National Library of Energy BETA

Sample records for methane outreach program

  1. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  2. Better Buildings Neighborhood Program Data Marketing and Outreach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing and Outreach Better Buildings Neighborhood Program Data Marketing and Outreach Building project data for 75,110 single-family homes upgraded between July 1, 2010, and...

  3. Outreach and Collaboration Program Status and Accomplishments...

    Energy Savers [EERE]

    2008-2009 Outreach and Collaboration has helped HSS expand the DOE's sphere of communication and influence through broad-based dialogues, cultivating productive interagency...

  4. H2 and You: The Hydrogen Education Foundation's Outreach Program...

    Broader source: Energy.gov (indexed) [DOE]

    The Hydrogen Education Foundation's Public Outreach Program Summary Presentation, January 2008. The Foundation aims to build awareness and understanding for Hydrogen....

  5. Analyzing Outreach Effectiveness to Improve Program Design

    Broader source: Energy.gov [DOE]

    Slides presented in the "What’s Working in Residential Energy Efficiency Upgrade Programs Conference - Promising Approaches and Lessons Learned" on May 20, 2011 in Washington, D.C.

  6. Savannah River Ecology Laboratory - Outreach Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo BayGrove /Program

  7. Savannah River Ecology Laboratory - Outreach Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo BayGrove /Program

  8. The Remote Exploration Program: A Collaborative Outreach Approach

    E-Print Network [OSTI]

    Smart, William

    . Garner William D. Smart Keith Bennett Department of Computer Science and Engineering Washington describe our plans for a novel outreach and education program that attempts to bridge between the worlds for practical applications for robotic technologies. But, what is currently missing are bridges between

  9. RURAL HEALTH OUTREACH PROGRAM (RHOP) 2012-2013 ANNUAL REPORT

    E-Print Network [OSTI]

    Huang, Haiying

    RURAL HEALTH OUTREACH PROGRAM (RHOP) 2012-2013 ANNUAL REPORT HIGHLIGHTS · Expanded RHOP position the following activities: 1. The RHOP was named 1 of the 5 outstanding university rural health initiatives in the country by NerdScholar 2. Responsible for hosting the 2012 Bi-national Health Care Symposium

  10. US EPA Landfill Methane Outreach Program | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) Jump to:TucsonLLC JumpUNFCCC/UNEP-Risoe(RedirectedEPA

  11. Environmental Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Environmental Outreach Our vision is to operate a proactive and interactive environmental communication and public involvement program that is inclusive and responsive to...

  12. EPA Tribal Training and Outreach Support for the American Indian Air Quality Training Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications to provide training, and technical and outreach support for the American Indian Air Quality Training Program.

  13. Agriculture, Forestry expand outreach programs UBC's two renewable-resources fac-

    E-Print Network [OSTI]

    Farrell, Anthony P.

    Agriculture, Forestry expand outreach programs UBC's two renewable-resources fac- ulties by providing ad- ministrative services and classroom spaceforanexpandedagricultural sciences

  14. 2013 OSU Outreach and Engagement FORUM Table # Program Title

    E-Print Network [OSTI]

    Nahar, Sultana Nurun

    's Energy Future 28 Engineering Outreach to K12 30 Enhancing Rural Education/Business Connectivity: a New Public Health Farmers' Market 61 Real Money.Real World #12;2013 OSU Outreach and Engagement FORUM 62 Consortium 82 Working Towards Abundant and Sustainable Vegetab

  15. 2014 CMI Plenary: CMI Education and Outreach Programs | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril 30, 2013 9:30 am3 TheYao, NUG

  16. EcoTalks | Savannah River Ecology Laboratory Environmental Outreach Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network Requirements ReportEES DivisionMTBEEcoTalks The

  17. Exhibits | Savannah River Ecology Laboratory Environmental Outreach Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvan Racah Evan RacahNFTS-13 1

  18. Methane Hydrate Program Annual Report to Congress

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessageFY 2010 Methane Hydrate

  19. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Outreach Programs A team of educators and scientists from the Idaho...

  20. Effective Rural ITS Outreach: The California Program for

    E-Print Network [OSTI]

    McGowen, Patrick

    America, and to bring rural communities into full and active partnership in the national advanced transportation technology program. The rural community is faced with many unique challenges and opportunities community encounters many unique obstacles that are specific to the rural environment verses the urban

  1. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    SciTech Connect (OSTI)

    Collett, Tim; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta; Myers, Greg; Divins, David; Morell, Margo

    2013-11-30

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these e?orts have been episodic in nature. To further our understanding, these e?orts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and o?ers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  2. The Electron Microscopy Outreach Program: A Web-Based Resource for Research and Education

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    The Electron Microscopy Outreach Program: A Web-Based Resource for Research and Education Gina E developed a centralized World Wide Web (WWW)-based environment that serves as a resource of software tools microscopes, data, and analysis via the World Wide Web (WWW) (Ellisman et al., 1998; Hadida-Hassan, 1998, 1999

  3. Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN)

    E-Print Network [OSTI]

    + Biomass Program Outreach and Communication The Bioenergy Feedstock Information Network (BFIN) About ten years ago ORNL launched BFIN providing a gateway to a wealth of biomass feedstock information by ORNL. Regional partnership workshops The Regional Biomass Energy Feedstock Partnership is comprised

  4. Methane Hydrates R&D Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFromGas Hydrates R&D Program Gas

  5. An evaluation of the small farmer outreach training and technical assistance program for farmers of color in Texas 

    E-Print Network [OSTI]

    Daniels, Nelson T

    2006-10-30

    The purpose of this study was to examine the effectiveness of the small farmer outreach training and technical assistance programs as related to farmers of color. The items to be evaluated included financial considerations, ...

  6. Science Outreach Science Outreach

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Science Outreach Science Outreach AT SFU'S FACULTY OF SCIENCE OUR PASSION IS SCIENCE EDUCATION At SFU's Faculty of Science our passion is science education #12;coming sooncoming soon The Trottier 2015. The Trottier Observatory will be an anchor for a science plaza located in front of Strand Hall

  7. Educational Outreach | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science | Educational Outreach SHARE Educational Outreach The future viability of ORNL's nuclear science & technology programs depends on developing and maintaining worthwhile...

  8. Recovery Act - An Interdisciplinary Program for Education and Outreach in Transportation Electrification

    SciTech Connect (OSTI)

    Anderson, Carl; Bohmann, Leonard; Naber, Jeffrey; Beard, John; Passerello, Chris; Worm, Jeremy; Chen, Bo; Allen, Jeffrey; Weaver, Wayne; Hackney, Stephen; Keith, Jason; Meldrum, Jay; Mork, Bruce

    2012-10-31

    1) How the project adds to the education of engineering students in the area of vehicle electrification: This project created and implemented a significant interdisciplinary curriculum in HEV engineering that includes courses focused on the major components (engines, battery cells, e?machines, and power electronics). The new curriculum, rather uniquely, features two new classes and two new labs that emphasize a vehicle level integration of a hybrid electric powertrain that parallels the vehicle development process used by the OEMs ? commercial grade software is used to design a hybrid electric vehicle, hardware?in?the?loop testing is performed on each component until the entire powertrain is optimized, the calibration is flashed to a vehicle, ride?and?drives are executed including on board data acquisition. In addition, nine existing courses were modified by adding HEV material to the courses. 2) The educational effectiveness and economic feasibility of the new curriculum: The new courses are offered at both the undergraduate and graduate levels. They are listed across the college in mechanical, chemical, electrical, and materials science and engineering. They are offered both on campus and to distance learning students. Students across the college of engineering and at all degree levels are integrating these courses into their degree programs. Over the three year project the course enrollments on?campus has totaled 1,249. The distance learning enrollments has totaled 315. With such robust enrollments we absolutely expect that these courses will be in the curriculum for the long run. 3) How the project is otherwise of benefit to the public: One outcome of the project is the construction of the Michigan Tech Mobile Lab. Two complete HEV dynamometer test cells, and four work stations are installed in the 16.2 meter Mobile Laboratory and hauled by a class 8 truck. The Mobile Lab is used to teach the university courses. It is also used to deliver short courses to industry, K?12 outreach, and public education. In 2012 the Mobile Lab participated in 22 outreach events, locally, throughout Michigan, and including events in Washington DC, Illinois, and Wisconsin. The Mobile Lab is a hit wherever it goes. In 2013 we will partner with the US Army TARDEC and be featured in their Green Warrior Convoy, a ten city tour starting in Detroit and finishing in Washington DC.

  9. Webinar: AspireIT K-12 Outreach Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using a near-peer model, program leaders teach younger girls fundamentals in programming and computational thinking in fun, creative environments that are supported by...

  10. Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study

    SciTech Connect (OSTI)

    Christopher Orme

    2012-08-01

    Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

  11. H2 and You: The Hydrogen Education Foundation's Outreach Program (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs | DepartmentINDUSTRIALH-Tank FarmH2

  12. Letters of Outreach to Partner Communities

    Broader source: Energy.gov [DOE]

    Letters of Outreach to Partner Communities, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  13. PIER Through a Critical Lens: An Evaluation of a Student-Initiated, Student-Run Outreach Program

    E-Print Network [OSTI]

    Saelua, Natasha Autasi

    2012-01-01

    March 15, 2012. demonstrates PISA’s intervention into higherprimary outreach vehicle for PISA until May 1997, when theStudents Association (PISA) and Pacific Islander Education

  14. Veterans Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|Upcoming PurchasingPortalVeterans Outreach

  15. Bisfuel - Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools toBadging,BioscienceOutreach 12 Feb 2014

  16. Environmental Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGas SeparationsRelevant to CleanOutreach Environmental

  17. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach HomepolarizationMeasurementsWarmingMethane BackgroundMethane

  18. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01

    for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

  19. Community Outreach Resources | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For information on ORNL and its community outreach activities, please refer to the resources listed below or to one of our Community Outreach Contacts. If you have a general...

  20. Final report. Geothermal Energy Program: Information dissemination, public outreach, and technical analysis activities. April 1, 1999 to December 31, 2001. USDOE Grant No. DE-FG01-99-EE35098

    SciTech Connect (OSTI)

    Lund, John W.

    2002-03-22

    This is the final report of the accomplishments of the geothermal energy program: information dissemination, public outreach, and technical analysis activities by the project team consisting of the Geo-Heat Center, Geothermal Resources Council, Geothermal Education Office, Geothermal Energy Association, and the Washington State University Energy Program.

  1. Thurston Energy Outreach Center

    SciTech Connect (OSTI)

    Pierce, P.; Young, M.

    1984-09-01

    In Olympia, the Washington Energy Extension Service program is provided by the Olympic Renewable Resources Association's Energy Outreach Center. The Center has provided Thurston County residents with consistent and reliable information on energy conservation and renewable resources since 1980. During those four years, a seasonal pattern of activities has developed which reflects strong shifts in class attendance and inquiries by EOC users over the course of the year. Classes include: design of superinsulated passive solar and earth sheltered homes; sunspace design, coldframe construction and tax credits for solar energy systems; caulking, weatherstripping, storm windows and chimney cleaning; and solar and wood hot water systems. All are scheduled according to dictates of seasonal needs and interests.

  2. The U.S. DOE Methane Hydrate R&D Program DOE Sponsored Student Researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr. Jeffrey GriffinHydratesTri-PartyU.S. DOE Methane

  3. Geothermal Outreach Publications

    Broader source: Energy.gov [DOE]

    Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

  4. Internal Benchmarking Outreach and Data Collection Techniques

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 11, 2013 and dealing with internal benchmarking outreach and data collection techniques.

  5. ARM - Methane Background Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach HomepolarizationMeasurementsWarmingMethane Background

  6. Particle Physics Outreach to Secondary Education

    SciTech Connect (OSTI)

    Bardeen, Marjorie G.; Johansson, K.Erik; Young, M.Jean

    2011-11-21

    This review summarizes exemplary secondary education and outreach programs of the particle physics community. We examine programs from the following areas: research experiences, high-energy physics data for students, informal learning for students, instructional resources, and professional development. We report findings about these programs' impact on students and teachers and provide suggestions for practices that create effective programs from those findings. We also include some methods for assessing programs.

  7. Methane Activation Structural and Mechanistic Requirements for

    E-Print Network [OSTI]

    Iglesia, Enrique

    Methane Activation Structural and Mechanistic Requirements for Methane Activation and Chemical and petrochemical processes and in fuel cells. The strong bonds in CH4 (439 kJmolÀ1 [1] ) and the endothermic nature by BP as part of the Methane Conversion Cooperative Research Program at the University of California

  8. Mathematics K-12 Outreach - Department of Mathematics, Purdue ...

    E-Print Network [OSTI]

    $author.value

    The K-12 Outreach program at Purdue University is part of the Purdue College of Science's effort to increase interest and achievement in mathematics and ...

  9. Educational Outreach | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home | Science & Discovery | Supercomputing and Computation | Educational Outreach SHARE Educational Outreach '' Vision Oak Ridge National Laboratory (ORNL) is the leader in...

  10. ORISE: Health Promotion and Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Promotion and Outreach Healthcare provider administering vaccination The Oak Ridge Institute for Science and Education (ORISE) provides health promotion and outreach support...

  11. Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Quasielastic electron scattering from methane, methane-d4, methane-d2, ethylene, and 2-methylpropane, ethylene, methane, and two isotopically substituted methanes, CH2D2 and CD4, at a momentum constituent. For example, Fig. 1 of Ref. 2 shows that, for gaseous methane, above a certain momentum transfer

  12. Berkeley Lab 2nd Grader Outreach

    ScienceCinema (OSTI)

    Scoggins, Jackie; Louie, Virginia

    2013-05-29

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  13. Report: Community Outreach

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravelInformationCollectionGridReno Roundtable Summary RenoDepartmentCOMMUNITY OUTREACH

  14. Outreach | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Careers/ HumanOurOutreach Efforts Excitement

  15. Sector Outreach | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcomingmagnetoresistanceand Governmentm D m r ecmswL,NISACSector Outreach

  16. Outreach - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams forOrhan Kizilkaya, Ph.D.Our Team Our

  17. Methane Hydrate Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28, 2011. The surface hole was drilled using water-based mud and Logging While Drilling (LWD) measurements to a depth of 1,482 feet, where 10 ' " surface casing was run,...

  18. Methane Hydrate Program

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessage fromDepartmentSlope |FY

  19. Methane Hydrate Program

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessage fromDepartmentSlope

  20. Methane Hydrate Program

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessage

  1. Wind Energy Education and Outreach Project

    SciTech Connect (OSTI)

    David G. Loomis

    2011-04-15

    The purpose of Illinois State Universityâ??s wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

  2. OutreachNOW 20 OutreachNOW 21OutreachNOW 20 Cloning plants -

    E-Print Network [OSTI]

    Buehrer, R. Michael

    OutreachNOW 20 OutreachNOW 21OutreachNOW 20 Cloning plants - Cloning plants - Cloning plants - Beauty or brains. Sometimes you have to make a choice, but the Dan River Plant Propagation Center and designer who handles A-list gatherings in Washington, D.C. One of his varieties is the Icelandic Temptress

  3. Better Outreach Through Data

    Broader source: Energy.gov [DOE]

    Presents how the Connecticut Neighbor-to-Neighbor Challenge employed extensive data collection using Salesforce.com to improve its program success.

  4. Alliance for Sequestration Training, Outreach, Research & Education

    SciTech Connect (OSTI)

    Olson, Hilary

    2013-09-01

    The Sequestration Training, Outreach, Research and Education (STORE) Alliance at The University of Texas at Austin completed its activity under Department of Energy Funding (DE- FE0002254) on September 1, 2013. The program began as a partnership between the Institute for Geophysics, the Bureau of Economic Geology and the Petroleum and Geosystems Engineering Department at UT. The initial vision of the program was to promote better understanding of CO2 utilization and storage science and engineering technology through programs and opportunities centered on training, outreach, research and technology transfer, and education. With over 8,000 hrs of formal training and education (and almost 4,500 of those hours awarded as continuing education credits) to almost 1,100 people, STORE programs and activities have provided benefits to the Carbon Storage Program of the Department of Energy by helping to build a skilled workforce for the future CCS and larger energy industry, and fostering scientific public literacy needed to continue the U.S. leadership position in climate change mitigation and energy technologies and application. Now in sustaining mode, the program is housed at the Center for Petroleum and Geosystems Engineering, and benefits from partnerships with the Gulf Coast Carbon Center, TOPCORP and other programs at the university receiving industry funding.

  5. Coupling of nitrous oxide and methane by global atmospheric chemistry

    E-Print Network [OSTI]

    Prather, MJ; Hsu, J

    2010-01-01

    supported by NSF’s Atmospheric Chemistry program (grant ATM-Methane by Global Atmospheric Chemistry Michael J. Prathergas, through atmospheric chemistry that en- hances the

  6. CBIN Outreach Activities December 2010

    E-Print Network [OSTI]

    Lawrence, Rick L.

    , MT · May 8-14 - South Africa Outreach Project April 2010: · April 23 ­ Dr. Douglas presents to Big: How do you stretch a rock? Presented by Josh DeWeese and Dean Adams, Dept. of Arts and Architecture

  7. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  8. Articles about Education Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department ofMarketing, LLCorAreaEnergyArticle:5596

  9. 2012 Independent Communication and Outreach Stakeholder Satisfaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Independent Communication and Outreach Stakeholder Satisfaction Survey 2012 Independent Communication and Outreach Stakeholder Satisfaction Survey DOE-LM periodically surveys its...

  10. Methane oxidation rates by AMS

    E-Print Network [OSTI]

    Pack, M; Heintz, M; ReeburGh, WS; Trumbore, SE; Valentine, DL; Xu, X

    2009-01-01

    second case. Number of cases Methane oxidation rates by AMSIn the marine environment methane (CH 4 ) oxidation consumes

  11. Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Careers/ HumanOur

  12. Savannah River Ecology Laboratory - Outreach Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo BayGrove / Stave

  13. Savannah River Ecology Laboratory - Outreach Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo BayGrove /

  14. Savannah River Ecology Laboratory - Outreach Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo BayGrove /

  15. Savannah River Ecology Laboratory - Outreach Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurity AdministrationFlamingo BayGrove

  16. Physics 291: Physics Science Outreach Information

    E-Print Network [OSTI]

    Baski, Alison

    Physics 291: Physics Science Outreach Course Information Fall 2005 Information (course on General Education List K - Urban) Phys291: Topic - Physical Science Outreach - Richmond Elementary (#14917) Time: Tues & Thurs at 11:00 am to 12:15 pm (plus outreach visits) Location: OLVPH #2121 (located in Physics

  17. Outreach | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Careers/ HumanOurOutreach Efforts

  18. ORISE: Health Promotion and Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE TheForensic Science ForensicHealth Promotion and

  19. Development of computer simulations for landfill methane recovery

    SciTech Connect (OSTI)

    Massmann, J.W.; Moore, C.A.; Sykes, R.M.

