Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009...

2

Enhanced Renewable Methane Production System | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

3

Florida Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves Changes, and...

4

Michigan Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Michigan Coalbed Methane Proved Reserves, Reserves Changes, and...

5

Kentucky Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and...

6

Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments  

SciTech Connect

In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane’s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications to date, with five more circulating in draft form, and several others planned.

Valentine, David

2012-09-30T23:59:59.000Z

7

Methane Hydrate Production Feasibility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

8

Arkansas Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3...

9

Alabama Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23...

10

Kansas Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Kansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 25 38...

11

Virginia Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

12

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

13

Oklahoma Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Oklahoma Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 58 68...

14

Montana Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

15

Pennsylvania Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Pennsylvania Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 5...

16

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

17

Louisiana--South Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production LA, South Onshore Coalbed Methane Proved Reserves, Reserves...

18

California (with State off) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes,...

19

Texas (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved Reserves, Reserves Changes, and...

20

Texas--RRC District 8 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8 Coalbed Methane Proved Reserves, Reserves...

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Texas--RRC District 5 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 5 Coalbed Methane Proved Reserves, Reserves...

22

Texas--RRC District 6 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 6 Coalbed Methane Proved Reserves, Reserves...

23

Lower 48 Federal Offshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Federal Offshore U.S. Coalbed Methane Proved Reserves, Reserves...

24

Texas--RRC District 9 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 9 Coalbed Methane Proved Reserves, Reserves...

25

Texas--RRC District 3 Onshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 3 Onshore Coalbed Methane Proved Reserves,...

26

Texas--RRC District 4 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 4 Onshore Coalbed Methane Proved Reserves,...

27

Texas--RRC District 1 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 1 Coalbed Methane Proved Reserves, Reserves...

28

New York Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves Changes, and...

29

Texas--RRC District 10 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

30

North Dakota Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production North Dakota Coalbed Methane Proved Reserves, Reserves Changes,...

31

Louisiana--State Offshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production LA, State Offshore Coalbed Methane Proved Reserves, Reserves...

32

Texas--RRC District 2 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 2 Onshore Coalbed Methane Proved Reserves,...

33

Alaska (with Total Offshore) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves Changes, and...

34

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, State Offshore Coalbed Methane Proved Reserves, Reserves...

35

Mississippi (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes,...

36

Methane production by attached film  

DOE Patents (OSTI)

A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

1981-01-01T23:59:59.000Z

37

Eastern States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Coalbed Methane Production (Billion Cubic Feet) Eastern States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

38

Western States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

39

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

40

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network (OSTI)

Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile and characterized by temperature, pH, ash content and C02 evolved during aerobic respiration. Assuming a 1 0% lignin content, the labile carbon fraction was reduced by an estimated 71 % during composting. Over a of six month period, simulated landfill cells filled with raw waste generated 66 M3 methane per Mg of dry refuse, while cells containing compost produced 31 M3 methane per Mg of dry compost. Per unit weight of dry raw material, composted waste placed in a landfill produced only 23% of the methane that was generated from raw refuse.

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42960 Quarterly Progress Report Reporting Period: April-June 2007 Detection and Production of Methane Hydrate Submitted by: Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2007 Office of Fossil Energy Detection and Production of Methane Hydrate Quarterly Progress Report Reporting Period: April-June 2007 Prepared by: George Hirasaki Rice University August 2007 CONTRACT NO. DE-FC26-06NT42960 Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; Fax: 713-348-5478; Email: gjh@rice.edu

42

Table 16: Coalbed methane proved reserves and production, 2007...  

U.S. Energy Information Administration (EIA) Indexed Site

: Coalbed methane proved reserves and production, 2007 - 2011" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2007,2008,2009,2010,2011,,2007,2008,2009...

43

CFD Modeling of Methane Production from Hydrate-Bearing Reservoir  

Science Conference Proceedings (OSTI)

Methane hydrate is being examined as a next-generation energy resource to replace oil and natural gas. The U.S. Geological Survey estimates that methane hydrate may contain more organic carbon the the world's coal, oil, and natural gas combined. To assist in developing this unfamiliar resource, the National Energy Technology Laboratory has undertaken intensive research in understanding the fate of methane hydrate in geological reservoirs. This presentation reports preliminary computational fluid dynamics predictions of methane production from a subsurface reservoir.

Gamwo, I.K.; Myshakin, E.M.; Warzinski, R.P.

2007-04-01T23:59:59.000Z

44

Table 16. Coalbed methane proved reserves and production, 2007 - 2011  

U.S. Energy Information Administration (EIA)

Table 16: Coalbed methane proved reserves and production, 2007 – 2011 billion cubic feet State and Subdivision 2007 2008 2009 2010 2011 2007 2008 2009 2010 2011

45

NETL: News Release - Methane Hydrate Production Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

of CO2 molecules for methane molecules in the solid-water hydrate lattice, the release of methane gas, and the permanent storage of CO2 in the formation. This field experiment will...

46

Enhanced Microbial Pathways for Methane Production from Oil Shale  

Science Conference Proceedings (OSTI)

Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

Paul Fallgren

2009-02-15T23:59:59.000Z

47

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

48

U.S. Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 91 1990's...

49

New Mexico Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 56...

50

New Mexico--West Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico--West Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

51

Louisiana--North Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Louisiana--North Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

52

Lower 48 States Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Lower 48 States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

53

New Mexico--East Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) New Mexico--East Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

54

West Virginia Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) West Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30...

55

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

Science Conference Proceedings (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

56

Enhanced Coalbed Methane Production While Sequestration CO2 in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Road South Park, PA 15129 412-854-6676 dickwinschel@consolenergy.com EnhancEd coalbEd MEthanE Production WhilE SEquEStrating co 2 in unMinEablE coal SEaMS Background CONSOL Energy...

57

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were generated of these seismic data with cores, logging, and other well data. Unfortunately, the Hot Ice No. 1 well did not encounter hydrates in the reservoir sands, although brine-saturated sands containing minor amounts of methane were encountered within the hydrate stability zone (HSZ). Synthetic seismograms created from well log data were in agreement with reflectivity data measured by the 3D VSP survey. Modeled synthetic seismograms indicated a detectable seismic response would be expected in the presence of hydrate-bearing sands. Such a response was detected in the 3D VSP data at locations up-dip to the west of the Hot Ice No. 1 wellbore. Results of this project suggest that the presence of hydrate-bearing strata may not be related as simply to HSZ thickness as previously thought. Geological complications of reservoir facies distribution within fluvial-deltaic environments will require sophisticated detection technologies to assess the locations of recoverable volumes of methane contained in hydrates. High-resolution surface seismic data and more rigorous well log data analysis offer the best near-term potential. The hydrate resource potential is huge, but better tools are needed to accurately assess their location, distribution and economic recoverability.

Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

2005-02-01T23:59:59.000Z

58

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-06-01T23:59:59.000Z

59

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-07-01T23:59:59.000Z

60

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

62

Texas--RRC District 8A Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8A Coalbed Methane Proved Reserves, Reserves...

63

Texas--RRC District 7B Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7B Coalbed Methane Proved Reserves, Reserves...

64

Texas--RRC District 7C Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC Distict 7C Coalbed Methane Proved Reserves, Reserves...

65

Detection and Production of Methane Hydrate  

Science Conference Proceedings (OSTI)

This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation.

George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

2011-12-31T23:59:59.000Z

66

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

67

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation. In addition to the Final Report, several companion Topical Reports are being published.

Thomas E. Williams; Keith Millheim; Bill Liddell

2004-11-01T23:59:59.000Z

68

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

69

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-02-01T23:59:59.000Z

70

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models and to research teams for developing future gas-hydrate projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and has been documented by the project team. This Topical Report documents drilling and coring operations and other daily activities.

Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

2005-02-01T23:59:59.000Z

71

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

2005-02-01T23:59:59.000Z

72

Methane Decomposition: Production of Hydrogen and Carbon Filaments  

E-Print Network (OSTI)

) is an obvious source for hydrogen. Steam reforming of methane represents the current trend for hydrogen. The process required to eliminate CO from the hydrogen produced in the steam reformer is briefly described below. The steam reformer products containing B10% CO (depending on the feedstock and conditions

Goodman, Wayne

73

Sorghums for methane production. Annual report, April 1983-March 1984  

Science Conference Proceedings (OSTI)

The objective of this research is to develop an integrated system for methane production utilizing high-energy sorghum as the feedstock. Because of its wide geographic adaptability, its high gas-production potential, and the fact that it is already cultivated on over 15 million acres annually in the U.S., sorghum represents a significant potential energy resource that can be converted to methane by anaerobic digestion. This report provides specifics of research activities in the sorghums-for-methane program sponsored by Gas Research Institute and cofunded by Texas Agricultural Experiment Station. Researchers in the program include plant breeders, sorghum physiologists, agronomists, agricultural and systems engineers, and agricultural economists. Major research emphases are genetic manipulation, physiology and production systems, harvesting, storage, processing, and conversion systems; and economic and systems analyses. First-year results indicate that: (1) the proposed sorghum-methane system is in the realm of economic feasibility, and (2) research emphases in storage and high-efficiency conversion are critical to the economic implementation of the system. An innovative approach to combine the storage and conversion processes in a two-stage system is being investigated. Increased research emphasis is being placed on storage and conversion aspects of the system.

Hiler, E.A.; Miller, F.R.; Monk, R.L.; McBee, G.G.; Creelman, R.A.

1984-06-01T23:59:59.000Z

74

US COALBED METHANE The Past: Production The Present: Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Panel 2 of 2 Panel 2 of 2 US COALBED METHANE The Past: Production The Present: Reserves The Future: Resources Annual coalbed methane gas production data through 12/31/2006 was obtained from 17 state oil & gas regulatory entities or geological surv eys and one producing company. Data for 2006 were not yet av ailable for West Virginia and Pennsy lvania so the 2005 v olumes were assumed to repeat in 2006. Produced CBM gas v olumes from each state were clas sified by basin. The cumulative production pie chart to the left shows the sum of all reported CBM gas volumes by basin through 2006. The San Juan Bas in dominates the chart. The only other bas in to ex ceed 10% is the Pow der River Basin (12%). Relative cumulative production volumes by basin are spatially depicted in the c

75

Methane Hydrate Production from Alaskan Permafrost  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE and Maurer Technology are to evaluate the subsurface hydrate occurrence and its production potential. It is anticipated that it will require two to three months from spud...

76

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND  

E-Print Network (OSTI)

APPENDIX E: METHANE EMISSIONS FROM NATURAL GAS PRODUCTION, OIL PRODUCTION, COAL MINING, AND OTHER PRODUCTION, COAL MINING, AND OTHER SOURCES An Appendix to the Report "A Lifecycle Emissions Model (LEM of natural gas, which is mostly CH4, occurs through natural gas production, oil production, and coal mining

Delucchi, Mark

77

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

78

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

Thomas E. Williams; Keith Millheim; Buddy King

2004-03-01T23:59:59.000Z

79

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the US have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by maurer Technology, noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R and D in the area of onshore hydrate deposition. They plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. They also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. They are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. They hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, the goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

Thomas E. Williams; Keith Millheim; Buddy King

2003-12-01T23:59:59.000Z

80

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Woodland, CA 95776 (United States); Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Augenstein, Don, E-mail: iemdon@aol.com [Institute for Environmental Management, Inc., Palo Alto, CA 94306 (United States); Kayhanian, Masoud, E-mail: mdkayhanian@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Tchobanoglous, George, E-mail: gtchobanoglous@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States)

2012-05-15T23:59:59.000Z

82

Table 17. Coalbed methane proved reserves, reserves changes, and production, 201  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011" Coalbed methane proved reserves, reserves changes, and production, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

83

Methane production from hog manure in small-scale units  

SciTech Connect

Fuel gas production from manure on small-sized (100 to 500 hogs) family-operated farms can become an economically sound proposition within a decade if current price rise trends for fossil fuels continue. Minimum plant cost resulting from an optimistic assumption of the state of digestion technology leads to a fuel gas cost about equal to LPG cost on a Btu basis. Hog farms with over 3000 animals would permit digester gas costs, which would match LPG cost. It may be better to build a plant before LPG costs rise to meet gas costs in order to take advantage of lower plant costs, which will generate future cost savings. The credit for gas produced makes digestion competitive with aerobic methods for manure disposal whose capital costs are much lower.

Silveston, P.L.

1976-01-01T23:59:59.000Z

84

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

The basic energy conversion system being considered in thisEnergy Fixation and Conversion with Algal Bacterial Systems/energy producer based on current methane prices. bility of a kelp to methane conversion system

Haven, Kendall F.

2011-01-01T23:59:59.000Z

85

Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes.  

E-Print Network (OSTI)

??Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane and higher hydrocarbons… (more)

Faraji, Sedigheh

2010-01-01T23:59:59.000Z

86

Marine biomass system: anaerobic digestion and production of methane  

DOE Green Energy (OSTI)

Two approaches to kelp conversion to methane are described. First, a large (10.56 mi/sup 2/) oceanic farm using an artificial substrate and an upwelling system to deliver nutrient-rich deep ocean water to the kelp bed is described. This system can yield as much as 50 tons of kelp (dry ash free - DAF) per acre-year. Kelp are harvested by a specially designed 30,000 DWT ship and delivered to an onshore processing plant as a ground kelp slurry. The second system involves the use of a natrual coastal kelp bed. Growth rates in this bed are stimulated by a nutrient rich sewer outfall. A conceptual model is presented for calculation of the growth rate of kelp in this natural bed which can reach 15 tons (DAF) per acre-year. The harvest activity and processing plant are similar to those for oceanic farm system. In the next section of this report, the overall concept of kelp production and conversion to methane is discussed. In Section III the general design of the ocean farm system is presented and discussed while Section IV contains a similar description for the natural bed system. Section V presents the capital requirements and operational labor, resources and material requirements. Section VI describes the environmental residuals created by the operation of either system and, to the extent possible, quantifies the rate at which these residuals are generated. In addition to the technical data reported herein, cost data have been generated for the various processes and components utilized in each solar technology. The requirements for costing information basically arise from the need to compute parameters such as investment demands, employment patterns, material demands and residual levels associated with each technology for each of several national and regional scenarios.

Haven, K.F.; Henriquez, M.; Ritschard, R.L.

1979-04-01T23:59:59.000Z

87

Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor  

E-Print Network (OSTI)

Significant amounts of these reserves are located in remote areas. Steam reforming to synthesis gasProduction of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge, Room T 335, Norman, Oklahoma 73019 This study on the partial oxidation of methane in a silent electric

Mallinson, Richard

88

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6/30/1989" ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","ng_enr_coalbed_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_enr_coalbed_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

89

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

90

Evaluating the effects of essential oils and condensed tannin on fermentation and methane production under in vitro conditions.  

E-Print Network (OSTI)

??The effects of essential oils (EO) and condensed tannin (CT) on methane production and fermentation were evaluated under in vitro conditions. Experiment one screened the… (more)

Pinski, Brittany

2013-01-01T23:59:59.000Z

91

Seasonal Production and Emission of Methane from Rice Fields, Final Report  

DOE Green Energy (OSTI)

B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

Khalil, M. Aslam K.; Rasmussen,Reinhold A.

2002-12-03T23:59:59.000Z

92

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of aerobic methanotrophy in preventing the escape of methane from marine, hydrate-bearing reservoirs to the atmosphere and ultimately to better define the role of aerobic methanotrophy in the global carbon cycle. Graph overlayed on photo - Methane seeps with the resulting methane plume Methane seeps with the resulting methane plume, Geophysical Research Letters, November 2007 Performers University of California – Santa Barbara, Santa Barbara (UCSB), CA 93106 Background The global methane reservoir in the form of gas hydrate is estimated at 500–10,000 Gt (KVENVOLDEN, 1995; MILKOV, 2004). This pool of carbon

93

Production and Ebullition of Methane in a Shallow Eutrophic Lake (Lake Elsinore, CA)  

E-Print Network (OSTI)

monoxide, methane, carbon dioxide and total gaseous mercuryFluxes of methane and carbon dioxide from a small productiveebullition of methane and carbon dioxide from a eutrophied

Martinez, Denise Nicole

2012-01-01T23:59:59.000Z

94

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

95

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production  

E-Print Network (OSTI)

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production Accepted 24 May 2013 Available online Keywords: Anaerobic digestion Ammonia Bioenergy Bioammonia Hydrogen Anaerobic digestion-bioammonia to hydrogen (ADBH) a b s t r a c t During anaerobic digestion, organic matter

96

Enhancement of methane production in the anaerobic digestion of sewage sludges  

DOE Green Energy (OSTI)

The effect of powdered activated carbon on stressed anaerobic digesters utilizing a sewage sludge substrate was evaluated. The addition of carbon resulted in increased methanee production and greater process stability. The degree of enhancement appeared to be proportional to carbon concentration over the dose range studied (500-10,000 mg/l). A maximum increase in methane production of about 150% was observed at the highest carbon dose. The effect of 1500 mg/l carbon, 4000 mg/l coal, and 4000 mg/l flyash on relatively unstressed digesters was also examined. Units using a sewage sludge substrate were operated at 10 and 20 day SRT's. A 12% increase in methane production was observed in a carbon dosed digester functioning at a 10 day detention time. Enhancement was not evident with carbon at a 20 day SRT. No significant improvement in methane production was obtained in any of the digesters using coal or flyash as additives. Using the experimental data, a technique was developed for estimating the efficiencies of the methane forming and acid forming steps in the anaerobic digestion process. The results indicated that in stressed systems both stages of the digestion process were enhanced by the addition of powdered carbon. In the relatively unstressed systems, when enhancement did occur, only the scid forming step was affected. This information will supplement current research at determining the mechanism(s) by which carbon enhances the digestion process.Based on the results of this study, it appears that the benefits of carbon addition are greatest in stressed systems. Only very moderate increases in methane production would probably be attainable in well operating digesters. Coal and flyash do not seem to be effective in enhancing gas production in unstressed systems. However, their effectiveness has not been tested in stressed situations.

Spencer, R.R.

1978-05-10T23:59:59.000Z

97

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents (OSTI)

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

1996-11-12T23:59:59.000Z

98

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents (OSTI)

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

Balachandran, Uthamalingam (Hinsdale, IL); Dusek, Joseph T. (Lombard, IL); Kleefisch, Mark S. (Napersville, IL); Kobylinski, Thadeus P. (Lisle, IL)

1996-01-01T23:59:59.000Z

99

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Performance Data For Anaerobic Digestion of Various Types ofMARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OFMARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF

Haven, Kendall F.

2011-01-01T23:59:59.000Z

100

Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. Black-Right-Pointing-Pointer Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. Black-Right-Pointing-Pointer we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO{sub 2} equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortality burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m{sup 3}/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO{sub 2} equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.

Yuan Qi; Saunders, Samuel E. [Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, NE (United States); Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu [Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, NE (United States)

2012-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Monitoring Coal Bed Methane Production: A Case Study from the Powder River Basin, Wyoming, United States of America.  

E-Print Network (OSTI)

1 Monitoring Coal Bed Methane Production: A Case Study from the Powder River Basin, Wyoming, United The growing significance of the Powder River Basin's Coal Bed Methane (CBM) to United States domestic energy approximates 6% above the coal as well as inside the coal layer. This difference can be attributed primarily

Harris, Jerry M.

102

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

synthetic natural gas (SNG) via anaerobic decomposition byof algal substrate for an SNG process involves increasingof characteristics for SNG production. Limiting factors in

Haven, Kendall F.

2011-01-01T23:59:59.000Z

103

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

104

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

Science Conference Proceedings (OSTI)

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

105

,"U.S. Coalbed Methane Production (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S....

106

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Seam Well Completion Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Strategic Center for Natural Gas September 2003 DOE/NETL-2003/1193 Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy National Energy Technology Laboratory (NETL) (Strategic Center for Natural Gas) DOE/NETL-2003/1193 September 2003 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

107

Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996  

SciTech Connect

The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

1998-12-31T23:59:59.000Z

108

Microbiological aspects of methane production during pig manure storage DABERT Patrick, VEDRENNE Fabien, BRARD Camille and BELINE Fabrice  

E-Print Network (OSTI)

during 120-150 days at 30°C. During the simulated storage, biogas production was monitored by pressure (and / or inoculation) had little impact on biogas production. Raw slury Diluted slurry Diluted (biogas) anaerobic digesters, thus having a beneficial impact on methane production. Acknowledgements Part

Paris-Sud XI, Université de

109

Production of hydrogen bromide by bromine-methane reactions at elevated temperature.  

SciTech Connect

Hydrogen bromide is a potentially useful intermediate for hydrogen production by electrolysis because it has a low cell potential and is extremely soluble in water. Processes have been proposed to exploit these properties, but among the important issues to be resolved is the efficiency of HBr production from hydrocarbon precursors. This investigation evaluated a fundamental facet of such a technology by studying the reaction of methane and bromine at elevated temperature to determine the yield and kinetics of HBr formation. Laboratory experimentation and computational chemistry were combined to provide a description of this reaction for possible application to reactor design at a larger scale. Experimental studies with a tubular flow reactor were used to survey a range of reactant ratios and reactor residence times at temperatures between 500 C and 800 C. At temperatures near 800 C with excess methane, conversions of bromine to HBr exceeded 90% and reaction products included solid carbon (soot) in stoichiometric amounts. At lower temperatures, HBr conversion was significantly reduced, the products included much less soot, and the formation of bromocarbon compounds was indicated qualitatively. Calculations of chemical equilibrium behavior and reaction kinetics for the experimental conditions were performed using the Sandia CHEMKIN package. An elementary multistep mechanism for the gas-phase chemistry was used together with a surface mechanism that assumed facile deposition of radical species at the reactor walls. Simulations with the laminar-flow boundary-layer code of the CHEMKIN package gave reasonable agreement with experimental data.

Bradshaw, Robert W.; Larson, Richard S.

2003-05-01T23:59:59.000Z

110

Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation  

Science Conference Proceedings (OSTI)

Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH{sub 4}) emission resulting from rice cultivation. In laboratory incubations, CH{sub 4} production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt{sup -1}), while observed CO{sub 2} production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH{sub 4} emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha{sup -1}) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha{sup -1} application level of the amendments, total seasonal CH{sub 4} emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH{sub 4} production rates as well as total seasonal CH{sub 4} flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH{sub 4} emissions as well as sustaining rice productivity.

Ali, Muhammad Aslam [Department of Environmental Science, Bangladesh Agricultural University, Mymensingh 2202 (Bangladesh); Lee, Chang Hoon [Functional Cereal Crop Research Division, National Institute of Crop Science, RDA, 1085, Naey-dong, Milyang (Korea, Republic of); Kim, Sang Yoon [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Kim, Pil Joo [Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of); Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701 (Korea, Republic of)], E-mail: pjkim@gnu.ac.kr

2009-10-15T23:59:59.000Z

111

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network (OSTI)

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration and enhanced coalbed methane production in San Juan and Alberta basins, but reservoir modeling is needed to assess the potential of the Black Warrior basin. Alabama ranks 9th nationally in CO2 emissions from power plants; two electricity generation plants are adjacent to the Black Warrior coalbed methane fairway. This research project was a reservoir simulation study designed to evaluate the potential for CO2 sequestration and enhanced coalbed methane (ECBM) recovery in the Blue Creek Field of Black Warrior basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector and producer. The simulation study was based on a 5-spot well pattern 40-ac well spacing. Injection of 100 percent CO2 in coal seams resulted in average volumes of 0.57 Bcf of sequestered CO2 and average volumes of 0.2 Bcf of enhance methane production for the Mary Lee coal zone only, from an 80-acre 5-spot well pattern. For the entire Blue Creek field of the Black Warrior basin, if 100 percent CO2 is injected in the Pratt, Mary Lee and Black Creek coal zones, enhance methane resources recovered are estimated to be 0.3 Tcf, with a potential CO2sequestration capacity of 0.88 Tcf. The methane recovery factor is estimated to be 68.8 percent, if the three coal zones are completed but produced one by one. Approximately 700 wells may be needed in the field. For multi-layers completed wells, the permeability and pressure are important in determining the breakthrough time, methane produced and CO2 injected. Dewatering and soaking do not benefit the CO2 sequestration process but allow higher injection rates. Permeability anisotropy affects CO2 injection and enhanced methane recovery volumes of the field. I recommend a 5-spot pilot project with the maximum well BHP of 1,000 psi at the injector, minimum well BHP of 500 psi at the producer, maximum injection rate of 70 Mscf/D, and production rate of 35 Mscf/D. These technical results, with further economic evaluation, could generate significant projects for CO2 sequestration and enhance coalbed methane production in Blue Creek field, Black Warrior Basin, Alabama.

