.gov [DOE]

    The Water Pollution Control Act empowers the Division of Water and Waste Management of the West Virginia Department of Environmental Protection to maintain reasonable standards of purity and...

  13. Canada Oil and Gas Operations Act (Canada)

    Broader source: Energy.gov [DOE]

    The purpose of this Act is to promote safety, the protection of the environment, the conservation of oil and gas resources, joint production arrangements, and economically efficient infrastructures.

  14. Water Resources Restoration and Preservation Act (Florida)

    Broader source: Energy.gov [DOE]

    This Act assigns water monitoring duties to the Department of Environmental Protection, and requires the Department to establish Total Daily Maximum Load (TDML) levels for water bodies throughout...

  15. The Metropolitan Surface Water Management Act (Minnesota)

    Broader source: Energy.gov [DOE]

    The Metropolitan Surface Water Management Act aims to protect, preserve, and use natural, surface, and groundwater storage and retention systems; identify and plan for means to improve and protect...

  16. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheat flux ARMMeasurementsMethane Gas Outreach Home Room

  17. American Recovery and Reinvestment Act Federal Energy Management Program Technical Assistance Project 184 U.S. Customs and Border Protection Laboratory, Houston, Texas

    SciTech Connect (OSTI)

    Arends, J.; Sandusky, William F.

    2010-09-30T23:59:59.000Z

    This report documents the findings of an on-site energy audit of the U.S. Customs and Border Protection (CBP) Laboratory in Houston, Texas. The focus of the audit was to identify various no-cost and low-cost energy efficiency opportunities that, once implemented, would reduce electricity and gas consumption and increase the operational efficiency of the building. This audit also provided an opportunity to identify potential capital cost projects that should be considered in the future to acquire additional energy (electric and gas) and water savings to further increase the operational efficiency of the building.

  18. Data Protection Policy Version History Data Protection Policy

    E-Print Network [OSTI]

    Doran, Simon J.

    Data Protection Policy Version History ­ Data Protection Policy Version Author Revisions Made Date and Strategy taken by James Newby to the Executive Board 2009. Information Compliance Unit 1 July 2009 #12;DATA PROTECTION POLICY 1. Introduction 1.1 The Data Protection Act 1998 applies to all personal information about

  19. Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2004-07-01T23:59:59.000Z

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench scale. The project is on schedule and on budget. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement. The system has six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration will be initiated in the next fiscal year. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study.

  20. Recovery Act Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting Microscopy IlluminatesHandbookRODs Sign Act

  1. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15T23:59:59.000Z

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  2. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect (OSTI)

    Deborah Kosmack

    2008-10-31T23:59:59.000Z

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  3. Recovery Act

    Broader source: Energy.gov [DOE]

    Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

  4. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31T23:59:59.000Z

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

  5. Nonequilibrium clumped isotope signals in microbial methane

    E-Print Network [OSTI]

    Wang, David T.

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

  6. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24T23:59:59.000Z

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  7. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D'Este, Joseph R. (Pittsburgh, PA)

    1998-01-01T23:59:59.000Z

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  8. Methane Activation Structural and Mechanistic Requirements for

    E-Print Network [OSTI]

    Iglesia, Enrique

    Methane Activation Structural and Mechanistic Requirements for Methane Activation and Chemical and petrochemical processes and in fuel cells. The strong bonds in CH4 (439 kJmolŔ1 [1] ) and the endothermic nature by BP as part of the Methane Conversion Cooperative Research Program at the University of California

  9. Predicting Methane Production in Dairy Mohammad Ramin

    E-Print Network [OSTI]

    Predicting Methane Production in Dairy Cows Mohammad Ramin Faculty of Natural Resources and Agricultural Sciences Department of Agricultural Research for Northern Sweden Umeĺ Doctoral Thesis Swedish (Karoline) #12;Predicting Methane Production in Dairy cows Abstract Methane is a potent greenhouse gas

  10. Coalbed methane production case histories

    SciTech Connect (OSTI)

    Not Available

    1981-02-01T23:59:59.000Z

    The production of methane gas from coal and coal-bearing rocks is one of the prime objectives of the Department of Energy's Methane Recovery from Coalbeds Project. This report contains brief description of wells that are presently producing gas from coal or coal-bearing rocks. Data from three gob gas production areas in Illinois, an in-mine horizontal borehole degasification, and eleven vertical boreholes are presented. Production charts and electric logs of the producing zones are included for some of the wells. Additional information on dry gas production from the San Juan Basin, Colorado/New Mexico and the Greater Green River Coal Region, Colorado/Wyoming is also included.

  11. Methane adsorption on Devonian shales 

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01T23:59:59.000Z

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  12. Methane adsorption on Devonian shales

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01T23:59:59.000Z

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  13. Reduction of ruminant methane emissions - a win-win-win opportunity for business, development, and the environment

    SciTech Connect (OSTI)

    Livingston, R. [Appropriate Technology International, Washington, DC (United States)

    1997-12-31T23:59:59.000Z

    This paper describes research efforts of The Global Livestock Producers Program (GLPP) in establishing self-sustaining enterprises for cost-effective technologies (i.e., animal nutrition and genetic improvement) and global methane emissions reductions in developing world nations. The US Environmental Protection Agency has funded several studies to examine the possibilities of reducing ruminant methane emissions in India, Tanzania, Bangladesh, and Brazil. The results of the studies showed that: (1) many developing countries` production systems are inefficient, and (2) great potential exists for decreasing global methane emissions through increasing animal productivity. From this effort, the GLPP established livestock development projects in India, Zimbabwe, and Tanzania, and is developing projects for Bangladesh, Nepal, and Brazil. The GLPP has developed a proven methodology for assessing ruminant methane and incorporating methane emissions monitoring into viable projects.

  14. National Historic Preservation Act and Related Legislation. Environmental Guidance Program reference book

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    This document contains information regarding the National Historic Preservation Act and related legislation. The act was designed to protect archaeological and historic resources.

  15. Wetlands protection acts: a closer look 

    E-Print Network [OSTI]

    Linton, Margaret Temple

    1983-01-01T23:59:59.000Z

    , Virginia, Maine, South Carolina, Connecticut, New Jersey, Delaware, Washington, and Oregon. Not Included (usually stated a "reasonable" time period): New York, Michigan, and Minnesota. Table 4 - Appeals Categories Ml MD NH ME IN CA MS C Rl DE NJ MN MA... or cumulative effects (C) that may be caused by the project. Code: L = Length; C = Cumulative. Recommended: Michigan (L, C), Maryland (L), Indiana (L, C. ), Virginia (L, C), and South Carolina (L, C). Project Plannin Several states require or suggest...

  16. Archaeological Resources Protection Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAgua CalienteEnergy InformationResources

  17. Marine Mammal Protection Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend < MHKconvertersourcesource

  18. Archaeological Resource Protection Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County,Delhi (NCT),Arborview CapitalArchRock Corporation79

  19. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

  20. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

    1981-01-01T23:59:59.000Z

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  1. 6, 68416852, 2006 Methane emission

    E-Print Network [OSTI]

    Boyer, Edmond

    is an important greenhouse gas, whose radiative forcing (1750­1998) has been estimated to be 0.48 Wm -2 , 20). The methane bud-15 get (sources and sinks) was believed to be relatively well known, however, recently confusing results were obtained in studies of CH4 soil fluxes in the Venezuelan savanna region (Hao et al

  2. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23T23:59:59.000Z

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  3. Clean Air Act of Montana (Montana)

    Broader source: Energy.gov [DOE]

    The purpose of the Clean Air Act of Montana is to achieve and maintain levels of air quality to "protect human health and safety and, to the greatest degree practicable, prevent injury to plant and...

  4. South Carolina Mining Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The South Carolina Mining Act seeks to offer the greatest practical degree of protection and restoration to usefulness, productivity, and scenic values of all SC lands and waters involved in mining...

  5. Remarks by the Acting Secretary of Energy

    Broader source: Energy.gov [DOE]

    Remarks by Acting Secretary Daniel B. Poneman concerning the importance of integrated safety management for the protection of workers, the public, and the environment and successfully implementing the Department's missions.

  6. South Carolina Scenic Rivers Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The goal of the Scenic Rivers Act is to protect selected rivers or river segments of the State with outstanding scenic, recreational, geologic, botanical, fish, wildlife, historic, or cultural...

  7. Georgia Safe Dams Act of 1978 (Georgia)

    Broader source: Energy.gov [DOE]

    The purpose of the Georgia Safe Dams Act is to provide regulation, inspection and permitting of dams to the State. The Director of the Environmental Protection Division (EPD) is responsible for...

  8. Flathead Basin Commission Act of 1983 (Montana)

    Broader source: Energy.gov [DOE]

    This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

  9. Local Solid Waste Disposal Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the purpose of this Act and the policy of this State to protect the public health and welfare and the quality of the environment by providing local governments with the ability to properly...

  10. Gaines County Solid Waste Management Act (Texas)

    Broader source: Energy.gov [DOE]

    This Act establishes the Gaines County Solid Waste Management District, a governmental body to develop and carry out a regional water quality protection program through solid waste management and...

  11. Nongame and Endangered Species Conservation Act (Nebraska)

    Broader source: Energy.gov [DOE]

    The Game and Parks Commission is responsible for implementing and promulgating regulations to protect species named in the Endangered Species Act, as well as other endangered or threatened species...

  12. Georgia Erosion and Sedimentation Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Erosion and Sedimentation Act (GESA) is designed to protect vegetated buffers. GESA establishes a minimum undisturbed, vegetated buffer of 25 feet for all streams in Georgia (measured...

  13. The Natural Gas Competition and Regulation Act of 1998 (Georgia)

    Broader source: Energy.gov [DOE]

    The Natural Gas Competition and Deregulation Act's stated intent and purposes are to: promote competition; protect the consumer during and after the transition to competition; maintain and...

  14. Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

  15. Florida Air and Water Pollution Control Act (Florida)

    Broader source: Energy.gov [DOE]

    It is the policy of the state of Florida to protect, maintain, and improve the quality of the air and waters of the state. This Act authorizes the Department of Environmental Protection to enact...

  16. The Methane to Markets Coal Mine Methane Subcommittee meeting

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  17. Aquatic Habitat Protection Permit (Saskatchewan, Canada)

    Broader source: Energy.gov [DOE]

    The Environmental Management and Protection Act, 2002 (EMPA) provides for the protection of aquatic habitat and states that a permit is required: to alter the bed, bank or boundary of any water...

  18. The Dermatology Acting Internship

    E-Print Network [OSTI]

    Stephens, John B; Raimer, Sharon S; Jr, Richard F Wagner

    2011-01-01T23:59:59.000Z

    our experience with an acting internship in dermatology, weevolving role of the acting internship in the medical SchoolThe Dermatology Acting Internship John B Stephens MD, Sharon

  19. Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions

    E-Print Network [OSTI]

    Zhang, Youxue

    Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions are suitable for gas hydrate stability [Lunine and Stevenson, 1985]. Enor- mous amounts of methane are stored as gas hydrate and free gas in the pore space of marine sediment [Kvenvolden, 1988; Buffet, 2000

  20. Anaerobic Methane Oxidation in a Landfill-Leachate Plume

    E-Print Network [OSTI]

    Grossman, E. L.; Cifuentes, L. A.; Cozzarelli, I. M.

    2002-01-01T23:59:59.000Z

    , and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (?13C) values suggest anaerobic methane oxidation was occurring within the plume and at its margins. Methane ?13C values increased from about...

  1. Methane productivity and nutrient recovery from manure Henrik B. Mller

    E-Print Network [OSTI]

    Methane productivity and nutrient recovery from manure Henrik B. Mřller Danish Institute This thesis, entitled "Methane productivity and nutrient recovery from manure" is presented in partial of digested and separated products.................... 13 3. Methane productivity and greenhouse gas emissions

  2. The Genetic Privacy Act and commentary

    SciTech Connect (OSTI)

    Annas, G.J.; Glantz, L.H.; Roche, P.A.

    1995-02-28T23:59:59.000Z

    The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. Therefore, to effectively protect genetic privacy unauthorized collection and analysis of individually identifiable DNA must be prohibited. As a result, the premise of the Act is that no stranger should have or control identifiable DNA samples or genetic information about an individual unless that individual specifically authorizes the collection of DNA samples for the purpose of genetic analysis, authorized the creation of that private information, and has access to and control over the dissemination of that information.

  3. Scientists detect methane levels three times larger than expected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

  4. Direct Observation of the Active Center for Methane Dehydroaromatizati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Dehydroaromatization Using an Ultrahigh Field 95Mo NMR Spectroscopy. Abstract: Direct conversion of methane to value-added chemicals remains a challenge from both...

  5. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  6. Freedom of Information Act (FOIA) and Privacy Act Requests |...

    Energy Savers [EERE]

    Freedom of Information Act (FOIA) and Privacy Act Requests Freedom of Information Act (FOIA) and Privacy Act Requests FOIA and Privacy Act Requests FOIA Requests FOIA information...

  7. Recovery Act: State Assistance for Recovery Act Related Electricity...

    Energy Savers [EERE]

    Information Center Recovery Act Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related...

  8. Coalbed Methane | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents CleanSeattle,Coalbed Methane Coalbed

  9. Methane Hydrate | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake Your Next Road TripMentor-ProtegeEnergy »Methane

  10. Methane Credit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <StevensMcClellan,II JumpMepsolarMesilla,Methane Credit Jump

  11. Data Protection Office October 2010

    E-Print Network [OSTI]

    Mottram, Nigel

    Data Protection Office October 2010 AUTHORISATION FORM FOR DATA PROCESSING BY STUDENTS This form should be completed where students are processing personal data for research or study purposes. In order to meet the requirements of the Data Protection Act 1998 and ensure the personal data is being processed

  12. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    University, School of Engineering, Ocean .. Engineel'ing-and nutrition, ocean engineering and methane generation. In

  13. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  14. Water Management Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act regulates and registers water withdrawals in the Commonwealth of Massachusetts to enable effective planning and management of water use and conservation. The Act establishes a Water...

  15. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    E-Print Network [OSTI]

    Green, Michael A.

    2005-01-01T23:59:59.000Z

    Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

  16. High Temperature Solar Splitting of Methane

    E-Print Network [OSTI]

    of Methane to Hydrogen and Carbon Allan Lewandowski (NREL) Alan Weimer (University of Colorado, Boulder) Team Members: CU: Jaimee Dahl, Karen Buechler, Chris Perkins NREL: Carl Bingham, Judy Netter Allan Lewandowski

  17. The role of methane in tropospheric chemistry

    E-Print Network [OSTI]

    Golomb, D.

    1989-01-01T23:59:59.000Z

    While methane is chemically quite inert to reactions with atmospheric molecular species, it does react with atomic species and molecular radicals. Because of its relatively large abundance in the global troposphere and ...

  18. Transient Supersonic Methane-Air Flames

    E-Print Network [OSTI]

    Richards, John L.

    2012-07-16T23:59:59.000Z

    The purpose of this study was to investigate the thermochemical properties of a transient supersonic flame. Creation of the transient flame was controlled by pulsing air in 200 millisecond intervals into a combustor filled with flowing methane...

  19. Marine methane cycle simulations for the period of early global warming

    SciTech Connect (OSTI)

    Elliott, S.; Maltrud, M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2011-01-02T23:59:59.000Z

    Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH{sub 4} distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics.

