Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network [OSTI]

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

2

Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane  

E-Print Network [OSTI]

Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane the current study and the previous measurements in similar flames with methane, ethane, and propane flames

GĂĽlder, Ă?mer L.

3

Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing  

E-Print Network [OSTI]

Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing Running Title: Novel Methane, Ethane, and Propane Oxidizing Bacteria Section incubating sediment with 13 C-labeled methane, ethane, or propane, we5 confirmed the incorporation of 13 C

Sessions, Alex L.

4

Molecular Properties of the "Ideal" Inhaled Anesthetic: Studies of Fluorinated Methanes, Ethanes, Propanes,  

E-Print Network [OSTI]

, Propanes, and Butanes E. 1Eger, 11, MD*, J. Liu, MD*, D. D. Koblin, PhD, MDt, M. J. Laster, DVM*, S. Taheri unfluorinated, partially fluorinated, and perfluorinated methanes, ethanes, propanes, and butanes to define fluorinated methanes, ethanes, propanes, and butanes, also obtaining limited data on longer- chained alkanes

Hudlicky, Tomas

5

National propane safety week caps fifth anniversary of GAS Check  

SciTech Connect (OSTI)

This paper reports on National Propane Safety Week. The publicity encompassed everything from preventative maintenance to safe winter storage of cylinders. This campaign focused much of its attention on GAS (gas appliance system) Check, the propane industry's most well-known safety program.

Prowler, S.

1990-09-01T23:59:59.000Z

6

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

7

ARM - Methane Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information Outreach Home Room

8

Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine  

SciTech Connect (OSTI)

Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

2011-10-05T23:59:59.000Z

9

Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels  

SciTech Connect (OSTI)

This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (���© pilot �¢���¼ 0.2-0.6 and ���© overall �¢���¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant ���© pilot (> 0.5), increasing ���© overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing ���© overall (at constant ���© pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-10-05T23:59:59.000Z

10

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil.  

E-Print Network [OSTI]

??Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production… (more)

Yudishtira, Wan Dedi

2012-01-01T23:59:59.000Z

11

Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions  

SciTech Connect (OSTI)

The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

Huang, J.; Bushe, W.K. [Department of Mechanical Engineering, University of British Columbia, 6950 Applied Science Lane, Vancouver, British Columbia (Canada V6T 1Z4)

2006-01-01T23:59:59.000Z

12

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

13

Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil  

E-Print Network [OSTI]

Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production for the Minas light crude oil (34?API). The studies on steam-propane were specifically...

Yudishtira, Wan Dedi

2003-01-01T23:59:59.000Z

14

Development of gas production type curves for coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists on methane production from the coal seams. The unique coal characteristic results in a dual-porosity system.… (more)

Garcia Arenas, Anangela.

2004-01-01T23:59:59.000Z

15

Technical Note Methane gas migration through geomembranes  

E-Print Network [OSTI]

coefficient of PVC, LLDPE, and HDPE geomembranes by performing the standard gas transport test (ASTM D1434). The measured methane gas permeability coefficient through a PVC geomembrane is 7.55 3 104 ml(STP).mil/m2.day thicknesses is proposed using the measured permeability coefficients for PVC, LLDPE, and HDPE geomembranes

16

Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation  

SciTech Connect (OSTI)

Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

Yoon, S.S. [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi-do 445-706 (Korea); Anh, D.H. [Korea Electric Power Research Institute, Daejeon 305-380 (Korea); Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea)

2008-08-15T23:59:59.000Z

17

Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions  

SciTech Connect (OSTI)

Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

2007-03-01T23:59:59.000Z

18

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

19

Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions  

E-Print Network [OSTI]

Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions quantities of CH4 are stored in marine sediment in the form of methane hydrate, bubbles, and dissolved CH4 in pore water. Here I discuss the various pathways for methane to enter the ocean and atmosphere

Zhang, Youxue

20

Measurements of Methane Emissions at Natural Gas Production Sites  

E-Print Network [OSTI]

Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

Lightsey, Glenn

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (Million Cubic Feet) U.S.Propane

22

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network [OSTI]

Flammability Limits in Pure O 2 (%) Heat of combustion (kJg ) Liquid heat of combustion (MJ perliter) Gas heat of combustion (MJ m @ STP) Peak combustion

Green, Michael A.

2005-01-01T23:59:59.000Z

23

Comparative studies of methane and propane as fuels for spark ignition and compression ignition engines  

SciTech Connect (OSTI)

The paper reviews the combustion characteristics of the two fuels and sets out to consider their respective performance in both spark ignition and compression ignition engines. Results of comparative tests involving spark ignition engines over a wide range of operating conditions are presented and discussed. Some of the performance characteristics considered are those relating to power output, efficiency, tendency to knock, cyclic variations, optimum spark requirements and exhaust emissions. Similarly, some of the performance characteristics in compression ignition engines considered include power output, efficiency, tendency towards knock and autoignition, exhaust emissions and low operational temperature problems. Finally, the relative operational safety aspects of the two fuels are evaluated. It is then suggested that in this regard, methane has some excellent physical, chemical and combustion characteristics that makes it a particularly safe fuel.

Karim, G.A.; Wierzba, I.

1983-08-01T23:59:59.000Z

24

Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID (flame ionization)  

E-Print Network [OSTI]

Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID to equilibrate the methane between the air and water. · With the syringe pointing down, eject all the water fromL of gas in the syringe · We will now move to the GC lab in Starr 332 to measure methane. · Repeat

Vallino, Joseph J.

25

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

26

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network [OSTI]

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K 73019 Received October 11, 2002 In this study, synthesis gas production in an AC electric gas discharge of methane and air mixtures at room temperature and ambient pressure was investigated. The objective

Mallinson, Richard

27

Dewatering of coalbed methane wells with hydraulic gas pump  

SciTech Connect (OSTI)

The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

Amani, M.; Juvkam-Wold, H.C. [Texas A& M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

28

Commodity chemicals from natural gas by methane chlorination  

SciTech Connect (OSTI)

Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

1987-01-01T23:59:59.000Z

29

Methanation of gas streams containing carbon monoxide and hydrogen  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

Frost, Albert C. (Congers, NY)

1983-01-01T23:59:59.000Z

30

Etude cin\\'etique de CVD de pyrocarbone obtenu par pyrolyse de propane  

E-Print Network [OSTI]

High temeperature (900-1000\\degree C) low pressure (propane yields a pyrocarbon deposit, but also mainly hydrogen and hydrocarbons from methane to polyaromatics. 30 reaction products were exeperimentally quantified at different operating conditions. A detailed kinetic pyrolysis model (600 reactions) has been developed and validated based on the totality of experiments. This model includes a homogeneous model (describing the gas phase pyrolysis of propane) coupled with a heterogeneous model describing the pyrocarbon deposit.

Ziegler-Devin, Isabelle; Marquaire, Paul-Marie

2009-01-01T23:59:59.000Z

31

Published in Journal de Physique IV, vol 11, pp. Pr3-101 ---Pr3-108 Kinetic modelling of gas-phase decomposition of propane : correlation with pyrocarbon deposition  

E-Print Network [OSTI]

-phase decomposition of propane : correlation with pyrocarbon deposition CĂ©dric Descamps, Gerard L. Vignoles , Olivier : A chemical kinetic model for gas-phase pyrolysis of propane has been set up, partially reduced, and validated the notion of "maturation" from propane to lighter hydrocarbons, then to aromatic compounds and PAHs. The gas

Boyer, Edmond

32

Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines  

E-Print Network [OSTI]

Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

Dunin-Borkowski, Rafal E.

33

Generating Methane Gas From Manure Charles D. Fulhage, Dennis Sievers and James R. Fischer  

E-Print Network [OSTI]

Generating Methane Gas From Manure Charles D. Fulhage, Dennis Sievers and James R. Fischer Department of Agricultural Engineering At first glance, the idea of generating methane gas has considerable -- the environmental crisis and the energy shortage. Unfortunately, present-day large-scale methane generation requires

Laughlin, Robert B.

34

Reduction of titania by methane-hydrogen-argon gas mixture  

SciTech Connect (OSTI)

Reduction of titania using methane-containing gas was investigated in a laboratory fixed-bed reactor in the temperature range 1,373 to 1,773 K. The reduction production product is titanium oxycarbide, which is a solid solution of TiC and TiO. At 1,373 K, the formation rate of TiC is very slow. The rate and extent of reaction increase with increasing temperature to 1,723 K. A further increase in temperature to 1,773 K does not affect the reaction rate and extent. An increase in methane concentration to 8 vol pct favors the reduction process. A further increase in methane concentration above 8 vol pct causes excessive carbon deposition, which has a negative effect on the reaction rate. Hydrogen partial pressure should be maintained above 35 vol pct to depress the cracking of methane. Addition of water vapor to the reducing gas strongly retards the reduction reaction, even at low concentrations of 1 to 2 vol pct. Carbon monoxide also depresses the reduction process, but its effect is significant only at higher concentrations, above 10 vol pct.

Zhang, G.; Ostrovski, O.

2000-02-01T23:59:59.000Z

35

Gettering of hydrogen and methane from a helium gas mixture  

SciTech Connect (OSTI)

In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup ®} getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650?°C to decompose the methane, and the second at 110?°C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

Cárdenas, Rosa Elia, E-mail: recarde1@uiwtx.edu [Department of Physics, The University of the Incarnate Word, 4301 Broadway, San Antonio, Texas 78209 (United States); Stewart, Kenneth D.; Cowgill, Donald F., E-mail: dfcowgi@sandia.gov [Sandia National Laboratories, Hydrogen and Metallurgical Sciences, 7011 East Avenue, Livermore, California 94550 (United States)

2014-11-01T23:59:59.000Z

36

Gas separation with oligomer-modified inorganic membranes  

E-Print Network [OSTI]

-based separation are presented. Alumina membranes with average pore sizes near 5 nm and 10 run were treated with various n-alkyl trichlorosilanes. Pure gas permeation studies using nitrogen, methane, and propane were performed to investigate the effects...

Javaid, Asad

1999-01-01T23:59:59.000Z

37

Catalyst for the methanation of carbon monoxide in sour gas  

DOE Patents [OSTI]

The invention involves the synergistic effect of the specific catalytic constituents on a specific series of carriers for the methanation of carbon monoxide in the presence of sulfur at relatively high temperatures and at low steam to gas ratios in the range of 0.2:1 or less. This effect was obtained with catalysts comprising the mixed sulfides and oxides of nickel and chromium supported on carriers comprising magnesium aluminate and magnesium silicate. Conversion of carbon monoxide to methane was in the range of from 40 to 80%. Tests of this combination of metal oxides and sulfides on other carriers and tests of other metal oxides and sulfides on the same carrier produced a much lower level of conversion.

Kustes, William A. (Louisville, KY); Hausberger, Arthur L. (Louisville, KY)

1985-01-01T23:59:59.000Z

38

Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change  

E-Print Network [OSTI]

Potential effects of gas hydrate on human welfare. Proc.W.S. A review of methane and gas hydrates in the dynamic,Geology of Natural Gas Hydrates, M. Max, A.H. Johnson, W.P.

Reagan, Matthew T.

2008-01-01T23:59:59.000Z

39

Prediction of gas-hydrate formation conditions in production and surface facilities  

E-Print Network [OSTI]

such as methane, ethane, propane, carbon dioxide and hydrogen sulfide to binary, ternary, and natural gas mixtures. I used the Statistical Analysis Software (SAS) to find the best correlations among variables such as specific gravity and pseudoreduced pressure...

Ameripour, Sharareh

2006-10-30T23:59:59.000Z

40

TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR  

SciTech Connect (OSTI)

In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

2008-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect (OSTI)

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

42

Alternative Fuel Tool Kit How to Implement: Propane  

E-Print Network [OSTI]

, colorless gas that is a byproduct of natural gas production and crude oil refining. Propane autogas What is Liquefied Petroleum Gas? Liquefied petroleum gas (LPG) is commonly referred to as propane energy storage, propane is stored as a liquid in a pressurized tank onboard the vehicle, typically at 100

43

Efficient gas-separation process to upgrade dilute methane stream for use as fuel  

DOE Patents [OSTI]

A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

2012-03-06T23:59:59.000Z

44

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge  

E-Print Network [OSTI]

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge production has been steam reforming, shown in reaction 4. It is very useful to use low-cost materials

Mallinson, Richard

45

Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes  

SciTech Connect (OSTI)

Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

2011-06-01T23:59:59.000Z

46

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network [OSTI]

-produced electricity for battery electric vehicles. Already, vehicles powered by compressed natural gas, propane. LIPMAN AND MARK A. DELUCCHI example, promising strategies for powering motor vehicles with reduced GHGEMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

Kammen, Daniel M.

47

Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory  

E-Print Network [OSTI]

Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory Ricardo B. Metz Department of Chemistry, University of Massachusetts, Amherst, MA 01003 USA Abstract Gas such as methanol has attracted great experimental and theoretical interest due to its importance as an industrial

Metz, Ricardo B.

48

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation  

E-Print Network [OSTI]

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate simulating reflectors (BSRs) imply the potential existence of gas hydrates offshore southwestern Taiwan that the fluxes are very high in offshore southwestern Taiwan. The depths of the SMI are different at sites GH6

Lin, Andrew Tien-Shun

49

Dynamics of Propane in Silica Mesopores Formed upon Propylene Hydrogenation over Pt Nanoparticles by Time-Resolved FT-IR Spectroscopy  

E-Print Network [OSTI]

state distribution of propane between gas and mesopore phaseWavenumber (cm ) B Gas Phase Propane 2968 cm k 1 = 3.1 ± 0.4slices showing the gas phase propane component at 216, 648,

Waslylenko, Walter; Frei, Heinz

2008-01-01T23:59:59.000Z

50

FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Gas Hydrates? What Role Do Gas Hydrates Play in Nature? Theme 2 Gas Hydrates as a Potential Energy Resource Are Gas Hydrates a Potential Energy Source? How Big Is the...

51

Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change  

SciTech Connect (OSTI)

Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

2008-04-15T23:59:59.000Z

52

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

SciTech Connect (OSTI)

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

53

Engineering Methane is a major component of shale gas. Recent  

E-Print Network [OSTI]

-added chemicals, (ii) efficient electricity generation through fuel cells, and (iii) methane storage for vehicles), and electrochemical oxidation of CH4 in the solid oxide fuel cell (SOFC). In situ IR studies revealed that adsorbed of solid oxide fuel cells. In 2009, he established FirstEnergyAdvanced Energy Research Center, focusing

54

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents [OSTI]

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

Balachandran, Uthamalingam (Hinsdale, IL); Dusek, Joseph T. (Lombard, IL); Kleefisch, Mark S. (Napersville, IL); Kobylinski, Thadeus P. (Lisle, IL)

1996-01-01T23:59:59.000Z

55

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents [OSTI]

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

1996-11-12T23:59:59.000Z

56

Study of the Low Temperature Oxidation of Propane Maximilien Cord  

E-Print Network [OSTI]

Study of the Low Temperature Oxidation of Propane Maximilien Cord , Benoit Husson , Juan of China, Hefei, Anhui 230029, P. R. China Abstract The lowtemperature oxidation of propane oxidation of propane in the gas phase has been the subject of very few experimental studies, mainly

Paris-Sud XI, Université de

57

Demonstration projects for coalbed methane and Devonian shale gas: Final report. [None  

SciTech Connect (OSTI)

In 1979, the US Department of Energy provided the American Public Gas Association (APGA) with a grant to demonstrate the feasibility of bringing unconventional gas such as methane produced from coalbeds or Devonian Shale directly into publicly owned utility system distribution lines. In conjunction with this grant, a seven-year program was initiated where a total of sixteen wells were drilled for the purpose of providing this untapped resource to communities who distribute natural gas. While coalbed degasification ahead of coal mining was already a reality in several parts of the country, the APGA demonstration program was aimed at actual consumer use of the gas. Emphasis was therefore placed on degasification of coals with high methane gas content and on utilization of conventional oil field techniques. 13 figs.

Verrips, A.M.; Gustavson, J.B.

1987-04-01T23:59:59.000Z

58

Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study  

SciTech Connect (OSTI)

Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

Christopher Orme

2012-08-01T23:59:59.000Z

59

AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

Jerry Myers

2005-04-15T23:59:59.000Z

60

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded natural

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Methane contamination of drinking water accompanying gas-well drilling and  

E-Print Network [OSTI]

Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra of energy use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded

Jackson, Robert B.

62

GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS  

SciTech Connect (OSTI)

The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

James Sorensen; Jaroslav Solc; Bethany Bolles

2000-07-01T23:59:59.000Z

63

Incentives for Methane Mitigation and Energy-Efficiency Improvements in Case of Ukraine’s Natural Gas Transmission System  

SciTech Connect (OSTI)

Reducing methane losses is a concern for climate change policy and energy policy. The energy sector is the major source of methane emissions into the atmosphere. Reducing methane emissions and avoiding combustion can be very cost-effective, but various barriers prevent such energy-efficiency measures from taking place. To date, few examples of industry-wide improvements exist. One example of substantial investments into upgrading natural gas transmission system comes from Ukraine. The Ukrainian transmission company, Ukrtransgaz, reduced its own system’s natural gas consumption by 68 percent in 2011 compared to the level in 2005. Evaluating reductions in methane emissions is challenging because of lack of accurate data and gaps in accounting methodologies. At the same time, Ukraine’s transmission system has undergone improvements that, at the very least, have contained methane emissions, if not substantially reduced them. In this paper, we describe recent developments in Ukraine’s natural gas transmission system and analyze the incentives that forced the sector to pay close attention to its methane losses. Ukraine is one of most energy-intensive countries, among the largest natural gas consumers in the world, and a significant emitter of methane. The country is also dependent on imports of natural gas. A combination of steep increases in the price of imported natural gas, and comprehensive domestic environmental and energy policies, regional integration policy, and international environmental agreements has created conditions for successful methane emission and combustion reductions. Learning about such case studies can help us design better policies elsewhere.

Roshchanka, Volha; Evans, Meredydd

2014-06-01T23:59:59.000Z

64

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

65

Sulfur resistance of Group VIII transition metal promoted nickel catalysts for synthesis gas methanation  

E-Print Network [OSTI]

SULFUR RESISTANCE OF GROUP VIII TRANSITION METAL PROMOTED NICKEL CATALYSTS FOR SYNTHESIS GAS METHANATION A Thesis by KELLEE HALL HAMLIN Submitted to the Graduate College of Texas AgrM University in partial fulfillment of the requirement...: Aydin Akger n (Chairman of Co 'ttee) Ahme M. Gadalla (Member) Michael . Rosynek (Member) aries D. Holland . ( ead of Department) May 1986 ABSTRACT Sulfur Resistance of Group VIII Transition Metal Promoted Nickel Catalysts For Synthesis Gas...

Hamlin, Kellee Hall

2012-06-07T23:59:59.000Z

66

UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE  

SciTech Connect (OSTI)

This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

2011-10-01T23:59:59.000Z

67

Propane situation update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12.9 MMbbls PADD 2 propane inventories million barrels Source: EIA, Weekly Petroleum Status Report, data through April 11 April 11 8.9 MMbbls PADD 2 (Midwest) propane inventories...

68

Propane on Titan  

E-Print Network [OSTI]

We present the first observations of propane (C$_3$H$_8$) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a $R=\\lambda/\\delta\\lambda\\approx10^5$ spectrometer (TEXES) to observe propane's $\

H. G. Roe; T. K. Greathouse; M. J. Richter; J. H. Lacy

2003-09-23T23:59:59.000Z

69

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

SciTech Connect (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

70

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect (OSTI)

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

71

Syngas Production from Propane Using Atmospheric Non-thermal Plasma  

E-Print Network [OSTI]

Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

2009-01-01T23:59:59.000Z

72

Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: methane from coal seams  

SciTech Connect (OSTI)

Potential public health and safety problems and the potential environmental impacts from the recovery of gas from coalbeds are identified and examined. The technology of methane recovery is described and economic and legal barriers to production are discussed. (ACR)

Ethridge, L.J.; Cowan, C.E.; Riedel, E.F.

1980-07-01T23:59:59.000Z

73

Nationwide: Southeast Propane Autogas Development Program Brings...  

Energy Savers [EERE]

Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane...

74

Process for producing methane from gas streams containing carbon monoxide and hydrogen  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

Frost, Albert C. (Congers, NY)

1980-01-01T23:59:59.000Z

75

Methanation assembly using multiple reactors  

DOE Patents [OSTI]

A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

Jahnke, Fred C.; Parab, Sanjay C.

2007-07-24T23:59:59.000Z

76

Measurements of Laminar Flame Velocity for Components of Natural Gas  

E-Print Network [OSTI]

, BP 20451, 1 Rue Grandville, 54001 Nancy, France 2 Division of Combustion Physics, Lund University flame velocity of components of natural gas, methane, ethane, propane, and nbutane as well as of binary performed by the heat flux method using a newly built flat flame adiabatic burner at atmospheric pressure

Paris-Sud XI, Université de

77

U N C L A S S I F I E D Gas Hydrate Experimental Capabilities at the Los Alamos  

E-Print Network [OSTI]

investigating synthesized (both in-situ and ex-situ) gas hydrates (methane, ethane, propane, CO2 and H2) using-host interactions that drive structure and dynamics. Lee et al., Science 2005 ·Storage of hydrogen in molecular form. ·Tetrahydrofuran (THF)-containing gas hydrate has been proposed as a storage material. THF + D2 clathrates

Downs, Robert T.

78

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

SciTech Connect (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

79

Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes  

E-Print Network [OSTI]

Potential distribution of methane hydrate in the world'sisotopic evidence for methane hydrate instability duringHendy, L.L. , and R.J. Behl, Methane hydrates in quaternary

Reagan, M.