He, Ting

2009-12-01T23:59:59.000Z

112

Resource Assessment & Production Testing for Coal Bed Methane in the Illinois Basin  

Science Conference Proceedings (OSTI)

In order to assess the economic coal bed methane potential of the Illinois Basin, the geological surveys of Illinois, Indiana and Kentucky performed a geological assessment of their respective parts of the Illinois Basin. A considerable effort went into generating cumulative coal thickness and bed structure maps to identify target areas for exploratory drilling. Following this, the first project well was drilled in White County, Illinois in October 2003. Eight additional wells were subsequently drilled in Indiana (3) and Kentucky (5) during 2004 and 2005. In addition, a five spot pilot completion program was started with three wells being completed. Gas contents were found to be variable, but generally higher than indicated by historical data. Gas contents of more than 300 scf/ton were recovered from one of the bore holes in Kentucky. Collectively, our findings indicate that the Illinois Basin represents a potentially large source of economic coal bed methane. Additional exploration will be required to refine gas contents and the economics of potential production.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2005-11-01T23:59:59.000Z

113

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 182013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of...

114

Table 17. Coalbed methane proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011 Coalbed methane proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 17,508 -15 2,071 1,668 1,775 1,710 736 0 13 1,763 16,817 Alabama 1,298 -45 23 86 104 219 3 0 0 98 1,210 Arkansas 28 0 0 3 0 0 0 0 0 4 21 California 0 0 0 0 0 0 0 0 0 0 0 Colorado 6,485 73 698 367 1,034 1,021 220 0 0 516 6,580 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 258 -6 24 14 0 0 3 0 0 37 228 Kentucky 0 0 0 0 0 0 0 0 0 0 0 Louisiana 0 0 0 0 0 0 0 0 0 0 0 North Onshore 0 0 0 0 0 0 0 0 0 0 0 South Onshore 0 0 0 0 0 0 0 0 0 0 0 State Offshore 0 0 0 0 0 0 0 0 0 0 0 Michigan 0 0 0 0 0 0 0 0 0 0 0 Mississippi 0 0 0 0 0 0 0 0 0

115

Mechanisms controlling the production and transport of methane, carbon dioxide, and dissolved solutes within a boreal peatland. Progress report, July 15, 1992--July 14, 1993  

SciTech Connect

The role of freshwater peatlands in the global methane cycle remains uncertain. Field measurements of methane emissions tend to be highly variable across a peatland and exhibit sharp seasonal fluctuations. The process of extrapolating these variable measurements to regional estimates is further complicated by rudimentary knowledge of the environmental controls can the production and emissions of methane from peat. The distribution of methanogenesis within the peat profile will strongly influence the response of methane emissions to potential climatic changes. During the summers of 1990 and 1991 we conducted a study on the mechanisms for the production, transport, and storage of methane within the Glacial Lake Agassiz peatland region as the regional climate shifted from extreme drought to a period of normal rainfall. This natural experiment provided unexpected insights on the linkages among climate, hydrology, and the methane cycle in large peat basins. This report presents project progress for period July 15, 1992--July 14, 1993

Siegel, D.I.

1993-06-24T23:59:59.000Z

116

Processing cellulosic solids for methane production by a combined chemical and biological process  

Science Conference Proceedings (OSTI)

Cellulosic solids are pretreated by calcium hydroxide to produce salts of volatile organic acids and other water-soluble substances. Pure cellulose, sawdust, and waste paper are used as model substances for the study of alkaline degradation. It was found that sawdust is more difficult to degrade than the other two substances. The cooking conditions for high conversion of model substance and high yield of organic acids are found to be 275/sup 0/C to 300/sup 0/C with the corresponding reaction time from 30 to 15 minutes. The cooking liquor can be readily fermented in an anaerobic fluidized-bed digester for methane production. The cooking liquor from different reaction conditions can all be digested by the methanogens. Higher than 90% of COD can be removed under the conditions of low organic loading rate (<2.0 g COD/1/day) and low hydraulic retention time (1.5-2.0 days).

Tsai, G.J.; Tsao, G.T.

1987-01-01T23:59:59.000Z

117

Study on the Methane Production Capacity and Energy Output of Different Temperatures during Anaerobic Digestion of Swine Manure  

Science Conference Proceedings (OSTI)

This study was carried out by experimenting with the self-manufactured digestion devices which were fed with swine manure as material with a domesticated inoculums added as yeast. The experiment was on the condition of 6.6% mass fraction of total solid, ... Keywords: anaerobic digestion, methane production capacity, temperature, energy, swine manure

Rong-rong Wei; Guan-wen Cheng; Jie-jun Luo; Liang Ling; Zong-qiang Zhu; Xu Shan; Wen-yuan Wei

2009-10-01T23:59:59.000Z

118

Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase  

E-Print Network (OSTI)

Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

Kopp, Daniel Arthur

2003-01-01T23:59:59.000Z

119

Mechanisms controlling the production and transport of methane, carbon dioxide, and dissolved solutes within a boreal peatland  

SciTech Connect

Peatlands are one of the most important terrestrial reservoirs in the global cycle for carbon, and are a major source for atmospheric methane. However, little is known about the dynamics of these carbon reservoirs or their feedback mechanisms with the pool of atmospheric CO{sub 2} during the Holocene. Specifically, it is unknown whether large peat basins are sources, sinks, or steady-state reservoirs for the global carbon cycle. In particular, the production and transport of methane, carbon dioxide, and dissolved organic carbon form the deeper portions of these peatlands is unknown. Our DOE research program is to conduct an integrated ecologic and hydrogeochemical study of the Glacial Lake Agassiz peatlands (northern Minnesota) to better understand the carbon dynamics in globally significant peat basins. Specifically, our study will provide local and regional data on (1), rates of carbon accumulation and loss and fluxes of methane in the peat profiles; (2) the physical and botanical factors controlling the production of methane and carbon dioxide in the wetland; and (3) the role of hydrogeologic processes in controlling the fluxes of gases and solutes through the peat. We intend to use computer simulation models, calibrated to field data, to scale-up from local to regional estimates of methane and carbon dioxide within the basin. How gases and dissolved organic carbon escapes form peatlands in unknown. It has been suggested that the concentrations of methane produced in the upper peat are sufficient to produce diffusion gradients towards the surface. Alternatively, gas may move through the peat profile by groundwater advection.

Siegel, D.I.

1992-04-09T23:59:59.000Z

120

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly report, July - September 1996  

DOE Green Energy (OSTI)

This document covers the period July-September, 1996. Activities included studies of the oxidation of dimethyl ether over vanadyl pyrophosphate and synthesis of all previously acquired kinetic data. This synthesis revealed the need for additional data on methane and methanol oxidation and these experiments were performed. A further series of methanol oxidation/dehydration experiments was conducted on samples with varying surface acidity that have been described in earlier reports. Oxidation of methane over Cr- promoted VPO was also reinvestigated. The kinetic studies performed to date allow us to determine optimum conditions for methanol and formaldehyde production from methane using VPO catalysts, and in particular determine the effect of lean conditions (excess oxygen), oxygen deficient conditions (used in most other methane oxidation studies), and the potential of using the catalyst as a stoichiometric oxidant or oxygen carrier. However, unpromoted VPO yields only CO as the primary oxidation product. Studies of promoters have shown improvements in the formaldehyde selectivity but no methanol has been observed. The best promoters tested have been Fe and Cr (results for Cr are described in this report). We have also examined the use of iron phosphate for the methane conversion reaction. FePO{sub 4}is a more selectivity catalyst than the promoted VPO materials. Support of this iron phosphate on silica results in further improvements in selectivity. Current work is directed at understanding the improved selectivity for promoted VPO and at obtaining a knowledge of the optimum conditions for methane conversion of iron phosphate. 15 refs., 2 figs., 1 tab.

McCormick, R.L.; Alptekin, G.O.

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Methane Hydrates May Exceed the Energy Content of All Other Fossil Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut America’s Foreign Oil Dependence

122

Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming  

SciTech Connect

U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

James Bauder

2008-09-30T23:59:59.000Z

123

Dry matter losses during hay production and storage of sweet sorghum used for methane production  

SciTech Connect

Losses from production and storage of large round hay bales from sweet sorghum were measured. Dry matter losses from hay production were 55.3%. Storage losses were 18.1% and 10.1% for outdoor and indoor storage, respectively. It was concluded hay storage of sweet sorghum used for anaerobic digestion is not a viable option.

Coble, C.G.; Egg, R.

1987-01-01T23:59:59.000Z

124

Geothermal source potential and utilization for methane generation and alcohol production  

DOE Green Energy (OSTI)

A study was conducted to assess the technical and economic feasibility of integrating a geothermally heated anaerobic digester with a fuel alcohol plant and cattle feedlot. Thin stillage produced from the alcohol production process and manure collected from the cattle feedlot would be digested in anaerobic digesters to produce biogas, a mixture of methane and carbon dioxide, and residue. The energy requirements to maintain proper digester temperatures would be provided by geothermal water. The biogas produced in the digesters would be burned in a boiler to produce low-pressure steam which would be used in the alcohol production process. The alcohol plant would be sized so that the distiller's grains byproduct resulting from the alcohol production would be adequate to supply the daily cattle feed requirements. A portion of the digester residue would substitute for alfalfa hay in the cattle feedlot ration. The major design criterion for the integrated facilty was the production of adequate distiller's grain to supply the daily requirements of 1700 head of cattle. It was determined that, for a ration of 7 pounds of distiller's grain per head per day, a 1 million gpy alcohol facility would be required. An order-of-magnitude cost estimate was prepared for the proposed project, operating costs were calculated for a facility based on a corn feedstock, the economic feasibility of the proposed project was examined by calculating its simple payback, and an analysis was performed to examine the sensitivity of the project's economic viability to variations in feedstock costs and alcohol and distiller's grain prices.

Austin, J.C.

1981-11-01T23:59:59.000Z

125

Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production  

E-Print Network (OSTI)

Interference for adjacent wells may be beneficial to Coalbed-Methane production. The effect is the acceleration of de-watering which should lead to earlier and higher gas rate peaks. It is inherent that permeability anisotropy exists in the coalbed methane formation. It means that the placement of wells (wells configuration) has an effect on the development of coalbed methane field. The effect of Palmer-Mansoori Theory is increasing effective permeability at lower pressures due to matrix shrinkage during desorption. This effect should increase the gas recovery of coalbed methane production. Palmer and Mansoori model should be considered and included to coalbed methane reservoir simulation. These effects and phenomena can be modeled with the CMG simulator. A systematic sensitivity study of various reservoir and operating parameters will result in generalized guidelines for operating these reservoirs more effectively.

Zulkarnain, Ismail

2005-12-01T23:59:59.000Z

126

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

represent components of dynamic biogeochemical environments with inputs and outputs of methane, accurate rates of biological methane production are poorly understood. Recent...

127

Methane Main  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

128

Processing high solids concentration of municipal solid waste by anaerobic digester for methane production  

SciTech Connect

Cellulosic solids are pretreated by calcium hydroxide to produce salts of volatile orangic acids and other water-soluble substances. Pure cellulose, sawdust, and waste paper are used as model substances for the study of alkaline degradation. It is found that sawdust is more difficult to degrade than the other two substances. The cooking conditions for high conversion of model substances and high yeild of orangic acids are found to be 275/degree/C to 300/degree/C with the corresponding reaction time from 30 minutes to 15 minutes. The cooking liquor can be readily fermented in an anaerobic fluidized-bed digester for methane production. The cooking liquor from different reaction conditions can all be digested by the methanogens. Higher than 90% of COD can be removed under the conditions of low organic loading rate (<2.0 g COD/1/day) and low hydraulic retention time (1.5 to 2.0 days). 14 refs., 10 figs., 2 tabs.

Tsao, G.T.

1988-01-01T23:59:59.000Z

129

Methane to methanol conversion  

DOE Green Energy (OSTI)

The purpose of this project is to develop a novel process by which natural gas or methane from coal gasification products can be converted to a transportable liquid fuel. It is proposed that methanol can be produced by the direct, partial oxidation of methane utilizing air or oxygen. It is anticipated that, compared to present technologies, the new process might offer significant economic advantages with respect to capital investment and methane feedstock purity requirements. Results to date are discussed. 6 refs.

Finch, F.T.; Danen, W.C.; Lyman, J.L.; Oldenborg, R.C.; Rofer, C.K.; Ferris, M.J.

1990-01-01T23:59:59.000Z

130

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

131

Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report  

DOE Green Energy (OSTI)

In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

1993-09-01T23:59:59.000Z

132

The basics of coalbed methane  

Science Conference Proceedings (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

133

Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

Fdez-Gueelfo, L.A., E-mail: alberto.fdezguelfo@uca.es [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Alvarez-Gallego, C. [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Sales, D. [Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Romero Garcia, L.I. [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain)

2012-03-15T23:59:59.000Z

134

Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons  

DOE Patents (OSTI)

A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

Fliermans, Carl B. (Augusta, GA)

1989-01-01T23:59:59.000Z

135

Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons  

DOE Patents (OSTI)

This invention pertains to a chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H{sub 2}O and CO{sub 2} under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

Fliermans, C.B.

1988-10-12T23:59:59.000Z

136

EFFECTS OF TEMPERATURE AND GAS MIXING ON FORMATION PRESSURE, CO2 SEQUESTRATION AND METHANE PRODUCTION IN  

E-Print Network (OSTI)

(CO2) injected into subsurface coalbeds replaces adsorbed methane (CH4) on coal surfaces, allowing and levels of CO2 adsorption on coal surfaces, and swelling/shrinkage of coal due to adsorption of CO2 injection. (3) CO2 is more than twice as adsorbing on coal as CH4, and remains tightly bound to coal

137

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Renewable Energy Production .Benefits and Renewable Energy Production One source ofauspicious source of renewable energy production from such

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

138

Time-series analysis for the episodic production and transport of methane from the Glacial Lake Agassiz peatlands, northern Minnesota. Final report  

SciTech Connect

The large peat basins of North America are an important reservoir in the global carbon cycle and a significant source of atmospheric methane. The authors investigated carbon cycling in the Glacial Lake Agassiz peatlands (GLAP) of Minnesota. Initially in 1990, they identified a dramatic change in the concentration of methane in the pore-waters of the raised bogs in the GLAP during an extreme drought. This methane dissipated when the drought broke in 1991 and the occurrence of deep methane is related to changes in the direction of groundwater flow in the peat column. The production of methane and its diffusive loss to the atmosphere was modeled and was about 10 times less than that measured directly in chambers at the land surface. It is clear from the reversals in hydraulic heat, changes in pore-water chemical composition over time, and paleostratigraphic markers, that regional ground water flow systems that are controlled by climate change are unexpectedly a major control over methanogenesis and carbon cycling in GLAP. Seismic profiles made showed that buried bedrock ridges particularly deflect regional groundwater flow upwards towards the land surface and towards raised bog landforms. In addition, high-resolution GPS measurements from data stations funded by this DOE project have shown this year that the peakland land surface elevation changes daily on a scale of cms, and seasonally on a scale of 10s of cm. This most recent observation is exciting because it may reflect episodic degassing of free phase methane from the peat column to the atmosphere, a source for methane previously unaccounted for by methane researchers.

Siegel, D.I.

1998-01-01T23:59:59.000Z

139

Production of hydrobromic acid from bromine, methane and steam for hydrogen production. 1997 annual report, December 15, 1996--January 31, 1998  

DOE Green Energy (OSTI)

The solar-driven reaction between bromine and steam was studied. The goal was to make hydrobromic acid for hydrogen production and energy storage use via a reversible, high efficiency hydrogen/bromine fuel cell. While the reaction was technically successful and was demonstrated at NREL, it was determined to be uneconomical in today`s economy due to present high capital costs of the solar hardware. In an effort to provide for an interim process that can be utilized to produce hydrogen and store energy until the cost of solar hardware decreases, SRT`s process was modified to include the addition of methane. The new concept entails (i) reaction of bromine with methane and steam to produce hydrogen bromide and carbon dioxide and (ii) electrolysis of the stored hydrogen bromide for production of H{sub 2(g)} and recovery of Br{sub 2(1)}. Electrolyzers are available today for the electrolysis of HBr. In addition, a vendor for a reversible H{sub 2}-Br{sub 2} fuel has been identified. Most components of the envisioned system are commercially available. At present, the reactor needs the most development. In the SRT process, the electrical power required to split water is reduced effectively in half by the production of hydrogen bromide. The SRT concept is very attractive from an economic viewpoint as well. A reversible electrolytic fuel cell employed in the SRT process is capitalized via its use in load leveling by the utility. Thus, the price of SRT-produced hydrogen reflects only the cost of methane, reactor system capital costs and off-peak electrical power.

NONE

1998-07-17T23:59:59.000Z

140

Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane New Field Discoveries Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production...

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development of vanidum-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report, 1996  

DOE Green Energy (OSTI)

Activities this past quarter, focused on acquisition of kinetic data for oxidation of formaldehyde and methanol on these catalysts. In the next quarter these results will be used to propose a simple reaction network and kinetic model. To date we have completed Task 1: Laboratory Setup and Task 2: Process Variable Study. Activities in the current quarter focused on finalizing these tasks and on Task 3: Promoters and Supports, this task is approximately 50% completed. Task 4: Advanced Catalysts is to be initiated in the next quarter. Specific accomplishments this quarter include: finalizing and calibrating a new reaction product analytical system with markedly improved precision and accuracy relative to older. approaches; development of procedures for accurately feeding formaldehyde to the reactor; examination of formaldehyde and methanol oxidation kinetics over vanadyl pyrophosphate at a range of temperatures; and preliminary studies of methane oxidation over a silica support.

McCormick, R.L.; Alptekin, G.O.

1996-06-01T23:59:59.000Z

142

RESOURCE ASSESSMENT & PRODUCTION TESTING FOR COAL BED METHANE IN THE ILLINOIS BASIN  

SciTech Connect

The geological surveys of Illinois, Indiana and Kentucky have completed the initial geologic assessment of their respective parts of the Illinois Basin. Cumulative thickness maps have been generated and target areas for drilling have been selected. The first well in the Illinois area of the Illinois Basin coal bed methane project was drilled in White County, Illinois in October 2003. This well was cored in the major coal interval from the Danville to the Davis Coals and provided a broad spectrum of samples for further analyses. Sixteen coal samples and three black shale samples were taken from these cores for canister desorption tests and were the subject of analyses that were completed over the following months, including desorbed gas volume, gas chemical and isotope composition, coal proximate, calorific content and sulfur analyses. Drilling programs in Indiana and Kentucky are expected to begin shortly.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2004-06-01T23:59:59.000Z

143

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

and animal production; and fossil fuel use in production andas a result of burning fossil fuels for production of feedcrops. 67 Fossil fuel burning and "land-use changes, which

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

144

Mechanisms controlling the production and transport of methane, carbon dioxide, and dissolved solutes within a boreal peatland. Progress report, January 15, 1991--July 14, 1992  

SciTech Connect

Peatlands are one of the most important terrestrial reservoirs in the global cycle for carbon, and are a major source for atmospheric methane. However, little is known about the dynamics of these carbon reservoirs or their feedback mechanisms with the pool of atmospheric CO{sub 2} during the Holocene. Specifically, it is unknown whether large peat basins are sources, sinks, or steady-state reservoirs for the global carbon cycle. In particular, the production and transport of methane, carbon dioxide, and dissolved organic carbon form the deeper portions of these peatlands is unknown. Our DOE research program is to conduct an integrated ecologic and hydrogeochemical study of the Glacial Lake Agassiz peatlands (northern Minnesota) to better understand the carbon dynamics in globally significant peat basins. Specifically, our study will provide local and regional data on (1), rates of carbon accumulation and loss and fluxes of methane in the peat profiles; (2) the physical and botanical factors controlling the production of methane and carbon dioxide in the wetland; and (3) the role of hydrogeologic processes in controlling the fluxes of gases and solutes through the peat. We intend to use computer simulation models, calibrated to field data, to scale-up from local to regional estimates of methane and carbon dioxide within the basin. How gases and dissolved organic carbon escapes form peatlands in unknown. It has been suggested that the concentrations of methane produced in the upper peat are sufficient to produce diffusion gradients towards the surface. Alternatively, gas may move through the peat profile by groundwater advection.

Siegel, D.I.

1992-04-09T23:59:59.000Z

145

EIA - Greenhouse Gas Emissions - Methane Emissions  

Gasoline and Diesel Fuel Update (EIA)

oil production dropping by 28 percent from 1990 to 2009, methane emissions from petroleum exploration and production have declined by the same percentage. Residential wood...

146

Where can I find shale gas and coal bed methane production and ...  

U.S. Energy Information Administration (EIA)

Where is the boundary for state and federal offshore oil and gas production? Which states consume and produce the most natural gas?

147

Influence of coal quality factors on seam permeability associated with coalbed methane production.  

E-Print Network (OSTI)

??Cleats are natural fractures in coal that serve as permeability avenues for darcy flow of gas and water to the well bore during production. Theoretically,… (more)

Wang, Xingjin

2007-01-01T23:59:59.000Z

148

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

Science Conference Proceedings (OSTI)

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

William A. Williams

2004-03-01T23:59:59.000Z

149

Modelling and Experimental Study of Methane Catalytic Cracking as a Hydrogen Production Technology.  

E-Print Network (OSTI)

??Production of hydrogen is primarily achieved via catalytic steam reforming, partial oxidation,and auto-thermal reforming of natural gas. Although these processes are mature technologies, they are… (more)

Amin, Ashraf Mukhtar Lotfi

2011-01-01T23:59:59.000Z

150

U.S. and Japan Complete Successful Field Trial of Methane Hydrate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2,...

151

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

Science Conference Proceedings (OSTI)

This is the sixth semi-annual Technical Progress report under the subject agreement. During this report period, progress was made on drilling the north, center, and south well sites. Water production commenced at the center and south well sites. New drilling plans were formulated for the last remaining well, which is in the Upper Freeport Seam at the north site. Core samples were submitted to laboratories for analytical testing. These aspects of the project are discussed in detail in this report.

William A. Williams

2004-10-01T23:59:59.000Z

152

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 10, July 1, 1995--September 31, 1995  

DOE Green Energy (OSTI)

This document is the tenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities focused on testing of additional modified and promoted catalysts and characterization of these materials. Attempts at improving the sensitivity of our GC based analytical systems were also made with some success. Methanol oxidation studies were initiated. These results are reported. Specific accomplishments include: (1) Methane oxidation testing of a suite of catalysts promoted with most of the first row transition metals was completed. Several of these materials produced low, difficult to quantify yields of formaldehyde. (2) Characterization of these materials by XRD and FTIR was performed with the goal of correlating activity and selectivity with catalyst properties. (3) We began to characterize catalysts prepared via modified synthesis methods designed to enhance acidity using TGA measurements of acetonitrile chemisorption and methanol dehydration to dimethyl ether as a test reaction. (4) A catalyst prepared in the presence of naphthalene methanol as a structural disrupter was tested for activity in methane oxidation. It was found that this material produced low yields of formaldehyde which were difficult to quantify. (5) Preparation of catalysts with no Bronsted acid sites. This was accomplished by replacement of exchangeable protons with potassium, and (6) Methanol oxidation studies were initiated to provide an indication of catalyst activity for decomposition of this desired product and as a method of characterizing the catalyst surface.