  20. Privacy Act of 1974; Publication of Compilation of Privacy Act...

    Office of Environmental Management (EM)

    Privacy Act of 1974; Publication of Compilation of Privacy Act Systems of Records Privacy Act of 1974; Publication of Compilation of Privacy Act Systems of Records Privacy Act of...

  1. The Clean Air Act and bonus allowances

    SciTech Connect (OSTI)

    Markey, E.J.; Moorhead, C.J.

    1991-05-15T23:59:59.000Z

    This article discusses how utility companies can benefit in the form of bonus sulfur dioxide allowances from the Environmental Protection Agency by investing in renewable energy sources such as wind and promoting conservation. Topics discussed include the Clean Air Act Amendments, acid rain, energy conservation, renewable energy sources, and the procedure for gaining bonus allowances.

  2. ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

  3. Methane Adsorption and Dissociation and Oxygen Adsorption and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Adsorption and Dissociation and Oxygen Adsorption and Reaction with CO on Pd Nanoparticles on MgO(100) and on Pd(111). Methane Adsorption and Dissociation and Oxygen...

  4. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Broader source: Energy.gov (indexed) [DOE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

  5. Reply to Saba and Orzechowski and Schon: Methane contamination of

    E-Print Network [OSTI]

    Jackson, Robert B.

    , and that the ratios of methane to ethane and propane were different [figure 4b (3)]. Furthermore, the methane present underground gas storage, leading to documented leaks into well water (5). The DEP correspondence they cite

  6. Numerical modeling of methane venting from lake sediments

    E-Print Network [OSTI]

    Scandella, Benjamin P. (Benjamin Paul)

    2010-01-01T23:59:59.000Z

    The dynamics of methane transport in lake sediments control the release of methane into the water column above, and the portion that reaches the atmosphere may contribute significantly to the greenhouse effect. The observed ...

  7. Diurnal variations in methane emission from rice plants

    E-Print Network [OSTI]

    Laskowski, Nicholas Aaron

    2004-11-15T23:59:59.000Z

    A greenhouse study was conducted to investigate the mechanisms causing diurnal variations in methane emission from rice plants (Oryza sativa L.). Methane emission was measured using a closed chamber system on individual rice plants at five stages...

  8. Clean Water Act Section 401 Water Quality Certification: A Water...

    Open Energy Info (EERE)

    Clean Water Act Section 401 Water Quality Certification: A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  9. HIGHER EDUCATION OPPORTUNITY ACT REPORTING University of Delaware

    E-Print Network [OSTI]

    Firestone, Jeremy

    ;HIGHER EDUCATION OPPORTUNITY ACT REPORTING D. Policies on portable electrical appliances, smoking outages of heat). E. Use of extension cords. F. Tampering with or blocking any fire protection equipment

  10. asymptomatic patients act: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key parts of the Patient Protection and Affordable Care Act, also known as the health care reform law, go into effect January 1, 2014. When this Computer Technologies and...

  11. act rcra part: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key parts of the Patient Protection and Affordable Care Act, also known as the health care reform law, go into effect January 1, 2014. When this Computer Technologies and...

  12. Recovery Act Milestones

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29T23:59:59.000Z

    Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

  13. Intergovernmental Personnel Act Assignments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-08-24T23:59:59.000Z

    This Manual implements provisions of the Intergovernmental Personnel Act (IPA) within the Department of Energy (DOE) and establishes requirements, responsibilities, and authority for effecting assignments under the Act. Does not cancel other directives.

  14. Coastal Management Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Coastal Management Act provides enabling authority for the State to prepare and administer a coastal management program. The Act does not establish new regulations or laws; it is designed to...

  15. ACT-ARA

    Energy Science and Technology Software Center (OSTI)

    003092IBMPC00 ACT-ARA: Code System for the Calculation of Changes in Radiological Source Terms with Time   

  16. CFD Modeling of Methane Production from Hydrate-Bearing Reservoir

    SciTech Connect (OSTI)

    Gamwo, I.K.; Myshakin, E.M.; Warzinski, R.P.

    2007-04-01T23:59:59.000Z

    Methane hydrate is being examined as a next-generation energy resource to replace oil and natural gas. The U.S. Geological Survey estimates that methane hydrate may contain more organic carbon the the world's coal, oil, and natural gas combined. To assist in developing this unfamiliar resource, the National Energy Technology Laboratory has undertaken intensive research in understanding the fate of methane hydrate in geological reservoirs. This presentation reports preliminary computational fluid dynamics predictions of methane production from a subsurface reservoir.

  17. SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS

    SciTech Connect (OSTI)

    Klein, J; Jeffrey Holder, J

    2007-07-16T23:59:59.000Z

    Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

  18. Screening tests for improved methane cracking materials

    SciTech Connect (OSTI)

    Klein, J. E.; Hoelder, J. S. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2008-07-15T23:59:59.000Z

    Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{sup R} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 deg.C, 101.3 kPa (760 torr) with a 10 seem feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAESr getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas. (authors)

  19. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, M.S.; Steinberg, M.

    1985-06-19T23:59:59.000Z

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  20. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

    1987-01-01T23:59:59.000Z

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  1. The Production of Non-Methane Hydrocarbons by Marine Plankton

    E-Print Network [OSTI]

    The Production of Non-Methane Hydrocarbons by Marine Plankton Stephanie Lyn Shaw Center for Global://web.mit.edu/cgcs/ Printed on recycled paper #12;1 The Production of Non-Methane Hydrocarbons by Marine Plankton by Stephanie of Non-Methane Hydrocarbons by Marine Plankton by Stephanie Lyn Shaw Submitted to the Department of Earth

  2. Introduction In the past two centuries, atmospheric methane

    E-Print Network [OSTI]

    Haak, Hein

    of methane in the atmosphere is controlled by oxidation, mainly in chemical reaction with the hydroxyl by the combination of pre-industrial methane concentration levels from ice cores and bottom-up estimates based important terms in the global methane budget. Anthropogenic source estimates are mainly based on socio

  3. Measurements of Methane Emissions at Natural Gas Production Sites

    E-Print Network [OSTI]

    Lightsey, Glenn

    Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

  4. A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    oxidation of methane above gas hydrates at Hydrate Ridge, NEsediment from a marine gas hydrate area. Environ. Microbiol.

  5. National Environmental Policy Act compliance guide. Volume II (reference book)

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This document (Volume II of the National Environmental Policy Act Compliance Guide) contains current copies of regulations and guidance from the Council on Environmental Quality, the Department of Energy, the Department of State, and the Environmental Protection Agency, related to compliance with the National Environmental Policy Act of 1969 (NEPA).

  6. Factors influencing methane distribution in Texas ground water

    SciTech Connect (OSTI)

    Zhang, C.; Grossman, E.L.; Ammerman, J.W. [Texas A and M Univ., College Station, TX (United States)

    1998-01-01T23:59:59.000Z

    To determine the factors that influence the distribution of methane in Texas ground water, water samples were collected from 40 wells in east-central and central Texas aquifers. Among the chemical parameters examined, sulfate is most important in controlling methane distribution. Methane occurs in high concentration in east-central Texas only where sulfate concentration is low, supporting the hypothesis that abundant microbial methane production does not begin until sulfate is depleted. Because water samples from central Texas are high in either oxygen or sulfate, methane concentrations are low in these waters. A positive correlation between methane and sulfate in these waters indicates a different, perhaps thermogenic, origin for the trace methane. The {sup 13}C/{sup 12}C ratios of dissolved methane ranged from {minus}80{per_thousand} to {minus}21{per_thousand} in east-central Texas and {minus}41.2{per_thousand} to {minus}8.5{per_thousand} in central Texas. Low values of < {minus}50{per_thousand} in the east-central Texas ground water indicate a microbial origin for methane and are consistent with the observed sulfate-methane relationship; high {sup 13}C/{sup 12}C ratios of > {minus}31{per_thousand} likely result from bacterial methane oxidation. Similarly, methane with high {sup 13}C/{sup 12}C ratios in central Texas may reflect partial oxidation of the methane pool. Overall, water samples from both regions show a positive correlation between sulfate concentration and the {sup 13}C/{sup 12}C ratio of methane, suggesting that methane oxidation may be associated with sulfate reduction in Texas ground water.

  7. Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems

    SciTech Connect (OSTI)

    Komar, C.A. (ed.)

    1980-01-01T23:59:59.000Z

    This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

  8. Technical Note Methane gas migration through geomembranes

    E-Print Network [OSTI]

    coefficient of PVC, LLDPE, and HDPE geomembranes by performing the standard gas transport test (ASTM D1434). The measured methane gas permeability coefficient through a PVC geomembrane is 7.55 3 104 ml(STP).mil/m2.day thicknesses is proposed using the measured permeability coefficients for PVC, LLDPE, and HDPE geomembranes

  9. Methane production from ozonated pulp mill effluent

    SciTech Connect (OSTI)

    Bremmon, C.E.; Jurgensen, M.F.; Patton, J.T.

    1980-07-01T23:59:59.000Z

    A study was made of the production of methane from desugared spent sulfite liquor (SSL) reacted with ozone. The ozonated SSL was fed continuously to three anaerobic fermenters for three months as the sole source of carbon and energy. The fermenters were inoculated with anaerobic bacteria obtained from sewage sludge and acclimated for 1 month in ozonated SSL prior to continuous fermentation. Chemical and biological parameters such as COD, BOD, total sulfur content, redox potential, pH, fatty acid composition, and methane bacteria populations were monitored to determine changes in the SSL during fermentation. Methane production from ozone-treated SSL averaged 1.7 liters/ liter or 17 ml of CH/sub 4/ produced/gram of volatile solids fed. Fatty acis analysis of fermenter effluent indicated a net production of 58 mM/ liter of acetate during ozonated SSL fermentation. This acetic acid production shows future potential for further fermentation by protein-producing yeast. Although the rate of conversion of volatile solids to CH/sub 4/ in this process was not competitive with domestic or agricultural waste digesters, this study did indicate the potential benefits of ozonating organic wastes for increased methane fermentation yields.

  10. 2, 11971241, 2005 Control of methane

    E-Print Network [OSTI]

    Boyer, Edmond

    Version Interactive Discussion EGU Abstract The North Sea hosts large coal, oil and gas reservoirs of giant sulphide- oxidizing bacteria above patches of black sediments and carbonate crusts, which are exposed 10 to 50 cm above seafloor forming small reefs. These Methane-Derived Au- thigenic Carbonates

  11. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15T23:59:59.000Z

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  12. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31T23:59:59.000Z

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  13. Environmental Guidance Program Reference Book: Endangered Species Act and the Fish and Wildlife Coordination Act. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Endangered Species Act and the Fish and Wildlife Coordination Act are major federal statutes designed to protect plant and animal resources from adverse effects due to development projects. Both Acts require consultation with wildlife authorities prior to committing resources to certain types of projects. The purposes and requirements of the two statutes are summarized in the following subsections. Also presented is a list of contacts in the regional and field offices of the US Fish and Wildlife Service.

  14. Methane oxidation over dual redox catalysts

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

    1992-06-01T23:59:59.000Z

    Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C[sub 2] hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C[sub 2] hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe[sup III] or Sn[sup IV], was found to be essential for the selectivity switch from C[sub 2] coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu[sup II](ion exchanged) Fe[sup III](framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La[sub 2]O[sub 3] has been discovered for potentially commercially attractive process for the conversion of methane to C[sub 2] hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C[sub 2] hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

  15. Recovery Act Project Stories

    Broader source: Energy.gov [DOE]

    Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

  16. Energy Monitoring Act (Canada)

    Broader source: Energy.gov [DOE]

    This act requires that every energy enterprise file with the Minister a return setting out statistics and information relating to its ownership and control; financial information; information,...

  17. Wetland Conservation Act (Minnesota)

    Broader source: Energy.gov [DOE]

    This chapter of the Minnesota Administrative Rules implements the Wetland Conservation Act of 1991, setting standards for water preservation, withdrawal, and replacement.

  18. Regulation of methane genes and genome expression

    SciTech Connect (OSTI)

    John N. Reeve

    2009-09-09T23:59:59.000Z

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ?H (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein, designated TFE, that had sequences in common with the eukaryotic general transcription factor TFIIE, stimulated archaeal transcription initiation and that the archaeal TATA-box binding protein (TBP) remained attached to the promoter region whereas the transcription factor TFB dissociated from the template DNA following initiation. DNA sequences that directed the localized assembly of archaeal histones into archaeal nucleosomes were identified, and we established that transcription by an archaeal RNA polymerase was slowed but not blocked by archaeal nucleosomes. We developed a new protocol to purify archaeal RNA polymerases and with this enzyme and additional improvements to the in vitro transcription system, we established the template requirements for archaeal transcription termination, investigated the activities of proteins predicted to be methane gene regulators, and established how TrpY, a novel archaeal regulator of expression of the tryptophan biosynthetic operon functions in M. thermautotrophicus. This also resulted in the discovery that almost all M. thermautotrophicus mutants isolated as spontaneously resistant to 5-methyl tryptophan (5MTR) had mutations in trpY and were therefore 5MTR through de-repressed trp operon expression. This established a very simple, practical procedure to determine and quantify the DNA sequence changes that result from exposure of this Archaeon to any experimental mutagenesis protocol. Following the discovery that the Thermococcus kodakaraensis was amenable to genetic manipulation, we established this technology at OSU and subsequently added plasmid expression, a reporter system and additional genetic selections to the T. kodakaraensis genetic toolbox. We established that transcription and translation are coupled in this Archaeon, and by combining in vitro transcription and in vivo genetics, we documented that both TFB1 and TFB2 support transcription initiation in T. kodakaraensis. We quantified the roles of ribosome binding sequences and alternative initiation codons in translation initiation, established that polarity e

  19. Effect of bubble size and density on methane conversion to hydrate

    SciTech Connect (OSTI)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01T23:59:59.000Z

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  20. Recovery Act State Summaries | Department of Energy

    Energy Savers [EERE]

    Act State Memo Virgin Islands Recovery Act State Memo Washington Recovery Act State Memo West Virginia Recovery Act State Memo Wisconsin Recovery Act State Memo Wyoming Recovery...

  1. Alternative technologies to steam-methane reforming

    SciTech Connect (OSTI)

    Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

    1995-11-01T23:59:59.000Z

    Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

  2. Process for separating nitrogen from methane using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

    2007-07-31T23:59:59.000Z

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  3. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    Establishes requirements for management and operation of the DOE Protective Force (PF), establishes requirements for firearms operations and defines the firearms courses of fire. Cancels: DOE M 473.2-1A DOE M 473.2-2

  4. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-03-07T23:59:59.000Z

    The manual establishes requirements for management and operation of the DOE Protective Force, establishes requirements for firearms operations and defines the firearms courses of fire. Chg 1 dated 3/7/06. DOE M 470.4-3A cancels DOE M 470.4-3, Chg 1, Protective Force, dated 3-7-06, Attachment 2, Contractor Requirement Document (CRD) only (except for Section C). Chg 1, dated 3-7-06, cancels DOE M 470.4-3

  5. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

  6. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

  7. Corrosion protection

    DOE Patents [OSTI]

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27T23:59:59.000Z

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  8. Price-Anderson Amendments Act UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Pennycook, Steve

    Price-Anderson Amendments Act UT-B Contracts Div Dec 2010 Page 1 of 1 paaa-ext-dec10.docx PRICE-ANDERSON AMENDMENTS ACT (December 2010) (a) This Agreement is subject to the Price-Anderson Amendments Act, Section and Radiological Protection Division. (2) The Seller shall report to the Company's Technical Project Officer (TPO

  9. Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase

    E-Print Network [OSTI]

    Kopp, Daniel Arthur

    2003-01-01T23:59:59.000Z

    Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

  10. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    1999-01-11T23:59:59.000Z

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  11. DOE/AMO NG Infrastructure R & D & Methane emissions Mitigation...