2012-01-01T23:59:59.000Z

80

AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

Jerry Myers

2003-05-13T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPLINE LEAK DETECTION  

SciTech Connect (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The third six-month technical report contains a summary of the progress made towards finalizing the design and assembling the airborne, remote methane and ethane sensor. The vendor has been chosen and is on contract to develop the light source with the appropriate linewidth and spectral shape to best utilize the Ophir gas correlation software. Ophir has expanded upon the target reflectance testing begun in the previous performance period by replacing the experimental receiving optics with the proposed airborne large aperture telescope, which is theoretically capable of capturing many times more signal return. The data gathered from these tests has shown the importance of optimizing the fiber optic receiving fiber to the receiving optic and has helped Ophir to optimize the design of the gas cells and narrowband optical filters. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

Jerry Myers

2004-05-12T23:59:59.000Z

82

Assessing the Potential of Using Hydrate Technology to Capture, Store and Transport Gas for the Caribbean Region  

E-Print Network [OSTI]

that are generally associated with chemical compounds. Gas hydrates of interest to the natural gas industry are made up of lattices containing water molecules in different ratios with methane, nitrogen, ethane, propane, iso-butane, normal butane, carbon dioxide... or carbon dioxide. 7 Transporting gas in the form of a gas hydrate can prove to be very useful in the supply chain of natural gas to meet future energy demand. Thus major challenges exist in effectively capturing, storing, transporting...

Rajnauth, Jerome Joel

2012-02-14T23:59:59.000Z

83

AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION  

SciTech Connect (OSTI)

Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

Jerry Myers

2003-11-12T23:59:59.000Z

84

4-102 Methane is heated in a rigid container. The final pressure of the methane is to be determined using the ideal gas equation and the Benedict-Webb-Rubin equation of state.  

E-Print Network [OSTI]

4-54 4-102 Methane is heated in a rigid container. The final pressure of the methane the ideal gas equation of state, Methane 100 kPa 20qC Q kPa229.7 K293 K673 kPa)100( 1 2 12 T T PP The specific molar volume of the methane is /kmolm36.24 kPa100 K)K)(293/kmolmkPa(8.314 3 3 1 1 21 P TRu vv (b

Bahrami, Majid

85

Propane Vehicle Demonstration Grant Program  

SciTech Connect (OSTI)

Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

Jack Mallinger

2004-08-27T23:59:59.000Z

86

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report  

SciTech Connect (OSTI)

The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

87

Gas productivity related to cleat volumes derived from focused resistivity tools in coalbed methane (CBM) fields  

SciTech Connect (OSTI)

Cleats are critical for coal-bed methane (CBM) production, but operators usually lack a viable method to determine productivity except for costly well tests. Wireline logs, run over the CBM deposits of the Drunkards Wash Unit located in the Uinta Basin of Utah, were used to develop a new method to relate productivity to the cleat volume. The latter is derived from a focused resistivity log and the wellbore-fluid resistivity. Induction tools are unsuitable for this method, because they are dominated by borehole effects in high resistivity coals and low resistivity mud. Moreover, they read too deep to be significantly affected by the substitution of formation fluid by borehole fluid in the cleats on which the method is based. The method was demonstrated by relating cleat volume to CBM gas productivity in 24 wells, an exercise that clearly separated good from poor producers.

Yang, Y.H.; Peeters, M.; Cloud, T.A.; Van Kirk, C.W. [Kerr McGee Rocky Mountain Corporation, Denver, CO (United States)

2006-06-15T23:59:59.000Z

88

Gas hydrates in the Gulf of Mexico  

E-Print Network [OSTI]

filled by one or more gases. In marine sediments gas hydrates are found in regions where high pressure, low temperature and gas in excess of solubility are present. Low molecular weight hydrocarbons (LMWH), I. e. methane through butane, carbon dioxide... loop at a helium carrier flow of 12 ml/min with an elution order of methane, ethane, carbon dioxide and propane. Each fraction was trapped in a U- shaped Porpak-Q filled glass tube immersed in LN2. Butanes and heartier weight gases were trapped...

Cox, Henry Benjamin

1986-01-01T23:59:59.000Z

89

Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska  

SciTech Connect (OSTI)

The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

Glenn, R.K.

1992-01-01T23:59:59.000Z

90

Methane hydrate potential and development of a shallow gas field in the arctic: The Walakpa Field North Slope Alaska  

SciTech Connect (OSTI)

The goal of the North Slope Hydrate Study is to evaluate the methane hydrate potential of the Walakpa gas field, a shallow gas field located near Barrow, Alaska. Observing, understanding, and predicting the production characteristics of the Walakpa field will be accomplished by the analysis of the reservoir geology, and of the individual well production data, derived from reservoir engineering studies conducted in the field.

Glenn, R.K.

1992-06-01T23:59:59.000Z

91

E-Print Network 3.0 - air methane vam Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reagents Methane (99.99 v.%, Air Products and Chemicals, Inc.) and propane (99.0 v.%, Praxair) were used... of carbon catalyst activation on the rate of methane decomposition...

92

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture  

SciTech Connect (OSTI)

Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700şC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

2014-01-01T23:59:59.000Z

93

U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)  

SciTech Connect (OSTI)

Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

Heath, G.

2014-04-01T23:59:59.000Z

94

A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry  

E-Print Network [OSTI]

the anaerobic oxidation of methane. Environ. Microbiol. 10(Field observations of methane concentra- tions and oxidationAnaerobic oxidation of methane above gas hydrates at Hydrate

2011-01-01T23:59:59.000Z

95

Pennsylvania Farmland and Forest Land Assessment Act of 1974- Utilization of Land or Conveyance of Rights for Exploration or Extraction of Gas, Oil or Coal Bed Methane  

Broader source: Energy.gov [DOE]

This act prescribes the procedure utilization of land or conveyance of rights for exploration or extraction of gas, oil or coal bed methane in agricultural and forest reserve areas.

96

Subsurface definition of the Allegheny Group coalbed methane prospect interval in Southwestern Pennsylvania and new gas content results  

SciTech Connect (OSTI)

A preliminary reconnaissance of coalbed methane gas content data from exploratory coal cores and pre-existing data implies that the greater the depth and rank, the greater the total and cumulative gas content. The coal seams studied, ranging in age from the Pennsylvanian-Permian Dunkard Group to the Middle Pennsylvanian Allegheny Group, are from the Main Bituminous Field and two of the anthracite fields. Consequently, the Pennsylvania Geological Survey and the West Virginia Geological and Economic Survey conducted a mapping investigation to evaluate the regional geology of the coal-bearing intervals and its influence on coalbed methane potential. Phase I of this study involved the entire Pennsylvanian coal-bearing interval; Phase II focused on a stratigraphic delineation and evaluation of Allegheny coalbeds and associated sandstones. A variety of cross sections and isopach maps show several prospective coalbeds and facies relationships with channel-fill sandstones. This suggests that some of these sandstones may be traps for coalbed methane. Often overlooked in reservoir characterization is the quality of a coal seam. Coal rank, grade, and type influence the reserves and production of coalbed methane; the higher the rank, the greater adsorptive capacity of the coal. The integration of coal quality with other critical tools of exploration may increase the success rate of finding {open_quotes}sweet spots.{close_quotes} Additional Pennsylvania Geological Survey drilling occurred in Beaver, Lawrence, Somerset, and Washington counties. Gas contents were graphically displayed against depth, thickness, and time for a variety of samples from 21 coal seams; average gas composition and Btu values were determined for selected samples.

Markowski, A.K. [Pennsylvania Dept. of Conservation and Natural Resources-Bureau of Topographic and Geologic Survey, Harrisburg, PA (United States)

1996-09-01T23:59:59.000Z

97

Tool to predict the production performance of vertical wells in a coalbed methane reservoir.  

E-Print Network [OSTI]

??Coalbed Methane (CBM) is an unconventional gas resource that consists of methane production from coal seams. Coalbed Methane gas production is controlled be interactions of… (more)

Enoh, Michael E.

2007-01-01T23:59:59.000Z

98

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

SciTech Connect (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

99

The catalytic oxidation of propane  

E-Print Network [OSTI]

THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

Sanderson, Charles Frederick

1949-01-01T23:59:59.000Z

100

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

SciTech Connect (OSTI)

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect (OSTI)

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

102

Geochemical assessment of gaseous hydrocarbons: mixing of bacterial and thermogenic methane in the deep subsurface petroleum system, Gulf of Mexico continental slope  

E-Print Network [OSTI]

Page 12 Modelled maturity variations in g10013C of methane through butane, relative to g10013C of total source kerogen .......................................................... 29 13 Diagrams showing various processes and resulting compositional... gas contains methane (CH4) as a major constituent (70-100%), ethane (C2H6) (1-10%), lower percentages of higher hydrocarbons ?propane (C3H8), butane (C4H10), pentane (C5H12)? through hexanes (C6H14), and traces up through nonanes (C9H20) (Tissot...

Ozgul, Ercin

2004-09-30T23:59:59.000Z

103

Investigation of methane adsorption and its effect on gas transport in shale matrix through microscale and mesoscale simulations  

E-Print Network [OSTI]

Methane adsorption and its effect on fluid flow in shale matrix are investigated through multi-scale simulation scheme by using molecular dynamics (MD) and lattice Boltzmann (LB) methods. Equilibrium MD simulations are conducted to study methane adsorption on the organic and inorganic walls of nanopores in shale matrix with different pore sizes and pressures. Density and pressure distributions within the adsorbed layer and the free gas region are discussed. The illumination of the MD results on larger scale LB simulations is presented. Pressure-dependent thickness of adsorbed layer should be adopted and the transport of adsorbed layer should be properly considered in LB simulations. LB simulations, which are based on a generalized Navier-Stokes equation for flow through low-permeability porous media with slippage, are conducted by taking into consideration the effects of adsorbed layer. It is found that competitive effects of slippage and adsorbed layer exist on the permeability of shale matrix, leading to di...

Li, ZhongZhen; Chen, Li; Kangd, Qinjun; He, Ya-Ling; Tao, Wen-Quan

2015-01-01T23:59:59.000Z

104

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5, 201449,propane

105

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5,propane price

106

Residential propane price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oilheating5,propane

107

Residential propane price increases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014propane

108

Residential propane prices available  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6,propane prices

109

Residential propane prices decreases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6,propane prices5,

110

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6,propane

111

Clean Fuel Advanced Technology Public Education Campaign: Billboards According to the U.S. Department of Energy's July 2013 alternative fuel price report, the price of propane  

E-Print Network [OSTI]

.S. Department of Energy's July 2013 alternative fuel price report, the price of propane (LPG) in North Carolina at least $1,000 in yearly fuel costs by driving on natural gas or propane. · According to the U

112

Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead  

SciTech Connect (OSTI)

Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL confirmed the feasibility of the process. However, researchers at BCT were unable to develop equipment suitable for continuous operation and demonstration of the process in the field was not attempted. The significant achievements of the research area: Bench-scale batch results using carbon dioxide indicate >40% of the feed water to the hydrate formation reactor was converted to hydrate in a single pass; The batch results also indicate >23% of the feed water to the hydrate formation reactor (>50% of the hydrate formed) was converted to purified water of a quality suitable for discharge; Continuous discharge and collection of hydrates was achieved at atmospheric pressure. Continuous hydrate formation and collection at atmospheric conditions was the most significant achievement and preliminary economics indicate that if the unit could be made operable, it is potentially economic. However, the inability to continuously separate the hydrate melt fraction left the concept not ready for field demonstration and the project was terminated after Phase Two research.

BC Technologies

2009-12-30T23:59:59.000Z

113

High accuracy p-rho-t measurements up to 200 MPa between 200 K and 500 K using a compact single sinker magnetic suspension densimeter for pure and natural gas like mixtures  

E-Print Network [OSTI]

-74]. ............................................................. 90 FIGURE 54. Literature carbon dioxide deviations from NIST-12 database for temperatures between 240 K and 313 K [76]. ............................................ 91 FIGURE 55. Literature carbon dioxide deviations from NIST-12 database... based fuels such as coal, oil and natural gas. Among these, natural gas is the cleanest, safest, and most useful. Natural gas is a mixture of predominantly methane and other paraffinic hydrocarbons such as ethane, propane, butane, pentane etc...

Atilhan, Mert

2009-06-02T23:59:59.000Z

114

Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane  

SciTech Connect (OSTI)

The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that anaerobic methane oxidizing (AOM) microorganisms are predominantly found in marine habitats and grow poorly under most laboratory conditions. One path for future research would be to use a small rotary rig to collect samples from deeper soil horizons, possibly adjacent to the coal-bearing horizons that may be more anaerobic.

Scott, A R; Mukhopadhyay, B; Balin, D F

2012-09-06T23:59:59.000Z

115

Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams  

SciTech Connect (OSTI)

For deep coal seams, significant reservoir pressure drawdown is required to promote gas desorption because of the Langmuir-type isotherm that typifies coals. Hence, a large permeability decline may occur because of pressure drawdown and the resulting increase in effective stress, depending on coal properties and the stress field during production. However, the permeability decline can potentially be offset by the permeability enhancement caused by the matrix shrinkage associated with methane desorption. The predictability of varying permeability is critical for coalbed gas exploration and production-well management. We have investigated quantitatively the effects of reservoir pressure and sorption-induced volumetric strain on coal-seam permeability with constraints from the adsorption isotherm and associated volumetric strain measured on a Cretaceous Mesaverde Group coal (Piceance basin) and derived a stress-dependent permeability model. Our results suggest that the favorable coal properties that can result in less permeability reduction during earlier production and an earlier strong permeability rebound (increase in permeability caused by coal shrinkage) with methane desorption include (1) large bulk or Young's modulus; (2) large adsorption or Langmuir volume; (3) high Langmuir pressure; (4) high initial permeability and dense cleat spacing; and (5) low initial reservoir pressure and high in-situ gas content. Permeability variation with gas production is further dependent on the orientation of the coal seam, the reservoir stress field, and the cleat structure. Well completion with injection of N2 and displacement of CH{sub 4} only results in short-term enhancement of permeability and does not promote the overall gas production for the coal studied.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada). Dept. of Earth & Ocean Science

2005-09-01T23:59:59.000Z

116

Titan's Prolific Propane: The Cassini CIRS Perspective  

E-Print Network [OSTI]

In this paper we select large spectral averages of data from the Cassini Composite Infrared Spectrometer (CIRS) obtained in limb-viewing mode at low latitudes (30S--30N), greatly increasing the path length and hence signal-to-noise ratio for optically thin trace species such as propane. By modeling and subtracting the emissions of other gas species, we demonstrate that at least six infrared bands of propane are detected by CIRS, including two not previously identified in Titan spectra. Using a new line list for the range 1300-1400cm -1, along with an existing GEISA list, we retrieve propane abundances from two bands at 748 and 1376 cm-1. At 748 cm-1 we retrieve 4.2 +/- 0.5 x 10(-7) (1-sigma error) at 2 mbar, in good agreement with previous studies, although lack of hotbands in the present spectral atlas remains a problem. We also determine 5.7 +/- 0.8 x 10(-7) at 2 mbar from the 1376 cm-1 band - a value that is probably affected by systematic errors including continuum gradients due to haze and also an imperf...

Nixon, C A; Flaud, J -M; Bezard, B; Teanby, N A; Irwin, P G J; Ansty, T M; Coustenis, A; Vinatier, S; Flasar, F M; 10.1016/j.pss.2009.06.021

2009-01-01T23:59:59.000Z

117

Natural Gas Ethanol Flex-Fuel  

E-Print Network [OSTI]

Natural Gas Propane Electric Ethanol Flex-Fuel Biodiesel Vehicle Buyer's Guide Clean Cities 2012 . . . . . . . . . . . . . . . . . . . . . . . . 4 About This Guide . . . . . . . . . . . . . . . . . . . 5 Compressed Natural Gas and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane

118

Development of water production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. The key parameters for the evaluation of coalbed methane… (more)

Burka Narayana, Praveen Kumar.

2007-01-01T23:59:59.000Z

119

Diffusional methane fluxes within continental margin sediments and depositional constraints on formation factor estimates  

E-Print Network [OSTI]

Goldberg, E.D. , 1976. Methane production and consumption inanaerobic oxidation of methane. Nature, 407 , 623-626.profiles indicate in situ methane flux from underlying gas

Berg, Richard D.

2008-01-01T23:59:59.000Z

120

Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes  

E-Print Network [OSTI]

V.A. Soloviev, Submarine Gas Hydrates. St. Petersburg, 1998.and stability of gas hydrate-related bottom-simulatingPotential effects of gas hydrate on human welfare, Proc.

Reagan, M.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A STUDY ON SPHERICAL EXPANDING FLAME SPEEDS OF METHANE, ETHANE, AND METHANE/ETHANE MIXTURES AT ELEVATED PRESSURES  

E-Print Network [OSTI]

High-pressure experiments and chemical kinetics modeling were performed for laminar spherically expanding flames for methane/air, ethane/air, methane/ethane/air and propane/air mixtures at pressures between 1 and 10 atm and equivalence ratios...

De Vries, Jaap

2010-07-14T23:59:59.000Z

122

Alternative Fuels Data Center: Propane Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanolNatural GasAboutPropane

123

The basics of coalbed methane  

SciTech Connect (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

124

A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry  

E-Print Network [OSTI]

oxidation of methane above gas hydrates at Hydrate Ridge, NEsediment from a marine gas hydrate area. Environ. Microbiol.

2011-01-01T23:59:59.000Z

125

ACTION CONCENTRATION FOR MIXTURES OF VOLATILE ORGANIC COMPOUNDS (VOC) & METHANE & HYDROGEN  

SciTech Connect (OSTI)

Waste containers may contain volatile organic compounds (VOCs), methane, hydrogen and possibly propane. These constituents may occur individually or in mixtures. Determining if a waste container contains a flammable concentration of flammable gases and vapors (from VOCs) is important to the safety of the handling, repackaging and shipping activities. This report provides the basis for determining the flammability of mixtures of flammable gases and vapors. The concentration of a mixture that is at the lowest flammability limit for that mixture is called the action concentration. The action concentration can be determined using total VOC concentrations or actual concentration of each individual VOC. The concentrations of hydrogen and methane are included with the total VOC or individual VOC concentration to determine the action concentration. Concentrations below this point are not flammable. Waste containers with gas/vapor concentrations at or above the action concentration are considered flammable.

MARUSICH, R.M.

2006-07-10T23:59:59.000Z

126

Prediction of coalbed methane reservoir performance with type curves.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoirs are dual-porosity systems that are characterized by… (more)

Bhavsar, Amol Bhaskar.

2005-01-01T23:59:59.000Z

127

The Optimization of Well Spacing in a Coalbed Methane Reservoir.  

E-Print Network [OSTI]

??Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The… (more)

Sinurat, Pahala Dominicus

2012-01-01T23:59:59.000Z

128

Costs Associated With Propane Vehicle Fueling Infrastructure  

SciTech Connect (OSTI)

This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

Smith, M.; Gonzales, J.

2014-08-01T23:59:59.000Z

129

Propane - A Mid-Heating Season Assessment  

Reports and Publications (EIA)

This report will analyze some of the factors leading up to the rapid increase in propane demand and subsequent deterioration in supply that propelled propane prices to record high levels during December and early January.

2001-01-01T23:59:59.000Z

130

1, 2341, 2001 OH + propane and  

E-Print Network [OSTI]

ACPD 1, 23­41, 2001 OH + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract Introduction Conclusions #12;ACPD 1, 23­41, 2001 OH + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract

Paris-Sud XI, Université de

131

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

132

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

133

A conduit dilation model of methane venting from lake sediments  

E-Print Network [OSTI]

Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the ...

Ruppel, Carolyn

134

Methane productivity and nutrient recovery from manure Henrik B. Mller  

E-Print Network [OSTI]

Methane productivity and nutrient recovery from manure Henrik B. Mřller Danish Institute This thesis, entitled "Methane productivity and nutrient recovery from manure" is presented in partial of digested and separated products.................... 13 3. Methane productivity and greenhouse gas emissions

135

Method of coalbed methane production  

SciTech Connect (OSTI)

This patent describes a method for producing coalbed methane from a coal seam containing coalbed methane and penetrated by at least one injection well and at least one producing well. It comprises: injecting an inert gas through the injection well and into the coal seam. The inert gas being a gas that does not react with the coal under conditions of use and that does not significantly adsorb to the coal; and producing a gas from the production well which consists essentially of the inert gas, coalbed methane, or mixtures thereof.

Puri, R.; Stein, M.H.

1989-11-28T23:59:59.000Z

136

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy Second Quarter Report 2014 Natural Gas Gas

137

Russian Policy on Methane Emissions in the Oil and Gas Sector: A Case Study in Opportunities and Challenges in Reducing Short-Lived Forcers  

SciTech Connect (OSTI)

This paper uses Russian policy in the oil and gas sector as a case study in assessing options and challenges for scaling-up emission reductions. We examine the challenges to achieving large-scale emission reductions, successes that companies have achieved to date, how Russia has sought to influence methane emissions through its environmental fine system, and options for helping companies achieve large-scale emission reductions in the future through simpler and clearer incentives.

Evans, Meredydd; Roshchanka, Volha

2014-08-04T23:59:59.000Z

138

Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments  

SciTech Connect (OSTI)

In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications to date, with five more circulating in draft form, and several others planned.