McCormick, R.L.

1995-12-07T23:59:59.000Z

153

Why Sequence a Methane-Oxidizing Archaean?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Methane-Oxidizing Archaeon? a Methane-Oxidizing Archaeon? Methane is a potent greenhouse gas whose atmospheric concentration has increased significantly because of anthropogenic activities and fluctuated naturally over glacial and interglacial cycles. While the importance of methane in Earth's climate dynamics has been well established, the global processes regulating its oceanic cycling remain poorly understood. Although there are high rates of methane production in many marine sedimentary environments (including a number that have been targeted as petroleum reserves), net methane sources from the ocean to the atmosphere appear to be small. This is due in large part to a biogeochemical process known as the anaerobic oxidation of methane (AOM). Microbially mediated AOM reduces methane flux from ocean to atmosphere, stimulates subsurface microbial

154

Table 16. Coalbed Methane Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

aIncludes Illinois and Indiana. Note: The above table is based on coalbed methane proved reserves and production volumes as reported to the EIA on ...

155

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with...

156

Coal mine methane global review  

Science Conference Proceedings (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

157

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 13, April--June, 1996  

DOE Green Energy (OSTI)

The specific objectives of this project are: to determine optimum conditions for methanol and formaldehyde production from methane using VPO catalysts, in particular to determine the effect of lean conditions (excess oxygen), oxygen deficient conditions (used in most other methane oxidation studies), and the potential of using the catalyst as a stoichiometric oxidant or oxygen carrier; to utilize promoters and catalyst supports to improve oxygenate yield relative to the base case catalysts; to provide a preliminary understanding of how these promoters and supports actually effect catalyst properties; and use the information obtained to prepare advanced catalysts which will be tested for activity, selectivity, and stability. Activities this quarter included analysis of all previously acquired data for methane, methanol, and formaldehyde oxidation over vanadyl pyrophosphate and testing of supported, promoted, and iron phosphate catalysts. Some experiments have been conducted with a small percentage of butane in the feed gas to help retain the catalyst in a reduced state and these results are reported. Iron phosphate, and iron phosphate supported on silica have also been tested in a preliminary way.

McCormick, R.L.; Alptekin, G.O.

1996-07-30T23:59:59.000Z

158

Coalbed Methane Estimated Production  

Annual Energy Outlook 2012 (EIA)

2006 2007 2008 2009 2010 2011 View History U.S. 1,758 1,753 1,966 1,914 1,886 1,763 1989-2011 Federal Offshore U.S. 0 0 0 0 0 0 2005-2011 Pacific (California) 0 0 0 0 0 0 2005-2011...

159

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

E-Print Network (OSTI)

of Methane– Title: Carbon Dioxide Mixed Hydrates Tae-Hyukof methane with carbon dioxide in hydrate has been proposedsequestration of carbon dioxide ( CO 2 ) and/or production

Kwon, T.H.

2012-01-01T23:59:59.000Z

160

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 9, April 1995--June 1995  

DOE Green Energy (OSTI)

This document is the ninth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities were focused on fine tuning of the microreactor system by elimination of transport effects and improvements in the analytical system. Process variable studies were conducted on vanadyl pyrophosphate and screening studies were conducted on several modified catalyst. One additional catalyst was prepared and characterization studies continued. These results are reported.

McCormick, R.L.

1995-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 8, January--March, 1995  

DOE Green Energy (OSTI)

Activities during this quarter focused on fine tuning of catalyst characterization and synthesis techniques. Improvements in catalyst activity test methods were also implemented but more remains to be done. Specific accomplishments include: improved characterization of vanadyl pyrophosphate (VPO) and Si promoted VPO by FTIR and FTIR of chemisorbed bases; several minor improvements in catalyst preparation technique resulting in enhanced catalyst yield, better control of catalyst composition, and generation of less waste; preliminary pulsed reaction data on methane oxidation were also acquired. Preliminary activity measurements for methane conversion (without oxygen) in a pulsed reactor over VPO indicate that the primary reaction product is CO. Carbon dioxide is also formed but selectivity to CO{sub 2} decreases with number of pulses. These results suggest that selectivity to partially oxidized products improves with catalyst reduction and suggest that some surface modification will be required to obtain oxidized hydrocarbon products. Note that catalyst activation (conversion from the precursor to VPO) has been carried out using air. For butane oxidation catalysts VPO is activated in a 1% butane/air mixture which produces a slightly reduced catalyst.

McCormick, R.L.

1995-05-25T23:59:59.000Z

162

Coalbed Methane  

Energy.gov (U.S. Department of Energy (DOE))

Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D.

163

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01T23:59:59.000Z

164

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01T23:59:59.000Z

165

Direct production of hydrogen and aromatics from methane or natural gas: Review of recent U.S. patents  

DOE Green Energy (OSTI)

Since the year 2000, the United States Patent and Trademark Office (USPTO) has granted a dozen patents for inventions related to methane dehydroaromatization processes. One of them was granted to UOP LLC (Des Plaines). It relates to a catalyst composition and preparation method. Two patents were granted to Conoco Phillips Company (Houston, TX). One was aimed at securing a process and operating conditions for methane aromatization. The other was aimed at securing a process that may be integrated with separation of wellhead fluids and blending of the aromatics produced from the gas with the crude. Nine patents were granted to ExxonMobil Chemical Patents Inc. (Houston, TX). Most of these were aimed at securing a dehydroaromatization process where methane-containing feedstock moves counter currently to a particulate catalyst. The coked catalyst is heated or regenerated either in the reactor, by cyclic operation, or in annex equipment, and returned to the reactor. The reactor effluent stream may be separated in its main components and used or recycled as needed. A brief summary of those inventions is presented in this review.

Lucia M. Petkovic; Daniel M. Ginosar

2012-03-01T23:59:59.000Z

166

Methane conversion to methanol  

DOE Green Energy (OSTI)

The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

Noble, R.D.; Falconer, J.L.

1992-06-01T23:59:59.000Z

167

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 11, October--December 1995  

DOE Green Energy (OSTI)

Activities during this report period focused on testing of additional modified and promoted catalysts and characterization of these materials. Methanol oxidation studies were performed as a method of acid site characterization. Improvements to the product gas analysis system continued to be developed. These results are reported. Specific accomplishments include: (1) Obtaining and interpreting infrared spectra of modified catalysts prepared to enhance surface acidity. (2) Testing of these catalysts in methanol oxidation as a method of acid site characterization and to determine catalytic activity for conversion of this desired product. Catalysts were quite active for methanol conversion to dimethyl ether. Two of the modified catalysts prepared in this work exhibited the highest activity for this reaction, presumably because of their higher surface areas. (3) Determination that acidity modifications had no effect on activity for methane conversion.

McCormick, R.L.

1996-04-16T23:59:59.000Z

168

Methane Credit | Open Energy Information  

Open Energy Info (EERE)

Methane Credit Methane Credit Jump to: navigation, search Name Methane Credit Place Charlotte, North Carolina Zip 28273 Product Specialises in utilising methane produced on municipal landfill sites. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Four Critical Needs to Change the Hydrate Energy Paradigm from Assessment to Production: The 2007 Report to Congress by the U.S. Federal methane Hydrate Advisory Committee  

Science Conference Proceedings (OSTI)

This work summarizes a two-year study by the U.S. Federal Methane Hydrate Advisory Committee recommending the future needs for federally-supported hydrate research. The Report was submitted to the US Congress on August 14, 2007 and includes four recommendations regarding (a) permafrost hydrate production testing, (b) marine hydrate viability assessment (c) climate effect of hydrates, and (d) international cooperation. A secure supply of natural gas is a vital goal of the U.S. national energy policy because natural gas is the cleanest and most widely used of all fossil fuels. The inherent cleanliness of natural gas, with the lowest CO2 emission per unit of heat energy of any fossil fuel, means substituting gas for coal and fuel oil will reduce emissions that can exacerbate the greenhouse effect. Both a fuel and a feedstock, a secure and reasonably priced supply of natural gas is important to industry, electric power generators, large and small commercial enterprises, and homeowners. Because each volume of solid gas hydrate contains as much as 164 standard volumes of methane, hydrates can be viewed as a concentrated form of natural gas equivalent to compressed gas but less concentrated than liquefied natural gas (LNG). Natural hydrate accumulations worldwide are estimated to contain 700,000 TCF of natural gas, of which 200,000 TCF are located within the United States. Compared with the current national annual consumption of 22 TCF, this estimate of in-place gas in enormous. Clearly, if only a fraction of the hydrated methane is recoverable, hydrates could constitute a substantial component of the future energy portfolio of the Nation (Figure 1). However, recovery poses a major technical and commercial challenge. Such numbers have sparked interest in natural gas hydrates as a potential, long-term source of energy, as well as concerns about any potential impact the release of methane from hydrates might have on the environment. Energy-hungry countries such as India and Japan are outspending the United States on hydrate science and engineering R&D by a factor of 10, and may bring this resource to market as much as a decade before the United States.

Mahajan,D.; Sloan, D.; Brewer, P.; Dutta, N.; Johnson, A.; Jones, E.; Juenger, K.; Kastner, M.; Masutani, S.; Swenson, R.; Whelan, J.; Wilson, s.; Woolsey, R.

2009-03-11T23:59:59.000Z

170

Methane (CH4)  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH4) Gateway Pages to Methane Data Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record from Law Dome, Antarctica 800,000-year Ice-Core Records of...

171

Methane, ammonia, and their irradiation products at the surface of an intermediate-size KBO? A portrait of Plutino (90482) Orcus  

E-Print Network (OSTI)

Orcus is an intermediate-size 1000km-scale Kuiper Belt Object in 3:2 mean-motion resonance with Neptune, in an orbit very similar to that of Pluto. We present visible and near-infrared photometry and spectroscopy obtained with the Keck 10m-telescope and the Gemini 8m-telescope . We confirm the unambiguous detection of crystalline water ice as well as absorption in the 2.2\\mu m region. Both in the visible and near-infrared Orcus' spectral properties appear to be homogeneous over time (and probably rotation) at the resolution available. From Hapke radiative transfer models involving intimate mixtures of various ices we find for the first time that ammonium (NH+4) and traces of ethane (C2 H6), which are most probably solar irradiation products of ammonia and methane, and a mixture of methane and ammonia (diluted or not) are the best candidates to improve the description of the data with respect to a simple water ice mixture (Haumea type surface). The possible more subtle structure of the 2.2\\mu m band(s) should ...

Delsanti, Audrey; Guilbert, Aurélie; Bauer, James; Yang, Bin; Meech, Karen J

2010-01-01T23:59:59.000Z

172

Feasibility analysis of ternary feed mixtures of methane with oxygen, steam, and carbon dioxide for the production of methanol synthesis gas  

SciTech Connect

The feasibility of ternary feed mixtures of CH{sub 4} with O{sub 2}, H{sub 2}O, and CO{sub 2} is analyzed in relation to the production of methanol syngas. Stoichiometric constraints are formulated in terms of three parameters characterizing the steam, partial oxidation, and carbon dioxide reforming reactions of methane. The equilibrium analysis is conducted using the methanol balance ratio {mu} and methane slip fraction {chi} as explicit design parameters. General results are derived for the feasibility of each ternary feed combination as a function of pressure and temperature in the range 1 < {mu} < 3 under carbon-free conditions. Numerical calculations indicate that CH{sub 4}/O{sub 2}/CO{sub 2} feeds can be used in single-stage adiabatic reformers at low values of {mu}, but the produced syngas requires further treatment. Reforming based on CH{sub 4}/O{sub 2}/H{sub 2}O feeds is endothermic at {mu} {ge} 2 under typical reaction conditions, thus requiring the application of a two-stage process involving primary and secondary reformers. Utilization of CH{sub 4}/O{sub 2}/H{sub 2}O feeds in single-stage adiabatic reactors is feasible for {mu} = 1.7--1.9, yielding syngas which can be upgraded by partial CO{sub 2} removal. The endothermic CH{sub 4}/CO{sub 2}/H{sub 2}O feed combination is always feasible for 1 < {mu} < 3.

Tjatjopoulos, G.J. [Chemical Process Engineering Research Inst., Thessaloniki (Greece). Foundation for Research and Technology; Vasalos, I.A. [Aristotle Univ. of Thessaloniki (Greece). Chemical Engineering Dept.

1998-04-01T23:59:59.000Z

173

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

174

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

175

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 DE-FC26-06NT42963 Goal The goal of this project is to develop observational and experimental data that can provide a better understanding of the basic mechanisms at work in a methane hydrate reservoir that is under production. To this end, a thorough physical understanding of underlying phenomena associated with methane hydrate production will be acquired through unique, multi-scale experiments and associated analyses. In addition, one or more mathematical models that account for the observed phenomena and provide insights that may help to optimize methane hydrate production methods will be developed. Performers Georgia Tech Research Corporation, Atlanta, Georgia 30332 Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee 37831

176

Design and economics of a lignite-to-SNG (substitute natural gas) facility using Lurgi gasifiers with in-line conversion of by-product liquids to methane. Topical report (Final), December 1985-November 1986  

SciTech Connect

A first-pass conceptual design and screening cost estimate was prepared for a hypothetical plant to convert lignite to methane using Lurgi dry-bottom gasifiers and employing a black box reactor to convert by-product liquids in the gas phase to methane. Results were compared to those from conventional and modified Lurgi-plant designs. The in-line conversion plant can potentially reduce the cost of gas from a Lurgi plant by about 20%. Due to reduced capital investment, over $200 million could be invested in the reactor before the cost of gas from the in-line conversion plant is as high as that of a Lurgi plant.

Smelser, S.C.

1986-11-01T23:59:59.000Z

177

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network (OSTI)

2006 Abstract Methane gas is a by-product of landfilling municipal solid wastes (MSW). Most tonnes of methane annually, 70% of which is used to generate heat and/or electricity. The landfill gas. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

178

NIST: Methane Symmetry Operations  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Version History Methane Symmetry Operations. JT Hougen Optical Technology Division Gloria Wiersma ...

2010-10-05T23:59:59.000Z

179

GRI methane chemistry program review meeting  

SciTech Connect

Methane is an important greenhouse gas which affects the atmosphere directly by the absorption and re-emission of infrared radiation as well as indirectly, through chemical interactions. Emissions of several important greenhouse gases (GHGS) including methane are increasing, mainly due to human activity. Higher concentrations of these gases in the atmosphere are projected to cause a decrease in the amount of infrared radiation escaping to space, and a subsequent warming of global climate. It is therefore vital to understand not only the causes of increased production of methane and other GHGS, but the effect of higher GHG concentrations on climate, and the possibilities for reductions of these emissions. In GRI-UIUC methane project, the role of methane in climate change and greenhouse gas abatement strategies is being studied using several distinct approaches. First, a detailed treatment of the mechanisms controlling each important methane source and sink, and hence the atmospheric concentration of methane, is being developed for use with the UIUC Integrated Science Assessment Model. The focus of this study is to resolve the factors which determine methane emissions and removal, including human population, land use, energy demand, global temperature, and regional concentrations of the hydroxyl radical, carbon monoxide, nitrous oxides, non-methane hydrocarbons, water vapor, tropospheric and stratospheric ozone.

Dignon, J.; Grant, K.; Grossman, A.; Wuebles, D.; Brasseur, G.; Madronich, S.; Huang, T.; Chang, J.; Lott, B.

1997-02-01T23:59:59.000Z

180

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Methane Hydrate Last Reviewed 5152012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas...

182

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6...

183

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6301989"...

184

NETL: Methane Hydrates - DOE/NETL Projects - Verification Of...  

NLE Websites -- All DOE Office Websites (Extended Search)

will help to determine bottomhole pressure, predict more accurate production rates of methane and water, and facilitate the selection of hydrate reservoirs for economic...

185

Resource Recovery of Coal Bed Methane Formation Water.  

E-Print Network (OSTI)

??During the excavation of natural gas, petroleum hydrocarbon-polluted brine water, termed production water, is drawn from the coal bed methane formations (CBMF) along with the… (more)

Bishop, Catherine Elizabeth

2006-01-01T23:59:59.000Z

186

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"...

187

Onsite Wastewater Treatment Systems: Aerobic Treatment Unit  

E-Print Network (OSTI)

Aerobic units treat wastewater using the same process, only scaled down, as municipal wastewater treatment systems. This publication explains how aerobic units work, what their design requirements are, and how to maintain them.

Lesikar, Bruce J.

2008-10-31T23:59:59.000Z

188

Ecovation Inc formerly AnAerobics | Open Energy Information  

Open Energy Info (EERE)

Ecovation Inc formerly AnAerobics Ecovation Inc formerly AnAerobics Jump to: navigation, search Name Ecovation Inc (formerly AnAerobics) Place Victor, New York Zip 14564 Product The company build and operate organic waste management systems. Coordinates 38.15924°, -81.034233° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.15924,"lon":-81.034233,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

190

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

191

Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh,,111...  

E-Print Network (OSTI)

of the synthetic fuels examined in the journal paper, namely Fischer-Tropsch fuels (diesel and gasoline blendstocks processes included in our analysis. 2 Synthetic Fuels Included in the Analysis 2.1 Fischer-Tropsch Fuels The product of Fischer-Tropsch (FT) synthesis is a mixture of straight-chain hydrocarbons (olefins

Sibener, Steven

192

Application of numerical, experimental and life cycle assessment methods to the investigation of natural gas production from methane hydrate deposits using carbon dioxide clathrate sequestration.  

E-Print Network (OSTI)

??Natural gas hydrates, commonly called methane (CH4) hydrates, are ice-like materials belonging to the family of clathrates that form at low temperature and high pressure.… (more)

Nago, Annick

2013-01-01T23:59:59.000Z

193

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

194

The Numerical Simulation of Conventional Ground Coalbed Methane Development  

Science Conference Proceedings (OSTI)

The migration, accumulation, and production of coalbed methane (CBM) are absolutely different from the conventional natural gas. The mechanism of the migration and production of CBM are researched and the geological model of CBM reservoir simulation ... Keywords: coalbed methane, numerical simulation, desportion-diffusion, two phase flow, fully implicit finite difference

Lin Xiaoying; Liu Guowei; Su Xianbo

2009-07-01T23:59:59.000Z

195

NETL: Methane Hydrates - Methane Hydrate Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Ridge region Ongoing areas of study in the Hydrate Ridge region Map showing where gas hydrates occur off the Cascadia Margin Locations of methane hydrate off the Cascadia Margin...

196

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrates Primer provides background and general information about the history of hydrate R&D, the science of methane hydrates, their occurrences, and R&D related issues. Photo...

197

Why not methane--5. Delivering methane  

SciTech Connect

A discussion showed that the methane delivery system in the U.S. consists of 350,000 mi of underground high-pressure pipelines, 650,000 mi of distribution mains and connections to 45 million energy users. This delivery system now carries much less natural gas than it could carry because of the regulation-caused shortages of recent years. The delivery system is also connected to an efficient storage system of exhausted underground gas wells into which methane from any source (e.g., gasification of coal or vegetation) could be pumped and then recovered as needed. This storage system could be readily expanded and could thus be used for strategic storage of methane. Enough methane could be stored to replace foreign oil if the foreign supply should be interrupted; and methane can be quickly delivered nation-wide, whereas strategic oil storage requires unusual and expensive provisions for delivery. Natural gas usage could be increased by 20Vertical Bar3< in two years and would reduce payments for imported oil by about $10 billion. Doubling the amount of methane used in the U.S. would eliminate the need for foreign oil entirely.

Luntey, E.

1979-01-01T23:59:59.000Z

198

Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report  

SciTech Connect

The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

1981-05-01T23:59:59.000Z

199

Study on the Principle and Technology of Coal and Methane Simultaneous Extraction Based on the Mining Fissure Elliptic Parabolic Zone  

Science Conference Proceedings (OSTI)

Coal and coal-bed methane are all valuable energy resource, if they can be extracted simultaneously and safely, the triple purposes of mine safety production, new energy resource supply and environment protection can be fulfilled. The coal-bed methane ... Keywords: Mining induced fissure, Elliptic Parabolic Zone, Relieved methane, Coal, methane simultaneous extraction

Lin Haifei; Li Shugang; Cheng Lianhua; Pan Hongyu

2011-02-01T23:59:59.000Z

200

Potential of Floriculture Residue For Biogas Production.  

E-Print Network (OSTI)

??Production of methane reach biogas through anaerobic digestion of organic material provides versatile carrier of renewable energy, as methane can be used in replacement for… (more)

TAMRAT, ASNAKE

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Methane Digester Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Digester Loan Program Methane Digester Loan Program Methane Digester Loan Program < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate RFA can provide up to $250,000 of loan principal Program Info Funding Source Minnesota Rural Finance Authority (RFA) State Minnesota Program Type State Loan Program Rebate Amount RFA participation limited to 45% of loan principal Provider Minnesota Department of Agriculture Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by providing zero-interest loans to eligible borrowers. The loan program is part of the Rural Finance Authority (RFA) revolving loan fund, through which farmers can receive financial aid

202

Plasma—Methane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

203

Trends Online Methane Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Introduction Annual Estimates of Global Anthropogenic Methane Emissions: 1860-1994 - D.I. Stern and R.K. Kaufmann Contents-Trends | CDIAC Home 102001...

204

Methane Hydrate Advisory Committee Charter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter...

205

NIST: Methane Symmetry Operations - Introduction  

Science Conference Proceedings (OSTI)

Methane Symmetry Operations. ... At least three T d symmetry classification systems are widely used at present in the methane literature [5-13]. ...

206

ENZYME ACTIVITY PROBE AND GEOCHEMICAL ASSESSMENT FOR POTENTIAL AEROBIC COMETABOLISM OF TRICHLOROETHENE IN GROUNDWATER OF THE NORTHWEST PLUME, PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY  

Science Conference Proceedings (OSTI)

The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If the multiple lines of evidence support the occurrence of cometabolism and the potential for the process to contribute to temporal and spatial attenuation of TCE in PGDP groundwater, then a follow-up enzyme probe microcosm study to better estimate biological degradation rate(s) is warranted.

Looney, B; M. Hope Lee, M; S. K. Hampson, S

2008-06-27T23:59:59.000Z

207

Enhanced Renewable Methane Production System  

treatment that enhances the heating value of biogas, delivering a gas that is close to pipeline quality. This system offers

208

Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse  

DOE Green Energy (OSTI)

Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

Bogner, J.E.; Rose, C.; Piorkowski, R.

1989-01-01T23:59:59.000Z

209

Methane cracking over a bituminous coal char  

Science Conference Proceedings (OSTI)

Methane cracking over a bed of Chinese bituminous coal char was studied using a fixed-bed reactor at atmospheric pressure and temperatures between 1073 and 1223 K. Methane conversion over the fresh char increased with increasing temperature to 90% at 1223 K. Hydrogen was the only gas-phase product that was detected during the experimentation. The char was shown to exert a significant catalytic effect on methane cracking by comparing results from experiments with the raw char and demineralised char as well as from blank experiments using quartz. It was further shown that the ash was not the source of the catalytic effect of the char. However, both methane conversion and hydrogen yield decreased with increasing reaction time, irrespective of other experimental conditions, indicating that the char rapidly became deactivated following the exposure to methane. It was speculated that the deposition of carbon from methane cracking was responsible for this deactivation, which is supported by scanning electron microscopy (SEM) image analysis. It was demonstrated that the catalytic activity of the deactivated char can be partially recovered by burning off the carbon deposits with an oxidizing gas mixture containing 0.46% oxygen. 10 refs., 11 figs., 1 tab.

