National Library of Energy BETA

Sample records for methane nitrous oxide

  1. Closing the Gaps in the Budgets of Methane and Nitrous Oxide

    SciTech Connect (OSTI)

    Khalil, Aslam; Rice, Andrew; Rasmussen, Reinhold

    2013-11-22

    Together methane and nitrous oxide contribute almost 40% of the estimated increase in radiative forcing caused by the buildup of greenhouse gases during the last 250 years (IPCC, 2007). These increases are attributed to human activities. Since the emissions of these gases are from biogenic sources and closely associated with living things in the major terrestrial ecosystems of the world, climate change is expected to cause feedbacks that may further increase emissions even from systems normally classified as natural. Our results support the idea that while past increases of methane were driven by direct emissions from human activities, some of these have reached their limits and that the future of methane changes may be determined by feedbacks from warming temperatures. The greatly increased current focus on the arctic and the fate of the carbon frozen in its permafrost is an example of such a feedback that could exceed the direct increases caused by future human activities (Zimov et al. 2006). Our research was aimed at three broad areas to address open questions about the global budgets of methane and nitrous oxide. These areas of inquiry were: The processes by which methane and nitrous oxide are emitted, new sources such as trees and plants, and integration of results to refine the global budgets both at present and of the past decades. For the process studies the main research was to quantify the effect of changes in the ambient temperature on the emissions of methane and nitrous oxide from rice agriculture. Additionally, the emissions of methane and nitrous oxide under present conditions were estimated using the experimental data on how fertilizer applications and water management affect emissions. Rice was chosen for detailed study because it is a prototype system of the wider terrestrial source, its role in methane emissions is well established, it is easy to cultivate and it represents a major anthropogenic source. Here we will discuss the highlights of the

  2. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland

    SciTech Connect (OSTI)

    Harris, Eliza; Zeyer, Kerstin; Kegel, Rainer; Müller, Beat; Emmenegger, Lukas; Mohn, Joachim

    2015-01-15

    plants with SNCR, which had considerable N{sub 2}O emissions, was measured using quantum cascade laser spectroscopy. The isotopic site preference of N{sub 2}O – the enrichment of {sup 14}N{sup 15}NO relative to {sup 15}N{sup 14}NO – was found to be 17.6 ± 0.8‰, with no significant difference between the two plants. Comparison to previous studies suggests SP of 17–19‰ may be characteristic for N{sub 2}O produced from SNCR. Methane emissions were found to be insignificant, with a maximum emission factor of 2.5 ± 5.6 g CH{sub 4} t{sup −1} (0.2 ± 0.5 g CH{sub 4} GJ{sup −1}), which is expected due to high incinerator temperatures and efficient combustion.

  3. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria

    SciTech Connect (OSTI)

    Jiang, Q.Q.; Bakken, L.R.

    1999-06-01

    Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N{sub 2}O production and methane oxidation in soils. Most knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. The authors have conducted a comparative study of levels of aerobic N{sub 2}O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N{sub 2}O during aerobic growth was remarkably constant for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N{sub 2}O when they were supplied with ample amounts of substrates, but the fractions rose sharply when they were restricted by a low pH or substrate limitation. Phosphate buffer doubled the N{sub 2}O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH{sub 4} oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH{sub 4} in soils.

  4. EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions

    Gasoline and Diesel Fuel Update (EIA)

    4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13

  5. Measuring and modeling the lifetime of nitrous oxide including...

    Office of Scientific and Technical Information (OSTI)

    Published Article: Measuring and modeling the lifetime of nitrous oxide including its variability: NITROUS OXIDE AND ITS CHANGING LIFETIME Prev Next Title: Measuring and ...

  6. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: Strong N{sub 2}O hotspots at the working face

    SciTech Connect (OSTI)

    Harborth, Peter; Fu, Roland; Mnnich, Kai; Flessa, Heinz; Fricke, Klaus

    2013-10-15

    Highlights: ? First measurements of N{sub 2}O and CH{sub 4} emissions from an MBT landfill. ? High N{sub 2}O emissions from recently deposited material. ? N{sub 2}O emissions associated with aeration and the occurrence of nitrite and nitrate. ? Strong negative correlation between CH{sub 4} and N{sub 2}O production activity. - Abstract: Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH{sub 4}) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH{sub 4} and nitrous oxide (N{sub 2}O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N{sub 2}O emissions of 20200 g CO{sub 2} eq. m{sup ?2} h{sup ?1} magnitude (up to 428 mg N m{sup ?2} h{sup ?1}) were observed within 20 m of the working face. CH{sub 4} emissions were highest at the landfill zone located at a distance of 3040 m from the working face, where they reached about 10 g CO{sub 2} eq. m{sup ?2} h{sup ?1}. The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N{sub 2}O was 24.000 ppmv in material below the emission hotspot. At a depth of 50 cm from the landfill surface a strong negative correlation between N{sub 2}O and CH{sub 4} concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N{sub 2}O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH{sub 4} mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N{sub 2}O emissions, especially at MBT landfills.

  7. Table 11.4 Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nitrous Oxide Emissions, 1980-2009 (Thousand Metric Tons of Nitrous Oxide) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 3 Total Mobile Combustion 1 Stationary Combustion 2 Total Waste Combustion Human Sewage in Wastewater Total Nitrogen Fertilization of Soils Crop Residue Burning Solid Waste of Domesticated Animals Total 1980 60 44 104 1 10 11 364 1 75 440 88 642 1981 63 44 106 1 10 11 364 2 74 440 84 641 1982 67 42 108 1 10 11 339 2 74 414 80 614 1983 71 43 114

  8. Enzymatic Oxidation of Methane

    SciTech Connect (OSTI)

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  9. On-Board Measurement of Ammonia and Nitrous Oxide Using Feedback...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laser Spectroscopy Combined with Amplified Resonance and Low Pressure Sampling On-Board Measurement of Ammonia and Nitrous Oxide Using Feedback Absorption Laser ...

  10. Laboratory flammability studies of mixtures of hydrogen, nitrous oxide, and air

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Zlochower, I A; Lucci, C E; Green, G M; Thomas, R A

    1992-06-26

    At the request of the Department of Energy and the Westinghouse Hanford Company, the Bureau of Mines has investigated the flammability of mixtures of hydrogen, nitrous oxide, and air. This work is relevant to the possible hazards of flammable gas generation from nuclear waste tanks at Hanford, WA. The tests were performed in a 120-L spherical chamber under both quiescent and turbulent conditions using both electric spark and pyrotechnic ignition sources. The data reported here for binary mixtures of hydrogen in air generally confirm the data of previous investigators, but they are more comprehensive than those reported previously. The results clarify to a greater extent the complications associated with buoyancy, turbulence, and selective diffusion. The data reported here for ternary mixtures of hydrogen and nitrous oxide in air indicate that small additions of nitrous oxide (relative to the amount of air) have little effect, but that higher concentrations of nitrous oxide (relative to air) significantly increase the explosion hazard.

  11. On-Board Measurement of Ammonia and Nitrous Oxide Using Feedback Absorption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laser Spectroscopy Combined with Amplified Resonance and Low Pressure Sampling | Department of Energy Board Measurement of Ammonia and Nitrous Oxide Using Feedback Absorption Laser Spectroscopy Combined with Amplified Resonance and Low Pressure Sampling On-Board Measurement of Ammonia and Nitrous Oxide Using Feedback Absorption Laser Spectroscopy Combined with Amplified Resonance and Low Pressure Sampling A first set of results has found that LASAR and VLPS data in the laboratory closely

  12. Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil

    SciTech Connect (OSTI)

    Egbert Schwartz

    2008-12-15

    Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

  13. Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions

    SciTech Connect (OSTI)

    Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E.; Meisel, D.

    1992-07-01

    Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

  14. Nitrous oxide production from radiolysis of simulted high-level nuclear waste solutions

    SciTech Connect (OSTI)

    Walker, D.D.; Hobbs, D.T.; Tiffany, J.B.; Bibler, N.E. ); Meisel, D. )

    1992-01-01

    Nitrous oxide gas (N{sub 2}O) is produced by the radiolysis of aqueous nitrate or nitrite solutions in the presence of organic compounds. When ethylenediaminetetraacetic acid (EDTA) or N- (2-hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA) is present, the G-value for hydrogen increases and N{sub 2}O become the major gaseous product (G=0.54). A survey of organic compounds indicates the amount of N{sub 2}O formed depends on the structure of the organic. With highly oxidized organics (carbonate, formate, acetate and oxalate), little or no N{sub 2}O is formed. Aromatic and aliphatic organics (sodium tetraphenylborate, benzene, phenol, n-paraffin, and tributylphosphate) produce small amounts of N{sub 2}O. Water soluble, easily oxidized organics (methanol, ethanol, isopropanol, n-butanol, acetone, and ethylene glycol) produce large amounts of N{sub 2}O relative to the previous two categories. Nitrous oxide production is not greatly affected by pH between neutral and pH=13, but increases significantly in acid solution. The G-value for N{sub 2}O production in 10 wt% potassium tetraphenylborate slurries has been measured under process conditions important at the Savannah River Site.