Valentine, David

2012-09-30T23:59:59.000Z

139

Electrochemical methane sensor  

DOE Patents [OSTI]

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

140

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy Second Quarter Report 2014 Natural Gas

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy Second Quarter Report 2014 Natural Gas

142

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy Second Quarter Report 2014 Natural Gas

143

Natural Gas Infrastructure R&D and Methane Mitigation Woekshop Nov. 12-13, 2014  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy Second Quarter Report 2014 Natural Gas

144

State heating oil and propane program  

SciTech Connect (OSTI)

The following is a report of New Hampshire's participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-01-01T23:59:59.000Z

145

Silane-propane ignitor/burner  

DOE Patents [OSTI]

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

1985-01-01T23:59:59.000Z

146

Silane-propane ignitor/burner  

DOE Patents [OSTI]

A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

1983-05-26T23:59:59.000Z

147

Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data  

E-Print Network [OSTI]

of predicted and measured methane gas production data within the heterogeneous porous methane hydrate sample.Global Distribution of Methane Hydrate in Ocean Hydrate.

Gupta, A.

2010-01-01T23:59:59.000Z

148

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

Not Available

2008-10-01T23:59:59.000Z

149

Comparison of Hydrogen and Propane Fuels (Brochure)  

SciTech Connect (OSTI)

Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

Not Available

2009-04-01T23:59:59.000Z

150

Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors  

SciTech Connect (OSTI)

The production of synthesis gas (CO + H[sub 2]) by the catalytic partial oxidation of CH[sub 4] in air or O[sub 2] in static fluidized beds at atmospheric pressure has been examined over Pt, Rh, and Ni catalysts coated on 100-[mu]m [alpha]-Al[sub 2]O[sub 3] beads. With CH[sub 4]/air feeds, CO and H[sub 2] selectivities as high as 95% with >90% CH[sub 4] conversion were obtained on Rh and Ni catalysts at contact times of 0.1-0.5 sec. Pt catalysts were found to have significantly lower selectivities for all the three catalysts were improved by heating the reaction mixture above the autothermal reactor temperature and using O[sub 2] instead of air. The selectivities and conversions were fairly constant over the range of contact time s used. Probable reaction pathways for CH[sub 4] oxidation in fluidized beds are discussed. 31 refs., 6 figs.

Bharadwaj, S.S.; Schmidt, L.D. (Univ. of Minnesota, Minneapolis (United States))

1994-03-01T23:59:59.000Z

151

Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures  

SciTech Connect (OSTI)

This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

Grimes, R.W.

1994-06-01T23:59:59.000Z

152

Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico - Implications for coalbed gas producibility  

SciTech Connect (OSTI)

The objectives of this paper are to (1) describe the types and the major components of coalbed gases, (2) evaluate the variability of Fruitland coalbed gas composition across the basin, (3) assess factors affecting coalbed gas origin and composition, (4) determine the timing and extent of gas migration and entrapment, and (5) suggest application of these results to coalbed gas producibility. Data from more than 750 Fruitland coalbed gas wells were used to make gas-composition maps and to evaluate factors controlling gas origin. The gas data were divided into overpressured, underpressured, and transitional categories based on regional pressure regime. Also, [delta][sup 13]C isotopic values from 41 methane, 7 ethane and propane, 13 carbon dioxide, and 10 formation-water bicarbonate samples were evaluated to interpret gas origin. The data suggests that only 25-50% of the gas produced in the high-productivity fairway was generated in situ during coalification. 82 refs., 14 figs., 3 tabs.

Scott, A.R.; Kaiser, W.R. (Univ. of Texas, Austin, TX (United States)); Ayers, W.B. Jr. (Taurus Exploration, Inc., Birmingham, AL (United States))

1994-08-01T23:59:59.000Z

153

Residential propane price decreases slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014propane price

154

E-Print Network 3.0 - alaskan gas hydrate Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and finally the prospects for methane hydrates. NATURAL GAS AND THE RECOVERY PROCESS The primary... Coal Bed Methane Shale Gas Methane Hydrates Volume...

155

Natural Gas Monthly (NGM) - Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports,...

156

Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)  

SciTech Connect (OSTI)

A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation, respectively. Based on the contemporaneous wind speeds at this site, contemporary estimates of the diffusive fluxes from the mixed layer to the atmosphere for methane, ethane, and propane are 26.5, 2.10, and 2.78 {micro}mol/m{sup 2}d, respectively. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 ppm and 2.40 ppm during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Considering that the majority of seeps in the GOM are deep (>500 m), elevated CH{sub 4} concentrations in near-surface waters resulting from bubble-mediated CH4 transport in the water column are expected to be widespread in the Gulf of Mexico.

Ian MacDonald

2011-05-31T23:59:59.000Z

157

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network [OSTI]

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

158

Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment  

E-Print Network [OSTI]

this disadvantage include · storing methane as liquefied natural gas (LNG, at 112 K) or compressed natural gas (CNG

Yaghi, Omar M.

159

Impact of Fuel Interchangeability on dynamic Instabilities in Gas Turbine Engines  

SciTech Connect (OSTI)

Modern, low NOx emitting gas turbines typically utilize lean pre-mixed (LPM) combustion as a means of achieving target emissions goals. As stable combustion in LPM systems is somewhat intolerant to changes in operating conditions, precise engine tuning on a prescribed range of fuel properties is commonly performed to avoid dynamic instabilities. This has raised concerns regarding the use of imported liquefied natural gas (LNG) and natural gas liquids (NGL’s) to offset a reduction in the domestic natural gas supply, which when introduced into the pipeline could alter the fuel BTU content and subsequently exacerbate problems such as combustion instabilities. The intent of this study is to investigate the sensitivity of dynamically unstable test rigs to changes in fuel composition and heat content. Fuel Wobbe number was controlled by blending methane and natural gas with various amounts of ethane, propane and nitrogen. Changes in combustion instabilities were observed, in both atmospheric and pressurized test rigs, for fuels containing high concentrations of propane (> 62% by vol). However, pressure oscillations measured while operating on typical “LNG like” fuels did not appear to deviate significantly from natural gas and methane flame responses. Mechanisms thought to produce changes in the dynamic response are discussed.

Ferguson, D.H.; Straub, D.L.; Richards, G.A.; Robey, E.H.

2007-03-01T23:59:59.000Z

160

Quantifying Sustainable Development with Sustainable Costs  

E-Print Network [OSTI]

.6 Synthesis Gas Methane reforming 17.2 Propylene Propane dehydrogenation 4.3 Propylene Propane dehydrogenation · Syngas from CO2 and CH4 · Propane dehydrogenation · Propylene from propane and CO2 · Styrene from

Pike, Ralph W.

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Presentations from the March 27th - 28th Methane Hydrates Advisory...  

Broader source: Energy.gov (indexed) [DOE]

the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate...

162

Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh,,111...  

E-Print Network [OSTI]

of the incident beam's translational energy, and approaches unity for energies greater than 1.3 eV. Comparison for methanol synthesis. One method is the direct partial oxidation of methane, CH4 + 1/2 O2 CO + 2H2. 1 This process has been extensively studied using high surface area supported Rh catalysts in flow reactors

Sibener, Steven

163

Evolutionary History of a Specialized P450 Propane Monooxygenase  

E-Print Network [OSTI]

Evolutionary History of a Specialized P450 Propane Monooxygenase Rudi Fasan1 , Yergalem T-evolved P450 propane mono- oxygenase (P450PMO) having 20 heme domain substitutions compared to P450BM3 of propane activity. In contrast, refinement of the enzyme catalytic efficiency for propane oxidation (9000

Arnold, Frances H.

164

29Counting Atoms in a Molecule The complex molecule Propanal  

E-Print Network [OSTI]

29Counting Atoms in a Molecule The complex molecule Propanal was discovered in a dense interstellar is the ratio of carbon atoms to hydrogen atoms in propanal? Problem 4 - If the mass of a hydrogen atom of a propanal molecule in AMUs? Problem 5 - What is the complete chemical formula for propanal? C3 H __ O

165

Propane vehicles : status, challenges, and opportunities.  

SciTech Connect (OSTI)

Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

2010-06-17T23:59:59.000Z

166

Coalbed methane production case histories  

SciTech Connect (OSTI)

The production of methane gas from coal and coal-bearing rocks is one of the prime objectives of the Department of Energy's Methane Recovery from Coalbeds Project. This report contains brief description of wells that are presently producing gas from coal or coal-bearing rocks. Data from three gob gas production areas in Illinois, an in-mine horizontal borehole degasification, and eleven vertical boreholes are presented. Production charts and electric logs of the producing zones are included for some of the wells. Additional information on dry gas production from the San Juan Basin, Colorado/New Mexico and the Greater Green River Coal Region, Colorado/Wyoming is also included.

Not Available

1981-02-01T23:59:59.000Z

167

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

SciTech Connect (OSTI)

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

168

Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane  

E-Print Network [OSTI]

Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane, ethylene, methane, and two isotopically substituted methanes, CH2D2 and CD4, at a momentum constituent. For example, Fig. 1 of Ref. 2 shows that, for gaseous methane, above a certain momentum transfer

Hitchcock, Adam P.

169

EIA responds to Nature article on shale gas projections  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and...

170

New Methane Hydrate Research: Investing in Our Energy Future...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed...

171

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network [OSTI]

of thc Beg;voc cf kBSTBACT The propane-nitrogen system has been investigated in the gaseous phase at a temperature of 300 F. and at pressures up to 4/0 atmospheres. Compressibility curves for three mixtures of this system have been determined. A... the pressure corresponding to the "n " expansion ? th? the partial pressure of nitrogen the partial pressure oi' propane the total pressure of a gaseous system the universal gas constant (0. 08206 liter-atmosphere/ gram mole - oK) the absolute...

Hodges, Don

1952-01-01T23:59:59.000Z

172

State Heating Oil & Propane Program. Final report 1997/98 heating season  

SciTech Connect (OSTI)

The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

Hunton, G.

1998-06-01T23:59:59.000Z

173

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

E-Print Network [OSTI]

Dissociation heat of mixed-gas hydrate composed of methaneInternational Conference on Gas Hydrates (ICGH 2008), 2008,and specific heats of gas hydrates under submarine and

Kwon, T.H.

2012-01-01T23:59:59.000Z

174

No. 2 heating oil/propane program  

SciTech Connect (OSTI)

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

175

Natural gas treatment process using PTMSP membrane  

DOE Patents [OSTI]

A process is described for separating C{sub 3}+ hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane. 6 figs.

Toy, L.G.; Pinnau, I.

1996-03-26T23:59:59.000Z

176

Natural gas treatment process using PTMSP membrane  

DOE Patents [OSTI]

A process for separating C.sub.3 + hydrocarbons, particularly propane and butane, from natural gas. The process uses a poly(trimethylsilylpropyne) membrane.

Toy, Lora G. (San Francisco, CA); Pinnau, Ingo (Palo Alto, CA)

1996-01-01T23:59:59.000Z

177

Heating Oil and Propane Update - Energy Information Administration  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

for last year (2013-2014 season) for the U.S., PADD 1, PADD 1C, and PADD 2 averages. Wholesale propane graphs Wholesale Propane (dollars per gallon)more price data change from...

178

Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998  

SciTech Connect (OSTI)

The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfill gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.

Cook, W.J.; Brown, W.R.; Siwajek, L. [Acrion Technologies, Inc., Cleveland, OH (United States); Sanders, W.I. [Power Management Corp., Bellevue, WA (United States); Botgros, I. [Petrodesign, SA, Bucharest (Romania)

1998-09-01T23:59:59.000Z

179

ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported  

E-Print Network [OSTI]

ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts William Propane conversion over alumina supported Pt and Rh (1 wt% metals loading) was examined under fuel rich conversion and almost complete propane conversion) so long as the metal particle size was sufficiently low

180

Evolutionary History of a Specialized P450 Propane Monooxygenase  

E-Print Network [OSTI]

Evolutionary History of a Specialized P450 Propane Monooxygenase Rudi Fasan1 , Yergalem T hydroxylase (P450BM3) to a laboratory-evolved P450 propane mono- oxygenase (P450PMO) having 20 heme domain substrate range and the emergence of propane activity. In contrast, refinement of the enzyme catalytic

Arnold, Frances H.

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Preliminary Investigation of Tracer Gas Reaeration Method for Shallow Bays  

E-Print Network [OSTI]

was used with propane for the tracer gas and Rhodamine-WT, a fluorescent dye, for the "conservative" tracer. The propane was injected through porous tile diffusers, and the dye was released simultaneously. The propane acts as a model for the surface...

Baker, Sarah H.; Holley, Edward R.

182

Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations  

E-Print Network [OSTI]

Deep Ocean Field Test of Methane Hydrate Formation from aW.J. , and Mason, D.H. , Methane Hydrate Formation inNatural and Laboratory--Formed Methane Gas Hydrate. American

Rees, E.V.L.

2012-01-01T23:59:59.000Z

183

Portland Public School Children Move with Propane  

SciTech Connect (OSTI)

This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

Not Available

2004-04-01T23:59:59.000Z

184

Planetary and Space Science 54 (2006) 11771187 Titan's methane cycle  

E-Print Network [OSTI]

Abstract Methane is key to sustaining Titan's thick nitrogen atmosphere. However, methane is destroyed and the pressure induced opacity in the infrared, particularly by CH4­N2 and H2­N2 collisions in the troposphere), whose reaction with carbon grains or carbon dioxide in the crustal pores produces methane gas

Atreya, Sushil

185

Methane-assisted combustion synthesis of nanocomposite tin dioxide materials  

E-Print Network [OSTI]

Methane-assisted combustion synthesis of nanocomposite tin dioxide materials S.D. Bakrania *, C and flow conditions using methane as a supplemental fuel. The experiments were carried out at atmospheric-phase precursor for metal additives. In the methane-assisted (MA) system, the inert carrier gas was replaced

Wooldridge, Margaret S.

186

Monterey Bay Aquarium Research A robotic sub samples the methane  

E-Print Network [OSTI]

Monterey Bay Aquarium Research Institute A robotic sub samples the methane content of the seafloor.263 News Seafloor probe taps methane reservoir Greenhouse gas found in high abundance but risk of mass release uncertain. Nicola Jones A robotic submarine has been used to measure the amount of methane lurking

Tian, Weidong

187

Methane in lakes and wetlands Microbiological production, ecosystem  

E-Print Network [OSTI]

Methane in lakes and wetlands Microbiological production, ecosystem uptake, climatological significance LAKES AND WETLANDS ­ A RELEVANT METHANE SOURCE Lakes and other wetlands are an important source of methane, the third most important greenhouse gas in the atmosphere. However, the absolute contribution

MĂĽhlemann, Oliver

188

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

189

Alternative Fuels Data Center: Propane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanolNatural GasAbout

190

An analysis of US propane markets, winter 1996-1997  

SciTech Connect (OSTI)

In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

NONE

1997-06-01T23:59:59.000Z

191

Effect of propane-air on NGVs and vehicle fueling stations. Topical report, January 1-October 1, 1993  

SciTech Connect (OSTI)

Propane-air (P/A) peakshaving is an important element of peak-load management for some U.S. gas utilities. P/A is used as a supplemental energy medium with natural gas and has been shown to operate satisfactorily in most natural gas applications. The propane levels injected are compatible with the pressures (under 200 psig) and temperatures (over 40 F) found in utility distribution networks. However, P/A can create problems for natural gas vehicles (NGVs) operating on compressed gas as well as NGV fueling stations. This report contains information on P/A peakshaving and its compatibility with NGVs by documenting condensation impacts at nine conditions--i.e., three propane levels and three temperatures. These data portray the depressurization of a vehicle tank, an area selected because it illustrates NGV operation and can discriminate between acceptable and potentially non-acceptable operating points. These analyses show, not surprisingly, a correlation exists between propane level, ambient temperature, and condensation.

Liss, W.E.; Moulton, D.S.

1994-06-01T23:59:59.000Z

192

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect (OSTI)

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

193

A study of carbon-14 of paleoatmospheric methane for the last glacial termination from ancient glacial ice  

E-Print Network [OSTI]

Kastner, M. , 2001. Gas Hydrates in Convergent Margins:Significance, Natural Gas Hydrates: Occurence, Distributionof methane in natural gas hydrate. Organic Geochemistry 23,

Petrenko, Vasilii Victorovich

2008-01-01T23:59:59.000Z

194

Diffusional methane fluxes within continental margin sediments and depositional constraints on formation factor estimates  

E-Print Network [OSTI]

methane flux from underlying gas hydrate. Geology , 24 (7),overlying the Blake Ridge gas hydrates. In Proceedings ofgas transport in shallow sediments of an accretionary complex, Southern Hydrate

Berg, Richard D.

2008-01-01T23:59:59.000Z

195

Semi-annual report for the unconventional gas recovery program, period ending March 31, 1980  

SciTech Connect (OSTI)

Four subprograms are reported on: methane recovery from coalbeds, Eastern gas shales, Western gas sands, and methane from geopressured aquifers. (DLC)

Manilla, R.D.

1980-06-01T23:59:59.000Z

196

Propane Market Outlook Assessment of Key Market Trends, Threats...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

markets have become more pronounced. 2 2010 Propane Market Outlook Update 1 Introduction Energy markets are changing at an unprecedented pace. These changes have had dramatic...

197

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

198

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

199

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

200

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Impact of Natural Gas Appliances on Pollutant Levels in California Homes  

E-Print Network [OSTI]

be combined with storage WH) N N N Propane Don't know/blan kstorage water heater) __ Other (describe) K.2 Is this water heater powered by natural gas, electricity or propane? [Propane __ Electric! Skip to §L K.3 Do you have more than one storage

Mullen, Nasim A.

2014-01-01T23:59:59.000Z

202

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

203

Winter fuels report, week ending February 12, 1993. [Contains Glossary and feature article on Midwest Propane Markets  

SciTech Connect (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD'S; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1993-02-18T23:59:59.000Z

204

Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia  

E-Print Network [OSTI]

catalysts: (a) ethane ODH, (b) propane ODH (663 K, 14 kPa CDehydrogenation of Ethane and Propane on Alumina-Supporteddehydrogenation of ethane and propane. UV-visible and Raman

Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

2001-01-01T23:59:59.000Z

205

Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides  

E-Print Network [OSTI]

Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum catalysts confirmed that oxidative dehydrogenation of propane occurs via similar pathways, which involve for propane dehydrogenation and for propene combustion increase in the sequence VOx/ZrO2

Iglesia, Enrique

206

This Week In Petroleum Propane Section  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe43068 -Vanadium andResidential propane

207

Residential propane price decreases slightly decreases slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheatingpropane6, 2014propane price7,

208

Liquid Propane Injection Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.13 Liquid FuelsLiquid propane

209

Hydrogen and methane production from swine wastewater using microbial electrolysis cells  

E-Print Network [OSTI]

Hydrogen and methane production from swine wastewater using microbial electrolysis cells Rachel C in the wastewater as hydrogen gas. Methane was also produced at a maximum of 13 Ă? 4% of total gas volume methane produc- tion, increasing the efficiency of converting the organic matter into current

210

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

E-Print Network [OSTI]

T. and Narita, H. , 2006. Methane hydrate crystal growth ina porous medium filled with methane-saturated liquid water.Kneafsey, T.J. et al. , 2007. Methane hydrate formation and

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

211

Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France)  

E-Print Network [OSTI]

Géosciences, 1A rue de la Férolerie, 45071 Orléans Cedex 2, France Abstract Methane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced

Boyer, Edmond

212

Magnitude and spatio-temporal variability of methane emissions from a eutrophic freshwater lake  

E-Print Network [OSTI]

Methane is the second most important greenhouse gas after carbon dioxide, and it can significantly impact global climate change. Considerable amounts of methane can be released to the atmosphere from freshwater lakes, ...

Varadharajan, Charuleka, 1980-

2009-01-01T23:59:59.000Z

213

Safety evaluation for packaging (onsite) nitrogen trailers propane tanks  

SciTech Connect (OSTI)

The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

Ferrell, P.C.

1998-01-28T23:59:59.000Z

214

Solid-State Gas Sensors:A Review A. M. Azad, S. A. Akbar,* S. G. Mhaisalkar,~ L. D. Birkefeld,** and K. S. Gotob  

E-Print Network [OSTI]

include: 02, H2, CO, CO2, NOx, SO=, propane, methane, ethanol, and so on. The semiconductor-based chemical over environmental pollution and effleieney in a variety of combustion pro- cesses and of increased

Azad, Abdul-Majeed

215

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

216

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

217

Enduring use of city gas keeps N. H. utility reminiscent of a simpler age  

SciTech Connect (OSTI)

This article reports on a gas distribution company which produces and pipes a propane/air mixture. The distribution of this mixture is detailed.

Not Available

1991-01-01T23:59:59.000Z

218

Thermal analysis of adsorptive natural gas storages during dynamic charge phase at room temperature  

SciTech Connect (OSTI)

The thermal behavior of an adsorptive natural gas (ANG) vessel pressurized continuously with light hydrocarbon gases and their mixture at 27 C was analyzed using two different activated carbons. Activated carbon AC-L showed better isothermal storage capacity than AC-D due to its sufficient porous structure. However, higher adsorption capacity claimed more extreme thermal fluctuation represented by a temperature rise of 99.2 C at the center region of the bed charged continuously with methane at 1 L min{sup -1} up to pressure of 4 MPa, corresponding to 82.5 C in AC-D bed. Higher charge rate of 5 L min{sup -1} claimed severer thermal fluctuation of 116 C in AC-L/methane system calling for a serious reduction of 26.9% in the dynamic storage capacity with respect to the isothermal storage capacity. This reduction brought the storage system to a working pressure of about 2.5 MPa rather than the desired working pressure of {proportional_to}4 MPa (about 40% reduction in storage pressure). The severest temperature rise was at the center region caused by bed poor thermal conductivity leading to limited heat transfer. High ethane and propane portions in natural gas may contribute to the thermal fluctuation of the storage system as their heats of adsorption are higher than that for methane. (author)

Ridha, Firas N.; Yunus, Rosli M.; Rashid, Mohd. [Department of Chemical Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia); Ismail, Ahmad F. [Department of Gas Engineering, University of Technology Malaysia, 81310 UTM, Skudai, Johor (Malaysia)

2007-10-15T23:59:59.000Z

219

FreezeFrac Improves the Productivity of Gas Shales S. Enayatpour, E. Van Oort, T. Patzek, University of Texas At Austin  

E-Print Network [OSTI]

to unconventional hydrocarbon reservers such as oil shales, gas shales, tight gas sands, coalbed methane, and gas

Patzek, Tadeusz W.