Zhi-qiang Sun; Jin-hu Wu; Mohammad Haghighi; John Bromly; Esther Ng; Hui Ling Wee; Yang Wang; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2007-06-15T23:59:59.000Z

210

Methane level rise blamed in greenhouse effect  

SciTech Connect

As scientists continue to probe effects of global warming trends and the greenhouse effect, increasing attention is being placed on the impact of methane. Last year, scientists at the University of California in Irvine found there were almost 1.7 parts per million of methane in the troposphere- 11% higher that a decade ago and climbing at 1% annually. European scientists came up with similar analyses, and the belief is that methane is currently 2.4 times higher than it has ever been in the last 160,000 years. The big challenge now is to identify the sources of the methane. About 15 to 20% can be traced to oil and gas wells, coal mining and other tapping of the gas trapped in the planet's crust. Other sources are bacteria working in tropical rain forests, burned-off clearings, etc. Cattle figure high on the list of methane generators. When domesticated herds of sheep, goats, pigs, etc. are figured, the total rises to 73 million metric tons per year- a 435% increase since 1890. Rice paddies are also rated a major source of methane. It's estimated that 115 million metric tons rise from rice paddies a year, as much as is coming from natural swamps and wetlands. When scientists added up all the published estimates of methane production, the total ranged from 400 million to 640 million metric tons a year. Estimates of how much methane the atmosphere can handle are similarly uncertain, ranging from 300 million to 650 million metric tons a year.

1989-01-01T23:59:59.000Z

211

Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska  

E-Print Network (OSTI)

Mallik 2002 Gas Hydrate Production Research Well Program,Of Methane Hydrate Production Methods To Reservoirs WithNumerical Studies of Gas Production From Methane Hydrates,

Moridis, G.J.

2010-01-01T23:59:59.000Z

212

PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW  

E-Print Network (OSTI)

arc pyrolysis of methane at supersonic conditions, representative of conditions in the reformer is then reformed or cracked to produce hydrogen. The hy- drocarbon of choice is methane because of its highest material instead of as a fuel. Amongst various hydrogen production technologies,7 steam reformation

Texas at Arlington, University of

213

Thermodynamic investigation into steam-methane reforming and the synthesis of methane from carbon monoxide and hydrogen  

SciTech Connect

In this study the stream-methane equilibrium reaction was investigated by considering both methane synthesis from hydrogen and carbon monoxide and by considering steam-methane reforming from methane and steam. A FORTRAN computer program was written to carry out all the calculations over a wide range of temperatures, pressures, and initial compositions. The products of each process as a function of pressure, temperature, and starting ratio of reactant gases were calculated, as well as the heats involved. In both processes the minimum ratios above which no carbon precipitates were determined as a function of temperature and pressure were given.

Wu, L.H.; Lietzke, M.H.

1976-11-01T23:59:59.000Z

214

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge  

E-Print Network (OSTI)

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge and steam reforming has a benefit in terms of balancing the heat load. Methane conversions can be achieved

Mallinson, Richard

215

Methane Hydrates - Methane Hydrate Graduate Fellowship  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Supply and Emerging Resources Future Supply and Emerging Resources The National Methane Hydrates R&D Program - Graduate Fellowship Program Methane Hydrate Graduate Fellowship Program Jeffrey James Marlow, a graduate student in Geobiology at the California Institute of Technology, was recently selected as the 2012 recipient of the NETL-National Academy of Sciences (NAS) Methane Hydrate Research Fellowship. Please see page 15 of the March 2013 issue (Vol. 13, Issue 1) of Fire in the Ice for more information on the recipient. The Department of Energy has a long history of building synergistic relationships with research universities. Funding academic research is a "win-win-win" situation. The U.S. government is able to tap into some of the best minds available for solving national energy problems, the universities get the support they need to maintain cutting edge faculty and laboratories, and the students involved are provided with opportunities that help them along their chosen path of study, strengthening the national pool of scientists and engineers. According to Samuel Bodman, speaking about graduate research in methane hydrates, "Students are the foundation of our energy future, bringing new ideas and fresh perspectives to the energy industry. What better way to assure technology innovation than to encourage students working on the development of a resource that has the potential to tip our energy balance toward clean-burning, domestic fuels."

216

The Optimization of Well Spacing in a Coalbed Methane Reservoir  

E-Print Network (OSTI)

Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The reservoir simulation model reflects the response of a reservoir system and the relationship among coalbed methane reservoir properties, operation procedures, and gas production. This work presents a procedure to select the optimum well spacing scenario by using a reservoir simulation. This work uses a two-phase compositional simulator with a dual porosity model to investigate well-spacing effects on coalbed methane production performance and methane recovery. Because of reservoir parameters uncertainty, a sensitivity and parametric study are required to investigate the effects of parameter variability on coalbed methane reservoir production performance and methane recovery. This thesis includes a reservoir parameter screening procedures based on a sensitivity and parametric study. Considering the tremendous amounts of simulation runs required, this work uses a regression analysis to replace the numerical simulation model for each wellspacing scenario. A Monte Carlo simulation has been applied to present the probability function. Incorporated with the Monte Carlo simulation approach, this thesis proposes a well-spacing study procedure to determine the optimum coalbed methane development scenario. The study workflow is applied in a North America basin resulting in distinct Net Present Value predictions between each well-spacing design and an optimum range of well-spacing for a particular basin area.

Sinurat, Pahala Dominicus

2010-12-01T23:59:59.000Z

217

Methane Hydrate Advisory Committee Meeting Minutes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes June 6th - 7th, 2013...

218

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2011 FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of research. Pursuant to statutory requirements, this report is being provided to the following

219

Methane Hydrate Annual Reports  

Energy.gov (U.S. Department of Energy (DOE))

Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per...

220

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fiscal Year 2012 Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S. Department of Energy Fiscal Year 2012 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Electrochemical methane sensor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

222

TRENDS: METHANE EMISSIONS - INTRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Wm-2), almost 20% is attributable to methane (CH4), according to the 1995 report of the Intergovernmental Panel on Climate Change (IPCC 1995). Since the mid-1700s, the atmospheric concentration of methane has increased by about 145% (IPCC 1995). Thus, an understanding of the various sources of methane is important. Atmospheric methane is produced both from natural sources (e.g., wetlands) and from human activities (see global methane cycle, from Professor W.S. Reeburgh at the University of California Irvine). Total sources of methane to the atmosphere for the period 1980-1990 were about 535 (range of 410-660) Tg (1 Teragram = 1 million metric tons) CH4 per year, of which 160 (110-210) Tg CH4/yr were from natural sources and 375 (300-450) Tg CH4/yr

223

Extracting value from coal mine methane  

Science Conference Proceedings (OSTI)

Emerging US policy to regulate greenhouse gas (GHG) emissions through a cap-and-trade program presents mine managers with a new opportunity to explore and develop methane utilization or abatement projects that generate value from the anodization of carbon offset credits. In addition, the rising focus on US energy security and domestic energy supply is promoting mine managers and engineers to give further consideration to the importance of their methane gas by-products. The market through which coal mine methane offset projects can be developed and carbon offset credits monetized is quickly maturing. While many methane utilization projects have previously been uneconomical, the carbon offset credit market provides a new set of financing tools for mine engineers to capitalize these projects today. Currently , there are two certification programs that have approved project protocols for CMM projects. The Voluntary Carbon Standard (VCS) offers a methodology approved under the Clean Development Mechanism, the international compliance based offset market under the Kyoto Protocol. The VCS protocol is applicable to projects that combust ventilation air methane (VAM) and methane extracted from pre-and post-mine drainage systems. The Chicago Climate Exchange (CCX), which operates a voluntary yet binding cap-and-trade market, also has an approved protocol for CMM projects. CCX's protocol can be applied to projects combusting VAM, and methane extracted from pre-and-post-mine drainage systems, as well as abandoned mines. The article describes two case studies - Developing a gob gas utilization project financed by carbon offset credits and First VAM oxidation system to be commissioned at an operating mine in the US. 1 tab., 4 photos.

Liebert, B. [Verdao Group (United States)

2009-06-15T23:59:59.000Z

224

Methane Hydrate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

225

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04062010 DE-FC26-06NT42962 Goal The goal of this...

226

Method of making compost and spawned compost, mushroom spawn and generating methane gas  

Science Conference Proceedings (OSTI)

Newly designed ribbon-type mixers provide an improved method for making composts, aerating composts, growing mushroom spawn, generating methane gas, and filling conveyors in the mushroom-growing industry. The mixers may be the double-ribbon type for purely mixing operations or the single-ribbon type for moving the material from one place to another. Both types can operate under pressure. In preparing compost for mushroom growing, operators can first use the airtight mixers for a preliminary anaerobic fermentation to produce methane, then by changing the atmosphere to an oxidizing one, complete the compost preparation under the necessary aerobic conditions.

Stoller, B.B.

1981-04-28T23:59:59.000Z

227

Methane Power Inc | Open Energy Information  

Open Energy Info (EERE)

Methane Power Inc Methane Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name Methane Power Inc. Address 121 Edinburgh South Drive Place Cary, NC Zip 27511 Sector Renewable Energy Product Methane Power is a renewable energy project developer that focuses on landfill gas-to-energy projects. Currently, they are a supplier of landfill gas generated energy to Duke Energy in North Carolina. Phone number 919-297-7206 Website http://www.methanepower.net Coordinates 35.7395875°, -78.8029226° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7395875,"lon":-78.8029226,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds… (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

229

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Methane Gas Hydrates Last Reviewed 6142013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate...

230

Formation and emission of methane in rice soils: Experimental determination and modeling analysis. Final report  

DOE Green Energy (OSTI)

Rice paddy soils have been identified as a major source of methane emissions contributing to the observed atmospheric increase in methane. This points to the need for a method of quantifying and predicting methane emissions for the widely varying conditions used in rice agriculture throughout the world. In the present work, a mathematical model for estimating the emission of methane from rice paddy soils is developed and refined. Kinetic parameters for methanogenesis in a Louisiana rice soil are determined from laboratory data on methane production from acetic acid substrate. Use of a stirred reactor allows simultaneous measurement of acetate consumption and methane production while minimizing mass transfer limitations. An existing model for rice plant growth is utilized to provide data on the availability of root exudates as a carbon source for the methanogens. The final methane model includes the kinetic parameters, plant data, and estimated transport parameters. With adjustments in these parameters, it provides an acceptable match to field data.

Law, V.J.; Bhattacharya, S.K.

1993-08-31T23:59:59.000Z

231

Thermal Conversion of Methane to Acetylene  

DOE Green Energy (OSTI)

This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

2000-01-01T23:59:59.000Z

232

Methane Emissions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Equivalent; Estimated 2003 ... for about 8.7 percent of total U.S. greenhouse gas emissions when weighted by methane’s global warming potential factor.

233

Enhanced coalbed methane recovery  

SciTech Connect

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

234

Conversion of methane and acetylene into gasoline range hydrocarbons  

E-Print Network (OSTI)

Conversion of methane and acetylene to higher molecular weight hydrocarbons over zeolite catalyst (HZSM-5) was studied The reaction between methane and acetylene successfully produced high molecular weight hydrocarbons, such as naphthalene, benzene, indene, azulene, fluorene, and biphenyl substituted compounds. Also, lighter hydrocarbons, such as ethylene and isobutene were produced. The reaction was conducted at different operating temperatures and different molar feed composition. The results showed that the conversion of both reactants increased with increasing the operating temperature; for example a conversion of 95.1% was achieved for acetylene at 350°C and 98.6% at 412°C. In addition, the conversion of both reactants decreased with increasing the molar feed ratio of methane to acetylene. A conversion of 96.4% for acetylene was achieved at a molar feed ratio of 6 to 1 (methane to acetylene) and 80.9% at a molar feed ration of 20 to 1 (methane to acetylene). The reaction of methane and ethane over HZSM-5 catalyst also led to the production of high molecular weight hydrocarbons, mainly aromatics, and some lighter products such as propane, and ethylene. Also methane by itself showed the ability to react over HZSM-5 to produce a small amount of aromatics, and ethylene.

Alkhawaldeh, Ammar

2000-01-01T23:59:59.000Z

235

Methane emissions from natural wetlands  

SciTech Connect

Analyses of air trapped in polar ice cores in conjunction with recent atmospheric measurements, indicate that the atmospheric methane concentration increased by about 250% during the past two or three hundred years (Rasmussen and Khalil, 1984). Because methane is a potent ``greenhouse`` gas, the increasing concentrations are expected to contribute to global warning (Dickinson and Cicerone, 1986). The timing of the methane increase suggests that it is related to the rapid growth of the human population and associated industrialization and agricultural development. The specific causes of the atmospheric methane concentration increase are not well known, but may relate to either increases in methane sources, decreases in the strengths of the sinks, or both.

Meyer, J.L. [Georgia Univ., Athens, GA (United States); Burke, R.A. Jr. [Environmental Protection Agency, Athens, GA (United States). Environmental Research Lab.

1993-09-01T23:59:59.000Z

236

Hypothesis for increased atmospheric methane input from hydrocarbon seeps on exposed continental shelves during glacial low sea level  

E-Print Network (OSTI)

.- 2 Sept.1998 '" HYDROGEN PRODUCTION FROM COAL AND COAL BED METHANE, USING BYPRODUCT CO2 FOR ENHANCED METHANE RECOVERY AND SEQUESTERING THE CO2 IN mE COAL BED RH Williams, Center for Energy and Environmental that are poorly endowed with conventional hydrocarbon resources but coal- and coal-bed-methane-rich would

Luyendyk, Bruce

237

Predicting methane fermentation biodegradability  

Science Conference Proceedings (OSTI)

Estimation of the feedstock digestibility in cows by procedures developed by Van Soest was performed. By feeding cows feedstuff of different lignin content, cell wall digestibility can be estimated. In this article a digestibility model has been employed and tested along with other models for the rapid prediction of substrate methane fermentation biodegradability.

Chandler, J.A.; Jewell, W.J.; Gossett, J.M.; Van Soest, P.J.; Robertson, J.B.

1980-01-01T23:59:59.000Z

238

NETL: Oil & Natural Gas Technologies Reference Shelf - Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Author: John Wheaton, Montana Tech of the University of Montana, Butte, MT. Venue: The tour will be conducted starting in Gillette, WY, and extend along the northern Powder River Basin, on June 3, 2007, under the auspices of the American Society for Mining and Reclamation (http://ces.ca.uky.edu/asmr/ [external site]). Abstract: This field tour will emphasize successful reclamation in an alternative type of coal industry in the Powder River Basin: coalbed methane. The tour will leave Gillette, WY, at 7:30 a.m., Sunday, June 3, 2007, and travel to Sheridan, WY, and back, touring coalbed methane production areas. Stops will include active drilling and producing areas to learn about the footprint and approach to development of coalbed methane. Reclamation includes drilling pads and linear trenching for water and gas pipelines. Produced-water management is a major expense and concern. Among the water management options we plan to see are stock-watering facilities, infiltration ponds, irrigation sites, and water treatment facilities. A landowner will join us and be able to answer questions from the ranching perspective for part of the tour. Lunches are included in the price of the tour.

239

The landfill methane balance: Model and practical applications  

SciTech Connect

A rational mass-balance framework is described for improved quantification of landfill methane processes at a given site. The methane balance model examines the partitioning of methane generated into methane recovered (via extraction systems), methane emitted, methane oxidized, methane migrated, and methane storage. This model encourages use of field-based data to better quantify rates of methane recovery and emissions.

Bogner, J.; Spokas, K.

1995-10-01T23:59:59.000Z

240

Dense ceramic membranes for converting methane to syngas  

DOE Green Energy (OSTI)

Dense mixed-oxide ceramics capable of conducting both electrons and oxygen ions are promising materials for partial oxygenation of methane to syngas. We are particularly interested in an oxide based on the Sr-Fe-Co-O system. Dense ceramic membrane tubes have been fabricated by a plastic extrusion technique. The sintered tubes were then used to selectively transport oxygen from air through the membrane to make syngas without the use of external electrodes. The sintered tubes have operated for >1000 h, and methane conversion efficiencies of >98% have been observed. Mechanical properties, structural integrity of the tubes during reactor operation, results of methane conversion, selectivity of methane conversion products, oxygen permeation, and fabrication of multichannel configurations for large-scale production of syngas will be presented.

Balachandran, U.; Dusek, J.T.; Picciolo, J.J.; Ma, B.; Maiya, P.S.; Mieville, R.L. [Argonne National Lab., IL (United States); Kleefisch, M.S.; Udovich, C.A. [Amoco Exploration/Production, Naperville, IL (United States)

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Acetic Acid from the Carbonylation of Chloride Methane Over Rhodium Based Catalysts  

E-Print Network (OSTI)

on an indirect route via synthesis gas (syngas), i.e., methane is first con- verted to syngas before it is further transformed into other useful products [6]. However, the production of syngas from methane) 130:286­290 DOI 10.1007/s10562-009-0017-9 #12;[12], which is produced from syngas feedstock with Cu

Bao, Xinhe

242

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 DE-FC26-01NT41331 photo of new Anadarko drilling rig in place at Hot Ice No.1 on Alaska's North Slope Hot Ice No. 1 Drilling Platform courtesy Anadarko Petroleum Corp. Goal The goal of the project was to develop technologies for drilling and recovering hydrates in arctic areas. The specific objectives were to drill, core, and test a well through the hydrate stability zone in northern Alaska Performers Maurer Technology, Inc.* - Project coordination with DOE Anadarko Petroleum Corporation - Overall project management for the design, construction, and operation of the Arctic Drilling Platform and mobile core lab, and field coring operations Noble Engineering and Development* - Real time data collection and

243

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas hydrate systems from three perspectives: as an energy resource, as a geohazard, and as a long-term influence on global climate. Performers Rice University, Houston, TX University of Texas, Austin, TX Oklahoma State University, Stillwater, OK Background Heterogeneity in the distribution of gas hydrate accumulations impacts all aspects of research into gas hydrate natural systems. The challenge is to delineate, understand, and appreciate these differences at the regional and local scales, where differences in in situ concentrations are relevant to the importance of gas hydrate as a resource, a geohazard, and a factor in

244

Sequence Stratigraphy and Architecture of Lower Pennsylvanian Strata, Southern West Virginia: Potential for Carbon Sequestration and Enhanced Coal-Bed Methane Recovery in the Pocahontas Basin.  

E-Print Network (OSTI)

??Carbon dioxide sequestration in coal-bed methane fields has potential to add significant recoverable reserves and extend the production life of coal-bed methane fields while at… (more)

Rouse, William Allan

2009-01-01T23:59:59.000Z

245

Storage of methane as volatile fatty acids for intermittent fuel use  

SciTech Connect

A process for on-site production of methane from sweet potato canning wastes was developed. In this process methane is stored conveniently as a liquid in the form of organic acids which are produced in an acid pond. When methane is needed, the acids are pumped into a methane pond underneath a sludge blanket, where high rates of methane production begin shortly after feeding. A demonstration plant has been designed and is being constructed using the existing pond system and facilities in a sweet potato canning factory in Louisiana. The methane produced is burned on-site to generate process steam for use in the main plant. 14 references, 10 figures, 3 tables.

Nghiem, N.P.; Mehta, K.; Callihan, C.D.

1983-01-01T23:59:59.000Z

246

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

247

Energy Department Expands Research into Methane Hydrates, a Vast, Untapped  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands Research into Methane Hydrates, a Vast, Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. November 20, 2013 - 12:08pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, U.S. Energy Secretary Ernest Moniz announced nearly $5 million in funding across seven research projects nationwide designed to increase our understanding of methane hydrates - a large, completely untapped natural gas resource-and what it could mean for the environment, as well as American economic competiveness and energy security. "The recent boom in natural gas production - in part due to long-term Energy Department investments beginning in the 70's and 80's - has had

248

NETL: News Release - DOE Study Raises Estimates of Coalbed Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

December 16, 2002 December 16, 2002 DOE Study Raises Estimates of Coalbed Methane Potential in Powder River Basin Actual Production Will Hinge on Water Disposal Method WASHINGTON, DC - The Powder River Basin, a vast region of high plains in Wyoming and Montana known for producing low-sulfur coal, is also becoming a primary source of America's fastest growing natural gas resource, coalbed methane. Now, a new Department of Energy report projects that the region may hold more coalbed methane than previously estimated but the amount that will actually be produced will depend largely on the choice of the water disposal method. MORE INFO Download report [7.35MB PDF] The study, Powder River Basin Coalbed Methane Development and Produced Water Management Study, was prepared by Advanced Resources International of

249

Non-oxidative conversion of methane with continuous hydorgen removal  

SciTech Connect

The objective is to overcome the restrictions of non-oxidative methane pyrolysis and oxidative coupling of methane by transferring hydrogen across a selective inorganic membrane between methane and air streams, without simultaneous transport of hydrocarbon reactants or products. This will make the overall reaction system exothermic, remove the thermodynamic barrier to high conversion, and eliminate the formation of carbon oxides. Our approach is to couple C-H bond activation and hydrogen removal by passage of hydrogen atoms through a dense ceramic membrane. In our membrane reactor, catalytic methane pyrolysis produces C2+ hydrogen carbons and aromatics on the one side of the membrane and hydrogen is removed through an oxide film and combusted with air on the opposite side. This process leads to a net reaction with the stoichiometry and thermodynamic properties of oxidative coupling, but without contact between the carbon atoms and oxygen species.

Borry, R.W. III [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering; Iglesia, E. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

1997-12-31T23:59:59.000Z

250

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

251

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

252

NETL: Methane Hydrates - Interagency Coordination  

NLE Websites -- All DOE Office Websites (Extended Search)

Links to interagency pdf. The multi-faceted issues associated with naturally occurring methane hydrates demand a coordinated approach to studying (1) the potential of this resource...

253

New Materials Make Methane Capture Possible  

Science Conference Proceedings (OSTI)

May 8, 2013... SBN, captured enough medium source methane to turn it to high purity methane, which in turn could be used to generate efficient electricity.

254

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

with sampling and observation from the surface ship. Activities included collection of methane hydrate, sediment, water, and other materials from methane hydrate and seep sites...

255

NIST: Methane Symmetry Operations - Td Symmetry Species  

Science Conference Proceedings (OSTI)

Table of Contents Methane Symmetry Operations. 11. ... Magnetic-dipole transitions are observed in molecular-beam studies of methane [42]. ...

256

MethaneHydrateRD_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety...