    1981-12-01

    Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

  20. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  1. Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report

    SciTech Connect (OSTI)

    Gabello, D.P.; Felts, L.L.; Hayoz, F.P.

    1981-05-01

    The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annual mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.

  2. Outreach to Faith--Based Organizations | Department of Energy

    Energy Savers [EERE]

    Outreach to Faith--Based Organizations Better Buildings Residential Network Marketing and Outreach Peer Exchange Call: Outreach to Faith-Based Organizations, call slides...

  3. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working inProgramming Programming

  4. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working inProgrammingProgramming

  5. Better Buildings Program Sacramento

    Broader source: Energy.gov [DOE]

    Presents overview and lessons learned by Sacramento's effort to drive program demand through marketing and outreach initiatives.

  6. PPPO Stakeholder Outreach | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Security Compliance & Risk Assessment Budget & Funding Contracts & Procurement Future Use PPPO Cleanup Projects - Portsmouth, Paducah, & DUF6 PPPO Stakeholder Outreach Events...

  7. Joint Outreach Task Group Calendar: September 2013

    Broader source: Energy.gov [DOE]

    Joint Outreach Task Group (JOTG)has created a monthly calendar of community events to facilitate interagency and community involvement in these events. September 2013

  8. DOE Publishes Best Practices Manual for Public Outreach and Education for Carbon Storage Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Regional Carbon Sequestration Partnerships program has released a new manual to recommend best practices for public outreach and education for carbon dioxide storage projects.

  9. Transcript of March 28, 2013, TAP webinar titled Internal Benchmarking Outreach and Data Collection Techniques

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) transcript of a TAP webinar held on March 28, 2013 and dealing with internal benchmarking outreach and data collection techniques.

  10. Methane sources and sinks in Lake Kivu

    E-Print Network [OSTI]

    2011-01-01

    and G. T. Harvey (1973), Methane in Lake Kivu: New datagenes associated with methane? oxidizing archaea, Appl.Pace, and L. Tranvik (2004), Methane emissions from lakes:

  11. Electrochemical methane sensor

    DOE Patents [OSTI]

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  12. Journal of Electron Spectroscopy and Related Phenomena 155 (2007) 2834 Electron Compton scattering from methane and methane-d4

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    2007-01-01

    from methane and methane-d4 G. Coopera, A.P. Hitchcocka,, C.A. Chatzidimitriou-Dreismannb, M. Vosc]. © 2006 Elsevier B.V. All rights reserved. Keywords: Quasi-elastic electron scattering; Methane; CD4

  13. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working inProgramming

  14. Dairy Outreach Program Training and Continuing Education Program 

    E-Print Network [OSTI]

    Mukhtar, Saqib

    1999-10-30

    stream_source_info pdf_1149.pdf.txt stream_content_type text/plain stream_size 2716 Content-Encoding ISO-8859-1 stream_name pdf_1149.pdf.txt Content-Type text/plain; charset=ISO-8859-1 In Texas, concentrated animal...

  15. Mechanistic Studies on the Hydroxylation of Methane by Methane Monooxygenase

    E-Print Network [OSTI]

    Baik, Mu-Hyun

    of formaldehyde to carbon dioxide provides energy that is stored for later use as NADH.2 The conversion of methane are bacteria that live on methane as their only source of carbon.1 The first step in their utilization gas (it is currently not economical17 to transport and store methane gas from remote sites

  16. ISSUE PAPER METHANE AVOIDANCE FROM

    E-Print Network [OSTI]

    Brown, Sally

    ISSUE PAPER METHANE AVOIDANCE FROM COMPOSTING An Issue Paper for the: Climate Action Reserve...........................................................................................................39 6.2. Standard Methods for Quantifying Methane from Organic Waste in Landfills...40 6.3. GHG

  17. Enhanced coalbed methane recovery

    SciTech Connect (OSTI)

    Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

    2009-01-15

    The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

  18. The Outreach & Engagement Measurement Instrument (OEMI)

    E-Print Network [OSTI]

    The Outreach & Engagement Measurement Instrument (OEMI) Burton A. Bargerstock Director, UOE reporting system ­ Challenges · Continuous refinement of the instrument ­ Balance desire for increasing data ­ Demonstration system with guest accounts available The OEMI today (contd.) #12;· Increase number of OEMI

  19. Measuring Scholarly Outreach at Michigan State University

    E-Print Network [OSTI]

    generating, transmitting, applying, and preserving knowledge for the direct benefit of external audiences, 1993, University Outreach at Michigan State University: Extending Knowledge to Serve Society #12;Reason · Business & Industrial Management · Children, Youth, and Families (non-school related) · Civic

  20. Final Scientific Report - Wind Powering America State Outreach Project

    SciTech Connect (OSTI)

    Sinclair, Mark; Margolis, Anne

    2012-02-01

    The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

  1. The Tri--Methane Rearrangement

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Tri--Methane Rearrangement #12;Církva, Vladimír; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

  2. The Tri--Methane Rearrangement

    E-Print Network [OSTI]

    Cirkva, Vladimir

    The Tri--Methane Rearrangement #12;Cirkva, Vladimir; Zuraw, Michael J.; Zimmerman, Howard E.* Department of Chemistry, University of Wisconsin, Madison, WI 53706 #12;INTRODUCTION The tri--methane of a cyclopentene 5a, but only in crystalline medium. However, in the solution photochemistry of tri--methane system

  3. Direct Aromaization of Methane

    SciTech Connect (OSTI)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  4. Sandia Energy - Standards and Industry Outreach/Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security for Electric Infrastructure National Supervisory Control and Data Acquisition (SCADA) Standards and Industry OutreachPartnerships Standards and Industry Outreach...

  5. SciDAC Outreach Center Participates in "Materials for Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SciDAC Outreach Center Participates in "Materials for Energy Applications" Workshop SciDAC Outreach Center Participates in "Materials for Energy Applications" Workshop February 1,...

  6. Benchmarking Outreach and Data Collection Techniques for External...

    Energy Savers [EERE]

    Benchmarking Outreach and Data Collection Techniques for External Portfolios Benchmarking Outreach and Data Collection Techniques for External Portfolios This presentation contains...

  7. Assessing Models of Public Understanding In ELSI Outreach Materials

    SciTech Connect (OSTI)

    Bruce V. Lewenstein, Ph.D.; Dominique Brossard, Ph.D.

    2006-03-01

    Advances in the science of genetics have implications for individuals and society, and have to be taken into account at the policy level. Studies of ethical, legal and social issues related to genomic research have therefore been integrated in the Human Genome Project (HGP) since the earliest days of the project. Since 1990, three to five percent of the HGP annual budget has been devoted to such studies, under the umbrella of the Ethical, Legal, and Social Implications (ELSI) Programs of the National Human Genome Research Institute of the National Institute of Health, and of the Office of Biological and Environmental Research of the U.S. Department of Energy (DOE). The DOE-ELSI budget has been used to fund a variety of projects that have aimed at ?promoting education and help guide the conduct of genetic research and the development of related medical and public policies? (HGP, 2003). As part of the educational component, a significant portion of DOE-ELSI funds have been dedicated to public outreach projects, with the underlying goal of promoting public awareness and ultimately public discussion of ethical, legal, and social issues surrounding availability of genetic information (Drell, 2002). The essential assumption behind these projects is that greater access to information will lead to more knowledge about ethical, legal and social issues, which in turn will lead to enhanced ability on the part of individuals and communities to deal with these issues when they encounter them. Over the same period of time, new concepts of ?public understanding of science? have emerged in the theoretical realm, moving from a ?deficit? or linear dissemination of popularization, to models stressing lay-knowledge, public engagement and public participation in science policy-making (Lewenstein, 2003). The present project uses the base of DOE-funded ELSI educational project to explore the ways that information about a new and emerging area of science that is intertwined with public issues has been used in educational public settings to affect public understanding of science. After a theoretical background discussion, our approach is three-fold. First, we will provide an overview, a ?map? of DOE-funded of outreach programs within the overall ELSI context to identify the importance of the educational component, and to present the criteria we used to select relevant and representative case studies. Second, we will document the history of the case studies. Finally, we will explore an intertwined set of research questions: (1) To identify what we can expect such projects to accomplish -in other words to determine the goals that can reasonably be achieved by different types of outreach, (2) To point out how the case study approach could be useful for DOE-ELSI outreach as a whole, and (3) To use the case study approach as a basis to test theoretical models of science outreach in order to assess to what extent those models accord with real world outreach activities. For this last goal, we aim at identifying what practices among ELSI outreach activities contribute most to dissemination, or to participation, in other words in which cases outreach materials spark action in terms of public participation in decisions about scientific issues.

  8. Outreach for Educators | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams forOrhan Kizilkaya, Ph.D.Our Team OurOutreach for

  9. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  10. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-06-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  11. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-01-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  12. Randall H. Landsberg Director of Education & Outreach KICP

    E-Print Network [OSTI]

    Collar, Juan I.

    ;Particles from Space Ultra High Energy Cosmic Rays · Pierre Auger Observatory (Malague, Argentina) · VERITASRandall H. Landsberg Director of Education & Outreach KICP Director of Public Outreach Dept AA & Outreach KICP Director of Public Outreach Dept AA Astronomical Visualizations from the Research Frontiers

  13. Benchmarking Outreach and Data Collection Techniques for External Portfolios

    Broader source: Energy.gov [DOE]

    This presentation contains information on Benchmarking Outreach and Data Collection Techniques for External Portfolios.

  14. www.sunearthday.nasa.gov Public Outreach

    E-Print Network [OSTI]

    Lawrence, Rick L.

    www.sunearthday.nasa.gov Public Outreach: Make andTake Activities WhatYou'll Need Solar Clock About Administration www. nasa.gov Related Websites "From Stargazers to Starships" ­ More Information on Sundials: #12 ¡Cuttobottom ofpage Discard Discard #12;Instructions (from http://www-spof.gsfc.nasa.gov/stargaze/ Sundial

  15. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  16. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  17. VIBRATION->VIBRATION ENERGY TRANSFER IN METHANE

    E-Print Network [OSTI]

    Hess, Peter

    2012-01-01

    VIBRATION ENERGY TRANSFER IN METHANE Peter Hess, A. H. Kung,Rotation Spectra of Methane, U.S. Nat'L· Tech. Inform.tret t tllll. I. INTRODUCTION Methane is a relatively simple

  18. ARM - Measurement - Methane concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticlecontent ARM Datanarrowbandspectral

  19. Better Buildings Residential Network Marketing & Outreach Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    less than 2% to 65% Ecolibrium3's Duluth Energy Efficiency Program DOE Better Buildings Residential Program Solution Center Ecolibrium3's Duluth Energy Efficiency Program...

  20. Biofuels: Microbially Generated Methane and

    E-Print Network [OSTI]

    Wood, Thomas K.

    ) and methane (CH4) from renewable biomass has the potential to con- tribute to reducing dependence on fossilBiofuels: Microbially Generated Methane and Hydrogen Michael J McAnulty, Pennsylvania State, USA James G Ferry, Pennsylvania State University, University Park, Pennsylvania, USA The production

  1. WPA Omnibus Award MT Wind Power Outreach

    SciTech Connect (OSTI)

    Brian Spangler, Manager Energy Planning and Renewables

    2012-01-30

    The objective of this grant was to further the development of Montanaâ??s vast wind resources for small, medium, and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community, and interested citizens. Through these efforts MT Dept Environmental Quality (DEQ) was able to identify development barriers, educate and inform citizens, as well as to participate in regional and national dialogue that will spur the development of wind resources. The scope of DEQâ??s wind outreach effort evolved over the course of this agreement from the development of the Montana Wind Working Group and traditional outreach efforts, to the current focus on working with the stateâ??s university system to deliver a workforce trained to enter the wind industry.

  2. Office of Technology Advancement & Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartmentSitesUMTRCA3EnergyOutreach andof

  3. Paducah Educational Outreach | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsomProgress PaducahCommunity Outreach

  4. Articles about Education Outreach | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due DateOpportunity | DepartmentEducation Outreach

  5. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  6. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Revenue Marketing & Outreach Multifamily Low-income Housing Program Sustainability Workforce Business Partners Participant Poll: Which of the following...

  7. ARM - Measurement - Methane flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Roomparticlecontent ARM Datanarrowbandspectralflux ARM

  8. 7.4 Landfill Methane Utilization

    Broader source: Energy.gov [DOE]

    A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

  9. MethaneHydrateRD_FC.indd

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof Methane Hydrate Program Annual Report to Congress

  10. Mathematics K-12 Outreach - Department of Mathematics, Purdue ...

    E-Print Network [OSTI]

    $author.value

    Mathematics K-12 Outreach. Professional Development for Teachers of Mathematics K-12. AP Summer Workshops. Purdue University hosts summer workshops ...

  11. Benchmarking Outreach and Data Collection Techniques for External Portfolios

    Broader source: Energy.gov [DOE]

    This document contains the transcript for the Benchmarking Outreach and Data Collection Techniques webinar, held on April 25, 2013.

  12. Outreach Letter Template for Clean Cities Coordinators Promoting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Letter Template for Clean Cities Coordinators Promoting the Workplace Charging Challenge ccoutreachlettertemplate-final.docx More Documents & Publications Outreach Letter...

  13. Job Title Social Worker-Youth Advocate Employer/ Agency Community Youth Outreach Alliance (CYO)

    E-Print Network [OSTI]

    Paulsen, Vern

    Job Title Social Worker-Youth Advocate Employer/ Agency Community Youth Outreach Alliance (CYO) CYO is an Alliance of Angel Reach, Montgomery County Youth Services and CASA Child Advocates of Montgomery County other duties related to the job as assigned by the Program Director and Alliance Executive Team. All

  14. RAPID/Outreach | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/Water Use/Nevada <Utah < RAPID‎ |sourceRAPID/Outreach

  15. DEP Community Outreach | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet Hanford Advisory Board6/23/2014 Rev.DEMO Project Goals

  16. Outreach Efforts | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxideUser Careers/ HumanOurOutreach Efforts Excitement

  17. ARM - ARM Education and Outreach Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae2 Publications6HomeroomARM Education and Outreach

  18. CMI Education and Outreach | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActToolsForNorth CarolinaCCI -Outreach in 2015

  19. Methane emissions from upland forest soils and vegetation

    E-Print Network [OSTI]

    Megonigal, ABB

    2008-01-01

    Crill. 2006. A source of methane from upland forests in thecontrolling atmospheric methane con- sumption by temperateand T.B. Parkin. 2001. Methane oxidation and produc- tion

  20. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01

    AND PRODUCTION OF METHANE Lawrence Berkeley LaboratoryDIGESTION AND PRODUCTION OF METHANE Kendall F. Haven MarkArrangement Kelp to Methane Processing Plant Schematic.

  1. Microbe-Metazoan interactions at Pacific Ocean methane seeps

    E-Print Network [OSTI]

    Thurber, Andrew R

    2010-01-01

    B) and those present within methane seep Euryarchaea ( PMI,margin: the influence of methane seeps and oxygen minimumisotope signatures and methane use by New Zealand cold seep

  2. Microbe-metazoan interactions at Pacific Ocean methane seeps

    E-Print Network [OSTI]

    Thurber, Andrew Reichmann

    2010-01-01

    B) and those present within methane seep Euryarchaea ( PMI,margin: the influence of methane seeps and oxygen minimumisotope signatures and methane use by New Zealand cold seep

  3. Methane and Methanotrophic Bacteria as a Biotechnological Platform

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuels from methane: a sustainable, abundant resource that does not compete with the human food chain 3 Sustainable Methane * Methane can be captured from anaerobic digestion of...

  4. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.

  5. A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry

    E-Print Network [OSTI]

    2011-01-01

    the anaerobic oxidation of methane. Environ. Microbiol. 10(Field observations of methane concentra- tions and oxidationAnaerobic oxidation of methane above gas hydrates at Hydrate

  6. Outreach to Scientists and Engineers at the Hanford Technical Library

    SciTech Connect (OSTI)

    Buxton, Karen A.

    2008-06-17

    Staff at the Hanford Technical Library has developed a suite of programs designed to help busy researchers at the Pacific Northwest National Laboratory (PNNL) make better use of library products and services. Programs include formal training classes, one-on-one consultations, and targeted email messages announcing new materials to researchers in specific fields. A staple of outreach has been to teach classes to library clients covering research tools in their fields. These classes started out in the library classroom and then expanded to other venues around PNNL. Class surveys indicated that many researchers desired a practical approach to learning rather than the traditional lecture format. The library instituted “Library Learning Day” and hosted classes in the PNNL computer training room to provide lab employees with a hands-on learning experience. Classes are generally offered at noon and lab staff attends classes on their lunch hour. Many just do not have time to spend a full hour in training. Library staff added some experimental half-hour mini classes in campus buildings geared to the projects and interests of researchers there to see if this format was more appealing. As other programs have developed librarians are teaching fewer classes but average attendance figures has remained fairly stable from 2005-2007. In summer of 2004 the library began the Traveling Librarian program. Librarians call-on groups and individuals in 24 buildings on the Richland Washington campus. Five full-time and two part-time librarians are involved in the program. Librarians usually send out email announcements prior to visits and encourage scientists and engineers to make appointments for a brief 15 minute consultation in the researcher’s own office. During the meeting lab staff learn about products or product features that can help them work more productively. Librarians also make cold calls to staff that do not request a consultation and may not be making full use of the library. Scientists and engineers who require longer sessions can arrange half-hour training appointments in the researcher’s own office or at the library. Since the program was implemented staff made 165 visits to 1249 laboratory staff including some repeat consultation requests. New acquisitions lists are sent to individuals and groups that would be interested in recent journal, database, and books purchases. These lists are topic specific and targeted to groups and individuals with an interest in the field. For example newly acquired engineering resources are targeted at engineering groups. The new acquisitions list for engineering began mid year in 2005. An analysis of circulation statistics for engineering books in fiscal year 2005, 2006, and 2007 show that circulation increased each year with 2007 circulation nearly double that of 2005. This took place when overall circulation rose in FY06 but fell slightly in FY07. Outreach strategies tailored and individualized can be effective. Offering multiple outreach options offers researchers different ways to interact with library staff and services.

  7. Better Buildings Neighborhood Program Data Marketing and Outreach

    Broader source: Energy.gov [DOE]

    Building project data for 75,110 single-family homes upgraded between July 1, 2010, and September 30, 2013, are available. Reported data for some elements have been transformed, and to protect privacy, data for some upgraded homes have been omitted.

  8. HS-STOMP: High School Student Teacher Outreach Mentorship Program*

    E-Print Network [OSTI]

    a solution for rural, remote communities that are distant from the university campus. To serve communities, university support, and ongoing work to establish sustainability in a rural community will show that whereas-STOMP) was developed. To test the HS-STOMP model, one high school physics class in rural northern New Hampshire uses

  9. Community based outreach strategies in residential energy upgrade programs

    E-Print Network [OSTI]

    McEwen, Brendan (Brendan Carl Francis)

    2012-01-01

    Home energy upgrades can reduce residential energy consumption and improve indoor conditions, thereby realizing environmental, economic, health and other social benefits. Utilities, government and other actors have established ...