220

Can propane school buses save money and provide other benefits...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Can propane school buses save money and provide other benefits? October 1, 2014 Tweet EmailPrint School districts across the country are looking for ways to save money and be more...

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

VEE-0040- In the Matter of Western Star Propane, Inc.  

Broader source: Energy.gov [DOE]

On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

222

VEE-0060- In the Matter of Blakeman Propane, Inc.  

Broader source: Energy.gov [DOE]

On May 11, 1999, Blakeman Propane, Inc. (Blakeman) of Moorcroft, Wyoming, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

223

Development of a Series of National Coalbed Methane Databases  

E-Print Network [OSTI]

Development of a Series of National Coalbed Methane Databases Mohaghegh, S. D., Nunsavathu, U Growing Interest in Coalbed Methane ­ Elevated natural gas prices ­ Demand for clean energy sources DatabaseDatabase One Location Reservoir & Sorption Collection ­ 126 Coalbed Areas ­ 34 Parameters Ordered

Mohaghegh, Shahab

224

Series 50 propane-fueled Nova bus: Engine development, installation, and field trials  

SciTech Connect (OSTI)

The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

Smith, B.

1999-01-01T23:59:59.000Z

225

Methane Uptake in Urban Forests P E T E R M . G R O F F M A N *  

E-Print Network [OSTI]

Methane Uptake in Urban Forests and Lawns P E T E R M . G R O F F M A N * Cary Institute biological sink for the radiatively active trace gas methane (CH4) is bacteria in soils that consume CH4, these effects do not appear to be significant to statewide greenhouse gas forcing. Introduction Methane (CH4

Berkowitz, Alan R.

226

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1  

E-Print Network [OSTI]

WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1 Xixi Wang, Assefa M. Melesse, Michael E. McClain, and Wanhong Yang2 ABSTRACT: Coalbed methane (CBM the Powder River. (KEY TERMS: coalbed methane, produced water; Montana; natural gas; pattern analysis

McClain, Michael

227

Regular Articles Coalbed methane produced water screening tool for treatment technology  

E-Print Network [OSTI]

Regular Articles Coalbed methane produced water screening tool for treatment technology and publicly available coalbed methane produced water screening tool to two simulated case studies to determine the largest volume waste stream in the industry (GWI, 2011). For coalbed methane (CBM) (coalbed natural gas

228

Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release?  

E-Print Network [OSTI]

Uncorking the bottle: What triggered the Paleocene/Eocene thermal maximum methane release? Miriam E realms that has been attributed to a massive methane (CH4) release from marine gas hydrate reservoirs. Previously proposed mechanisms for this methane release rely on a change in deepwater source region

229

Source of methane and methods to control its formation in single chamber microbial electrolysis cells  

E-Print Network [OSTI]

Source of methane and methods to control its formation in single chamber microbial electrolysis online 31 March 2009 Keywords: Hydrogen Microbial electrolysis cell (MEC) Methane Single chamber Exoelectrogenic a b s t r a c t Methane production occurs during hydrogen gas generation in microbial electrolysis

230

Large scale characterisation of the concentAtion field of supercritical jets of hydrogen and methane  

E-Print Network [OSTI]

and methane E. Ruffin, Y. Mouilleau. J. Chaineaux INERIS - Institut National de l'Environnement Industriel et at INERIS' sought to characterise the clouds formed by supercritical jets of methane and hydrogen out were: the gas used (methane or hydrogen), the vent orifice diameter (25. 50, 75. 100 or 150 mm

Boyer, Edmond

231

Southeast Propane AutoGas Development Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South Valley Archived2 DOE

232

Southeast Propane AutoGas Development Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South Valley Archived2 DOE1 DOE

233

Southeast Propane AutoGas Development Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping StudyEnergy South Valley Archived2 DOE1

234

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel...

235

Strategies for gas production from oceanic Class 3 hydrate accumulations  

E-Print Network [OSTI]

coexistence of aqueous, gas and hydrate phases, indicatingIntrinsic Rate of Methane Gas Hydrate Decomposition”, Chem.Makogon, Y.F. , “Gas hydrates: frozen energy,” Recherche

Moridis, George J.; Reagan, Matthew T.

2007-01-01T23:59:59.000Z

236

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

237

Impact of relative permeability on type curves for coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane (CBM) is considered an unconventional gas resource produced from coal seams usually with low permeability at shallow depths. Analyzing the production performance in… (more)

Lakshminarayanan, Sunil.

2006-01-01T23:59:59.000Z

238

Evaluation of factors that influence microbial communities and methane production in coal microcosms.  

E-Print Network [OSTI]

??Vast reserves of coal represent a largely untapped resource that can be used to produce methane gas, a cleaner energy alternative compared to burning oil… (more)

Gallagher, Lisa K.

2014-01-01T23:59:59.000Z

239

Methane Hydrate Field Program  

SciTech Connect (OSTI)

This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

None

2013-12-31T23:59:59.000Z

240

Greenhouse gas emissions in biogas production systems  

E-Print Network [OSTI]

Augustin J et al. Automated gas chromatographic system forof the atmospheric trace gases methane, carbon dioxide, andfuel consumption and of greenhouse gas (GHG) emissions from

Dittert, Klaus; Senbayram, Mehmet; Wienforth, Babette; Kage, Henning; Muehling, Karl H

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Methane Digester Loan Program  

Broader source: Energy.gov [DOE]

Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by...

242

Generating power with drained coal mine methane  

SciTech Connect (OSTI)

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

243

Production of olefins by oxidative dehydrogenation of propane and butane over monoliths at short contact times  

SciTech Connect (OSTI)

The autothermal production of olefins from propane or n-butane by oxidative dehydrogenation and cracking in air or oxygen at atmospheric pressure over noble metal coated ceramic foam monoliths at contact times of {approximately}5 milliseconds has been studied. On Pt, synthesis gas (CO and H{sub 2}) dominates near its stoichiometry, while olefin production dominates at higher fuel-to-oxygen ratios. No carbon buildup is observed, and catalysts exhibit no deactivation over at least several days. On Rh, primarily synthesis gas is produced under these conditions, while on Pd, carbon deposition rapidly deactivates the catalyst. The authors observed up to 65% selectivity to olefins at nearly 100% conversion of propane or n-butane with a catalyst contact time of 5 ms. Ethylene selectivity is maximized by increasing the reaction temperature, either by preheating the reactants or by using oxygen enriched air. Propylene selectivity is maximized by lower temperature and shorter catalyst contact time. Very small amounts alkanes and higher molecular weight species are obtained, suggesting that a homogeneous pyrolysis mechanism is not occurring. A very simple reaction mechanism appears to explain the observed product distribution. Reactions are initiated by oxidative dehydrogenation of the alkane by adsorbed oxygen to form a surface alkyl. On Pt, {beta}-hydrogen and {beta}-alkyl elimination reactions of adsorbed alkyl dominate which lead to olefin production rather than cracking to C{sub s} and H{sub s}. 24 refs., 14 figs., 4 tabs.

Huff, M.; Schmidt, L.D. [Univ. of Minnesota, Minneapolis, MN (United States)] [Univ. of Minnesota, Minneapolis, MN (United States)

1994-09-01T23:59:59.000Z

244

Selective dehydrogenation of propane over novel catalytic materials  

SciTech Connect (OSTI)

The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

1998-02-01T23:59:59.000Z

245

Microsoft PowerPoint - Propane_Briefing_140205_nn.pptx  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

add to 100%) Propane share of space heating demand by key regions and states U.S. Energy Information Administration 5 Source: Census Bureau, 2011 State Propane-Heated Homes...

246

Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia)  

E-Print Network [OSTI]

Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia) Department exhausts with hydrocarbons propane (C3H8) and propene (C3H6) has been investigated. In general

Kushner, Mark

247

Experimental studies of steam-propane injection for the Duri intermediate crude oil  

E-Print Network [OSTI]

Laboratory experimental studies were carried out to better understand production mechanisms involved in steam-propane injection and to investigate effects of expected field pressure and temperature conditions on steam-propane injection...

Hendroyono, Arief

2003-01-01T23:59:59.000Z

248

Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and David H. Olson,  

E-Print Network [OSTI]

Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene Kunhao Li, David H the first examples of MMOFs that are capable of kinetic separation of propane and propene (propylene), which

Li, Jing

249

Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase  

E-Print Network [OSTI]

Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase Mu-Hyun Baik, Martin 2393 3.1. KIE in Methane Oxidations 2394 3.2. Primary and Secondary KIEs 2396 3.3. Other KIEs 2396 3 are bacteria that live on methane as their only source of carbon.1 The first step in their utilization

Baik, Mu-Hyun

250

Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane  

SciTech Connect (OSTI)

In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

2013-09-01T23:59:59.000Z

251

Improved Product-Per-Glucose Yields in P450-Dependent Propane Biotransformations  

E-Print Network [OSTI]

ARTICLE Improved Product-Per-Glucose Yields in P450-Dependent Propane Biotransformations Using propane monooxygenase prepared by directed evolu- tion [P450PMOR2; Fasan et al. (2007); Angew Chem Int Ed of the energy source (glucose) in the propane biotransformation com- pared to the native E. coli strain. Using

Arnold, Frances H.

252

Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed for outdoor  

E-Print Network [OSTI]

Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed-burner propane stove has a high-pressure regulator that ensures a constant flame regardless of weather propane stove has a removable nickel-chrome-plated grate that makes for easy cleaning. The aluminized

Walker, Lawrence R.

253

Dehydrogenation of Propane to Propylene over Supported Model NiAu Catalysts  

E-Print Network [OSTI]

Dehydrogenation of Propane to Propylene over Supported Model Ni­Au Catalysts Zhen Yan · Yunxi Yao 2012 � Springer Science+Business Media, LLC 2012 Abstract Hydrogenolysis and dehydrogenation of propane. For the conversionofpropane in the presence of hydrogen, the dehydrogenation of propane to propylene was observed onthe Ni

Goodman, Wayne

254

High propylene/propane adsorption selectivity in a copper(catecholate)-decorated porous organic  

E-Print Network [OSTI]

High propylene/propane adsorption selectivity in a copper(catecholate)-decorated porous organic and propane isotherms measured at ambient temperatures and ideal adsorption solution theory (IAST) calculations revealed increasing propylene/propane selectivities with increasing pressures. The eld of highly

255

PROPANE -C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET  

E-Print Network [OSTI]

PROPANE - C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: PROPANE - C3H8 Document Number: 001045 PRODUCT IN AIR ACGIH OSHA TLV STEL PEL STEL IDLH OTHER ppm ppm ppm ppm ppm Propane 74-98-6 > 96.0 Simple

Choi, Kyu Yong

256

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation Pingping Sun a  

E-Print Network [OSTI]

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation Pingping Sun a , Georges and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane

Iglesia, Enrique

257

Functional Characterization of Propane-Enhanced N-Nitrosodimethylamine Degradation by  

E-Print Network [OSTI]

ARTICLE Functional Characterization of Propane-Enhanced N-Nitrosodimethylamine Degradation by Two: Propane-induced cometabolic degradation of n-nitrosodimethylamine (NDMA) by two propanotrophs is characterized through kinetic, gene presence, and expression studies. After growth on propane, resting cells

Alvarez-Cohen, Lisa

258

Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation  

E-Print Network [OSTI]

Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation between] in interaction with propane. Two complexes have been found as minima coordinated through either a methyl the methylene complex of propane into a methyl complex of pro- pane. This latter reaction has a much lower

Jones, William D.

259

Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane{  

E-Print Network [OSTI]

of propane{ Christian, Michael Mitchell and Paul J. A. Kenis* Received 31st May 2006, Accepted 10th August of propane into hydrogen at temperatures between 800 and 1000 uC. We characterized these microreactors. Kinetic analysis using a power law model showed reaction orders of 0.50 and 20.23 with respect to propane

Kenis, Paul J. A.

260

Selective adsorption of ethylene over ethane and propylene over propane in the metalorganic  

E-Print Network [OSTI]

Selective adsorption of ethylene over ethane and propylene over propane in the metal in the energy costs associated with the cryogenic separation of ethylene­ethane and propylene­propane mixtures adsorption data for ethylene, ethane, propylene, and propane at 45, 60, and 80 C for the entire series

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane  

E-Print Network [OSTI]

Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane Kaidong The effects of MoOx structure on propane oxidative dehydrogenation (ODH) rates and selectivity were examined with those obtained on MoOx/ZrO2. On MoOx/Al2O3 catalysts, propane turnover rate increased with increasing Mo

Iglesia, Enrique

262

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network [OSTI]

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam

Paris-Sud XI, Université de

263

Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum Oxide Catalysts  

E-Print Network [OSTI]

Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum of propane over ZrO2-supported MoOx catalysts. Competitive reactions of C3H6 and CH3 13 CH2CH3 showed combustion of propene, or by direct combustion of propane. A mixture of C3H8 and C3D8 undergoes oxidative

Iglesia, Enrique

264

Ionization Spectroscopy of Conformational Isomers of Propanal: The Origin of the Conformational Preference  

E-Print Network [OSTI]

Ionization Spectroscopy of Conformational Isomers of Propanal: The Origin of the Conformational conformational isomers of propanal, cis and gauche, are investigated by the vacuum-UV mass- analyzed thresholdV and 9.9516 ( 0.0006 eV, respectively. cis-Propanal, which is the more stable conformer in the neutral

Kim, Sang Kyu

265

CONTRIBUTION A L'TUDE DES FLAMMES D'HYDROCARBURES. PROPANE ET ACTYLNE  

E-Print Network [OSTI]

CONTRIBUTION A L'�TUDE DES FLAMMES D'HYDROCARBURES. PROPANE ET AC�TYL�NE Par MM. JEAN VAN DER POLL du propane et de l'acétylène qui ont montré que, dans certains cas, les flammes oxy-propane et oxy

Paris-Sud XI, Université de

266

Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers,  

E-Print Network [OSTI]

1 Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers in comparison to cases without the spiral. Tests through a range of cycle frequencies up to 20 Hz in oxygen-propane spiral in a pulsed detonation engine operating with propane and oxygen. A high-energy igniter is used

Texas at Arlington, University of

267

Layering and orientational ordering of propane on graphite: An experimental and simulation study  

E-Print Network [OSTI]

Layering and orientational ordering of propane on graphite: An experimental and simulation study 2002; accepted 30 July 2002 We report the results of an experimental and theoretical study of propane and experiments show that propane adsorbs in a layer-by-layer fashion and exhibits continuous growth beyond

Borguet, Eric

268

SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS  

SciTech Connect (OSTI)

Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

Klein, J; Jeffrey Holder, J

2007-07-16T23:59:59.000Z

269

Optimal(Estimation(of(North(American(Methane( Emissions(using(GOSAT(data:(  

E-Print Network [OSTI]

Optimal(Estimation(of(North(American(Methane( Emissions(using(GOSAT(data:( A&Sciences&Division,&Lawrence&Berkeley&National&Laboratory,&Berkeley,&CA,&USA.! *aturner@fas.harvard.edu& Harvard(University( #12;Prior Methane Emissions from EDGARv4.2/Kaplan Major/Gas Waste Coal 0 5 10 15 20 Wetlands Livestock Oil/Gas Landfills Coal North America Global #12;Satellites

Jacob, Daniel J.

270

Researchers discover key to spurring methane conversion By Paula Hartman Cohen  

E-Print Network [OSTI]

of methane when exploring for oil. These natural gas pockets generally are contiguous to oil reserves, where- teria living just below the earth's surface can be coaxed to rapidly convert oil to methane gas in oil they can pose serious fire and explosion hazards for oil explorers. According to Lovley, specialized

Lovley, Derek

271

Experimental study on the formation and dissociation conditions of methane hydrates in porous media  

E-Print Network [OSTI]

hydrates formed by methane gas and pure water in porous media. Methane gas hydrates were formed in a cell packed with 0.177-mm (0.007 in) diameter single sand (U.S. Sieve Series Designation Mesh No. 80) and 0.420-mm (0.017 in) diameter single sand (U...

Jung, Woodong

2002-01-01T23:59:59.000Z

272

Zeolitic imidazolate frameworks for kinetic separation of propane and propene  

DOE Patents [OSTI]

Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

Li, Jing; Li, Kunhao; Olson, David H.

2014-08-05T23:59:59.000Z

273

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

SciTech Connect (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

274

On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide  

E-Print Network [OSTI]

On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide Wei­Lambert law for the detection of methane gas. The device combines slow light in a PC waveguide with high absorption path length. A methane concentration of 100 ppm (parts per million) in nitrogen was measured

Chen, Ray

275

Full Text HTML Methane can be a problem or a solution, depending on one's viewpoint or circumstance. For  

E-Print Network [OSTI]

Abstract Full Text HTML Methane can be a problem or a solution, depending on one's viewpoint the researchers want to make hydrogen gas in microbial electrolysis cells (MECs), because making methane reduces hydrogen yield. The researchers have been studying the formation of methane in MECs in an effort to avoid

276

Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil  

E-Print Network [OSTI]

, attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

Nesse, Thomas

2005-02-17T23:59:59.000Z

277

Exploiting coalbed methane and protecting the global environment  

SciTech Connect (OSTI)

The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

Yuheng, Gao

1996-12-31T23:59:59.000Z

278

Effect of a current polarisation on BIMEVOX membranes for oxidation of propane in a Catalytic Dense Membrane  

E-Print Network [OSTI]

Effect of a current polarisation on BIMEVOX membranes for oxidation of propane in a Catalytic Dense of propane under OCV and under electrical bias. The propane conversion remained constantly equal to 12 by partial oxidation and oxidative dehydrogenation of propane, respectively. An anodic polarisation led

Paris-Sud XI, Université de

279

Isotopic Tracer Studies of Propane Reactions on H-ZSM5 Zeolite Joseph A. Biscardi and Enrique Iglesia*  

E-Print Network [OSTI]

Isotopic Tracer Studies of Propane Reactions on H-ZSM5 Zeolite Joseph A. Biscardi and Enrique unlabeled products from mixtures of propene and propane-2-13C reactants. Aromatic products of propane-2-13C-Parmer) that allowed differential reactor operation (propane reactions were

Iglesia, Enrique

280

Methyl chloride via oxyhydrochlorination of methane: A building block for chemicals and fuels from natural gas. Quarterly technical progress report No. 01, September 30, 1996--December 31, 1996  

SciTech Connect (OSTI)

The objectives of this cooperative agreement are to develop the oxyhydrochlorination (OHC) process for the conversion of methane to methyl chloride. In the first Phase of the project, Dow Corning has developed a stable selective catalyst and demonstrated the technology on a laboratory and a pilot plant scale. Specific tasks to achieve these objectives have been developed as follows: TASK 1 Fundamental Technical and Economic Evaluation TASK 2 Catalyst Selection Optimization and Characterization Studies TASK 3 Pilot Plant Design TASK 4 Pilot Plant Detailed Engineering, Procurement and Construction TASK 5 Pilot Plant Startup and Operation TASK 6 Pilot Plant Process Optimization TASK 7 Pilot Plant Extended Operation TASK 8 Pilot Plant Economic Evaluation/Scale-up Decision Significant progress has been completed in Task 1 with the objective to complete a fundamental technical and economic evaluation of learning gathered the Phase I effort of this project. A decision to proceed with the project will be made after completion of this Task. A computer model of the reactor system has been developed, which includes heat and mass transfer effects as well as reactions. Model validation is in progress. The Absorber/Stripper technology evaluated and implemented on the Phase I PDU to recover chlorocarbons (including methyl chloride) from reaction products has been scaled to evaluate economics for a commercial scale plant. In a parallel exercise, alternate recovery technologies were investigated for economic evaluation, to assure that the minimum capital option is pursued for the Phase II design. Commercial scale plant equipment and total plant costs are being evaluated using information from the Phase I PDU, reactor modeling and recovery system evaluation to estimate capital and operating costs for a commercial scale OHC unit.

Wineland, J.

1997-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Terr. Atmos. Ocean. Sci., Vol. 17, No. 4, 933-950, December 2006 Methane Venting in Gas Hydrate Potential Area Offshore of SW  

E-Print Network [OSTI]

Potential Area Offshore of SW Taiwan: Evidence of Gas Analysis of Water Column Samples Tsanyao Frank Yang 1 areas offshore of SW Taiwan for analysis of dissolved gases. Some these samples show unusually high-shore and offshore of southwestern Taiwan (e.g., Chow et al. 2000; Yang et al. 2004; Chiu et al. 2006). The gases

Lin, Andrew Tien-Shun

282

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents [OSTI]

A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

Lokhandwala, Kaaeid (Menlo Park, CA)

1997-01-01T23:59:59.000Z

283

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents [OSTI]

A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

Lokhandwala, K.

1997-07-15T23:59:59.000Z

284

Method of determining methane and electrochemical sensor therefor  

DOE Patents [OSTI]

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, Solomon (Hinsdale, IL); Otagawa, Takaaki (Westmont, IL); Stetter, Joseph R. (Naperville, IL)

1986-01-01T23:59:59.000Z

285

Journal of Electron Spectroscopy and Related Phenomena 155 (2007) 2834 Electron Compton scattering from methane and methane-d4  

E-Print Network [OSTI]

from methane and methane-d4 G. Coopera, A.P. Hitchcocka,, C.A. Chatzidimitriou-Dreismannb, M. Vosc]. © 2006 Elsevier B.V. All rights reserved. Keywords: Quasi-elastic electron scattering; Methane; CD4

Hitchcock, Adam P.