257

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

– Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 – Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 Project Objective Observe hydrate formation and dissociation phenomena in various porous media and characterize hydrate-bearing sediments by estimating physical properties (kinetic parameters for hydrate formation and dissociation, thermal conductivity, permeability, relative permeability, and mechanical strength) to enhance fundamental understanding on hydrate formation and accumulation and to support numerical simulations and potential gas hydrate production Project Performers Yongkoo Seol – NETL Office of Research & Development Jeong Choi – Oak Ridge Institute for Science and Education Jongho Cha-Virginia Polytech Institute Project Location National Energy Technology Laboratory - Morgantown, West Virginia

258

Methane Hydrate Field Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Studies Field Studies Methane Hydrate Field Studies Arctic/Alaska North Slope Field Studies Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and currently lack outlets to commercial markets, Alaska provides an excellent laboratory to study E&P technology. The research also has implications for various Alaska resources, including potential gas hydrate resources for local communities, conventional "stranded" gas, as well as Alaska's large unconventional oil resources. The hydrate deposits have been delineated in the process of developing underlying oil fields, and drilling costs are much lower than offshore. DOE-BP Project

259

Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day  

DOE Green Energy (OSTI)

A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

260

Steady-state and transient catalytic oxidation and coupling of methane  

DOE Green Energy (OSTI)

This project addresses the conversion of methane from natural gas into ethane, ethylene and higher hydrocarbons. Our research explores the mechanistic and practical implications of carrying out the methane oxidative coupling reaction in reactor designs other than conventional packed-beds with co-fed reactants. These alternate reactor designs are needed to prevent the full oxidation of methane, which limits C{sub 2}, yields in methane oxidative coupling reactions. The research strategy focuses on preventing contact between the 0{sub 2} reactant required for favorable overall thermodynamics and the C{sub 2+} products of methane coupling. The behavior of various reactor designs are simulated using detailed kinetic transport models. These simulations have suggested that the best way to prevent high C0{sub 2} yields is to separate the oxygen and hydrocarbon streams altogether. As a result, the project has focused on the experimental demonstration of proton transport membrane reactors for the selective conversion of methane into higher hydrocarbons.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Interim report Assessment of Baseline and Advanced Hydrogen Production Plants Case 1-1 Baseline Steam Methane Reforming (SMR) Hydrogen Plant With CO2 Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 CAPTURE READY COAL POWER PLANTS DOE/NETL-2007/1301 Final Report April 2008 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

262

Investigations on catalyzed steam gasification of biomass: feasibility study of methane production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory. The goal of this additional work was to determine the feasibility of a smaller scale plant one-tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 2.16 MM Scfd of SNG with a HHV of 956 Btu per Scf. All process and support facilities necessary to convert wood to SNG are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $26,680,000 - September 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood prices represent the cost of unchipped wood delivered to the plant site. For utility financing, the gas production costs are, respectively, $14.34, $14.83, $15.86, and $17.84 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $18.76, $19.26, $20.28, and $22.31 per MM Btu for the corresponding wood costs. The costs calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for char is 57.4%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

263

Fire in the Ice, August 2010 Methane Hydrate Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Figure 1: Simulation results of coupled thermo-dynamic and geomechanical changes around a hot Figure 1: Simulation results of coupled thermo-dynamic and geomechanical changes around a hot production well intersecting an HBS near a sloping seafloor after 30 years of production and heating (Rutqvist and Moridis, 2010). CONTENTS Geohazards of In Situ Gas Hydrates ...........................................1 Behavior of Methane Released in the Deep Ocean.....5 Core-Scale Heterogeneity ............6 Gas Volume Ratios ........................9 The Role of Methane Hydrates in the Earth System ....................12 Announcements .......................15 * Inter-Laboratory Comparison Project * Mississippi Canyon 118 * Research Fellowship * Call for Papers * Call for Abstracts * Upcoming Meetings Spotlight on Research .......... 20 Graham Westbrook CONTACT

264

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 6, July--September 1994  

DOE Green Energy (OSTI)

This is the eighth quarterly technical progress report. During this quarter the project was initiated, after transfer via a novation agreement, at the Colorado School of Mines. Project initiation activities have included: set up of catalyst synthesis apparatus; training on x-ray diffraction and FTIR apparatus; set up of catalyst testing reactor; set up of reactor product analytical systems; and set up of method development for measuring catalyst acidity via FTIR. At the end of this quarter significant progress had been made towards completion of these initiation activities. Several catalyst syntheses have been performed and the catalysts characterized by x-ray diffraction and FTIR. The catalyst testing reactor system is operational. Reactor product analysis system is nearing completion. Initiation of this system was delayed by the unavailability of a Valco valve which has just recently arrived. Set up of the in-situ FTIR cell for catalyst acidity studies has begun. In this report the results of several catalyst syntheses are reported along with characterization results. In particular, impregnation of vanadyl pyrophosphate with potassim nitrate dramatically reduced the number of surface hydroxyl groups. Such groups may be important in the non-selective, total oxidation of hydrocarbons. Also, preliminary experimental results on FTIR spectra of adsorbed pyridine are presented. It is shown that pyridine adsorbed on the catalyst surface can be easily observed by the diffuse reflectance IR technique. We plan to apply this technique to measurement of the acid site strength of surfaces modified with promoters.

McCormick, R.L.

1995-01-10T23:59:59.000Z

265

Methanation of gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

Frost, Albert C. (Congers, NY)

1983-01-01T23:59:59.000Z

266

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane...  

NLE Websites -- All DOE Office Websites (Extended Search)

On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 6242013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced...

267

Energy and protein production from pulp mill wastes. Quarterly report, December 15, 1978-March 15, 1979  

SciTech Connect

The objective for the past quarter included reversing the decline in productivity from the methane fermenters, confirming methane and yeast production from acetate, and making trial runs on kraft mill and semichemical mill effluents. Although methane production remained low (20 cc/hr) addition of 2% methanol doubled production. Progress has been made on identifying possible viruses that might be preventing higher methane production. Confirmation that acetate can be used as a substrate for methane production has been obtained. An initial test on the Decker filtrate from a kraft mill gave 20 cc/hr methane production.

Jurgensen, M.F.; Patton, J.T.

1979-03-15T23:59:59.000Z

268

Production of elemental sulfur and methane from H{sub 2}S and CO{sub 2} derived from a coal desulfurization process. Final report, September 1, 1993--March 31, 1997  

DOE Green Energy (OSTI)

The purpose of this study was to experimentally and theoretically investigate the feasibility of producing elemental sulfur, carbon monoxide, hydrogen and possible methane from hydrogen sulfide and carbon dioxide through catalytic reactions. A novel experimental system that could evaluate potential catalysts and adsorbents under controlled laboratory conditions was designed and constructed. Additionally an effective simulation program capable of providing valuable thermodynamic information on the reaction system was compiled. The following tasks have been performed: (1) design and construction of an experimental system for the catalyst preparation and catalyst screening studies including frequent modifications of the experimental setup to meet specific application needs; (2) installation and calibration of related analytical instruments, and investigation of the temperature distribution profile inside the reactor; (3) preparation, reduction, sulfidation of potential catalysts, and measurements of specific surface area of catalysts; (4) decomposition of H{sub 2}S under both non-catalytic condition and catalytic condition with the CoO-MoO{sub 3}-alumina catalyst at moderate temperatures around 550 C. Analyses of the product gas by gas chromatograph; and (5) thermodynamic studies on the theoretical conversions of H{sub 2}S for various temperatures, pressures and ratios of H{sub 2}S to CO{sub 2}. Based on the results of the above tasks, bench scale experiments were performed with the CoO-MoO{sub 3}-alumina catalyst at moderate temperatures around 550 C to investigate the adsorption effects of solid sorbents in order to remove sulfur from the reaction environment. Four kinds of adsorbents have been tested along with several designs of solid adsorbent feed systems.

Jiang, X.; Khang, S.J.; Keener, T.C.

1997-12-31T23:59:59.000Z

269

Methane Hydrate Advisory Committee Meeting Minutes, June 6th...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee...

270

Methane Hydrate Research and Development Act of 2000 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and...

271

Methane Hydrate Advisory Committee Meeting Minutes, January 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2010 Methane Hydrate Advisory Committee Meeting Minutes, January 2010 Methane Hydrate Advisory Committee Meeting Minutes January, 2010 Atlanta, GA Methane Hydrate Advisory...

272

Department of Energy Advance Methane Hydrates Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane...

273

Methane Hydrate Advisory Committee Meeting Minutes, March 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2010 Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes March 2010 Washington, DC Methane Hydrate Advisory...

274

NETL: Methane Hydrates - Hydrate Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate R&D Program Newsletter Methane Hydrate R&D Program Newsletter An image of a hydrate burning overlayed with the Newsletter Title: Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a bi-annual publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in the Ice please send an email to karl.lang@contr.netl.doe.gov Please click on the links below to access issues of "Fire in the Ice". More on Methane Hydrates

275

Methanation process utilizing split cold gas recycle  

DOE Patents (OSTI)

In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

Tajbl, Daniel G. (Evanston, IL); Lee, Bernard S. (Lincolnwood, IL); Schora, Jr., Frank C. (Palatine, IL); Lam, Henry W. (Rye, NY)

1976-07-06T23:59:59.000Z

276

Microbial methane formation from hard coal and timber in an abandoned coal mine  

Science Conference Proceedings (OSTI)

About 7% of the global annual methane emissions originate from coal mining. Also, mine gas has come into focus of the power industry and is being used increasingly for heat and power production. In many coal deposits worldwide, stable carbon and hydrogen isotopic signatures of methane indicate a mixed thermogenic and biogenic origin. In this study, we have measured in an abandoned coal mine methane fluxes and isotopic signatures of methane and carbon dioxide, and collected samples for microbiological and phylogenetic investigations. Mine timber and hard coal showed an in-situ production of methane with isotopic signatures similar to those of the methane in the mine atmosphere. Enrichment cultures amended with mine timber or hard coal as sole carbon sources formed methane over a period of nine months. Predominantly, acetoclastic methanogenesis was stimulated in enrichments containing acetate or hydrogen/carbon dioxide. Molecular techniques revealed that the archaeal community in enrichment cultures and unamended samples was dominated by members of the Methanosarcinales. The combined geochemical and microbiological investigations identify microbial methanogenesis as a recent source of methane in abandoned coal mines.

Kruger, M.; Beckmann, S.; Engelen, B.; Thielemann, T.; Cramer, B.; Schippers, A.; Cypionka, H. [Federal Institute for Geoscience and Natural Resources BGR, Hannover (Germany)

2008-07-01T23:59:59.000Z

277

Microchannel Process Technology for Compact Methane Steam Reforming  

Science Conference Proceedings (OSTI)

The study of microchannel reaction engineering and applications to compact chemical reactors has expanded rapidly both academically and industrially in recent years. Velocys{reg_sign}, a spin-out company from Battelle Memorial Institute, is commercializing microchannel process technology for large-scale chemical processing. Hydrogen production at industrial rates in compact Velocys hardware is made possible through increases in both heat and mass transfer rates for highly active and novel catalysts. In one example, a microchannel methane steam reforming reactor is presented with integrated catalytic partial oxidation of methane prior to catalytic combustion with low excess air (25%) to generate the required energy for undothermic methane steam reforming in adjacent channels. Heat transfer rates from the exothermic reactions exceed 18 W/cm{sup 2} of interplanar heat transfer surface area and exceed 65 W/cm{sup 3} of total reaction volume for a methane steam reforming contact time near 4 milliseconds. The process intensity of the Velocys methane steam reformer well exceeds that of conventional steam reformers, which have a typical volumetric heat flux below 1 W/cm{sup 3}. The integration of multiple unit operations and improvements in process intensification result in significant capital and operating cost savings for commercial applications.

Tonkovich, A L.; Perry, Steve; Wang, Yong; Qiu, Dongming; LaPlante, Timothy J.; Rogers, William A.

2004-12-01T23:59:59.000Z

278

Energy Department Expands Research into Methane Hydrates, a Vast, Untapped  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2013 0, 2013 Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. WASHINGTON - Today, U.S. Energy Secretary Ernest Moniz announced nearly $5 million in funding across seven research projects nationwide designed to increase our understanding of methane hydrates - a large, completely untapped natural gas resource-and what it could mean for the environment, as well as American economic competiveness and energy security. "The recent boom in natural gas production - in part due to long-term Energy Department investments beginning in the 70's and 80's - has had a transformative impact on our energy landscape, helping to reduce greenhouse gas emissions and support thousands of American jobs," said Secretary Moniz. "While our research into methane hydrates is still in its early stages, these investments will increase our understanding of this domestic resource and the potential to safely and sustainably unlock the natural gas held within."

279

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

280

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Coalbed Methane Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Eastern States ...

282

Enhanced Renewable Methane Production System Benefits ...  

The treatment enhances the heating value of biogas, delivering a gas that is close to pipeline quality. In addition, ...

283

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

and Rice to be appropriate. The initial ocean locations are Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location is Mallik. Although the ultimate goal of the...

284

Colorado Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 12: 1990's: 26: 48: 82: 125: 179: 226: 274: 312: 401: 432: 2000's: 451: 490: 520 ...

285

Utah Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 74: 83: 103: 97: 82: 75: 66: 73: 71: 71: 2010's: 66: 60-

286

Ohio Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 0: 0: 0: 0: 0: 2010's: 0-

287

Louisiana (with State Offshore) Coalbed Methane Production ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 0: 0: 0: 1: 1: 2010's: 0: 0-

288

Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials  

SciTech Connect

The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

2011-05-15T23:59:59.000Z

289

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

as described by Dillon, et al. (1998). Failure would be accompanied by the release of methane gas, but a portion of the methane is likely to be oxidized unless the gas release is...

290

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

291

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Waters Last Reviewed 5152012 DE-NT0005666 Goal The goal of this project is gain a better understanding of...

292

U.S. and Japan Complete Successful Field Trial of Methane Hydrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. and Japan Complete Successful Field Trial of Methane Hydrate U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2, 2012 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the completion of a successful, unprecedented test of technology in the North Slope of Alaska that was able to safely extract a steady flow of natural gas from methane hydrates - a vast, entirely untapped resource that holds enormous potential for U.S. economic and energy security. Building upon this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic as well as research to test additional technologies that could be used to locate,

293

coalbed methane | OpenEI  

Open Energy Info (EERE)

coalbed methane coalbed methane Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations Source NREL Date Released April 30th, 2005 (9 years ago) Date Updated November 07th, 2007 (7 years ago) Keywords coalbed methane GEF Kenya NREL SWERA TMY UNEP Data application/zip icon Download Data (zip, 5.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

294

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Objective was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields under relatively mild reaction conditions. Results in this document are reported under the headings: methane oxidation over silica, methane oxidation over Sr/La{sub 2}O{sub 3} catalysts, and oxidative coupling of methane over sulfate-doped Sr/La{sub 2}O{sub 3} catalysts. 24 refs, 10 figs, 4 tabs.

Klier, K.; Herman, R.G.

1993-12-31T23:59:59.000Z

295

Method for the photocatalytic conversion of methane  

DOE Patents (OSTI)

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D' Este, Joseph R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

296

Method for the photocatalytic conversion of methane  

DOE Patents (OSTI)

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

1998-02-24T23:59:59.000Z

297

QUEST FOR NEW MATERIALS FOR METHANE STORAGE ...  

Science Conference Proceedings (OSTI)

Quest for New Materials for Methane Storage: Gas Adsorption and Neutron Diffraction Measurements. Yang Peng, 1,2 Vaiva ...

298

EIA - Greenhouse Gas Emissions - Methane Emissions  

U.S. Energy Information Administration (EIA)

Residential wood consumption accounted for just over 45 percent of U.S. methane emissions from stationary combustion in 2009.

299

NIST: Methane Symmetry Operations - Nuclear spin functions  

Science Conference Proceedings (OSTI)

Methane Symmetry Operations. 9. Symmetry Properties of Laboratory-Fixed Nuclear Spin Functions, Nuclear Spin Statistics, and Parities. ...

300

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Numerical Simulation Last Reviewed 3/8/2013 Numerical Simulation Last Reviewed 3/8/2013 Project Goal The goal of NETL's gas hydrate numerical simulation studies is to obtain pertinent, high-quality information on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with NETL's experimental and field studies programs to ensure the validity of input datasets and scenarios. Project Performers Brian Anderson, NETL/RUA Fellow (West Virginia University) Hema Siriwardane, NETL/RUA Fellow (West Virginia University) Eugene Myshakin, NETL/URS Project Locations National Energy Technology Laboratory, Pittsburgh PA, and Morgantown WV West Virginia University, Morgantown, WV Background Field-scale hydrate production tests rely heavily on reservoir-scale

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico DE-FC26-02NT41327 Goal The project goal was to develop new methodologies to characterize the physical properties of methane hydrate and hydrate sediment systems. Performers Westport Technology Center International - Houston, TX University of Houston - Houston, TX Results Project researchers created a pressure cell for measuring acoustic velocity and resistivity on hydrate-sediment cores. They utilized the measurements for input to an existing reservoir model for evaluating possible offshore hydrate accumulations. The organization of an industry-led Advisory Board and the development of a Research Management Plan have been completed. The development of a handbook for transporting, preserving, and storing hydrate core samples brought from the field to the laboratory was completed and distributed for review by industry and researchers.

302

The development of solid methane neutron moderators at the Intense Pulsed Neutron Source facility of Argonne National Laboratory.  

DOE Green Energy (OSTI)

The Intense Pulsed Neutron Source (IPNS) started using solid methane moderators in 1985 because of their efficient conversion (about 3.5 times greater than was achieved with a liquid hydrogen moderator) of fast neutrons to long wavelength neutrons. However, the solid methane moderators experienced numerous failures due to pressure surges caused by a combination of (1) the release of stored energy, which occurred when methane radiolytic products recombined, and (2) the expansion of hydrogen, which built up in the solid methane during irradiation. During the ensuing years studies were made to determine how to operate the solid methane moderators without causing failure. The rate at which stored energy built up during irradiation and the temperature at which hydrogen was released during annealing were determined. Since 1993 IPNS has successfully operated the solid methane moderators (at about 30 K) by periodically annealing to the liquid state around 90 K after every roughly three days of irradiation.

Carpenter, J. M.; Miller, M. E.; Scott, T. L.

1999-03-10T23:59:59.000Z

303

Methane Emissions from Rice Fields - Final Report  

SciTech Connect

Methane (Ch4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning.

Khalil, M. Aslam; Rasmussen,Reinhold A.

2002-12-03T23:59:59.000Z

304

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network (OSTI)

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

305

Biological conversion of biomass to methane. Quarterly progress report  

DOE Green Energy (OSTI)

Progress in comparative studies of complete-mix and multi-stage reactors for use in the anaerobic fermentation of organic solids for methane production is reported. Results indicate that if a balanced population of organisms can be maintained in the initial stage, multi-stage fermentation is more efficient than a complete-mix system. However, if the system is stressed, failure of the multi-staged system is more rapid. When the first stage is not inhibited due to a short retention time, the waste stabilization in the additional stages is minimal. Further studies on the effect of retention time on reaction rates indicate that the type of reactor design desired will depend upon the objective of the system. If it is desired to maximize the conversion of solids to methane, a staged system will produce more methane per unit volume of reactor for a given quantity of substrate. If the objective is to maximize methane production per unit volume of reactor, a single-stage reactor operating at near the minimum retention is required. Results of studies on the fermentation of manures and corn stover are discussed briefly. (JGB)

Pfeffer, J T

1978-01-01T23:59:59.000Z

306

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Principal accomplishments have been achieved in all three areas of selective catalytic oxidation of methane that have been pursued in this research project. These accomplishments are centered on the development of catalyst systems that produce high space time yields of C{sub 2} hydrocarbon products, formaldehyde, and methanol from methane/air mixtures at moderate temperatures and at ambient pressure. The accomplishments can be summarized as the following: the SO{sub 4}{sup 2{minus}}/SrO/La{sub 2}O{sub 3} catalyst developed here has been further optimized to produce 2 kg of C{sub 2} hydrocarbons/kg catalyst/hr at 550C; V{sub 2}O{sub 5}SiO{sub 2} catalysts have been prepared that produce up to 1.5 kg formaldehyde/kg catalyst/hr at 630C with CO{sub 2} selectivities; and a novel dual bed catalyst system has been designed and tested that produces over 100 g methanol/kg catalyst/hr at 600C.

Klier, K.; Herman, R.G.

1995-06-01T23:59:59.000Z

307

Dense ceramic membranes for methane conversion  

DOE Green Energy (OSTI)

This report focuses on a mechanism for oxygen transport through mixed- oxide conductors as used in dense ceramic membrane reactors for the partial oxidation of methane to syngas (CO and H{sub 2}). The in-situ separation of O{sub 2} from air by the membrane reactor saves the costly cryogenic separation step that is required in conventional syngas production. The mixed oxide of choice is SrCo{sub 0.5}FeO{sub x}, which exhibits high oxygen permeability and has been shown in previous studies to possess high stability in both oxidizing and reducing conditions; in addition, it can be readily formed into reactor configurations such as tubes. An understanding of the electrical properties and the defect dynamics in this material is essential and will help us to find the optimal operating conditions for the conversion reactor. In this paper, we discuss the conductivities of the SrFeCo{sub 0.5}O{sub x} system that are dependent on temperature and partial pressure of oxygen. Based on the experimental results, a defect model is proposed to explain the electrical properties of this system. The oxygen permeability of SrFeCo{sub 0.5}O{sub x} is estimated by using conductivity data and is compared with that obtained from methane conversion reaction.

Balachandran, U.; Mieville, R.L.; Ma, B. [Argonne National Lab., IL (United States); Udovich, C.A. [Amoco Oil Co., Naperville, IL (United States)

1996-05-01T23:59:59.000Z

308

Methane oxidation over dual redox catalysts  

SciTech Connect

The objective of this research is to develop approaches to direct catalytic oxidation of methane over oxides that are doubly doped with transition metal ions. The desired process aims at employing a double redox mechanism, where one redox couple is utilized for activation of oxygen and another for the trapping of CH{sub 3} radicals. The methyl radicals can either recombine, giving C{sub 2} hydrocarbons, or be converted, via electron transfer reaction, to carbocations. The latter species can react with surface OH{sup {minus}} groups to form methanol or formaldehyde. To choose from several possible catalytic systems, this research initially involved the characterization of the micromorphology and crystalline dimensions of zinc oxide catalysts doped with Cu, Fe, and Sn by scanning electron microscopy. In addition, the determination of surface composition and oxidation states by X-ray photoelectron spectroscopy was carried out. A newly constructed high temperature catalytic testing system has been calibrated (flow meters and temperature controllers), tested for possible gas leaks and integrated with a gas chromatographic analytical unit. A preliminary catalytic test study over a Cu/Fe/ZnO sample was performed. The following products of the methane coupling reaction was found: C{sub 2}H{sub 6}, C{sub 2}H{sub 4} and H{sub 2}O together with CO{sub 2}. The maximum space time yield of 14 mmol C{sub 2} hydrocarbons/g cat/h was obtained at 848{degrees}C.

Klier, K.; Herman, R.G.; Sojka, Z.

1989-09-01T23:59:59.000Z

309

Methane generation from waste materials  

DOE Patents (OSTI)

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

310

METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE  

DOE Patents (OSTI)

A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.

Frazer, J.W.

1959-10-27T23:59:59.000Z

311

A simulated countercurrent moving-bed chromatographic reactor for the oxidative coupling of methane: Experimental results  

DOE Green Energy (OSTI)

The oxidative coupling reaction of methane (OCM) represents a potential commercial ethylene production route. However, the highest reported yields do not exceed 20%. The methane coupling reaction is accompanied by the undesired conversion of methane to carbon oxides. The relative amount of oxygen and methane along with other parameters, including temperature, determine the favored reaction pathway. High hydrocarbon to oxygen feed ratios give high ethane/ethylene selectivities but at the expense of the hydrocarbon conversion. When the methane to oxygen feed ratio is low, combustion is favored. The simulated countercurrent moving-bed chromatographic reactor (SCMCR) is applied to the OCM. A modified experimental configuration is designed and evaluated. A four-section apparatus, each containing a reaction and two separation columns, is used to quickly separate the reactants and products using the principles of simulated countercurrent flow. Simultaneous reaction and separation of the reactive products column is desired, but unattainable because of an incompatibility between OCM reaction and separation temperatures. Microreactor yields with a samarium oxide catalyst gives yields between 2% and 10%. Yields as high as 50% are observed with the same catalyst and run conditions in the SCMCR. These yields are significantly higher than previously reported values. The effects of temperature, feed switching time, and methane to oxygen feed ratio have been investigated. The reactor, while not fully optimized, does give promise as an alternative production method for ethylene.

Tonkovich, A.L.Y. [Pacific Northwest Lab., Richland, WA (United States); Carr, R.W. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering and Materials Sciences

1994-09-01T23:59:59.000Z

312

Methane Recovery from Hydrate-bearing Sediments  

Science Conference Proceedings (OSTI)

Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

J. Carlos Santamarina; Costas Tsouris

2011-04-30T23:59:59.000Z

313

Does EIA have projections for energy production, consumption, and ...  

U.S. Energy Information Administration (EIA)

Where can I find shale gas and coal bed methane production and reserves data? Where is the boundary for state and federal offshore oil and gas production?

314

Methane Hydrate Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Methane Hydrate Advisory Committee Methane Hydrate Advisory Committee The Methane Hydrate Advisory Committee was created in response to provisions of the Methane Hydrate Research and Development Act of 2000 and reauthorized by the Energy Policy Act of 2005. The Committee is to advise the Secretary of Energy on potential applications of methane hydrate; assist in developing recommendations and priorities for the methane hydrate research and development program; and submit to Congress one or more reports on an assessment of the research program and an assessment of the DOE 5-year research plan. The Committee's charter stipulates that up to 15 members can be appointed by the Secretary of Energy, representing institutions of higher education, industrial enterprises and oceanographic institutions and state agencies.