  15. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    SciTech Connect (OSTI)

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K.; Sepanski, R.J.

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO{sub 2} by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard.

  16. Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990

    SciTech Connect (OSTI)

    Weiss, R.F.; Van Woy, F.A.; Salameh, P.K. ); Sepanski, R.J. . Energy, Environment and Resources Center)

    1992-12-01

    This document presents the results of surface water and atmospheric carbon dioxide (CO[sub 2]) and nitrous oxide (N[sub 2]O) measurements carried out by shipboard gas chromatography over the period 1977--1990. These data include results from 11 different oceanic surveys for a total of 41 expedition legs. Collectively, they represent a globally distributed sampling that includes locations in the Atlantic, Pacific, Indian, and Southern Oceans, as well as the Mediterranean and Red Seas. The measurements were made by an automated high-precision shipboard gas chromatographic system developed during the late 1970s and used extensively over the intervening years. This instrument measures CO[sub 2] by flame ionization after quantitative reaction to methane in a stream of hydrogen. Nitrous oxide is measured by a separate electron capture detector. The chromatographic system measures 196 dry-gas samples a day, divided equally among the atmosphere, gas equilibrated with surface water, a low-range gas standard, and a high-range gas standard.

  17. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    SciTech Connect (OSTI)

    Youngblood, Stewart

    2015-08-01

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study of the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.

  18. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    SciTech Connect (OSTI)

    Hänninen, Tuomas Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  19. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect (OSTI)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  20. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect (OSTI)

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity

  1. Methane and methanol oxidation in supercritical water: Chemical kinetics and hydrothermal flame studies

    SciTech Connect (OSTI)

    Steeper, R.R.

    1996-01-01

    Supercritical water oxidation (SCWO) is an emerging technology for the treatment of wastes in the presence of a large concentration of water at conditions above water`s thermodynamic critical point. A high-pressure, optically accessible reaction cell was constructed to investigate the oxidation of methane and methanol in this environment. Experiments were conducted to examine both flame and non-flame oxidation regimes. Optical access enabled the use of normal and shadowgraphy video systems for visualization, and Raman spectroscopy for in situ measurement of species concentrations. Flame experiments were performed by steadily injecting pure oxygen into supercritical mixtures of water and methane or methanol at 270 bar and at temperatures from 390 to 510{degrees}C. The experiments mapped conditions leading to the spontaneous ignition of diffusion flames in supercritical water. Above 470{degrees}C, flames spontaneously ignite in mixtures containing only 6 mole% methane or methanol. This data is relevant to the design and operation of commercial SCWO processes that may be susceptible to inadvertent flame formation. Non-flame oxidation kinetics experiments measured rates of methane oxidation in supercritical water at 270 bar and at temperatures from 390 to 442{degrees}C. The initial methane concentration was nominally 0.15 gmol/L, a level representative of commercial SCWO processes. The observed methane concentration histories were fit to a one-step reaction rate expression indicating a reaction order close to two for methane and zero for oxygen. Experiments were also conducted with varying water concentrations (0 to 8 gmol/L) while temperature and initial reactant concentrations were held constant. The rate of methane oxidation rises steadily with water concentration up to about 5 gmol/L and then abruptly falls off at higher concentrations.

  2. Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion

    SciTech Connect (OSTI)

    Lim, Tae Hwan; Cho, Sung June; Yang, Hee Sung; Engelhard, Mark H.; Kim, Do Heui

    2015-07-31

    A series of cobalt nickel mixed oxide catalysts with the varying ratios of Co to Ni, prepared by co-precipitation method, were applied to methane combustion. Among the various ratios, cobalt nickel mixed oxides having the ratios of Co to Ni of (50:50) and (67:33) demonstrate the highest activity for methane combustion. Structural analysis obtained from X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) evidently demonstrates that CoNi (50:50) and (67:33) samples consist of NiCo2O4and NiO phase and, more importantly, NiCo2O4spinel structure is largely distorted, which is attributed to the insertion of Ni2+ions into octahedral sites in Co3O4spinel structure. Such structural dis-order results in the enhanced portion of surface oxygen species, thus leading to the improved reducibility of the catalysts in the low temperature region as evidenced by temperature programmed reduction by hydrogen (H2TPR) and X-ray photoelectron spectroscopy (XPS) O 1s results. They prove that structural disorder in cobalt nickel mixed oxides enhances the catalytic performance for methane combustion. Thus, it is concluded that a strong relationship between structural property and activity in cobalt nickel mixed oxide for methane combustion exists and, more importantly, distorted NiCo2O4spinel structure is found to be an active site for methane combustion.

  3. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.

    1996-02-01

    Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

  4. Non-covalent interactions of nitrous oxide with aromatic compounds: Spectroscopic and computational evidence for the formation of 1:1 complexes

    SciTech Connect (OSTI)

    Cao, Qian; School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 ; Gor, Gennady Y.; Krogh-Jespersen, Karsten; Khriachtchev, Leonid

    2014-04-14

    We present the first study of intermolecular interactions between nitrous oxide (N{sub 2}O) and three representative aromatic compounds (ACs): phenol, cresol, and toluene. The infrared spectroscopic experiments were performed in a Ne matrix and were supported by high-level quantum chemical calculations. Comparisons of the calculated and experimental vibrational spectra provide direct identification and characterization of the 1:1 N{sub 2}O-AC complexes. Our results show that N{sub 2}O is capable of forming non-covalently bonded complexes with ACs. Complex formation is dominated by dispersion forces, and the interaction energies are relatively low (about ?3 kcal mol{sup ?1}); however, the complexes are clearly detected by frequency shifts of the characteristic bands. These results suggest that N{sub 2}O can be bound to the amino-acid residues tyrosine or phenylalanine in the form of ? complexes.

  5. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly report, July - September 1996

    SciTech Connect (OSTI)

    McCormick, R.L.; Alptekin, G.O.

    1996-12-01

    This document covers the period July-September, 1996. Activities included studies of the oxidation of dimethyl ether over vanadyl pyrophosphate and synthesis of all previously acquired kinetic data. This synthesis revealed the need for additional data on methane and methanol oxidation and these experiments were performed. A further series of methanol oxidation/dehydration experiments was conducted on samples with varying surface acidity that have been described in earlier reports. Oxidation of methane over Cr- promoted VPO was also reinvestigated. The kinetic studies performed to date allow us to determine optimum conditions for methanol and formaldehyde production from methane using VPO catalysts, and in particular determine the effect of lean conditions (excess oxygen), oxygen deficient conditions (used in most other methane oxidation studies), and the potential of using the catalyst as a stoichiometric oxidant or oxygen carrier. However, unpromoted VPO yields only CO as the primary oxidation product. Studies of promoters have shown improvements in the formaldehyde selectivity but no methanol has been observed. The best promoters tested have been Fe and Cr (results for Cr are described in this report). We have also examined the use of iron phosphate for the methane conversion reaction. FePO{sub 4}is a more selectivity catalyst than the promoted VPO materials. Support of this iron phosphate on silica results in further improvements in selectivity. Current work is directed at understanding the improved selectivity for promoted VPO and at obtaining a knowledge of the optimum conditions for methane conversion of iron phosphate. 15 refs., 2 figs., 1 tab.

  6. Methyl Chloride from Direct Methane Partial Oxidation: A High-Temperature Shilov-Like Catalytic System

    SciTech Connect (OSTI)

    Yongchun Tang; John Ma

    2012-03-23

    The intention of this study is to demonstrate and evaluate the scientific and economic feasibility of using special solvents to improve the thermal stability of Pt-catalyst in the Shilov system, such that a high reaction temperature could be achieved. The higher conversion rate (near 100%) of methyl chloride from partial oxidation of methane under the high temperature ({approx} 200 C) without significant Pt0 precipitation has been achieved. High concentration of the Cl- ion has been identified as the key for the stabilization of the Pt-catalysts. H/D exchange measurements indicated that the over oxidation will occur at the elevated temperature, developments of the effective product separation processes will be necessary in order to rationalize the industry-visible CH4 to CH3Cl conversion.