    Broader source: Energy.gov (indexed) [DOE]

    and Confidential to NYSEARCHNGA DOEAMO NG INFRASTRUCTURE R & D & METHANE EMISSIONS MITIGATION WORKSHOP November 2014 David Merte & Daphne D'Zurko, NYSEARCHNGA...

  12. Energy Department Expands Research into Methane Hydrates, a Vast...

    Broader source: Energy.gov (indexed) [DOE]

    of methane in shallow subsurface and water columns, and the role gas hydrates play in carbon cycling. DOE Investment: approximately 650,000 Massachusetts Institute of...

  13. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution...

  14. Extreme Methane Emissions from a Swiss Hydropower Reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using

  15. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    governments are considering a diverse energy mix that includes a growing proportion of renewable energy sources and natural gas. Proponents of this approach suggest that methane...

  16. anthropogenic methane emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EMISSIONS FROM MSW LANDFILLS D. SAVANNE*, P. CASSINI the contribution to the greenhouse effect due to methane emitted by municipal solid waste landfills. The objective of the...

  17. Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells

    E-Print Network [OSTI]

    West, Margrit Evelyn

    1995-01-01T23:59:59.000Z

    Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

  18. Analysis of a direct methane conversion to high molecular weight hydrocarbons

    E-Print Network [OSTI]

    Al-Ghafran, Moh'd. J.

    2000-01-01T23:59:59.000Z

    Methane conversion to heavier hydrocarbons was studied using electrical furnaces and a plasma apparatus. The experiments were performed with pure methane for the electrical furnace experiments while pure methane and additions such as hydrogen...

  19. New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry

    E-Print Network [OSTI]

    Girguis, Peter R.

    , likely exceeding reserves of conventional oil and gas (Collett and Kuuskraa, 1998). In deep-ocean regionsNew constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico Keywords: Methane flux Mass spectrometer Brine pool Methane oxidation Gulf of Mexico a b s t r a c t Deep

  20. Wind Energy Act (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

  1. Public Utilities Act (Illinois)

    Broader source: Energy.gov [DOE]

    This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports...

  2. High Voltage Safety Act

    Broader source: Energy.gov [DOE]

    The purpose of the High Voltage Safety Act is to prevent injury to persons and property and interruptions of utility service resulting from accidental or inadvertent contact with high-voltage...

  3. Land Reclamation Act (Missouri)

    Broader source: Energy.gov [DOE]

    It is the policy of the state to balance surface mining interests with the conservation of natural resources and land preservation. This Act authorizes the Land Reclamation Commission of the...

  4. Mississippi Public Utility Act

    Broader source: Energy.gov [DOE]

    The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN)...

  5. Radiation Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This Act establishes The Department of Environmental Quality as the designated official agency of the State of Oklahoma for all regulatory activities for the use of atomic energy and sources of...

  6. Healthy Air Act (Maryland)

    Broader source: Energy.gov [DOE]

    The Maryland Healthy Air Act was developed with the purpose of bringing Maryland into attainment with the National Ambient Air Quality Standards (NAAQS) for ozone and fine particulate matter by the...

  7. Freedom of Information Act/Privacy Act Requests | National Nuclear...

    National Nuclear Security Administration (NNSA)

    ActPrivacy Act Requests | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  8. U.S. and Japan Complete Successful Field Trial of Methane Hydrate...

    Office of Environmental Management (EM)

    Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2,...

  9. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    DIGESTERS AND BIOGAS RECOVERY Digesters Do Not Address theMethane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE

  10. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEA. Digesters Have Received Attention for Their Potential to

  11. Recovery Act Funds at Work

    Broader source: Energy.gov [DOE]

    Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Here are case studies from a variety of Recovery Act programs.

  12. Opencut Mining Act (Montana)

    Broader source: Energy.gov [DOE]

    The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources...

  13. Methane Hydrate Research and Development Act of 2000 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy MetalProgramFiscal

  14. Massachusetts Clean Air Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    The Act contains regulations to prevent the pollution and contamination of the atmosphere. The Act establishes a contiguous metropolitan pollution control district, comprised of towns in the...

  15. Recovery Act State Memos Kentucky

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * KENTUCKY RECOVERY ACT SNAPSHOT Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)...

  16. EIA - Greenhouse Gas Emissions - Methane Emissions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual23. Methane

  17. File:Methane.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park at Methil Jump to:Methane.pdf Jump to:

  18. methane_hydrates | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires mayYuan T.External Links ExternalMethane Hydrates Special

  19. Methane Stakeholder Roundtables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy MetalProgramFiscalMethane

  20. Methane Power Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls,MccoyMerrimac,MesoFuelMethane Power Inc Jump to:

  1. Methane Hydrate Annual Reports | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6,Projects38, 1)QuestionnairesMentorMethane

  2. Methane Stakeholder Roundtables | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6,Projects38,R&D Methane HydrateHydrates

  3. Methane Hydrate Advisory Committee | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstitute Regarding ProposedOnU.SformentorsThe Methane

  4. Methane hydrate research at NETL: Research to make methane production from hydrates a reality

    SciTech Connect (OSTI)

    Taylor, C.E.; Link, D.D.; English, N.

    2007-03-01T23:59:59.000Z

    Research is underway at NETL to understand the physical properties of methane hydrates. Five key areas of research that need further investigation have been identified. These five areas, i.e. thermal properties of hydrates in sediments, kinetics of natural hydrate dissociation, hysteresis effects, permeability of sediments to gas flow and capillary pressures within sediments, and hydrate distribution at porous scale, are important to the production models that will be used for producing methane from hydrate deposits. NETL is using both laboratory experiments and computational modeling to address these five key areas. The laboratory and computational research reinforce each other by providing feedback. The laboratory results are used in the computational models and the results from the computational modeling is used to help direct future laboratory research. The data generated at NETL will be used to help fulfill The National Methane Hydrate R&D Program of a “long-term supply of natural gas by developing the knowledge and technology base to allow commercial production of methane from domestic hydrate deposits by the year 2015” as outlined on the NETL Website [NETL Website, 2005. http://www.netl.doe.gov/scngo/Natural%20Gas/hydrates/index.html]. Laboratory research is accomplished in one of the numerous high-pressure hydrate cells available ranging in size from 0.15 mL to 15 L in volume. A dedicated high-pressure view cell within the Raman spectrometer allows for monitoring the formation and dissociation of hydrates. Thermal conductivity of hydrates (synthetic and natural) at a certain temperature and pressure is performed in a NETL-designed cell. Computational modeling studies are investigating the kinetics of hydrate formation and dissociation, modeling methane hydrate reservoirs, molecular dynamics simulations of hydrate formation, dissociation, and thermal properties, and Monte Carlo simulations of hydrate formation and dissociation.

  5. METHANE IN SUBSURFACE: MATHEMATICAL MODELING AND COMPUTATIONAL CHALLENGES

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    consortium led by Chevron, in gas hydrate drilling, research expeditions [6], and observatories [5, 7] which help to evaluate methane hydrate as an energy resource. Although the existence of gas hydrates and energy recovery involving the evolution of methane gas in the subsurface. In particular, we develop

  6. Homogeneous Catalysis Selective Oxidation of Methane to Methanol

    E-Print Network [OSTI]

    Goddard III, William A.

    Homogeneous Catalysis Selective Oxidation of Methane to Methanol Catalyzed, with CŔH Activation (generated by dissolution[6] of Au2O3) react with methane at 1808C to selectively generate methanol (as a mixture of the ester and methanol) in high yield (Table 1, entries 1 and 2). As expected, the irreversible

  7. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15T23:59:59.000Z

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  8. American Reinvestment and Recovery Act § 1553: Protecting State...

    Office of Environmental Management (EM)

    supervisory authority over the employee, a court or grand jury, the head of a Federal agency, or their representatives, information that the employee reasonably believes is...

  9. Water Resources Protection and Management Act (West Virginia)

    Broader source: Energy.gov [DOE]

    Large quantity water users, except those who purchase water from a public or private water utility or other service that is reporting its total withdrawal, shall register with the Department of...

  10. Alabama Underground Storage Tank And Wellhead Protection Act...

    Broader source: Energy.gov (indexed) [DOE]

    commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental...

  11. Protecting America's Competitive Edge Acts Domenici-Bingaman-Alexander-Mikulski

    E-Print Network [OSTI]

    Knowles, David William

    of study that lead to a baccalaureate degree in math, science, or engineering with concurrent teacher through Energy (PACE-Energy) Section 2. Mathematics, Science and Engineering Education at the Department of Mathematics, Science and Engineering Education Programs" to coordinate all Mathematics, Science

  12. Utility Facility Siting and Environmental Protection Act (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation applies to electric generating plants and associated facilities designed for or capable of operation at a capacity of more than 75 MW. A certificate from the Public Service...

  13. Is Florida's Growth Management Act protecting agricultural lands?

    E-Print Network [OSTI]

    Lloyd, Stephen (Stephen Charles Rhys)

    2011-01-01T23:59:59.000Z

    Florida has experienced more population growth over the past half century than any other state, which has led to some of the most extensive urban development on valuable agricultural lands. To address this and other impacts ...

  14. DOE Comments - Radiation Protection (Atomic Energy Act) | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentIOffshoreDepartmentBegins

  15. Flood Disaster Protection Act of 1973 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirst WindWaterFloating

  16. California Marine Life Protection Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass16 2013Management86Use PlanningOpen

  17. California Native Plant Protection Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass16 2013Management86Use PlanningOpenNative

  18. Farmland Protection Policy Act Manual | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: EnergyExolisFairway,Farmers Mutual

  19. Federal Cave Resources Protection Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°, -89.4742177° Show Map

  20. Protecting Recovery Act Cleanup Site During Massive Wildfire | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of EnergySelectedof Energy Effective

  1. Native American Graves Protection Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to: navigation, search Retrieved fromNative American

  2. Protecting Recovery Act Cleanup Site During Massive Wildfire

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGasInformationPrimusProgramProject75798 Vol. 76,

  3. The Marine Mammal Protection Act of 1972 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:Uncertainty of1801 - 1891(d)) | Open

  4. Federal Cave Protection Act of 1988 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEurope BV Jump to:FASFMI-HDFREDJumpInformation

  5. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-23T23:59:59.000Z

    This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

  6. ARM - Recovery Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a UsergovAboutRecovery Act Recovery Act Logo

  7. Guidelines for compliance with the National Environmental Policy Act and the California Environmental Quality Act

    SciTech Connect (OSTI)

    Kielusiak, C.

    1993-02-01T23:59:59.000Z

    The National Environmental Policy Act of 1969 (NEPA) sets forth national policy for the protection of the environment. The NEPA process is intended to help officials of the federal government make decisions that are based on an understanding of environmental consequences, and take actions that protect, restore, and enhance the environment. The California Environmental Quality Act of 1970 (CEQA) is similar to NEPA. The California legislature established CEQA to inform both state and local governmental decision-makers and the public about potential significant environmental effects of proposed activities, to identify ways to avoid or reduce environmental impacts, and to disclose to the public the reasons why a project is approved if significant environmental effects are involved. Lawrence Berkeley Laboratory (LBL), complies with the provisions of both NEPA and CEQA. This document defines the responsibilities and authorities for NEPA/CEQA compliance at LBL.

  8. Small Business Administration Recovery Act Implementation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small...

  9. Recovery Act State Memos Montana

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 5 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Green power transmission line given new life ......

  10. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 HgPromisingProtecting your personal

  11. Compliance under the Community Right-to-Know Act

    SciTech Connect (OSTI)

    Bradford, J.R.; Vaughn, R.C.; Breazeale, A. [Compliance Services Group, Inc., Lubbock, TX (United States)

    1995-12-31T23:59:59.000Z

    In 1986, the Superfund Amendments and Reauthorization Act (SARA) provided additional funding to continue and greatly expand the cleanup program begun under CERCLA. Title III of SARA contains the provisions of the Emergency Planning and Community Right-to-Know Act (EPCRA). SARA Title III may prove to be more pervasive and more demanding for industry than any of the other many rules and regulations promulgated by the Environmental Protection Agency. The Emergency Planning and Community Right-to-Know Act has four major provisions: planning for chemical emergencies; emergency notification of chemical accidents and releases; reporting of hazardous chemical inventories; and toxic chemical release reporting.

  12. NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION ACT (EXCERPT) Act 451 of 1994

    E-Print Network [OSTI]

    in the same order given in this subdivision. Indication of grade does not apply to peat or peat moss or soil

  13. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30T23:59:59.000Z

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  14. The Genetic Privacy Act and commentary

    SciTech Connect (OSTI)

    Annas, G.J.; Glantz, L.H.; Roche, P.A.

    1995-02-28T23:59:59.000Z

    The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. The DNA molecule holds an extensive amount of currently indecipherable information. The major goal of the Human Genome Project is to decipher this code so that the information it contains is accessible. The privacy question is, accessible to whom? The highly personal nature of the information contained in DNA can be illustrated by thinking of DNA as containing an individual`s {open_quotes}future diary.{close_quotes} A diary is perhaps the most personal and private document a person can create. It contains a person`s innermost thoughts and perceptions, and is usually hidden and locked to assure its secrecy. Diaries describe the past. The information in one`s genetic code can be thought of as a coded probabilistic future diary because it describes an important part of a unique and personal future. This document presents an introduction to the proposal for federal legislation `the Genetic Privacy Act`; a copy of the proposed act; and comment.

  15. Methane coupling by membrane reactor. First quarterly report, 1997

    SciTech Connect (OSTI)

    Ma, Yi Hua

    1997-05-01T23:59:59.000Z

    The Mn-W-Na/SiO{sub 2} catalyst was studied by running the methane coupling reactions at different methane to oxygen ratios, temperatures and dilution gas flow rates. For methane to oxygen ratios less than 3, the C{sub 2} yield was almost the same; and C{sub 2} yield began to decrease as the methane to oxygen ratio was further increased. The optimal temperature observed was around 800{degrees}C, where the C{sub 2} yield reached a maximum value. Increasing the dilution gas (helium) flow rate resulted in higher C{sub 2} selectivity; however, after a certain dilution gas flow rate the C{sub 2} yield began to decrease due to a decrease in methane conversion as a result of the reduced contact time. The stability study of the catalyst showed that, after five successive run cycles, the C{sub 2} yield obtained decreased from 24% to 19% at 780 {degrees}C, and methane, oxygen and helium flow rates of 12.2, 4.1, and 44. 3 mm/min, respectively. XRD analysis showed that, after the reaction, the XRD peaks of the cristabolite and Na{sub 2}WO{sub 4} phases in the catalyst became smaller than those in the fresh catalyst, and that at least one new, unidentified phase was observed. Mn-W-Na/SiO{sub 2} catalyst was used as the methane oxidative coupling catalyst in a porous membrane reactor and its performance was compared with a packed reactor operated at similar conditions. Although the membrane reactor showed lower methane conversion at the same reaction conditions, it gave higher C{sub 2} selectivity and C{sub 2} yield at similar methane conversions.

  16. Sun powers Libya cathodic-protection system

    SciTech Connect (OSTI)

    Currer, G.W.