315

Laser-initiated chain reactions in the partial oxidation of methane  

DOE Green Energy (OSTI)

Using laser photolysis of suitable precursor molecules to produce gas-phase free radicals, we have been studying important kinetic processes in the partial oxidation of methane. Prompt production of a relatively high concentration of free radicals via laser photolysis makes it possible to separate the thermal initiation step from the subsequent chain propagation steps. Since the conditions (temperature, pressure, and mixture composition) for rapid thermal initiation and optimum production may differ, this provides an exciting potential application for laser-induced chemistry where the laser acts as the initiation source. We report our results on the partial oxidation of methane by oxygen at moderate temperatures. A trace amount of acetone is photolyzed at 193 nm a prompt source of methyl radicals in methane-oxygen mixtures. Details of the proposed mechanism are discussed as well as application of the technique to technologies for methane conversion to transportable fuels such as methanol. 15 refs., 6 figs.

Baughcum, S.L.; Oldenborg, R.C.; Danen, W.C.; Streit, G.E.; Rofer, C.

1986-01-01T23:59:59.000Z

316

Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase  

DOE Green Energy (OSTI)

The Test Area North (TAN) site at the Idaho National Laboratory near Idaho Falls, ID, USA, sits over a trichloroethylene (TCE) contaminant plume in the Snake River Plain fractured basalt aquifer. Past observations have provided evidence that TCE at TAN is being transformed by biological natural attenuation that may be primarily due to co-metabolism in aerobic portions of the plume by methanotrophs. TCE co-metabolism by methanotrophs is the result of the broad substrate specificity of microbial methane monooxygenase which permits non-specific oxidation of TCE in addition to the primary substrate, methane. Arrays of experimental approaches have been utilized to understand the biogeochemical processes driving intrinsic TCE co-metabolism at TAN. In this study, aerobic methanotrophs were enumerated by qPCR using primers targeting conserved regions of the genes pmoA and mmoX encoding subunits of the particulate MMO (pMMO) and soluble MMO (sMMO) enzymes, respectively, as well as the gene mxa encoding the downstream enzyme methanol dehydrogenase. Identification of proteins in planktonic and biofilm samples from TAN was determined using reverse phase ultraperformance liquid chromatography (UPLC) coupled with a quadrupole-time-of-flight (QToF) mass spectrometer to separate and sequence peptides from trypsin digests of the protein extracts. Detection of MMO in unenriched water samples from TAN provides direct evidence of intrinsic methane oxidation and TCE co-metabolic potential of the indigenous microbial population. Mass spectrometry is also well suited for distinguishing which form of MMO is expressed in situ either soluble or particulate. Using this method, pMMO proteins were found to be abundant in samples collected from wells within and adjacent to the TCE plume at TAN.

Andrzej J. Paszczynski; Ravindra Paidisetti; Andrew K. Johnson; Ronald L. Crawford; Frederick S. Colwell; Tonia Green; Mark Delwiche; Hope Lee; Deborah Newby; Eoin L. Brodie; Mark Conrad

2011-11-01T23:59:59.000Z

317

DOE Hydrogen Analysis Repository: Distributed Hydrogen Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects by Date U.S. Department of Energy Distributed Hydrogen Production via Steam Methane Reforming Project Summary Full Title: Well-to-Wheels Case Study: Distributed...

318

Methane-derived hydrocarbons produced under upper-mantle conditions  

SciTech Connect

There is widespread evidence that petroleum originates from biological processes. Whether hydrocarbons can also be produced from abiogenic precursor molecules under the high-pressure, high-temperature conditions characteristic of the upper mantle remains an open question. It has been proposed that hydrocarbons generated in the upper mantle could be transported through deep faults to shallower regions in the Earth's crust, and contribute to petroleum reserves. Here we use in situ Raman spectroscopy in laser-heated diamond anvil cells to monitor the chemical reactivity of methane and ethane under upper-mantle conditions. We show that when methane is exposed to pressures higher than 2 GPa, and to temperatures in the range of 1,000-1,500 K, it partially reacts to form saturated hydrocarbons containing 2-4 carbons (ethane, propane and butane) and molecular hydrogen and graphite. Conversely, exposure of ethane to similar conditions results in the production of methane, suggesting that the synthesis of saturated hydrocarbons is reversible. Our results support the suggestion that hydrocarbons heavier than methane can be produced by abiogenic processes in the upper mantle.

Kolesnikov, Anton; Kutcherov, Vladimir G.; Goncharov, Alexander F.; (CIW); (RITS)

2009-08-13T23:59:59.000Z

319

Turbulent burning rates of methane and methane-hydrogen mixtures  

Science Conference Proceedings (OSTI)

Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

2009-04-15T23:59:59.000Z

320

Direct catalytic conversion of methane and light hydrocarbon gases. Quarterly report No. 5, November 16, 1987--January 15, 1988  

DOE Green Energy (OSTI)

The goal of this research is to develop catalysts that directly convert methane and light hydrocarbons to intermediates that later can be converted to either liquid fuels or value-added chemicals, as economics dictate. During this reporting period, we have synthesized and tested several novel catalysts for methane reforming (Tasks 1 and 2) and for partial oxidation of methane (Tasks 3 and 4). We started to test a mixed metal system, an FeRu{sub 3} cluster. This catalyst was supported both on zeolite and on magnesium oxide and the systems were tested for methane reforming at various reaction temperatures. We also prepared and tested a monomeric ruthenium catalyst supported on magnesium oxide. We found that methane is activated at a lower temperature with the basic magnesium oxide support than with acidic supports such as zeolite or alumina. Methane conversions increased with temperature, but the production of coke also increased. We prepared a sterically hindered ruthenium porphyrin encapsulated in a zeolite supercage for catalysis of methane oxidation. The results showed that only carbon dioxide was produced. Addition of axial base to this catalyst gave similar results. Another type of catalyst, cobalt Schiff base complexes, was also prepared and tested for methane oxidation. In this case, no methane conversion was observed at temperatures ranging from 200 to 450{degrees}C. These complexes do not appear to be stable under the reaction conditions.

Wilson, R.B. Jr.; Chan Yee Wai

1988-02-05T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical Testing of Gas Hydrate/Sediment Samples Mechanical Testing of Gas Hydrate/Sediment Samples DE-AT26-99FT40267 Goal Develop understanding of the mechanical characteristics of hydrate-containing sediments. Background The ACE CRREL has a unique group of experienced personnel that have studied the mechanical characteristics of ice and permafrost that can be applied to the study and characterization of the mechanical properties of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of sediments related to drilling and seafloor installations in the Gulf of Mexico. Performers US Army Corp of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory (CRREL) - project management and research products

322

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

If you need help finding information on a particular project, please contact the content manager. If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed Projects Click on project number for a more detailed description of the project. Project Number Project Name Primary Performer DE-FC26-01NT41332 Alaska North Slope Gas Hydrate Reservoir Characterization BP Exploration Alaska, Inc. DE-FC26-01NT41330 Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration Chevron Energy Technology Company DE-FE0009897 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Georgia Tech Research Corporation DE-FE0009904 Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Oklahoma State University

323

Methane recovery from animal manures: A current opportunities casebook  

DOE Green Energy (OSTI)

One manure management system provides not only pollution prevention but also converts a manure management problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations. Finally, anaerobic digestion has considerable potential beyond agribusiness. Examples of digesters currently employed by other industries are provided.

Lusk, P. [Resource Development Associates, Marietta, GA (United States)

1994-12-01T23:59:59.000Z

324

OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS  

Science Conference Proceedings (OSTI)

The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

1998-04-01T23:59:59.000Z

325

Dairy methane generator. Final report  

Science Conference Proceedings (OSTI)

Details of the work completed under this contract are presented. During the winter of 1979-80 three students enrolled, in the Mechanical Design Engineering Technology program at the Pennsylvania State University's Capitol Campus (Middletown, PA), undertook a feasibility study for the utilization of the manure generated by the dairy cows located on Mr. Thomas B. Williams farm for the generation and use of methane gas. The results of their effort was the design of an Anaerobic Digester/Electric Generation System. This preliminary designed system was later changed and improved by another group of P.S.U. MDET students in the spring of 1980. The final design included working drawings and an economic analysis of the estimated investment necessary to complete the Methane Generator/Electric Power Generation System.

Williams, T.B.

1981-09-30T23:59:59.000Z

326

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 EST-380-NEDA Goal The purpose of this study is to establish sediment lithology and quantification of methane in hydrates hosted in fine-grained sediments from the Gulf of Mexico (GoM), a marine site of methane hydrate occurrence. The results will help establish a correlation between laboratory data and hydrate accumulation field data on dispersed hydrates in the natural environment. Performer Brookhaven National Laboratory (BNL), Upton, New York 11973 Background Gas hydrates are located in permafrost and marine environments and show potential as a vast methane source worldwide. However, methane is about 17 times more potent a greenhouse gas than CO2 and the inherent instability of

327

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

328

Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: methane from coal seams  

Science Conference Proceedings (OSTI)

Potential public health and safety problems and the potential environmental impacts from the recovery of gas from coalbeds are identified and examined. The technology of methane recovery is described and economic and legal barriers to production are discussed. (ACR)

Ethridge, L.J.; Cowan, C.E.; Riedel, E.F.

1980-07-01T23:59:59.000Z

329

Methane Hydrates R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

330

Activation of methane by transition metal-substituted aluminophosphate molecular sieves  

DOE Patents (OSTI)

Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

Iton, Lennox E. (Downers Grove, IL); Maroni, Victor A. (Naperville, IL)

1991-01-01T23:59:59.000Z

331

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Seol, Y. and T. J. Kneafsey, Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media, Journal of Geophysical Research, 2011, In...

332

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL ORD Methane Hydrate Research - Thermal Properties of Hydrate Tool Development Last Reviewed 3182013 Project Goal The goal of this project is increased understanding of...

333

NETL: Methane Hydrates - Hydrate Model Code Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservoir Simulator Code Comparison Study An International Effort to Compare Methane Hydrate Reservoir Simulators Code Comparison Logo The National Energy Technology Laboratory...

334

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of...

335

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5102012 ESD05-048 Goal The project is bringing new laboratory measurements and...

336

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Projects If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed...

337

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to Arctic climate change Last Reviewed 632013 DE-NT0005665...

338

,"California - Coastal Region Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

- Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","...

339

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

in the Gulf of Mexico and 2) NRL's Advanced Research Initiative on shallow sediment methane seeps. Geochemical data coupled with heat flow probe data were used to estimate...

340

Methane Hydrate Advisory Committee Meeting Minutes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2013 Washington, DC July 16, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Electricity Advisory Committee Notice of Open...

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

late Quaternary. An investigation of the nature of deposition and alteration of the methane hydrate in cores from the Umnak Plateau in the southeastern Bering Sea was conducted...

342

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

establishing high-priority geographical regions of prospective interest, in terms of methane volume estimates; c). Prediction of environmental effects and geologic risks at the...

343

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

goal was to develop new methodologies to characterize the physical properties of methane hydrate and hydrate sediment systems. Performers Westport Technology Center...

344

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

during NGHP Expedition 01 Background Gas hydrate distribution in sediments depends on methane supply, which in turn depends on fluid flow. When drilling data are available to...

345

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3182013 Project Goals The primary goals of the DOENETL Natural Gas Hydrate Field Studies...

346

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

(RUS) technique to examine hydrate formationdissociation processes. For determining methane abundance and location on a grain-to-grain scale, a completely new method of...

347

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

natural and simulated sediment samples, and to use these sediments as hosts to form methane hydrate and to investigate the kinetics of hydrate formation and dissociation...

348

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

349

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

for this sample, but Raman bands from both samples were essentially identical: methane and ethane along with trace amounts of isobutene and trans-butane. Small angle...

350

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of...

351

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02172010 EST-380-NEDA Goal The purpose of this study is to...

352

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and presentations as well as a listing of funded students can be found in the Methane Hydrate Program Bibliography PDF. A final report is available by request. Contact...

353

,"Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

354

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and presentations as well as a listing of funded students can be found in the Methane Hydrate Program Bibliography PDF. Final Project Report PDF-23MB - October, 2009...

355

,"Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

356

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization project has resulted in a characterization of two large prospective methane hydrate accumulations (or trends); the Eileen Trend, which underlies but extends well...

357

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure and Physical Properties of Methane Hydrate Deposit at Blake Ridge Last Reviewed 02052010 Bathymetric location map of the Blake Ridge study area Bathymetric location map...

358

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Horizon spill approximately 10 miles from the observatory showed increased levels of methane at two depths where detectable levels had not been seen in the past. The evidence...

359

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Slope represents an important milestone in an ongoing evaluation of Alaskan Arctic methane hydrate potential. This evaluation, a joint effort of DOE, USGS, BP Exploration...

360

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey, Woods Hole Field Center Location Woods Hole Massachusetts Background Oceanic methane hydrates are a major emerging research topic spanning energy resource issues, global...

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

New Materials Make Methane Capture Possible  

Science Conference Proceedings (OSTI)

May 8, 2013... and FER, were able to concentrate dilute methane streams into moderate concentrations that could be used to treat coal-mine ventilation air.

362

Coal bed methane reservoir simulation studies.  

E-Print Network (OSTI)

??The purpose of this study is to perform simulation studies for a specific coal bed methane reservoir. First, the theory and reservoir engineering aspects of… (more)

Karimi, Kaveh

2005-01-01T23:59:59.000Z

363

methane hydrate science plan-final.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Revolu on. Methane in the atmosphere comes from many sources, including wetlands, rice cul va on, termites, cows and other ruminants, forest fi res, and fossil fuel...

364

Method for the photocatalytic conversion of methane  

DOE Patents (OSTI)

The invention relates to a method for converting methane and water to methanol and hydrogen using visible light and a catalyst.

Noceti, R.P.; Taylor, C.E.; D' Este, J.R.

1996-12-01T23:59:59.000Z

365

A conduit dilation model of methane venting from lake sediments  

E-Print Network (OSTI)

Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the ...

Ruppel, Carolyn

366

NETL: Methane Hydrates Interagency R&D Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates Interagency R&D Conference Methane Hydrates Interagency R&D Conference March 20-22, 2002 Table of Contents Disclaimer Papers and Presentations The Curiosity of Hydrates Methane Hydrates Issues Arctic Region Projects West Coast Projects East Coast Projects Gulf of Mexico Projects Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

367

Changes related to "Coal Bed Methane Protection Act (Montana...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Bed Methane Protection Act (Montana)" Coal Bed Methane Protection Act (Montana)...

368

Pages that link to "Coal Bed Methane Protection Act (Montana...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Bed Methane Protection Act (Montana)" Coal Bed Methane Protection Act (Montana)...

369

Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 3 Onshore Coalbed Methane Proved...

370

Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 5 Coalbed Methane Proved Reserves,...

371

Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, South Onshore Coalbed Methane Proved Reserves,...

372

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves, Reserves...

373

Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 6 Coalbed Methane Proved Reserves,...

374

North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves...

375

Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 10 Coalbed Methane Proved Reserves,...

376

Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 4 Onshore Coalbed Methane Proved...

377

Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 1 Coalbed Methane Proved Reserves,...

378

Methane Hydrate Advisory Committee Meeting Minutes, October 2011...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2011 Methane Hydrate Advisory Committee Meeting Minutes, October 2011 Methane Hydrate Advisory Committee Meeting Minutes October 2011 Washington, DC Advisory Committee...

379

Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 9 Coalbed Methane Proved Reserves,...

380

Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, State Offshore Coalbed Methane Proved Reserves,...

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mississippi (with State off) Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Mississippi Coalbed Methane Proved Reserves, Reserves...

382

Why sequence functional metagenomics of methane and nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

functional metagenomics of methane and nitrogen cycles in freshwater lakes? Methane is a more potent greenhouse gas than carbon dioxide, but it is also a potential source of...

383

Airborne observations of methane emissions from rice cultivation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California Title Airborne observations of methane emissions from rice cultivation in...

384

METHANE HYDRATE ADVISORY COMMITTEE U.S. DEPARTMENT OF ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

METHANE HYDRATE ADVISORY COMMITTEE U.S. DEPARTMENT OF ENERGY Advisory Committee Charter 1. Committee's Official Designation. Methane Hydrate Advisory Committee (MHAC) 2. Authority....

385

Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kentucky Coalbed Methane Proved Reserves, Reserves...

386

Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 8 Coalbed Methane Proved Reserves,...

387

Other States Natural Gas Coalbed Methane, Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Proved Reserves (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

388

NETL: Methane Hydrates - DOE/NETL Projects - Application of Crunch...  

NLE Websites -- All DOE Office Websites (Extended Search)

multi-dimensional reactive transport simulation code to constrain modern day methane fluxes and to reconstruct past episodes of methane flux that can be correlated with...

389

EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY  

E-Print Network (OSTI)

1 EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY O. Le Corre1 , C@emn.fr ABSTRACT In-situ hydrogen production is carried out by a catalytic reformer kit set up into exhaust gases-thermal reforming process is achieved. Hydrogen production is mainly dependent on O2 content in exhaust gases

390

Methane Recovery from Animal Manures The Current Opportunities Casebook  

DOE Green Energy (OSTI)

Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.

Lusk, P.

1998-09-22T23:59:59.000Z

391

High-pressure solvent extraction of methane from geopressured fluids  

DOE Green Energy (OSTI)

Solvent extraction is propsed as a means of recovering dissolved methane from geopressured-geothermal brines at high pressures. Our assessment shows that additional investment in a high pressure solvent extraction plant preceding direct injection disposal of brines into isolated aquifers can be profitable. The technical and economic issues are discussed and compared with other injection methods such as complete depressurization for methane recovery followed by conventional mechanical pumping. The contributions of hydraulic (pressure) energy recovery and geothermal power production are also assessed. As a first step in the evaluation of solvent extraction, the solubilities of a promising solvent candidate, n-hexadecane, and a potential low cost solvent, No. 2 Diesel fuel, were measured in 15 wt % NaCl solutions at temperatures up to 150/sup 0/C. Preliminary results of initial extraction tests at 150/sup 0/C and 1000 psi in sub-pilot scale equipment are also presented.

Quong, R.; Otsuki, H.H.; Locke, F.E.; Netherton, R.

1981-08-01T23:59:59.000Z

392

Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09  

SciTech Connect

Methylomonas methanica MC09 is a mesophilic, halotolerant, aerobic, methanotrophic member of the Gammaproteobacteria, isolated from coastal seawater. Here we present the complete genome sequence of this strain, the first available from an aerobic marine methanotroph.

Boden, Rich [University of Warwick, UK; Cunliffe, Michael [University of Warwick, UK; Scanlan, Julie [University of Warwick, UK; Moussard, Helene [University of Warwick, UK; Kits, K. Dimitri [University of Alberta, Edmondton, Canada; Klotz, Martin G [University of Louisville, Louisville; Jetten, MSM [Radboud University Nijmegen, The Netherlands; Vuilleumier, Stephane [University of Strasbourg; Han, James [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Stein, Lisa Y. [University of Alberta, Edmondton, Canada; Murrell, Collin [University of Warwick, UK

2011-01-01T23:59:59.000Z

393

THE REACTIONS OF ENERGETIC CARBON ATOMS IN METHANE OXYGEN AND PHASE DEPENDENCE RADIATION DAMAGE EFFECTS  

DOE Green Energy (OSTI)

Studies were made on the reactions of C/sup 11/ in methane containing oxygen. The nuclear reactions C/sup 12/(n,2n) and C/sup 12/(p,pn) were used to produce C/sup 11/. Concomitant radiolysis of the methane during C/sup 11/ production clearly affected product distribution. C/sup 11/-labeled ethane and propane decreased while methane, ethylene, and acetylene decreased. It was assumed that reduction by hydrogen atoms was probably occurring in the unscavenged system. The effects of oxygen and of phase are discussed. In all cases, in duplicate systems, the product distributions resulting from inducing the C/sup 12/(p,pn) reaction were the same within experimental error as those resulting from the C/sup 12/(n,2n) reaction. (P.C.H.)

Stoecklin, G.; Stangl, H.; Christman, D.R.; Cumming, J.B.; Wolf, A.P.

1963-08-01T23:59:59.000Z

394

Manifold methods for methane combustion  

SciTech Connect

Objective is to develop a new method for studying realistic chemistry in turbulent methane combustion with NO{sub x} mechanism. The realistic chemistry is a simplification to a more detailed chemistry based on the manifold method; accuracy is determined by interaction between the transport process and the chemical reaction. In this new (tree) method, probability density function or partially stirred reactor calculations are performed. Compared with the reduced mechanism, manifold, and tabulation methods, the new method overcomes drawbacks of the reduced mechanism method and preserves the advantages of the manifold method. Accuracy is achieved by specifying the size of the cell.

Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

1995-12-31T23:59:59.000Z

395

Arctic Methane, Hydrates, and Global Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Arctic Methane, Hydrates, and Global Climate Arctic Methane, Hydrates, and Global Climate Speaker(s): Matthew T. Reagan Date: March 17, 2010 - 12:00pm Location: 90-3122 Paleooceanographic evidence has been used to postulate that methane may have had a significant role in regulating past climate. However, the behavior of contemporary permafrost deposits and oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. A recent expedition to the west coast of Spitsbergen discovered substantial methane gas plumes exiting the seafloor at depths that correspond to the upper limit of the receding gas hydrate stability zone. It has been suggested that these plumes may be the

396

Biomimetic methane oxidation. Final report, October 1, 1989--June 1, 1995  

DOE Green Energy (OSTI)

Transportation fuels are a critical energy commodity and they impact nearly every sector of this country. The need for transportation fuels is projected well into the next century. Consequently, there is a strong emphasis on the economical conversion of other domestic fossil energy resources to liquid hydrocarbons that can be used as transportation fuels. Natural gas is currently a readily available resource that has a positive future outlook considering its known and anticipated reserves. There is intense government and industrial interest in developing economic technologies to convert natural gas to liquid fuels. Methane, CH{sub 4}, is the primary hydrocarbon (85-95%) in natural gas. This document covers the following: production soluable of methane monooxygenase; production of particulate methane monooxygenase; production of methane monooxygenase in continuous culture; subunit resolution for active site identification of methylosinus trichosporium OB3b soluble methane monooxygenase; the synthesis and characterization of new copper coordination complexes contairing the asymmetric coordinating chelate ligand application to enzyme active site modeling; the synthesis and characterization of new iron coordination complexes utilizing an asymmetric coordinating chelate ligand; further characterization of new bionuclear iron complexes.

Watkins, B.E.; Satcher, J.H. Jr.; Droege, M.W.; Taylor, R.T.