  10. OSHA Training Institute Education Centers Program OSHA Outreach Trainer Course

    E-Print Network [OSTI]

    Bennett, Gisele

    Industry - OSHA #511 Occupational Safety and Health Standards for General Industry course and five years and Health Standards for the Maritime Industry Course and three years of maritime safety experience approval. OSHA Course Prerequisites · Construction - OSHA #510 Occupational Safety and Health Standards

  11. Joint Outreach Task Group Former Workers Screening Program | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergy CopyrightsRoom 1E-245CommitteeDepartmentEnergy

  12. H2 and You: The Hydrogen Education Foundation's Outreach Program

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping STD-1128-2013levelGUIDE TO|Gustave E.

  13. Home | Savannah River Ecology Laboratory Environmental Outreach Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumps AnAbout Energy.gov

  14. Outreach (Former Worker Medical Screening Program (FWP) | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHighOffice|OrderEnergy

  15. Outreach and Collaboration Program Status and Accomplishments 2008-2009 |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailableHighOffice|OrderEnergyEnergy

  16. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

  17. CMI Education and Outreach | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    educational programs for industry, K-12 and university. This includes the Energy and Minerals Field Institute (EMFI). For industry, the Mines SPACE Catalog of Short Courses and...

  18. Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions

    E-Print Network [OSTI]

    Zhang, Youxue

    Methane escape from gas hydrate systems in marine environment, and methane-driven oceanic eruptions quantities of CH4 are stored in marine sediment in the form of methane hydrate, bubbles, and dissolved CH4 in pore water. Here I discuss the various pathways for methane to enter the ocean and atmosphere

  19. POSSIBLE ROLE OF WETLANDS, PERMAFROST, AND METHANE HYDRATES IN THE METHANE

    E-Print Network [OSTI]

    Chappellaz, Jérôme

    POSSIBLE ROLE OF WETLANDS, PERMAFROST, AND METHANE HYDRATES IN THE METHANE CYCLE UNDER FUTURE the available scientific literature on how natural sources and the atmospheric fate of methane may be affected by future climate change. We discuss how processes governing methane wetland emissions, per- mafrost thawing

  20. EIA - Greenhouse Gas Emissions - Methane Emissions

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9...

  1. VIBRATION->VIBRATION ENERGY TRANSFER IN METHANE

    E-Print Network [OSTI]

    Hess, Peter

    2012-01-01

    Submitted to the Journal of Chemical Physics VIBRATIONVIBRATION ENERGY TRANSFER IN METHANE Peter Hess, A. H. Kung,L K. Fox, Analysis of Vibration-Rotation Spectra of Methane,

  2. Nonequilibrium clumped isotope signals in microbial methane

    E-Print Network [OSTI]

    Wang, David T.

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its ...

  3. Smart Grid Outreach and Communication Strategy: Next Steps -...

    Broader source: Energy.gov (indexed) [DOE]

    - EAC Recommendations for DOE Action, approved at the October 15-16, 2012 EAC Meeting. Smart Grid Outreach and Communication Strategy: Next Steps - EAC Recommendations for DOE...

  4. Smart Grid Outreach and Communication Strategy: Next Steps -...

    Office of Environmental Management (EM)

    those seeking to expand their smart grid efforts in the most cost-effective manner. By building upon its existing outreach and materially expanding its communications with a...

  5. Purdue University College of Science Mathematics K-12 Outreach ...

    E-Print Network [OSTI]

    jwoodwar

    2011-08-09

    ELECTRICITY AND. MAGNETISM. Return to: Purdue University. Phone (765) 494-9578. Jerry Woodward. FAX (765) 494-1736. Mathematics K-12 Outreach.

  6. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D'Este, Joseph R. (Pittsburgh, PA)

    1998-01-01

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  7. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  8. Methane adsorption on Devonian shales 

    E-Print Network [OSTI]

    Li, Fan-Chang

    1992-01-01

    METHANE ADSORPTION ON DEVONIAN SHALES A Thesis by FAN-CHANG LI Submitted to thc Office of Graclua4e Sturiics of texas AgiM Ulllvel'sliy in pari, ial fulfilhuent of t, hc requirements I'or t, hc degree of ii IAS'I'Elf OF SCIL'NCE December... 1992 Major Subject, : Chemical Engineering METHANE ADSORPTION ON DEVONIAN SHALES A Thesis l&y I'AN-CHANC LI Approved as to style and contcut by: A. T. 'vtratson (Chair of Commitl. ee) John C. Slattery (Member) Bruce . Hcrhcrt (Memhcr...

  9. Biogeochemistry of Microbial Coal-Bed Methane

    E-Print Network [OSTI]

    Macalady, Jenn

    Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

  10. Technical Note Methane gas migration through geomembranes

    E-Print Network [OSTI]

    PROOFS Technical Note Methane gas migration through geomembranes T. D. Stark1 and H. Choi2 1 flexible geomembranes, and to measure the methane gas transmission rate, permeance, and permeability). The measured methane gas permeability coefficient through a PVC geomembrane is 7.55 3 104 ml(STP).mil/m2.day

  11. Outreach | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (talk, demo, video, or animation) for use with public or K-12 student audiences. October 3, 2014 marks the start of the third year of the program. 2012-2013 2013 -2014 2014-2015...

  12. Education and public outreach of the Pierre Auger Observatory

    SciTech Connect (OSTI)

    Garcia, B.; /Natl. Tech. U., San Rafael; Snow, G.

    2005-08-01

    The Auger collaboration's broad mission in education, outreach and public relations is coordinated in a separate task. Its goals are to encourage and support a wide range of outreach efforts that link schools and the public with the Auger scientists and the science of cosmic rays, particle physics, and associated technologies. This report focuses on recent activities and future initiatives.

  13. Marine conservation in nonprofits: An analysis of advocacy and outreach

    E-Print Network [OSTI]

    Marine conservation in nonprofits: An analysis of advocacy and outreach campaigns. by Kyle Bruce of Thesis: Marine conservation in nonprofits: An analysis of advocacy and outreach campaigns. Examining-building around marine conservation issues, evidence suggests society has pushed itself past planetary boundaries

  14. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  15. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  16. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

  17. Methane clathrates in the Solar System

    E-Print Network [OSTI]

    Mousis, Olivier; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-01-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form in the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined.

  18. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  19. The Methane to Markets Coal Mine Methane Subcommittee meeting

    SciTech Connect (OSTI)

    2008-07-01

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  20. Articles about Education Outreach | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department ofMarketing,

  1. Activities and Outreach | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: DemonstrationProgramAcquisitionfor theActivities and

  2. The Tri--methane Rearrangement: Mechanistic and Exploratory Organic

    E-Print Network [OSTI]

    Cirkva, Vladimir

    counterpart. Scheme 1 shows the mechanism of the di--methane rearrangement and its potential diversion allylic diradical 4, closure to tri--methane product 6 may compete with 1,3-closure to di--methane product rearrangement. On direct irradiation, tris-diphenylvinyl methane 9 led to 52% of tri--methane product 11

  3. Communications and Outreach K. L. Bethea1 Team Lead/

    E-Print Network [OSTI]

    05/20/2014 Communications and Outreach K. L. Bethea1 Team Lead/ Lead Science Writer D. I. Brownlee1 Lead Science and Technology Systems K. White4, Group Leader M. Johnson4, Admin. Assistant #12;

  4. National Strategy for the Arctic Region Stakeholder Outreach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arctic Region Stakeholder Outreach Meeting: Dutch HarborUnalaska February 27, 2015 1:30PM to 3:30PM EST Unalaska, Alaska Unalaska Public Library 64 Eleanor Dr. Unalaska, AK 99685...

  5. National Strategy for the Arctic Region Stakeholder Outreach...

    Office of Environmental Management (EM)

    for the Arctic Region Stakeholder Outreach Meeting: Bethel February 25, 2015 1:30PM to 3:30PM AKST Bethel, Alaska AVCP Regional Housing Authority 411 Ptarmigan St. Bethel, AK 99559...

  6. Sandia National Laboratories: Pollution Prevention: Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of thePrograms:Mode Stirred Chamber TheEPA

  7. Reduction of ruminant methane emissions - a win-win-win opportunity for business, development, and the environment

    SciTech Connect (OSTI)

    Livingston, R.

    1997-12-31

    This paper describes research efforts of The Global Livestock Producers Program (GLPP) in establishing self-sustaining enterprises for cost-effective technologies (i.e., animal nutrition and genetic improvement) and global methane emissions reductions in developing world nations. The US Environmental Protection Agency has funded several studies to examine the possibilities of reducing ruminant methane emissions in India, Tanzania, Bangladesh, and Brazil. The results of the studies showed that: (1) many developing countries` production systems are inefficient, and (2) great potential exists for decreasing global methane emissions through increasing animal productivity. From this effort, the GLPP established livestock development projects in India, Zimbabwe, and Tanzania, and is developing projects for Bangladesh, Nepal, and Brazil. The GLPP has developed a proven methodology for assessing ruminant methane and incorporating methane emissions monitoring into viable projects.

  8. A conduit dilation model of methane venting from lake sediments

    E-Print Network [OSTI]

    Ruppel, Carolyn

    Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the ...

  9. Methane and Methanotrophic Bacteria as a Biotechnological Platform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: NewEmerging Pathways...

  10. Scientists detect methane levels three times larger than expected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

  11. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  12. RIKEN HPCI Program for Computational Life Sciences

    E-Print Network [OSTI]

    Fukai, Tomoki

    of computational resources offered by the High Performance Computing Infrastructure, with the K computer long-term support. High Performance Computing Development Education and Outreach Strategic Programs

  13. Methane Hydrate Advisory Committee Meeting

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOE Safetyof EnergyPresentation:DaisStatesEMCHIEFMeltingMethane

  14. Coalbed Methane (CBM) is natural

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartment of Energyof the CleanClient educationCoalbed Methane

  15. DOE Launches Natural Gas Infrastructure R&D Program Enhancing...

    Energy Savers [EERE]

    DOE Launches Natural Gas Infrastructure R&D Program Enhancing Pipeline and Distribution System Operational Efficiency, Reducing Methane Emissions DOE Launches Natural Gas...

  16. CMI Education and Outreach in 2013 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury Science Museum6Materials3 CMI education and outreach in

  17. CMI Education and Outreach in 2014 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury Science Museum6Materials3 CMI education and outreach in4

  18. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working in wetlandRequirements

  19. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working in wetlandRequirementsRunning

  20. Programming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working in

  1. UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE

    SciTech Connect (OSTI)

    Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

    2011-10-01

    This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

  2. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  3. SEPnet OUTREACH Exciting Physics activities on campus and in school

    E-Print Network [OSTI]

    - action lecture all about particle physics designed for 11­18 year-olds and the general public. ThroughSEPnet OUTREACH Exciting Physics activities on campus and in school #12;2 WHAT IS SEPnet? SEPnet (the South East Physics Network) is a consortium of university physics departments around the South

  4. Title: Robotics Outreach Competition II Funding number: NNA15525443C

    E-Print Network [OSTI]

    Zhou, Chongwu

    Title: Robotics Outreach Competition II Funding number: NNA15525443C Letter of Intent Receipt Date Funding: $2.5M Description: The NASA Ames Robotics Alliance Project (RAP) invites offerors to submit proposals to this NASA Cooperative Agreement Notice (CAN) to design and administer two distinct robotics

  5. Presentation to the Control Systems Security Outreach Coordination Meeting

    E-Print Network [OSTI]

    23% Oil/Gas 18% Nuclear 17% Chemical 6% Water 6% Manufacturing 2% Transportation/Shipping 2% Natural Gas 1% 0 20 40 60 80 100 120 Low Med High Control Systems Cyber Security Experience Levels #12Presentation to the Control Systems Security Outreach Coordination Meeting Presentation

  6. Activities Guide for Schools and Colleges Outreach Office

    E-Print Network [OSTI]

    Birmingham, University of

    them to the concept and vocabulary of higher education through games and activities, finishing off' aspirations and attainment in order to widen participation in Higher Education. Gail Rothnie Head of Outreach among local students in order to widen participation in higher education. We seek to provide impartial

  7. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Nome

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  8. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Barrow

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  9. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Bethel

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  10. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Fairbanks

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  11. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Anchorage

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region. The purpose of this round is to give feedback on the elements of the draft plan.

  12. DIVERSITY OUTREACH / ADVERTISING RESOURCES Staff Recruitment Services & UNMTemps

    E-Print Network [OSTI]

    New Mexico, University of

    DIVERSITY OUTREACH / ADVERTISING RESOURCES Staff Recruitment Services & UNMTemps The goal package saving departments 60% to advertise their posting on the leading Diversity job sites! Job is to be the global leader in online recruitment advertising by being an employee-driven, customer-focused organ

  13. Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet at Supercritical Pressures

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Formation of Liquid Methane-Water Mixture during Combustion of a Laminar Methane Jet in laminar jet flames of methane at elevated pressures in a high-pressure combustion chamber, we have MPa, after the laminar methane jet flame had been stabilized on a co-flow circular nozzle-type burner

  14. Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID (flame ionization)

    E-Print Network [OSTI]

    Vallino, Joseph J.

    Determination of Methane Concentration Methane will be measured on the gas chromatogram using a FID the methane between the air and water. With the syringe pointing down, eject all the water from the syringe in the syringe We will now move to the GC lab in Starr 332 to measure methane. Repeat the above procedure

  15. Final Scientific/Technical Report Solar America Initiative: Solar Outreach and Communications

    SciTech Connect (OSTI)

    Weissman, Jane M.

    2011-09-10

    The purpose of the Solar America Initiative: Solar Outreach and Communications grant was to promote better communications among stakeholders; address infrastructure barriers to solar energy; and coordinate with industry, the U.S. Department of Energy, national laboratories, states, cities and counties. The Interstate Renewable Energy Council (IREC), a non-profit organization formed in 1982, approached this grant project by establishing a wide range of communication and outreach activities including newsletters, workshops, webinars, model practices and publications; by advancing easy and fair hook-up rules to the utility grid; and by upgrading training based on industry competency standards. The Connecting to the Grid project and the Solar Codes and Standards Public Hearings project offered communication coupled with technical assistance to overcome interconnection, net metering and other regulatory and program barriers. The Workforce Development Project tackled building a strong workforce through quality training and competency assessment programs. IREC�¢����s web site, the semi-monthly state and stakeholder newsletter and the metrics report resulted in better communications among stakeholders. Workshops and phone seminars offered technical assistance and kept stakeholders up-to-date on key issues. All of these activities resulted in implementing sustainable solutions to institutional and market barriers to solar energy and getting the right information to the right people.

  16. Diffusional methane fluxes within continental margin sediments and depositional constraints on formation factor estimates

    E-Print Network [OSTI]

    Berg, Richard D.

    2008-01-01

    Goldberg, E.D. , 1976. Methane production and consumption inanaerobic oxidation of methane. Nature, 407 , 623-626.profiles indicate in situ methane flux from underlying gas

  17. Methane oxidation in the eastern tropical North Pacific Ocean water column

    E-Print Network [OSTI]

    2015-01-01

    PACK ET AL. EASTERN PACIFIC METHANE OXIDATIONA method for measuring methane oxidation rates using low-levels of C-labeled methane and accelerator mass

  18. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEEVEN BEYOND MANURE-ASSOCIATED METHANE EMISSIONS, INDUSTRIAL

  19. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues

    E-Print Network [OSTI]

    2015-01-01

    of thermogenic and biogenic methane. Science 344, 1500-1503.2014c. Clumped isotopes of methane: applications to both lowEmerging topics in marine methane biogeochemistry. Annu.

  20. Marine methane cycle simulations for the period of early global warming

    E-Print Network [OSTI]

    Elliott, S.

    2011-01-01

    aspects of atmospheric methane, Global Biogeochem. Cycles 2,Budeus, Fate of vent derived methane in seawater above theHanfland, Pathways of methane in seawater: Plume spreading

  1. Reduced methane growth rate explained by decreased Northern Hemisphere microbial sources

    E-Print Network [OSTI]

    Kai, FM; Kai, FM; Tyler, SC; Tyler, SC; Randerson, JT; Blake, DR

    2011-01-01

    rate of the atmospheric methane burden. Nature 393, 447–of global tropospheric methane. Geophys. Res. Lett. 33,M. J. in Atmospheric Methane: its Role in the Global

  2. Environmental impacts on the diversity of methane-cycling microbes and their resultant function

    E-Print Network [OSTI]

    Aronson, Emma L; Allison, Steven D; Helliker, Brent R

    2013-01-01

    on methane- consuming microbes in rice field and forestof methane- cycling microbes and their resultant function.diversity of methane-cycling microbes and their resultant

  3. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    E-Print Network [OSTI]

    Green, Michael A.

    2005-01-01

    Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

  4. Methane storage capabilities of diamond analogues

    SciTech Connect (OSTI)

    Haranczyk, M; Lin, LC; Lee, K; Martin, RL; Neaton, JB; Smit, B

    2013-01-01

    Methane can be an alternative fuel for vehicular usage provided that new porous materials are developed for its efficient adsorption-based storage. Herein, we search for materials for this application within the family of diamond analogues. We used density functional theory to investigate structures in which tetrahedral C atoms of diamond are separated by-CC-or-BN-groups, as well as ones involving substitution of tetrahedral C atoms with Si and Ge atoms. The adsorptive and diffusive properties of methane are studied using classical molecular simulations. Our results suggest that the all-carbon structure has the highest volumetric methane uptake of 280 VSTP/V at p = 35 bar and T = 298 K. However, it suffers from limited methane diffusion. Alternatively, the considered Si and Ge-containing analogies have fast diffusive properties but their adsorption is lower, ca. 172-179 VSTP/V, at the same conditions.

  5. Methane Hydrate Advisory Committee (MHAC) Meeting

    Broader source: Energy.gov (indexed) [DOE]

    to establish the resource potential of methane hydrates via a sustained, long-term production test in the Arctic. DFO Gant reminded the Committee that on May 1, the MHAC members...

  6. Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 10: Communication, Education, and Outreach

    E-Print Network [OSTI]

    M. Bardeen; D. Cronin-Hennessy; R. M. Barnett; P. Bhat; K. Cecire; K. Cranmer; T. Jordan; I. Karliner; J. Lykken; P. Norris; H. White; K. Yurkewicz

    2014-01-24

    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 10, on Communication, Education, and Outreach, discusses the resources and issues for the communication of information about particle physics to teachers and students, to scientists in other fields, to policy makers, and to the general public.