286

Costs Associated With Propane Vehicle Fueling Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-GovNatural Gas UsageCosmic

287

DOE Launches Natural Gas Infrastructure R&D Program Enhancing...  

Office of Environmental Management (EM)

DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions DOE Launches Natural Gas...

288

Outlook for U.S. shale oil and gas  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2035 2040 Associated with oil Coalbed methane Tight gas Shale gas Alaska Non-associated offshore Non-associated onshore Projections History 2012 Adam Sieminski, IAEEAEA January...

289

Natural Gas Variability In California: Environmental Impacts And Device Performance Combustion Modeling of Pollutant Emissions From a Residential Cooking Range  

SciTech Connect (OSTI)

As part of a larger study of liquefied natural gas impacts on device performance and pollutant emissions for existing equipment in California, this report describes a cmoputer modeling study of a partially premixed flame issueing from a single cooktop burner port. The model consisted of a reactive computational fluid dynamics three-dimensional spatial grid and a 71-species chemical mechanism with propane combustion capability. Simulations were conducted with a simplified fuel mixture containing methane, ethane, and propane in proportions that yield properties similar to fuels distributed throughout much of California now and in recent years (baseline fuel), as well as with two variations of simulated liquefied natural gas blends. A variety of simulations were conducted with baseline fuel to explore the effect of several key parameters on pollutant formation and other flame characteristics. Simulations started with fuel and air issuing through the burner port, igniting, and continuing until the flame was steady with time. Conditions at this point were analyzed to understand fuel, secondary air and reaction product flows, regions of pollutant formation, and exhaust concentrations of carbon monoxide, nitric oxide and formaldehyde. A sensitivity study was conducted, varying the inflow parameters of this baseline gs about real-world operating conditions. Flame properties responded as expected from reactive flow theory. In the simulation, carbon monoxide levels were influenced more by the mixture's inflow velocity than by the gas-to-air ratio in the mixture issuing from the inflow port. Additional simulations were executed at two inflow conditions - high heat release and medium heat release - to examine the impact of replacing the baseline gas with two mixtures representative of liquefied natural gas. Flame properties and pollutant generation rates were very similar among the three fuel mixtures.

Tonse, S. R.; Singer, B. C.

2011-07-01T23:59:59.000Z

290

Coalbed methane resource potential of the Piceance Basin, northwestern Colorado  

SciTech Connect (OSTI)

As predicted, from an evolving coalbed methane producibility model, prolific coalbed methane production is precluded in the Piceance Basin by the absence of coal bed reservoir continuity and dynamic ground-water flow. The best potential for production may lie at the transition zone from hydropressure to hydrocarbon overpressure and/or in conventional traps basinward of where outcrop and subsurface coals are in good reservoir and hydraulic communication. Geologic and hydrologic synergy among tectonic and structural setting, depositional systems and coal distribution, coal rank, gas content, permeability and hydrodynamics are the controls that determine the coalbed methane resource potential of the Piceance Basin. Within the coal-bearing Upper Cretaceous Williams Fork Formation, the prime coalbed methane target, reservoir heterogeneity and thrust faults cause coal beds along the Grand Hogback and in the subsurface to be in modest to poor reservoir and hydraulic communication, restricting meteoric ground water recharge and basinward flow. Total subsurface coalbed methane resources are still estimated to be approximately 99 Tcf (3.09 Tm{sup 3}), although coalbed methane resource estimates range between 80 (2.49 Tm{sup 3}) and 136 Tcf (4.24 Tm{sup 3}), depending on the calculation method used. To explore for high gas contents or fully gas-saturated coals and consequent high productivity in the Piceance Basin, improved geologic and completion technologies including exploration and development for migrated conventionally and hydrodynamically trapped gases, in-situ generated secondary biogenic gases, and solution gases will be required.

Tyler, R.; Scott, A.R.; Kaiser, W.R. [Univ. of Texas, Austin, TX (United States)

1996-06-01T23:59:59.000Z

291

Methane Recovery from Hydrate-bearing Sediments  

SciTech Connect (OSTI)

Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

J. Carlos Santamarina; Costas Tsouris

2011-04-30T23:59:59.000Z

292

Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill Safety

293

ISSUE PAPER METHANE AVOIDANCE FROM  

E-Print Network [OSTI]

ISSUE PAPER METHANE AVOIDANCE FROM COMPOSTING An Issue Paper for the: Climate Action Reserve...........................................................................................................39 6.2. Standard Methods for Quantifying Methane from Organic Waste in Landfills...40 6.3. GHG

Brown, Sally

294

Enhanced coalbed methane recovery  

SciTech Connect (OSTI)

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

295

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

SciTech Connect (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

296

Formation and retention of methane in coal  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

297

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

298

5, 94059445, 2005 Methane emissions  

E-Print Network [OSTI]

ACPD 5, 9405­9445, 2005 Methane emissions from SCIAMACHY observations J. F. Meirink et al. Title and Physics Discussions Sensitivity analysis of methane emissions derived from SCIAMACHY observations through, 9405­9445, 2005 Methane emissions from SCIAMACHY observations J. F. Meirink et al. Title Page Abstract

Paris-Sud XI, Université de

299

4, 9931057, 2007 Methane hydrate  

E-Print Network [OSTI]

BGD 4, 993­1057, 2007 Methane hydrate stability and anthropogenic climate change D. Archer Title Discussions Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Methane 2007 Correspondence to: D. Archer (d-archer@uchicago.edu) 993 #12;BGD 4, 993­1057, 2007 Methane hydrate

Paris-Sud XI, Université de

300

5, 243270, 2008 Methane emissions  

E-Print Network [OSTI]

BGD 5, 243­270, 2008 Methane emissions from plant biomass I. Vigano et al. Title Page Abstract and temperature on the emission of methane from plant biomass and structural components I. Vigano 1 , H. van.roeckmann@phys.uu.nl) 243 #12;BGD 5, 243­270, 2008 Methane emissions from plant biomass I. Vigano et al. Title Page Abstract

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Tri--Methane Rearrangement  

E-Print Network [OSTI]

The Tri--Methane Rearrangement #12;Cirkva, Vladimir; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

Cirkva, Vladimir

302

METHANE OXIDATION (AEROBIC) Helmut Brgmann  

E-Print Network [OSTI]

METHANE OXIDATION (AEROBIC) Helmut BĂĽrgmann Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland Synonyms Methanotrophy Definition Methane oxidation is a microbial metabolic process for energy generation and carbon assimilation from methane that is carried out by specific

Wehrli, Bernhard

303

6, 68416852, 2006 Methane emission  

E-Print Network [OSTI]

ACPD 6, 6841­6852, 2006 Methane emission from savanna grasses E. Sanhueza and L. Donoso Title Page Chemistry and Physics Discussions Methane emission from tropical savanna Trachypogon sp. grasses E. Sanhueza;ACPD 6, 6841­6852, 2006 Methane emission from savanna grasses E. Sanhueza and L. Donoso Title Page

Boyer, Edmond

304

The Tri--Methane Rearrangement  

E-Print Network [OSTI]

The Tri--Methane Rearrangement #12;CĂ­rkva, VladimĂ­r; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

Cirkva, Vladimir

305

5, 23052341, 2008 Anaerobic methane  

E-Print Network [OSTI]

BGD 5, 2305­2341, 2008 Anaerobic methane oxidation in Black Sea sediments N. J. Knab et al. Title of Biogeosciences Regulation of anaerobic methane oxidation in sediments of the Black Sea N. J. Knab1 , B. A. Cragg2­2341, 2008 Anaerobic methane oxidation in Black Sea sediments N. J. Knab et al. Title Page Abstract

Paris-Sud XI, Université de

306

Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air  

SciTech Connect (OSTI)

Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

Li, J.; Lai, W.H. [National Cheng Kung University, Institute of Aeronautics and Astronautics, Tainan (China); Chung, K. [National Cheng Kung University, Aerospace Science and Technology Research Center, Tainan (China); Lu, F.K. [University of Texas at Arlington, Mechanical and Aerospace Engineering Department, Aerodynamics Research Center, TX 76019 (United States)

2008-08-15T23:59:59.000Z

307

Comparison of Kinetic and Equilibrium Reaction Models in Simulating the Behavior of Gas Hydrates in Porous Media  

E-Print Network [OSTI]

rate constant of methane gas hydrate decomposition, CanadianAdvances in the Study of Gas Hydrates, C. Taylor , J. Qwan,International Conference on Gas Hydrates, Trondheim, Norway,

Kowalsky, Michael B.; Moridis, George J.

2006-01-01T23:59:59.000Z

308

State heating oil and propane program. Final report, 1990--1991  

SciTech Connect (OSTI)

The following is a report of New Hampshire`s participation in the State Heating Oil and Propane Program (SHOPS) for the 1990--91 heating season. The program is a joint effort between participating states and the Department of Energy (DOE), Energy Information Administration (EYE) to collect retail price data for heating oil and propane through phone surveys of 25 oil and 20 propane retailers in New Hampshire. SHOPS is funded through matching grants from DOE and the participating state. (VC)

Not Available

1991-12-31T23:59:59.000Z

309

Absorption du rayonnement 12 et 8 millimtres par les vapeurs de propane sous pression  

E-Print Network [OSTI]

Absorption du rayonnement 12 et 8 millimètres par les vapeurs de propane sous pression A. Battaglia des pertes diélectriques (03B5") présentées par le propane gazeux aux fréquences de 24 et 36 GHz, à la Birnbaum. Abstract. 2014 Experimental study of dielectric losses (03B5") presented by gaseous propane

Boyer, Edmond

310

Microsoft PowerPoint - Propane_Briefing_140131_summary_v2_nn...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of space heating demand by key regions and states Adam Sieminski, Administrator U.S. Energy Information Administration 5 Source: Census Bureau, 2011 State Propane-Heated Homes...

311

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

312

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

313

Table 14. U.S. Propane (Consumer Grade) Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

and EIA-782B, "Resellers'Retailers' Monthly Petroleum Product Sales Report." 14. U.S. Propane (Consumer Grade) Prices by Sales Type 28 Energy Information Administration ...

314

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

Natural Gas Nitric Oxide/Nitrogen Dioxide Neal Road LandfillThe methane, nitrogen and carbon dioxide concentrations ofmethane, 30% nitrogen and 30% carbon dioxide. The recorded

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

315

Glow Discharge Enhanced Chemical Reaction: Application in Ammonia Synthesis and Hydrocarbon Gas Cleanup  

E-Print Network [OSTI]

hydrocarbons mixture such as EPE (74.8% methane, 8% ethane, 8% ethylene, 2.1% propane and 1.1% Propene). Non-thermal plasmas, due to their unique non-equilibrium characteristics, offer advantages as method of reforming at lower temperature (100-150 ş...

Ming, Pingjia

2014-06-05T23:59:59.000Z

316

Alternative technologies to steam-methane reforming  

SciTech Connect (OSTI)

Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

1995-11-01T23:59:59.000Z

317

SOFC Long Term Operation in Pure Methane by Gradual Internal Reforming S. Georgesa  

E-Print Network [OSTI]

SOFC Long Term Operation in Pure Methane by Gradual Internal Reforming S. Georgesa , N. Baillya , M was designed to be operated in pure methane, without reforming or carrier gas. The fuel cell was built up from-CGO catalytic layer. The operation principle is based on Gradual Internal Reforming. After an initiation in H2

Boyer, Edmond

318

Propane cold neutron source: creation and operation experience  

SciTech Connect (OSTI)

In most cold neutron sources, utilized until recently, liquid hydrogen, liquid deuterium and their mixtures were used as a moderating medium. The sources with the liquid hydrogen moderator offer the most specific effectiveness of cold neutron generation. But they are complicated in design, require special safety measures in the course of operation and are very expensive. In this connection, it is of undoubted interest to create a source which, although it yields the specific generation of cold neutrons comparable to the liquid hydrogen one, is safer in operation and simple in design. We assume such a source may be one which uses as a moderator liquid propane cooled to liquid nitrogen temperature.

Zemlyanov, M. G.

1997-09-01T23:59:59.000Z

319

RECS Propane Usage Form_v1 (Draft).xps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001 Media Contact: Rick30propane

320

Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania SchoolPropane Buses

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center: Propane Fueling Infrastructure Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania SchoolPropane

322

Alternative Fuels Data Center: Propane Fueling Station Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvania SchoolPropaneStation

323

Alternative Fuels Data Center: Propane Powers Airport Shuttles in New  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndianaPennsylvaniaOrleans Propane

324

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill Safety Advisory to someone by

325

Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank OverfillSan

326

Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGo Map_thumbnail WorkplacePropane inReducing

327

Exploration strategies based on a coalbed methane producibility model  

SciTech Connect (OSTI)

Knowing geologic and hydrologic characteristics of a basin does not necessarily lead to a determination of its coalbed methane producibility because it is the synergy among key hydrogeologic controls that governs producibility. Detailed studies performed in the San Juan, Piceance, and Sand Wash Basins determined that the key hydrogeologic factors affecting producibility include depositional setting and coal distribution, tectonic and structural setting, coal rank and gas generation, hydrodynamics, permeability, and gas content. The conceptual model based on these factors provides a rationale for exploration and development strategies for unexplored areas or in basins having established or limited production. Exceptionally high productivity requires good permeability; thick, laterally continuous high-rank and high-gas-content coals; dynamic flow of ground water through those coals; generation of secondary biogenic gases; and migration and conventional trapping of thermogenic and biogenic gases. Higher coalbed methane producibility commonly occurs in areas of upward flow associated with permeability barriers (no-flow boundaries). Fluid migration across a large gathering area orthogonal to permeability barriers and/or in situ generation of secondary biogenic gases concentrate the coal gas, resulting in higher gas contents. Low coalbed methane production is typically associated with very low permeability systems; the absence of conventional or hydrodynamic traps; and thin, low-rank coals below the threshold of thermogenic gas generation. Production from relatively low-gas-content coals in highly permeable recharge areas may result in excessive water and limited coalbed methane production. Thus, high permeability can be as detrimental to coalbed methane producibility as is low permeability.

Scott, A.R.; Kaiser, W.R.; Hamilton, D.S.; Tyler, R.; Finley, R.J. [Univ. of Texas, Austin, TX (United States)

1996-12-31T23:59:59.000Z

328

Exploration strategies based on a coalbed methane producibility model  

SciTech Connect (OSTI)

Knowing geologic and hydrologic characteristics of a basin does not necessarily lead to a determination of its coalbed methane producibility because it is the synergy among key hydrogeologic controls that governs producibility. Detailed studies performed in the San Juan, Piceance, and Sand Wash Basins determined that the key hydrogeologic factors affecting producibility include depositional setting and coal distribution, tectonic and structural setting, coal rank and gas generation, hydrodynamics, permeability, and gas content. The conceptual model based on these factors provides a rationale for exploration and development strategies for unexplored areas or in basins having established or limited production. Exceptionally high productivity requires good permeability; thick, laterally continuous high-rank and high-gas-content coals; dynamic flow of ground water through those coals; generation of secondary biogenic gases; and migration and conventional trapping of thermogenic and biogenic gases. Higher coalbed methane producibility commonly occurs in areas of upward flow associated with permeability barriers (no-flow boundaries). Fluid migration across a large gathering area orthogonal to permeability barriers and/or in situ generation of secondary biogenic gases concentrate the coal gas, resulting in higher gas contents. Low coalbed methane production is typically associated with very low permeability systems; the absence of conventional or hydrodynamic traps; and thin, low-rank coals below the threshold of thermogenic gas generation. Production from relatively low-gas-content coals in highly permeable recharge areas may result in excessive water and limited coalbed methane production. Thus, high permeability can be as detrimental to coalbed methane producibility as is low permeability.

Scott, A.R.; Kaiser, W.R.; Hamilton, D.S.; Tyler, R.; Finley, R.J. (Univ. of Texas, Austin, TX (United States))

1996-01-01T23:59:59.000Z

329

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench-scale. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. The project is on schedule and on budget. Task 4, a bench-scale demonstration of the ultra-fast TSA system is complete. Rapid thermal swing of an adsorbent bed using microchannels has been successfully demonstrated and the separation of a 70% methane and 30% nitrogen was purified to 92% methane. The bench-scale demonstration unit was small relative to the system dead volume for the initial phase of experiments and a purge step was added to sweep the dead volume prior to desorbing the bed and measuring purity. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement.

Anna Lee Tonkovich

2005-07-01T23:59:59.000Z

330

Carbon Dioxide Storage in Coal Seams with Enhanced Coalbed Methane Recovery: Geologic Evaluation, Capacity Assessment and Field Validation of the Central Appalachian Basin.  

E-Print Network [OSTI]

??The mitigation of greenhouse gas emissions and enhanced recovery of coalbed methane are benefits to sequestering carbon dioxide in coal seams. This is possible because… (more)

Ripepi, Nino Samuel

2009-01-01T23:59:59.000Z

331

Kinetics simulation for natural gas conversion to unsaturated C? hydrocarbons  

E-Print Network [OSTI]

value. The usual chemical composition range of natural gas is shown in Table I. l. Table 1. 1 Natural Gas Composition Component Methane Ethane Pro ane iso-Butane normal-Butane iso-Pentane normal-Pentane Hexane s lus Nitro en Carbon Dioxide... Acetylene Carbon Ethylene Hydrogen Methane Water Carbon Dioxide CHAPTER I INTRODUCTION Challenge for Natural Gas Natural Gas (NG), which is comprised priinarily of methane, is found throughout the world, burns cleanly, and processes a high caloric...

Yang, Li

2003-01-01T23:59:59.000Z

332

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect (OSTI)

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

333

Fourier transform microwave spectrum of the propane-water complex: A prototypical water-hydrophobe system  

E-Print Network [OSTI]

structure has all four heavy atoms coplanar, with the water center of mass lying on or near the C, axisFourier transform microwave spectrum of the propane-water complex: A prototypical water) The Fourier transform microwave spectrum of the propane-water complex (C3H,-H,O) has been observed

Cohen, Ronald C.

334

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil  

E-Print Network [OSTI]

In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela, which contains 13.5 ?API gravity oil. Experimental results show that a 5:100 propane...

Tinss, Judicael Christopher

2001-01-01T23:59:59.000Z

335

9118 J. Am. Chem. SOC.1992, 114, 9118-9122 Propane Buwe  

E-Print Network [OSTI]

9118 J. Am. Chem. SOC.1992, 114, 9118-9122 Scheme 111 Propane Buwe X =CHI and Y = H lossofH2 Z = H-82-8; ethane, 74- 84-0; propane, 74-98-6;butane, 106-97-8. (28) The heats of formation for C3H2are the scaled

Schlegel, H. Bernhard

336

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil  

E-Print Network [OSTI]

In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

Ferguson,Mark Anthony

2000-01-01T23:59:59.000Z

337

ARM - Methane Background Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information Outreach Home Room News

338

Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling  

E-Print Network [OSTI]

and handling of natural gas hydrate. GSC Bulletin, 544: 263-naturally occurring gas hydrates: the structures of methaneDOE-USGS Mount Elbert gas hydrate stratigraphic test well:

Kneafsey, Timothy J.

2010-01-01T23:59:59.000Z

339

Radiochemical Transformation of High Pressure Methane under Gamma, Electron, and Neutron Irradiation  

E-Print Network [OSTI]

The chemical effects of irradiation on high pressure methane and noble gas mixtures were investigated using gamma, electron beam, and neutron irradiation sources. The gamma source used was the La-140 source from the Nuclear Science Center (NSC...

Clemens, Jeffrey Tyler

2014-05-01T23:59:59.000Z

340

Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature  

E-Print Network [OSTI]

- ronmental impact. Present technology uses steam reforming to produce synthesis gas which is converted into enhance- ment of the carbon balance of methane conversion by reforming with CO2 in order to "recycle

Mallinson, Richard

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Computational heterogeneous catalysis applied to steam methane reforming over nickel and nickel/silver catalysts  

E-Print Network [OSTI]

The steam methane reforming (SMR) reaction is the primary industrial means for producing hydrogen gas. As such, it is a critical support process for applications including petrochemical processing and ammonia synthesis. ...

Blaylock, Donnie Wayne

2011-01-01T23:59:59.000Z

342

Determining the Fate of Methane Released from the Seafloor in Deep and Shallow Water Environments  

E-Print Network [OSTI]

Marine gas seeps and accidental marine oil spills are sources of methane (CH_(4)) to the ocean, and potentially to the atmosphere, though the magnitude of the fluxes and dynamics of these systems are poorly defined. For example, the ultimate...

Du, Mengran

2014-08-12T23:59:59.000Z

343

Field Exploration of Methane Seep Near Atqasuk  

SciTech Connect (OSTI)

Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.

Katey Walter, Dennis Witmer, Gwen Holdmann

2008-12-31T23:59:59.000Z

344

Modeling of the formation of short-chain acids in propane flames F. Battin-Leclerc , 1  

E-Print Network [OSTI]

Modeling of the formation of short-chain acids in propane flames F. Battin-Leclerc , 1 , A. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized in a combustion apparatus which can easily be modeled, a laminar premixed flame of propane at atmospheric pressure

Paris-Sud XI, Université de

345

J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n-Butane, and Neopentane  

E-Print Network [OSTI]

J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n, Pasadena, California 91125. Received February I, 1988 Abstract: The hydrogenolysisof ethane, propane, n for ethane, propane, and neopentane involvesthe cleavage of a single carbon-carbon bond, resulting

Goodman, Wayne

346

Far-infrared laser vibration-rotation-tunneling spectroscopy of the propane-water compkx: Torsional dynamics of the hydrogen  

E-Print Network [OSTI]

Far-infrared laser vibration-rotation-tunneling spectroscopy of the propane-water compkx: Torsional 1993) The far-infrared laservibration-rotation-tunneling (FIR-VRT) spectrumof the propane-water complex calculations. In the present paper and in its counterpart,13we present our results for the water-propane

Cohen, Ronald C.