  7. Plasma-produced phase-pure cuprous oxide nanowires for methane gas sensing

    SciTech Connect (OSTI)

    Cheng, Qijin Zhang, Fengyan; Yan, Wei; Randeniya, Lakshman; Ostrikov, Kostya

    2014-03-28

    Phase-selective synthesis of copper oxide nanowires is warranted by several applications, yet it remains challenging because of the narrow windows of the suitable temperature and precursor gas composition in thermal processes. Here, we report on the room-temperature synthesis of small-diameter, large-area, uniform, and phase-pure Cu{sub 2}O nanowires by exposing copper films to a custom-designed low-pressure, thermally non-equilibrium, high-density (typically, the electron number density is in the range of 10{sup 11}10{sup 13}?cm{sup ?3}) inductively coupled plasmas. The mechanism of the plasma-enabled phase selectivity is proposed. The gas sensors based on the synthesized Cu{sub 2}O nanowires feature fast response and recovery for the low-temperature (?140?C) detection of methane gas in comparison with polycrystalline Cu{sub 2}O thin film-based gas sensors. Specifically, at a methane concentration of 4%, the response and the recovery times of the Cu{sub 2}O nanowire-based gas sensors are 125 and 147?s, respectively. The Cu{sub 2}O nanowire-based gas sensors have a potential for applications in the environmental monitoring, chemical industry, mining industry, and several other emerging areas.

  8. Development of a hydrogen generator for fuel cells based on the partial oxidation of methane

    SciTech Connect (OSTI)

    Recupero, V.; Torre, T.; Saija, G.; Fiordano, N.

    1996-12-31

    As well known, the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas (SRM). The reaction is endothermic ({Delta}H{sub 298}= 206 kJ/mole) and high H{sub 2}O/CH{sub 4} ratios are required in order to limit coke formation at T higher than 1000 K. Moreover, it is a common practice that the process`s fuel economy is highly sensitive to proper heat fluxes and reactor design (tubular type) and to operational conditions. Efficient heat recovery can be accomplished only on large scale units (> 40,000 Nm{sup 3}/h), far from the range of interest of {open_quotes}on-site{close_quotes} fuel cells. Even if, to fit the needs of the fuel cell technology, medium sized external reforming units (50-200 Nm{sup 3} H{sub 2}/h) have been developed and/or planned for integration with both the first and the second generation fuel cells, amelioration in their heat recovery and efficiency is at the expense of an increased sophistication and therefore at higher per unit costs. In all cases, SRM requires an extra {open_quotes}fuel{close_quotes} supply (to substain the endothermicity of the reaction) in addition to stoichiometric requirements ({open_quotes}feed{close_quotes} gas). A valid alternative could be a process based on catalytic partial oxidation of CH{sub 4} (CSPOM), since the process is mildly exothermic ({Delta}H{sub 298}= -35.6 kJ/mole) and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed.

  9. Nitrogen Oxides in the Nocturnal Boundary Layer: Chemistry of Nitrous Acid (HONO) and the Nitrate Radical (N03)

    SciTech Connect (OSTI)

    Jochen Stutz

    2005-05-24

    Summary Chemical processes occurring at night in the lowest part of the urban atmosphere, the so called nocturnal boundary layer (NBL), can influence the composition of the atmosphere during the night as well as the following day. They may impact the budgets of some of the most important pollutants, such as ozone and nitrogen oxides, as well as influence size and composition of particular matter. Few studies have thus far concentrated on the nocturnal chemistry of the urban NBL, most likely due to the strong influence of vertical transport and mixing, which requires the measurement of trace gas profiles instead of simple point observations. Motivated by our lack of observations and understanding of nocturnal chemistry, the focus of this project was the study of the vertical distribution of trace gases and the altitude dependence of nocturnal chemistry under polluted conditions through field observations and modeling studies. The analysis of three field experiments (TEXAQS, Houston, 2000; Phoenix Sunrise Ozone Experiment, 2001; NAPOX, Boston, 2002), two of which were performed in this project, showed that ozone concentrations typically increase with height in the lowest 150m, while NO2 typically decreases. NO3, the dominant nocturnal radical species, showed much higher concentrations in the upper part of the NBL, and was often not present at the ground. With the help of a one-dimensional chemical transport model, developed in this project, we found that the interaction of ground emissions of NOx and hydrocarbons, together with their vertical transport, is responsible for the vertical profiles. The dominant chemical reactions influencing ozone, NO2 and NO3 are the reaction of ozone and NO3 with freshly emitted NO. Sensitivity studies with our model showed that the magnitude of the trace gas gradients depend both on the emission rates and the vertical stability of the NBL. Observations and model analysis clearly show that nocturnal chemistry in urban areas is altitude

  10. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    SciTech Connect (OSTI)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua; Dawson, Katherine; Sun, S; Chourey, Karuna; Hettich, Robert {Bob} L; Orphan, V

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  11. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    SciTech Connect (OSTI)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua; Dawson, Katherine; Sun, S; Chourey, Karuna; Pan, Chongle; Hettich, Robert {Bob} L; Orphan, V

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.

  12. Electrochemical methane sensor

    DOE Patents [OSTI]

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  13. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    DOE Patents [OSTI]

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  14. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (??Methane in the Arctic Shelf? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (??metagenomes?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially

  15. In situ studies of surface of NiFe2O4 catalyst during complete oxidation of methane

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Shiran; Shan, Junjun; Nie, Longhui; Nguyen, Luan; Wu, Zili; Tao, Franklin

    2015-12-21

    Here, NiFe2O4 with an inverse spinel structure exhibits high activity for a complete oxidation of methane at 400 °C–425 °C and a higher temperature. The surface of the catalyst and its adsorbates were well characterized with ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ infrared spectroscopy (IR). In situ studies of the surface of NiFe2O4 using AP-XPS suggest the formation of methoxy-like and formate-like intermediates at a temperature lower than 200 °C, supported by the observed vibrational signatures in in situ IR studies. Evolutions of C1s photoemission features and the nominal atomic ratios of C/(Ni + Fe) of themore » catalyst surface suggest that the formate-like intermediate is transformed to product molecules CO2 and H2O in the temperature range of 250–300 °C. In situ studies suggest the formation of a spectator, – Olattice – CH2 – Olattice –. It strongly bonds to surface through C–O bonds and cannot be activated even at 400 °C.« less

  16. Performance of Ni-Fe/gadolinium-doped CeO{sub2} anode supported tubular solid oxide fuel cells using steam reforming of methane

    SciTech Connect (OSTI)

    Liang, B.; Suzuki, T.; Hamamoto, K.; Yamaguchi, T.; Sumi, H.; Fujishiro, Y.; Ingram, B. J.; Carter, J. D.

    2012-03-15

    Iron nanoparticles (Fe{sub 2}O{sub 3}) were added to NiO/gadolinium-doped CeO{sub 2} (GDC) anode supported solid oxide fuel cell (SOFC) for the direct methane-water fuel operation. The cell was co-sintered at 1400 C, and the anode porosity is 31.8%. The main size corresponding to peak volume is around 1.5 {mu}m. When steam and methane directly fed to the cell, the power density is about 0.57 W cm{sup -2} at 650 C. It is the familiar performance for H{sub 2} operation (4 times of flow rate) with same fuel utilization. Compare with the testing temperature of 600 and 650 C, there is almost no carbon fiber deposition at 700 C with steam/methane (S/C) of 5. At the same time, fuel operation of high value of S/C (=3.3) resulted in fiber-like deposition and degradation of power performance based on loading test results.