  7. Industry Outreach and Coalition Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIAL TECHNICAL ASSISTANCE Supports the deployment ofIndustry Outreach

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

  9. Recovery Act ? An Interdisciplinary Program for Education and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program for Education and Outreach in Transportation Electrification Recovery ActTransportation Electrification Education Partnership for Green Jobs and Sustainable Mobility...

  10. ENERGY STAR Portfolio Manager and Utility Benchmarking Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Adoption (Presentation) H2 and You: The Hydrogen Education Foundation's Outreach Program (Presentation) Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 3...

  11. Electric Markets Technical Assistance Program: FY1999 Grant Descriptio...

    Office of Environmental Management (EM)

    Program: FY1999 Grant Descriptions and Contact Information Public Benefits and Distributed Generation Outreach Project The National Association of Regulatory Utility...

  12. What product might a renewal of Heavy Ion Fusion development offer that competes with methane microbes and hydrogen HTGRs

    E-Print Network [OSTI]

    2006-01-01

    competes with methane microbes and hydrogen HTGRs? Grantknown. The economics of microbe methane and HTGR hydrogen

  13. U.S. Department of Energy Initiates New Outreach Efforts to Address...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Efforts to Address a Changing Wind Industry U.S. Department of Energy Initiates New Outreach Efforts to Address a Changing Wind Industry March 31, 2014 - 10:12am Addthis...

  14. U.S. Department of Energy Initiates New Outreach Efforts to Address...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Initiates New Outreach Efforts to Address a Changing Wind Industry U.S. Department of Energy Initiates New Outreach Efforts to Address a Changing Wind...

  15. Numerical modeling of methane venting from lake sediments

    E-Print Network [OSTI]

    Scandella, Benjamin P. (Benjamin Paul)

    2010-01-01

    The dynamics of methane transport in lake sediments control the release of methane into the water column above, and the portion that reaches the atmosphere may contribute significantly to the greenhouse effect. The observed ...

  16. Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

    E-Print Network [OSTI]

    Texas at Austin, University of

    Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane 1 Funded by Environmental-infrared absorption spectrum of methane at 1665.5nm. · Guided mode design in SOI wafer #12;9 Device Fabrication Steps

  17. Conversion of methane and acetylene into gasoline range hydrocarbons 

    E-Print Network [OSTI]

    Alkhawaldeh, Ammar

    2000-01-01

    Conversion of methane and acetylene to higher molecular weight hydrocarbons over zeolite catalyst (HZSM-5) was studied The reaction between methane and acetylene successfully produced high molecular weight hydrocarbons, such as naphthalene, benzene...

  18. Preliminary relative permeability estimates of methane hydrate-bearing sand

    E-Print Network [OSTI]

    Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

    2006-01-01

    through methane hydrate-bearing sand. X-ray CT was usedin partially saturated sand, 229th ACS National Meeting, SanOF METHANE HYDRATE- BEARING SAND Yongkoo Seol, Timothy J.

  19. METHANE IN SUBSURFACE: MATHEMATICAL MODELING AND COMPUTATIONAL CHALLENGES

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    hydrates in subsea sediments where the major challenge comes from implemen- tation of solubility, and mod- eling methane hydrate evolution in subsea sediments (MH). Coalbed methane is a form of natural

  20. ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

  1. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  2. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  3. Argonne's new and improved industry and business outreach | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823Laboratory works with marineNational

  4. Antonya Sanders-Promoting nanoscience integration through outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Spins Do The Twist AntiferromagneticAntonya

  5. Center for Advanced Solar Photophysics | Education and Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1,Center Organization People People

  6. Outreach Event at PS16 | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access toOctoberConsumption (MillionOther EnergyTheOur Team νOutreach

  7. Diversity & Inclusion: Outreach & Education Diversity | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB PacketDiesel pricesCenterDistributed EnergyLaboratory In the

  8. Education & Outreach Mini-Grant deadline | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science Network RequirementsEdison ElectrifiesJob Edison's

  9. CMI Education and Outreach in 2015 | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActToolsForNorth CarolinaCCI -Outreach in 2015 CMI

  10. Office of Outreach and Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|in the subsurfaceSecurity Assessments isTheOutreach and

  11. Other Education and Outreach Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEYI/O Streams forOrhan Kizilkaya, Ph.D. Title: AssistantOther

  12. NREL: State and Local Governments - Education and Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolar Energy ResearchSolar

  13. Sandia Energy - Standards and Industry Outreach/Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization and Laser(TSPEARSolarSpray

  14. Formation mechanism for polycyclic aromatic hydrocarbons in methane flames

    E-Print Network [OSTI]

    Sattler, Klaus

    applications including heating systems and gas turbines for electric power generation.62­64 The combustion of natural gas methane is a clean and efficient process. While gas turbines operating with methane pollution than other hydrocarbon fuels. Therefore, gas turbines pow- ered by methane are promising

  15. Introduction In the past two centuries, atmospheric methane

    E-Print Network [OSTI]

    Haak, Hein

    of methane in the atmosphere is controlled by oxidation, mainly in chemical reaction with the hydroxyl by the combination of pre-industrial methane concentration levels from ice cores and bottom-up estimates based important terms in the global methane budget. Anthropogenic source estimates are mainly based on socio

  16. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate

    E-Print Network [OSTI]

    Kennedy, Martin J.

    LETTERS Snowball Earth termination by destabilization of equatorial permafrost methane clathrate-gassing during post-glacial oceanic overturn7 or methane hydrate destabilization8­10 . Here we report the broadest range of oxygen isotope values yet measured in mar- ine sediments (225% to 112%) in methane seeps

  17. ORIGINAL PAPER The influence of plants on atmospheric methane

    E-Print Network [OSTI]

    Minnesota, University of

    ORIGINAL PAPER The influence of plants on atmospheric methane in an agriculture-dominated landscape on atmospheric methane (CH4) in an agriculture-dominated landscape in the Upper Mid- west of the United States role in the landscape-scale CH4 budget. Keywords Methane . Corn . Soybean . Agriculture . Land surface

  18. Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands

    E-Print Network [OSTI]

    Goddard III, William A.

    Methane Activation with Rhenium Catalysts. 1. Bidentate Oxygenated Ligands Jason M. Gonzales, Jonas, California 90089 ReceiVed July 31, 2006 Trends in methane activation have been explored for rhenium complexes proceeds with methane activation through a barrier of less than 35 kcal mol-1 . Study

  19. Carbon and Hydrogen Isotopic Effects in Microbial Methane

    E-Print Network [OSTI]

    Saleska, Scott

    6 Carbon and Hydrogen Isotopic Effects in Microbial Methane from Terrestrial Environments Jeffrey Chanton, Lia Chaser, Paul Glasser,Don Siegel Methane is the ultimate end-product of anaerobic respiration. Methane production via CO2 reduction does not consume CO2. Also, acetate can be written as 2CH20, so Eq. 6

  20. The Production of Non-Methane Hydrocarbons by Marine Plankton

    E-Print Network [OSTI]

    The Production of Non-Methane Hydrocarbons by Marine Plankton Stephanie Lyn Shaw Center for Global://web.mit.edu/cgcs/ Printed on recycled paper #12;1 The Production of Non-Methane Hydrocarbons by Marine Plankton by Stephanie of Non-Methane Hydrocarbons by Marine Plankton by Stephanie Lyn Shaw Submitted to the Department of Earth

  1. Physical Controls on Methane Ebullition from Reservoirs and Lakes

    E-Print Network [OSTI]

    Johnson, Cari

    of methane production and flux in aquatic sediments has important geochemical, geotechnical, and global; Anselmann and Crutzen, 1989; and Reeburgh et al., 1993). Because methane has the potential to con- tributePhysical Controls on Methane Ebullition from Reservoirs and Lakes JENNIFER JOYCE PAUL W. JEWELL

  2. Measurements of Methane Emissions at Natural Gas Production Sites

    E-Print Network [OSTI]

    Lightsey, Glenn

    Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why to estimates based on this work (Gg/yr) Production emissions reported in 2011 greenhouse gas inventory (annual is methane important? The role of methane in the national greenhouse gas inventory · Most recent national

  3. Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the

    E-Print Network [OSTI]

    Toohey, Darin W.

    Methane Production: In the United States cattle emit about 5.5 million metric tons of methane per year into the atmosphere. o Accounts for 20% of methane emissions from human sources. Globally cattle produce about 80 million metric tons of methane annually. o Accounts for 28% of global methane emissions

  4. Wind Powering America - Outreach in Priority States (Poster)

    SciTech Connect (OSTI)

    Kelly, M.; Flowers, L.

    2009-04-01

    WPA works with 33 State Wind Working Groups to educate stakeholders on wind energy topics and to achieve the basics needed for effective wind development in a state. WPA has accelerated outreach and communication efforts with 13 priority states: Alaska, Arizona, Indiana, Maryland, Massachussetts, Michigan, Nebraska, Nevada, North Carolina, Ohio, South Dakota, Utah, and Virginia. These states have the potential to contribute substantially to the national portfolio of wind energy but do not yet have large amounts of wind energy applications on the ground. This is often due to barriers in in-state knowledge and understanding of wind energy issues and potential that impact the policy environment and the market environment. There are common regional issues among the states, and important learning opportunities can be gained by cross-training and sharing experiences. The Regional Wind Energy Institutes (RWEIs) are train-the-trainer organizations that work to develop a cadre of in-state outreach specialists who reach out to audiences of decisionmakers (e.g., the ag community, state and local officials, utilities, regulatory bodies) to build understanding, create public acceptance, take advantage of regional synergies, and eventually to impact polices and the market environment for effective wind implementation.

  5. Reaction dynamics of atomic chlorine with methane: Importance of methane bending and torsional excitation in controlling reactivity

    E-Print Network [OSTI]

    Reaction dynamics of atomic chlorine with methane: Importance of methane bending and torsional with methane vibrationally excited in trace quantities into low-energy bending and torsional modes­7 and detailed the effect on reactivity of C­H stretch vibrational excitation.5­7 This paper concerns our most

  6. Factors influencing methane distribution in Texas ground water

    SciTech Connect (OSTI)

    Zhang, C.; Grossman, E.L.; Ammerman, J.W. [Texas A and M Univ., College Station, TX (United States)

    1998-01-01

    To determine the factors that influence the distribution of methane in Texas ground water, water samples were collected from 40 wells in east-central and central Texas aquifers. Among the chemical parameters examined, sulfate is most important in controlling methane distribution. Methane occurs in high concentration in east-central Texas only where sulfate concentration is low, supporting the hypothesis that abundant microbial methane production does not begin until sulfate is depleted. Because water samples from central Texas are high in either oxygen or sulfate, methane concentrations are low in these waters. A positive correlation between methane and sulfate in these waters indicates a different, perhaps thermogenic, origin for the trace methane. The {sup 13}C/{sup 12}C ratios of dissolved methane ranged from {minus}80{per_thousand} to {minus}21{per_thousand} in east-central Texas and {minus}41.2{per_thousand} to {minus}8.5{per_thousand} in central Texas. Low values of < {minus}50{per_thousand} in the east-central Texas ground water indicate a microbial origin for methane and are consistent with the observed sulfate-methane relationship; high {sup 13}C/{sup 12}C ratios of > {minus}31{per_thousand} likely result from bacterial methane oxidation. Similarly, methane with high {sup 13}C/{sup 12}C ratios in central Texas may reflect partial oxidation of the methane pool. Overall, water samples from both regions show a positive correlation between sulfate concentration and the {sup 13}C/{sup 12}C ratio of methane, suggesting that methane oxidation may be associated with sulfate reduction in Texas ground water.

  7. 2, 11971241, 2005 Control of methane

    E-Print Network [OSTI]

    Boyer, Edmond

    Version Interactive Discussion EGU Abstract The North Sea hosts large coal, oil and gas reservoirs of giant sulphide- oxidizing bacteria above patches of black sediments and carbonate crusts, which are exposed 10 to 50 cm above seafloor forming small reefs. These Methane-Derived Au- thigenic Carbonates

  8. Hydroelectric Reservoirs -the Carbon Dioxide and Methane

    E-Print Network [OSTI]

    Fischlin, Andreas

    Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

  9. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  10. Methane present in an extrasolar planet atmosphere

    E-Print Network [OSTI]

    Mark R. Swain; Gautam Vasisht; Giovanna Tinetti

    2008-02-07

    Molecules present in exoplanetary atmospheres are expected to strongly influence the atmospheric radiation balance, trace dynamical and chemical processes, and indicate the presence of disequilibrium effects. Since molecules have the potential to reveal the exoplanet atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide, and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jovian planets. Since these bands overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report on a near-infrared transmission spectrum of the planet HD 189733b showing the presence of methane. Additionally, a resolved water-vapour band at 1.9 microns confirms the recent claim of water in this object. On thermochemical grounds, carbon-monoxide is expected to be abundant in the upper atmosphere of hot-Jovian exoplanets; thus the detection of methane rather than carbon-monoxide in such a hot planet could signal the presence of a horizontal chemical gradient away from the permanent dayside, or it may imply an ill-understood photochemical mechanisms that leads to an enhancement of methane.

  11. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  12. Methane production from marine biomass

    SciTech Connect (OSTI)

    Chynoweth, D.P.; Srivastava, V.J.

    1980-01-01

    The overall concept of the giant brown kelp farm and conversion system, the integrated research program engaged in its study, and IGT's work on biogasification process development are discussed. A summary of results to date on anaerobic digestion will be emphasized. (MHR)

  13. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

  14. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models and to research teams for developing future gas-hydrate projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and has been documented by the project team. This Topical Report documents drilling and coring operations and other daily activities.

  15. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

  16. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  17. Coal companies hope to receive carbon credits for methane reductions

    SciTech Connect (OSTI)

    2007-09-30

    Each year, underground coal mining in the USA liberates 2.4 million tonnes of coal mine methane (CMM), of which less than 30% is recovered and used. One barrier to CMM recovery is cost. Drainage, collection, and utilization systems are complex and expensive to install. Two coal mines have improved the cost equation, however, by signing on to earn money for CMM emissions they are keeping out of the atmosphere. Jim Walter Resources and PinnOak Resources have joined a voluntary greenhouse gas reduction trading program called the Chicago Climate Exchange (CCX) to turn their avoided emissions into carbon credits. The example they set may encourage other coal mining companies to follow suit, and may bring new projects on the line that would otherwise have not gone forward. 2 refs., 1 fig.

  18. Deep oxidation of methane on particles derived from YSZ-supported Pd-Pt-(O) coatings synthesized by pulsed filtered cathodic arc

    E-Print Network [OSTI]

    Horwat, D.

    2009-01-01

    2009) Deep oxidation of methane on particles derived fromAbstract Methane conversion tests were performed on Pd, PdOFigure captions Figure 1: Methane conversion a), methane

  19. Marine methane cycle simulations for the period of early global warming

    SciTech Connect (OSTI)

    Elliott, S.; Maltrud, M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2011-01-02

    Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH{sub 4} distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics.

  20. Thermodynamic properties and diffusion of water + methane binary mixtures

    SciTech Connect (OSTI)

    Shvab, I.; Sadus, Richard J.

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.

  1. Programming Libraries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working inProgrammingProgramming Math

  2. Programming models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working inProgrammingProgramming NERSC-8

  3. Education and Outreach in the Life Sciences: Qualitative Analysis Report

    SciTech Connect (OSTI)

    Burbank, Roberta L.; John, Lisa; Mahy, Heidi A.; Rose, Shyanika W.; Weller, Richard E.; Nelson-Wally, Anjanette

    2008-10-01

    The DOE's National Nuclear Security Agency (NNSA) asked Pacific Northwest National Laboratory (PNNL) to consider the role of individual scientists in upholding safety and security. The views of scientists were identified as being a critical component of this policy process. Therefore, scientists, managers, and representatives of Institutional Biosafety Committees (IBCs) at the national labs were invited to participate in a brief survey and a set of focus groups. In addition, three focus groups were conducted with scientists, managers, and IBC representatives to discuss some of the questions related to education, outreach, and codes of conduct in further detail and gather additional input on biosecurity and dual-use awareness at the laboratories. The overall purpose of this process was to identify concerns related to these topics and to gather suggestions for creating an environment where both the scientific enterprise and national security are enhanced.

  4. Non-linear response of carbon dioxide and methane emissions to oxygen availability in a drained histosol

    E-Print Network [OSTI]

    McNicol, Gavin; Silver, Whendee L

    2015-01-01

    Keywords: Soil respiration; methane; carbon dioxide; oxygen;response of carbon dioxide and methane emissions to oxygenof carbon dioxide (CO 2 ) and methane (CH 4 ) greenhouse gas

  5. Effect of bubble size and density on methane conversion to hydrate

    SciTech Connect (OSTI)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  6. Self-Diffusion Coefficients of Methane or Ethane Mixtures with Hydrocarbons at High Pressure by NMR

    E-Print Network [OSTI]

    Dysthe, Dag Kristian

    Self-Diffusion Coefficients of Methane or Ethane Mixtures with Hydrocarbons at High Pressure by NMR in homogeneous mixtures of methane + hexane, ethane + hexane, methane + octane, ethane + octan, methane + decane, ethane + decane, and methane + hexane + benzene over the whole concentration range, at 303.2 K and 333

  7. Design Education as Community Outreach and Interdisciplinary Study

    E-Print Network [OSTI]

    Vande Zande, Robin

    2007-01-01

    Programs. Shadrin, R. (1992). Design and drawing: An applied1996). Introduction to design and technology. Cincinnati,Yelavich, S. (1997). Design for life. New York: Cooper-

  8. NETL Outreach Specialist Honored with 2014 FLC Mid-Atlantic Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL's STEM education efforts in southwestern Pennsylvania. Ms. Soukup leads NETL's K-12 educational outreach efforts by providing educators with resources to improve their skills...

  9. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    SciTech Connect (OSTI)

    Mitchell, Jonathan L.

    2012-09-10

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  10. Building America: The Advanced Whole-Home Efficiency Program (Presentation)

    SciTech Connect (OSTI)

    Engebrecht, C.

    2012-02-01

    This presentation discusses the Building America Program. This presentation discusses the background and goals of the program. A few hot topic technologies are discussed. Outreach activities are discussed as well.

  11. Process for separating nitrogen from methane using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  12. CNG Cylinder Safety - Education, Outreach, and Next Steps (Presentation)

    SciTech Connect (OSTI)

    Smith, M.; Schroeder, A.

    2014-01-01

    Mr. Schroeder discussed the work that NREL is performing for the U.S. Department of Transportation on compressed natural gas cylinder end-of-life requirements. CNG vehicles are different from most other vehicles in that the CNG fuel storage cylinders have a pre-determined lifetime that may be shorter than the expected life of the vehicle. The end-of-life date for a cylinder is based on construction and test protocols, and is specific to the construction and material of each cylinder. The end-of-life date is important because it provides a safe margin of error against catastrophic cylinder failure or rupture. The end-of-life dates range from 15 to 25 years from the date of manufacture. NREL worked to develop outreach materials to increase awareness of cylinder end-of-life dates, has provided technical support for individual efforts related to cylinder safety and removal, and also worked with CVEF to document best practices for cylinder removal or inspection after an accident. Mr. Smith discussed the engagement of the DOE Clean Fleets Partners, which were surveyed to identify best practices on managing cylinder inventories and approached to provide initial data on cylinder age in a fleet environment. Both DOE and NREL will continue to engage these fleets and other stakeholders to determine how to best address this issue moving forward.