347

Performance analysis of a series of hermetic reciprocating compressors working with R290 (propane) and R407C  

E-Print Network [OSTI]

Performance analysis of a series of hermetic reciprocating compressors working with R290 (propane with propane as refrigerant are analyzed in terms of the compressor model developed by [E. Navarro, E. Granryd. In addition, a comparison study between propane and R407C was carried out for one compressor and the observed

Fernández de Córdoba, Pedro

348

Non-oxidative reactions of propane on Zn/Na-ZSM5 Joseph A. Biscardi and Enrique Iglesia*  

E-Print Network [OSTI]

Non-oxidative reactions of propane on Zn/Na-ZSM5 Joseph A. Biscardi and Enrique Iglesia* Department rates during propane conversion at 773 K on Zn/Na-ZSM5 are about ten times higher than on Zn/H-ZSM5 catalysts with similar Zn content. The total rate of propane conversion is also higher on Zn/Na-ZSM5

Iglesia, Enrique

349

Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization on Co/H-ZSM5 and H-ZSM5  

E-Print Network [OSTI]

Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization on Co/H-ZSM5 and H Co/H-ZSM5 catalyzes propane dehydrogenation and aromatization reactions. Initial product selectivities, product site-yields, and the 13C content and distribution in the products of 2-13C-propane show

Iglesia, Enrique

350

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

351

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network [OSTI]

. Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

352

Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments  

E-Print Network [OSTI]

M. World crude and natural gas reserves rebound in 2000. Oilto the conventional gas reserve of 0.15x10 15 m 3 methane (

Moridis, George J.; Sloan, E. Dendy

2006-01-01T23:59:59.000Z

353

VIBRATION->VIBRATION ENERGY TRANSFER IN METHANE  

E-Print Network [OSTI]

VIBRATION ENERGY TRANSFER IN METHANE Peter Hess, A. H. Kung,Rotation Spectra of Methane, U.S. Nat'L· Tech. Inform.tret t tllll. I. INTRODUCTION Methane is a relatively simple

Hess, Peter

2012-01-01T23:59:59.000Z

354

Coal Bed Methane Protection Act (Montana)  

Broader source: Energy.gov [DOE]

The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

355

Central-northern Appalachian coalbed methane flow grows  

SciTech Connect (OSTI)

Over the past decade in the US, coalbed methane (CBM) has become an increasingly important source of unconventional natural gas. The most significant CBM production occurs in the San Juan basin of Colorado and new Mexico and the Black Warrior basin of Alabama, which collective in 1995 accounted for about 94% of US CBM production. The paper discusses early CBM production, recent production, gas composition, undiscovered potential, and new exploration areas.

Lyons, P.C. [Geological Survey, Reston, VA (United States)

1997-07-07T23:59:59.000Z

356

Methane Gas Conversion Property Tax Exemption  

Broader source: Energy.gov [DOE]

'''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for...

357

EIA - Greenhouse Gas Emissions - Methane Emissions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data03. U.S. EIA

358

SciTech Connect: Effects of Propane/Natural Gas Blended Fuels on Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controllerAdditiveBetatronAerogelDistances

359

methane hydrate science plan-final.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 Principal Authors: Consor um for Ocean Leadership and the Methane Hydrate Project Science Team December 2013 DOE Award Number: DE-FE0010195 Project Title: Methane Hydrate...

360

Gas Emissions FLOODING THE LAND,  

E-Print Network [OSTI]

signif- icant sources of emissions of the greenhouse gases carbon dioxide and, in particular, methane to bacteria breaking down organic matter in the water. Methane, a much more powerful greenhouse gas than coal plants generating the same amounts of power. Dams and their associated reservoirs are globally

Batiste, Oriol

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil andMCKEESPORTfor the 2012Methane

362

Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel  

SciTech Connect (OSTI)

This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

2010-11-15T23:59:59.000Z

363

Compatibility of selected ceramics with steam-methane reformer environments  

SciTech Connect (OSTI)

Conventional steam reforming of methane to synthesis gas (CO and H{sub 2}) hasa conversion efficiency of about 85%. Replacement of metal tubes in the reformer with ceramic tubes offers the potential for operation at temperatures high enough to increase the efficiency to 98-99%. However, the two candidate ceramic materials being given strongest consideration, sintered alpha Si carbide and Si carbide particulate-strengthened alumina, have been shown to react with components of the reformer environment. Extent of degradation as a function of steam partial pressure and exposure time has been studied, and results suggest limits under which these structural ceramics can be used in advanced steam-methane reformers.

Keiser, J.R.; Howell, M. [Oak Ridge National Lab., TN (United States); Williams, J.J.; Rosenberg, R.A. [Stone and Webster Engineering Corp., Boston, MA (United States)

1996-04-01T23:59:59.000Z

364

Coal mine methane global review  

SciTech Connect (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

365

Effect of temperature and pressure on the dynamics of nanoconfined propane  

SciTech Connect (OSTI)

We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

Gautam, Siddharth, E-mail: gautam.25@osu.edu; Liu, Tingting, E-mail: gautam.25@osu.edu; Welch, Susan; Cole, David [School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 S Oval Mall, Columbus, OH 43210 (United States); Rother, Gernot [Geochemistry and Interfacial Science Group, Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jalarvo, Niina [Jülich Center for Neutron Sciences (JCNS-1), Forschungszentrum Jülich Outstation at Spallation Neutron Source(SNS), Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Mamontov, Eugene [Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2014-04-24T23:59:59.000Z

366

H. R. 2998: A bill to amend the Natural Gas Act to permit the development of coalbed methane gas in areas where its development has been impeded or made impossible by uncertainty and litigation over ownership rights, and for other purposes, introduced in the US House of Representatives, One Hundred Second Congress, First Session, July 23, 1991  

SciTech Connect (OSTI)

This bill would direct the Secretary of Energy to compile a list of affected states which are determined to be states in which disputes, uncertainty, or litigation exist or potentially exists regarding the ownership of coalbed methane; in which the development of significant deposits of coalbed methane may be impeded by such disputes; in which statutory or regulatory procedures permitting and encouraging development of coalbed methane prior to final resolution of disputes are not in place; and in which extensive development of coalbed methane does not exist. Colorado, Montana, New Mexico, Wyoming, Utah, Virginia, and Alabama are excluded from such a list since they currently have development of coalbed methane. Until the Secretary of Energy publishes a different list, the affected states are West Virginia, Pennsylvania, Kentucky, Ohio, Tennessee, Indiana, and Illinois, effective on the date of enactment of this bill.

Not Available

1991-01-01T23:59:59.000Z

367

Backward Raman amplification in a partially ionized gas A. A. Balakin,1  

E-Print Network [OSTI]

was accessed 10,11 . The experimental success was achieved using a gas jet of propane, subse- quently ionized that would be most desired. Using the pro- pane gas jet, as opposed to pure hydrogen, eased conditions on the gas jet nozzle, since a lower gas pressure could pro- duce a higher density target. However, the use

368

A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime  

SciTech Connect (OSTI)

The oxidation of propane has been studied in the temperature range 680-970 K at compressed gas pressures of 21, 27, and 37 atm and at varying equivalence ratios of 0.5, 1.0, and 2.0. These data are consistent with other experiments presented in the literature for alkane fuels in that, when ignition delay times are plotted as a function of temperature, a characteristic negative coefficient behavior is observed. In addition, these data were simulated using a detailed chemical kinetic model. It was found that qualitatively the model correctly simulated the effect of change in equivalence ratio and pressure, predicting that fuel-rich, high-pressure mixtures ignite fastest, while fuel-lean, low-pressure mixtures ignite slowest. Moreover, reactivity as a function of temperature is well captured, with the model predicting negative temperature coefficient behavior similar to the experiments. Quantitatively the model is faster than experiment for all mixtures at the lowest temperatures (650-750 K) and is also faster than experiment throughout the entire temperature range for fuel-lean mixtures. (author)

Gallagher, S.M.; Curran, H.J.; Metcalfe, W.K.; Healy, D.; Simmie, J.M. [Combustion Chemistry Centre, National University of Ireland, Galway (Ireland); Bourque, G. [Rolls-Royce Canada, Montreal (Canada)

2008-04-15T23:59:59.000Z

369

Integrated process for coalbed brine and methane disposal  

SciTech Connect (OSTI)

This paper describes a technology and project to demonstrate and commercialize a brine disposal process for converting the brine stream of a coalbed gas producing site into clean water for agricultural use and dry solids that can be recycled for industrial consumption. The process also utilizes coalbed methane (CBM) released from coal mining for the combustion process thereby substantially reducing the potential for methane emissions to the atmosphere. The technology is ideally suited for the treatment and disposal of produced brines generated from the development of coal mines and coalbed methane resources worldwide. Over the next 10 to 15 years, market potential for brine elimination equipment and services is estimated to be in the range of $1 billion.

Byam, J.W. Jr.; Tait, J.H.; Brandt, H.

1996-12-31T23:59:59.000Z

370

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

E-Print Network [OSTI]

and Englezos, P. , 2009. Gas hydrate formation in a variableDOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test WellFormation of natural gas hydrates in marine sediments. 1.

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

371

Sulfonation of Methane Direct Liquid-Phase Sulfonation of Methane to  

E-Print Network [OSTI]

Sulfonation of Methane Direct Liquid-Phase Sulfonation of Methane to Methanesulfonic Acid by SO3 of methane to value-added prod- ucts is a significant contemporary challenge.[1] Methane is a very unreactive, consider- able effort has been devoted to the oxidation and oxidative carbonylation of methane.[2

Bell, Alexis T.

372

Review article Methane production by ruminants  

E-Print Network [OSTI]

Review article Methane production by ruminants: its contribution to global warming Angela R. MOSSa of methane in the global warming scenario and to examine the contribution to atmospheric methane made by enteric fermentation, mainly by rumi- nants. Agricultural emissions of methane in the EU-15 have recently

Paris-Sud XI, Université de

373

Capture and Use of Coal Mine Ventilation Air Methane  

SciTech Connect (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

374

Carbon dioxide, argon, nitrogen and methane clathrate hydrates:1 thermodynamic modelling, investigation of their stability in Martian2  

E-Print Network [OSTI]

1 Carbon dioxide, argon, nitrogen and methane clathrate hydrates:1 thermodynamic modelling-4Dec2012 #12;3 Keywords: Mars, clathrate hydrate, nitrogen, carbon dioxide, argon, methane, equilibrium and allows to simulating a Martian gas, CO2 dominated (95.3%) plus nitrogen6 (2.7%) and argon (2

Paris-Sud XI, Université de

375

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test  

E-Print Network [OSTI]

in unconventional reservoirs such as coalbed methane, shale gas and tight gas reservoirs. Developing these types of unconventional gas reservoirs improves our energy security, and benefits the overall economy. Also, natural gas is one of the cleanest and most...

Romero Lugo, Jose 1985-

2012-10-24T23:59:59.000Z

376

State heating oil and propane program: Final report. Survey of No.2 heating oil and propane prices at the retail level, October 1997 through March 1998  

SciTech Connect (OSTI)

The Energy Efficiency Division of the Vermont Department of Public Service (DPS) monitored the price and inventory of residential heating oil and propane during the 1997--98 heating season under a grant from the US Department of Energy`s Energy Information Administration (EIA). DPS staff collected data biweekly between October 5, 1997 and March 16, 1998 on the retail price of {number_sign}2 home heating oil and propane by telephone survey. Propane price quoted was based on the rate for a residential home heating customer using 1,000+ per year. The survey included a sample of fuel dealers selected by the EIA, plus additional dealers and fuels selected by the DPS. The EIA weighted, analyzed, and reported the data collected from their sample.

NONE

1998-11-01T23:59:59.000Z

377

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

2005-02-01T23:59:59.000Z

378

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil.  

E-Print Network [OSTI]

??In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela,… (more)

Tinss, Judicael Christopher

2012-01-01T23:59:59.000Z

379

Analysis of tank deformation from fire induced ruptures and BLEVEs of 400 l propane tanks  

SciTech Connect (OSTI)

A series of fire tests were conducted to study the thermal rupture of propane tanks. The tests involved 400 liter ASME automotive propane tanks filled to 80% capacity with commercial propane. The tanks were brought to failure using torches and pool fires. the resulting thermal ruptures varied in severity from minor fissures, measuring a few centimeters in length, to catastrophic failures where the tank was flattened on the ground. The catastrophic failures would typically be called Boiling Liquid Expanding Vapour Explosions (BLEVE). The objective of this work was to develop a correlation between the failure severity and the tank condition at failure. The deformed propane tanks were measured in detail and the extent of deformation was quantified. The tank failure severity was found to be a complex function of a number of tank and lading properties at failure. this paper presents the measured data from the tanks and a step by step description of how the correlation was determined.

Kielec, D.J.; Birk, A.M. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Mechanical Engineering

1996-12-01T23:59:59.000Z

380

Analysis of fire-induced ruptures of 400-L propane tanks  

SciTech Connect (OSTI)

A series of fire tests were conducted to study the thermal rupture of propane tanks. The tests involved 400-L ASME automotive propane tanks filled to 80% capacity with commercial propane. The tanks were brought to failure using torches and pool fires. The resulting thermal ruptures varied in severity from minor fissures, measuring a few centimeters in length, to catastrophic failures where the tank was flattened on the ground. The catastrophic failures would typically be called boiling liquid expanding vapor explosions (BLEVEs). The objective of this work was to develop a correlation between the failure severity and the tank condition at failure. The deformed propane tanks were measured in detail and the extent of deformation was quantified. The tank failure severity was found to be a complex function of a number of tank and lading properties at failure. This paper presents the measured data from the tanks and a step-by-step description of how the correlation was determined.

Kielec, D.J.; Birk, A.M. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Mechanical Engineering

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

- W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

382

Experimental study of Morichal heavy oil recovery using combined steam and propane injection  

E-Print Network [OSTI]

with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

Goite Marcano, Jose Gregorio

1999-01-01T23:59:59.000Z

383

Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam-with-propane distillation  

E-Print Network [OSTI]

EXPERIMENTAL AND ANALYTICAL STUDIES OF HYDROCARBON YIELDS UNDER DRY-, STEAM-, AND STEAM-WITH- PROPANE DISTILLATION A Dissertation by NAMIT JAISWAL Submitted to the Office of Graduate Studies of Texas A&M University...-WITH- PROPANE-DISTILLATION A Dissertation by NAMIT JAISWAL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved...

Jaiswal, Namit

2007-09-17T23:59:59.000Z

384

Partial oxidation of methane to syngas in different reactor types  

SciTech Connect (OSTI)

The performance of Rh/ZnO/{gamma}-Al{sub 2}O{sub 3} catalyst for partial oxidation of methane to syngas was compared in fixed and fluidised bed reactors. Catalyst activity was found not to be a limiting factor under any experimental conditions and complete oxygen conversions were observed in all tests. In the fixed bed reactor both methane conversion and syngas selectivity were increasing with space velocity as the result of an autothermal effect. Satisfactory control of the catalyst temperature at high space velocities could only be achieved with addition of inert diluent or steam to the feed. Different conversion and selectivity patterns were observed in fluidised bed reactor. Methane conversion and carbon monoxide selectivity were decreasing with increasing gas flow. By contrast, hydrogen selectivity showed distinct maximum at medium space velocities. These results are interpreted in terms of catalyst backmixing and its effect on primary and secondary reactions. Improved temperature control was also achieved in fluidised bed reactor. Several experiments using fluidised bed reactor were carried out at elevated pressures. To eliminate the occurrence of non-catalytic gas phase reactions between methane and oxygen very short feed mixing times (< 1 ms) were employed. Despite these measures the reactor could not be successfully operated at pressures above 0.7 MPa. The implications of these findings for process development are discussed.

Lapszewicz, J.A.; Campbell, I.; Charlton, B.G.; Foulds, G.A. [CSIRO Division of Coal and Energy Technology, Menai (Australia)

1995-12-01T23:59:59.000Z

385

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect (OSTI)

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

386

Microbe-Metazoan interactions at Pacific Ocean methane seeps  

E-Print Network [OSTI]

B) and those present within methane seep Euryarchaea ( PMI,margin: the influence of methane seeps and oxygen minimumisotope signatures and methane use by New Zealand cold seep

Thurber, Andrew R

2010-01-01T23:59:59.000Z

387

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

AND PRODUCTION OF METHANE Lawrence Berkeley LaboratoryDIGESTION AND PRODUCTION OF METHANE Kendall F. Haven MarkArrangement Kelp to Methane Processing Plant Schematic.

Haven, Kendall F.

2011-01-01T23:59:59.000Z

388

Microbe-metazoan interactions at Pacific Ocean methane seeps  

E-Print Network [OSTI]

B) and those present within methane seep Euryarchaea ( PMI,margin: the influence of methane seeps and oxygen minimumisotope signatures and methane use by New Zealand cold seep

Thurber, Andrew Reichmann

2010-01-01T23:59:59.000Z

389

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect (OSTI)

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

390

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench scale. The project is on schedule and on budget. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement. The system has six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration will be initiated in the next fiscal year. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study.

Anna Lee Tonkovich

2004-07-01T23:59:59.000Z

391

Methane/CO{sub 2} sorption modeling for coalbed methane production and CO{sub 2} sequestration  

SciTech Connect (OSTI)

A thorough study of the sorption behavior of coals to methane and carbon dioxide (CO{sub 2}) is critical for carbon sequestration in coal seams and enhanced coalbed methane recovery. This paper discusses the results of an ad/de-sorption study of methane and CO{sub 2}, in single gas environment, on a set of coal samples taken from the San Juan and Illinois Basins. The results indicate that, under similar temperature and pressure conditions, coals exhibit higher affinity to CO{sub 2} as compared to methane and that the preferential sorption ratio varies between 2:1 and 4:1. Furthermore, the experimental data were modeled using Langmuir, BET, and Dubinin-Polanyi equations. The accuracy of the models in quantifying coal-gas sorption was compared using an error analysis technique. The Dubinin-Radushkevich equation failed to model the coal-gas sorption behavior satisfactorily. For methane, Langmuir, BET, and Dubinin-Astakhov (D-A) equations all performed satisfactorily within comparable accuracy. However, for CO{sub 2}, the performance of the D-A equation was found to be significantly better than the other two. Overall, the D-A equation fitted the experimental sorption data the best, followed by the Langmuir and BET equations. Since the D-A equation is capable of deriving isotherms for any temperature using a single isotherm, thus providing added flexibility to model the temperature variation due to injection/depletion, this is the recommended model to use. 49 refs., 9 figs., 5 tabs.

Satya Harpalani; Basanta K. Prusty; Pratik Dutta [Southern Illinois University-Carbondale, Carbondale, IL (United States). Department of Mining and Mineral Resources Engineering

2006-08-15T23:59:59.000Z

392

Methane Hydrate Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Report to Congress | Page 13 Hutchinson, D., Ruppel, C., Roberts, H., Carney, R., Smith, M., 2011. Gas hydrates in the Gulf of Mexico. In Gulf of Mexico Origin, Waters, and...

393

A study on coalbed methane reserve of Shanxi: Hedong coalfield reserve and its utilization  

SciTech Connect (OSTI)

Coalbed gas, i.e. coalbed methane, is considered an unconventional gas, formed during coal accumulation and preserved in coal seams. In the past, coalbed gas was considered a major hazard factor to the safety of mining and caused countless explosive events and great losses to the enterprises and even to the country. Early in 1960s and 70s, it was recognized that coalbed gas could be utilized as an energy resource and collected through tunnels in China. In 1995, the output of tunnel gas reached 500Mm{sup 3}, however, surface pumping is still at its beginning stage, test and appraisal; so far, no commercial development is being carried out in China. Hedong coalfield, situated in the west of Shanxi province and bordered by the Yellow River in the northwest and outcrop seams in the southeast, is 540km long (N-S) and 10--40 km wide (E-W) and covers an area of 17,000 km{sup 2} across 13 counties of Xinzou, Luliang, Linfen and Yuncheng prefectures. It is the No. 2 coalfield in Shanxi province and the well-known base of excellent coking coal and power coal in China. Hedong coalfield is not only rich in coal resource, but also in coalbed methane. This paper describes the geology of the coalfield (including structure, magmatic activity, coal seams and coal grade); the regularity of coalbed methane occurrence in the Hedong coalfield; the calculation of coalbed methane resource; and the use of coalbed methane for motor fuels and chemicals production. The total resource is 1468.93Gm{sup 3}. The production of motor fuels can be realized by the following processes: (a) synthetic methanol as substitute of gasoline; (b) F-T synthesis for synthetic gasoline and diesel oil; (c) Compressed natural gas as motor fuel; and (d) Liquefied natural gas as motor fuel. The production of organic chemicals is suggested with the following technology: (a) Two-stage steam reforming to convert methane to synthetic gas various organic chemicals can be produced therefrom; (b) Partial oxidation of methane to produce synthesis gas and acetylene; (c) Coalbed methane to produce hydrogen cyanide and chloromethanes; and (d) Coalbed methane to produce acrylonitrile, acetylene, ethylene, propylene and butylenes.