    1982-03-22T23:59:59.000Z

    Well castings and part of the main 300-mile-long, 32-in diameter pipeline from Sarir to Tobruk are cathodically protected by solar power, which prevents galvanic action by applying an electric direct current of appropriate magnitude and polarity to the steel structures. They then act as cathodes and become the recipients of metallic ions. At each cathodic-protection station, the solar-generaor system consists of solar-panel arrays, electronic controls, and batteries.

  17. Conversion of methane and acetylene into gasoline range hydrocarbons

    E-Print Network [OSTI]

    Alkhawaldeh, Ammar

    2000-01-01T23:59:59.000Z

    Conversion Apparatus. . . 20 22 Temperature Profile Inside the Reactor. . 30 Methane and Acetylene Conversion over Time on Stream, T = 412 C, Molar Feed Ratio = 6/I (CH4/CqHr). . 36 Mass Flow Rate (g/s) of the Effluent Gas (Unreacted Methane... and Acetylene, Isobutane, Ethylene, and Nitrogen) from the Reactor Integrated over Time on Stream. 40 Mass Flow Rate (g/s) of the Gas Products (Isobutane and Ethylene) Integrated over Time on Stream. 41 Methane and Acetylene Conversion over Time on Stream...

  18. The electronic spectra and structure of bis(2,2'biphenylene) methane 

    E-Print Network [OSTI]

    Hofer, Owen Charles

    1965-01-01T23:59:59.000Z

    Transit ion Sysssetries ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ 12 Theuretioal Calculation uf Fluorene and Bis(2iiR bipheuyleme) Methane . ~ ~ ~ ~ ~ ~ 13 Theoretioal Caloulatiun and Experimental Beta Sf Flugrene and Bis(2 2 bkpMenylsne) Methane ~ ~ ~ ~ . ~ e... Calouiation of Fluorene ~ ~ . ~ ~ ~ . ~ ~ 22 P Matrix of Bis(2~2 biphemyleue) Methane ~ ~ ~ 23 P Matrix of Bis(2, 2 biphewylene) Methane (Continued) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 24 P Matrix of Fluorene ~ ~ 25 Gesssa Matrix of Bis(2, 2 biphenyleue) Methane ~ ~ 26...

  19. Radiation Protection of the Public and the Environment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-11T23:59:59.000Z

    The order establishes requirements to protect the public and the environment against undue risk from radiation associated with radiological activities conducted under the control of DOE pursuant to the Atomic Energy Act of 1954, as amended.

  20. Protecting Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 HgPromising MagnesiumDOE/RichlandStructureProtecting

  1. NIST Organic Act National Institute of Standards and Technology Act

    E-Print Network [OSTI]

    Magee, Joseph W.

    NIST Organic Act National Institute of Standards and Technology Act SECTION 1. FINDINGS in manufacturing technology, quality control, and techniques for ensuring product reliability and cost concerns compete strongly in world markets. (3) Improvements in manufacturing and product technology depend

  2. Recovery Act Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting Microscopy IlluminatesHandbookRODs Sign

  3. Recovery Act Open House

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting Microscopy IlluminatesHandbookRODs Recovery

  4. Recovery Act Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting Microscopy

  5. air methane vam: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 161 Uncorking the bottle: What triggered the PaleoceneEocene thermal maximum methane release? Geosciences...

  6. Biomass Gasification and Methane Digester Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In order to be eligible for the exemption, methane digester equipment must be certified by the Michigan Department of Agriculture (MDA) and the farm must be verified as compliant under the...

  7. The Impacts of the Affordable Care Act: How Reasonable Are the Projections?

    E-Print Network [OSTI]

    Gruber, Jonathan

    The Patient Protection and Affordable Care Act (ACA) is the most comprehensive reform of the U.S. medical system in at least 45 years. The ACA transforms the non-group insurance market in the United States, mandates that ...

  8. In sickness and in wealth : hospitals, community benefits, and the Affordable Care Act

    E-Print Network [OSTI]

    Mella, Katherine M. (Katherine Manuela)

    2014-01-01T23:59:59.000Z

    The new community benefit guidelines for non-profit hospitals enacted by the 2010 Patient Protection and Affordable Care Act (ACA) present major opportunities for the public health and planning fields alike. Given that ...

  9. Y-12 Plant Stratospheric Ozone Protection plan

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Y-12 Plant staff is required by Lockheed Martin Energy Systems (Energy Systems) (formerly Martin Marietta Energy Systems) standard ESS-EP-129 to develop and implement a Stratospheric Ozone Protection Program which will minimize emissions of ozone-depleting substances to the environment and maximize the use of ozone-safe alternatives in order to comply with Title VI of the 1990 Clean Air Act (CAA) Amendments and the implementing regulations promulgated by the Environmental Protection Agency (EPA). This plan describes the requirements, initiatives, and accomplishments of the Y-12 Plant Stratospheric Ozone Protection Program.

  10. Pollution Control Act (South Carolina)

    Broader source: Energy.gov [DOE]

    This Act declares the maintenance of reasonable standards of purity of air and water to be the public policy of the state. The Act authorizes the Department of Health and Environmental Control to...

  11. Solid Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

  12. Montana Radon Control Act (Montana)

    Broader source: Energy.gov [DOE]

    The Radon Control Act regulates the emission of radon, the gaseous decay products of uranium or thorium. The Act addresses operator certification of radon-producing facilities, testing and...

  13. Methanation in catalyst-sprayed tube wall reactors: a review

    SciTech Connect (OSTI)

    Pennline, H. W.; Schehl, R. R.; Haynes, W. P.; Forney, A. J.

    1980-09-01T23:59:59.000Z

    The design and operation of catalyst-sprayed tube wall reactors for methanation are discussed. Reactor tubes were either coated on the inner surface or on the outer surface with a Raney nickel catalyst. A liquid coolant, which was opposite the catalyst-reactant gas-side, removed the heat of methanation. Catalyst performance, reactor operating conditions, spent catalyst analyses, and other results are presented for five PDU tests.

  14. Nuclear magnetic resonance study of methane adsorbed on porous silicon 

    E-Print Network [OSTI]

    Li, Feng

    1992-01-01T23:59:59.000Z

    technique studied hydrogen physisorbed on graphitized carbon black. In their study, temperatures ranged from 12 K to 28 K, and coverages ranged from 0. 03 to 0. 33 of a statistical monolayer. Their results showed that both Tt and Tz increased... of methane adsorbed on graphite. The thermal properties of the 2-D system are inuch more complex than that of bulk methane. Results from neutron scattering, calorimetric 3 4 and thermodynamic studies showed the existence of a, complicated phase diagram...

  15. Nuclear magnetic resonance study of methane adsorbed on porous silicon

    E-Print Network [OSTI]

    Li, Feng

    1992-01-01T23:59:59.000Z

    NUCLEAR MAGNETIC RESONANCE STUDY OF METHANE ADSORBED ON POROUS SILICON A Thesis by FENG I I Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... May 1992 Major Subject: Physics NUCLEAR MAGNETIC RESONANCE STUDY OF METHANE ADSORBED ON POROUS SILICON A Thesis by FENG LI Approved as to style and content by: . P. Kirk (Chair of Committee) i G. Agnolet (Member) J. H. Ross, r (Member) M...

  16. The study of methane adsorbed on porous silicon by NMR

    E-Print Network [OSTI]

    Czermak, Adam Kazimierz

    1986-01-01T23:59:59.000Z

    THE STUDY OF METHANE ADSORBED ON POROUS SILICON BY NMR A Thesis by ADAM KAZIMIERZ CZERMAK Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1986... Major Subject: Physics THE STUDY OF METHANE ADSORBED ON POROUS SILICON BY NMR A Thesis by ADAM KAZIMIERZ CZERMAK Approved as to style and content by: e Wile . Kirk (Chairman of Committee) J eevak M. Par pi a (Member) Randall L. Geiger...

  17. Velocity of sound in solid methane near melting temperatures

    E-Print Network [OSTI]

    Whitehead, John Martin

    1968-01-01T23:59:59.000Z

    VELOCITY OF SOUND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1968 Ma)or Sub)ect: Physics VELOCITY OF SOVND IN SOLID METHANE NEAR MELTING TEMPERATURES A Thesis By JOHN MARTIN WHITEHEAD Approved as to style and content by& (Chairman of Committee) (Head of Departsmnt) (Mem er (Member) May 1968...

  18. Two dimensional properties of methane adsorbed on porous silicon

    E-Print Network [OSTI]

    Tennis, Richard Franklin

    1989-01-01T23:59:59.000Z

    TWO DIMENSIONAL PROPERTIES OF METHANE ADSORBED ON POROUS SILICON A Thesis by RICHARD FRANKLIN TENNIS Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1989 Major Subject: Physics TWO DIMENSIONAL PROPERTIES OF METHANE ADSORBED ON POROUS SILICON A Thesis by RICHARD FRANKLIN TENNIS Approved as to style and content by: P. Kirk (C ir of Committee) Glenn olet (M er) Da J. Ernst...

  19. ARM - Recovery Act Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51Instruments Related Links RHUBC-IIActRecovery Act

  20. Recovery Act State Memos Nebraska

    Energy Savers [EERE]

    ... 6 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Biofuels company builds new facility in Nebraska ... 7 * Nebraska appliance rebate...

  1. Recovery Act State Memos Arkansas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 RECOVERY ACT SUCCESS STORIES - ENERGY EMPOWERS * Program finds unique way to fund energy upgrades ... 7 * Green collar courses ......

  2. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Dublin, OH); Litt, Robert D. (Westerville, OH); Dongming, Qiu (Dublin, OH); Silva, Laura J. (Plain City, OH); Lamont, Micheal Jay (Plain City, OH); Fanelli, Maddalena (Plain City, OH); Simmons, Wayne W. (Plain city, OH); Perry, Steven (Galloway, OH)

    2011-10-04T23:59:59.000Z

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were generated of these seismic data with cores, logging, and other well data. Unfortunately, the Hot Ice No. 1 well did not encounter hydrates in the reservoir sands, although brine-saturated sands containing minor amounts of methane were encountered within the hydrate stability zone (HSZ). Synthetic seismograms created from well log data were in agreement with reflectivity data measured by the 3D VSP survey. Modeled synthetic seismograms indicated a detectable seismic response would be expected in the presence of hydrate-bearing sands. Such a response was detected in the 3D VSP data at locations up-dip to the west of the Hot Ice No. 1 wellbore. Results of this project suggest that the presence of hydrate-bearing strata may not be related as simply to HSZ thickness as previously thought. Geological complications of reservoir facies distribution within fluvial-deltaic environments will require sophisticated detection technologies to assess the locations of recoverable volumes of methane contained in hydrates. High-resolution surface seismic data and more rigorous well log data analysis offer the best near-term potential. The hydrate resource potential is huge, but better tools are needed to accurately assess their location, distribution and economic recoverability.

  4. Recovery Act Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting MicroscopyJune 2011 $322.6M $259M as of

  5. Recovery Act milestone: Excavation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting MicroscopyJune 2011 $322.6M $259M

  6. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

    2000-02-26T23:59:59.000Z

    Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  7. IMPLEMENTING MARINE PROTECTED AREAS POLICY: LESSONS FROM CANADA AND

    E-Print Network [OSTI]

    i IMPLEMENTING MARINE PROTECTED AREAS POLICY: LESSONS FROM CANADA AND AUSTRALIA by Jodi Stark B: Implementing Marine Protected Areas Policy: Lessons From Canada And Australia Report No. 369 Examining Management Simon Fraser University Date Approved: #12;iii Abstract Canada's Oceans Act and Australia's Oceans

  8. Triple acting radial seal

    DOE Patents [OSTI]

    Ebert, Todd A (West Palm Beach, FL); Carella, John A (Jupiter, FL)

    2012-03-13T23:59:59.000Z

    A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.

  9. Methane conversion for application in fuel cells

    SciTech Connect (OSTI)

    Mulder, A. [Gastec N.V., Apeldoorn (Netherlands); Looy, F. van [Utrecht Univ. (Netherlands). Dept. of Inorganic Chemistry; Waveren, A. van; Wingerden, A.J.M. van

    1996-12-31T23:59:59.000Z

    Conventional steam reformers are large and expensive for small scale fuel cell installations. But also the high endothermicity of the reforming reaction for the production of synthesis gas is a drawback. An alternative to conventional steam reforming is the partial oxidation of methane to synthesis gas. This process is slightly exothermic. The flexibility of the process makes small scale application possible. However, the partial oxidation process seems especially attractive for application within a high temperature fuel cell, because of relatively high CO/H{sub 2}-ratio for the output gases. In this paper the results of the study on the mechanism of the partial oxidation to synthesis gas on silica-supported nickel catalysts are discussed. Moreover, a process for the partial oxidation is proposed in which air instead of oxygen can be used. Based on the results of the mechanistic study two processes for the catalytic partial oxidation are proposed and simulated using the Aspen Plus flowsheeting program with which the mass and heat balances were optimized.

  10. Field Exploration of Methane Seep Near Atqasuk

    SciTech Connect (OSTI)

    Katey Walter, Dennis Witmer, Gwen Holdmann

    2008-12-31T23:59:59.000Z

    Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.

  11. Electrochemistry of soluble methane monooxygenase on a modified gold electrode : implications for chemical sensing in natural waters

    E-Print Network [OSTI]

    Chuang, Janet Duanping

    2005-01-01T23:59:59.000Z

    This work explored the possibility of using the soluble methane monooxygenase (MMO) enzyme, a three-component enzyme which catalyzes the oxygenation of methane and other substrates, to design a methane sensor for use in ...

  12. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    SciTech Connect (OSTI)

    None

    2012-09-30T23:59:59.000Z

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska?s North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska?s interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009 reconnaissance surveys provided a strong impetus to visit this area in 2010. The seismic methods applied in Lake Teshekpuk were able to image pockmarks, widespread shallow gas in the sediments, and the relationship among different sediment packages on the lake?s bottom, but even boomer seismics did not detect permafrost beneath the northern part of the lake. By characterizing the biogeochemistry of shallow TKL with methane seeps we showed that the radical seasonal shifts in ice cover and temperature. These seasonal environmental differences result in distinct consumption and production processes of biologically-relevant compounds. The combined effects of temperature, ice-volume and other lithological factors linked to seepage from the lake are manifest in the distribution of sedimentary methane in Lake Q during icecovered and ice-free conditions. The biogeochemistry results illustrated very active methanotrophy in TKLs. Substantial effort was subsequently made to characterize the nature of methanotrophic communities in TKLs. We applied stable isotope probing approaches to genetically characterize the methanotrophs most active in utilizing methane in TKLs. Our study is the first to identify methane oxidizing organisms active in arctic TKLs, and revealing that type I methanotrophs and type II methanotrophs are abundant and active in assimilating methane in TKLs. These organisms play an important role in limiting the flux of methane from these sites. Our investigations indicate that as temperatures increase in the Arctic, oxidation rates and active methanotrophic populations will also shift. Whether these changes can offset predicted increases in methanogenesis is an important question underlying models of future methane flux and resultant climate change. Overall our findings indicate that TKLs and their ability to act as both source and sink of methane are exceedingly sensitive to environmental change.

  13. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    SciTech Connect (OSTI)

    Collett, Tim; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta; Myers, Greg; Divins, David; Morell, Margo

    2013-11-30T23:59:59.000Z

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these e?orts have been episodic in nature. To further our understanding, these e?orts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and o?ers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  14. Recovery Act Recipient Data | Department of Energy

    Office of Environmental Management (EM)

    Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls More Documents &...