1995-07-01T23:59:59.000Z

397

Biological conversion of biomass to methane. Quarterly progress report, January 21--April 30, 1978  

DOE Green Energy (OSTI)

The results of a series of tests to evaluate the methane yield from the anaerobic digestion of corn stover are reported. The corn stover, consisting of cob, stalks, and leaves, was milled to pass through a 3.2 mm screen. Particle size distributions were determined. Data are tabulated on the gas production. Centrifugation and vacuum filtration were investigated for slurry dewatering. Gas production was low and corn stover does not appear to offer any potential as a methane source. In addition the protein content of the slurry solids was not sufficient for a satisfactory protein animal feed. (JSR)

Pfeffer, J T

1978-05-01T23:59:59.000Z

398

Cyclic process for producing methane in a tubular reactor with effective heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-Lee (Spring Valley, NY)

1986-01-01T23:59:59.000Z

399

Cyclic process for producing methane from carbon monoxide with heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

1982-01-01T23:59:59.000Z

400

DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES  

Science Conference Proceedings (OSTI)

During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

J. Daniel Arthur

2003-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through numerical simulation, conventional and innovative approaches for producing methane from gas hydrate-bearing geologic reservoirs. Numerical simulation is being used to assess the production of natural gas hydrates from geologic deposits using three production technologies: 1) depressurization, 2) direct CO2 exchange, and 3) dissociation-reformation CO2 exchange. Performers Battelle Pacific Northwest Division, Richland, Washington 99352 Background There are relatively few published studies of commercial production methods for gas hydrates, and all of these studies have examined essentially

402

Methane ignition catalyzed by in situ generated palladium nanoparticles  

SciTech Connect

Catalytic ignition of methane over the surfaces of freely-suspended and in situ generated palladium nanoparticles was investigated experimentally and numerically. The experiments were conducted in a laminar flow reactor. The palladium precursor was a compound (Pd(THD){sub 2}, THD: 2,2,6,6-tetramethyl-3,5-heptanedione) dissolved in toluene and injected into the flow reactor as a fine aerosol, along with a methane-oxygen-nitrogen mixture. For experimental conditions chosen in this study, non-catalytic, homogeneous ignition was observed at a furnace temperature of {proportional_to}1123 K, whereas ignition of the same mixture with the precursor was found to be {proportional_to}973 K. In situ production of Pd/PdO nanoparticles was confirmed by scanning mobility, transmission electron microscopy and X-ray photoelectron spectroscopy analyses of particles collected at the reactor exit. The catalyst particle size distribution was log-normal. Depending on the precursor loading, the median diameter ranged from 10 to 30 nm. The mechanism behind catalytic ignition was examined using a combined gas-phase and gas-surface reaction model. Simulation results match the experiments closely and suggest that palladium nanocatalyst significantly shortens the ignition delay times of methane-air mixtures over a wide range of conditions. (author)

Shimizu, T.; Abid, A.D.; Poskrebyshev, G.; Wang, H. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Nabity, J.; Engel, J.; Yu, J. [TDA Research, Inc., 12345 W. 52nd Ave, Wheat Ridge, CO 80033 (United States); Wickham, D. [Reaction Systems, LLC, 19039 E. Plaza Drive, Suite 290, Parker, CO 80134 (United States); Van Devener, B.; Anderson, S.L. [Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (United States); Williams, S. [Air Force Research Laboratory, Mail Stop RZA, 1950 Fifth Street, WPAFB, OH 45433 (United States)

2010-03-15T23:59:59.000Z

403

Cyclic process for producing methane with catalyst regeneration  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

Frost, Albert C. (Congers, NY); Risch, Alan P. (New Fairfield, CT)

1980-01-01T23:59:59.000Z

404

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Energy.gov (U.S. Department of Energy (DOE))

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

405

Remote sensor improves methane leakage surveys  

SciTech Connect

The remote sensing methane detector (RSMD) described in this paper is the result of a twelve year cooperative research program sponsored by the Columbia Gas System Service Corp., Environmental Research and Technology, Inc. and the Gas Research Institute. It is a hand-held, rechargeable battery-powered sensor that operates eight hours on one charge with a sensitivity very specific to methane. It can be scanned along the right of way to detect any methane in its path, up to at least 50 feet away. The RSMD is methane specific in that it only sense methane with minor sensitivity to ethane. This makes it particularly useful in industrial areas where present instruments are confused by solvents. It cannot be poisoned by silicones or leaded gasoline, since it is an optical system. When a cloud of methane has been detected by the RSMD, a sample cell attachment can be used to determine methane concentration in parts per million. A low power microcomputer is used in the RSMD to control its operation.

Eberle, A.C.; Kebabian, P.L.; Kruse, J.R.

1984-12-01T23:59:59.000Z

406

Data from Innovative Methane Hydrate Test on Alaska's North Slope Now  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data from Innovative Methane Hydrate Test on Alaska's North Slope Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website March 11, 2013 - 10:07am Addthis DOE participated in gas hydrate field production trials in early 2012 in partnership with ConocoPhillips and the Japan Oil, Gas and Metals National Corp at the IÄ¡nik Sikumi (Inupiat for “Fire in the Ice”) test well, shown here, on the north slope of Alaska. Datasets from that field trial are now available to the public. DOE participated in gas hydrate field production trials in early 2012 in partnership with ConocoPhillips and the Japan Oil, Gas and Metals National Corp at the Iġnik Sikumi (Inupiat for "Fire in the Ice") test well,

407

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

408

Methane Hydrates and Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrates and Climate Change Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater sediments, the ocean or atmosphere. DOE is conducting research to understand the mechanisms and volumes involved in these little-studied processes. DOE environmental and climate change research projects related to Arctic methane hydrate deposits include: Characterization of Methane Degradation and Methane-Degrading

409

Diffusive Accumulation of Methane Bubbles in Seabed  

E-Print Network (OSTI)

We consider seabed bearing methane bubbles. In the absence of fractures the bubbles are immovably trapped in a porous matrix by surface tension forces; therefore the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. The adequate description of this process requires accounting "other-than-normal" (non-Fickian) diffusion effects, thermodiffusion and gravity action. We evaluate the diffusive flux of aqueous methane and predict the possibility of existence of bubble mass accumulation zones (which can appear independently from the presence/absence of hydrate stability zone) and effect of non-Fickian drift on the capacity of shallow and deep methane-hydrate deposits.

Goldobin, D S; Levesley, J; Lovell, M A; Rochelle, C A; Jackson, P; Haywood, A; Hunter, S; Rees, J

2010-01-01T23:59:59.000Z

410

Direct conversion of methane to C sub 2 's and liquid fuels  

DOE Green Energy (OSTI)

Objectives of the project are to discover and evaluate novel catalytic systems for the conversion of methane or by-product light hydrocarbon gases either indirectly (through intermediate light gases rich in C{sub 2}'s) or directly to liquid hydrocarbon fuels, and to evaluate, from an engineering perspective, different conceptualized schemes. The approach is to carry out catalyst testing on several specific classes of potential catalysts for the conversion of methane selectively to C{sub 2} products. Promoted metal oxide catalysts were tested. Several of these exhibited similar high ethylene to ethane ratios and low carbon dioxide to carbon monoxide ratios observed for the NaCl/{alpha}-alumina catalyst system reported earlier. Research on catalysts containing potentially activated metals began with testing of metal molecular sieves. Silver catalysts were shown to be promising as low temperature catalysts. Perovskites were tested as potential methane coupling catalysts. A layered perovskite (K{sub 2}La{sub 2}Ti{sub 3}O{sub 10}) gave the highest C{sub 2} yield. Work continued on the economic evaluation of a hypothetical process converting methane to ethylene. An engineering model of the methane coupling system has been prepared. 47 refs., 17 figs., 57 tabs.

Warren, B.K.; Campbell, K.D.

1989-11-22T23:59:59.000Z

411

METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF  

DOE Patents (OSTI)

A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

Frazer, J.W.

1959-08-18T23:59:59.000Z

412

Study of Methane Reforming in Warm Non-Equilibrium Plasma Discharges  

E-Print Network (OSTI)

Utilization of natural gas in remote locations necessitates on-site conversion of methane into liquid fuels or high value products. The first step in forming high value products is the production of ethylene and acetylene. Non-thermal plasmas, due to their unique nonequilibrium characteristics, offer advantages over traditional methods of methane reforming. Different kinds of non-thermal plasmas are being investigated for methane reforming. Parameters of these processes like flow rate, discharge size, temperature and other variables determine efficiency of conversion. An efficient process is identified by a high yield and low specific energy of production for the desired product. A study of previous work reveals that higher energy density systems are more efficient for methane conversion to higher hydrocarbons as compared to low energy density systems. Some of the best results were found to be in the regime of warm discharges. Thermal equilibrium studies indicate that higher yields of ethylene are possible with an optimal control of reaction kinetics and fast quenching. With this idea, two different glow discharge reactor systems are designed and constructed for investigation of methane reforming. A counter flow micro plasma discharge system was used to investigate the trends of methane reforming products and the control parameters were optimized to get best possible ethylene yields while minimizing its specific energy. Later a magnetic glow discharge system is used and better results are obtained. Energy costs lower than thermal equilibrium calculations were achieved with magnetic glow discharge systems for both ethylene and acetylene. Yields are obtained from measurements of product concentrations using gas chromatography and power measurements are done using oscilloscope. Energy balance and mass balances are performed for product measurement accuracy and carbon deposition calculations. Carbon deposition is minimized through control of the temperature and residence time conditions in magnetic glow discharges. Ethylene production is observed to have lower specific energies at higher powers and lower flow rates in both reactors. An ethylene selectivity of 40 percent is achieved at an energy cost of 458MJ/Kg and an input energy cost of 5 MJ/Kg of methane.

Parimi, Sreekar

2010-12-01T23:59:59.000Z

413

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network (OSTI)

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

414

Methane Hydrate Program Annual Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2010 FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled, U.S. Department of Energy FY 2010 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of

415

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 ESD05-048 Goal The project is bringing new laboratory measurements and evaluation techniques to bear on the difficult problems of characterization and gas recovery from methane hydrate deposits. Performer Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Background LBNL is performing laboratory tests to provide data to support the characterization and development of methane hydrate deposits. Major areas of research underway include hydrologic measurements, combined geomechanical/geophysical measurements, and synthetic hydrate formation studies. Hydrologic Measurements Relatively little research has been done to experimentally determine

416

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection and Microbiological Analysis of Gas Hydrate Cores Collection and Microbiological Analysis of Gas Hydrate Cores FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a fundamental modeling parameter - the amount of methane generated in deep sediments by methanogenic microorganisms. This would allow methane distribution models of gas hydrate reservoirs to accurately reflect an unknown volume and the distribution of biogenic methane within in a reservoir. The personnel at INEL have experience in similar biologic research and are considered to be experts by their global peers. Performer Idaho National Engineering and Environmental Laboratory (INEEL) - sample collection and analysis Location

417

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Seismic-Scale Rock Physics of Methane Hydrate Seismic-Scale Rock Physics of Methane Hydrate DE-FC26-05NT42663 Goal The goal of this project was to establish rock physics models for use in generating synthetic seismic signatures of methane hydrate reservoirs. Ultimately, the intent was to improve seismic detection and quantification of offshore and onshore methane hydrate accumulations. Performer Stanford University, Stanford, CA 94305 Background Gas hydrate reservoir characterization is, in principle, no different from traditional hydrocarbon reservoir characterization. The seismic response of the subsurface is determined by the spatial distribution of the elastic properties (properties of the subsurface that deform as seismic waves pass through it) and attenuation. By mapping changes in the elastic properties, scientists can identify geologic features, including hydrocarbon reservoirs.

418

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Sampling and Characterization of Naturally Occurring Methane Hydrate Using the DV JOIDES Resolution Last Reviewed 02052010 DE-FC26-01NT41329 photo of a man showing the pressure...

419

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

that the hydrate in this region occurs in patchy deposits and may require a high methane flux from the subsurface in order to form more continuous drilling prospects. Project...

420

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-AF26-01NT00370 Goal The goal of the project is to better characterize potential methane hydrate drilling sites in the Gulf of Mexico for the Ocean Drilling Program....

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

area, known as Mississippi Canyon lease block 118, is well-known for the occurrence of methane hydrate and is the location of the University of Mississippis gas hydrate...

422

Methane Hydrates - Mt. Elbert Well Log Data  

NLE Websites -- All DOE Office Websites (Extended Search)

more. Project background information - Alaska North Slope Gas Hydrate Reservoir Characterization - DE-FC26-01NT41332 More information on the National Methane Hydrates R&D Program...

423

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a...

424

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of high chloride concentration and no sulfate reduction zone, indicating areas of high methane flux. The February 2005 RV Pelican cruise was a follow-up to the May 2004 cruise....

425

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

to develop a two-dimensional, basin-scale model for the deep sediment biosphere with methane dynamics to provide a better picture of the distribution of hydrates on the sea floor...

426

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Goal The overall objective of this project is to develop a new method to assess methane hydrate distribution using 3-D seismic data calibrated to wellbore data. The method...

427

The role of methane in tropospheric chemistry  

E-Print Network (OSTI)

While methane is chemically quite inert to reactions with atmospheric molecular species, it does react with atomic species and molecular radicals. Because of its relatively large abundance in the global troposphere and ...

Golomb, D.

1989-01-01T23:59:59.000Z

428

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network (OSTI)

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions-related emissions. In the U.S., for example, emissions of carbon dioxide (CO2) from the production and use of motor

Kammen, Daniel M.

429

Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas  

E-Print Network (OSTI)

Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are from point sources such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity to offset the rather high cost of sequestration. Texas has large coal resources. Although they have been studied there is not enough information available on these coals to reliably predict coalbed methane production and CO2 sequestration potential. The goal of the work was to determine if sequestration of CO2 in low rank coals is an economically feasible option for CO2 emissions reduction. Additionally, reasonable CO2 injection and methane production rates were to be estimated, and the importance of different reservoir parameters investigated. A data set was compiled for use in simulating the injection of CO2 for enhanced coalbed methane production from Texas coals. Simulation showed that Texas coals could potentially produce commercial volumes of methane if production is enhanced by CO2 injection. The efficiency of the CO2 in sweeping the methane from the reservoir is very high, resulting in high recovery factors and CO2 storage. The simulation work also showed that certain reservoir parameters, such as Langmuir volumes for CO2 and methane, coal seam permeability, and Langmuir pressure, need to be determined more accurately. An economic model of Texas coalbed methane operations was built. Production and injection activities were consistent with simulation results. The economic model showed that CO2 sequestration for enhanced coalbed methane recovery is not commercially feasible at this time because of the extremely high cost of separating, capturing, and compressing the CO2. However, should government mandated carbon sequestration credits or a CO2 emissions tax on the order of $10/ton become a reality, CO2 sequestration projects could become economic at gas prices of $4/Mscf.

Saugier, Luke Duncan

2003-08-01T23:59:59.000Z

430

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

431

Biodegradation of Triclosan by Aerobic Microorganisms  

E-Print Network (OSTI)

Triclosan, a synthetic antimicrobial agent, is an emerging environmental contaminant. Due to incomplete removal of triclosan by wastewater treatment plants, treated wastewater is one major source of environmental triclosan. Biodegradation of triclosan has been observed in activated sludge and the environment, suggesting that it is possible to develop a cost-effective biotreatment strategy for triclosan removal from wastewater. However, current knowledge on triclosan biodegradation is scarce and limited. To bridge this knowledge gap, this dissertation characterized cultivable triclosan-degrading microorganisms, identified uncultivable triclosan-utilizing bacteria, and elucidated triclosan biodegradation pathways. Furthermore, two treatment strategies were examined to enhance triclosan biodegradation in nitrifying activated sludge (NAS). A wastewater bacterial isolate, Sphingopyxis strain KCY1 (hereafter referred as strain KCY1), can completely degrade triclosan with a stoichiometric release of chloride. This strain can retain its degradation ability toward triclosan when after grown in complex nutrient medium containing triclosan as low as 5 micrograms/L. Based on five identified metabolites, a meta-cleavage pathway was proposed for triclosan biodegradation by strain KCY1. By using [13C12]-triclosan stable isotope probing, eleven uncultured triclosan-utilizing bacteria in a triclosan-degrading microbial consortium were identified. These clones are distributed among alpha-, beta-, or gamma-Proteobacteria, suggesting that triclosan-utilizing bacteria are phylogenetically diverse. None of these clone sequences were similar to known triclosan degraders. Growth substrates affected the triclosan degradation potential of four selected oxygenase-expressing bacteria. Biphenyl-grown Burkholderia xenovorans LB400 and propane-grown Rhodococcus ruber ENV425 cannot degrade triclosan. On the other hand, propane- and 2-propanol-grown Mycobacterium vaccae JOB5 can degrade triclosan completely. Due to product toxicity, finite transformation capacities for triclosan were observed for Rhodococcus jostii RHA1 grown on biphenyl, propane, and LB medium with dicyclopropylketone (alkane monooxygenase inducer). Four chlorinated metabolites were detected during triclosan degradation by biphenyl-grown RHA1 and a meta-cleavage pathway was proposed. Complete triclosan (5 mg/L) degradation was observed within 96 hrs in NAS receiving ammonia amendment (0 to 75 mg/L of NH4-N). The fastest triclosan degradation was observed in the NAS exhibiting the highest amount of ammonia. When ammonia oxidation was active in NAS, the amendment of strain KCY1 did not further enhance triclosan removal. Overall, the results suggested that triclosan biodegradation can be enhanced by increasing the activity of ammonia oxidation in NAS.

Lee, Do Gyun

2012-08-01T23:59:59.000Z

432

Direct catalytic conversion of methane and light hydrocarbon gases. Final report, October 1, 1986--July 31, 1989  

DOE Green Energy (OSTI)

This project explored conversion of methane to useful products by two techniques that do not involve oxidative coupling. The first approach was direct catalytic dehydrocoupling of methane to give hydrocarbons and hydrogen. The second approach was oxidation of methane to methanol by using heterogenized versions of catalysts that were developed as homogeneous models of cytochrome-P450, an enzyme that actively hydroxylates hydrocarbons by using molecular oxygen. Two possibilities exist for dehydrocoupling of methane to higher hydrocarbons: The first, oxidative coupling to ethane/ethylene and water, is the subject of intense current interest. Nonoxidative coupling to higher hydrocarbons and hydrogen is endothermic, but in the absence of coke formation the theoretical thermodynamic equilibrium yield of hydrocarbons varies from 25% at 827{degrees}C to 65% at 1100{degrees}C (at atmospheric pressure). In this project we synthesized novel, highly dispersed metal catalysts by attaching metal clusters to inorganic supports. The second approach mimics microbial metabolism of methane to produce methanol. The methane mono-oxygenase enzyme responsible for the oxidation of methane to methanol in biological systems has exceptional selectivity and very good rates. Enzyme mimics are systems that function as the enzymes do but overcome the problems of slow rates and poor stability. Most of that effort has focused on mimics of cytochrome P-450, which is a very active selective oxidation enzyme and has a metalloporphyrin at the active site. The interest in nonporphyrin mimics coincides with the interest in methane mono-oxygenase, whose active site has been identified as a {mu}-oxo dinuclear iron complex.We employed mimics of cytochrome P-450, heterogenized to provide additional stability. The oxidation of methane with molecular oxygen was investigated in a fixed-bed, down-flow reactor with various anchored metal phthalocyanines (PC) and porphyrins (TPP) as the catalysts.

Wilson, R.B. Jr.; Posin, B.M.; Chan, Yee-Wai

1995-06-01T23:59:59.000Z

433

Separation and Purification of Methane from coal-Bed Methane via the Hydrate Technology  

Science Conference Proceedings (OSTI)

The separation of methane from coal-bed methane (CBM) via hydrate process using tetrahydrofuran (THF) + sodium dodecyl sulfate (SDS) as additives was investigated in this work. The effect of additives, the concentration of the additives and hydrate memory ... Keywords: CBM, hydrate, separation, THF, SDS

Cai Jing; Chen Zhaoyang; Li Xiaosen; Xu Chungang

2010-12-01T23:59:59.000Z

434

Selective methane oxidation over promoted oxide catalysts. Quarterly report, June 1 - August 31, 1996  

DOE Green Energy (OSTI)

Further data analysis for the conversion of methane to oxygenates over high surface are V{sub 2}O{sub 5}/SiO{sub 2} xerogel catalysts that were synthesized by a sol-gel process have been carried out. As previously described the vanadia loading of the catalysts was varied between 0-25 wt%. Turnover numbers (T.O.N.) have been calculated for methane conversion to products and for the synthesis of methanol and formaldehyde, where T.O.N. is defined as molecules converted or formed per dispersed tetrahedrally coordinated vanadium atom ad determined by {sup 51}V NMR analyses. It is found that highly dispersed tetrahedrally coordinated V{sup 5+} is the active site for the selective conversion of methane to methanol and formaldehyde.

Klier, K.; German, R.G.; Wang, C.

1996-12-31T23:59:59.000Z

435

Methane Transportation Research, Development and Demonstration Act. Hearing before the Subcommittee on Transportation, Aviation, and Communications of the Committee on Science and Technology, US House of Representatives, Ninety-Sixth Congress, second session on H. R. 6889, June 11, 1980  

SciTech Connect

This hearing received testimony on H.R. 6889. The bill calls for the establishment of a research, development and demonstration program on the use of methane as a fuel for fleet vehicles. It directs the Department of Energy to look into potential storage and distribution problems, safety concerns, methane production technologies, and necessary vehicle modifications. It authorizes up to 90 demonstrations in both the public and private sectors to assess the use of methane-fueled vehicles in actual operation. (DP)

1980-01-01T23:59:59.000Z

436

Development of mixed-conducting ceramic membranes for converting methane to syngas  

DOE Green Energy (OSTI)

The abundantly available natural gas (mostly methane) discovered in remote areas has stimulated considerable research on upgrading this gas to high-value-added clean-burning fuels such as dimethyl ether and alcohols and to pollution-fighting additives. Of the two routes to convert methane to valuable products direct and indirect, the direct route involving partial oxidation of methane to syngas (CO + H{sub 2}) by air is preferred. Syngas is the key intermediate product used to form a variety of petrochemicals and transportation fuels. This paper is concerned with the selective transport of oxygen from air for converting methane to syngas by means of a mixed-conducting ceramic oxide membrane prepared from Sr-Fe-Co-O oxide. While both perovskite and nonperovskite type Sr-Fe-Co-O oxides permeate large amounts of oxygen when the membrane tube is subjected to oxygen pressure gradients, the work shows that the nonperovskite SrFeCo{sub 0.5}O{sub x} exhibits remarkable stability during oxygen permeation. More particularly, extruded and sintered tubes from SrFeCo{sub 0.5}O{sub x} have been evaluated in a reactor operating at {approx} 850 C for conversion of methane into syngas in the presence of a reforming catalyst. Methane conversion efficiencies of {approx} 99% were observed. In addition, oxygen permeability of SrFeCo{sub 0.5}O{sub x} was measured as a function of oxygen partial pressure gradient and temperature in a gas-tight electrochemical cell. Oxygen permeability has also been calculated from conductivity data and the results are compared and discussed.

Balachandran, U.; Maiya, P.S.; Ma, B.; Dusek, J.T.; Mieville, R.L.; Picciolo, J.J.

1997-04-01T23:59:59.000Z

437

Direct catalytic conversion of methane and light hydrocarbon gases. Quarterly report No. 2, January 16, 1987--April 15, 1987  

DOE Green Energy (OSTI)

The goal of this research is to develop catalysts that directly convert methane and light hydrocarbons to intermediates that can, as economics dictate, be subsequently converted either to liquid fuels or value-added chemicals. In this program we are exploring two approaches to developing such catalysts. The first approach consists of developing advanced catalysts for reforming methane. We will prepare the catalysts by reacting organometallic complexes of transition metals (Fe, Ru, Rh, and Re) with zeolitic and rare-earth-exchanged zeolitic supports to produce surfaceconfined metal complexes in the zeolite pores. Our second approach entails synthesizing the porphyrin and phthalocyanine complexes of Cr, Mn, Ru, Fe, and/or Co within the pores of zeolitic supports for use as selective oxidation catalysts for methane and light hydrocarbons. During the second quarter of this project, we concentrated on methane reforming. Two ruthenium clusters (Ru{sub 4} and Ru{sub 6}) supported on three types of support materials ({beta}-alumina, 5 {Angstrom} molecular sieves, and {gamma}-zeolite) were tested for methane reforming. The effects of cluster size, supporting material, and reaction conditions were evaluated. The methane conversions range from 1.74 to 10.11% at 750{degrees}C. The reaction product contains hydrogen, C{sub 2} hydrocarbons, and C{sub 6} or higher hydrocarbons. Up to 48.34% yield of hydrocarbon (C{sub 2}+) is obtained based on reacted methane. Some of these catalysts show very good coking resistance compared with a commercial ruthenium catalyst. Addition of oxygen to these reactions significantly increases the percent methane conversion at lower reaction temperature. However, carbon dioxide and water are the major products in the presence of oxygen.