  17. Syntrophic interactions and mechanisms underpinning anaerobic methane oxidation: targeted metaproteogenomics, single-cell protein detection and quantitative isotope imaging of microbial consortia

    SciTech Connect (OSTI)

    Orphan, Victoria Jeanne

    2014-11-26

    Syntrophy and mutualism play a central role in carbon and nutrient cycling by microorganisms. Yet, our ability to effectively study symbionts in culture has been hindered by the inherent interdependence of syntrophic associations, their dynamic behavior, and their frequent existence at thermodynamic limits. Now solutions to these challenges are emerging in the form of new methodologies. Developing strategies that establish links between the identity of microorganisms and their metabolic potential, as well as techniques that can probe metabolic networks on a scale that captures individual molecule exchange and processing, is at the forefront of microbial ecology. Understanding the interactions between microorganisms on this level, at a resolution previously intractable, will lead to our greater understanding of carbon turnover and microbial community resilience to environmental perturbations. In this project, we studied an enigmatic syntrophic association between uncultured methane-oxidizing archaea and sulfate-reducing bacteria. This environmental archaeal-bacterial partnership represents a globally important sink for methane in anoxic environments. The specific goals of this project were organized into 3 major tasks designed to address questions relating to the ecophysiology of these syntrophic organisms under changing environmental conditions (e.g. different electron acceptors and nutrients), primarily through the development of microanalytical imaging methods which enable the visualization of the spatial distribution of the partners within aggregates, consumption and exchange of isotopically labeled substrates, and expression of targeted proteins identified via metaproteomics. The advanced tool set developed here to collect, correlate, and analyze these high resolution image and isotope-based datasets from methane-oxidizing consortia has the potential to be widely applicable for studying and modeling patterns of activity and interactions across a broad range of

  18. Effect of metallo-organic precursors on the synthesis of Sm-Sn pyrochlore catalysts: Application to the oxidative coupling of methane

    SciTech Connect (OSTI)

    Roger, A.C.; Petit, C.; Kiennemann, A.

    1997-04-15

    Synthesis of a series of Sm{sub 2}Sn{sub 2}O{sub 7} pyrochlore catalysts by a sol-gel-like method has been developed. The preparation from the oxides gives stoichiometric pyrochlore, unlike the result obtained when starting from chlorinated salts (SmCl{sub 3} or SnCl{sub 2}), which form tin-deficient pyrochlores. A spectroscopic study of the behavior of the starting oxides or chlorides in propionic acid, to generate a series of precursors, has been carried out, particular attention being focused on the precursors generated by SnCl{sub 2} in propionic acid using {sup 119}Sn NMR and FTIR spectroscopy. The formation of SnCl{sub 2}(C{sub 2}H{sub 5}COO){sub 2} as the main precursor is responsible for the tin deficiency observed in the pyrochlore structure. The catalytic performance in oxidative coupling of methane is directly correlated with the tin deficiency in the bulk of the pyrochlore. The work highlights the importance of controlling precisely the synthesis of the catalysts. 42 refs., 10 figs., 5 tabs.

  19. ARM - Methane Background Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WarmingMethane Background Information Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Background Information What is Methane? Why Do We Use Methane? How is Methane Made? Where Do We Find Methane? Can Methane Be Dangerous? Does Methane Contribute to Climate Change? What is Methane?

  20. Methane Hydrates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Hydrates 2016 Methane Hydrates Funding Opportunity Announcement The objective of this Funding Opportunity Announcement is to select projects in FY16 that will further ongoing programmatic efforts to characterize naturally occurring gas hydrate deposits as well as their role in the natural environment and that will: Support fundamental laboratory and numerical simulation studies of gas hydrate reservoir response to potential production activities Support fundamental field, laboratory and

  1. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  2. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-06-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  3. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-01-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  4. Modeling of Pressurized Electrochemistry and Steam-Methane Reforming in Solid Oxide Fuel Cells and the Effects on Thermal and Electrical Stack Performance

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Khaleel, Mohammad A.

    2009-03-01

    Summarizes work done to extend the electrochemical performance and methane reforming submodels to include the effects of pressurization and to demonstrate this new modeling capability by simulating large stacks operating on methane-rich fuel under pressurized and non-pressurized conditions. Pressurized operation boosts electrochemical performance, alters the kinetics of methane reforming, and effects the equilibrium composition of methane fuels. This work developed constitutive submodels that couple the electrochemistry, reforming, and pressurization to yield an increased capability of the modeling tool for prediction of SOFC stack performance.

  5. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency finalized Tier 3 emission standards in a rule issued in March 2014. One effect of the rule is a decrease in the combined amount of non-methane organic gases ...

  6. Synthesis of murdochite-type Ni{sub 6}MnO{sub 8} with variable specific surface areas and the application in methane oxidation

    SciTech Connect (OSTI)

    Taguchi, Hideki; Tahara, Shohei; Okumura, Mikoto; Hirota, Ken

    2014-07-01

    To synthesize a murdochite-type Ni{sub 6}MnO{sub 8} with variable specific surface areas, an oxalate precursor was calcined at 350500 C in flowing argon, and the calcined sample was heated to 600 C in air. The lattice constant of the Ni{sub 6}MnO{sub 8} did not depend on the calcination temperature of the precursor, while the specific surface area decreased from 8.4 m{sup 2}/g to 2.6 m{sup 2}/g when increasing the calcination temperature of the precursor. The methane (CH{sub 4}) oxidation data indicated that the temperature corresponding to the 50% conversion (T{sub 50%}) of Ni{sub 6}MnO{sub 8} calcined at 350 C or 400 C was lower than that of all other Ni{sub 6}MnO{sub 8} specimens. However, the intrinsic conversion of Ni{sub 6}MnO{sub 8} calcined at 350 C, which is defined as conversion per specific surface area, was half of that of all other Ni{sub 6}MnO{sub 8} specimens. The degree of crystallinity and catalytic performance of the Ni{sub 6}MnO{sub 8} calcined at 400 C were high. - Graphical abstract: The conversion of CH{sub 4} into CO{sub 2} and H{sub 2}O on Ni{sub 6}MnO{sub 8}, which was heated at 600 C in air after the calcination of the precursor at 350 C, 400 C, 450 C, or 500 C in flowing argon, was measured. Since the specific surface area was strongly affected by the calcination temperature of the precursor, intrinsic conversion (IC) was defined as conversion per the specific surface area. For comparison, the IC value on Ni{sub 6}MnO{sub 8} synthesized by the direct calcination of the precursor at 600 C in air is plotted. - Highlights: The oxalate precursor was calcined at 350500 C in flowing argon. Murdochite-type Ni{sub 6}MnO{sub 8} was obtained by heating the calcined sample in air. The specific surface area of Ni{sub 6}MnO{sub 8} varied with the calcination temperature. The degree of crystallinity and catalysis of Ni{sub 6}MnO{sub 8} calcined at 400 C were high.

  7. Shift conversion and methanation in coal gasification: bench-scale evaluation of a sulfur-resistant catalyst. Final report. [Iridium-promoted nickel catalysts supported or aluminium oxide

    SciTech Connect (OSTI)

    Wood, B. J.; McCarty, J. G.; Sheridan, D.; Ablow, C. M.; Wise, H.

    1980-10-24

    The results of this study demonstrate that the Ir-promoted Ni/Al/sub 2/O/sub 3/ catalyst possesses several valuable and superior characteristics when used for catalytic methanation under typical industrial conditions. These properties include: higher activity by a factor of > 2 than that of the unpromoted Ni/Al/sub 2/O/sub 3/ catalyst; enhanced resistance to deactivation by hydrogen sulfide during exposure to contaminated feedstock, as manifested by the prolonged high methanation activity and extended service lifetime; and high resistance to carbon fouling.

  8. Methane Credit | Open Energy Information

    Open Energy Info (EERE)

    Methane Credit Jump to: navigation, search Name: Methane Credit Place: Charlotte, North Carolina Zip: 28273 Product: Specialises in utilising methane produced on municipal landfill...

  9. Converting Methane to Methanol: Structural Insight into the Reaction Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Particulate Methane Monooxygenase 3 Raquel L. Lieberman,* Amy C. Rosenzweig,* and Timothy L. Stemmler# *Depts. of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, Illinois 60208, USA #Dept. of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA. Methane-oxidizing bacteria (methanotrophs) are extremely attractive from a chemist's perspective because these organisms convert methane

  10. Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach

    SciTech Connect (OSTI)

    Widory, D.; Proust, E.; Bellenfant, G.; Bour, O.

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

  11. New manganese catalyst for light alkane oxidation

    DOE Patents [OSTI]

    Durante, Vincent A.; Lyons, James E.; Walker, Darrell W.; Marcus, Bonita K.

    1994-01-01

    Aluminophosphates containing manganese in the structural framework are employed for the oxidation of alkanes, for example the vapor phase oxidation of methane to methanol.