  13. Solar America Cities Awards, Solar Energy Technologies Program, Fact Sheet, March 2009

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    This publication represents an ongoing effort to support outreach activities through the Solar America Cities program. The two-page fact sheet offers an overview of the SAC program and lists specific resources for more information on developing solar programs.

  14. Detection and Production of Methane Hydrate

    SciTech Connect (OSTI)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation.

  15. UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2004-01-01

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

  16. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"06301989"...

  17. ,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"0...

  18. Microbe-metazoan interactions at Pacific Ocean methane seeps

    E-Print Network [OSTI]

    Thurber, Andrew Reichmann

    2010-01-01

    lipid biomarkers for microbes with chemoautotrophicOF CALIFORNIA, SAN DIEGO Microbe-Metazoan Interactions atxiv xvii xviii Chapter 3. Microbes, Macrofauna, and Methane:

  19. Microbe-Metazoan interactions at Pacific Ocean methane seeps

    E-Print Network [OSTI]

    Thurber, Andrew R

    2010-01-01

    lipid biomarkers for microbes with chemoautotrophicOF CALIFORNIA, SAN DIEGO Microbe-Metazoan Interactions atxiv xvii xviii Chapter 3. Microbes, Macrofauna, and Methane:

  20. Process for separating nitrogen from methane using microchannel...

    Office of Scientific and Technical Information (OSTI)

    from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources. Authors: Tonkovich, Anna Lee 1 ;...

  1. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Energy Savers [EERE]

    the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution Controlling Methane Emissions in the...

  2. Critical Factors Driving the High Volumetric Uptake of Methane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Factors Driving the High Volumetric Uptake of Methane in Cu-3(btc)(2) Previous Next List Hulvey, Zeric; Vlaisavljevich, Bess; Mason, Jarad A.; Tsivion, Ehud; Dougherty,...

  3. Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells 

    E-Print Network [OSTI]

    West, Margrit Evelyn

    1995-01-01

    Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane...

  4. Stable carbon and hydrogen isotope measurements on Black Sea water-column methane

    E-Print Network [OSTI]

    Reeburgh, WS; Tyler, SC; Carroll, J

    2006-01-01

    M.A. , Lee, C. , 1994. Methane production during zooplanktonDickens, G.R. , 2003. A methane trigger for global warming?Quinby-Hunt, M.S. , 1994. Methane stability in seawater.

  5. Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions

    E-Print Network [OSTI]

    Holmes, C. D; Prather, M. J; Sovde, O. A; Myhre, G.

    2013-01-01

    in tropospheric ozone and methane; global 3-D model studies,hydroxyl radical and methane life- time from the Atmosphericof meteorology and emissions on methane trends, 1990–2004,

  6. Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations

    E-Print Network [OSTI]

    Kneafsey, T.

    2012-01-01

    S.S.H. , 1987. Kinetics of Methane Hydrate Decomposition,T. J. , et al. (2007), Methane Hydrate Formation andCharting the future of methane hydrate research in the

  7. Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions

    E-Print Network [OSTI]

    Schuerger, Andrew C.

    Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions Andrew C process was studied for the production of methane from carbonaceous chondrites under simulated Martian conditions. Methane evolution rates from carbonaceous chondrites were found to be positively correlated

  8. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    E-Print Network [OSTI]

    Reagan, M.

    2012-01-01

    Potential distribution of methane hydrate in the world'sisotopic evidence for methane hydrate instability duringHendy, L.L. , and R.J. Behl, Methane hydrates in quaternary

  9. Analysis of a direct methane conversion to high molecular weight hydrocarbons 

    E-Print Network [OSTI]

    Al-Ghafran, Moh'd. J.

    2000-01-01

    Methane conversion to heavier hydrocarbons was studied using electrical furnaces and a plasma apparatus. The experiments were performed with pure methane for the electrical furnace experiments while pure methane and additions such as hydrogen...

  10. Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase

    E-Print Network [OSTI]

    Kopp, Daniel Arthur

    2003-01-01

    Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

  11. SUESS ET AL.: SEA FLOOR METHANE HYDRATES AT HYDRATE RIDGE, CASCADIA MARGIN Sea Floor Methane Hydrates at Hydrate Ridge, Cascadia Margin

    E-Print Network [OSTI]

    Goldfinger, Chris

    SUESS ET AL.: SEA FLOOR METHANE HYDRATES AT HYDRATE RIDGE, CASCADIA MARGIN 1 Sea Floor Methane are exposed at the sea floor. A methane-oxidizing bacterial consortium populates the exposures of hydrate; colonies of vent macro-fauna are abundant as well. Discharge of methane from destabilized hydrate

  12. Diffusive Evolution of Gaseous and Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in SeabedHydrate Horizons of Methane in Seabed

    E-Print Network [OSTI]

    Banaji,. Murad

    Diffusive Evolution of Gaseous and Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in SeabedHydrate Horizons of Methane in Seabed Denis S. Goldobin (University of Leicester),Denis S. Goldobin"")) MethaneNetMethaneNet Early Career Workshop Early Career Workshop MiltonMilton KeynesKeynes 2929

  13. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect (OSTI)

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-26

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyomingâ??s diverse energy resources. WERIC was established in 2006 by the University of Wyomingâ??s Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis functionality via the web. It is linked into various state and federal agency spatial data servers allowing users to visualize multiple themes, such as well locations and core sage grouse areas, in one domain. Additionally, this application gives users the ability to download any of the data being displayed within the web map. The Wyoming Energy Map is the newest mapping application developed directly from this effort. With over a 100 different layers accessible via this mapping application, it is the most comprehensive Wyoming energy mapping application available. This application also provides the public with the ability to create cultural and wildlife reports based on any location throughout Wyoming and at multiple scales. The WERIC website also allows users to access links to federal, state, and local natural resource agency websites and map servers; research documents about energy; and educational information, including information on upcoming energy-relate conferences. The WERIC website has seen significant use by energy industry consultants, land management agencies, state and local decision-makers, non-governmental organizations and the public. Continued service to these sectors is desirable but some challenges remain in keeping the WERIC site viable. The most pressing issue is finding the human and financial resources to keep the site continually updated. Initially, the concept included offering users the ability to maintain the site themselves; however, this has proven not to be a viable option since very few people contributed. Without user contributions, the web page relied on already committed university staff to publish and link to the appropriate documents and web-pages. An option that is currently being explored to address this issue is development of a partnership with the University of Wyoming, School of Energy Resources (SER). As part of their outreach program, SER may be able to contribute funding for a full-time position dedicated to maintenance of WERIC.

  14. Moving Beyond Collections: Academic Library Outreach to Multicultural Student Centers

    E-Print Network [OSTI]

    Walter, Scott

    2005-01-01

    “minority cultural centers” on a college campus and the opportunities identified through that assessment activity for substantive and sustainable collaborative instructional programming between the academic library and the campus Office of Multicultural...

  15. Presentations from the March 27th - 28th Methane Hydrates Advisory...

    Office of Environmental Management (EM)

    the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate...

  16. 1870 Organometallics 1994,13,1870-1877 Mechanism and Energetics for Dehydrogenation of Methane

    E-Print Network [OSTI]

    Goddard III, William A.

    1870 Organometallics 1994,13,1870-1877 Mechanism and Energetics for Dehydrogenation of Methane also activate CHI. 1. Introduction Becauseof the enormousworldwidereservesof methane (CH4)andthe

  17. Development of Atmospheric Tracer Methods To Measure Methane Emissions from Natural Gas Facilities and Urban Areas

    E-Print Network [OSTI]

    1995-01-01

    an urban area is used with crosswind integrated tracerCWI,) and the average crosswind concen- tration of methane (directly, and the crosswind average methane concentration

  18. Kinetic Consequences of Chemisorbed Oxygen Atoms during Methane Oxidation on Group VIII Metal Clusters

    E-Print Network [OSTI]

    Chin, Ya Huei

    2011-01-01

    Chin, Y-H. ; Resasco, D.E. Catalytic Oxidation of methane onreactions in catalytic partial oxidation, reforming, andoccurrence of direct catalytic partial oxidation of methane

  19. Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions

    E-Print Network [OSTI]

    Holmes, C. D; Prather, M. J; Sovde, O. A; Myhre, G.

    2013-01-01

    of present-day and future OH and methane lifetime, Atmos.Chemistry and Physics Future methane, hydroxyl, and theirand emission parameters for future predictions C. D. Holmes

  20. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matrices inPrincipalFirmProductionWeatherizeProgram

  1. Program Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matrices inPrincipalFirmProductionWeatherizeProgram

  2. Program Managers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working in wetland PROGRAMProgramProgram

  3. Methane Stakeholder Roundtables | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing Swimming PoolCommercial IndustrialDepartment of68Methane

  4. Kentucky Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReservesReserves (BillionCoalbed Methane

  5. File:Methane.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA JumpGmbHFerris State UniversityMethane.pdf Jump

  6. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  7. PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 PYROLYSIS OF METHANE IN A SUPERSONIC, ARC-HEATED FLOW F.K. Lu,* C.M. Roseberry, J.M. Meyers and D arc pyrolysis of methane at supersonic conditions, representative of conditions in the reformer location of an aibreathing hypersonic vehicle. The rationale for arc pyrolysis is provided. Major

  8. Homogeneous Catalysis Selective Oxidation of Methane to Methanol

    E-Print Network [OSTI]

    Goddard III, William A.

    Homogeneous Catalysis Selective Oxidation of Methane to Methanol Catalyzed, with CÀH Activation (generated by dissolution[6] of Au2O3) react with methane at 1808C to selectively generate methanol (as a mixture of the ester and methanol) in high yield (Table 1, entries 1 and 2). As expected, the irreversible

  9. Engineering Methane is a major component of shale gas. Recent

    E-Print Network [OSTI]

    Chemical Engineering Methane is a major component of shale gas. Recent oversupply of shale gas has 30% of electricity from natural and shale gas, increasing from 15% in 2010. US chemical industries have begun using ethane from shale gas as a feedstock. The low methane price is expected to push its

  10. Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO2

    SciTech Connect (OSTI)

    Miller, Duane D.; Siriwardane, Ranjani

    2013-08-01

    Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion that produces sequestration-ready CO{sub 2} stream, reducing the energy penalty of CO{sub 2} separation from flue gases. An effective oxygen carrier for CLC will readily react with the fuel gas and will be reoxidized upon contact with oxygen. This study investigated the development of a CeO{sub 2}-promoted Fe{sub 2}O{sub 3}?hematite oxygen carrier suitable for the methane CLC process. Composition of CeO{sub 2} is between 5 and 25 wt % and is lower than what is generally used for supports in Fe{sub 2}O{sub 3} carrier preparations. The incorporation of CeO{sub 2} to the natural ore hematite strongly modifies the reduction behavior in comparison to that of CeO{sub 2} and hematite alone. Temperature-programmed reaction studies revealed that the addition of even 5 wt % CeO{sub 2} enhances the reaction capacity of the Fe{sub 2}O{sub 3} oxygen carrier by promoting the decomposition and partial oxidation of methane. Fixed-bed reactor data showed that the 5 wt % cerium oxides with 95 wt % iron oxide produce 2 times as much carbon dioxide in comparison to the sum of carbon dioxide produced when the oxides were tested separately. This effect is likely due to the reaction of CeO{sub 2} with methane forming intermediates, which are reactive for extracting oxygen from Fe{sub 2}O{sub 3} at a considerably faster rate than the rate of the direct reaction of Fe{sub 2}O{sub 3} with methane. These studies reveal that 5 wt % CeO{sub 2}/Fe{sub 2}O{sub 3} gives stable conversions over 15 reduction/oxidation cycles. Lab-scale reactor studies (pulsed mode) suggest the methane reacts initially with CeO{sub 2} lattice oxygen to form partial oxidation products (CO + H{sub 2}), which continue to react with oxygen from neighboring Fe{sub 2}O{sub 3}, leading to its complete oxidation to form CO{sub 2}. The reduced cerium oxide promotes the methane decomposition reaction to form C + H{sub 2}, which continue to react with Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} to form CO/CO{sub 2} and H{sub 2}O. This mechanism is supported by the characterization studies, which also suggest that the formation of carbonaceous intermediates may affect the reaction rate and selectivity of the oxygen carrier.

  11. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    SciTech Connect (OSTI)

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Grundy, W. M.; Romanishin, W.; Vilas, F. E-mail: David.Cornelison@nau.ed E-mail: wjr@nhn.ou.ed

    2010-12-10

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

  12. California’s Industrial Energy Efficiency Best Practices Technical Outreach and Training Program 

    E-Print Network [OSTI]

    Kazama, D. B.; Wong, T.; Wang, J.

    2007-01-01

    through decreased energy use. The Commission’s objective is to achieve 2 trillion British Thermal Units (Btu) per year in energy savings for California industry by the year 2010. These energy savings will come from implementation of projects that are a...

  13. Materials Research Outreach Program Symposium February 5-6, 2013, Corwin Pavilion, University Center

    E-Print Network [OSTI]

    Bigelow, Stephen

    himself of a Bell Labs supported leave at the Royal School of Mines, Imperial College London and later inclusion compounds, protein dynamics and complex oxide heterostructures. He holds three patents. Current

  14. Oak Sustainability: A Challenge Through Public Education and Outreach Programs1

    E-Print Network [OSTI]

    . Educational delivery methods are examined and potential audi- ences are defined. Sustainability is a concept in such a way that the concepts are understandable, attain- able and, in terms of education, sustainable-related educational projects. AUDIENCE IDENTIFICATION If the concept of sustainability is to be incorporated

  15. Center for Educational Partnership Early Academic Outreach Program | Upward Bound | Transfer Prep

    E-Print Network [OSTI]

    Loudon, Catherine

    license, personal transportation and auto insurance · Work study encouraged · Available to work 2: Poor Fair Good Excellent Do you have a valid California Driver's License? Yes No Drivers License County? Yes No COMPENSATION: FEDERAL Work Study Award Amount: $ Salary In the winter quarter, EAOP

  16. 1E Wind Energy Program: Technical Information and Outreach Support Final Technical Report

    SciTech Connect (OSTI)

    Arnold, Abigail

    2006-03-09

    A U.S. consensus-based collaborative formed in 1994, the National Wind Coordinating Committee (NWCC) identifies issues that affect the use of wind power, establishes dialogue among key stakeholders, and catalyzes appropriate activities to support the development of environmentally, economically, and politically sustainable commercial markets for wind power. NWCC members include representatives from electric utilities and support organizations, state legislatures, state utility commissions, consumer advocacy offices, wind equipment suppliers and developers, green power marketers, environmental organizations, agriculture and economic development organizations, and state and federal agencies.

  17. Recovery Act … An Interdisciplinary Program for Education and Outreach in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI | Department8Recovery

  18. Recovery Act … An Interdisciplinary Program for Education and Outreach in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI | Department8RecoveryTransportation

  19. Recovery Act … An Interdisciplinary Program for Education and Outreach in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |

  20. Capping methane leaks a win-win

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B LReports from the CloudGEGR-NOperatorsCan'tPowerCapitalCapping

  1. methane_hydrates | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named|Got Solitons? S andia's JuanLearnmdtest

  2. Workplace Charging Toolkit: Outreach Letter Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnumXcelofProgram and

  3. Workplace Charging Toolkit: Workshop Host Outreach Letter Template |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'SEnergyofThe HartfordUnumXcelofProgram

  4. 2012 Independent Communication and Outreach Stakeholder Satisfaction Survey

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks2 DOE Sustainability Awards 2012Department of2|

  5. Private Sector Outreach and Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices | Department ofPrioritization

  6. Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

    SciTech Connect (OSTI)

    Lamb, Peter J.

    2013-06-13

    Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

  7. Large-eddy simulation of lean hydrogenemethane turbulent premixed flames in the methane-

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Large-eddy simulation of lean hydrogenemethane turbulent premixed flames in the methane- dominated to available experimental data. The enriched flame has 20% H2 in terms of mole fraction and lies in the methane methane flame in the methane- dominated regime. Copyright ª 2014, Hydrogen Energy Publications, LLC

  8. Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Methane-to-Methanol Conversion by Gas-Phase Transition Metal Oxide Cations: Experiment and Theory-phase transition metal oxide cations can convert methane to methanol. Methane activation by MO+ is discussed reaction are also presented. Introduction The direct oxidation of methane to an easily transportable liquid

  9. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands

    E-Print Network [OSTI]

    A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands M E R R I of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature

  10. DOI: 10.1002/cctc.201300401 New Insights into the Oxidative Coupling of Methane from

    E-Print Network [OSTI]

    Senkan, Selim M.

    DOI: 10.1002/cctc.201300401 New Insights into the Oxidative Coupling of Methane from Spatially coupling of methane (OCM) is a high-temperature process involving the transformation of methane into ethane oxidation of methane to produce CO and H2 in a Pt- and Rh-coated a-Al2O3 foam.[11­13] Experiments were

  11. Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers

    E-Print Network [OSTI]

    Controls on soil methane fluxes: Tests of biophysical mechanisms using stable isotope tracers November 2006; published 4 May 2007. [1] Understanding factors that control methane exchange between soils-scale variations in soil methane emissions: (1) consumption of methane by methanotrophic bacteria, (2) quantity

  12. Global inventory of methane clathrate: sensitivity to changes in the deep ocean

    E-Print Network [OSTI]

    Global inventory of methane clathrate: sensitivity to changes in the deep ocean Bruce Buffett of methane clathrate in marine sediments, and use it to predict the sensitivity of the steady-state methane inventory to changes in the deep ocean. The methane inventory is determined by binning the seafloor area

  13. CO2 sequestration by methanogens in activated sludge for methane Nazlina Haiza Mohd Yasin a

    E-Print Network [OSTI]

    Wood, Thomas K.

    CO2 sequestration by methanogens in activated sludge for methane production Nazlina Haiza Mohd WAS have significant potential for converting the greenhouse gas CO2 into the fuel methane. Methane biofuel (methane) or other valuable products using this single carbon atom. Ó 2015 Elsevier Ltd. All

  14. Methane Planets and their Mass-Radius Relation

    E-Print Network [OSTI]

    Helled, Ravit; Vos, Eran

    2015-01-01

    Knowledge of both the mass and radius of an exoplanet allows us to estimate its mean density, and therefore, its composition. Exoplanets seem to fill a very large parameter space in terms of mass and composition, and unlike the solar-system's planets, exoplanets also have intermediate masses (~5-50 M_Earth) with various densities. In this letter, we investigate the behavior of the Mass-Radius relation for methane (CH_4) planets and show that when methane planets are massive enough (M_planet > ~15 M_Earth) the methane can dissociate and lead to a differentiated planet with a carbon core, a methane envelope, and a hydrogen atmosphere. The contribution of a rocky core to the behavior of CH_4 planet is considered as well. We also develop interior models for several detected intermediate-mass planets that could, in principle, be methane/methane-rich planets. The example of methane planets emphasizes the complexity of the Mass-Radius relation and the challenge in inferring the planetary composition uniquely.