  15. Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report

    SciTech Connect (OSTI)

    Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

    1993-09-01T23:59:59.000Z

    In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

  16. Applying guidance for methane emission estimation for landfills

    SciTech Connect (OSTI)

    Scharff, Heijo [NV Afvalzorg, Postbus 2, 1566 ZG Assendelft (Netherlands)]. E-mail: h.scharff@afvalzorg.nl; Jacobs, Joeri [NV Afvalzorg, Postbus 2, 1566 ZG Assendelft (Netherlands)]. E-mail: j.jacobs@afvalzorg.nl

    2006-07-01T23:59:59.000Z

    Quantification of methane emission from landfills is important to evaluate measures for reduction of greenhouse gas emissions. Both the United Nations and the European Union have adopted protocols to ensure quantification of methane emission from individual landfills. The purpose of these protocols is to disclose emission data to regulators and the general public. Criteria such as timeliness, completeness, certainty, comparability, consistency and transparency are set for inclusion of emission data in a publicly accessible database. All methods given as guidance to landfill operators to estimate landfill methane emissions are based on models. In this paper the consequences of applying six different models for estimates of three landfills are explored. It is not the intention of this paper to criticise or validate models. The modelling results are compared with whole site methane emission measurements. A huge difference in results is observed. This raises doubts about the accuracy of the models. It also indicates that at least some of the criteria previously mentioned are not met for the tools currently available to estimate methane emissions from individual landfills. This will inevitably lead to compiling and comparing data with an incomparable origin. Harmonisation of models is recommended. This may not necessarily reduce uncertainty, but it will at least result in comparable, consistent and transparent data.

  17. Structural stability of methane hydrate at high pressures

    SciTech Connect (OSTI)

    Shu, Jinfu; Chen, Xiaojia; Chou, I.-Ming; Yang, Wenge; Hu, Jingzhu; Hemley, Russell J.; Mao, Ho-kwang

    2011-01-01T23:59:59.000Z

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P6{sub 3}/mmc, respectively. Upon compression, sI methane hydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH{sub 4})-host (H{sub 2}O) interactions in the stabilization of the hydrate structures under pressure.

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  19. Protecting Life on Earth

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    Review: Protecting Life on Earth: An Introduction to thePeter B. Protecting Life on Earth: An Introduction to theof Protecting Life on Earth is “to explain to an intelligent

  20. environmental management radiation protection

    E-Print Network [OSTI]

    Entekhabi, Dara

    EHS environmental management biosafety radiation protection industrial hygiene safety Working: Biosafety, Environmental Management, Industrial Hygiene, Radiation Protection and Safety. Each specialized Management Program, Industrial Hygiene, Radiation Protection Program, and the Safety Program. (http

  1. Double acting bit holder

    DOE Patents [OSTI]

    Morrell, Roger J. (Blommington, MN); Larson, David A. (Minneapolis, MN); Ruzzi, Peter L. (Eagan, MN)

    1994-01-01T23:59:59.000Z

    A double acting bit holder that permits bits held in it to be resharpened during cutting action to increase energy efficiency by reducing the amount of small chips produced. The holder consist of: a stationary base portion capable of being fixed to a cutter head of an excavation machine and having an integral extension therefrom with a bore hole therethrough to accommodate a pin shaft; a movable portion coextensive with the base having a pin shaft integrally extending therefrom that is insertable in the bore hole of the base member to permit the moveable portion to rotate about the axis of the pin shaft; a recess in the movable portion of the holder to accommodate a shank of a bit; and a biased spring disposed in adjoining openings in the base and moveable portions of the holder to permit the moveable portion to pivot around the pin shaft during cutting action of a bit fixed in a turret to allow front, mid and back positions of the bit during cutting to lessen creation of small chip amounts and resharpen the bit during excavation use.

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

  3. Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints by Marcus. The third case examines the benefits of increased policy coordination between air pollution constraints

  4. New mineralogy of the outer solar system and the high-pressure behaviour of methane 

    E-Print Network [OSTI]

    Maynard-Casely, Helen E.

    2009-01-01T23:59:59.000Z

    This thesis will introduce the study of methane as a mineral. Along with ammonia and water, methane is one of the main planetary-forming materials in the outer solar system. The topic of `new mineralogy of the outer solar ...

  5. Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France)

    E-Print Network [OSTI]

    Boyer, Edmond

    Géosciences, 1A rue de la Férolerie, 45071 Orléans Cedex 2, France Abstract Methane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced

  6. Coalbed Methane Produced Water Screening Tool for Treatment Technology and Beneficial Use 2013 Supporting Information

    E-Print Network [OSTI]

    Coalbed Methane Produced Water Screening Tool for Treatment Technology and Beneficial Use 2013 1 (to sustain instream #12;Coalbed Methane Produced Water Screening Tool for Treatment Technology Supporting Information 1.0 Produced Water Regulatory Framework for WY and NM

  7. ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL

    E-Print Network [OSTI]

    ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL recovered. Carbon sequestration, therefore, allows the utilization of unexploited mineral resources while potential of coalbed methane production using carbon dioxide sequestration in the Central Appalachian Basin

  8. Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane the current study and the previous measurements in similar flames with methane, ethane, and propane flames

  9. Magnitude and spatio-temporal variability of methane emissions from a eutrophic freshwater lake

    E-Print Network [OSTI]

    Varadharajan, Charuleka, 1980-

    2009-01-01T23:59:59.000Z

    Methane is the second most important greenhouse gas after carbon dioxide, and it can significantly impact global climate change. Considerable amounts of methane can be released to the atmosphere from freshwater lakes, ...

  10. Energy Policy Seminar Series: Climate impacts of methane-emitting energy technologies

    E-Print Network [OSTI]

    Chen, Kuang-Yu

    of greenhouse gases, most notably methane and carbon dioxide, and these gases have dissimilar properties. This research finds that methane-emitting energy such as natural gas becomes significantly more carbon dioxide

  11. MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION

    E-Print Network [OSTI]

    Seitzman, Jerry M.

    MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET-A COMBUSTION of Technology August 2008 #12;MODELING AND ANALYSIS OF CHEMILUMINESCENCE SENSING FOR SYNGAS, METHANE AND JET

  12. Modeling ruminant methane emissions from the U.S. beef cattle industry

    E-Print Network [OSTI]

    Turk, Danny Carroll

    1993-01-01T23:59:59.000Z

    Computer models were constructed to estimate methane emissions from cow/calf, replacement heifers, burs, stockers and feedlot sectors of the U.S. beef cattle industry. Methane (CH4) yields were calculated based on net energy values and forage...

  13. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    E-Print Network [OSTI]

    Locatelli, R.

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model ...

  14. Control of substrate access to the active site in methane monooxygenase

    E-Print Network [OSTI]

    Lee, Seung Jae

    Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by ...

  15. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    three Recovery Act-funded Smart Grid Investment Grant (SGIG) projects. February 28, 2014 Smart Meter Investments Yield Positive Results in Maine Central Maine Power's (CMP) SGIG...

  16. Coal Mine Safety Act (Virginia)

    Broader source: Energy.gov [DOE]

    This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

  17. Green Energy Act (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Green Energy Act was created to expand Ontario's production of renewable energy, encourage energy conservation and promote the creation of clean-energy green jobs.

  18. Montana Dam Safety Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act establishes the state's interest in the construction of dams for water control and regulation and for hydropower generation purposes. It regulates dam construction, operation, and...

  19. Water Pollution Control Act (Minnesota)

    Broader source: Energy.gov [DOE]

    This Act gives the Minnesota Pollution Control Agency broad responsibility to establish pollution standards for state waters; monitor water conditions and sources of pollution; review construction,...

  20. Solid Waste Management Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

  1. Solid Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

  2. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  3. Water Quality Control Act (Tennessee)

    Broader source: Energy.gov [DOE]

    The Water Quality Control Act (WQCA) establishes the water pollution control program. The WQCA identifies the responsibilities and extent of authority for the Commissioner of the Water Quality...

  4. Recovery Act State Memos Florida

    Energy Savers [EERE]

    of renewable energy. The Florida Energy and Climate Commission has awarded the Florida Solar Energy Center (FSEC) 10 million in Recovery Act money, enabling the center to set...

  5. Ground Water Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called Ground Water Management Areas (GWMA). Currently,...

  6. Florida Coastal Management Act (Florida)

    Broader source: Energy.gov [DOE]

    This Act is intended to provide for the development of natural, commercial, recreational, ecological, industrial, and aesthetic resources, including, but not limited to, energy facilities, of...

  7. Montana Environmental Policy Act (Montana)

    Broader source: Energy.gov [DOE]

    The Montana Environmental Policy Act aims to provide for the consideration of environmental impacts by the legislature when enacting laws, and for public transparency regarding the possible...

  8. Freedom of Information Act FOIA 10CFR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freedom of Information Act Freedom of Information Act Regulations Code of Federal Regulations (CFR) for the Freedom of Information Act is 10 CFR 1004 THE FREEDOM OF INFORMATION ACT...

  9. Office of Physical Protection

    Broader source: Energy.gov [DOE]

    The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

  10. DOE Advanced Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    protection logic in each relay 17 Copyright 2010, Southern California Edison Advanced Protection on the System of the Future * Use fault-interrupting switches with relays...

  11. Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment

    E-Print Network [OSTI]

    Yaghi, Omar M.

    this disadvantage include · storing methane as liquefied natural gas (LNG, at 112 K) or compressed natural gas (CNG

  12. Timelines for mitigating methane emissions from energy technologies

    E-Print Network [OSTI]

    Roy, Mandira; Trancik, Jessika E

    2015-01-01T23:59:59.000Z

    Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

  13. National Environmental Policy Act (NEPA) Categorically Excluded...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management System NEPA National Environmental Policy Act (NEPA) Categorically Excluded Actions National Environmental Policy Act (NEPA) Categorically Excluded...

  14. Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory-phase transition metal oxide cations can convert methane to methanol. Methane activation by MO+ is discussed such as methanol has attracted great experimental and theoretical interest due to its importance as an industrial

  15. Electronic spectroscopy of intermediates involved in the conversion of methane to methanol by FeO

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Electronic spectroscopy of intermediates involved in the conversion of methane to methanol by Fe.1063/1.1448489 I. INTRODUCTION The direct oxidation of methane to an easily transport- able liquid such as methanol process and as the simplest model for alkane oxidation.1,2 Although no direct, efficient methane­methanol

  16. Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing

    E-Print Network [OSTI]

    Sessions, Alex L.

    Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing Running Title: Novel Methane, Ethane, and Propane Oxidizing Bacteria Section incubating sediment with 13 C-labeled methane, ethane, or propane, we5 confirmed the incorporation of 13 C

  17. EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS

    E-Print Network [OSTI]

    Saylor, John R.

    Chapter 65 EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS Ch.D. Taylor-mounted scrubber and water sprays can reduced methane levels at the face. The current research was conducted to determine how the sprays and scrubber interact to reduce methane levels, and what spray configurations

  18. Compatibility of selected ceramics with steam-methane reformer environments

    SciTech Connect (OSTI)

    Keiser, J.R.; Howell, M. [Oak Ridge National Lab., TN (United States); Williams, J.J.; Rosenberg, R.A. [Stone and Webster Engineering Corp., Boston, MA (United States)

    1996-04-01T23:59:59.000Z

    Conventional steam reforming of methane to synthesis gas (CO and H{sub 2}) hasa conversion efficiency of about 85%. Replacement of metal tubes in the reformer with ceramic tubes offers the potential for operation at temperatures high enough to increase the efficiency to 98-99%. However, the two candidate ceramic materials being given strongest consideration, sintered alpha Si carbide and Si carbide particulate-strengthened alumina, have been shown to react with components of the reformer environment. Extent of degradation as a function of steam partial pressure and exposure time has been studied, and results suggest limits under which these structural ceramics can be used in advanced steam-methane reformers.

  19. Coke profile and effect on methane/ethylene conversion process

    E-Print Network [OSTI]

    Al-Solami, Bandar

    2002-01-01T23:59:59.000Z

    with distance along the reactor, and therefore the coke distribution should follow a similar pattern. A distribution of coke deposits along the reactor was also observed by Noda er al. (1974) in a study of iso-pentane isomerization. In this case the coke..., methane, ethane, ethylene, propane, iso-butane, butane, iso-pentane, pentane and hexanes. Also, the flow rate of the effluent stream is measured using the bubble meter. The mole percentages of methane and ethylene are subtracted of the effluent stream...

  20. International Cooperation in Methane Hydrates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas » Methane Hydrate » International Cooperation in Methane

  1. Metro Methane Recovery Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee Falls,MccoyMerrimac,MesoFuelMethane PowerMetro Methane

  2. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models and to research teams for developing future gas-hydrate projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and has been documented by the project team. This Topical Report documents drilling and coring operations and other daily activities.

  3. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

  5. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-02-01T23:59:59.000Z

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation.

  6. Antibiotics acting on the translational

    E-Print Network [OSTI]

    Yonath, Ada E.

    of the nascent protein, further protecting the nascent chain by channelling it through the ribosomal exit tunnel affect the assembly of the rib

  7. Protected Areas Stacy Philpott

    E-Print Network [OSTI]

    Gottgens, Hans

    · Convention of Biological Diversity, 1992 #12;IUCN Protected Area Management Categories Ia. Strict Nature. Protected Landscape/ Seascape VI. Managed Resource Protected Area #12;Ia. Strict Nature Preserves and Ib. Wilderness Areas · Natural preservation · Research · No · No #12;II. National Parks · Ecosystem protection

  8. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    SciTech Connect (OSTI)

    Ali, Muhammad Aslam [Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh); Lee, Chang Hoon [Functional Cereal Crop Research Division, National Institute of Crop Science, RDA, 1085, Naey-dong, Milyang (Korea, Republic of); Kim, Sang Yoon [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Pil Joo [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)], E-mail: pjkim@gnu.ac.kr

    2009-10-15T23:59:59.000Z

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

  9. Recovery Act: Regional Technology Training Centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-Setting MicroscopyJune 2011Recovery Act: Regional

  10. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Municipal Solid Waste-Sewage Sludge. b 4.15 SCF CH 4 / cu ftUP I j methane 31.5 scf sludge 18.61b water 161b Btu/scfsewer 65.3 lb ( 7.9 gal) sludge ash 1.74 lb stack emissions

  11. RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART I: ALLENE developed in our laboratory for the reactions of C3-C4 unsaturated hydrocarbons. The main reaction pathways2007 #12;3 INTRODUCTION Soots and polyaromatic hydrocarbons (PAH), which are present in the exhaust gas

  12. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  13. The Optimization of Well Spacing in a Coalbed Methane Reservoir

    E-Print Network [OSTI]

    Sinurat, Pahala Dominicus

    2012-02-14T23:59:59.000Z

    reserve estimation for a coalbed methane reservoir. Other numerical reservoir simulation studies were presented by David, H. and Law, S.18, Hower, T.L.19, and Jalal, J. and Shahab, D.M.20. They showed the application of a compositional simulator...

