Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Methane Hydrate Research and Modeling  

Energy.gov (U.S. Department of Energy (DOE))

Research is focused on understanding the physical and chemical nature of gas hydrate-bearing sediments. These studies advance the understanding of the in situ nature of GHBS and their potential...

2

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

3

Energy Department Advances Research on Methane Hydrates - the World's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research on Methane Hydrates - the Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource August 31, 2012 - 1:00pm Addthis Washington, DC - The Energy Department today announced the selection of 14 new research projects across 11 states that will be a part of an expanding portfolio of projects designed to increase our understanding of methane hydrates' potential as a future energy supply. Methane hydrates are 3D ice-lattice structures with natural gas locked inside, and are found both onshore and offshore - including under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world. Today's projects build on the completion of a successful, unprecedented test

4

Energy Department Advances Research on Methane Hydrates - the World's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Advances Research on Methane Hydrates - the Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource August 31, 2012 - 1:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - The Energy Department today announced the selection of 14 new research projects across 11 states that will be a part of an expanding portfolio of projects designed to increase our understanding of methane hydrates' potential as a future energy supply. Methane hydrates are 3D ice-lattice structures with natural gas locked inside, and are found both onshore and offshore - including under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world.

5

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Cruise Cruise Special Report - Bottom-Simulating Reflections(BSR). Seismic lines from deep continental shelves all around the world contain anomalous reflections known as bottom-simulating reflections(BSR). The reflections mimic the sea-floor topography at a near constant depth below the surface, and commonly cut across geological layers. The nature of the reflection indicates a horizon across which seismic velocity dramatically decreases. At one time, scientists thought the reflection must be due to some mineralogical alteration in the sediment due to heat and pressure. Once the existence of natural methane hydrate was established, BSRs were thought to record the decrease in velocity when passing from hydrate-bearing sediments to those containing only water. Therefore, BSRs were thought to be a direct indicator of hydrate: no BSR meant no hydrate. However, the velocity contrast between hydrate and no-hydrate was determined to be insufficient to cause BSRs. Today, scientists have established that BSRs are an indication of concentrations of free methane gas that is blocked from further upward migration by the presence of methane hydrate in the overlying layers. Consequently, the distribution of BSRs may mark only a subset of the areas containing hydrate.

6

Energy Department Expands Research into Methane Hydrates, a Vast, Untapped  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands Research into Methane Hydrates, a Vast, Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. November 20, 2013 - 12:08pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, U.S. Energy Secretary Ernest Moniz announced nearly $5 million in funding across seven research projects nationwide designed to increase our understanding of methane hydrates - a large, completely untapped natural gas resource-and what it could mean for the environment, as well as American economic competiveness and energy security. "The recent boom in natural gas production - in part due to long-term Energy Department investments beginning in the 70's and 80's - has had

7

NETL: Methane Hydrates - Hydrate Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate R&D Program Newsletter Methane Hydrate R&D Program Newsletter An image of a hydrate burning overlayed with the Newsletter Title: Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a bi-annual publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in the Ice please send an email to karl.lang@contr.netl.doe.gov Please click on the links below to access issues of "Fire in the Ice". More on Methane Hydrates

8

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Well - Location Maps Well - Location Maps Maps of Prospect The Mt. Elbert prospect is located within the Milne Point Unit on Alaska’s North Slope. The Milne Point field, one of a number of distinct oil fields on the North Slope, extends offshore into the Beaufort Sea and is situated north of the large Kuparuk Field and northwest of the well known Prudhoe Bay Field. Map showing project location Map showing Milne Point Unit on Alaska’s North Slope The work done under the “Alaska North Slope Gas Hydrate Reservoir Characterization” project has resulted in a characterization of two large prospective methane hydrate accumulations (or trends); the Eileen Trend, which underlies but extends well beyond the Milne Point field, and the Tarn Trend to the west of the Kuparuk Field.

9

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

10

Energy Department Expands Research into Methane Hydrates, a Vast, Untapped  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2013 0, 2013 Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. WASHINGTON - Today, U.S. Energy Secretary Ernest Moniz announced nearly $5 million in funding across seven research projects nationwide designed to increase our understanding of methane hydrates - a large, completely untapped natural gas resource-and what it could mean for the environment, as well as American economic competiveness and energy security. "The recent boom in natural gas production - in part due to long-term Energy Department investments beginning in the 70's and 80's - has had a transformative impact on our energy landscape, helping to reduce greenhouse gas emissions and support thousands of American jobs," said Secretary Moniz. "While our research into methane hydrates is still in its early stages, these investments will increase our understanding of this domestic resource and the potential to safely and sustainably unlock the natural gas held within."

11

Methane Hydrate Field Program  

SciTech Connect

This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. Historical Methane Hydrate Project Review Report Methane Hydrate Workshop Report Topical Report: Marine Methane Hydrate Field Research Plan Final Scientific/Technical Report

None

2013-12-31T23:59:59.000Z

12

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

The Alaska North Slope Stratigraphic Test Well The Alaska North Slope Stratigraphic Test Well image showing Donyon Rig Photo courtesy Doyon Drilling Inc Project Background Participants Status Report Maps of Research Area Science Plan Photo Gallery Well log Data From BP-DOE-US "Mount Elbert" Test Is Now Available. Digital well log data acquired at the February 2007 gas hydrates test well at Milne Point, Alaska are now available. Data include Gamma ray, neutron porosity, density porosity, three-dimensional high resolution resistivity, acoustics including compressional- and shear-wave data and nuclear magnetic resonance. A listing of the available data, as well as instructions on obtaining the data, can be found on the NETL Gas Hydrates Website . The drilling of the “Mt. Elbert prospect” within the Milne Point Unit

13

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo Gallery Photo Gallery Photo of hydrate saturated, fine grained sand core from the Mt. Elbert #1 well Hydrate saturated, fine grained sand core from the Mt. Elbert #1 well .- click on image to enlarge Photo of close up of fine grained sand core sample. This sample was taken for porewater geochemical analyses and was hydrate saturated at the time of recovery. Close up of fine grained sand core sample. This sample was taken for porewater geochemical analyses and was hydrate saturated at the time of recovery.- click on image to enlarge Photo of close up of fine grained sand core sample being placed in water. Links to video of hydrate dissociating One visual test used to confirm that a core contains hydrate is to place a small sample from the core in a canister of water. The gas dissociated from the hydrate-bearing sediment is released into the water and bubbles to the surface. In the video sequence shown here, dissociated hydrate gas from a sample of Mt. Elbert #1 core can be seen and heard as it is released into the water. - click on image to view video [MPEG]