  15. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

  16. Stakeholder Engagement and Outreach March Webinar: Wind Energy and Property Values

    Broader source: Energy.gov [DOE]

    DOE's Stakeholder Engagement and Outreach initiative will host a webinar presenting the topic of wind turbines and property values. Lead author Carol Atkinson-Palombo, assistant professor at the...

  17. Nanotechnology Research, Education, and Outreach by the Integrated Nanosystems Development Institute (INDI)

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Nanotechnology Research, Education, and Outreach by the Integrated Nanosystems Development IUPUI's Signature Center Initiative to advance nanotechnology-based systems research and spark student interest in this emerging STEM field. Innovation in the field of nanotechnology arises from

  18. Microsoft Word - 2013_BPAI5_OutreachEventSummary_Summer2013.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    property values, viewsheds and the rural quality of life in the area. This is the third year that BPA has conducted outreach at this event. Castle Rock Fair: July 18-19,...

  19. Your're Invited: Join Our Supplier Outreach Event on August 19th

    Office of Energy Efficiency and Renewable Energy (EERE)

    On August 19, 2011, the Department of Energy will be co-sponsoring a suppliers outreach event for suppliers who wish to provide services to Service Disabled Veteran Owned Businesses. This event,...

  20. Material herein originally published in: Committee on Evaluating Quality Outreach. (1996). Points of Distinction: A Guidebook for

    E-Print Network [OSTI]

    1996-01-01

    ." The "Sample Questions" guide users in the kinds of practical concerns associated with the outreach values or fail, be good or bad; the ultimate value of the projects forms the basis of any assessment Outreach and suggested in the matrix here, reprinted from the guide- book. EVALUATING QUALITY OUTREACH

  1. Methane coupling by membrane reactor. First quarterly report, 1997

    SciTech Connect (OSTI)

    Ma, Yi Hua

    1997-05-01

    The Mn-W-Na/SiO{sub 2} catalyst was studied by running the methane coupling reactions at different methane to oxygen ratios, temperatures and dilution gas flow rates. For methane to oxygen ratios less than 3, the C{sub 2} yield was almost the same; and C{sub 2} yield began to decrease as the methane to oxygen ratio was further increased. The optimal temperature observed was around 800{degrees}C, where the C{sub 2} yield reached a maximum value. Increasing the dilution gas (helium) flow rate resulted in higher C{sub 2} selectivity; however, after a certain dilution gas flow rate the C{sub 2} yield began to decrease due to a decrease in methane conversion as a result of the reduced contact time. The stability study of the catalyst showed that, after five successive run cycles, the C{sub 2} yield obtained decreased from 24% to 19% at 780 {degrees}C, and methane, oxygen and helium flow rates of 12.2, 4.1, and 44. 3 mm/min, respectively. XRD analysis showed that, after the reaction, the XRD peaks of the cristabolite and Na{sub 2}WO{sub 4} phases in the catalyst became smaller than those in the fresh catalyst, and that at least one new, unidentified phase was observed. Mn-W-Na/SiO{sub 2} catalyst was used as the methane oxidative coupling catalyst in a porous membrane reactor and its performance was compared with a packed reactor operated at similar conditions. Although the membrane reactor showed lower methane conversion at the same reaction conditions, it gave higher C{sub 2} selectivity and C{sub 2} yield at similar methane conversions.

  2. Clean Cities Education & Outreach Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |Chart ofClark Energy GroupClasses, Kits andCLEANEducation

  3. HSS Outreach and Collaboration - Progress Assessment 2008-2009

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping STD-1128-2013levelGUIDE& Collaboration Program Status

  4. Velocity of sound in solid methane near melting temperatures 

    E-Print Network [OSTI]

    Whitehead, John Martin

    1968-01-01

    . At this point, the bellows valve, E, was closed and the thermocouple pressure elements monitored for an increase in pressure; and if after several hours no increase in pressure was registered, the system was considered thoroughly out-gassed and free of leaks... PPM 0. 5 PPM Figure 3 is a block diagram of the system into which methane was admitted. From the storage cylinder the methane passed through a Hoke-Phoenix gas-ballast high purity regulator. From needle valve, A, the integrity of the methane...

  5. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    1995-08-01

    This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures US livestock operations currently employ four types of anaerobic digester technology: Slurry, plug flow, complete mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations.

  6. The electronic spectra and structure of bis(2,2'biphenylene) methane 

    E-Print Network [OSTI]

    Hofer, Owen Charles

    1965-01-01

    Transit ion Sysssetries ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ 12 Theuretioal Calculation uf Fluorene and Bis(2iiR bipheuyleme) Methane . ~ ~ ~ ~ ~ ~ 13 Theoretioal Caloulatiun and Experimental Beta Sf Flugrene and Bis(2 2 bkpMenylsne) Methane ~ ~ ~ ~ . ~ e... Calouiation of Fluorene ~ ~ . ~ ~ ~ . ~ ~ 22 P Matrix of Bis(2~2 biphemyleue) Methane ~ ~ ~ 23 P Matrix of Bis(2, 2 biphewylene) Methane (Continued) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 24 P Matrix of Fluorene ~ ~ 25 Gesssa Matrix of Bis(2, 2 biphenyleue) Methane ~ ~ 26...

  7. A survey of methane isotope abundance (14C, 13C, 2H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters

    E-Print Network [OSTI]

    2008-01-01

    Carbon pool analysis of methane hydrate regions in theAerobic production of methane in the sea, Nat. Geosci. , 1(R. Varela (2005), Fossil methane source dominates Cariaco

  8. Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data

    E-Print Network [OSTI]

    Gupta, A.

    2010-01-01

    of predicted and measured methane gas production data within the heterogeneous porous methane hydrate sample.Global Distribution of Methane Hydrate in Ocean Hydrate.

  9. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    E-Print Network [OSTI]

    2013-01-01

    al. : Changes in tropospheric hydroxyl radical and methaneal. : Changes in tropospheric hydroxyl radical and methaneal. : Changes in tropospheric hydroxyl radical and methane

  10. The effects of dissolved methane upon liquid argon scintillation light

    E-Print Network [OSTI]

    Alexander, T

    In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly ...

  11. Commodity chemicals from natural gas by methane chlorination

    SciTech Connect (OSTI)

    Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

    1987-01-01

    Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

  12. Diurnal variations in methane emission from rice plants 

    E-Print Network [OSTI]

    Laskowski, Nicholas Aaron

    2004-11-15

    with uncontrolled soil temperature than for plants with controlled soil temperature. Soil temperature at a 5 cm depth explained 46% of the emission variation. Soil temperature affects the source of methane in the soil while transpiration promotes the uptake...

  13. & CH Activation Rhodium Bis(quinolinyl)benzene Complexes for Methane

    E-Print Network [OSTI]

    Goddard III, William A.

    on using the steam-methane reformation process to convert it to syngas (a CO and H2 mixture catalytic process, many ligand frameworks have been explored for the Pt system,[6] and efforts have been

  14. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 93% methane by mass. NETL, 2012. Role of Alternative Energy Sources: Natural Gas Technology Assessment. See ICF, supra note 11 at 78, fn. 40. 39 This report is available...

  15. Biomass Gasification and Methane Digester Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In order to be eligible for the exemption, methane digester equipment must be certified by the Michigan Department of Agriculture (MDA) and the farm must be verified as compliant under the Michig...

  16. Tetrahedral Symmetry for Methane The infrared spectrum of methane shows two absorptions: a bend at 1306 cm-1 and a stretch at 3019 cm-1. Demonstrate that a

    E-Print Network [OSTI]

    Rioux, Frank

    Tetrahedral Symmetry for Methane The infrared spectrum of methane shows two absorptions: a bend symmetry for methane is consistent with this spectroscopic data. Also predict how many Raman active modes methane should have. E C3 C2 S4 A1 : x2 + y2 + z2 A2 C Td 1 1 2 3 3 1 1 1 0 0 1 1 2 1 1 1 1 0 1 1 1 1 0 1

  17. 5616 J. Phys. Chem. 1987, 91, 5616-5623 (parent methane), 105633-27-0;6,109745-47-3;6 (parent methane),

    E-Print Network [OSTI]

    Goddard III, William A.

    5616 J. Phys. Chem. 1987, 91, 5616-5623 (parent methane), 105633-27-0;6,109745-47-3;6 (parent methane), 105633-31-6;7, 109745-48-4;8, 109745-49-5;8 (parent methane), 109745-52-0;9,109745-50-8;9 (parent methane), 105633-32-7;10, 109745-53-1;11, 109745-51-9;1,2,3,4-tetrachlorobenzene,634

  18. Geothermal Money Book [Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

  19. Method of determining methane and electrochemical sensor therefor

    DOE Patents [OSTI]

    Zaromb, Solomon (Hinsdale, IL); Otagawa, Takaaki (Westmont, IL); Stetter, Joseph R. (Naperville, IL)

    1986-01-01

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  20. The Optimization of Well Spacing in a Coalbed Methane Reservoir 

    E-Print Network [OSTI]

    Sinurat, Pahala Dominicus

    2012-02-14

    , such as rank of the coal, coal composition, micropores structure, reservoir pressure, molecular properties of gas adsorbed on the internal surface of coal seam, and reservoir temperature3,7. An idealized model of coalbed methane reservoir consists of a... making process. The uncertainties include the coal density, permeability or gas content as parameters of coal properties. Each coalbed methane reservoir property will govern production performance in a certain degree. Some parameters strongly influence...

  1. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid (Menlo Park, CA)

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  2. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  3. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Dublin, OH); Litt, Robert D. (Westerville, OH); Dongming, Qiu (Dublin, OH); Silva, Laura J. (Plain City, OH); Lamont, Micheal Jay (Plain City, OH); Fanelli, Maddalena (Plain City, OH); Simmons, Wayne W. (Plain city, OH); Perry, Steven (Galloway, OH)

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  4. Field Exploration of Methane Seep Near Atqasuk

    SciTech Connect (OSTI)

    Katey Walter, Dennis Witmer, Gwen Holdmann

    2008-12-31

    Methane (CH{sub 4}) in natural gas is a major energy source in the U.S., and is used extensively on Alaska's North Slope, including the oilfields in Prudhoe Bay, the community of Barrow, and the National Petroleum Reserve, Alaska (NPRA). Smaller villages, however, are dependent on imported diesel fuel for both power and heating, resulting in some of the highest energy costs in the U.S. and crippling local economies. Numerous CH{sub 4} gas seeps have been observed on wetlands near Atqasuk, Alaska (in the NPRA), and initial measurements have indicated flow rates of 3,000-5,000 ft{sup 3} day{sup -1} (60-100 kg CH{sub 4} day{sup -1}). Gas samples collected in 1996 indicated biogenic origin, although more recent sampling indicated a mixture of biogenic and thermogenic gas. In this study, we (1) quantified the amount of CH{sub 4} generated by several seeps and evaluated their potential use as an unconventional gas source for the village of Atqasuk; (2) collected gas and analyzed its composition from multiple seeps several miles apart to see if the source is the same, or if gas is being generated locally from isolated biogenic sources; and (3) assessed the potential magnitude of natural CH{sub 4} gas seeps for future use in climate change modeling.

  5. Airborne flux measurements of methane and volatile organic compounds over the Haynesville and Marcellus shale gas production regions

    E-Print Network [OSTI]

    2015-01-01

    Greater focus needed on methane leakage from natural gasAnthropogenic emissions of methane in the United States,A. R. , et al. (2014), Methane leaks from North American

  6. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    E-Print Network [OSTI]

    Rees, E.V.L.

    2012-01-01

    Deep Ocean Field Test of Methane Hydrate Formation from aW.J. , and Mason, D.H. , Methane Hydrate Formation inNatural and Laboratory--Formed Methane Gas Hydrate. American

  7. Electrochemistry of soluble methane monooxygenase on a modified gold electrode : implications for chemical sensing in natural waters

    E-Print Network [OSTI]

    Chuang, Janet Duanping

    2005-01-01

    This work explored the possibility of using the soluble methane monooxygenase (MMO) enzyme, a three-component enzyme which catalyzes the oxygenation of methane and other substrates, to design a methane sensor for use in ...

  8. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect (OSTI)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  9. 49 new T dwarfs identified using methane imaging

    E-Print Network [OSTI]

    Cardoso, C V; Smart, R L; van Spaandonk, L; Baker, D; Smith, L C; Andrei, A H; Bucciarelli, B; Dhital, S; Jones, H R A; Lattanzi, M G; Magazzu, A; Pinfield, D J; Tinney, C G

    2015-01-01

    We present the discovery of 49 new photometrically classified T dwarfs from the combination of large infrared and optical surveys combined with follow-up TNG photometry. We used multi-band infrared and optical photometry from the UKIRT and Sloan Digital Sky Surveys to identify possible brown dwarf candidates, which were then confirmed using methane filter photometry. We have defined a new photometric conversion between CH4s - CH4l colour and spectral type for T4 to T8 brown dwarfs based on a part of the sample that has been followed up using methane photometry and spectroscopy. Using methane differential photometry as a proxy for spectral type for T dwarfs has proved to be a very efficient technique. Of a subset of 45 methane selected brown dwarfs that were observed spectroscopically, 100% were confirmed as T dwarfs. Future deep imaging surveys will produce large samples of faint brown dwarf candidates, for which spectroscopy will not be feasible. When broad wavelength coverage is unavailable, methane imaging...

  10. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  11. Control of substrate access to the active site in methane monooxygenase

    E-Print Network [OSTI]

    Lee, Seung Jae

    Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by ...

  12. Methane activation using Kr and Xe in a dielectric barrier discharge reactor

    SciTech Connect (OSTI)

    Jo, Sungkwon; Lee, Dae Hoon Kim, Kwan-Tae; Kang, Woo Seok; Song, Young-Hoon

    2014-10-15

    Methane has interested many researchers as a possible new energy source, but the high stability of methane causes a bottleneck in methane activation, limiting its practical utilization. To determine how to effectively activate methane using non-thermal plasma, the conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gases—Ar, Kr, and Xe—as additives. In addition to the methane conversion results at various applied voltages, the discharge characteristics such as electron temperature and electron density were calculated through zero-dimensional calculations. Moreover, the threshold energies of excitation and ionization were used to distinguish the dominant particle for activating methane between electrons, excited atoms, and ionized atoms. From the experiments and calculations, the selection of the additive noble gas is found to affect not only the conversion of methane but also the selectivity of product gases even under similar electron temperature and electron density conditions.

  13. New mineralogy of the outer solar system and the high-pressure behaviour of methane 

    E-Print Network [OSTI]

    Maynard-Casely, Helen E.

    2009-01-01

    This thesis will introduce the study of methane as a mineral. Along with ammonia and water, methane is one of the main planetary-forming materials in the outer solar system. The topic of `new mineralogy of the outer solar ...

  14. MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR WATER -METHANE AND WATER -ETHANE MIXTURES

    E-Print Network [OSTI]

    1 MOLECULAR SIMULATION OF PHASE EQUILIBRIA FOR WATER - METHANE AND WATER - ETHANE MIXTURES Jeffrey were used to calculate water - methane and water - ethane phase equilibria over a wide range

  15. Methane oxidation in the eastern tropical North Pacific Ocean water column

    E-Print Network [OSTI]

    2015-01-01

    of methane in distilled water and seawater, J. Chem. Eng.Paci?c (ETP) Ocean • Water column MO x strongly mitigatesD. M. Lavoie (1983), Upper water column methane geochemistry

  16. Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane the current study and the previous measurements in similar flames with methane, ethane, and propane flames

  17. Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

    E-Print Network [OSTI]

    Locatelli, R.

    A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model ...

  18. Energy Policy Seminar Series: Climate impacts of methane-emitting energy technologies

    E-Print Network [OSTI]

    Chen, Kuang-Yu

    of greenhouse gases, most notably methane and carbon dioxide, and these gases have dissimilar properties. This research finds that methane-emitting energy such as natural gas becomes significantly more carbon dioxide

  19. Final report for the Iowa Livestock Industry Waste Characterization and Methane Recovery Information Dissemination Project

    SciTech Connect (OSTI)

    Garrison, M.V.; Richard, Thomas L

    2001-11-13

    This report summarizes analytical methods, characterizes Iowa livestock wastes, determines fossil fuel displacement by methane use, assesses the market potential, and offers recommendations for the implementation of methane recovery technologies.

  20. Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Climate Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Policy Design: Interactions among Carbon Dioxide, Methane, and Urban Air Pollution Constraints by Marcus. The third case examines the benefits of increased policy coordination between air pollution constraints

  1. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania

    E-Print Network [OSTI]

    Mauzerall, Denise

    in unconventional production. Estimates of methane emissions from activities on producing oil and gas sites in unconventional oil and gas production is beinDirect measurements of methane emissions from abandoned oil and gas wells in Pennsylvania Mary

  2. TITLE: Social Movements and Sustainability: Contributions, Debates and Outreach HOSTS: Wendy Wolford and Shorna Allred

    E-Print Network [OSTI]

    Walter, M.Todd

    TITLE: Social Movements and Sustainability: Contributions, Debates and Outreach HOSTS: Wendy ­ from trade associations to communities to social movements ­ for building the adaptive capacity in the academy and social movements. This topical lunch features a guest from one of Latin America's largest

  3. NASA's Mission in Education/Public Outreach (E/PO) with Astrobiology

    E-Print Network [OSTI]

    Alexandrova, Ivana

    NASA's Mission in Education/Public Outreach (E/PO) with Astrobiology: Inspire, Engage, and Educate, astrophysics, geophysics, paleontology #12;Is there anyone else out there? #12;NASA's Educational Strategic Summer Science Camp, 2009 - 2013 #12;**NASA-sponsored E/PO activities ** Annual Astrobiology Teachers

  4. Tuesday, March 14, 2006 POSTER SESSION I: EDUCATION AND PUBLIC OUTREACH

    E-Print Network [OSTI]

    Rathbun, Julie A.

    the Wilderness of Rocks: Educational Outreach Among the Asteroids [#2208] A new middle school educational. A science design team consisting of science and education faculty has planned and begun implementation less-well-resourced schools helped plan observations at SALT by "observing" home-made "minor planets

  5. Office of Diversity and Outreach Unconscious(Bias:(Implica0ons(for(

    E-Print Network [OSTI]

    Mullins, Dyche

    Office of Diversity and Outreach Unconscious(Bias:(Implica0ons(for( Mentoring(Rela0onships((! March/ unconscious bias" and its potential impact on mentor-mentee relationships Learning Objectives Office$to$Recognize$and$Address$Unconscious$Bias$(Daisy$Grewal

  6. National Strategy for the Arctic Region Tribal Consultation and Stakeholder Outreach Session: Kotzebue

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  7. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Dutch Harbor/Unalaska

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  8. An Experience Report on Undergraduate Cyber-Security Education and Outreach

    E-Print Network [OSTI]

    An Experience Report on Undergraduate Cyber-Security Education and Outreach Michael E. Locasto Terms Security Keywords cyber security training, SISMAT 1. INTRODUCTION Organizations face a critical training in cyber security tools. At the same time, information secu- rity problems (e.g., recovering from

  9. The Public Impact of Citizen Science Outreach & Education C.A. Christian / STScI

    E-Print Network [OSTI]

    Christian, Carol C.