  14. METHANE IN SUBSURFACE: MATHEMATICAL MODELING AND COMPUTATIONAL CHALLENGES

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    ), in collaboration with the U.S. Geological Survey (USGS), and an industry consortium led by Chevron, in gas hydrate as an energy resource. Although the existence of gas hydrates in nature has been known for many decades, our and energy recovery involving the evolution of methane gas in the subsurface. In particular, we develop

  15. RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    /s at 333 K and mixtures containing 55.6% argon, 15.3% methane (99.95 %, pure supplied by Alphagaz - L'Air propyne, allene, propene, propane, 1-butene, 1,3-butadiene, 1,2-butadiene, vinylacetylene, diacetylene

  16. Gettering of hydrogen and methane from a helium gas mixture

    SciTech Connect (OSTI)

    Cárdenas, Rosa Elia, E-mail: recarde1@uiwtx.edu [Department of Physics, The University of the Incarnate Word, 4301 Broadway, San Antonio, Texas 78209 (United States); Stewart, Kenneth D.; Cowgill, Donald F., E-mail: dfcowgi@sandia.gov [Sandia National Laboratories, Hydrogen and Metallurgical Sciences, 7011 East Avenue, Livermore, California 94550 (United States)

    2014-11-01T23:59:59.000Z

    In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup ®} getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650?°C to decompose the methane, and the second at 110?°C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  17. Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

    E-Print Network [OSTI]

    Texas at Austin, University of

    Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane 1 Funded by Environmental. of Electrical and Computer Engineering, University of Texas, Austin #12;Motivation No other chip based optical Similar to: Doping of Semiconductor 3 #12;4 Photonic Crystal Bio-Chemical Sensors Loncar et al, Appl. Phys

  18. Formation and retention of methane in coal. Final report

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15T23:59:59.000Z

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  19. Partial oxidation of methane to syngas in different reactor types

    SciTech Connect (OSTI)

    Lapszewicz, J.A.; Campbell, I.; Charlton, B.G.; Foulds, G.A. [CSIRO Division of Coal and Energy Technology, Menai (Australia)

    1995-12-01T23:59:59.000Z

    The performance of Rh/ZnO/{gamma}-Al{sub 2}O{sub 3} catalyst for partial oxidation of methane to syngas was compared in fixed and fluidised bed reactors. Catalyst activity was found not to be a limiting factor under any experimental conditions and complete oxygen conversions were observed in all tests. In the fixed bed reactor both methane conversion and syngas selectivity were increasing with space velocity as the result of an autothermal effect. Satisfactory control of the catalyst temperature at high space velocities could only be achieved with addition of inert diluent or steam to the feed. Different conversion and selectivity patterns were observed in fluidised bed reactor. Methane conversion and carbon monoxide selectivity were decreasing with increasing gas flow. By contrast, hydrogen selectivity showed distinct maximum at medium space velocities. These results are interpreted in terms of catalyst backmixing and its effect on primary and secondary reactions. Improved temperature control was also achieved in fluidised bed reactor. Several experiments using fluidised bed reactor were carried out at elevated pressures. To eliminate the occurrence of non-catalytic gas phase reactions between methane and oxygen very short feed mixing times (< 1 ms) were employed. Despite these measures the reactor could not be successfully operated at pressures above 0.7 MPa. The implications of these findings for process development are discussed.

  20. Methane-assisted combustion synthesis of nanocomposite tin dioxide materials

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Methane-assisted combustion synthesis of nanocomposite tin dioxide materials S.D. Bakrania *, C., Ann Arbor, MI 48109-2125, USA Abstract Combustion synthesis of tin dioxide (SnO2) was studied using: Combustion synthesis; Nanoparticles; Tin dioxide; Metals 1. Introduction Tin dioxide (SnO2) is the most

  1. Variability of the methane trapping in martian subsurface clathrate hydrates

    E-Print Network [OSTI]

    Caroline Thomas; Olivier Mousis; Sylvain Picaud; Vincent Ballenegger

    2008-10-23T23:59:59.000Z

    Recent observations have evidenced traces of methane CH4 heterogeneously distributed in the martian atmosphere. However, because the lifetime of CH4 in the atmosphere of Mars is estimated to be around 300-600 years on the basis of photochemistry, its release from a subsurface reservoir or an active primary source of methane have been invoked in the recent literature. Among the existing scenarios, it has been proposed that clathrate hydrates located in the near subsurface of Mars could be at the origin of the small quantities of the detected CH4. Here, we accurately determine the composition of these clathrate hydrates, as a function of temperature and gas phase composition, by using a hybrid statistical thermodynamic model based on experimental data. Compared to other recent works, our model allows us to calculate the composition of clathrate hydrates formed from a more plausible composition of the martian atmosphere by considering its main compounds, i.e. carbon dioxyde, nitrogen and argon, together with methane. Besides, because there is no low temperature restriction in our model, we are able to determine the composition of clathrate hydrates formed at temperatures corresponding to the extreme ones measured in the polar caps. Our results show that methane enriched clathrate hydrates could be stable in the subsurface of Mars only if a primitive CH4-rich atmosphere has existed or if a subsurface source of CH4 has been (or is still) present.

  2. ESTIMATING METHANE EMISSION AND OXIDATION FROM TWO TEMPORARY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    layer waste gas composition were measured on two French MBT plants with aerobic pre-treatment process using old municipal solid waste material (Huber-Humer & al, 2007, 2008). Another result of these studies amount of fugitive methane emissions for landfills without waste pre-treatment (Tarimini & al, 2003

  3. Direct Biological Conversion of Electrical Current into Methane by

    E-Print Network [OSTI]

    produced from renewable energy sources (such as wind, solar, or biomass) into a biofuel (methane) as well. Revised manuscript received March 5, 2009. Accepted March 6, 2009. New sustainable methods are needed to produce renewable energy carriers that can be stored and used for transportation, heating, or chemical

  4. Building a Common Understanding: Clean Air Act and Upcoming Carbon Pollution Guidelines for Existing Power Plants Webinar

    Broader source: Energy.gov [DOE]

    This U.S. Environmental Protection Agency (EPA) presentation for state and tribal officials will provide an overview of Clean Air Act provisions for regulating carbon pollution from existing power...

  5. Detection and Production of Methane Hydrate

    SciTech Connect (OSTI)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31T23:59:59.000Z

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation.

  6. Methane oxidation over dual redox catalysts. Final report

    SciTech Connect (OSTI)

    Klier, K.; Herman, R.G.; Sojka, Z.; DiCosimo, J.I.; DeTavernier, S.

    1992-06-01T23:59:59.000Z

    Catalytic oxidation of methane to partial oxidation products, primarily formaldehyde and C{sub 2} hydrocarbons, was found to be directed by the catalyst used. In this project, it was discovered that a moderate oxidative coupling catalyst for C{sub 2} hydrocarbons, zinc oxide, is modified by addition of small amounts of Cu and Fe dopants to yield fair yields of formaldehyde. A similar effect was observed with Cu/Sn/ZnO catalysts, and the presence of a redox Lewis acid, Fe{sup III} or Sn{sup IV}, was found to be essential for the selectivity switch from C{sub 2} coupling products to formaldehyde. The principle of double doping with an oxygen activator (Cu) and the redox Lewis acid (Fe, Sn) was pursued further by synthesizing and testing the CuFe-ZSM-5 zeolite catalyst. The Cu{sup II}(ion exchanged) Fe{sup III}(framework)-ZSM-5 also displayed activity for formaldehyde synthesis, with space time yields exceeding 100 g/h-kg catalyst. However, the selectivity was low and earlier claims in the literature of selective oxidation of methane to methanol over CuFe-ZSM-5 were not reproduced. A new active and selective catalytic system (M=Sb,Bi,Sn)/SrO/La{sub 2}O{sub 3} has been discovered for potentially commercially attractive process for the conversion of methane to C{sub 2} hydrocarbons, (ii) a new principle has been demonstrated for selectivity switching from C{sub 2} hydrocarbon products to formaldehyde in methane oxidations over Cu,Fe-doped zinc oxide and ZSM-5, and (iii) a new approach has been initiated for using ultrafine metal dispersions for low temperature activation of methane for selective conversions. Item (iii) continues being supported by AMOCO while further developments related to items (i) and (ii) are the objective of our continued effort under the METC-AMOCO proposed joint program.

  7. Tennessee Air Quality Act (Tennessee)

    Broader source: Energy.gov [DOE]

    The Tennessee Air Quality Act (AQA) delegates the power to maintain air quality in the State to the Department of Environment and Conservation. Under the Department of the Environment and...

  8. Renewable Energy Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The purposes of the Renewable Energy Act are to prescribe the amounts of renewable energy resources that public utilities shall include in their electric energy supply portfolios for sales to...

  9. Water Quality Act (New Mexico)

    Broader source: Energy.gov [DOE]

    This act establishes the Water Quality Control Commission and states the powers and duties of the commission. Rules are stated for adoption of regulations and standards and information is provided...

  10. Nuclear Decommissioning Financing Act (Maine)

    Broader source: Energy.gov [DOE]

    The Nuclear Decommissioning Financing Act calls for the establishment of a tax-exempt, tax-deductible decommissioning fund by the licensee of any nuclear power generating facility to pay for the...

  11. Georgia Radiation Control Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Radiation Control Act is designed to prevent any associated harmful effects upon the environment or the health and safety of the public through the institution and maintenance of a...

  12. Toxic Pollution Prevention Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the purpose of this Act to reduce the disposal and release of toxic substances which may have adverse and serious health and environmental effects, to promote toxic pollution prevention as...

  13. Toxics Use Reduction Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act, revised significantly in 2006, seeks to mitigate the use of toxic substances and the production of toxic byproducts through reporting requirements as well as resource conservation plans...

  14. Montana Hazardous Waste Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

  15. Efficient Use of Energy Act

    Broader source: Energy.gov [DOE]

    The Efficient Use of Energy Act of 2005 allows public electric and natural gas utilities to implement cost-effective energy-reduction programs. The programs may be funded through a tariff rider for...

  16. Coastal Facilities Review Act (Maryland)

    Broader source: Energy.gov [DOE]

    This Act aims to preserve Maryland's coastal areas and to balance competing demands for resources by requiring environmental impact evaluations to be conducted prior to the approval of the...

  17. Niobrara Scenic River Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act establishes the Niobrara Council, to assist in all aspects of the management of the Niobrara scenic river corridor and promulgate rules and regulations related to the preservation of the...

  18. Georgia Water Quality Control Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Water Quality Control Act (WQCA) is a set of environmental regulations and permitting requirements that comply with the federal Clean Water Act. The Georgia Water Quality Control Act...

  19. Coalbed methane production enhancement by underground coal gasification

    SciTech Connect (OSTI)

    Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

    1997-12-31T23:59:59.000Z

    The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

  20. Protection Program Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-14T23:59:59.000Z

    This Order establishes requirements for the management and operation of the Department of Energy (DOE) Federal Protective Forces (FPF), Contractor Protective Forces (CPF), and the Physical Security of property and personnel under the cognizance of DOE.

  1. Interaction, protection and epidemics

    E-Print Network [OSTI]

    Goyal, Sanjeev; Vigier, Adrien

    2015-03-06T23:59:59.000Z

    unique equilibrium: individuals who invest in protection choose to interact more relative to those who do not invest in protection. Changes in the contagiousness of the disease have non-monotonic effects: as a result interaction initially falls...

  2. Voluntary Protection Program Announcement

    Broader source: Energy.gov [DOE]

    Secretary O'Leary formally announced a new initiative, "The Department of Energy Voluntary Protection Program (DOEVPP)," which is designed to recognize contractor sites that are providing excellent safety and health protection to their employees.

  3. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30T23:59:59.000Z

    Provides detailed requirements to supplement DOE O 473.2, Protective Force Program, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Does not cancel other directives.

  4. Clean Air Act Title III accidental emission release risk management program, and how it applies to landfills

    SciTech Connect (OSTI)

    Hibbard, C.S.

    1999-07-01T23:59:59.000Z

    On June 20, 1996, EPA promulgated regulations pursuant to Title III of the Clean Air Act (CAA) Amendments of 1990 (Section 112(r)(7) of the CAA). The rule, contained in 40 CFR Part 68, is called Accidental Release Prevention Requirements: Risk Management Programs, and is intended to improve accident prevention and emergency response practices at facilities that store and/or use hazardous substances. Methane is a designated highly hazardous chemical (HHC) under the rule. The rule applies to facilities that have 10,000 pounds of methane or more in any process, roughly equivalent to about 244,000 cubic feet of methane. The US EPA has interpreted this threshold quantity as applying to landfill gas within landfills. This paper presents an overview of the Accidental Release Prevention regulations, and how landfills are affected by the requirements. This paper describes methodologies for calculating the threshold quantity of landfill gas in a landfill. Methane is in landfill gas as a mixture. Because landfill gas can burn readily, down to concentrations of about five percent methane, the entire landfill gas mixture must be treated as the regulated substance, and counts toward the 10,000-pound threshold. It is reasonable to assume that the entire landfill gas collection system, active or passive, is filled with landfill gas, and that a calculation of the volume of the system would be a calculation of the landfill gas present in the process on the site. However, the US EPA has indicated that there are some instances in which pore space gas should be included in this calculation. This paper presents methods available to calculate the amount of pore space gas in a landfill, and how to determine how much of that gas might be available for an explosion. The paper goes through how to conduct the release assessment to determine the worst-case hazard zone around the landfill.

  5. RADIONUCLIDE RADIATION PROTECTION

    E-Print Network [OSTI]

    Healy, Kevin Edward

    RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2002 D. Delacroix* J. P. Guerre** P. Leblanc'Energie Atomique, CEA/Saclay, France ISBN 1 870965 87 6 RADIATION PROTECTION DOSIMETRY Vol. 98 No 1, 2002 Published by Nuclear Technology Publishing #12;RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2nd Edition (2002

  6. Corium protection assembly

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

    1994-01-01T23:59:59.000Z

    A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.

  7. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

  8. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy Savers [EERE]

    ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  9. Kathleen Carlson Appointed Interim Acting Deputy Administrator...

    National Nuclear Security Administration (NNSA)

    Interim Acting Deputy Administrator for Defense Programs Press Release Aug 16, 2001 Kathleen Carlson Appointed Interim Acting Deputy Administrator for Defense Programs...

  10. Virginia Electric Utility Regulation Act (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation...

  11. ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ARKANSAS RECOVERY ACT SNAPSHOT Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act...

  12. Method for the protection of extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22T23:59:59.000Z

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  13. Radiation Protection Guidance Hospital Staff

    E-Print Network [OSTI]

    Kay, Mark A.

    Page 1 Radiation Protection Guidance For Hospital Staff Prepared for Stanford ..................................................................................................................... 17 The Basic Principles of Radiation Protection........................................................... 17 Protection against Radiation Exposure

  14. Steam methane reforming in molten carbonate salt. Final report

    SciTech Connect (OSTI)

    Erickson, D.C.

    1996-05-01T23:59:59.000Z

    This report documents the work accomplished on the project {open_quotes}Steam Methane Reforming in Molten Carbonate Salt.{close_quotes}. This effort has established the conceptual basis for molten carbonate-based steam reforming of methane. It has not proceeded to prototype verification, because corrosion concerns have led to reluctance on the part of large hydrogen producers to adopt the technology. Therefore the focus was shifted to a less corrosive embodiment of the same technology. After considerable development effort it was discovered that a European company (Catalysts and Chemicals Europe) was developing a similar process ({open_quotes}Regate{close_quotes}). Accordingly the focus was shifted a second time, to develop an improvement which is generic to both types of reforming. That work is still in progress, and shows substantial promise.