14

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

The DOE/JIP Gulf of Mexico Hydrate Research Cruise The DOE/JIP Gulf of Mexico Hydrate Research Cruise Status Reports During this expedition we will maintain an intermittent log of information relayed from the chief scientist on the expedition. To view a report for a particular day click on the "Day x" link in any highlighted box. The planned cruise timeline [PDF-13KB] is April 17 - May 21, 2005. This is the "planned" timeline. The schedule may change without prior notification due weather conditions or other unplanned occurrences. April 17 Day 1 April 18 Day 2 April 19 Day 3 April 20 Day 4 April 21 Day 5 April 22 Day 6 April 23 Day 7 April 24 Day 8 April 25 Day 9 April 26 Day 10 April 27 Day 11 April 28 Day 12 April 29 Day 13 April 30 Day 14 May 1 Day 15 May 2 Day 16 May 3 Day 17 May 4 Day 18 May 5

15

NETL: Methane Hydrates - Gas Hydrate Research in Deep Sea Sediments - New  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 DE-AI26-06NT42878 Goal The goal of the Interagency Agreement between the National Energy Technology Laboratory and the Naval Research Laboratory is to conduct research to enhance understanding of the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Performer Marine Biogeochemistry Section, Naval Research Laboratory, Washington, DC 20375 Background Methane is a potent greenhouse gas necessitating a better understanding of the mechanisms controlling its contribution to the atmospheric carbon cycle. Active methane fluxes (from deep sediment hydrates and seeps) contribute to shallow sediment biogeochemical carbon cycles, which in turn

16

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressurized Coring Equipment Pressurized Coring Equipment Pressure Core Equipment used by the Gulf of Mexico Gas Hydrate JIP Drilling Program Pressure Core Equipment - Photo Gallery One of the key objectives of the ChevronTexaco Gulf of Mexico hydrates Joint Industry Project is the collection and analyses of deepwater sediment samples. Because these samples may contain hydrate which is only stable at specific temperature and pressure conditions it is necessary to use specialized sampling equipment. Otherwise, the combination of reduced pressure and increased temperatures as the sample is retrieved through 4,000 feet of gulf seawater will fully dissociate the hydrate, leaving only gas and water. Although techniques exist to infer hydrates presence from distinctive geochemical markers, we have lost the ability to image the nature of hydrate distribution, or to conduct measurements of the various physical and chemical properties of hydrates in the host sediments.

17

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2011 FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of research. Pursuant to statutory requirements, this report is being provided to the following

18

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireline Logging Wireline Logging From: Timothy Collett, USGS Conventional Wireline Logging Operations in the Gulf of Mexico Gas Hydrate JIP Drilling Program Conventional wireline (CWL) logging operations in the Gulf of Mexico Gas Hydrate JIP Drilling Program (GOM-JIP) was scheduled to include the deployment of a signal logging string (Figure 1) and a vertical seismic profiling (VSP) tool (Figure 2) in several of the Atwater Valley and Keathley Canyon drill sites. The only wireline logging tool scheduled to be deployed was the FMS-sonic tool string, which consisted of the Formation MicroScanner (FMS), a general purpose inclinometer tool (GPIT), and scintillation gamma ray tool (SGT), and the dipole shear sonic imager tool (DSI). The vertical seismic imager tool (VSI) will also be deployed during the GOM-JIP drilling program. The wireline logging tools were provided by Schlumberger wireline services.

19

Methane Hydrates - Methane Hydrate Graduate Fellowship  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Supply and Emerging Resources Future Supply and Emerging Resources The National Methane Hydrates R&D Program - Graduate Fellowship Program Methane Hydrate Graduate Fellowship Program Jeffrey James Marlow, a graduate student in Geobiology at the California Institute of Technology, was recently selected as the 2012 recipient of the NETL-National Academy of Sciences (NAS) Methane Hydrate Research Fellowship. Please see page 15 of the March 2013 issue (Vol. 13, Issue 1) of Fire in the Ice for more information on the recipient. The Department of Energy has a long history of building synergistic relationships with research universities. Funding academic research is a "win-win-win" situation. The U.S. government is able to tap into some of the best minds available for solving national energy problems, the universities get the support they need to maintain cutting edge faculty and laboratories, and the students involved are provided with opportunities that help them along their chosen path of study, strengthening the national pool of scientists and engineers. According to Samuel Bodman, speaking about graduate research in methane hydrates, "Students are the foundation of our energy future, bringing new ideas and fresh perspectives to the energy industry. What better way to assure technology innovation than to encourage students working on the development of a resource that has the potential to tip our energy balance toward clean-burning, domestic fuels."

20

The U.S. DOE Methane Hydrate R&D Program DOE Sponsored Student Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DOE Methane Hydrate R&D Program U.S. DOE Methane Hydrate R&D Program DOE Sponsored Student Researchers Publications and Presentations of DOE Supported Methane Hydrate R&D 1999-2013 December 2013 Table of Contents Section I: Documentation of Support for Education .................................................................................... 5 Additional Post-Degree Assignments at National Labs and USGS .......................................................... 14 Papers Authored and Presentations Given by NETL Methane Hydrate Fellows .................................... 15 Section II: Publications Related to the Program's Major Field Projects .................................................... 21 Alaska North Slope Gas Hydrate Reservoir Characterization (DE-FC26-01NT41332) ............................ 21

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fiscal Year 2012 Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S. Department of Energy Fiscal Year 2012 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area

22

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Handling Core Handling From: Cruise Prospectus [PDF-827KB] Visit the Photo Gallery for more pictures showing core handling Non-pressurized and Pressure Core Handling Non-pressurized Core Handling (Fugro Hydraulic Piston Corer and Fugro Corer) Photo of Core packed in ice bath Core packed in ice bath Cores that might contain gas hydrates should be recovered as quickly as possible. An ice bath may be used in some cases to slow the dissociation process. A core reception/preparation van will be on the deck of the Uncle John where individual cores (perhaps up to 9 m long) can be laid on ‘core hooks' and quickly drilled, labeled and sectioned. Infrared (IR) camera imaging will be done as soon as practical after core recovery. Both track-mounted and hand held IR cameras will be used to identify the

23

Methane Hydrate Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Methane Hydrate Advisory Committee Methane Hydrate Advisory Committee The Methane Hydrate Advisory Committee was created in response to provisions of the Methane Hydrate Research and Development Act of 2000 and reauthorized by the Energy Policy Act of 2005. The Committee is to advise the Secretary of Energy on potential applications of methane hydrate; assist in developing recommendations and priorities for the methane hydrate research and development program; and submit to Congress one or more reports on an assessment of the research program and an assessment of the DOE 5-year research plan. The Committee's charter stipulates that up to 15 members can be appointed by the Secretary of Energy, representing institutions of higher education, industrial enterprises and oceanographic institutions and state agencies.