    The Public Impact of Citizen Science Outreach & Education C.A. Christian / STScI Wednesday, September 25, 13 #12;Citizen Science: where the line between "public" and "researcher" blurs Wednesday, email alerts, social media (facebook, twitter, hangouts) interactions, Citizen Science Watch, question

  10. Dewatering of coalbed methane wells with hydraulic gas pump

    SciTech Connect (OSTI)

    Amani, M.; Juvkam-Wold, H.C.

    1995-12-31

    The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

  11. Methanation of gas streams containing carbon monoxide and hydrogen

    DOE Patents [OSTI]

    Frost, Albert C. (Congers, NY)

    1983-01-01

    Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

  12. Timelines for mitigating methane emissions from energy technologies

    E-Print Network [OSTI]

    Roy, Mandira; Trancik, Jessika E

    2015-01-01

    Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

  13. Small Thaw Ponds: An Unaccounted Source of Methane in the Canadian High Arctic

    E-Print Network [OSTI]

    2013-01-01

    methane production between runnel and polygonal ponds using stable isotope ratios, 14 C signatures, and investigated potential

  14. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues

    E-Print Network [OSTI]

    2015-01-01

    the generation and composition of natural gas. Geochimica etcarbon isotopic composition of methane from natural gases of

  15. Benefits and hurdles for biological methane upgrading; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Fei, Qiang

    2015-09-01

    The presentation will focus on the technical hurdles for bioconversion of methane into chemical and liquid fuel.

  16. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    SciTech Connect (OSTI)

    Frank R. Rack; Tim Francis; Peter Schultheiss; Philip E. Long; Barry M. Freifeld

    2005-04-01

    The primary activities accomplished during this quarter were continued efforts to develop plans for Phase 2 of this cooperative agreement based on the evolving operational planning for IODP Expedition 311, which will use the JOIDES Resolution to study marine methane hydrates along the Cascadia margin, offshore Vancouver Island. IODP Expedition 311 has been designed to further constrain the models for the formation of marine gas hydrate in subduction zone accretionary prisms. The objectives include characterizing the deep origin of the methane, its upward transport, its incorporation in gas hydrate, and its subsequent loss to the seafloor. The main attention of this expedition is on the widespread seafloor-parallel layer of dispersed gas hydrate located just above the base of the predicted stability field. In a gas hydrate formation model, methane is carried upward through regional sediment or small-scale fracture permeability, driven by the tectonic consolidation of the accretionary prism. The upward moving methane is incorporated into the gas hydrate clathrate as it enters the methane hydrate stability zone. Also important is the focusing of a portion of the upward methane flux into localized plumes or channels to form concentrations of near-seafloor gas hydrate. The amount of gas hydrate in local concentrations near the seafloor is especially important for understanding the response of marine gas hydrate to climate change. The expedition includes coring and downhole measurements at five sites across the Northern Cascadia accretionary prism. The sites will track the history of methane in an accretionary prism from (1) its production by mainly microbiological processes over a thick sediment vertical extent, (2) its upward transport through regional or locally focused fluid flow, (3) its incorporation in the regional hydrate layer above the BSR or in local concentrations at or near the seafloor, (4) methane loss from the hydrate by upward diffusion, and (5) methane oxidation and incorporation in seafloor carbonate, or expulsion to the ocean. This expedition builds on the previous Cascadia gas hydrate drilling of ODP Leg 146 and on more recent ODP Leg 204 off Oregon. Important experiments being considered for DOE/NETL funding as part of the JOI cooperative agreement include, (1) Logging-While-Drilling/Measurements-While-Drilling (LWD/MWD), (2) Pressure Core Sampling (PCS/HYACINTH) of gas hydrate, and fluid recovery under in situ conditions, (3) X-ray CT logging of whole cores under in situ conditions, and (4) Infrared thermal imaging of whole round cores to map temperature variations resulting from the presence of hydrate. Preliminary budget estimates have been made for each of these tasks and discussions are ongoing with DOE/NETL program managers to develop a final plan that can be implemented within the constraints of the available funding and logistical considerations.

  17. Public Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unit is a series of simple, open-ended experiments. Explore topics such as light, electricity and magnetism, heat, and mechanics with a master elementary school teacher and...

  18. Public Outreach 

    E-Print Network [OSTI]

    Roberts, J.

    2011-01-01

    REGION REGIONAL PUBLIC TRANSPORTATION COORDINATION PLAN PREPARED FOR THE TEXAS DEPARTMENT OF TRANSPORTATION NOVEMBER 2006 REGIONAL PUBLIC TRANSPORTATION COORDINATION PLAN NOVEMBER 2006 PAGE 1 Table of Contents... ....................................................................4 History of Regional Coordination of Public Transportation ..............................10 REGIONAL SERVICE COORDINATION PLANNING........................................................10 Lead Agency...

  19. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect (OSTI)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production tends to decline hyperbolically. Hyperbolic decline indicates that water volume is of greatest concern early in the life of a coalbed methane project. Regional mapping indicates that gas production is controlled primarily by the ability to depressurize permeable coal seams that are natively within the steep part of the adsorption isotherm. Water production is greatest within the freshwater intrusion and below thick Cretaceous cover strata and is least in areas of underpressure. Water management strategies include instream disposal, which can be applied effectively in most parts of the basin. Deep disposal may be applicable locally, particularly where high salinity limits the ability to dispose into streams. Artificial wetlands show promise for the management of saline water, especially where the reservoir yield is limited. Beneficial use options include municipal water supply, agricultural use, and industrial use. The water may be of use to an inland shrimp farming industry, which is active around the southwestern coalbed methane fields. The best opportunities for beneficial use are reuse of water by the coalbed methane industry for drilling and hydraulic fracturing. This research has further highlighted opportunities for additional research on treatment efficiency, the origin of nitrogen compounds, organic geochemistry, biogenic gas generation, flow modeling, and computer simulation. Results of this study are being disseminated through a vigorous technology transfer program that includes web resources, numerous presentations to stakeholders, and a variety of technical publications.

  20. Detection of methane on Kuiper Belt Object (50000) Quaoar

    E-Print Network [OSTI]

    E. L. Schaller; M. E. Brown

    2007-10-18

    The near-infrared spectrum of (50000) Quaoar obtained at the Keck Observatory shows distinct absorption features of crystalline water ice, solid methane and ethane, and possibly other higher order hydrocarbons. Quaoar is only the fifth Kuiper belt object on which volatile ices have been detected. The small amount of methane on an otherwise water ice dominated surface suggests that Quaoar is a transition object between the dominant volatile-poor small Kuiper belt objects (KBOs) and the few volatile-rich large KBOs such as Pluto and Eris.

  1. ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING

    SciTech Connect (OSTI)

    Nixon, C. A.; Achterberg, R. K.; Temelso, B.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G. J.; Jennings, D. E.; Romani, P. N.; Flasar, F. M.

    2012-04-20

    The existence of methane in Titan's atmosphere ({approx}6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of {approx}20 Myr. In this paper, we examine the clues available from isotopic ratios ({sup 12}C/{sup 13}C and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH{sub 4} collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: {sup 13}CH{sub 4}, {sup 12}CH{sub 3}D, and {sup 13}CH{sub 3}D. From these we compute estimates of {sup 12}C/{sup 13}C = 86.5 {+-} 8.2 and D/H = (1.59 {+-} 0.33) Multiplication-Sign 10{sup -4}, in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH{sub 4} + C{sub 2}H {yields} CH{sub 3} + C{sub 2}H{sub 2}. Using these new measurements and predictions we proceed to model the time evolution of {sup 12}C/{sup 13}C and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH{sub 4}), we find that the present-day {sup 12}C/{sup 13}C implies that the CH{sub 4} entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.

  2. Methane production of dairy cows fed cereals with or without protein supplement

    E-Print Network [OSTI]

    consumption 26 Milk yield 29 Weight 31 Feed intake and feeding level 31 #12;2 Discussion 32 Methane productionMethane production of dairy cows fed cereals with or without protein supplement and high quality;#12;Methane production of dairy cows fed cereals with or without protein supplement and high quality silage

  3. Acetic Acid from the Carbonylation of Chloride Methane Over Rhodium Based Catalysts

    E-Print Network [OSTI]

    Bao, Xinhe

    are not commercialized yet. Current industrial technologies for the production of chemicals from methane are mainly basedAcetic Acid from the Carbonylation of Chloride Methane Over Rhodium Based Catalysts Yafang Fan Æ attracted much attention as a potential route to obtain chemicals. Methane, the main component of natural

  4. Implications of the recent fluctuations in the growth rate of tropospheric methane

    E-Print Network [OSTI]

    Post, Wilfred M.

    Implications of the recent fluctuations in the growth rate of tropospheric methane Isobel J] Global measurements show that the mixing ratio of tropo- spheric methane (CH4) increased by 1.1% (19 (0315, 0325) 1. Introduction [2] Methane (CH4) plays critical roles in the chemistry and radiative

  5. FILLING OF METHANE/AIR MIXTURE IN A TUBE FOR PULSE DETONATION ENGINES SHRAVANI DWARAKAPALLY

    E-Print Network [OSTI]

    Texas at Arlington, University of

    FILLING OF METHANE/AIR MIXTURE IN A TUBE FOR PULSE DETONATION ENGINES By SHRAVANI DWARAKAPALLY. Thanks to my god Lord Shiva for his blessings. November 18, 2011 #12;v ABSTRACT FILLING OF METHANE, was studied using the unsteady flow solver methane and air nominally at STP. Three cases were examined: (i

  6. On the volatile inventory of Titan from isotopic abundances in nitrogen and methane

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    On the volatile inventory of Titan from isotopic abundances in nitrogen and methane Jonathan I enhancement. The enrichment in deuterated methane is now much better determined than it was when Pinto et al dissociation rates of normal and deuterated methane. We utilize the improved data and models to compute initial

  7. Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California

    E-Print Network [OSTI]

    Goldstein, Allen

    Airborne observations of methane emissions from rice cultivation in the Sacramento Valley 2012; accepted 7 October 2012; published 8 December 2012. [1] Airborne measurements of methane (CH4 is not accounted for in the CARB inventory. Citation: Peischl, J., et al. (2012), Airborne observations of methane

  8. ORIGINAL ARTICLE Community structure and nutrition of deep methane-seep

    E-Print Network [OSTI]

    Levin, Lisa

    ORIGINAL ARTICLE Community structure and nutrition of deep methane-seep macrobenthos from the North Methane seeps occur at depths extending to over 7000 m along the world's continental margins signa- tures, the utilization of chemosynthetically fixed and methane-derived organic matter

  9. The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India*

    E-Print Network [OSTI]

    The variability of methane, nitrous oxide and sulfur hexafluoride in Northeast India* A.L. Ganesan of methane, nitrous oxide and sulfur hexafluoride in Northeast India A. L. Ganesan1, A. Chatterjee2, R. G-frequency atmospheric measurements of methane (CH4), nitrous oxide (N2O) and sulfur hexafluo- ride (SF6) from Darjeeling

  10. Evidence for Methane -Complexes in Reductive Elimination Reactions from TpRh(L)(CH3)H

    E-Print Network [OSTI]

    Jones, William D.

    Evidence for Methane -Complexes in Reductive Elimination Reactions from TpRh(L)(CH3)H Douglas D of methane from TpRh(L)(CH3)H in benzene/perfluorobenzene solvent mixtures is found to be dependent upon the concentration of benzene, indicating an associative component to the reductive elimination of methane. Both

  11. Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames

    E-Print Network [OSTI]

    Pitsch, Heinz

    Asymptotic Analysis of the Structure of Moderately Rich Methane-Air Flames K. SESHADRI,* X. S. BAI Republic of Germany The asymptotic structure of laminar, moderately rich, premixed methane flames structure of laminar, stoichi- ometric, and lean methane flames [1­6]. For rich flames, these analyses did

  12. Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids

    E-Print Network [OSTI]

    Mazzini, Adriano

    Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation of carbon derived from the anaerobic oxidation of methane (AOM), the oxidation of organic matter and from sea water. Methane is the dominant component among other hydrocarbon gases in these sediments. Its

  13. Changing boreal methane sources and constant biomass burning during the last termination

    E-Print Network [OSTI]

    Chappellaz, Jérôme

    LETTERS Changing boreal methane sources and constant biomass burning during the last termination. Stocker3 Past atmospheric methane concentrations show strong fluctua- tions in parallel to rapid glacial climate changes in the Northern Hemisphere1,2 superimposed on a glacial­interglacial doubling of methane

  14. Net ecosystem methane and carbon dioxide exchanges in a Lake Erie coastal marsh

    E-Print Network [OSTI]

    Chen, Jiquan

    Net ecosystem methane and carbon dioxide exchanges in a Lake Erie coastal marsh and a nearby ecosystem carbon dioxide (FCO2) and methane (FCH4) exchanges were measured by using the eddy covariance ) at the cropland. At the seasonal scale, soil temperature associated with methane (CH4) production provided

  15. Source of methane and methods to control its formation in single chamber microbial electrolysis cells

    E-Print Network [OSTI]

    Source of methane and methods to control its formation in single chamber microbial electrolysis online 31 March 2009 Keywords: Hydrogen Microbial electrolysis cell (MEC) Methane Single chamber Exoelectrogenic a b s t r a c t Methane production occurs during hydrogen gas generation in microbial electrolysis

  16. Microscopic Mechanisms and Dynamics Simulations of S3/2) Reacting with Methane

    E-Print Network [OSTI]

    1 Microscopic Mechanisms and Dynamics Simulations of O+ (4 S3/2) Reacting with Methane Lipeng Sun: The reaction O+ (4 S3/2) + methane is studied as a benchmark for developing the theory of polymer erosion by O;2 Microscopic Mechanisms and Dynamics Simulations of O+ (4 S3/2) Reacting with Methane spacecraft,3 surprisingly

  17. Author's personal copy Methane evolution from UV-irradiated spacecraft materials under simulated

    E-Print Network [OSTI]

    Schuerger, Andrew C.

    Author's personal copy Methane evolution from UV-irradiated spacecraft materials under simulated a b s t r a c t Fifteen organic and three inorganic compounds were tested for methane (CH4) evolution methane at the min- imum detection level 0.5 ppm, or above. In contrast, all organic compounds evolved

  18. Small-scale methane dispersion modelling for possible plume sources on the surface of Mars

    E-Print Network [OSTI]

    Strong, Kimberly

    Small-scale methane dispersion modelling for possible plume sources on the surface of Mars K. S 2012; published 11 October 2012. [1] Intense interest in the characteristics of a methane source Laboratory and future landers and orbiters will be tasked with understanding the sources of methane

  19. ADVECTION OF METHANE IN THE HYDRATE ZONE: MODEL, ANALYSIS AND EXAMPLES

    E-Print Network [OSTI]

    ADVECTION OF METHANE IN THE HYDRATE ZONE: MODEL, ANALYSIS AND EXAMPLES MALGORZATA PESZYNSKA, RALPH for the advective-diffusive trans- port of methane in liquid phase through sediment with the accompanying formation and disso- lution of methane hydrate. This free-boundary problem has a unique generalized solution in L1

  20. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions

    E-Print Network [OSTI]

    Pace, Michael L.

    Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions September 2007; revised 3 February 2008; accepted 28 February 2008; published 24 May 2008. [1] Methane (CH4 clear. We quantified internal cycling and methane emissions in three lakes during summer stratification

  1. Tricaine methane-sulfonate (MS-222) application in fish anaesthesia By N. Topic Popovic1

    E-Print Network [OSTI]

    Boynton, Walter R.

    Review Tricaine methane-sulfonate (MS-222) application in fish anaesthesia By N. Topic Popovic1 , I, Croatia Summary Tricaine methane-sulfonate (MS-222) is one of the most widely used anaesthetics in aquaculture and experimental procedures. Tricaine methane-sulphonate (MS-222), C9H11O2N + CH3SO3H, also known

  2. METHANE AND ETHANE ON THE BRIGHT KUIPER BELT OBJECT 2005 FY9 M. E. Brown,1

    E-Print Network [OSTI]

    Brown, Michael E.

    METHANE AND ETHANE ON THE BRIGHT KUIPER BELT OBJECT 2005 FY9 M. E. Brown,1 K. M. Barkume,1 G. A indicates the clear presence of ethane, an expected product of UV photolysis of methane. No evidence for N2 of 2005 FY9 that leads to large methane grains, abundant sites for ethane formation through UV photolysis

  3. Electronic spectroscopy of intermediates involved in the conversion of methane to methanol by FeO

    E-Print Network [OSTI]

    Metz, Ricardo B.