  15. Methane storms as a driver of Titan's dune orientation

    E-Print Network [OSTI]

    Charnay, Benjamin; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Pont, Sylvain Courrech du; Lucas, Antoine

    2015-01-01T23:59:59.000Z

    Titan's equatorial regions are covered by eastward propagating linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs), which are oriented westward at these latitudes, similar to trade winds on Earth. Different hypotheses have been proposed to address this apparent contradiction, involving Saturn's gravitational tides, large scale topography or wind statistics, but none of them can explain a global eastward dune propagation in the equatorial band. Here we analyse the impact of equinoctial tropical methane storms developing in the superrotating atmosphere (i.e. the eastward winds at high altitude) on Titan's dune orientation. Using mesoscale simulations of convective methane clouds with a GCM wind profile featuring superrotation, we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport, allowing dunes to extend eastward. This analysis therefore suggests a coupling between superrotation, tro...

  16. Seismic-Scale Rock Physics of Methane Hydrate

    SciTech Connect (OSTI)

    Amos Nur

    2009-01-08T23:59:59.000Z

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  17. Water storage key factor in coalbed methane production

    SciTech Connect (OSTI)

    Luckianow, B.J. (Taurus Exploration Inc., Birmingham, AL (US)); Hall, W.L. (Dames and Moore, Atlanta, GA (US))

    1991-03-11T23:59:59.000Z

    Storage ponds provide a cost-effective means to temporarily retain water produced with coalbed methane and permit gas production during times when stream flow rates drop. Normally, water produced with the gas is run into nearby streams, with the dilution rate closely monitored and controlled by environmental agencies. During low stream flow in the Black Warrior basin, Ala., large volumes of produced water must be stored to prevent shut-in of coalbed methane fields. The authors discuss how they constructed such production water facilities for the Cedar Cove field to eliminate periodic field shut-ins as a result of excess water production. The effectiveness of such a storage approach is governed by receiving stream flow variability, production water flow characteristics, and the economics of storage pond construction.

  18. Catalyst for the methanation of carbon monoxide in sour gas

    DOE Patents [OSTI]

    Kustes, William A. (Louisville, KY); Hausberger, Arthur L. (Louisville, KY)

    1985-01-01T23:59:59.000Z

    The invention involves the synergistic effect of the specific catalytic constituents on a specific series of carriers for the methanation of carbon monoxide in the presence of sulfur at relatively high temperatures and at low steam to gas ratios in the range of 0.2:1 or less. This effect was obtained with catalysts comprising the mixed sulfides and oxides of nickel and chromium supported on carriers comprising magnesium aluminate and magnesium silicate. Conversion of carbon monoxide to methane was in the range of from 40 to 80%. Tests of this combination of metal oxides and sulfides on other carriers and tests of other metal oxides and sulfides on the same carrier produced a much lower level of conversion.

  19. Central-northern Appalachian coalbed methane flow grows

    SciTech Connect (OSTI)

    Lyons, P.C. [Geological Survey, Reston, VA (United States)

    1997-07-07T23:59:59.000Z

    Over the past decade in the US, coalbed methane (CBM) has become an increasingly important source of unconventional natural gas. The most significant CBM production occurs in the San Juan basin of Colorado and new Mexico and the Black Warrior basin of Alabama, which collective in 1995 accounted for about 94% of US CBM production. The paper discusses early CBM production, recent production, gas composition, undiscovered potential, and new exploration areas.

  20. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01T23:59:59.000Z

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  1. Fire Protection Program Manual

    SciTech Connect (OSTI)

    Sharry, J A

    2012-05-18T23:59:59.000Z

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  2. Recovery Act | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department of Energy Recovery ActCategoryRecovery Act

  3. Method for in situ biological conversion of coal to methane

    DOE Patents [OSTI]

    Volkwein, Jon C. (Pittsburgh, PA)

    1995-01-01T23:59:59.000Z

    A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.

  4. Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2008-08-11T23:59:59.000Z

    The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

  5. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    E-Print Network [OSTI]

    Kwon, T.H.

    2012-01-01T23:59:59.000Z

    Dissociation heat of mixed-gas hydrate composed of methaneInternational Conference on Gas Hydrates (ICGH 2008), 2008,and specific heats of gas hydrates under submarine and

  6. Diffusional methane fluxes within continental margin sediments and depositional constraints on formation factor estimates

    E-Print Network [OSTI]

    Berg, Richard D.

    2008-01-01T23:59:59.000Z

    methane flux from underlying gas hydrate. Geology , 24 (7),overlying the Blake Ridge gas hydrates. In Proceedings ofgas transport in shallow sediments of an accretionary complex, Southern Hydrate

  7. Quarterly review of methane from coal seams Technology. Volume 7, Numbers 1 and 2. October 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Contents include: basin activities--(western Washington, Powder River Basin, Wyoming, Greater Green River Basin, Wyoming and Colorado, Piceance Basin, Colorado, San Juan Basin, Colorado and New Mexico, Raton Basin, Colorado and New Mexico, Black Warrior Basin, Alabama); features--(research in small-scale gas processing, GRI publications on coalbed methane, coalbed methane information sources); methane from coal seams research--(multiple coal seams project, hydrologic characterization of coal seams, spalling and the development of a hydraulic-fracturing strategy for coal, geologic evaluation of critical production parameters for coalbed methane resources, permeability changes resulting from gas desorption); technical events; departments.

  8. Production and Ebullition of Methane in a Shallow Eutrophic Lake (Lake Elsinore, CA)

    E-Print Network [OSTI]

    Martinez, Denise Nicole

    2012-01-01T23:59:59.000Z

    Methane release through resuspension of littoral sediment.its susceptibility to resuspension as well as its particleet al. , 2011). Sediment resuspension brought about through

  9. Presentations from the March 27th - 28th Methane Hydrates Advisory...

    Office of Environmental Management (EM)

    from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate Research DOE's Natural Gas Hydrates Program Gas Hydrates as a Geohazard: What...

  10. Feasibility Study of Economics and Performance of Solar Photovoltaics at the TechCity East Campus Resource Conservation and Recovery Act Site in Kingston, New York. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Salasovich, J.; Geiger, J. W.; Mosey, G.; Healey, V.

    2014-01-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the TechCity East Campus site in Kingston, New York, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this study is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  11. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

  12. EPA and the Federal Technology Transfer Act: Opportunity knocks

    SciTech Connect (OSTI)

    Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31T23:59:59.000Z

    In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

  13. Protective Actions and Reentry

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume defines appropriate protective actions and reentry of a site following an emergency. Canceled by DOE G 151.1-4.

  14. Physical Protection Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23T23:59:59.000Z

    Supplements DOE O 473.1, by establishing requirements for the physical protection of safeguards and security interests. Cancels: DOE M 5632.1C-1

  15. Environmental Protection Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as an environmental protection specialist within the Environmental Planning and Analysis department (KEC) of the Environment, Fish, and Wildlife ...

  16. System Protection Control Craftman

    Broader source: Energy.gov [DOE]

    A successful candidate will perform preventative and corrective maintenance on protective relays, revenue meters, telemetering schemes, substation control systems and various kinds of substation...

  17. Asset Protection Analysis Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-21T23:59:59.000Z

    The Guide provides examples of the application of as set protection analysis to several common problems. Canceled by DOE N 251.80.

  18. Radiation Protection of the Public and the Environment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-06T23:59:59.000Z

    The order establishes requirements to protect the public and the environment against undue risk from radiation associated with radiological activities conducted under the control of DOE pursuant to the Atomic Energy Act of 1954, as amended. Cancels DOE 5400.5 in its entirety.

  19. Radiation Protection of the Public and the Environment

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-11T23:59:59.000Z

    The order establishes requirements to protect the public and the environment against undue risk from radiation associated with radiological activities conducted under the control of DOE pursuant to the Atomic Energy Act of 1954, as amended. Canceled by DOE O 458.1, Admin Chg 2.

  20. Policy Name: Policy on the Personal Information Protection and Electronic

    E-Print Network [OSTI]

    Dawson, Jeff W.

    Policy Name: Policy on the Personal Information Protection and Electronic Documents Act, Canada Committee Date of Original Policy: May 24, 1995 Last Updated: November 2013 Mandatory Revision Date: November 2018 Contact: University Secretary Policy: [Note: This Policy replaces the policy known as "Access

  1. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

    2011-05-15T23:59:59.000Z

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  2. Clean Air Act. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-02-15T23:59:59.000Z

    This Reference Book contains a current copy of the Clean Air Act, as amended, and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. This Reference Book has been completely revised and is current through February 15, 1994.

  3. Balancing act creating the right regulation for coal combustion waste

    SciTech Connect (OSTI)

    Manuel, J.

    2009-11-15T23:59:59.000Z

    The December 2008 collapse of a coal ash pond in Tennessee threw safe management of coal combustion waste (CCW) into the spotlight. Millions of tons of CCW are produced in the United States each year, and a large percentage of that is recycled. The US Environmental Protection Agency is pursuing a host of initiatives that could directly or indirectly affect the disposition of CCW. States, too, are taking a look at how they regulate CCW. Among the options is the possibility of regulating CCW under the Resource Conservation and Recovery Act, a move that could have far-reaching implications for both the recycling and the disposal of this waste.

  4. Wind energy and the Migratory Bird Treaty Act

    SciTech Connect (OSTI)

    Schmidt, P.R. [Fish and Wildlife Service, Washington, DC (United States)

    1995-12-31T23:59:59.000Z

    The Fish and Wildlife Service (Service) is charged to balance its support for clean, renewable energy such as windpower with its trust responsibilities under the Migratory Bird Treaty Act (MBTA). There are four international treaties implemented by the MBTA protecting 850 species of migratory birds. The Service is focused on managing healthy populations but must protect individuals by law. An activity cannot legally {open_quotes}take{close_quotes} one migratory bird except as provided by a hunting season or a permit. The Service does not have the authority to issue a permit to {open_quotes}take{close_quotes} a bird incidental to an otherwise legal activity. Scientific permits or special purpose permits may be appropriate. Development of incidental take regulations are being considered. More research is needed, but this should prevent some management actions. The Service will continue to work with the industry to develop broad guidelines to minimize avian mortality.

  5. Oxidation Reactions Performed by Soluble Methane Monooxygenase Hydroxylase Intermediates H[subscript peroxo] and Q Proceed by Distinct Mechanisms

    E-Print Network [OSTI]

    Tinberg, Christine E.

    Soluble methane monooxygenase is a bacterial enzyme that converts methane to methanol at a carboxylate-bridged diiron center with exquisite control. Because the oxidizing power required for this transformation is demanding, ...

  6. Appalachian basin coal-bed methane: Elephant or flea

    SciTech Connect (OSTI)

    Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

    1991-08-01T23:59:59.000Z

    Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

  7. New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN ECoalbed Methane Proved

  8. New York Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) LiquidsCoalbed Methane Proved

  9. Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet) Texas Coalbed Methane Proved

  10. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197 14,1978. Number ofCoalbed Methane

  11. METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard Cowart, Chair DATE: JuneON24 March 2014 Re:METHANE

  12. Methane Hydrate Advisory Committee Charter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC) Richard2015 RDSHARP Supporting ElementsDepartmentMethane

  13. Methane Hydrate Advisory Committee Meeting Minutes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy MetalProgram Areas »26,Methane

  14. Methane Hydrate R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMayEnergy MetalProgramFiscal YearMethane

  15. Methane Hydrates and Climate Change | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 atthe District ofInstitute RegardingMethane hydrates store huge volumes

  16. Landfill Methane Project Development Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhouLand O LakesMethane Project

  17. Four Corners methane hotspot points to coal-related sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) TargetForms & NewsMethane hotspot

  18. Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-01-15T23:59:59.000Z

    To implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by the Department of Energy (DOE) operations and by which DOE cost effectively meets or exceeds compliance with applicable environmental; public health; and resource protection laws, regulations, and DOE requirements. Cancels DOE 5400.1 and DOE N 450.4.

  19. Environmental protection Implementation Plan

    SciTech Connect (OSTI)

    R. C. Holland

    1999-12-01T23:59:59.000Z

    This ``Environmental Protection Implementation Plan'' is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California's commitment to conduct its operations in an environmentally safe and responsible manner. The ``Environmental Protection Implementation Plan'' helps management and staff comply with applicable environmental responsibilities.

  20. Safety & Environmental Protection Services

    E-Print Network [OSTI]

    Glasgow, University of

    of care in waste storage and disposal is available on Safety and Environmental Protection Service's (SEPS sustainably and to protect the environment and, in line with this, recycles waste wherever practicable to biological properties). In addition some activities produce radioactive waste. Radioactive waste

  1. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-05-15T23:59:59.000Z

    To establish DOE procedures and responsibilities for implementing the policy and requirements set forth in 10 CFR Part 745, Protection of Human Subjects, ad in DOE P 443.1, Policy on the Protection of Human Subjects. Cancels DOE O 1300.3. Canceled by DOE O 443.1A.

  2. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-12-20T23:59:59.000Z

    The order establishes Department of Energy (DOE) procedures and responsibilities for implementing the policy and requirements set forth in 10 Code of Federal Regulations (CFR) Part 745, Protection of Human Subjects; and in DOE P 443.1A, Protection of Human Subjects, dated 12-20-07. Cancels DOE O 443.1. Canceled by DOE O 443.1B.

  3. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-20T23:59:59.000Z

    Provides detailed requirements to supplement DOE O 473.2, PROTECTIVE FORCE PROGRAM, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Change 1 revised pages in Chapters IV and VI on 12/20/2001.

  4. Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor

    E-Print Network [OSTI]

    Mallinson, Richard

    Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge help reduce the problem of global warming. There are vast reserves of natural gas around the world.1, Room T 335, Norman, Oklahoma 73019 This study on the partial oxidation of methane in a silent electric

  5. Catalytic performance of vanadium incorporated MCM-41 catalysts for the partial oxidation of methane to formaldehyde

    E-Print Network [OSTI]

    Haller, Gary L.

    that of oil. Methane, as the principle component of the natural gas and by product of oil refining and chemical processing, has been considered as an important sustainable feedstock for the chemical industry­4]. Industrially, formaldehyde is produced from methane by a three-step process including: (i) high temperature

  6. Methane emission from flooded coal seams in abandoned mines, in the light of laboratory investigations

    E-Print Network [OSTI]

    Boyer, Edmond

    Methane emission from flooded coal seams in abandoned mines, in the light of laboratory of methane from flooded unexploited coal seams Field experience from the flooding operations of the abandoned gassy coal seams in abandoned mines. The tests included the following main stages: - Determining

  7. Large-eddy simulation of lean hydrogenemethane turbulent premixed flames in the methane-

    E-Print Network [OSTI]

    GĂĽlder, Ă?mer L.