24

GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS  

SciTech Connect

The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

James Sorensen; Jaroslav Solc; Bethany Bolles

2000-07-01T23:59:59.000Z

25

Methane Hydrate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

26

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of aerobic methanotrophy in preventing the escape of methane from marine, hydrate-bearing reservoirs to the atmosphere and ultimately to better define the role of aerobic methanotrophy in the global carbon cycle. Graph overlayed on photo - Methane seeps with the resulting methane plume Methane seeps with the resulting methane plume, Geophysical Research Letters, November 2007 Performers University of California – Santa Barbara, Santa Barbara (UCSB), CA 93106 Background The global methane reservoir in the form of gas hydrate is estimated at 500–10,000 Gt (KVENVOLDEN, 1995; MILKOV, 2004). This pool of carbon

27

Chapter 8 - Methane Hydrates  

Science Journals Connector (OSTI)

Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.

Ray Boswell; Koji Yamamoto; Sung-Rock Lee; Timothy Collett; Pushpendra Kumar; Scott Dallimore

2014-01-01T23:59:59.000Z

28

Methane Hydrate Formation and Dissocation in a Partially Saturated Sand--Measurements and Observations  

E-Print Network (OSTI)

Energy Technology Laboratory Methane Hydrates Research Group USA Arvind Gupta Colorado School of Mines Center for Hydrate Research USA ABSTRACT

2005-01-01T23:59:59.000Z

29

Methane Hydrate Formation and Dissociation in a Partially Saturated Core-Scale Sand Sample  

E-Print Network (OSTI)

Energy Technology Laboratory Methane Hydrates Research Group USA Arvind Gupta Colorado School of Mines Center for Hydrate Research USA ABSTRACT

2005-01-01T23:59:59.000Z

30

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 DE-FC26-06NT42963 Goal The goal of this project is to develop observational and experimental data that can provide a better understanding of the basic mechanisms at work in a methane hydrate reservoir that is under production. To this end, a thorough physical understanding of underlying phenomena associated with methane hydrate production will be acquired through unique, multi-scale experiments and associated analyses. In addition, one or more mathematical models that account for the observed phenomena and provide insights that may help to optimize methane hydrate production methods will be developed. Performers Georgia Tech Research Corporation, Atlanta, Georgia 30332 Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee 37831

31

Methane Hydrates and Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrates and Climate Change Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater sediments, the ocean or atmosphere. DOE is conducting research to understand the mechanisms and volumes involved in these little-studied processes. DOE environmental and climate change research projects related to Arctic methane hydrate deposits include: Characterization of Methane Degradation and Methane-Degrading

32

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 ESD05-048 Goal The project is bringing new laboratory measurements and evaluation techniques to bear on the difficult problems of characterization and gas recovery from methane hydrate deposits. Performer Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Background LBNL is performing laboratory tests to provide data to support the characterization and development of methane hydrate deposits. Major areas of research underway include hydrologic measurements, combined geomechanical/geophysical measurements, and synthetic hydrate formation studies. Hydrologic Measurements Relatively little research has been done to experimentally determine

33

methane hydrate science plan-final.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Principal Authors: Consor um for Ocean Leadership and the Methane Hydrate Project Science Team December 2013 DOE Award Number: DE-FE0010195 Project Title: Methane Hydrate...

34

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

- Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 - Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 Project Goals The primary goals of the DOE/NETL Natural Gas Hydrate Field Studies (NGHFS) project are: Conduct field-based studies that advance the ability to predict, detect, characterize, and understand distribution of and controls on natural gas hydrate occurrences. Analyze geologic, geochemical, and microbiologic data for indications of past and current changes to the stability of natural gas hydrate in marine settings. Develop links between the U.S. Gas Hydrate Program and international R&D efforts through direct participation in international field programs and workshops. Evaluate the potential role natural gas hydrates may play in the global carbon cycle through analysis of modern and paleo-natural gas

35

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

– Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 – Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 Project Objective Observe hydrate formation and dissociation phenomena in various porous media and characterize hydrate-bearing sediments by estimating physical properties (kinetic parameters for hydrate formation and dissociation, thermal conductivity, permeability, relative permeability, and mechanical strength) to enhance fundamental understanding on hydrate formation and accumulation and to support numerical simulations and potential gas hydrate production Project Performers Yongkoo Seol – NETL Office of Research & Development Jeong Choi – Oak Ridge Institute for Science and Education Jongho Cha-Virginia Polytech Institute Project Location National Energy Technology Laboratory - Morgantown, West Virginia

36

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

37

Methane Hydrate Program Annual Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2010 FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled, U.S. Department of Energy FY 2010 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of

38

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection and Microbiological Analysis of Gas Hydrate Cores Collection and Microbiological Analysis of Gas Hydrate Cores FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a fundamental modeling parameter - the amount of methane generated in deep sediments by methanogenic microorganisms. This would allow methane distribution models of gas hydrate reservoirs to accurately reflect an unknown volume and the distribution of biogenic methane within in a reservoir. The personnel at INEL have experience in similar biologic research and are considered to be experts by their global peers. Performer Idaho National Engineering and Environmental Laboratory (INEEL) - sample collection and analysis Location

39

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas hydrate systems from three perspectives: as an energy resource, as a geohazard, and as a long-term influence on global climate. Performers Rice University, Houston, TX University of Texas, Austin, TX Oklahoma State University, Stillwater, OK Background Heterogeneity in the distribution of gas hydrate accumulations impacts all aspects of research into gas hydrate natural systems. The challenge is to delineate, understand, and appreciate these differences at the regional and local scales, where differences in in situ concentrations are relevant to the importance of gas hydrate as a resource, a geohazard, and a factor in

40

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico DE-FC26-02NT41327 Goal The project goal was to develop new methodologies to characterize the physical properties of methane hydrate and hydrate sediment systems. Performers Westport Technology Center International - Houston, TX University of Houston - Houston, TX Results Project researchers created a pressure cell for measuring acoustic velocity and resistivity on hydrate-sediment cores. They utilized the measurements for input to an existing reservoir model for evaluating possible offshore hydrate accumulations. The organization of an industry-led Advisory Board and the development of a Research Management Plan have been completed. The development of a handbook for transporting, preserving, and storing hydrate core samples brought from the field to the laboratory was completed and distributed for review by industry and researchers.

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Methane Hydrates - The National R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program The National Methane Hydrates R&D Program Welcome to the information portal for the National Methane Hydrate R&D Program. Over the past eight years, research carried out under this program has resulted in significant advances in our understanding of methane hydrates, their role in nature, and their potential as a future energy resource. This success is largely due to an unprecedented level of cooperation between federal agencies, industry, national laboratories, and academic institutions. For a quick introduction to methane hydrate and its potential as a fuel source, please read the 2011 Methane Hydrates Primer. Information on other elements of the program can be found under the remaining Key Links. Read More.