  12. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Gas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Gas Methane gas is another naturally occurring greenhouse gas. It is produced as a result of microbial activity in the absence of oxygen. Pre-industrial concentrations of methane were about 700 ppb and in 1994 they were up

  13. Methane Hydrate Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane

  14. Heat pipe methanator

    DOE Patents [OSTI]

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  15. Methane Hydrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and

  16. Method of determining methane and electrochemical sensor therefor

    DOE Patents [OSTI]

    Zaromb, Solomon; Otagawa, Takaaki; Stetter, Joseph R.

    1986-01-01

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  17. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  18. Deep oxidation of methane on particles derived from YSZ-supported Pd-Pt-(O) coatings synthesized by pulsed filtered cathodic arc

    SciTech Connect (OSTI)

    Horwat, D.; Endrino, J.L.; Boreave, A.; Karoum,R.; Pierson, J.F.; Weber, S.; Anders, A.; Vernoux, Ph.

    2008-12-12

    Methane conversion tests were performed on Pd, PdOy, Pd0.6Pt0.4Oy and Pd0.4Pt0.6Oy thin films deposited on yttria stabilized zirconia (YSZ) substrates. Pt containing films exhibited poor activity and high reducibility. As-deposited Pd and PdOy films showed good activity and transformed, during the cycling process, to particles dispersed on the YSZ substrates. The higher reaction rate of initially PdOy films was explained by a better dispersion of the catalyst. A drop of the reaction rate was observed when the temperature exceeded 735oC and 725oC for initially Pd and PdOy, respectively, which can be associated with the high-temperature reduction of PdO into Pd.

  19. Methane Hydrate Field Studies

    Broader source: Energy.gov [DOE]

    Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and...

  20. Kyoto Protocol | Open Energy Information

    Open Energy Info (EERE)

    The goal is to lower overall emissions from six greenhouse gases - carbon dioxide, methane, nitrous oxide, sulfur hexafluoride, HFCs, and PFCs - calculated as an average over...

  1. The Greenhouse Gas Protocol Initiative: GHG Emissions from Purchased...

    Open Energy Info (EERE)

    Outputs include: The tool outputs greenhouse gas emissions (carbon dioxide, methane, nitrous oxide, and carbon dioxide equivalent) for each facility as well as total...

  2. The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...

    Open Energy Info (EERE)

    Outputs include: The tool outputs greenhouse gas emissions (including carbon dioxide, methane, nitrous oxide, carbon dioxide equivalent, and biogenic carbon dioxide) for each...

  3. Microsoft Word - West TN Solar Farm_Final EA.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... distributing maps and literature, including ... Water vapor, carbon dioxide, methane, and nitrous oxide are ... Corporation and is transported via Williams Pipeline. ...

  4. Word Pro - S12

    Gasoline and Diesel Fuel Update (EIA)

    Note 1. Emissions of Carbon Dioxide and Other Green- house Gases. Greenhouse gases are those gases-such as water vapor, carbon dioxide (CO 2 ), methane, nitrous oxide, ...

  5. The future of methane

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  6. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  7. Coalbed Methane (CBM) is natural

    Broader source: Energy.gov (indexed) [DOE]

    and continued ural gas liquids and crude oil, which have a higher value in energy ... Submersible pump Coal Methane released from coal Methane to pipeline Water (discharged) ...

  8. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025 Fact 825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years ...

  9. Oxide

    SciTech Connect (OSTI)

    2014-07-15

    Oxide is a modular framework for feature extraction and analysis of executable files. Oxide is useful in a variety of reverse engineering and categorization tasks relating to executable content.

  10. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes May 15, 2014 Washington, DC...

  11. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Science on the Hill: Methane cloud hunting Los Alamos researchers go ... Science on the Hill: Methane cloud hunting When our team from Los Alamos National ...

  12. Methane Hydrate Program Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Reports Methane Hydrate Program Reports PDF icon Secretary of Energy Advisory Board Task Force Report on Methane Hydrate PDF icon FY14 Methane Hydrate Report to Congress ...

  13. ARM - Measurement - Methane concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  14. ARM - Measurement - Methane flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories Surface Properties, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  15. Coalbed Methane | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D. Fossil Energy Research Benefits - Coalbed Methane (920.32 KB) More Documents & Publications Before the Senate Energy and Natural

  16. Direct Aromaization of Methane

    SciTech Connect (OSTI)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  17. Dense ceramic membranes for methane conversion

    SciTech Connect (OSTI)

    Balachandran, U.; Mieville, R.L.; Ma, B.; Udovich, C.A.

    1996-05-01

    This report focuses on a mechanism for oxygen transport through mixed- oxide conductors as used in dense ceramic membrane reactors for the partial oxidation of methane to syngas (CO and H{sub 2}). The in-situ separation of O{sub 2} from air by the membrane reactor saves the costly cryogenic separation step that is required in conventional syngas production. The mixed oxide of choice is SrCo{sub 0.5}FeO{sub x}, which exhibits high oxygen permeability and has been shown in previous studies to possess high stability in both oxidizing and reducing conditions; in addition, it can be readily formed into reactor configurations such as tubes. An understanding of the electrical properties and the defect dynamics in this material is essential and will help us to find the optimal operating conditions for the conversion reactor. In this paper, we discuss the conductivities of the SrFeCo{sub 0.5}O{sub x} system that are dependent on temperature and partial pressure of oxygen. Based on the experimental results, a defect model is proposed to explain the electrical properties of this system. The oxygen permeability of SrFeCo{sub 0.5}O{sub x} is estimated by using conductivity data and is compared with that obtained from methane conversion reaction.

  18. Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane ... Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed Methane Proved ...

  19. Methane Hydrates R&D Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and

  20. Project identification for methane reduction options

    SciTech Connect (OSTI)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  1. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  2. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  3. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  4. Fluxes of methane between landfills and the atmosphere: Natural and engineered controls

    SciTech Connect (OSTI)

    Bogner, J.; Meadows, M.; Czepiel, P.

    1997-08-01

    Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

  5. Capture and Use of Coal Mine Ventilation Air Methane

    SciTech Connect (OSTI)

    Deborah Kosmack

    2008-10-31

    CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

  6. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  7. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  8. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Houston, TX PDF icon July 26, 2012 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting...

  9. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Environmental Management (EM)

    Washington, DC PDF icon July 16, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting...

  10. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Energy Savers [EERE]

    DC PDF icon March 27-28, 2014, Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory...

  11. Methane Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name: Methane Power Inc. Address: 121 Edinburgh South Drive Place: Cary, NC Zip: 27511 Sector: Renewable Energy...

  12. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Broader source: Energy.gov (indexed) [DOE]

    June 6th - 7th, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting...

  13. Catalyst for the methanation of carbon monoxide in sour gas

    DOE Patents [OSTI]

    Kustes, William A. (Louisville, KY); Hausberger, Arthur L. (Louisville, KY)

    1985-01-01

    The invention involves the synergistic effect of the specific catalytic constituents on a specific series of carriers for the methanation of carbon monoxide in the presence of sulfur at relatively high temperatures and at low steam to gas ratios in the range of 0.2:1 or less. This effect was obtained with catalysts comprising the mixed sulfides and oxides of nickel and chromium supported on carriers comprising magnesium aluminate and magnesium silicate. Conversion of carbon monoxide to methane was in the range of from 40 to 80%. Tests of this combination of metal oxides and sulfides on other carriers and tests of other metal oxides and sulfides on the same carrier produced a much lower level of conversion.

  14. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  15. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but

  16. ARM - Oxides of Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxides of Nitrogen Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Oxides of Nitrogen Oxides of nitrogen, chlorofluorocarbons (CFCs), and ozone have a lesser effect on the atmosphere than carbon dioxide and methane, but as you will see they are important contributors to the greenhouse

  17. 7.4 Landfill Methane Utilization

    Office of Energy Efficiency and Renewable Energy (EERE)

    A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

  18. Coalbed Methane Production

    Gasoline and Diesel Fuel Update (EIA)

    Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Alabama 105 102 98 91 62 78 1989-2014 Alaska 0 0 0 0 0 0 2005-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Colorado 498 533 516 486 444 412 1989-2014 Florida 0 0 0 0 0 0 2005-2014 Kansas 43 41 37 34 30 27

  19. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Methane cloud hunting Los Alamos researchers go hunting for methane gas over the Four Corners area of northwest New Mexico and find a strange daily pattern. July 12, 2015 methane map Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico, Colorado, Utah and Arizona meet, prompting scientists to go in search of the sources.