    Electronic spectroscopy of intermediates involved in the conversion of methane to methanol by Fe.1063/1.1448489 I. INTRODUCTION The direct oxidation of methane to an easily transport- able liquid such as methanol process and as the simplest model for alkane oxidation.1,2 Although no direct, efficient methane­methanol

  4. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate

    E-Print Network [OSTI]

    Notre Dame, University of

    production rate minus potential methane oxidation) and the hydrostatic pressure which has to be overcome 2004. [1] Lake sediments are ``hot spots'' of methane production in the landscape. However, regional. Present evidence from lakes suggests that the majority of methane production occurs in anoxic sediment

  5. ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL

    E-Print Network [OSTI]

    potential of coalbed methane production using carbon dioxide sequestration in the Central Appalachian BasinANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL dioxide emissions from power plants, while enhancing the recovery of coalbed methane. Injected carbon

  6. Generating Methane Gas From Manure Charles D. Fulhage, Dennis Sievers and James R. Fischer

    E-Print Network [OSTI]

    Laughlin, Robert B.

    potential The immediate and obvious benefit from methane production is the energy value of the gas itself the pH, inhibiting the methane bacteria and stopping gas production. To help buffer the system against of livestock manure. To avoid the problem, loading rates must be carefully controlled. Methane production

  7. Mars long has been considered a cold, dead planet.However,recent reports of methane

    E-Print Network [OSTI]

    Manning, Craig

    investigations and flight missions. Terrestrial Methane Formation: Potential Analogues for Martian Processes Biogenic methane production results from extant biological activity (microbial metha- nogenesis) as well instance, methane is the meta- bolic by-product of a single related group of microorganisms known

  8. Methane Production in Microbial Reverse-Electrodialysis Methanogenesis Cells (MRMCs) Using Thermolytic Solutions

    E-Print Network [OSTI]

    . These results show that the MRMC has significant potential for production of nearly pure methane using lowMethane Production in Microbial Reverse-Electrodialysis Methanogenesis Cells (MRMCs) Using Supporting Information ABSTRACT: The utilization of bioelectrochemical systems for methane production has

  9. Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge Reactor

    E-Print Network [OSTI]

    Mallinson, Richard

    Production of Organic Oxygenates in the Partial Oxidation of Methane in a Silent Electric Discharge to convert methane into useful products such as higher hydrocarbons, synthesis gas, and organic oxygenate is important for a process to have commercial potential. Thus, this study examines the effect methane

  10. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production

    E-Print Network [OSTI]

    Anaerobic digestion for methane generation and ammonia reforming for hydrogen production to the methane potential alone indicated that at a C:N ratio of 17, the energy output was greater for the ADBH is converted to carbon dioxide and methane, and organic nitrogen is converted to ammonia. Generally, ammonia

  11. Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing

    E-Print Network [OSTI]

    Sessions, Alex L.

    Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing Running Title: Novel Methane, Ethane, and Propane Oxidizing Bacteria Section incubating sediment with 13 C-labeled methane, ethane, or propane, we5 confirmed the incorporation of 13 C

  12. Programming Tuning Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working inProgrammingProgramming

  13. Programming on Franklin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working inProgrammingProgramming

  14. Programs & User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-Rich Matricesstudents working inProgrammingProgrammingScience

  15. Sun-Earth Connections: Instructional Materials for Scientists, pp. 1-14, UCAR Education and Outreach (unpublished)

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Sun-Earth Connections: Instructional Materials for Scientists, pp. 1-14, UCAR Education and Outreach (unpublished) Teaching Time: One 45-minute period Materials for the Facilitator · Dynamic Sun PowerPoint (available from UCAR Education and Outreach) · Transparency of Two Views of the Sun

  16. Formation and retention of methane in coal. Final report

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  17. Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

    E-Print Network [OSTI]

    Texas at Austin, University of

    Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane 1 Funded by Environmental. of Electrical and Computer Engineering, University of Texas, Austin #12;Motivation No other chip based optical Similar to: Doping of Semiconductor 3 #12;4 Photonic Crystal Bio-Chemical Sensors Loncar et al, Appl. Phys

  18. Renewed growth of atmospheric methane R. G. Prinn,1

    E-Print Network [OSTI]

    use these data, along with an inverse method applied to a simple model of atmospheric chemistry this observation further using a simple model of atmospheric transport and chemistry to attempt to quantifyRenewed growth of atmospheric methane M. Rigby,1 R. G. Prinn,1 P. J. Fraser,2 P. G. Simmonds,3 R. L

  19. Gettering of hydrogen and methane from a helium gas mixture

    SciTech Connect (OSTI)

    Cárdenas, Rosa Elia; Stewart, Kenneth D.; Cowgill, Donald F.

    2014-11-01

    In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup ®} getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650?°C to decompose the methane, and the second at 110?°C to remove the hydrogen. This approach eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.

  20. Variability of the methane trapping in martian subsurface clathrate hydrates

    E-Print Network [OSTI]

    Caroline Thomas; Olivier Mousis; Sylvain Picaud; Vincent Ballenegger

    2008-10-23

    Recent observations have evidenced traces of methane CH4 heterogeneously distributed in the martian atmosphere. However, because the lifetime of CH4 in the atmosphere of Mars is estimated to be around 300-600 years on the basis of photochemistry, its release from a subsurface reservoir or an active primary source of methane have been invoked in the recent literature. Among the existing scenarios, it has been proposed that clathrate hydrates located in the near subsurface of Mars could be at the origin of the small quantities of the detected CH4. Here, we accurately determine the composition of these clathrate hydrates, as a function of temperature and gas phase composition, by using a hybrid statistical thermodynamic model based on experimental data. Compared to other recent works, our model allows us to calculate the composition of clathrate hydrates formed from a more plausible composition of the martian atmosphere by considering its main compounds, i.e. carbon dioxyde, nitrogen and argon, together with methane. Besides, because there is no low temperature restriction in our model, we are able to determine the composition of clathrate hydrates formed at temperatures corresponding to the extreme ones measured in the polar caps. Our results show that methane enriched clathrate hydrates could be stable in the subsurface of Mars only if a primitive CH4-rich atmosphere has existed or if a subsurface source of CH4 has been (or is still) present.

  1. GLOBAL SOURCES OF METHANE AND THE BENEFITS OF

    E-Print Network [OSTI]

    Bateman, Ian J.

    ; the flaring of natural gas in oil production; in industrial processes and by the inefficient combustion (ESRC). ISSN 0967-8875 #12;Abstract Methane is an important greenhouse gas, the abatement of which-benefit analysis, such as the discount rate, the future trends in agricultural prices and the value of global

  2. Methane-derived hydrocarbons produced under upper-mantle conditions

    SciTech Connect (OSTI)

    Kolesnikov, Anton; Kutcherov, Vladimir G.; Goncharov, Alexander F.

    2009-08-13

    There is widespread evidence that petroleum originates from biological processes. Whether hydrocarbons can also be produced from abiogenic precursor molecules under the high-pressure, high-temperature conditions characteristic of the upper mantle remains an open question. It has been proposed that hydrocarbons generated in the upper mantle could be transported through deep faults to shallower regions in the Earth's crust, and contribute to petroleum reserves. Here we use in situ Raman spectroscopy in laser-heated diamond anvil cells to monitor the chemical reactivity of methane and ethane under upper-mantle conditions. We show that when methane is exposed to pressures higher than 2 GPa, and to temperatures in the range of 1,000-1,500 K, it partially reacts to form saturated hydrocarbons containing 2-4 carbons (ethane, propane and butane) and molecular hydrogen and graphite. Conversely, exposure of ethane to similar conditions results in the production of methane, suggesting that the synthesis of saturated hydrocarbons is reversible. Our results support the suggestion that hydrocarbons heavier than methane can be produced by abiogenic processes in the upper mantle.

  3. Renewable Energy 32 (2007) 12431257 Methane generation in landfills

    E-Print Network [OSTI]

    Columbia University

    2007-01-01

    University, New York, NY 10027, USA Received 1 July 2005; accepted 15 April 2006 Available online 2 AugustRenewable Energy 32 (2007) 1243­1257 Methane generation in landfills Nickolas J. Themelis energy source, to generate electricity or heat. As of 2001, there were about one thousand landfills

  4. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  5. RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    RICH METHANE PREMIXED LAMINAR FLAMES DOPED BY LIGHT UNSATURATED HYDROCARBONS PART I: ALLENE developed in our laboratory for the reactions of C3-C4 unsaturated hydrocarbons. The main reaction pathways2007 #12;3 INTRODUCTION Soots and polyaromatic hydrocarbons (PAH), which are present in the exhaust gas

  6. Anaerobic Methane Oxidation in a Landfill-Leachate Plume

    E-Print Network [OSTI]

    Grossman, Ethan L.

    Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I.3 to 11 m that were oriented parallel to the flow path. The center of the leachate plume was characterized of leachate contamination into underlying aquifers. Landfills are the U.S.'s largest anthropogenic source

  7. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01

    Municipal Solid Waste-Sewage Sludge. b 4.15 SCF CH 4 / cu ftUP I j methane 31.5 scf sludge 18.61b water 161b Btu/scfsewer 65.3 lb ( 7.9 gal) sludge ash 1.74 lb stack emissions

  8. Direct Biological Conversion of Electrical Current into Methane by

    E-Print Network [OSTI]

    Building, The Pennsylvania State University, University Park, Pennsylvania 16802 Received December 12, 2008 to a plain carbon cathode where only small amounts of hydrogen gas could be produced. Both produced from renewable energy sources (such as wind, solar, or biomass) into a biofuel (methane) as well

  9. Active methane venting observed at giant pockmarks along the U.S. mid-Atlantic shelf break

    E-Print Network [OSTI]

    Eustice, Ryan

    Active methane venting observed at giant pockmarks along the U.S. mid-Atlantic shelf break Kori R the edge of the mid-Atlantic continental shelf confirms that methane is actively venting at the site. Dissolved methane concentrations, which were measured with a commercially available methane sensor (METS

  10. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective

    E-Print Network [OSTI]

    McGuire, A. David

    Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4 dynamics (3309); 1890 Hydrology: Wetlands; KEYWORDS: methane emissions, methane oxidation, permafrost

  11. Smart Grid Outreach and Communication Strategy: Next Steps - EAC Recommendations for DOE (October 17, 2012)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4 »DigitalanDepartmentSecondarySmart Grid Outreach and

  12. Addressing Barriers to Wind Energy by Creating Consensus through Information Dissemination and Outreach: Final Report

    SciTech Connect (OSTI)

    Andrew Perchlik

    2003-02-28

    OAK B188 The sixteen month project to address barriers to the development of VT wind energy was successful. The project built consensus on wind energy siting issues through four stakeholder workshops and engaged Vermonters on wind energy issues with a wind energy information dissemination and outreach campaign. There is still a great need for more outreach and accurate wind energy information dissemination on the local level where informed discussion on the cost and benefits of wind energy projects needs to be held. The stakeholder workshop framework and outreach tools that were created by this project will be helpful tools as state agencies, wind developers, non-profit organizations and concerned citizens (in Vermont and around the country) continue to discuss wind energy projects and the role of wind energy in comprehensive energy plans. Given the success of this project it is recommended that other states replicate this project as a way to help overcome the barriers to win d energy development. This report provides: an overview of the project accomplishments, detailed quarter by quarter descriptions of the project activities, activities spawned by the project, conclusions, and copies of all the documents created during the project as attachments (No.1-8).

  13. Controls on methane concentration and stable isotope (? 2H-CH4 and ? 13C-CH4) distributions in the water columns of the Black Sea and Cariaco Basin

    E-Print Network [OSTI]

    Kessler, JD; Kessler, JD; Reeburgh, WS; Tyler, SC

    2006-01-01

    99. Reeburgh, W. S. (1976), Methane consumption in CariacoW. S. (1980), Anaerobic methane oxidation: Rate depthW. S. (2003), Global methane biogeochemistry, in Treatise on

  14. An evaluation of Becoming an Outdoors-Woman (BOW) program effectiveness 

    E-Print Network [OSTI]

    Welch, Hilary H.

    2005-02-17

    The Texas Parks and Wildlife Department (TPWD) offers over 25 different outdoor recreational and outreach educational programs that target different audiences and utilize different types of delivery systems. This study was an evaluation...

  15. Methane storms as a driver of Titan's dune orientation

    E-Print Network [OSTI]

    Charnay, Benjamin; Rafkin, Scot; Narteau, Clément; Lebonnois, Sébastien; Rodriguez, Sébastien; Pont, Sylvain Courrech du; Lucas, Antoine

    2015-01-01

    Titan's equatorial regions are covered by eastward propagating linear dunes. This direction is opposite to mean surface winds simulated by Global Climate Models (GCMs), which are oriented westward at these latitudes, similar to trade winds on Earth. Different hypotheses have been proposed to address this apparent contradiction, involving Saturn's gravitational tides, large scale topography or wind statistics, but none of them can explain a global eastward dune propagation in the equatorial band. Here we analyse the impact of equinoctial tropical methane storms developing in the superrotating atmosphere (i.e. the eastward winds at high altitude) on Titan's dune orientation. Using mesoscale simulations of convective methane clouds with a GCM wind profile featuring superrotation, we show that Titan's storms should produce fast eastward gust fronts above the surface. Such gusts dominate the aeolian transport, allowing dunes to extend eastward. This analysis therefore suggests a coupling between superrotation, tro...

  16. Catalysts for conversion of methane to higher hydrocarbons

    DOE Patents [OSTI]

    Siriwardane, Ranjani V. (Morgantown, WV)

    1993-01-01

    Catalysts for converting methane to higher hydrocarbons such as ethane and ethylene in the presence of oxygen at temperatures in the range of about 700.degree. to 900.degree. C. are described. These catalysts comprise calcium oxide or gadolinium oxide respectively promoted with about 0.025-0.4 mole and about 0.1-0.7 mole sodium pyrophosphate. A preferred reaction temperature in a range of about 800.degree. to 850.degree. C. with a preferred oxygen-to-methane ratio of about 2:1 provides an essentially constant C.sub.2 hydrocarbon yield in the range of about 12 to 19 percent over a period of time greater than about 20 hours.

  17. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    Lusk, P.

    1994-12-01

    One manure management system provides not only pollution prevention but also converts a manure management problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations. Finally, anaerobic digestion has considerable potential beyond agribusiness. Examples of digesters currently employed by other industries are provided.

  18. Seismic-Scale Rock Physics of Methane Hydrate

    SciTech Connect (OSTI)

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  19. The Utility Battery Storage Systems Program Overview

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    Utility battery energy storage allows a utility or customer to store electrical energy for dispatch at a time when its use is more economical, strategic, or efficient. The UBS program sponsors systems analyses, technology development of subsystems and systems integration, laboratory and field evaluation, and industry outreach. Achievements and planned activities in each area are discussed.

  20. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  1. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon Pollution |of Energy New Methane Hydrate

  2. Methane Hydrate R&D | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May 28 WebinarProtectMessageFY 2010 Methane

  3. Methane ignition catalyzed by in situ generated palladium nanoparticles

    SciTech Connect (OSTI)

    Shimizu, T.; Abid, A.D.; Poskrebyshev, G.; Wang, H. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089 (United States); Nabity, J.; Engel, J.; Yu, J. [TDA Research, Inc., 12345 W. 52nd Ave, Wheat Ridge, CO 80033 (United States); Wickham, D. [Reaction Systems, LLC, 19039 E. Plaza Drive, Suite 290, Parker, CO 80134 (United States); Van Devener, B.; Anderson, S.L. [Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (United States); Williams, S. [Air Force Research Laboratory, Mail Stop RZA, 1950 Fifth Street, WPAFB, OH 45433 (United States)

    2010-03-15

    Catalytic ignition of methane over the surfaces of freely-suspended and in situ generated palladium nanoparticles was investigated experimentally and numerically. The experiments were conducted in a laminar flow reactor. The palladium precursor was a compound (Pd(THD){sub 2}, THD: 2,2,6,6-tetramethyl-3,5-heptanedione) dissolved in toluene and injected into the flow reactor as a fine aerosol, along with a methane-oxygen-nitrogen mixture. For experimental conditions chosen in this study, non-catalytic, homogeneous ignition was observed at a furnace temperature of {proportional_to}1123 K, whereas ignition of the same mixture with the precursor was found to be {proportional_to}973 K. In situ production of Pd/PdO nanoparticles was confirmed by scanning mobility, transmission electron microscopy and X-ray photoelectron spectroscopy analyses of particles collected at the reactor exit. The catalyst particle size distribution was log-normal. Depending on the precursor loading, the median diameter ranged from 10 to 30 nm. The mechanism behind catalytic ignition was examined using a combined gas-phase and gas-surface reaction model. Simulation results match the experiments closely and suggest that palladium nanocatalyst significantly shortens the ignition delay times of methane-air mixtures over a wide range of conditions. (author)

  4. Method for in situ biological conversion of coal to methane

    DOE Patents [OSTI]

    Volkwein, Jon C. (Pittsburgh, PA)

    1995-01-01

    A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.

  5. Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2008-08-11

    The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

  6. ARMs Climate Change Educational Outreach on the North Slope of Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotal OzoneStudy of the Probability of-DropletARM's

  7. NETL Outreach Specialist Honored with 2014 FLC Mid-Atlantic Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact: Janet Lambert Reviewed: 3/5/14 Page 1 ofOutreach

  8. SciDAC Outreach Center Participates in "Materials for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-Contest Sign In About | Careers

  9. Methane activation using noble gases in a dielectric barrier discharge reactor

    SciTech Connect (OSTI)

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo; Song, Young-Hoon

    2013-08-15

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gases—He, Ne, and Ar—as additives. The empirical results obtained clearly indicate that methane activation is considerably affected by thy type of noble gas used. Through 0-D calculations, the discharge parameters inside the reactor, i.e., electron temperature and electron density, are estimated using experiment results. A comparison of the discharge characteristics and experimental results shows that the electron temperature is an important factor in achieving high methane activation and the mixture with Ar gas shows the highest methane conversion. These results are constructed using the mechanisms of energy and charge transfer from excited and ionized noble gas atoms to methane molecules, considering the number density of active atoms of noble gases. Finally, electron temperatures obtained for gas mixtures having different reactant compositions and concentrations are analyzed to estimate methane activation.

  10. Approved Program Proposals (AP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicantOfficePlasmaApproved Program

  11. Your First Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named| Princeton Plasma Physics LabYour First Program

  12. Beryllium Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & InspectionsBeryllium and Chronic Beryllium DiseaseFAQsProgram

  13. Sandia Energy - Assessment Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificApplied TurbulentAssessment Program Home

  14. Production and Ebullition of Methane in a Shallow Eutrophic Lake (Lake Elsinore, CA)

    E-Print Network [OSTI]

    Martinez, Denise Nicole

    2012-01-01

    Methane release through resuspension of littoral sediment.its susceptibility to resuspension as well as its particleet al. , 2011). Sediment resuspension brought about through

  15. Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions

    E-Print Network [OSTI]

    Holmes, C. D; Prather, M. J; Sovde, O. A; Myhre, G.

    2013-01-01

    changes in tropospheric hydroxyl radical and methane life-of Global Atmospheric Hydroxyl, Science, 331, 67–69, doi:variability of atmospheric hydroxyl radicals over the past

  16. Diffusional methane fluxes within continental margin sediments and depositional constraints on formation factor estimates

    E-Print Network [OSTI]

    Berg, Richard D.

    2008-01-01

    subsurface life in deep-sea sediments. Science , 295 , 2067-consumption in anoxic marine sediments. Geology , 4 , 297-oxidation in methane-rich sediments overlying the Blake

  17. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

  18. Microbial diversity and dynamics during methane production from municipal solid waste

    SciTech Connect (OSTI)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-10-15

    Highlights: ? Similar bacterial communities developed following different start-up operation. ? Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ? Created correlations between methanogens, methane yield, and available substrate. ? Predominant bacteria identified with syntrophic polysaccharide degraders. ? Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.

  19. Mitigation options for methane emissions from rice fields in the Philippines

    SciTech Connect (OSTI)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R.

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  20. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01

    in relation to the electric vehicle. Science Technology &Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whymarket for hybrid electric vehicles. Transportation Research