42

International Cooperation in Methane Hydrates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Methane Hydrate » Oil & Gas » Methane Hydrate » International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program (DSDP) recovered the first subsea substantial methane hydrate deposits, which spurred methane hydrate research in the US and other countries. The successor programs, the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) sampled hydrate deposits off Oregon (ODP 204, 2002) and in the Cascadia Margin off Vancouver Island, Canada (ODP 146, 1992 and IODP 311, 2005). In the Atlantic Ocean off the US, ODP Leg 146 sampled hydrate deposits on the Blake Ridge and Carolina Rise in 1995. International cooperation helps scientists in the US and other countries

43

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station DE-FC26-02NT41328 Goal Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of California, San Diego (Scripps Institution of Oceanography) - manage geochemical, hydrological and sedimentological investigations Texas A&M University - manage field monitoring program Location La Jolla, California 92093 Background This project will monitor, characterize, and quantify the rates of formation and dissociation of methane gas hydrates at and near the seafloor in the northern Gulf of Mexico, and determine linkages between formation/dissociation and physical/chemical parameters of the deposits over the course of a year. The stability and response of shallow gas hydrates to temperature and chemical perturbations will be monitored in situ, and localized seafloor and water column environmental impacts of hydrate formation and dissociation characterized. The following will be determined: 1) The equilibrium/steady state conditions for structure II methane gas hydrates at the field site,2) whether the system is in dynamic equilibrium and the local hydrology is characterized by steady state episodic fluid flow, and 3) how fluid fluxes and fluid composition work together to dynamically influence gas hydrate stability.

44

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical Testing of Gas Hydrate/Sediment Samples Mechanical Testing of Gas Hydrate/Sediment Samples DE-AT26-99FT40267 Goal Develop understanding of the mechanical characteristics of hydrate-containing sediments. Background The ACE CRREL has a unique group of experienced personnel that have studied the mechanical characteristics of ice and permafrost that can be applied to the study and characterization of the mechanical properties of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of sediments related to drilling and seafloor installations in the Gulf of Mexico. Performers US Army Corp of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory (CRREL) - project management and research products

45

MethaneHydrateRD_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gas is an important energy gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy (FE) has played a major role in developing technologies to help tap new, unconventional sources of natural gas. FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and managed a high-quality research portf olio that has enabled signifi cant progress toward the (DOE) Program's long-term goals." The Nati onal Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety of forms in sediments within and below thick permafrost in Arctic regions, and in the

46

Methane Hydrates R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

47

Methane Hydrate Field Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Studies Field Studies Methane Hydrate Field Studies Arctic/Alaska North Slope Field Studies Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and currently lack outlets to commercial markets, Alaska provides an excellent laboratory to study E&P technology. The research also has implications for various Alaska resources, including potential gas hydrate resources for local communities, conventional "stranded" gas, as well as Alaska's large unconventional oil resources. The hydrate deposits have been delineated in the process of developing underlying oil fields, and drilling costs are much lower than offshore. DOE-BP Project

48

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

NLE Websites -- All DOE Office Websites (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program DOE/NETL Methane Hydrate Projects Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA

49

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

If you need help finding information on a particular project, please contact the content manager. If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed Projects Click on project number for a more detailed description of the project. Project Number Project Name Primary Performer DE-FC26-01NT41332 Alaska North Slope Gas Hydrate Reservoir Characterization BP Exploration Alaska, Inc. DE-FC26-01NT41330 Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration Chevron Energy Technology Company DE-FE0009897 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Georgia Tech Research Corporation DE-FE0009904 Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Oklahoma State University

50

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gathering, Processing and Evaluating Seismic and Physical Data on Gas Hydrates in the Gulf of Mexico Last Reviewed 02/05/2010 Gathering, Processing and Evaluating Seismic and Physical Data on Gas Hydrates in the Gulf of Mexico Last Reviewed 02/05/2010 DE-AT26-97FT34343 photo of piston core apparatus prior to being dropped Piston core apparatus with 6-ton weight prior to being dropped Photo courtesy USGS Goal The goal of the project is to characterize hydrates in the Gulf of Mexico (GOM) and further develop field techniques for characterizing hydrates. Performer US Geological Survey, Woods Hole Field Center Location Woods Hole Massachusetts Background Oceanic methane hydrates are a major emerging research topic spanning energy resource issues, global climate change, seafloor stability, ocean acoustics, impact on deep marine biota, and a number of special topics. Recent developments in the last five years have both broadened and deepened

51

Methane Hydrate Production Feasibility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

52

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields DE-FC26-06NT42962 Goal The goal of this project is to characterize and quantify the postulated gas hydrate resource associated with the Barrow Gas Fields – three producing fields located in a permafrost region near Barrow, the North Slope's biggest population center and economic hub. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Performers North Slope Borough, Barrow, Alaska (North Slope Borough) 99723

53

METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

METHANE HYDRATE ADVISORY COMMITTEE METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------~ 1. Committee's Official Designation. Methane Hydrate Advisory Committee (MHAC) 2. Authority:. This charter establishes the Methane Hydrate Advisory Committee (Committee) pursuant to Title IX, Subtitle F, Section 968, Methane Hydrate Research of the Energy Policy Act of 2005 (EPACT), Public Law 109-58. This charter establishes the MHAC under the authority of the Department of Energy (DOE). The MHAC is being renewed in accordance with the provisions of the Federal Advisory Committee Act (FACA), as amended, 5 U.S.C., App.2. 3. Objectives and Scope of Activities. The Committee provides advice to the Secretary of Energy by developing recommendations and broad programmatic priorities for the methane

54

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 EST-380-NEDA Goal The purpose of this study is to establish sediment lithology and quantification of methane in hydrates hosted in fine-grained sediments from the Gulf of Mexico (GoM), a marine site of methane hydrate occurrence. The results will help establish a correlation between laboratory data and hydrate accumulation field data on dispersed hydrates in the natural environment. Performer Brookhaven National Laboratory (BNL), Upton, New York 11973 Background Gas hydrates are located in permafrost and marine environments and show potential as a vast methane source worldwide. However, methane is about 17 times more potent a greenhouse gas than CO2 and the inherent instability of

55

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Hydrate Reservoir  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Hydrate Reservoir Modeling Using Rock Physics Techniques Last Reviewed 11/29/2013 Advanced Hydrate Reservoir Modeling Using Rock Physics Techniques Last Reviewed 11/29/2013 DE-FE0010160 Goal The primary goal of this research is to develop analytical techniques capable of quantitatively evaluating the nature of methane hydrate reservoir systems through modeling of their acoustic response using techniques that integrate rock physics theory, amplitude analysis, and spectral decomposition. Performers Fugro GeoConsulting, Inc., Houston TX Background Past efforts under the DOE-supported Gulf of Mexico Joint Industry project included the selection of well locations utilizing prospectivity analysis based primarily on a petroleum systems approach for gas hydrate using 3-D exploration seismic data and derivative analyses that produced predicted