  20. Methane Stakeholder Roundtables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Stakeholder Roundtables Methane Stakeholder Roundtables April 24, 2014 - 3:00pm Addthis Methane Stakeholder Roundtables Advancing the Interagency Methane Strategy As directed by President Obama in his Climate Action Plan, the Department of Energy (DOE) collaborated with other Federal agencies to develop a Strategy to Reduce Methane Emissions, which was formally announced by the White House last month. To advance this strategy, DOE is now working with other Federal agencies and the White

  1. methane hydrates | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methane hydrates methane-hydrates.jpg Maintaining a focused vision on what's next is one trait that makes NETL a lab of the future, and methane hydrates are one "cool" part of that vision. Found in Arctic and deep-water marine environments, methane hydrates are an untapped abundant source of natural gas. A hydrate comprises a crystal structure in which frozen water creates a cage that traps molecules of primarily methane (natural gas). NETL researchers are exploring and developing

  2. Release of Methane from Bering Sea Sediments During the Last Glacial Period

    SciTech Connect (OSTI)

    Mea Cook; Lloyd Keigwin

    2007-11-30

    Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers produced by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.

  3. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    SciTech Connect (OSTI)

    Valentine, David

    2012-09-30

    In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this

  4. Methane Hydrate Advisory Committee Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter PDF icon Methane Hydrate Advisory Committee Charter More Documents & Publications ...

  5. May 15, 2014 Methane Hydrates Committee Meeting Agenda | Department...

    Office of Environmental Management (EM)

    May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda PDF icon...

  6. Methane Hydrate Advisory Committee Meeting Minutes, March 2010...

    Energy Savers [EERE]

    March 2010 Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes March 2010 Washington, DC PDF icon Methane Hydrate...

  7. Methane Hydrate Advisory Committee Meeting Minutes, January 2010...

    Broader source: Energy.gov (indexed) [DOE]

    0 Atlanta, GA Methane Hydrate Advisory Committee Meeting Minutes, January 2010 More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane...

  8. Methane Hydrate Advisory Committee Meeting Minutes, June 6th...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee...

  9. China United Coalbed Methane Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Coalbed Methane Co Ltd Jump to: navigation, search Name: China United Coalbed Methane Co Ltd Place: Beijing Municipality, China Zip: 100011 Product: Coal bed methane developer in...

  10. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  11. New Mexico Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) ... Referring Pages: Coalbed Methane Estimated Production New Mexico Coalbed Methane Proved ...

  12. New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion ... Coalbed Methane Proved Reserves as of Dec. 31 New Mexico Coalbed Methane Proved Reserves, ...

  13. North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved ...

  14. Methane Hydrate Research and Development Act of 2000 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 PDF icon Methane Hydrate Research and ...

  15. Methane generation from animal wastes

    SciTech Connect (OSTI)

    Fulton, E.L.

    1980-06-01

    The conversion of manure to biogas via anaerobic digestion is described. The effluent resulting from the conversion retains fertilizer value and is environmentally acceptable. Discussion is presented under the headings: methane formation in the digester; the Tarleton State Poultry Waste to Methane production system; operating experience at Tarleton State; economics of biogas production from poultry waste; construction cost and biogas value; energy uses; feed and waste processing; and advantages of anaerobic digestion. (DMC)

  16. Catalysts for conversion of methane to higher hydrocarbons

    DOE Patents [OSTI]

    Siriwardane, Ranjani V.

    1993-01-01

    Catalysts for converting methane to higher hydrocarbons such as ethane and ethylene in the presence of oxygen at temperatures in the range of about 700.degree. to 900.degree. C. are described. These catalysts comprise calcium oxide or gadolinium oxide respectively promoted with about 0.025-0.4 mole and about 0.1-0.7 mole sodium pyrophosphate. A preferred reaction temperature in a range of about 800.degree. to 850.degree. C. with a preferred oxygen-to-methane ratio of about 2:1 provides an essentially constant C.sub.2 hydrocarbon yield in the range of about 12 to 19 percent over a period of time greater than about 20 hours.

  17. Methane Hydrate Annual Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Reports Methane Hydrate Annual Reports Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per Fiscal Year. FY 14 Methane Hydrate Program Report to Congress (10.92 MB) FY 13 Methane Hydrates Annual Report to Congress (960.13 KB) FY 12 Methane Hydrates Annual Report to Congress (1.09 MB) FY 11 Methane Hydrates Annual Report to Congress (953.09 KB) FY

  18. Methane Hydrate Reservoir Simulator Code Comparison Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Reports Methane Hydrate Annual Reports Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per Fiscal Year. FY 14 Methane Hydrate Program Report to Congress (10.92 MB) FY 13 Methane Hydrates Annual Report to Congress (960.13 KB) FY 12 Methane Hydrates Annual Report to Congress (1.09 MB) FY 11 Methane Hydrates Annual Report to Congress (953.09 KB) FY

  19. METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------ 1. Committee's Official Designation. Methane Hydrate Advisory...

  20. File:Methane.pdf | Open Energy Information

    Open Energy Info (EERE)

    Methane.pdf Jump to: navigation, search File File history File usage File:Methane.pdf Size of this preview: 448 600 pixels. Go to page 1 2 3 4 5 Go next page next page ...

  1. Miscellaneous States Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  2. Methane Gas Conversion Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Under Iowa's methane gas conversion property tax exemption, real and personal property used to decompose waste and convert the waste to gas, collect the methane or other gases, convert the gas to...

  3. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  4. Methane Hydrate Production Feasibility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the

  5. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, Richard P.; Taylor, Charles E.; D'Este, Joseph R.

    1998-01-01

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  6. Valuing the ozone-related health benefits of methane emission controls

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    2015-06-29

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonnemore » methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.« less

  7. Valuing the ozone-related health benefits of methane emission controls

    SciTech Connect (OSTI)

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    2015-06-29

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonne methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.

  8. Activation of methane by transition metal-substituted aluminophosphate molecular sieves

    DOE Patents [OSTI]

    Iton, Lennox E.; Maroni, Victor A.

    1991-01-01

    Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

  9. General Equilibrium Model for Economy - Energy - Environment...

    Open Energy Info (EERE)

    and non-energy related emissions of carbon dioxide (CO2), other GHG such as methane (CH4), nitrous oxide (N20) sulfur hexafluoride (SF6), hydrofluorocarbon (HFC), and...

  10. State-level Greenhouse Gas Emission Factors for Electricity Generation, Updated 2002

    Reports and Publications (EIA)

    2002-01-01

    This report documents the preparation of updated state-level electricity coefficients for carbon dioxide (CO ), methane (CH ), and nitrous oxide (NO), which represent a three-year weighted average for 1998-2000.

  11. Methane generation from waste materials

    SciTech Connect (OSTI)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  12. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  13. Methane sources and emissions in Italy

    SciTech Connect (OSTI)

    Guidotti, G.R.; Castagnola, A.M.

    1994-12-31

    Methane emissions in Italy were assessed in the framework of the measures taken to follow out the commitments undertaken at the 1992 U.N. Conference for Environment and Development. Methane emissions of anthropic origin were estimated to be in the range of 1.6 to 2.3 million ton of methane per year. Some of these methane sources (natural gas production, transmission and distribution; rice paddies; managed livestock enteric fermentation and waste; solid waste landfills) are given here particular care as they mainly contribute to the total methane emission budget.

  14. Methane Hydrates and Climate Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater

  15. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  16. The Methane to Markets Coal Mine Methane Subcommittee meeting

    SciTech Connect (OSTI)

    2008-07-01

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  17. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect (OSTI)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  18. Systems level insights into alternate methane cycling modes in a freshwater lake via community transcriptomics, metabolomics and nano-SIMS analysis

    SciTech Connect (OSTI)

    Lidstrom, Mary E.; Chistoserdova, Ludmila; Kalyuzhnaya, Marina G.; Orphan, Victoria J.; Beck, David A.

    2014-08-07

    The research conducted as part of this project contributes significantly to the understanding of the microbes and their activities involved in methane metabolism in freshwater lake sediments and in the environment in a more global sense. Significant new insights have been gained into the identity of the species that are most active in methane oxidation. New concepts have been developed based on the new data on how these organisms metabolize methane, impacting not only environmental microbiology but also biotechnology, including biotechnology of next generation biofuels. Novel approaches have been developed for studying functional microbial communities, via holistic approaches, such as metagenomics, metatrancriptomics and metabolite analysis. As a result, a novel outlook has been obtained at how such communities operate in nature. Understanding methane-oxidizing communities in lakes and other environments is of significant benefit to the public, in terms of methane emission mitigation and in terms of potential biotechnological applications.