Kong, X.; Fan, R.; Hu, Y.; Wang, M.; Wang, M.; Chen, Z.; Li, M.; Peng, S. [Taiyuan Ke-jin Technology Development Service (China)

1997-12-31T23:59:59.000Z

394

Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California  

E-Print Network [OSTI]

, the California Air Resources Board (CARB) greenhouse gas inventory emission rate of 2.7 Ă? 1010 g CH4/yr is not accounted for in the CARB inventory. Citation: Peischl, J., et al. (2012), Airborne observations of methane California, which include livestock, landfills, wastewater treatment, oil and gas drilling and distribution

Cohen, Ronald C.

395

Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries  

E-Print Network [OSTI]

. Emission of this powerful greenhouse gas from wet- lands is known to depend on climate, with increasing are likely due to factors other than the global warming of wetlands. Atmospheric methane (CH4) is a powerful greenhouse gas (GHG) that is responsible for an estimated 22% of the present anthropogenically enhanced

396

Earth'sFuture Remote sensing of fugitive methane emissions from oil and  

E-Print Network [OSTI]

Earth'sFuture Remote sensing of fugitive methane emissions from oil and gas production in North and tight oil reservoirs to exploit formerly inaccessible or unprofitable energy resources in rock and oil provide an opportunity to achieve energy self-sufficiency and to reduce greenhouse gas emissions

Dickerson, Russell R.

397

Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis  

E-Print Network [OSTI]

a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane, Microbial electrolysis cell, Power-to-gas, Microbially influenced corrosion, Carbon black, Graphite, hydro- gen gas production by water electrolysis often requires expensive precious metals to reduce

398

Assessment of the risk of transporting propane by truck and train  

SciTech Connect (OSTI)

The risk of shipping propane is discussed and the risk assessment methodology is summarized. The risk assessment model has been constructed as a series of separate analysis steps to allow the risk to be readily reevaluated as additional data becomes available or as postulated system characteristics change. The transportation system and accident environment, the responses of the shipping system to forces in transportation accidents, and release sequences are evaluated to determine both the likelihood and possible consequences of a release. Supportive data and analyses are given in the appendices. The risk assessment results are related to the year 1985 to allow a comparison with other reports in this series. Based on the information presented, accidents involving tank truck shipments of propane will be expected to occur at a rate of 320 every year; accidents involving bobtails would be expected at a rate of 250 every year. Train accidents involving propane shipments would be expected to occur at a rate of about 60 every year. A release of any amount of material from propane trucks, under both normal transportation and transport accident conditions, is to be expected at a rate of about 110 per year. Releases from propane rail tank cars would occur about 40 times a year. However, only those releases that occur during a transportation accident or involve a major tank defect will include sufficient propane to present the potential for danger to the public. These significant releases can be expected at the lower rate of about fourteen events per year for truck transport and about one event every two years for rail tank car transport. The estimated number of public fatalities resulting from these significant releases in 1985 is fifteen. About eleven fatalities per year result from tank truck operation, and approximately half a death per year stems from the movement of propane in rail tank cars.

Geffen, C.A.

1980-03-01T23:59:59.000Z

399

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

SciTech Connect (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

400

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect (OSTI)

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coalbed methane exploration in the Lorraine Basin, France  

SciTech Connect (OSTI)

DuPont Conoco Hydrocarbures has been involved in a Coalbed Methane (CBM) project in France since 1991. Coalbed methane exploration differs noticeably in several aspects from conventional oil and gas exploration. This paper is divided in three parts and discusses some geological, reservoir and drilling considerations relevant to the exploration and appraisal of a coalbed methane prospect. The first part presents geological issues such as data collection and evaluation of its associated value, building expertise to create a geological and geophysical model integrating the work of a multidisciplinary team, and assessing uncertainties of the data interpretation. A short review of the basin activity, geological and tectonic setting, and environment aspects is presented in order to illustrate some CBM exploration issues. The second part describes a comprehensive coalbed methane reservoir data acquisition program incorporating coal sample optical and chemical analyses, gas sample chromatography, canister desorption, fracture density of coal cores, and measurement of in-situ coal permeability and bounding-strata stress. Field practical concerns are then discussed such as on-site and off-site canister desorption, gas sample collection, rapid estimation of gas content, ash content, total bed moisture, and finally well testing alternatives for permeability and rock stress determination. The third part reviews drilling issues such as drilling and coring options for core hole size and casing size, rig site equipment requirements for continuous coring operations, including mud treatment equipment, core handling material and core work stations, alliance of national and foreign drilling contractors to optimize equipment and experience, and finally overview of coring procedures to identify best practices for pending operations. The paper is derived from Conoco`s experience in CBM exploration in the Lorraine Basin, North East of France.

Michaud, B. [DuPont Conoco Hydrocarbures, Paris (France); Briens, F.; Girdler, D.

1995-08-01T23:59:59.000Z

402

Future designs of raw-gas conversion systems  

SciTech Connect (OSTI)

Many different processes are available to convert raw gas to substitute natural gas (SNG). Several additional processes have been proposed and are now in development. An Institute of Gas Technology (IGT) computer program assesses the efficiency of various raw-gas conversion processes for the recovery of high-temperature enthalpy and the net export of high-pressure steam. The steam balance is a prime measure of economic attractiveness of the alternative processes. Of the currently available processes, the sequence that uses sour-gas shift followed by conventional cold sweetening and nickel-based multistage methanation is preferred. Certain novel process concepts beginning with sour-gas shift and hot-gas carbon dioxide removal should be a significant improvement. The improved processes will require either sulfur-tolerant methanation or hot-gas sulfur removal plus conventional methanation. In either case, the gas would not be cooled to room temperature before being entirely converted to methane.

Colton, J.W.; Fleming, D.K.

1981-01-01T23:59:59.000Z

403

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)  

SciTech Connect (OSTI)

Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

Not Available

2014-01-01T23:59:59.000Z

404

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-07-01T23:59:59.000Z

405

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-06-01T23:59:59.000Z

406

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-03-01T23:59:59.000Z

407

Dynamics of Propane in Silica Mesopores Formed upon PropyleneHydrogenation over Pt Nanoparticles by Time-Resolved FT-IRSpectroscopy  

SciTech Connect (OSTI)

Propylene hydrogenation over Pt nanoparticles supported onmesoporous silica type SBA-15 was monitored by time-resolved FT-IRspectroscopy at 23 ms resolution using short propylene gas pulses thatjoined a continuous flow of hydrogen in N2 (1 atm total pressure).Experiments were conducted in the temperature range 323-413 K. Propanewas formed within 100 milliseconds or faster. The CH stretching regionrevealed distinct bands for propane molecules emerging inside thenanoscale channels of the silica support. Spectral analysis gave thedistribution of the propane product between support and surrounding gasphase as function of time. Kinetic analysis showed that the escape ofpropane molecules from the channels occurred within hundreds ofmilliseconds (3.1 + 0.4 s-1 at 383 K). A steady state distribution ofpropane between gas phase and mesoporous support is established as theproduct is swept from the catalyst zone by the continuous flow ofhydrogen co-reactant. This is the first direct spectroscopic observationof emerging products of heterogeneous catalysis on nanoporous supportsunder reaction conditions.

Waslylenko, Walter; Frei, Heinz

2007-01-31T23:59:59.000Z

408

POSSIBLE ROLE OF WETLANDS, PERMAFROST, AND METHANE HYDRATES IN THE METHANE  

E-Print Network [OSTI]

POSSIBLE ROLE OF WETLANDS, PERMAFROST, AND METHANE HYDRATES IN THE METHANE CYCLE UNDER FUTURE the available scientific literature on how natural sources and the atmospheric fate of methane may be affected by future climate change. We discuss how processes governing methane wetland emissions, per- mafrost thawing

Chappellaz, JĂ©rĂ´me

409

Activation of the C-H Bond of Methane by Intermediate Q of Methane Monooxygenase: A  

E-Print Network [OSTI]

Activation of the C-H Bond of Methane by Intermediate Q of Methane Monooxygenase: A Theoretical component (MMOH) of the multicomponent soluble methane monooxygenase (MMO) system catalyzes the oxidation of methane by dioxygen to form methanol and water at non-heme, dinuclear iron active sites. The catalytic

Gherman, Benjamin F.

410

Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian  

E-Print Network [OSTI]

Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian, University of Hamburg, Allende-Platz 2, 20146 Hamburg, Germany Summary 1. Methane (CH4) oxidation to Sphagnum species and low-pH peatlands. 2. Moss-associated methane oxidation (MAMO) can be an effective

Wehrli, Bernhard

411

Nonequilibrium clumped isotope signals in microbial methane  

E-Print Network [OSTI]

Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

Wang, David T.

412

Method for the photocatalytic conversion of methane  

DOE Patents [OSTI]

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

1998-02-24T23:59:59.000Z

413

Method for the photocatalytic conversion of methane  

DOE Patents [OSTI]

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D'Este, Joseph R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

414

Formation and retention of methane in coal. Final report  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

415

Variability of the methane trapping in martian subsurface clathrate hydrates  

E-Print Network [OSTI]

Recent observations have evidenced traces of methane CH4 heterogeneously distributed in the martian atmosphere. However, because the lifetime of CH4 in the atmosphere of Mars is estimated to be around 300-600 years on the basis of photochemistry, its release from a subsurface reservoir or an active primary source of methane have been invoked in the recent literature. Among the existing scenarios, it has been proposed that clathrate hydrates located in the near subsurface of Mars could be at the origin of the small quantities of the detected CH4. Here, we accurately determine the composition of these clathrate hydrates, as a function of temperature and gas phase composition, by using a hybrid statistical thermodynamic model based on experimental data. Compared to other recent works, our model allows us to calculate the composition of clathrate hydrates formed from a more plausible composition of the martian atmosphere by considering its main compounds, i.e. carbon dioxyde, nitrogen and argon, together with methane. Besides, because there is no low temperature restriction in our model, we are able to determine the composition of clathrate hydrates formed at temperatures corresponding to the extreme ones measured in the polar caps. Our results show that methane enriched clathrate hydrates could be stable in the subsurface of Mars only if a primitive CH4-rich atmosphere has existed or if a subsurface source of CH4 has been (or is still) present.

Caroline Thomas; Olivier Mousis; Sylvain Picaud; Vincent Ballenegger

2008-10-23T23:59:59.000Z

416

Methane generation at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

The methane generation at Grand Gulf has been brought to light twice. The initial event occurred in February 1990 and the second in December 1993. Both events involved the receipt of a cask at Barnwell Waste Management Facility that when opened indicated a gas escaping. The gas was subsequently sampled and indicated a percentage of explosive gas. Both events involved powdered resin and indicated that the generation was from a bacterial attack of the organic materials (cellulose in the powdered resin mixture). The first event occurred and was believed to be isolated in a particular waste stream. The situation was handled and a biocide was found to be effective in treatment of liners until severe cross contamination of another waste stream occurred. This allowed the shipment of a liner that was required to be sampled for explosive gases. The biocide used by GGNS was allowed reintroduction into the floor drains and this allowed the buildup of immunity of the bacterial population to this particular biocide. The approval of a new biocide has currently allowed GGNS to treat liners and ship them offsite.

Carver, M.L. [Entergy Operations, Inc., Grand Gulf Nuclear Station, Port Gibson, MS (United States)

1995-09-01T23:59:59.000Z

417

Methane conversion for application in fuel cells  

SciTech Connect (OSTI)

Conventional steam reformers are large and expensive for small scale fuel cell installations. But also the high endothermicity of the reforming reaction for the production of synthesis gas is a drawback. An alternative to conventional steam reforming is the partial oxidation of methane to synthesis gas. This process is slightly exothermic. The flexibility of the process makes small scale application possible. However, the partial oxidation process seems especially attractive for application within a high temperature fuel cell, because of relatively high CO/H{sub 2}-ratio for the output gases. In this paper the results of the study on the mechanism of the partial oxidation to synthesis gas on silica-supported nickel catalysts are discussed. Moreover, a process for the partial oxidation is proposed in which air instead of oxygen can be used. Based on the results of the mechanistic study two processes for the catalytic partial oxidation are proposed and simulated using the Aspen Plus flowsheeting program with which the mass and heat balances were optimized.

Mulder, A. [Gastec N.V., Apeldoorn (Netherlands); Looy, F. van [Utrecht Univ. (Netherlands). Dept. of Inorganic Chemistry; Waveren, A. van; Wingerden, A.J.M. van

1996-12-31T23:59:59.000Z

418

Methane adsorption on Devonian shales  

E-Print Network [OSTI]

METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

Li, Fan-Chang

1992-01-01T23:59:59.000Z

419

Number 2 heating oil/propane program. Final report, 1991/92  

SciTech Connect (OSTI)

During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

McBrien, J.

1992-06-01T23:59:59.000Z

420

No. 2 heating oil/propane program. Final report, 1992/93  

SciTech Connect (OSTI)

During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

McBrien, J.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

No. 2 heating oil/propane program. Final report, 1990/91  

SciTech Connect (OSTI)

During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

McBrien, J.

1991-06-01T23:59:59.000Z

422

6, 36113626, 2006 Effects of methane  

E-Print Network [OSTI]

ACPD 6, 3611­3626, 2006 Effects of methane outgassing on the Black Sea atmosphere K. Kourtidis et a Creative Commons License. Atmospheric Chemistry and Physics Discussions Effects of methane outgassing Effects of methane outgassing on the Black Sea atmosphere K. Kourtidis et al. Title Page Abstract

Paris-Sud XI, Université de

423

2, 11971241, 2005 Control of methane  

E-Print Network [OSTI]

BGD 2, 1197­1241, 2005 Control of methane efflux at the Tommeliten seep area H. Niemann et al Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences Methane emission;BGD 2, 1197­1241, 2005 Control of methane efflux at the Tommeliten seep area H. Niemann et al. Title

Boyer, Edmond

424

OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS  

SciTech Connect (OSTI)

The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

1998-04-01T23:59:59.000Z

425

Chemical kinetic modeling of oxy-fuel combustion of sour gas for enhanced oil recovery  

E-Print Network [OSTI]

Oxy-fuel combustion of sour gas, a mixture of natural gas (primarily methane (CH 4 )), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S), could enable the utilization of large natural gas resources, especially when ...

Bongartz, Dominik

2014-01-01T23:59:59.000Z

426

Comparison of kinetic and equilibrium reaction models in simulating gas hydrate behavior in porous media  

E-Print Network [OSTI]

with Diapirism and Gas Hydrates at the Head of the Cape FearSea-Level Low Stands Above Gas Hydrate-Bearing Sediments.rate constant of methane gas hydrate decomposition. Canadian

Kowalsky, Michael B.; Moridis, George J.

2006-01-01T23:59:59.000Z

427

Basin scale assessment of gas hydrate dissociation in response to climate change  

E-Print Network [OSTI]

Moridis GJ. Oceanic gas hydrate instability and dissociationKA. Potential effects of gas hydrate on human welfare, Proc.WS. A review of methane and gas hydrates in the dynamic,

Reagan, M.

2012-01-01T23:59:59.000Z

428

The determination of compressibility factors of gaseous propane-nitrogen mixtures  

E-Print Network [OSTI]

LIBRARY A A N O'iLLEOE OF 1EXAS THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEIN MIXTURES A Thesis Cecil Herman Dickson Submitted to the Graduate School of the Agricultural and Mechanical College of' Texas in partial... f'ulf'illment of the requirements for the de~ree of MASTER OF SCIENCE Ma]or GubjectI Chemistry May I&55 THE DETERMINATION OF COMPRESSIBILITY FACTORS OF GASEOUS PROPANE-NITROGEN MIXTURES A Thesis Cecil Herman Dickson Approved as to style...

Dickson, Cecil Herman

1955-01-01T23:59:59.000Z

429

Application of the Continuous EUR Method to Estimate Reserves in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Reservoirs 19. Cheng et al. (2007) Decline Curve Analysis for Multilayered Tight Gas Reservoirs 20. Blasingame and Rushing Method for Gas-in-Place and Reserves Estimation (2005) 21. Clarkson et al. (2007) Production Data Analysis for Coalbed-Methane... Wells 22. Clarkson et al. (2008) Production Data Analysis for Coalbed-Methane Wells 23. Rushing et al. (2008) Production Data Analysis for Coalbed-Methane Wells 24. Lewis and Hughes (2008) Production Data Analysis for Shale Gas Wells 25. Mattar et al...

Currie, Stephanie M.

2010-10-12T23:59:59.000Z

430

Methane production by attached film  

DOE Patents [OSTI]

A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

1981-01-01T23:59:59.000Z

431

Methane generation from waste materials  

DOE Patents [OSTI]

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

432

Mechanisms of gas migration in flooding post-mining context nils Le gAL,  

E-Print Network [OSTI]

coal. in parallel, several models are in development using the HYTec code to describe mine methane, for example methane from coal beds (e.g. doyle 2001; Scott 2002; Besnard 2004). According to Scott (2002 to study gas transfer and to characterize the influence of hydrostatic pressure on methane release from

Paris-Sud XI, Université de

433

Techno-Economic Analysis of Bioconversion of Methane into Biofuel and Biochemical (Poster)  

SciTech Connect (OSTI)

In light of the relatively low price of natural gas and increasing demands of liquid transportation fuels and high-value chemicals, attention has begun to turn to novel biocatalyst for conversion of methane (CH4) into biofuels and biochemicals [1]. A techno-economic analysis (TEA) was performed for an integrated biorefinery process using biological conversion of methane, such as carbon yield, process efficiency, productivity (both lipid and acid), natural gas and other raw material prices, etc. This analysis is aimed to identify research challenges as well provide guidance for technology development.

Fei, Q.; Tao, L.; Pienkos, P .T.; Guarnieri, M.; Palou-Rivera, I.

2014-10-01T23:59:59.000Z

434

Upgrading drained coal mine methane to pipeline quality: a report on the commercial status of system suppliers  

SciTech Connect (OSTI)

In today's scenario of growing energy demand worldwide and rising natural gas prices, any methane emitted into the atmosphere is an untapped resource of energy and potentially a lost opportunity for additional revenue. In 2005, 9.7% of the total US anthropogenic emissions of methane were attributed to coal production. In recent years, many gassy coal mines have seized the opportunity to recover coal mine methane (CMM) and supply it to natural gas pipeline systems. With natural gas prices in the US exceeding $7.00 per million Btu, CMM pipeline sales brought in an annual revenue topping $97 million in 2005. However, significant opportunity still exists for tapping into this resource as 22% of the drained CMM remains unutilized as of 2005, primarily because its quality does not meet the requirements of natural gas pipeline systems. Recent advances in technologies now offer off-the-shelf options in the US that can upgrade the drained CMM to pipeline quality. These gas upgrading technologies are not only opening up the market to lower-quality methane resources but also providing significant means for reducing emissions, since methane is over 20 times a more potent greenhouse gas than carbon dioxide. This report reviews current gas upgrading technologies available in the market for removal of typical CMM contaminants, provides examples of their successful commercial implementation and compiles a list of vendors specific to nitrogen rejection systems, since nitrogen exposes the biggest challenge to upgrading CMM. 2 figs., 3 tabs., 9 apps.

Carothers, F.P.; Schultz, M.L.

2008-01-15T23:59:59.000Z

435

Coalbed Methane Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47 62CarbonCubic1,966 1,914 1,886

436

Department of Earth Sciences www.rhul.ac.uk/earthsciences Page 1 of 2 Fugitive Methane Emissions in the UK and their Impacts on the Urban  

E-Print Network [OSTI]

Department of Earth Sciences www.rhul.ac.uk/earthsciences Page 1 of 2 Fugitive Methane Emissions James France, Prof Euan Nisbet Project Description: Methane is the second most important greenhouse gas amounts from vehicles, with emissions from landfills, ruminants and in some areas, coal mines

Sheldon, Nathan D.

437

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

438

Semi-annual report for the unconventional gas recovery program, period ending September 30, 1980  

SciTech Connect (OSTI)

Progress is reported in research on methane recovery from coalbeds, eastern gas shales, western gas sands, and geopressured aquifers. In the methane from coalbeds project, data on information evaluation and management, resource and site assessment and characterization, model development, instrumentation, basic research, and production technology development are reported. In the methane from eastern gas shales project, data on resource characterization and inventory, extraction technology, and technology testing and verification are presented. In the western gas sands project, data on resource assessments, field tests and demonstrations and project management are reported. In the methane from geopressured aquifers project, data on resource assessment, supporting research, field tests and demonstrations, and technology transfer are reported.

Manilla, R.D. (ed.)

1980-11-01T23:59:59.000Z

439

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

440

TECHNICAL JUSTIFICATION FOR CHOOSING PROPANE AS A CALIBRATION AGENT FOR TOTAL FLAMMABLE VOLATILE ORGANIC COMPOUND (VOC) DETERMINATIONS  

SciTech Connect (OSTI)

This document presents the technical justification for choosing and using propane as a calibration standard for estimating total flammable volatile organic compounds (VOCs) in an air matrix. A propane-in-nitrogen standard was selected based on a number of criteria: (1) has an analytical response similar to the VOCs of interest, (2) can be made with known accuracy and traceability, (3) is available with good purity, (4) has a matrix similar to the sample matrix, (5) is stable during storage and use, (6) is relatively non-hazardous, and (7) is a recognized standard for similar analytical applications. The Waste Retrieval Project (WRP) desires a fast, reliable, and inexpensive method for screening the flammable VOC content in the vapor-phase headspace of waste containers. Table 1 lists the flammable VOCs of interest to the WRP. The current method used to determine the VOC content of a container is to sample the container's headspace and submit the sample for gas chromatography--mass spectrometry (GC-MS) analysis. The driver for the VOC measurement requirement is safety: potentially flammable atmospheres in the waste containers must be allowed to diffuse prior to processing the container. The proposed flammable VOC screening method is to inject an aliquot of the headspace sample into an argon-doped pulsed-discharge helium ionization detector (Ar-PDHID) contained within a gas chromatograph. No actual chromatography is performed; the sample is transferred directly from a sample loop to the detector through a short, inert transfer line. The peak area resulting from the injected sample is proportional to the flammable VOC content of the sample. However, because the Ar-PDHID has different response factors for different flammable VOCs, a fundamental assumption must be made that the agent used to calibrate the detector is representative of the flammable VOCs of interest that may be in the headspace samples. At worst, we desire that calibration with the selected calibrating agent overestimate the value of the VOCs in a sample. By overestimating the VOC content of a sample, we want to minimize false negatives. A false negative is defined as incorrectly estimating the VOC content of the sample to be below programmatic action limits when, in fact, the sample,exceeds the action limits. The disadvantage of overestimating the flammable VOC content of a sample is that additional cost may be incurred because additional sampling and GC-MS analysis may be required to confirm results over programmatic action limits. Therefore, choosing an appropriate calibration standard for the Ar-PDHID is critical to avoid false negatives and to minimize additional analytical costs.