56

Data from Alaska Test Could Help Advance Methane Hydrate R&D | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from Alaska Test Could Help Advance Methane Hydrate R&D from Alaska Test Could Help Advance Methane Hydrate R&D Data from Alaska Test Could Help Advance Methane Hydrate R&D March 25, 2013 - 1:27pm Addthis Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Gayland Barksdale Technical Writer, Office of Fossil Energy DOE & Methane Hydrates The Methane Hydrate Research and Development Act of 2000 established DOE as the lead U.S. agency for methane hydrate R&D. Innovative technology is being developed to inject CO2 into methane hydrate deposits to both release the fuel and permanently store carbon dioxide. DOE's R&D program is focused on developing the tools and

57

DOE Announces $2 Million Funding for Methane Hydrates Projects | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects November 7, 2005 - 12:43pm Addthis Seeks to Unlock World's Biggest Potential Source of "Ice That Burns" WASHINGTON, DC - The Department of Energy (DOE) today announced a total of $2 million in funding to five research projects that will assess the energy potential, safety, and environmental aspects of methane hydrate exploration and development. Termed the "ice that burns," methane hydrates are crystalline solids that release a flammable gas when melted. They are considered the Earth's biggest potential source of hydrocarbon energy and could be a key element in meeting natural gas demand in the United States,

58

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Research in Deep Sea Sediments - New Zealand Task Gas Hydrate Research in Deep Sea Sediments - New Zealand Task DE-AI26-06NT42878 Goal The objective of this research is to determine the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Specific objectives include: a). Refine geophysical, geochemical and microbiological technologies for prospecting hydrate distribution and content; b). Contribute to establishing high-priority geographical regions of prospective interest, in terms of methane volume estimates; c). Prediction of environmental effects and geologic risks at the continental margin associated to the natural resource occurrence and resource exploitation; and d). Expand understanding of the biogeochemical parameters and associated microbial community diversity in shallow sediments that influence the porewater sulfate gradient observed through anaerobic oxidation of methane. To accomplish these objectives, the Naval Research Laboratory (NRL) collaborated with New Zealand’s Institute of Geological and Nuclear Sciences (GNS) in a research cruise off the coast of New Zealand. NRL has conducted similar research cruises off the west coast and east coast of the United States, in the Gulf of Mexico and off the coast of Chile.

59

methane_hydrates | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrate and its potential as a fuel source, please read the 2011 Methane Hydrates Primer. Information on other elements of the program can be found under the links below. Fire...

60

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Numerical Simulation Last Reviewed 3/8/2013 Numerical Simulation Last Reviewed 3/8/2013 Project Goal The goal of NETL's gas hydrate numerical simulation studies is to obtain pertinent, high-quality information on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with NETL's experimental and field studies programs to ensure the validity of input datasets and scenarios. Project Performers Brian Anderson, NETL/RUA Fellow (West Virginia University) Hema Siriwardane, NETL/RUA Fellow (West Virginia University) Eugene Myshakin, NETL/URS Project Locations National Energy Technology Laboratory, Pittsburgh PA, and Morgantown WV West Virginia University, Morgantown, WV Background Field-scale hydrate production tests rely heavily on reservoir-scale

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Sampling and Characterization of Naturally Occurring Methane Hydrate Using the D/V JOIDES Resolution Last Reviewed 02/05/2010 In Situ Sampling and Characterization of Naturally Occurring Methane Hydrate Using the D/V JOIDES Resolution Last Reviewed 02/05/2010 DE-FC26-01NT41329 photo of a man showing the pressure core sampler on the deck of JOIDES Resolution Pressure core sampler on deck courtesy Texas A&M University Goal The goal of the project was to characterize hydrate accumulation at Hydrate Ridge (offshore Oregon) and improve the ability to use geophysical and subsurface logging to identify hydrates. A follow-on goal was to characterize hydrate accumulation at offshore Vancouver Island, BC, Canada. Background This project focused on physically verifying the existence of hydrates at Hydrate Ridge through the collection of pressurized and non-pressurized core samples and logging data. This study developed and tested tools to

62

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Seismic-Scale Rock Physics of Methane Hydrate Seismic-Scale Rock Physics of Methane Hydrate DE-FC26-05NT42663 Goal The goal of this project was to establish rock physics models for use in generating synthetic seismic signatures of methane hydrate reservoirs. Ultimately, the intent was to improve seismic detection and quantification of offshore and onshore methane hydrate accumulations. Performer Stanford University, Stanford, CA 94305 Background Gas hydrate reservoir characterization is, in principle, no different from traditional hydrocarbon reservoir characterization. The seismic response of the subsurface is determined by the spatial distribution of the elastic properties (properties of the subsurface that deform as seismic waves pass through it) and attenuation. By mapping changes in the elastic properties, scientists can identify geologic features, including hydrocarbon reservoirs.

63

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Energy.gov (U.S. Department of Energy (DOE))

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

64

Arctic Methane, Hydrates, and Global Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Arctic Methane, Hydrates, and Global Climate Arctic Methane, Hydrates, and Global Climate Speaker(s): Matthew T. Reagan Date: March 17, 2010 - 12:00pm Location: 90-3122 Paleooceanographic evidence has been used to postulate that methane may have had a significant role in regulating past climate. However, the behavior of contemporary permafrost deposits and oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. A recent expedition to the west coast of Spitsbergen discovered substantial methane gas plumes exiting the seafloor at depths that correspond to the upper limit of the receding gas hydrate stability zone. It has been suggested that these plumes may be the

65

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

66

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

67

Methane Hydrates R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

abundance suggest that they contain perhaps more organic carbon that all the world's oil, gas, and coal combined. The primary mission of the Methane Hydrates R&D Program is to...

68

NETL: Methane Hydrates - DOE/NETL Projects - NT42496  

NLE Websites -- All DOE Office Websites (Extended Search)

Conducting Scientific Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates Last Reviewed 05/16/2011 Conducting Scientific Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates Last Reviewed 05/16/2011 DE-AI26-05NT42496 Goal The United States Geological Survey (USGS) conducts scientific studies of natural gas hydrates in support of DOE efforts to evaluate and understand methane hydrates, their potential as an energy resource, and the hazard they may pose to ongoing drilling efforts. This project extends USGS support to the DOE Methane Hydrate Research Program previously supported under DE-AT26-97FT34342 and DE-AT26-97FT34343. Performer U.S. Geological Survey at Denver, CO, Woods Hole, MA, and Menlo Park, CA. Background The USGS Interagency Agreement (IA) involves laboratory research and international field studies in which DOE/NETL has a significant interest.