  19. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOE Patents [OSTI]

    Apel, William A.; Dugan, Patrick R.

    1995-01-01

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  20. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOE Patents [OSTI]

    Apel, William A.; Dugan, Patrick R.

    1995-04-04

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  1. May 15, 2014 Methane Hydrates Committee Meeting Agenda | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda Meeting Agenda (443.71 KB) More Documents & Publications Advisory Committee Meeting Minutes, May 7, 2015 Methane Hydrate Program Reports Report of the Task Force on Methane Hydrates

  2. Stable, Ultra-Low Residence Time Partial Oxidation

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Hickman, Daniel A.

    1997-07-15

    A process for the catalytic partial oxidation of methane in gas phase at very short residence time (800,000 to 12,000,000 hr.sup.-1) by contacting a gas stream containing methane and oxygen with a metal supported catalyst, such as platinum deposited on a ceramic monolith.

  3. Methane Hydrate Program Annual Report to Congress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report

  4. Modeling Methane Adsorption in Interpenetrating Porous Polymer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks Previous Next List Richard L. Martin, Mahdi Niknam Shahrak, Joseph A. Swisher, Cory M. Simon, Julian P....

  5. EIA - Greenhouse Gas Emissions - Methane Emissions

    Gasoline and Diesel Fuel Update (EIA)

    3. Methane Emissions 3.1. Total emissions The major sources of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9 percent higher than the 2008 total of 724 MMTCO2e (Table 17). Methane emissions declined steadily from 1990 to 2001, as emissions from coal mining and landfills fell, then rose from 2002 to 2009 as a result of moderate increases in emissions related to energy,

  6. Capping methane leaks a win-win

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capping methane leaks a win-win Capping methane leaks a win-win As special correspondent Kathleen McCleery explains, that's why both environmentalists and the energy industry are trying to find ways to capture leaks from oil and gas facilities. November 13, 2015 Capping methane leaks a win-win Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico,

  7. New Methane Hydrate Research: Investing in Our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ...

  8. Four Corners methane hotspot points to coal-related sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane hotspot points to coal-related sources Four Corners methane hotspot points to coal-related sources Methane is very efficient at trapping heat in the atmosphere and, like ...

  9. Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO2

    SciTech Connect (OSTI)

    Miller, Duane D.; Siriwardane, Ranjani

    2013-08-01

    Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion that produces sequestration-ready CO{sub 2} stream, reducing the energy penalty of CO{sub 2} separation from flue gases. An effective oxygen carrier for CLC will readily react with the fuel gas and will be reoxidized upon contact with oxygen. This study investigated the development of a CeO{sub 2}-promoted Fe{sub 2}O{sub 3}?hematite oxygen carrier suitable for the methane CLC process. Composition of CeO{sub 2} is between 5 and 25 wt % and is lower than what is generally used for supports in Fe{sub 2}O{sub 3} carrier preparations. The incorporation of CeO{sub 2} to the natural ore hematite strongly modifies the reduction behavior in comparison to that of CeO{sub 2} and hematite alone. Temperature-programmed reaction studies revealed that the addition of even 5 wt % CeO{sub 2} enhances the reaction capacity of the Fe{sub 2}O{sub 3} oxygen carrier by promoting the decomposition and partial oxidation of methane. Fixed-bed reactor data showed that the 5 wt % cerium oxides with 95 wt % iron oxide produce 2 times as much carbon dioxide in comparison to the sum of carbon dioxide produced when the oxides were tested separately. This effect is likely due to the reaction of CeO{sub 2} with methane forming intermediates, which are reactive for extracting oxygen from Fe{sub 2}O{sub 3} at a considerably faster rate than the rate of the direct reaction of Fe{sub 2}O{sub 3} with methane. These studies reveal that 5 wt % CeO{sub 2}/Fe{sub 2}O{sub 3} gives stable conversions over 15 reduction/oxidation cycles. Lab-scale reactor studies (pulsed mode) suggest the methane reacts initially with CeO{sub 2} lattice oxygen to form partial oxidation products (CO + H{sub 2}), which continue to react with oxygen from neighboring Fe{sub 2}O{sub 3}, leading to its complete oxidation to form CO{sub 2}. The reduced cerium oxide promotes the methane decomposition reaction to form C + H{sub 2}, which continue to

  10. Methane Hydrate Advisory Committee Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meetings Methane Hydrate Advisory Committee Meetings May 7, 2015 Advisory Committee ... Federal Register Notice for May 15, 2014 Meeting Methane Hydrates Committee Meeting Agenda ...

  11. Estimating global and North American methane emissions with high...

    Office of Scientific and Technical Information (OSTI)

    methane emissions with high spatial resolution using GOSAT satellite data Citation Details In-Document Search Title: Estimating global and North American methane emissions ...

  12. Methane Hydrate Advisory Committee Meeting Minutes, October 2011...

    Office of Environmental Management (EM)

    October 2011 Methane Hydrate Advisory Committee Meeting Minutes, October 2011 Methane Hydrate Advisory Committee Meeting Minutes October 2011 Washington, DC PDF icon Advisory...

  13. Landfill Methane Project Development Handbook | Open Energy Informatio...

    Open Energy Info (EERE)

    Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook AgencyCompany Organization: United...

  14. US EPA Landfill Methane Outreach Program | Open Energy Information

    Open Energy Info (EERE)

    EPA Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program AgencyCompany Organization United States Environmental Protection...

  15. Data from Innovative Methane Hydrate Test on Alaska's North Slope...

    Office of Environmental Management (EM)

    Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on ...

  16. Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore

  17. ,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ...

  18. Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore U.S.

  19. ,"Texas (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas (with State Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Texas (with State Offshore) Coalbed Methane Proved Reserves ...

  20. ,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Alaska (with Total Offshore) Coalbed Methane Proved Reserves ...

  1. ,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ...

  2. ,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Texas Coalbed Methane Proved Reserves ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Coalbed Methane Proved Reserves ...

  3. ,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Coalbed Methane Proved Reserves ... Contents","Data 1: Louisiana (with State Offshore) Coalbed Methane Proved Reserves ...

  4. Texas--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ...312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, State Offshore

  5. ,"Texas--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Coalbed Methane Proved Reserves (Billion ... "Back to Contents","Data 1: Texas--State Offshore Coalbed Methane Proved Reserves (Billion ...

  6. New York Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves Changes, and ...

  7. New York Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 New York Coalbed Methane Proved Reserves, Reserves Changes, ...

  8. Methane and Methanotrophic Bacteria as a Biotechnological Platform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: NewEmerging Pathways ...

  9. ,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Coalbed Methane Proved Reserves ... 9:22:44 AM" "Back to Contents","Data 1: North Dakota Coalbed Methane Proved Reserves ...

  10. ,"Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--North Coalbed Methane Proved Reserves (Billion ... "Back to Contents","Data 1: Louisiana--North Coalbed Methane Proved Reserves (Billion ...

  11. Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  12. Alaska (with Total Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  13. U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Extensions (Billion ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  14. U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  15. ,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic ...

  16. U.S. Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  17. Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  18. Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  19. Towards a Computational Model of a Methane Producing Archaeum...

    Office of Scientific and Technical Information (OSTI)

    Towards a Computational Model of a Methane Producing Archaeum Citation Details In-Document Search Title: Towards a Computational Model of a Methane Producing Archaeum Authors: ...

  20. Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  1. U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Increases ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  2. ,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves (Billion Cubic ...

  3. Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  4. U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Decreases ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  5. Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  6. U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  7. U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Adjustments (Billion ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  8. Mississippi (with State off) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi (with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  9. ,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves (Billion Cubic ...

  10. U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Acquisitions ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  11. Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  12. Process for separating nitrogen from methane using microchannel...

    Office of Scientific and Technical Information (OSTI)

    Process for separating nitrogen from methane using microchannel process technology Citation Details In-Document Search Title: Process for separating nitrogen from methane using ...

  13. ,"Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves (Billion Cubic ...

  14. Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  15. Methane

    Energy Savers [EERE]

    ... implications for resource use efficiency, worker and public safety, air pollution, and human health (4), and for the climate impact of NG as a large and growing source of energy. ...