DOUGLAS, J.G.

2006-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Methane Hydrates: Major Energy Source for the Future or Wishful Thinking?  

SciTech Connect (OSTI)

Methane hydrates are methane bearing, ice-like materials that occur in abundance in permafrost areas such as on the North Slope of Alaska and Canada and as well as in offshore continental margin environments throughout the world including the Gulf of Mexico and the East and West Coasts of the United States. Methane hydrate accumulations in the United States are currently estimated to be about 200,000 Tcf, which is enormous when compared to the conventional recoverable resource estimate of 2300 Tcf. On a worldwide basis, the estimate is 700,000 Tcf or about two times the total carbon in coal, oil and conventional gas in the world. The enormous size of this resource, if producible to any degree, has significant implications for U.S. and worldwide clean energy supplies and global environmental issues. Historically the petroleum industry's interests in methane hydrates have primarily been related to safety issues such as wellbore stability while drilling, seafloor stability, platform subsidence, and pipeline plugging. Many questions remain to be answered to determine if any of this potential energy resource is technically and economically viable to produce. Major technical hurdles include: 1) methods to find, characterize, and evaluate the resource; 2) technology to safely and economically produce natural gas from methane hydrate deposits; and 3) safety and seafloor stability issues related to drilling through gas hydrate accumulations to produce conventional oil and gas. The petroleum engineering profession currently deals with gas hydrates in drilling and production operations and will be key to solving the technical and economic problems that must be overcome for methane hydrates to be part of the future energy mix in the world.

Thomas, Charles Phillip

2001-09-01T23:59:59.000Z

442

Biomimetic methane oxidation. Final report, October 1, 1989--June 1, 1995  

SciTech Connect (OSTI)

Transportation fuels are a critical energy commodity and they impact nearly every sector of this country. The need for transportation fuels is projected well into the next century. Consequently, there is a strong emphasis on the economical conversion of other domestic fossil energy resources to liquid hydrocarbons that can be used as transportation fuels. Natural gas is currently a readily available resource that has a positive future outlook considering its known and anticipated reserves. There is intense government and industrial interest in developing economic technologies to convert natural gas to liquid fuels. Methane, CH{sub 4}, is the primary hydrocarbon (85-95%) in natural gas. This document covers the following: production soluable of methane monooxygenase; production of particulate methane monooxygenase; production of methane monooxygenase in continuous culture; subunit resolution for active site identification of methylosinus trichosporium OB3b soluble methane monooxygenase; the synthesis and characterization of new copper coordination complexes contairing the asymmetric coordinating chelate ligand application to enzyme active site modeling; the synthesis and characterization of new iron coordination complexes utilizing an asymmetric coordinating chelate ligand; further characterization of new bionuclear iron complexes.

Watkins, B.E.; Satcher, J.H. Jr.; Droege, M.W.; Taylor, R.T.

1995-07-01T23:59:59.000Z

443

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS  

E-Print Network [OSTI]

POWER-TO-GAS PROCESS WITH HIGH TEMPERATURE ELECTROLYSIS AND CO2 METHANATION NOVEMBER 19th 2013 IRES. Energy background 2. Power-to-Substitute Natural Gas process with high temperature steam electrolysis Gas-to-heat Gas-to-mobility Gas-to-power Excess Production = Consumption Distribution and storing

Paris-Sud XI, Université de

444

Coalbed methane potential of the Greater Green River, Piceance, Powder River, and Raton Basins. Topical report, January 1991-July 1991  

SciTech Connect (OSTI)

Coalbed methane potential of the Greater Green River, Piceance, Powder River, and Raton Basins was evaluated in the context of geologic and hydrologic characteristics identified in the San Juan Basin, the nation's leading coalbed methane producing basin. The major comparative criteria were (1) coalbed methane resources, (2) geologic and hydrologic factors that predict areas of high gas producibility and high coalbed reservoir permeability, and (3) coalbed thermal maturity. The technical criteria were expanded to include structure, depositional systems, and data base and then combined with economic criteria (production, industry activity, and pipeline availability) to evaluate the coalbed methane potential of the basins. The Greater Green River and Piceance Basins have primary potential to make a significant near-term contribution to the nation's gas supply. These basins have large gas resources, high-rank coals, high gas contents, and established coalbed methane production. The Greater Green River Basin has numerous coalbed methane targets, good coal-seam permeability, and extensive hydrologic areas favorable for production. The Powder River and Raton Basins were judged to have secondary potential. Coal beds in the Powder River Basin are thermally immature and produce large volumes of water; the Raton Basin has a poor data base and has no gas pipeline infrastructure. Low production and minimal industry activity further limit the near-term potential of the Raton Basin. However, if economic criteria are discounted and only major technical criteria are considered, the Greater Green River and Raton Basins are assigned primary potential. The Raton Basin's shallow, thermally mature coal beds of good permeability are attractive coalbed methane targets, but low coal-seam permeability limits the coalbed methane potential of the Piceance Basin.

Tyler, R.; Ambrose, W.A.; Scott, A.R.; Kaiser, W.R.

1991-12-01T23:59:59.000Z

445

State heating oil and propane program: 1995-96 heating season. Final report  

SciTech Connect (OSTI)

This is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1995/96 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. EIA provides ECS with a list of oil and propane retailers that serve customers in New Hampshire. In turn ECS conduct phone surveys twice per month from October through March to determine the average retail price for each fuel. Data collected by ECS is entered into the Petroleum Electronic Data Reporting Option (PEDRO) and transmitted via modem to EIA. The results of the state retail price surveys along with wholesale prices, supply, production and stock levels for oil, and propane are published by EIA in the Weekly Petroleum Status Report. Data is also published electronically via the internet or through the Electronic Publication System.

NONE

1996-12-31T23:59:59.000Z

446

Simulation studies of steam-propane injection for the Hamaca heavy oil field  

E-Print Network [OSTI]

Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and a viscosity of 25,000 cp at 50?C. Two types of simulation studies were performed: a...

Venturini, Gilberto Jose

2002-01-01T23:59:59.000Z

447

Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).  

SciTech Connect (OSTI)

A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

2005-01-01T23:59:59.000Z

448

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

SciTech Connect (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

449

The Methane to Markets Coal Mine Methane Subcommittee meeting  

SciTech Connect (OSTI)

The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

NONE

2008-07-01T23:59:59.000Z

450

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models and to research teams for developing future gas-hydrate projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and has been documented by the project team. This Topical Report documents drilling and coring operations and other daily activities.

Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

2005-02-01T23:59:59.000Z

451

Appalachian basin coal-bed methane: Elephant or flea  

SciTech Connect (OSTI)

Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

1991-08-01T23:59:59.000Z

452

Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation  

SciTech Connect (OSTI)

Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T. (UCB); (ORNL)

2011-10-28T23:59:59.000Z

453

Nickel crystallite thermometry during methanation  

SciTech Connect (OSTI)

A magnetic method to measure the average temperature of superparamagnetic nickel crystallites has been applied during CO methanation. The method takes advantage of the temperature dependence of the low field magnetization of such catalysts; however, the adsorption of carbon monoxide and the formation of surface carbon species complicate the interpretation of results. Calibrations to account for temperature change and the adsorption of reactants are described. The calibration for the effects of CO is based on the assumption that the interaction of CO with nickel is the same for methanation and disproportionation. Interphase heat transfer calculations based on the thermometric data compare favorably with previous results from ethane hyrogenolysis, and give no indication of microscopic temperature differences between the nickel crystallites and support.

Ludlow, D.K.; Cale, T.S.

1986-01-01T23:59:59.000Z

454

Catalytic study of SOFC electrode materials in engine exhaust gas Pauline Briaulta  

E-Print Network [OSTI]

1 Catalytic study of SOFC electrode materials in engine exhaust gas atmosphere Pauline Briaulta. An innovative application of this system would be to recover energy from exhaust gas of a thermal engine in a mixture of hydrocarbons (propane, propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water

Paris-Sud XI, Université de

455

Detection and Production of Methane Hydrate  

SciTech Connect (OSTI)

This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation.

George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

2011-12-31T23:59:59.000Z

456

EPA Natural Gas STAR Program Accomplishments  

E-Print Network [OSTI]

Established in 1993, the Natural Gas STAR program is a partnership between the U.S. EPA and the oil and natural gas industry designed to cost-effectively reduce methane emissions from voluntary activities undertaken at oil and natural gas operations both

unknown authors

457

Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion  

E-Print Network [OSTI]

110.6 million barrels per day by 2030 [1]. One possible source of alternative fuel, biodiesel, can be derived from biomass feedstocks (e.g., soybean). This bio-based diesel can augment or replace petroleum based diesel with little to no modifications...

Pickett, Derek

2013-12-31T23:59:59.000Z

458

Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production.  

E-Print Network [OSTI]

??Interference for adjacent wells may be beneficial to Coalbed-Methane production. The effect is the acceleration of de-watering which should lead to earlier and higher gas… (more)

Zulkarnain, Ismail

2006-01-01T23:59:59.000Z

459

Alternative Fuels Data Center: Federal Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticutEthanolNatural Gas

460

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation. In addition to the Final Report, several companion Topical Reports are being published.

Thomas E. Williams; Keith Millheim; Bill Liddell

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

462

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-02-01T23:59:59.000Z

463

Treatment of gas from an in situ conversion process  

DOE Patents [OSTI]

A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

Diaz, Zaida (Katy, TX); Del Paggio, Alan Anthony (Spring, TX); Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX)

2011-12-06T23:59:59.000Z

464

Effect of silane concentration on the supersonic combustion of a silane/methane mixture  

SciTech Connect (OSTI)

A series of direct connect combustor tests was conducted to determine the effect of silane concentration on the supersonic combustion characteristics of silane/methane mixtures. Shock tube ignition delay data indicated more than an order of magnitude reduction in ignition delay times for both 10 and 20 percent silane/methane mixtures as compared to methane. The ignition delay time of the 10 percent mixture was only a factor of 2.3 greater than that of the 20 percent mixture. Supersonic combustion tests were conducted with the fuel injected into a model scramjet combustor. The combustor was mounted at the exit of a Mach 2 nozzle and a hydrogen fired heater was used to provide a variation in test gas total temperature. Tests using the 20 percent silane/methane mixture indicated considerable combustion enhancement when compared to methane alone. This mixture had an autoignition total temperature of 1650 R. The addition of 20 percent silane to methane resulted in a pyrophoric fuel with good supersonic combustion performance. Reducing the silane concentration below this level, however, yielded a less pyrophoric fuel that exhibited poor supersonic combustion performance.

Northam, G.B.; Mc Lain, A.G.; Pellett, G.L.; Diskin, G.S.

1986-01-01T23:59:59.000Z

465

Design of New Materials for Methane Storage Tina Duren, Lev Sarkisov, Omar M. Yaghi, and Randall Q. Snurr*,  

E-Print Network [OSTI]

, and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109 Received August 21, 2003. In Final is to replace gasoline and diesel with alternative fuels such as natural gas. In this report, we elucidate such as gasoline and diesel.1 Natural gas, which consists mainly of methane, fits this definition and is widely

Yaghi, Omar M.

466

Catalytic Reduction of Nitrogen Oxides by Methane over Pd(110) S. M. Vesecky, J. Paul, and D. W. Goodman*  

E-Print Network [OSTI]

emissions.1 The subfield of environ- mental catalysis concerned with air quality control involves and stationary sources2 There are many stationary sources of environmental gas phase pollutants. Methane is perhaps the largest pollutant by volume, emitted from sources such as livestock, gas wells, and landfills

Goodman, Wayne

467

Miscellaneous States Coalbed Methane Proved Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

468

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

469

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

470

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

471

A guide to coalbed methane operations  

SciTech Connect (OSTI)

A guide to coalbed methane production is presented. The guide provides practical information on siting, drilling, completing, and producing coalbed methane wells. Information is presented for experienced coalbed methane producers and coalbed methane operations. The information will assist in making informed decisions about producing this resource. The information is presented in nine chapters on selecting and preparing of field site, drilling and casing the wellbore, wireline logging, completing the well, fracturing coal seams, selecting production equipment and facilities, operating wells and production equipment, treating and disposing of produced water, and testing the well.

Hollub, V.A.; Schafer, P.S.

1992-01-01T23:59:59.000Z

472

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

473

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

474

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

475

CO2 Sequestration Enhances Coalbed Methane Production.  

E-Print Network [OSTI]

??Since 1980s, petroleum engineers and geologists have conducted researches on Enhanced Coalbed Methane Recovery (ECBM). During this period, many methods are introduced to enhance the… (more)

Pang, Yu

2013-01-01T23:59:59.000Z

476

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

477

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

478

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

479

Effect of Hydrogen Addition on the Flammability Limit of Stretched Methane/Air Premixed Flames  

E-Print Network [OSTI]

], thereby enabling stable combustion at lean mixture conditions. In the case of natural gas engines, enriching the fuel with hydrogen has the proven benefits of improving the combustion stability and reducingEffect of Hydrogen Addition on the Flammability Limit of Stretched Methane/Air Premixed Flames

Im, Hong G.

480

The Role of the Ocean in the Atmospheric Budgets of Methyl Bromide, Methyl Chloride and Methane  

E-Print Network [OSTI]

, which was 700 (490 to 920) Gg yr^-1 and -370 (-440 to -280) Gg yr^-1, respectively. The ocean accounts for 10 - 19 % in the global CH3Cl emission and 6 - 9 % in its global sinks. Methane (CH4) is a potent greenhouse gas, which has a warming potential...

Hu, Lei

2012-10-19T23:59:59.000Z

Note: This page contains sample records for the topic "methane propane gas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria  

DOE Patents [OSTI]

An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

Apel, William A. (Idaho Falls, ID); Dugan, Patrick R. (Idaho Falls, ID)

1995-01-01T23:59:59.000Z

482

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network [OSTI]

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

483

Microsoft PowerPoint - Propane_Briefing_140312.pptx  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3YearDecade Year-0per9 2011

484

Propane (Consumer Grade) Prices - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998throughThousand CubicWashington Natural Gas Exports2. Types of77

485

U.S. Propane (Consumer Grade) Prices by Sales Type  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18Biomass Gas (MillionElements)2009 2010

486

Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect (OSTI)

The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

Anna Lee Tonkovich

2008-08-11T23:59:59.000Z

487

Cyclic process for producing methane with catalyst regeneration  

DOE Patents [OSTI]

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

Frost, Albert C. (Congers, NY); Risch, Alan P. (New Fairfield, CT)

1980-01-01T23:59:59.000Z

488

Nitrogen removal from natural gas using two types of membranes  

DOE Patents [OSTI]

A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.

Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.

2003-10-07T23:59:59.000Z

489

Ammonia synthesis gas purification  

SciTech Connect (OSTI)

This patent describes the purification of a reformed gas mixture following water gas shift conversion to produce a purified ammonia synthesis gas stream. The improved processing sequence consisting essentially of: (A) Selectively catalytically oxidizing the residual carbon monoxide content of the gas mixture to carbon dioxide so as to reduce the carbon monoxide content of the gas mixture to less than about 20 ppm, the selective catalytic oxidation being carried out with an excess of air, with the excess oxygen being catalytically reacted with a small amount of hydrogen so that the residual oxygen level is reduced to less than about 3 ppm; (B) removing the bulk of the carbon dioxide content of the gas mixture by liquid absorption; (C) Removing residual amounts of carbon monoxide, carbon dioxide and water by selective adsorption on the fixed beds of a thermal swing adsorption system, a dry, purified ammonia ammonia synthesis gas stream containing less than a total of 10 ppm of carbon monoxide and carbon dioxide being recovered from the thermal swing adsorption system; (D) Passing the resulting dry, purified ammonia synthesis gas stream having a low content of methane to an ammonia production operation without intermediate passage of the ammonia synthesis gas stream to a methanation unit or to a cryogenic unit for removal of carbon monoxide and carbon dioxide therefrom; whereby the efficiency of the overall purification operation and the effective utilization of hydrogen are enhanced.

Fuderer, A.

1986-02-25T23:59:59.000Z

490

IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE  

E-Print Network [OSTI]

and particles. As the natural gas resources are enormous, it represents a good alternative to oil in term natural gas distribution network. Secondly, at low pressure, the tank geometry can adopt various shapes, gas storage INTRODUCTION. With the massive increase of the urban traffic, coupled with its large

Paris-Sud XI, Université de

491

Three-dimensional model synthesis of the global methane cycle  

E-Print Network [OSTI]

39, Ehhalt, D. H. , The atmo•heric cycle of methane, Tellugworld-wide increase in t•heric methane, 1978-1987, Science,

1991-01-01T23:59:59.000Z

492

Diffusion Characterization of Coal for Enhanced Coalbed Methane Production.  

E-Print Network [OSTI]

??This thesis explores the concept of displacement of sorbed methane and enhancement of methane recovery by injection of CO2 into coal, while sequestering CO2. The… (more)

Chhajed, Pawan

2011-01-01T23:59:59.000Z

493

Direct Observation of the Active Center for Methane Dehydroaromatizati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Active Center for Methane Dehydroaromatization Using an Ultrahigh Field 95Mo NMR Spectroscopy. Direct Observation of the Active Center for Methane Dehydroaromatization Using an...

494

Studies of the Active Sites for Methane Dehydroaromatization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Active Sites for Methane Dehydroaromatization Using Ultrahigh-Field Solid-State Mo95 NMR Spectroscopy. Studies of the Active Sites for Methane Dehydroaromatization Using...

495

Scientists detect methane levels three times larger than expected...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

496

Thermophysical property predictions of propane, propylene and their mixtures by Benedict-Webb-Rubin type equations of state  

E-Print Network [OSTI]

THERMOPHYSICAL PROPERTY PREDICTIONS OF PROPANE, PROPYLENE AND THEIR MIXTURES BY BENEDICT-WEBB-RUBIN TYPE EQUATIONS OF STATE A Thesis by PRAMOD KUMAR BENGANI Submitted to the Office of Graduate Studies of Texas A & M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1990 Major Subject: Chemical Engineering THERMOPHYSICAL PROPERTY PREDICTIONS OF PROPANE, PROPYLENE AND THEIR MIXTURES BY BENEDICT-WEBB-RUBIN TYPE EQUATIONS OF STATE A Thesis...

Bengani, Pramod Kumar

1990-01-01T23:59:59.000Z

497

Coalbed methane: A partial solution to Indonesia`s growing energy problems  

SciTech Connect (OSTI)

Indonesia contains the largest resources of coal in Southeast Asia. Indonesian scientists estimate that the in-place coalbed methane resource in 16 onshore basins is about 213 Tcf ({approximately}6 Tcm). This volume is approximately double Indonesia`s current reserves of natural gas. Indonesia is a rapidly industrializing nation of 186 million people, of which 111 million live in Java and 38 million in Sumatra. As industrialization progresses from the present low level, the growth in energy demand will be very rapid. Indonesia`s domestic gas demand is expected to increase form 1.6 Bcf/d (0.05 Bcm/d) in 1991 to 5.7 Bcf/d (0.2 Bcm/d) in 2021. Because the major gas resources of East Kalimantan, North Sumatra, and Natuna are so remote from the main consuming area in northwest Java and are dedicated for export by virtue of the national energy policy, the need is becoming urgent to develop new resources of natural gas, including coalbed methane, for the domestic market. Due to the high geothermal gradient, the coal deposits in the back-arc basins of Sumatra and Java are expected to be of higher than normal rank at depths favorable for coalbed methane production. The oil- and gas-productive Jatibarang sub-basin in northwest Java, with estimated in-place resources of coalbed methane in excess of 20 Tcf (0.6 Tcm), is considered to be the most prospective area in Indonesia for the near-term development of coalbed methane. This area includes Jakarta and vicinity, the most populous and most heavily industrialized part of Indonesia.

Murray, D.K. [D. Keith Murray & Associates, Lakewood, CO (United States); Gold, J.P. [Consulting Geologist, Evergreen, CO (United States)

1995-04-01T23:59:59.000Z

498

Coalbed Methane (CBM) is natural  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean,Coalbed Methane (CBM)

499

Completion methods in thick, multilayered tight gas sands  

E-Print Network [OSTI]

Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs...

Ogueri, Obinna Stavely

2008-10-10T23:59:59.000Z

500

The 1991 coalbed methane symposium proceedings  

SciTech Connect (OSTI)

The proceedings of the 1991 coalbed methane symposium are presented. The proceedings contains 50 papers on environmental aspects of recovering methane from coal seams, reservoir characterization and testing mine safety and productivity, coalbed stimulation, geology and resource assessment, well completion and production technologies, reservoir modeling and case histories, and resources and technology.

Not Available

1991-01-01T23:59:59.000Z