69

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA Background The USGS Interagency Agreement (IA) involves laboratory research and

70

NETL: Methane Hydrates - Hydrate Modeling - TOUGH-Fx/HYDRATE  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Modeling - TOUGH+/HYDRATE & HydrateResSim Hydrate Modeling - TOUGH+/HYDRATE & HydrateResSim TOUGH+/HYDRATE v1.0 LBNL's new hydrate reservoir simulator (TOUGH+/HYDRATE v1.0) is now publicly available for licensing. TOUGH+/HYDRATE models non-isothermal gas release, phase behavior and flow of fluids and heat in complex geologic media. The code can simulate production from natural CH4-hydrate deposits in the subsurface (i.e., in the permafrost and in deep ocean sediments), as well as laboratory experiments of hydrate dissociation/formation in porous/fractured media. TOUGH+/HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. More information on TOUGH+/Hydrate Also available is HydrateResSim. HydrateResSim (HRS) is a freeware, open-source reservoir simulator code available for use “as-is” from the NETL. HRS’ code was derived from an earlier version of the TOUGH+/Hydrate code.

71

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas hydrates, and their implications for future resources, geohazards, and the environment Characterizing the Affect of Environmental Change on Gas-Hydrate-Bearing Deposits The University of California at San Diego (San Diego, Calif.) - Researchers at the University of California at San Diego will design, build, and test an electromagnetic (EM) system designed for very shallow water use and will apply the system to determine the extent of offshore permafrost on the U.S. Beaufort inner shelf. Energy Department Investment: $507,000 Duration: 36 months The University of Mississippi (Oxford, Miss.) - Using electronic measurements, the researchers will

72

Fire in the Ice, August 2010 Methane Hydrate Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Figure 1: Simulation results of coupled thermo-dynamic and geomechanical changes around a hot Figure 1: Simulation results of coupled thermo-dynamic and geomechanical changes around a hot production well intersecting an HBS near a sloping seafloor after 30 years of production and heating (Rutqvist and Moridis, 2010). CONTENTS Geohazards of In Situ Gas Hydrates ...........................................1 Behavior of Methane Released in the Deep Ocean.....5 Core-Scale Heterogeneity ............6 Gas Volume Ratios ........................9 The Role of Methane Hydrates in the Earth System ....................12 Announcements .......................15 * Inter-Laboratory Comparison Project * Mississippi Canyon 118 * Research Fellowship * Call for Papers * Call for Abstracts * Upcoming Meetings Spotlight on Research .......... 20 Graham Westbrook CONTACT

73

NETL: Methane Hydrates - DOE/NETL Projects - Properties of Hydrate-Bearing  

NLE Websites -- All DOE Office Websites (Extended Search)

Properties of Hydrate-Bearing Sediments Subjected to Changing Gas Compositions Last Reviewed 12/11/2013 Properties of Hydrate-Bearing Sediments Subjected to Changing Gas Compositions Last Reviewed 12/11/2013 ESD12-011 Goal The objective of this research is to measure physical, chemical, mechanical, and hydrologic property changes in methane hydrate-bearing sediments subjected to injection of carbon dioxide and nitrogen. Performer Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720 Background A number of studies have investigated the impact of injecting carbon dioxide (CO2) and CO2-nitrogen (N2) mixtures into methane hydrate for the purpose of sequestering CO2 and releasing methane (CH4), and review articles have been published summarizing the literature. Most of these studies have investigated the fundamental physical/chemical nature of the exchange of CO2 and/or N2 with CH4 in the clathrate. These studies have

74

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through numerical simulation, conventional and innovative approaches for producing methane from gas hydrate-bearing geologic reservoirs. Numerical simulation is being used to assess the production of natural gas hydrates from geologic deposits using three production technologies: 1) depressurization, 2) direct CO2 exchange, and 3) dissociation-reformation CO2 exchange. Performers Battelle Pacific Northwest Division, Richland, Washington 99352 Background There are relatively few published studies of commercial production methods for gas hydrates, and all of these studies have examined essentially

75

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 DE-FC26-01NT41331 photo of new Anadarko drilling rig in place at Hot Ice No.1 on Alaska's North Slope Hot Ice No. 1 Drilling Platform courtesy Anadarko Petroleum Corp. Goal The goal of the project was to develop technologies for drilling and recovering hydrates in arctic areas. The specific objectives were to drill, core, and test a well through the hydrate stability zone in northern Alaska Performers Maurer Technology, Inc.* - Project coordination with DOE Anadarko Petroleum Corporation - Overall project management for the design, construction, and operation of the Arctic Drilling Platform and mobile core lab, and field coring operations Noble Engineering and Development* - Real time data collection and

76

Preliminary relative permeability estimates of methane hydrate-bearing sand  

E-Print Network (OSTI)

sand, the gas permeability of the sand with hydrate, and thefor gas and water through methane hydrate-bearing sand. X-hydrate dissociation and making a single-phase (gas or water) permeability measurement of the sand

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

2006-01-01T23:59:59.000Z

77

Methane hydrates: Fire from ice  

Science Journals Connector (OSTI)

... Attempts to compare these methods began last January. Most usable hydrate deposits probably lie offshore, but it is cheaper to begin with those beneath the Arctic. One of the ... As well as abundant hydrates, the site has similar geology and reservoir conditions to many offshore deposits, making it an ideal and accessible testing ground. Those involved say that they ...

David Adam

2002-08-29T23:59:59.000Z

78

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat flow and gas hydrates on the continental margin of India Last Reviewed 12/15/2011 Heat flow and gas hydrates on the continental margin of India Last Reviewed 12/15/2011 DE-NT0005669 Goal The goals of this project are to construct maps of apparent and residual heat flow through the western continental margin of India and to investigate the relationship of residual heat flow anomalies to fluid flow and gas hydrate distribution in the subsurface. Performer Oregon State University, College of Oceanic and Atmospheric Science, Corvallis, OR 97331 Map of the four regions sampled during NGHP Expedition 01 Map of the four regions sampled during NGHP Expedition 01 Background Gas hydrate distribution in sediments depends on methane supply, which in turn depends on fluid flow. When drilling data are available to calibrate seismic observations of the base of the gas hydrate stability zone (GHSZ),

79

Presentations from the March 27th - 28th Methane Hydrates Advisory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate...

80

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-07-01T23:59:59.000Z

82

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-03-01T23:59:59.000Z

83

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

2005-02-01T23:59:59.000Z

84

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42960 Quarterly Progress Report Reporting Period: April-June 2007 Detection and Production of Methane Hydrate Submitted by: Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2007 Office of Fossil Energy Detection and Production of Methane Hydrate Quarterly Progress Report Reporting Period: April-June 2007 Prepared by: George Hirasaki Rice University August 2007 CONTRACT NO. DE-FC26-06NT42960 Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; Fax: 713-348-5478; Email: gjh@rice.edu

85

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

86

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation. In addition to the Final Report, several companion Topical Reports are being published.

Thomas E. Williams; Keith Millheim; Bill Liddell

2004-11-01T23:59:59.000Z

87

Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 6-7 2013 Methane Hydrates Advisory Meeting Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting ConocoPhillips test results and data analysis Methane Hydrate...