    -based to hydrogen-based economy are still under discussion and the implementation of the hydrogen- based economy methane flame in the methane- dominated regime. Copyright ÂŞ 2014, Hydrogen Energy Publications, LLC appear to be a promising option to synergistically pave the way toward pure hydrogen- based combustion

  8. A MOLECULAR SIMULATION STUDY OF ADSORPTION OF NITROGEN AND METHANE IN TITANIUM SILICATE (ETS-4)

    E-Print Network [OSTI]

    Lisal, Martin

    A MOLECULAR SIMULATION STUDY OF ADSORPTION OF NITROGEN AND METHANE IN TITANIUM SILICATE (ETS-4 titanium silicate ETS-4 (Engelhard titanium silicate) are calculated using grand canonical Monte Carlo. Commun. 2010, Vol. 75, No. 2, pp. 145­164 Adsorption of Nitrogen and Methane in Titanium Silicate 145

  9. A LEAN METHANE PREMIXED LAMINAR FLAME DOPED WITH COMPONENTS OF DIESEL FUEL

    E-Print Network [OSTI]

    Boyer, Edmond

    A LEAN METHANE PREMIXED LAMINAR FLAME DOPED WITH COMPONENTS OF DIESEL FUEL PART I: N-BUTYLBENZENE E better understand the chemistry involved during the combustion of components of diesel fuel flow rate analyses. Keywords: Premixed laminar flame, methane, n-butylbenzene, modelling, diesel fuel

  10. Molecular Properties of the "Ideal" Inhaled Anesthetic: Studies of Fluorinated Methanes, Ethanes, Propanes,

    E-Print Network [OSTI]

    Hudlicky, Tomas

    , Propanes, and Butanes E. 1Eger, 11, MD*, J. Liu, MD*, D. D. Koblin, PhD, MDt, M. J. Laster, DVM*, S. Taheri unfluorinated, partially fluorinated, and perfluorinated methanes, ethanes, propanes, and butanes to define fluorinated methanes, ethanes, propanes, and butanes, also obtaining limited data on longer- chained alkanes

  11. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

  12. Author's personal copy Methane seepage along the Hikurangi Margin of New Zealand: Geochemical

    E-Print Network [OSTI]

    Wehrli, Bernhard

    : Methane seepage gas hydrate water column sea surface carbon isotopes Hikurangi Margin The concentration and carbon isotope values of dissolved methane were measured in the water column at Rock Garden, Omakere­Temperature­Depth (CTD) operations were at Faure Site of Rock Garden. Here, seafloor bubble release was observed by ROV

  13. Microbes Turn Electricity Directly To Methane Without Hydrogen Generation March 30, 2009

    E-Print Network [OSTI]

    catalysts and at a lower energy level than converting carbon dioxide to methane using conventional, non Park, Pa. -- A tiny microbe can take electricity and directly convert carbon dioxide and water to methane, producing a portable energy source with a potentially neutral carbon footprint, according

  14. Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge

    E-Print Network [OSTI]

    Mallinson, Richard

    Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge production has been steam reforming, shown in reaction 4. It is very useful to use low-cost materials

  15. Substrate Hydroxylation in Methane Monooxygenase: Quantitative Modeling via Mixed Quantum Mechanics/

    E-Print Network [OSTI]

    Gherman, Benjamin F.

    at an atomic level of detail.4-7 In particular, the use of ab initio quantum chemical methods based on densitySubstrate Hydroxylation in Methane Monooxygenase: Quantitative Modeling via Mixed Quantum Mechanics with mixed quantum mechanics/molecular mechanics (QM/MM) methods, the hydroxylation of methane

  16. Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , steam, burning velocity, chemiluminescence, OH Introduction In ultra-wet gas turbines, the heatExperimental investigation of burning velocities of ultra-wet methane-air-steam mixtures Eric Abstract Global burning velocities of methane-air-steam mixtures are measured on prismatic laminar Bunsen

  17. Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions

    E-Print Network [OSTI]

    Columbia University

    for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard methane (CH4 )annually to the world's total CH4 emission of ~550 Tg/yr. Recycling and thermal treatment destined for landfills and to mitigating CH4 emission. Waste generation is estimated to more than double

  18. MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE

    E-Print Network [OSTI]

    MODELING THE EMISSIONS OF NITROUS OXIDE (N20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE;2 #12;MODELING THE EMISSIONS OF NITROUS OXIDE (N 20) AND METHANE (CH 4) FROM THE TERRESTRIAL BIOSPHERE cli- mate has on natural emissions of N2 0 and CH4 from the terrestrial biosphere to the atmosphere

  19. Acetic Acid from the Carbonylation of Chloride Methane Over Rhodium Based Catalysts

    E-Print Network [OSTI]

    Bao, Xinhe

    on an indirect route via synthesis gas (syngas), i.e., methane is first con- verted to syngas before it is further transformed into other useful products [6]. However, the production of syngas from methane) 130:286­290 DOI 10.1007/s10562-009-0017-9 #12;[12], which is produced from syngas feedstock with Cu

  20. MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR WATER -METHANE AND WATER -ETHANE MIXTURES

    E-Print Network [OSTI]

    1 MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR WATER - METHANE AND WATER - ETHANE MIXTURES Jeffrey were used to calculate water - methane and water - ethane phase equilibria over a wide range and petrochemical industry, natural and petroleum gas production, and environmental control. For many

  1. Experimental study on the formation and dissociation conditions of methane hydrates in porous media

    E-Print Network [OSTI]

    Jung, Woodong

    2002-01-01T23:59:59.000Z

    hydrates formed by methane gas and pure water in porous media. Methane gas hydrates were formed in a cell packed with 0.177-mm (0.007 in) diameter single sand (U.S. Sieve Series Designation Mesh No. 80) and 0.420-mm (0.017 in) diameter single sand (U...

  2. Department of Earth and Mineral Engineering Spring 2011 Oxidative Coupling of Methane Reactor

    E-Print Network [OSTI]

    Demirel, Melik C.

    Reactor Overview The sponsor has tasked our team with the design, construction and testing of an experimental reactor designed to couple methane to ethane and dehydrogenate ethane to ethylene. The reactor and build the reactor and perform methane conversion testing to provide proof of concept for the OCM

  3. Modeling the climate response to a massive methane release from gas hydrates

    E-Print Network [OSTI]

    Renssen, Hans

    Modeling the climate response to a massive methane release from gas hydrates H. Renssen and C. J release from gas hydrates, Paleoceanography, 19, PA2010, doi:10.1029/2003PA000968. 1. Introduction [2] Catastrophic releases of methane gas from hydrates (clathrates) have been mentioned to be responsible for rapid

  4. Content Protection for Optical Media Content Protection for Optical Media

    E-Print Network [OSTI]

    Amir, Yair

    Content Protection for Optical Media Content Protection for Optical Media A Comparison of Self-Protecting Digital Content and AACS Independent Security Evaluators www.securityevaluators.com May 3, 2005 Copyright for Optical Media 2 #12;Content Protection for Optical Media Content Protection for Optical Media 3 Executive

  5. High methane formation during the temperature-programmed decomposition in flowing hydrogen of supported mononuclear and polynuclear carbonyl complexes

    SciTech Connect (OSTI)

    Hucul, D.A.; Brenner, A.

    1981-01-14T23:59:59.000Z

    This paper presents the first detailed study of the temperature-programmed decomposition (TPDE) in flowing hydrogen of every element which forms a stable carbonyl. The investigation shows that these systems have an unexpectedly high propensity to form methane. The parameters affecting the yield of methane are described and this stoichiometric reaction is compared to catalytic methanation. (AT)

  6. Atmospheric composition, radiative forcing, and climate change as a consequence of a massive methane release from gas hydrates

    E-Print Network [OSTI]

    methane release from gas hydrates Gavin A. Schmidt and Drew T. Shindell National Aeronautics and Space of methane gas (CH4) from hydrate deposits on the continental slope. We investigate whether reported PETM, and climate change as a consequence of a massive methane release from gas hydrates, Paleoceanography, 18

  7. FY 2008 E-Government Act Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 E-Government Act Report FY 2008 E-Government Act Report FY 2008 E-Government Act Report FY 2008 E-Government Act Report More Documents & Publications FY 2008 E-Government Act...

  8. DOE Policy Re Recovery Act Recipient Use of Recovery Act Logos on Signage

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (“DOE”) policy regarding use of the Recovery Act logo by Recovery Act recipients and subgrantees.

  9. Methane-eating microbes found in Illinois aquifer | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Mahomet aquifer is protected by its glacial ancestry; growing and receding glaciers laid alternating blankets of fine glacial "till" and coarser gravel. When humans...

  10. NH Acid Rain Control Act (New Hampshire)

    Broader source: Energy.gov [DOE]

    The Act is implemented under New Hampshire's acid deposition control program established under the Rules to Control Air Pollution in Chapter Env-A 400. The goal of the Act is to reduce emissions...

  11. Georgia Hazardous Site Response Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Site Response Act is Georgia’s version of Superfund. The Act provides for graduated fees on the disposal of hazardous waste, a trust fund to enable the EPD to clean up or plan...

  12. Clean Air Act Amendments of 1990

    E-Print Network [OSTI]

    Hanneschlager, R. E.

    Congress is currently debating amendments to the Clean Air Act which would strengthen and enhance the current Clean Air Act. The bill would guarantee a reduction of 10 million tons of sulfur dioxide from 1980 levels; would sharply reduce pollutants...

  13. Public Waterfront Act- Chapter 91 (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act contains a number of regulations regarding the construction of structures and other activity near rivers, streams, harbors, and tidelands. Regulations pertaining to this Act can be found...

  14. District of Columbia Recovery Act State Memo

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation’s energy and environmental future. The Recovery Act investments in the District of Columbia...

  15. NH Clean Power Act (New Hampshire)

    Broader source: Energy.gov [DOE]

    The Act calls for annual reductions of multiple pollutants, including SO2, Nox, CO2, and mercury. The Act calls for an 87% reduction in SO2 emissions and a 70% reduction in Nox emissions from...

  16. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    SEEMAN, S.E.

    2000-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

  17. Gödel's universe and the chronology protection conjecture

    E-Print Network [OSTI]

    P. Pitanga

    2011-10-26T23:59:59.000Z

    We present a solution for the geodesic motion in G\\"odel's universe that provides a particular proof of Hawking's chronology protection conjecture in three-dimensional gravity theory. The solution is based upon the fact that the group of the automorphisms of the Heisenberg motion group H1\\timesU(1), modulo discrete sub-group Z, act isometrically on the boundary of the hyperbolic three-dimensional manifold. Closed timelike curves do not exist due to the presence of a closed Cauchy-Riemann surface for chronology protection, with two mirror symmetric sets of helicoidal self-similar modules inside. The present solution is isometrically equivalent to a cylindrical gravitational monochromatic wave front.

  18. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-05T23:59:59.000Z

    This order establishes the Environmental Protection, Safety, and Health Protection Program for Department of Energy (DOE) operations. Cancels Interim Management Directive No. 5001, Safety, Health And Environmental Protection dated 9-29-77.

  19. Clean Air Act, Section 309

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEAN AIR ACT § 309* §7609. Policy review (a)

  20. Williamson Act | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTEDBird, Idaho:Wildwood Crest, NewKansas:Williams,Florida:ActLegal

  1. WIPP - Privacy Act of 1974

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka Analytics andWFRNewsWindPrivacy Act

  2. Recovery Act | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8,Past Opportunities » Recovery Act

  3. Variability of the methane trapping in martian subsurface clathrate hydrates

    E-Print Network [OSTI]

    Thomas, Caroline; Picaud, Sylvain; Ballenegger, Vincent

    2008-01-01T23:59:59.000Z

    Recent observations have evidenced traces of methane CH4 heterogeneously distributed in the martian atmosphere. However, because the lifetime of CH4 in the atmosphere of Mars is estimated to be around 300-600 years on the basis of photochemistry, its release from a subsurface reservoir or an active primary source of methane have been invoked in the recent literature. Among the existing scenarios, it has been proposed that clathrate hydrates located in the near subsurface of Mars could be at the origin of the small quantities of the detected CH4. Here, we accurately determine the composition of these clathrate hydrates, as a function of temperature and gas phase composition, by using a hybrid statistical thermodynamic model based on experimental data. Compared to other recent works, our model allows us to calculate the composition of clathrate hydrates formed from a more plausible composition of the martian atmosphere by considering its main compounds, i.e. carbon dioxyde, nitrogen and argon, together with met...

  4. Structure Stability of Methane Hydrate at High Pressures

    SciTech Connect (OSTI)

    J Shu; X Chen; I Chou; W Yang; J Hu; R Hemley; K Mao

    2011-12-31T23:59:59.000Z

    The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P6{sub 3}/mmc, respectively. Upon compression, sI methanehydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methanehydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methanehydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3mstructure and ice VII (Pn3m). The results highlight the role of guest (CH{sub 4})-host (H{sub 2}O) interactions in the stabilization of the hydratestructures under pressure.

  5. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    SciTech Connect (OSTI)

    Don Augenstein

    2001-02-01T23:59:59.000Z

    The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

  6. Sandia National Laboratories: Recovery Act (ARRA) Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with: ARRA * awardees * contractors * DOE * Energy * Grid Integration * Partnership * photovoltaic * Photovoltaics * PV * Recovery Act * reliability * Renewable Energy * SAND...

  7. Energy Employees' Occupational Illness Compensation Program Act...

    Energy Savers [EERE]

    Employees' Occupational Illness Compensation Program Act (EEOICPA) Tracking Database, INL Energy Employees' Occupational Illness Compensation Program Energy Employees' Occupational...

  8. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect (OSTI)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01T23:59:59.000Z

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

  9. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31T23:59:59.000Z

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

  10. Fire protection design criteria

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, national Fire Protection Association Codes and Standards, and any other applicable DOE construction criteria. This Standard, along with other delineated criteria, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  11. Request for Privacy Act Records

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 % A PB 2 7 7 2 x>16 FOIA

  12. Quarterly review of methane from coal-seams technology. Volume 7, Number 3, July-September 1989

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The report contains: sources of coal well information; Powder River Basin, Wyoming; greater Green River coal region, Wyoming and Colorado; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; the United States coalbed methane resource; western cretaceous coal seams project; multiple coal seams project; spalling and the development of a hydraulic fracturing strategy for coal; geologic evaluation of critical production parameters for coalbed methane resources; coalbed methane opportunities in Alberta; the coalbed methane forum; eastern coalbed methane forum.

  13. Mondriaan memory protection

    E-Print Network [OSTI]

    Witchel, Emmett Jethro, 1970-

    2004-01-01T23:59:59.000Z

    Reliability and security are quickly becoming users' biggest concern due to the increasing reliance on computers in all areas of society. Hardware-enforced, fine-grained memory protection can increase the reliability and ...

  14. Protective Coatings for Turbomachinery

    E-Print Network [OSTI]

    McCune, B.; Hilty, L.

    of these coatings has lead to the development of tailored coatings for different applications. In addition, coatings now offer multiple benefits. The most advanced compressor coatings restore surface finish, resist erosion, and provide protection from corrosion....

  15. Physical Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23T23:59:59.000Z

    Establishes Department of Energy management objectives, requirements and responsibilities for the physical protection of safeguards and security interests. Cancels DOE 5632.1C. Canceled by DOE O 470.4.

  16. Cavern Protection (Texas)

    Broader source: Energy.gov [DOE]

    It is public policy of the state to provide for the protection of caves on or under Texas lands. For the purposes of this legislation, “cave” means any naturally occurring subterranean cavity, and...

  17. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-12-20T23:59:59.000Z

    The Policy is to establish DOE-specific principles for the protection of human subjects involved in DOE research. Cancels DOE P 443.1. Canceled by DOE O 443.1B

  18. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-05-15T23:59:59.000Z

    The purpose of this Policy is to establish DOE-specific policy for the protection of human subjects involved in DOE research. Canceled by DOE P 443.1A.

  19. Cybersecurity: Protecting Our

    E-Print Network [OSTI]

    prosperity in the 21st century will depend on cybersecurity." President Barack Obama We live in a wired world, ipads, game consoles, and other web-enabled devices also need to be protected from viruses and malware

  20. Federal Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-15T23:59:59.000Z

    This Manual establishes requirements for the management and operation of the Department of Energy (DOE) Federal protective forces (FPFs). Cancels DOE M 470.4-3, Chg 1. Canceled by DOE O 473.3.