Wilson, R.B. Jr.; Chan, Yee Wai

1987-05-21T23:59:59.000Z

438

Direct methane conversion to methanol. Final report, July 19, 1990--May 18, 1996  

DOE Green Energy (OSTI)

One objective of this project was to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feed stock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. Methanol synthesis and separation in one step would also make methane valuable for producing chemicals and fuels. Another valuable fuel product is H{sub 2}. Its separation from other gasification products would make it very valuable as a chemical feedstock and clean fuel for fuel cells. Gasification of coal or other organic fuels as a source of H{sub 2} produces compounds (CO, CO{sub 2}, and H{sub 2}O) that require high temperature (1000-1500{degrees}F) and high pressure (600-1000 psia) separations. A zeolite membrane layer on a mechanically stable ceramic or stainless steel support would have ideal applications for this type of separation. Separations using zeolite membrane was also evaluated for use in the production in the above fuels. 20 refs., 20 figs., 1 tab.

NONE

1998-12-31T23:59:59.000Z

439

Cryogenic methane separation/catalytic hydrogasification process analysis. Quarterly report  

Science Conference Proceedings (OSTI)

The objective of this coordinated research program is to obtain the most attractive combinations of acid gas removal, methane separation for the Exxon Catalytic Coal Gasification (CCG) and the Rockwell/Cities Service Hydrogasification processes. The program is divided into nine subtasks with each subtask studying the effect of variation of a key design parameter on the treatment cost of the SNG produced. Progress reports of 8 subtasks are presented. The following are some of the highlights. Subtask 1 - Heat and material balance and equipment sizing was completed for the cryogenic methane separation. The overall material balance is presented in a table. Subtask 2 - Preliminary designs for MEA and DEA gas removal systems were established. Subtasks 3 to 5 - Economic evaluation is in proress. Subtask 6 - The SNG product compressor train was simulated for the case where sufficient SNG fuel is withdrawn from the product compressors to fire the dryer reactivation heater. Subtask 7 - Acid gas removal and cryogenic separation equipment was resized to accommodate Exxon's request for a two-train plant design. Subtask 8 - The Benfield and Selexol systems will be evaluated for acid gas removal.

Klosek, J.

1981-02-13T23:59:59.000Z

440

Nitrogen Removal in Aerobic Granular Sludge SBR: Real?time Control Strategies  

Science Conference Proceedings (OSTI)

A sequencing batch reactor (SBR) with aerobic granules was operated to determine the effect of different DO concentration on biological nitrogen removal for synthetic sewage treatment

Xiangjuan Yuan; Dawen Gao

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Synthesis of poly-(P-aryleneethynylene)s in neat water under aerobic conditions  

Science Conference Proceedings (OSTI)

Provided are ethyne synthons comprising boron and related methods. Also provided are related water-soluble arylethynylene polymers capable of being synthesized in neat water under aerobic conditions.

Kang, Youn K; Deria, Pravas; Therien, Michael J

2012-10-16T23:59:59.000Z

442

Validation of ice skating protocol to predict aerobic power in hockey players.  

E-Print Network (OSTI)

??Validation ofan Ice Skating Protocol to Predict Aerobic Power in Hockey Players In assessing the physiological capacity of ice hockey players, researchers have often reported… (more)

Petrella, Nicholas J.

2006-01-01T23:59:59.000Z

443

Model-based estimation of time-varying parameters and state variables in aerobic bioprocesses  

Science Conference Proceedings (OSTI)

Keywords: adaptive observer, aerobic bioprocess, biomass concentration, biomass growth rate, model-based estimation, observer stability, oxygen comsumption, time-varying parameters, yield coefficient

V. Lubenova

2000-08-01T23:59:59.000Z

444

Exhaustive exercise training enhances aerobic capacity in American alligator (Alligator mississippiensis)  

E-Print Network (OSTI)

specify the nature of the crocodilian training response byanalysing effects of training on aerobic [citrate synthase (effects of chronic exercise training on oxygen transport are

Eme, John; Owerkowicz, Tomasz; Gwalthney, June; Blank, Jason M.; Rourke, Bryan C.; Hicks, James W.

2009-01-01T23:59:59.000Z

445

Coal bed methane global market potential  

Science Conference Proceedings (OSTI)

Worldwide increases in energy prices, as well as the increased potential for project financing derived from emissions credits, have renewed focus on coal bed methane (CBM) and coal mine methane (CMM) projects in coal-producing countries around the world. Globally, CBM utilization projects (in the operational, development, or planning stages) capture and utilize methane from gassy underground coal mines in at least 13 countries. The total methane emission reductions that could be achieved by these projects are approximately 135 billion cubic feet per year (equal to 14.8 million tons of carbon equivalent per year). This global activity level reflects a growing awareness of the technological practicality and the economic attractiveness of coal mine methane recovery and use. This report outlines the potential of the global CBM market. Contents: An overview of CBM; Challenges and issues; Technologies to generate power from CAM; Global CBM/CMM utilization; Country highlights; Ranking of countries with the largest CMM development potential (Australia, Canada, China, Germany, Mexico, Poland, Russia, Ukraine, United Kingdom, USA, Bulgaria, Czech Republic, France, India, Japan, Kazakhstan, South Africa); Planning CBM/CMM projects; Pre-feasibility and feasibility studies; Demonstration projects; Development plan and application process; Equity and debt; Carbon financing; Government sponsors; Private sponsors; Project risk reduction support; Examples of integrated project financing; Glossary.

Drazga, B. (ed.)

2007-01-16T23:59:59.000Z

446

Direct aromatization of methane. Quarterly technical progress report Number 5, 1 October 1993--31 December 1993  

DOE Green Energy (OSTI)

A study into the pyrolysis of methane in the absence of a quench has been completed. The unquenched reaction was studied at temperatures between 900 and 1,200 C and methane flows of 80--800 Scc/min. At 1,100 C and a methane flow rate ranging between 267 and 800 Scc/minute, methane conversions ranged between 31--48% with the major detectable product being benzene. At the low flow rates a significant amount of a black heavy product, primarily coke, was also formed. The reaction was also studied in a quenched mode. At 1,100 C, methane flow rate of 500 Scc/min, and a water flow rate of 216 mL/hr, a conversion of 33% was achieved with over 60% of the products being C{sub 4}+ hydrocarbons. Although a significant amount of heavy products were still formed, these were of a lighter color than those formed in the unquenched model suggesting a lower average molecular weight.

Not Available

1994-02-01T23:59:59.000Z

447

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network (OSTI)

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

Maxwell, Bruce D.

448

On the Sources of Methane to the Los Angeles Atmosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

On the Sources of Methane to the Los Angeles Atmosphere Title On the Sources of Methane to the Los Angeles Atmosphere Publication Type Journal Article Year of Publication 2012...

449

Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

450

Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

451

Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

452

New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

453

Eastern States Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Eastern States Coalbed Methane Proved Reserves (Billion Cubic Feet) Eastern States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

454

Western States Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Western States Coalbed Methane Proved Reserves (Billion Cubic Feet) Western States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

455

New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

456

Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

457

SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS  

DOE Green Energy (OSTI)

Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

Klein, J; Jeffrey Holder, J

2007-07-16T23:59:59.000Z

458

Direct use of methane in coal liquefaction  

DOE Patents (OSTI)

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

1987-01-01T23:59:59.000Z

459

Direct use of methane in coal liquefaction  

DOE Patents (OSTI)

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

Sundaram, M.S.; Steinberg, M.

1985-06-19T23:59:59.000Z

460

MethaneHydrateRD_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gas is an important energy gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy (FE) has played a major role in developing technologies to help tap new, unconventional sources of natural gas. FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and managed a high-quality research portf olio that has enabled signifi cant progress toward the (DOE) Program's long-term goals." The Nati onal Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety of forms in sediments within and below thick permafrost in Arctic regions, and in the

Note: This page contains sample records for the topic "methane production aerobic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Multivariate statistical evaluation of equilibrium methane adsorption isotherms of coal  

SciTech Connect

The adsorption of methane by coals varies over a broad range of values and appears to depend on a complex function related to coal rank. In order to evaluate these variations in methane adsorption 100 coal samples were analyzed. The paper presents some preliminary results of this study based on multivariate statistical evaluation of equilibrium methane adsorption isotherm data, coal petrology, and vitrinite reflectance.

Schwarzer, R.S.; Bayliss, G.S.

1982-01-01T23:59:59.000Z

462

Demonstration plant engineering and design. Phase I: the pipeline gas demonstration plant. Volume 7. Plant Section 500 - shift/methanation  

Science Conference Proceedings (OSTI)

Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the completion of the process design and the project engineering design of the Demonstration Plant. A report of the design effort is being issued in 24 volumes. This is Volume 7 which reports the design of Plant Section 500 - Shift/Methanation. The shift/methanation process is used to convert the purified synthesis gas from the Rectisol unit (Plant Section 400) into the desired high-Btu SNG product. This is accomplished in a series of fixed-bed adiabatic reactors. Water is added to the feed gas to the reactors to effect the requisite reactions. A nickel catalyst is used in the shift/methanation process, and the only reaction products are methane and carbon dioxide. The carbon dioxide is removed from the SNG in Plant Sectin 600 - CO/sub 2/ Removal. After carbon dioxide removal from the SNG, the SNG is returned to Plant Section 500 for final methanation. The product from the final methanation reactor is an SNG stream having a gross heating value of approximately 960 Btu per standard cubic foot. The shift/methanation unit at design conditions produces 19 Million SCFD of SNG from 60 Million SCFD of purified synthesis gas.

Not Available

1981-01-01T23:59:59.000Z

463

Method for removal of methane from coalbeds  

DOE Patents (OSTI)

A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

Pasini, III, Joseph (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV)

1976-01-01T23:59:59.000Z

464

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry  

E-Print Network (OSTI)

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico Keywords: Methane flux Mass spectrometer Brine pool Methane oxidation Gulf of Mexico a b s t r a c t Deep report direct measurements of methane concentrations made in a Gulf of Mexico brine pool located

Girguis, Peter R.

465

Methane coupling by membrane reactor. Quarterly technical progress report, June 25, 1995--September 24, 1995  

DOE Green Energy (OSTI)

The research focus, for the development of a radial flow catalytic membrane reactor for studying methane coupling, concentrated on understanding the effects of pore size, catalyst loading and catalyst distribution inside the membrane, on the hydrocarbon selectivity. The experimental results from the catalytic studies of oxidative coupling of methane in the radial flow membrane reactors are summarized in this report and the reactor performances of three radial flow reactors with pore sizes of 0.02 {mu}m are interpreted by the energy dispersive X-ray digital mapping (EDX) technique. A conventional fixed bed catalytic reactor was set up and run under the same conditions as were used for the radial flow reactor studies. Two sources of samarium oxide catalysts were used in these experiments and their performances were compared in terms of C{sub 2} selectivity at same methane conversion. Compared to the monoclinic form of samarium oxide, the catalyst with cubic form was more active and selective for methane oxidative coupling. A general reactor model for oxidation reactions with distributed feed of oxygen and product removal strategies was proposed. Six types of feeding modes were analyzed and their feed distributions were optimized such that the desired product yields at the reactor outlet were maximized.

NONE

1995-12-12T23:59:59.000Z

466

Volume and accessibility of entrained (solution) methane in deep geopressured reservoirs - tertiary formations of the Texas Gulf Coast. Final report  

DOE Green Energy (OSTI)

The objective of this project was to appraise the total volume of in-place methane dissolved in formation waters of deep sandstone reservoirs of the onshore Texas Gulf Coast within the stratigraphic section extending from the base of significant hydrocarbon production (8000 ft)* to the deepest significant sandstone occurrence. The area of investigation is about 50,000 mi/sup 2/. Factors that determine the total methane resource are reservoir bulk volume, porosity, and methane solubility; the latter is controlled by the temperature, pressure, and salinity of formation waters. Regional assessment of the volume and the distribution of potential sandstone reservoirs was made from a data base of 880 electrical well logs, from which a grid of 24 dip cross sections and 4 strike cross sections was constructed. Solution methane content in each of nine formations or divisions of formations was determined for each subdivision. The distribution of solution methane in the Gulf Coast was described on the basis of five reservoir models. Each model was characterized by depositional environment, reservoir continuity, porosity, permeability, and methane solubility.

Gregory, A.R.; Dodge, M.M.; Posey, J.S.; Morton, R.A.

1980-10-01T23:59:59.000Z

467

DEVELOPMENT OF A CATALYST/SORBENT FOR METHANE REFORMING  

DOE Green Energy (OSTI)

This work has led to the initial development of a very promising material that has the potential to greatly simplify hydrocarbon reforming for the production of hydrogen and to improve the overall efficiency and economics of the process. This material, which was derived from an advanced calcium-based sorbent, was composed of core-in-shell pellets such that each pellet consisted of a CaO core and an alumina-based shell. By incorporating a nickel catalyst in the shell, a combined catalyst and sorbent was prepared to facilitate the reaction of hydrocarbons with steam. It was shown that this material not only catalyzes the reactions of methane and propane with steam, it also absorbs CO{sub 2} simultaneously, and thereby separates the principal reaction products, H{sub 2} and CO{sub 2}. Furthermore, the absorption of CO{sub 2} permits the water gas shift reaction to proceed much further towards completion at temperatures where otherwise it would be limited severely by thermodynamic equilibrium. Therefore, an additional water gas shift reaction step would not be required to achieve low concentrations of CO. In a laboratory test of methane reforming at 600 C and 1 atm it was possible to produce a gaseous product containing 96 mole% H{sub 2} (dry basis) while also achieving a H{sub 2} yield of 95%. Methane reforming under these conditions without CO{sub 2} absorption provided a H{sub 2} concentration of 75 mole% and yield of 82%. Similar results were achieved in a test of propane reforming at 560 C and 1 atm which produced a product containing 96 mole% H{sub 2} while CO{sub 2} was being absorbed but which contained only 69 mole% H{sub 2} while CO{sub 2} was not being absorbed. These results were achieved with an improved catalyst support that was developed by replacing a portion of the {alpha}-alumina in the original shell material with {gamma}-alumina having a much greater surface area. This replacement had the unfortunate consequence of reducing the overall compressive strength of the core-in-shell pellets. Therefore, a preliminary study of the factors that control the surface area and compressive strength of the shell material was conducted. The important factors were identified as the relative concentrations and particle size distributions of the {alpha}-alumina, {gamma}-alumina, and limestone particles plus the calcination temperature and time used for sintering the shell material. An optimization of these factors in the future could lead to the development of a material that has both the necessary mechanical strength and catalytic activity.

B.H. Shanks; T.D. Wheelock; Justinus A. Satrio; Timothy Diehl; Brigitte Vollmer

2004-09-27T23:59:59.000Z

468

Methane Hydrates: Major Energy Source for the Future or Wishful Thinking?  

SciTech Connect

Methane hydrates are methane bearing, ice-like materials that occur in abundance in permafrost areas such as on the North Slope of Alaska and Canada and as well as in offshore continental margin environments throughout the world including the Gulf of Mexico and the East and West Coasts of the United States. Methane hydrate accumulations in the United States are currently estimated to be about 200,000 Tcf, which is enormous when compared to the conventional recoverable resource estimate of 2300 Tcf. On a worldwide basis, the estimate is 700,000 Tcf or about two times the total carbon in coal, oil and conventional gas in the world. The enormous size of this resource, if producible to any degree, has significant implications for U.S. and worldwide clean energy supplies and global environmental issues. Historically the petroleum industry's interests in methane hydrates have primarily been related to safety issues such as wellbore stability while drilling, seafloor stability, platform subsidence, and pipeline plugging. Many questions remain to be answered to determine if any of this potential energy resource is technically and economically viable to produce. Major technical hurdles include: 1) methods to find, characterize, and evaluate the resource; 2) technology to safely and economically produce natural gas from methane hydrate deposits; and 3) safety and seafloor stability issues related to drilling through gas hydrate accumulations to produce conventional oil and gas. The petroleum engineering profession currently deals with gas hydrates in drilling and production operations and will be key to solving the technical and economic problems that must be overcome for methane hydrates to be part of the future energy mix in the world.

Thomas, Charles Phillip

2001-09-01T23:59:59.000Z

469

Novel catalysts for methane activation. Quarterly report No. 4, July 1, 1993--September 30, 1993  

DOE Green Energy (OSTI)

The objectives of this project are to test novel fullerene based catalysts for application in methane activation. Fullerenes are a recently discovered allotrope of carbon that have been found to possess unusual properties, some of which may be ideal for methane conversion to higher hydrocarbons. The project is divided into three technical tasks. Task 1 deals with the synthesis and characterization of the fullerenes and fullerene soots, Task 2 with the testing of the catalysts, and Task 3 with the evaluation of the results and technical reporting requirements. This quarter the authors concentrated on Task 2. In this task they expanded the capabilities of the system so they can include the effect of diluents during the methane activation experiments and continued work on evaluating the fullerene soot. They investigated the base-line conditions for both thermal reactions and soot-catalyzed reactions of methane. They also added the capability to add diluents such as hydrogen and helium into the reaction system to determine their respective effects on selectivity during the methane activation experiments. They found that the fullerene soot significantly decreased the threshold for the methane activation and C{sub 2} products at temperatures as low as 800{degrees}C, whereas the pure thermal reaction required temperatures in the range of 900 to 950{degrees}C. However, under their conditions the selectivity to C{sub 2} was much lower for the fullerene soot, than for the thermal case. They found that the presence of H{sub 2} helped the selectivity to some degree at a given temperature, but still formed a considerable amount of coke under these condition.

Hirschon, A.S.; Wu, H.J.; Malhotra, R.; Wilson, R.B.

1993-12-03T23:59:59.000Z

470

Methane Recovery from Animal Manures The Current Opportunities Casebook  

DOE Green Energy (OSTI)

Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only provides pollution prevention but also can convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion (AD) of livestock manures is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the AD animal manures. U.S. livestock operations currently employ four types of anaerobic digester technology: slurry, plug-flow, complete-mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Case studies of operating digesters, with project and maintenance histories and the operators ''lessons learned,'' are included as reality checks. Factors necessary for successful projects, as well as a list of reasons explaining why some AD projects fail, are provided. The role of farm management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at farms willing to incorporate the uncertainties of a new technology. More than two decades of research has provided much information about how manure can be converted to an energy source; however, the American farmer has not been motivated to adopt new practices. More cost-effective and easily managed manure management techniques are still needed to encourage farmers to use animal manure for conversion into energy and nutrients, especially for smaller farms. AD benefits farmers monetarily and mitigates possible manure pollution problems, thereby sustaining development while maintaining environmental quality. Moreover, rural economic development will benefit from the implicit multiplier effect resulting from jobs created by implementing digester systems. Promising future waste-to-profit activities may add to the economic performance of AD. New end-use applications, which provide added value to coproducts, are discussed.

Lusk, P.

1998-09-01T23:59:59.000Z

471

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

DOE Green Energy (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

472

Combining steam-methane reforming, water-gas shift, and CO{sub 2} removal in a single-step process for hydrogen production. Final report for period March 15, 1997 - December 14, 2000  

DOE Green Energy (OSTI)

The objective of the research project was to determine the feasibility of a simpler, more energy-efficient process for the production of 95+% H{sub 2} from natural gas, and to collect sufficient experimental data on the effect of reaction parameters to guide additional larger-scale process development. The overall objectives were accomplished. 95+% H{sub 2} was produced in a single reaction step by adding a calcium-based CO{sub 2} acceptor to standard Ni-based reforming catalyst. The spent acceptor was successfully regenerated and used in a number of reaction steps with only moderate loss in activity as the number of cycles increased. Sufficient experimental data were collected to guide further larger-scale experimental work designed to investigate the economic feasibility of the process.

Alejandro Lopez Ortiz; Bhaskar Balasubramanian; Douglas P. Harrison

2001-02-01T23:59:59.000Z

473

File:Methane.pdf | Open Energy Information  

Open Energy Info (EERE)

Methane.pdf Methane.pdf Jump to: navigation, search File File history File usage File:Methane.pdf Size of this preview: 448 × 600 pixels. Go to page 1 2 3 4 5 Go! next page → next page → Full resolution ‎(1,218 × 1,630 pixels, file size: 929 KB, MIME type: application/pdf, 5 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:51, 9 February 2012 Thumbnail for version as of 15:51, 9 February 2012 1,218 × 1,630, 5 pages (929 KB) Graham7781 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: Hydraulic Fracturing Retrieved from "http://en.openei.org/w/index.php?title=File:Methane.pdf&oldid=404017"

474

Methane Hydrates R&D U S  

NLE Websites -- All DOE Office Websites (Extended Search)

the Power of Working Together Interagency Coordination on Methane Hydrates R&D U . S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r g y N a t i o n a l...

475

California - Coastal Region Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2012 (EIA)

Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No...

476

Federal Offshore California Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2012 (EIA)

Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 -...

477

Generating power with drained coal mine methane  

SciTech Connect

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

478

Direct catalytic conversion of methane and light hydrocarbon gases. Quarterly report No. 9, October 1--December 31, 1988  

DOE Green Energy (OSTI)

The goal of this research is to develop catalysts that directly convert methane and light hydrocarbons to intermediates that later can be converted to either liquid fuels or value-added chemicals, as economics dictate. During this reporting period, we completed our IR spectroscopic examination of the Ru{sub 4}/MgO and FeRu{sub 3}/MgO systems under nitrogen and methane by examining FeRu{sub 3}/MgO under methane. This system behaved quite differently than the same system under nitrogen. Under methane, only one very broad peak is observed at room temperature. Upon heating, the catalyst transformed so that by 300{degrees}C, the spectrum of FeRu{sub 3}/MgO under methane was the same as that of Ru{sub 4}/MgO. This suggests that methane promotes the segregation of the metals in the mixed metal system. The differences in catalytic activity between the FeRu{sub 3}/MgO and Ru{sub 4}/MgO systems may then be due to the presence of IR transparent species such as iron ions which cause different nucleation in the ruthenium clusters. We examined several systems for activity in the methane dehydrogenation reaction. Focusing on systems which produce C{sub 6} hydrocarbons since this is the most useful product. These systems all displayed low activity so that the amount of hydrocarbon product is very low. Some C{sub 6} hydrocarbon is observed over zeolite supports, but its production ceases after the first few hours of reaction. We prepared a new system, Ru{sub 4} supported on carbon, and examined its reactivity. Its activity was very low and in fact the carbon support had the same level of activity. We synthesized four new systems for examination as catalysts in the partial oxidation of methane. Three of these (PtTSPC/MgO, PtTSPC and PdTSPC on carbon) are analogs of PdTSPC/MgO. This system is of interest because we have observed the production of ethane from methane oxidation over PdTSPC/MgO at relatively low temperatures and we wished to explore its generality among close analogs.

Wilson, R.B. Jr.; Posin, B.M.; Chan, Yee Wai

1989-03-10T23:59:59.000Z

479

SAES ST 909 PILOT SCALE METHANE CRACKING TESTS  

DOE Green Energy (OSTI)

Pilot scale (500 gram) SAES St 909 methane cracking tests were conducted to determine material performance for tritium process applications. Tests that ran up to 1400 hours have been performed at 700 C, 202.7 kPa (1520 torr) with a 30 sccm feed of methane, with various impurities, in a 20 vol% hydrogen, balance helium, stream. A 2.5 vol% methane feed was reduced below 30 ppm for 631 hours. A feed of 1.1 vol% methane plus 1.4 vol% carbon dioxide was reduced below 30 ppm for 513 hours. The amount of carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered to estimate a reduced bed life for methane cracking. The effect of 0.4 vol % and 2.1 vol% nitrogen in the feed reduced the time to exceed 30 ppm methane to 362 and 45 hours, respectively, but the nitrogen equivalence to reduced methane gettering capacity was found to be dependent on the nitrogen feed composition. Decreased hydrogen concentrations increased methane getter rates while a drop of 30 C in one bed zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if the nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate.

Klein, J; Henry Sessions, H

2007-07-02T23:59:59.000Z

480