88

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Properties of Hydrate – Tool Development Last Reviewed 3/18/2013 Thermal Properties of Hydrate – Tool Development Last Reviewed 3/18/2013 Project Goal The goal of this project is increased understanding of gas hydrate thermal properties through measurements on natural hydrate-bearing sediment cores and hydrate-bearing cores formed within laboratory pressure vessels. Project Performers Eilis Rosenbaum, NETL, Office of Research and Development Ronald Lynn, NETL, RDS/Parsons Dr. David Shaw, Geneva College Project Location National Energy Technology Laboratory, Pittsburgh, PA Background NETL utilizes a modified transient plane source (TPS) shown in Figure 1 using a technique originally developed by Gustafsson [1, 2] in a single-sided configuration (Figure 2). The TPS technique is capable of simultaneously determining both thermal conductivity and thermal

89

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

90

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing Arctic Hydrates (Canadian Test Well and Alaskan "Wells of Opportunity") Characterizing Arctic Hydrates (Canadian Test Well and Alaskan "Wells of Opportunity") photo of drilling rig at Mallik 2L-38 location Rig at Mallik 2L-38 location courtesy Geological Survey of Canada DE-AT26-97FT34342 Goal The purpose of this project is to assess the recoverability and potential production characteristics of the onshore natural gas hydrate and associated free-gas accumulations in the Arctic of North America Performer United States Geological Survey, Denver, Colorado 80225 - partner in GSC-managed consortium and provide expertise in data gathering and analysis Background The U.S. Geological Survey has been participating in natural gas hydrate reservoir research with DOE NETL through an interagency agreement which began in the early 1980’s. The work has been an ongoing effort as part of

91

U.S. and Japan Complete Successful Field Trial of Methane Hydrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. and Japan Complete Successful Field Trial of Methane Hydrate U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2, 2012 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the completion of a successful, unprecedented test of technology in the North Slope of Alaska that was able to safely extract a steady flow of natural gas from methane hydrates - a vast, entirely untapped resource that holds enormous potential for U.S. economic and energy security. Building upon this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic as well as research to test additional technologies that could be used to locate,

92

Bonding Strength by Methane Hydrate Formed among Sand Particles  

Science Journals Connector (OSTI)

The mechanical properties of methane hydrate?bearing sand were investigated by low temperature and high confining pressure triaxial testing apparatus in the present study. The specimens were prepared by infiltrating the methane gas into partially saturated sand specimen under the given temperature and stress condition which is compatible with the phase equilibrium condition for the stability of methane hydrate. The tests were firstly performed to investigate the effect of temperature on the shear behaviour of the specimen. Then the effect of backpressure was investigated. The strength of methane hydrate bearing sand increased as the temperature decreased and the back pressure increased. The bonding strength due to methane hydrate was dependent on methane hydrate saturation temperature and back pressure but independent of effective stress. Dissociation tests of methane hydrate were also performed by applying the temperature to the specimen at the various initial stress conditions. The marked development of shear and volumetric strains were observed due to dissociation of the methane hydrate in the specimen corresponding to the initial stress conditions.

M. Hyodo; Y. Nakata; N. Yoshimoto; R. Orense; J. Yoneda

2009-01-01T23:59:59.000Z

93

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

94

Electronic stucture of methane hydrate studied by Compton scattering  

Science Journals Connector (OSTI)

High-resolution Compton scattering spectra of methane, methane hydrate, and ice were measured using incident photon energy of 56.4keV at beamline ID15B of the European Synchrotron Radiation Facility. The experimental Compton profiles are compared to calculations employing density-functional theory using model atomic clusters. The hydrate has a cagelike structure built up from water molecules and the related Compton profile is observed to change apparently when compared to hexagonal ice. Furthermore, the influence of the guest-host interactions between the methane molecules and the water molecules of the cages on the Compton profile is discussed.

C. Sternemann; S. Huotari; M. Hakala; M. Paulus; M. Volmer; C. Gutt; T. Buslaps; N. Hiraoka; D. D. Klug; K. Hmlinen; M. Tolan; J. S. Tse

2006-05-03T23:59:59.000Z

95

Seismic-Scale Rock Physics of Methane Hydrate  

SciTech Connect

We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

Amos Nur

2009-01-08T23:59:59.000Z

96

NETL: Methane Hydrates - DOE/NETL Projects - Structural and Stratigraphic  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Last Reviewed 12/24/2013 Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Last Reviewed 12/24/2013 DE-FE0009904 Goal The goal of this project is to determine structural and stratigraphic controls on hydrate occurrence and distribution in Green Canyon (GC) 955 and Walker Ridge (WR) 313 blocks with special emphasis on hydrate-bearing sand reservoirs. Structural and stratigraphic controls on hydrate distribution are examined by jointly analyzing surface-towed, multichannel seismic (MCS) and Ocean Bottom Seismometer (OBS) data and well logs through a combination of pre-stack depth migration (PSDM), traveltime and full-waveform inversion (FWI), and rock physics modeling methods. Performers Oklahoma State University, Stillwater, OK 74078-1026

97

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Resolution Sidescan Sonar and Multibeam Bathymetric Data Collection and Processing, Atwater Canyon, Gulf of Mexico High-Resolution Sidescan Sonar and Multibeam Bathymetric Data Collection and Processing, Atwater Canyon, Gulf of Mexico DE-AT26-97FT34344 photo of DTAGS seismic source being deployed DTAG seismic source being deployed courtesy Naval Research Laboratory Goal: During February 14-18, 2005, a scientific cruise was conducted using the R/V Pelican to obtain high-resolution sidescan sonar and multibeam bathymetric data of Mounds D and F in the Atwater Valley area of the Gulf of Mexico, to better characterize sites selected for experimental drilling by the ChevronTexaco Gas Hydrates Joint Industry Project (JIP). Performers: Naval Research Lab - Dr. Joan Gardner Location: Washington, DC 20375 Atwater Valley, Gulf of Mexico Background: During May, 2004 the Naval Research Lab (NRL) collected piston cores and

98

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Interrelation of Global Climate and the Response of Oceanic Hydrate Accumulations Last Reviewed 8/21/2013 Interrelation of Global Climate and the Response of Oceanic Hydrate Accumulations Last Reviewed 8/21/2013 Field Work Proposals: ESD07-014 (LBNL) and 08FE-003 (LANL) Project Goal The primary objectives of this project are to: 1) investigate the effect of rising water temperatures on the stability of oceanic hydrate accumulations, 2) estimate the global quantity of hydrate-originating carbon that could reach the upper atmosphere as CH4 or CO2 thus affecting global climate, 3) quantify the interrelationship between global climate and the amount of hydrate-derived carbon reaching the upper atmosphere focusing on the potential link between hydrate dissociation and cascading global warming and 4) test the discharge phase of the Clathrate Gun Hypothesis which stipulates large-scale hydrate dissociation and gas

99

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of Natural Hydrate Bearing Sediments and Hydrate Dissociation Kinetics Last Reviewed 12/6/2013 Characterization of Natural Hydrate Bearing Sediments and Hydrate Dissociation Kinetics Last Reviewed 12/6/2013 FWP-45133 Work conducted under this field work proposal (FWP) includes two distinct phases. Ongoing Phase 2 work is discussed directly below. Click here to review the completed, Phase 1 work, associated with this FWP. Phase 2 Project Information Characterization of Natural Hydrate Bearing Core Samples Goal The overarching goal of this project is to gain an improved understanding of the dynamic processes of gas hydrate accumulations in geologic media by combining laboratory studies, numerical simulation, and analysis of shipboard infrared imaging of hydrate core samples. This project comprises four principal components: (1) fundamental laboratory investigations, (2)

100

Phase behavior of methane hydrate in silica sand  

Science Journals Connector (OSTI)

Abstract Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2)K and (5.9 to 7.8)MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5)K and (7.3 to 16.0)MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the GibbsThomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc.