  16. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  17. Enhanced Renewable Methane Production System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates biological methane production rates at least fivefold. Low cost Delivers near-pipeline-quality gas and eliminates carbon dioxide emissions PDF icon methane_production_system

  18. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOE Patents [OSTI]

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  19. International Cooperation in Methane Hydrates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil & Gas » Methane Hydrate » International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program (DSDP) recovered the first subsea substantial methane hydrate deposits, which spurred methane hydrate research in the US and other countries. The successor programs, the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) sampled hydrate deposits off Oregon (ODP 204, 2002) and in the Cascadia

  20. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

    SciTech Connect (OSTI)

    Hong, Wei-Li; Torres, Marta E.; Kim, Ji-Hoon; Choi, Jiyoung; Bahk, Jang-Jun

    2014-09-01

    We present a kinetic model based upon pore water data collected from eight sites drilled during the second Ulleung Basin gas hydrate drilling expedition (UBGH2) in 2010. Three sites were drilled at locations where acoustic chimneys were identified in seismic data, and the rest were drilled on non-chimney (i.e. background) environments. Our model, coupled a comprehensive compositional and isotopic data set, is used to illustrate the different biogeochemical processes at play in those two environments, in terms of reactions around the sulfate-methane-transition-zone (SMTZ). Organic matter decomposition is an important process for production of methane, dissolved inorganic carbon (DIC) and consumption of sulfate in the non-chimney sites, whereas anaerobic oxidation of methane (AOM) dominates both carbon and sulfur cycles in the chimney environment. Different sources of methane mediate AOM in the two settings. Internally produced methane through CO₂ reduction (CR) and methanogenesis fuels AOM in the non-chimney sites, whereas AOM is sustained by methane from external sources in the chimney sites. We also simulate the system evolution from non-chimney to chimney conditions by increasing the bottom methane supply to a non-chimney setting. We show that the higher CH₄ flux leads to a higher microbial activity of AOM, and more organic matter decomposition through methanogenesis. A higher methanogenesis rate and a smaller CR contribution relative to AOM in the chimney sites is responsible for the isotopically light DIC and heavy methane in this environment, relative to the non-chimney sites.

  1. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that

  2. Methane storage capabilities of diamond analogues

    SciTech Connect (OSTI)

    Haranczyk, M; Lin, LC; Lee, K; Martin, RL; Neaton, JB; Smit, B

    2013-01-01

    Methane can be an alternative fuel for vehicular usage provided that new porous materials are developed for its efficient adsorption-based storage. Herein, we search for materials for this application within the family of diamond analogues. We used density functional theory to investigate structures in which tetrahedral C atoms of diamond are separated by-CC-or-BN-groups, as well as ones involving substitution of tetrahedral C atoms with Si and Ge atoms. The adsorptive and diffusive properties of methane are studied using classical molecular simulations. Our results suggest that the all-carbon structure has the highest volumetric methane uptake of 280 VSTP/V at p = 35 bar and T = 298 K. However, it suffers from limited methane diffusion. Alternatively, the considered Si and Ge-containing analogies have fast diffusive properties but their adsorption is lower, ca. 172-179 VSTP/V, at the same conditions.

  3. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped

  4. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; et al

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore » cryosols have previously unrecognized potential of negative CH₄ feedback.« less

  5. An active atmospheric methane sink in high Arctic mineral cryosols

    SciTech Connect (OSTI)

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; Renholm, J.; Hettich, R. L.; Pollard, W. H.; Omelon, C. R.; Medvigy, David M.; Pffifner, Susan M.; Whyte, L. G.; Onstott, T. C.

    2015-04-14

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineral cryosols have previously unrecognized potential of negative CH₄ feedback.

  6. An active atmospheric methane sink in high Arctic mineral cryosols

    SciTech Connect (OSTI)

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; Renholm, J.; Hettich, R. L.; Pollard, W. H.; Omelon, C. R.; Medvigy, David M.; Pffifner, Susan M.; Whyte, L. G.; Onstott, T. C.

    2015-01-01

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineral cryosols have previously unrecognized potential of negative CH₄ feedback.

  7. Solubility of methane in water under natural conditions: a laboratory...

    Office of Scientific and Technical Information (OSTI)

    302sup 0F. Also the solubility of crude oil and water in methane has been determined ... Increasing pressure increases the solubility of crude oil in methane gas. At an elevated ...

  8. Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Gulf of ...

  9. ,"New York Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Coalbed Methane Proved Reserves ... 8:49:43 AM" "Back to Contents","Data 1: New York Coalbed Methane Proved Reserves ...

  10. ,"New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--West Coalbed Methane Proved ... 8:49:40 AM" "Back to Contents","Data 1: New Mexico--West Coalbed Methane Proved ...

  11. ,"New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves ... 9:00:33 AM" "Back to Contents","Data 1: New Mexico Coalbed Methane Proved Reserves ...

  12. ,"New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--East Coalbed Methane Proved ... 8:49:39 AM" "Back to Contents","Data 1: New Mexico--East Coalbed Methane Proved ...

  13. Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  14. Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  15. Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  18. Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  19. Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  20. Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  1. Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  2. Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  3. Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  4. Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  5. Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  6. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  7. Texas (with State Offshore) Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  8. Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  9. Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  10. ,"U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves (Billion Cubic ... "Back to Contents","Data 1: U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)" ...

  11. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. West Virginia Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  13. Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  14. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, Muthu S.; Steinberg, Meyer

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  15. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  16. Absorption spectrum and solar photodissociation of gaseous nitrous acid in the actinic wavelength region

    SciTech Connect (OSTI)

    Vasudev, R. )

    1990-11-01

    The absorption cross section of gaseous nitrous acid (HONO) in the actinic wavelength region ({lambda} {ge} 290 nm) of the solar radiation is mapped through laser photodissociation experiments, HONO is photodissociated by a tunable ultraviolet beam, and the OH product is monitored through fluorescence induced by a frequency-double dye laser. The absorption of HONO is mapped by scanning the photolysis wavelength. Since this technique yields relative cross-sections, the authors calibrate the measurements with previous measurements of absolute cross-section at 354 nm (because there is reasonable agreement among previous measurements at this wavelength). The present experimental approach is insensitive to the presence of NO{sub 2}, which apparently contributed to inaccuracies in some of the previous conventional measurements on HONO absorption.

  17. Draft Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  18. Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  19. Methane recovery from landfill in China

    SciTech Connect (OSTI)

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  20. Method for removal of methane from coalbeds

    DOE Patents [OSTI]

    Pasini, III, Joseph; Overbey, Jr., William K.

    1976-01-01

    A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

  1. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  2. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  3. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  4. Thermodynamic properties and diffusion of water + methane binary mixtures

    SciTech Connect (OSTI)

    Shvab, I.; Sadus, Richard J.

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.

  5. Geochemistry of clathrate-derived methane in Arctic Ocean waters

    SciTech Connect (OSTI)

    Elliott, S.M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2010-03-15

    Alterations to the composition of seawater are estimated for microbial oxidation of methane from large polar clathrate destabilizations, which may arise in the coming century. Gas fluxes are taken from porous flow models of warming Arctic sediment. Plume spread parameters are then used to bracket the volume of dilution. Consumption stoichiometries for the marine methanotrophs are based on growth efficiency and elemental/enzyme composition data. The nutritional demand implied by extra CH{sub 4} removal is compared with supply in various high latitude water masses. For emissions sized to fit the shelf break, reaction potential begins at one hundred micromolar and falls to order ten a thousand kilometers downstream. Oxygen loss and carbon dioxide production are sufficient respectively to hypoxify and acidify poorly ventilated basins. Nitrogen and the monooxygenase transition metals may be depleted in some locations as well. Deprivation is implied relative to existing ecosystems, along with dispersal of the excess dissolved gas. Physical uncertainties are inherent in the clathrate abundance, patch size, outflow buoyancy and mixing rate. Microbial ecology is even less defined but may involve nutrient recycling and anaerobic oxidizers.

  6. Effect of bubble size and density on methane conversion to hydrate

    SciTech Connect (OSTI)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methanewater solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  7. Cross Sections for Electron Collisions with Methane

    SciTech Connect (OSTI)

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  8. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    SciTech Connect (OSTI)

    Mitchell, Jonathan L.

    2012-09-10

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  9. Enhanced carbon monoxide utilization in methanation process

    DOE Patents [OSTI]

    Elek, Louis F.; Frost, Albert C.

    1984-01-01

    Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

  10. Process for separating nitrogen from methane using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee; Qiu, Dongming; Dritz, Terence Andrew; Neagle, Paul; Litt, Robert Dwayne; Arora, Ravi; Lamont, Michael Jay; Pagnotto, Kristina M.

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.