Shi-Cai Sun; Chang-Ling Liu; Yu-Guang Ye; Yu-Feng Liu

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling  

Science Journals Connector (OSTI)

...expression: The phase boundary between methane hydrate and methane plus...and methane hydrate, CH4-5.75H20...a structure I hydrate construct-ed...documented anomalous behavior in the formation...325 Fig. 1. Phase diagram for the...

W. Steven Holbrook; Hartley Hoskins; Warren T. Wood; Ralph A. Stephen; Daniel Lizarralde

1996-09-27T23:59:59.000Z

102

NETL: National Methane Hydrates R&D Program- 2009 GOM JIP Expedition  

NLE Websites -- All DOE Office Websites (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program 2009 Gulf of Mexico JIP - Leg II DOE-Sponsored Expedition Confirms Resource-Quality Gas Hydrate in the Gulf of Mexico Leg II Initial Scientific Reports Now Available Photo of semi-submersible Helix Project Background Participants Pre-Drilling Expedition Overview Drilling/Logging Sites The LWD Program Site Summaries Walker Ridge-Block 313 Green Canyon-Block 955 Alaminos Canyon block 21 and East Breaks block 992 JIP Website [external site] FITI article - Summer 2009 Leg II Initial Scientific Reports On May 6, 2009, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL)in collaboration with the U.S. Geological Survey (USGS), the U.S. Minerals Management Service, an industry research consortium led by Chevron, and others completed a landmark gas hydrate

103

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico - Applications for Safe Exploration and Production Last Reviewed 12/18/2013 Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico - Applications for Safe Exploration and Production Last Reviewed 12/18/2013 DE-FC26-01NT41330 Goal: The goal of this project is to develop technology and collect data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GoM). The intent of the project is to better understand the impact of hydrates on safety and seafloor stability as well as provide data for use by scientists in their study of climate change and assessment of the feasibility of marine hydrate as a potential future energy resource. Photo of the Helix Q4000 The Semi-Submersible Helix Q4000 used on the 21 day JIP Leg II Drilling and Logging Expedition

104

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

Thomas E. Williams; Keith Millheim; Buddy King

2004-03-01T23:59:59.000Z

105

NETL: Methane Hydrates - DOE/NETL Projects - Hydrate-Bearing Clayey  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Last Reviewed 12/30/2013 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Last Reviewed 12/30/2013 DE-FE0009897 Goal The primary goal of this research effort is to contribute to an in-depth understanding of hydrate bearing, fine-grained sediments with a focus on investigation of their potential for hydrate-based gas production. Performer Georgia Tech Research Corporation, Atlanta GA Background Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. Yet hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate-lense topology, system connectivity, and physical

106

Processes for Methane Production from Gas Hydrates  

Science Journals Connector (OSTI)

The main cost here is only that of the pipeline used to transport the gas to the production platform. For subsea systems that do not ... group of wells. Transporting methane from the production site to the shore ...

2010-01-01T23:59:59.000Z

107

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

108

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field trial  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Ignik Sikumi gas hydrate field trial 2012 Ignik Sikumi gas hydrate field trial Photo of the Ignik Drilling Pad Download 2011/2012 Field Test Data Ignik Sikumi #1 "Fire in the Ice" Video Project Background Participants Ignik Sikumi Well Review CO2-Ch4 Exchange Overview August 2, 2013 - Project operations are complete. Read the Final Project Technical Report [PDF-44.1MB] February 19, 2013 - Data from the 2011/2012 field test is now available! Click here to access data. Status Report - May 7, 2012 Final abandonment of Ignik Sikumi #1 wellsite has been completed. Tubing, casing-tubing annulus, and flatpack were filled with cement per the abandonment procedure approved by the Alaska Oil and Gas Conservation Commission. To minimize effects on the landscape and leave as little trace of the operations as possible, a small area around the wellhead was

109

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf of Mexico Gas Hydrates Sea-floor Observatory Project Last Reviewed 12/18/2013 Gulf of Mexico Gas Hydrates Sea-floor Observatory Project Last Reviewed 12/18/2013 DE-FE26-06NT42877, DE-FC26-02NT41628, and DE-FC26-00NT40920 Goal The goal of this project is to conduct activities leading to the development, implementation, and operation of a remote, multi-sensor seafloor observatory focused on behavior of the marine hydrocarbon system within the gas hydrate stability zone of the deepwater Gulf of Mexico and analysis of data resultant from that observatory over time. Attaining this goal will lead to an enhanced understanding of the role the hydrocarbon system plays in the environment surrounding the site. Investigations include physical, chemical, and microbiological studies. Models developed from these studies are designed to provide a better understanding of gas

110

NETL: Methane Hydrates Interagency R&D Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates Interagency R&D Conference Methane Hydrates Interagency R&D Conference March 20-22, 2002 Table of Contents Disclaimer Papers and Presentations The Curiosity of Hydrates Methane Hydrates Issues Arctic Region Projects West Coast Projects East Coast Projects Gulf of Mexico Projects Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

111

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane Expulsion  

NLE Websites -- All DOE Office Websites (Extended Search)

Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced temperature change, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the updip limit of the stability zone on continental margins. The behavior shall be explored in response to both longer term changes in sea level (e.g., twenty-thousand years) and shorter term due to atmospheric

112

NETL: Methane Hydrates - DOE/NETL Projects - Measurement and Interpretation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement and Interpretation of Seismic Velocities and Attenuation in Hydrate-Bearing Sediments Last Reviewed 12/18/2013 Measurement and Interpretation of Seismic Velocities and Attenuation in Hydrate-Bearing Sediments Last Reviewed 12/18/2013 DE-FE0009963 Goal The primary project objectives are to relate seismic and acoustic velocities and attenuations to hydrate saturation and texture. The information collected will be a unique dataset in that seismic attenuation will be acquired within the seismic frequency band. The raw data, when combined with other measurements (e.g., complex resistivity, micro-focus x-ray computed tomography, etc.), will enable researchers to understand not only the interaction between mineral surfaces and gas hydrates, but also how the hydrate formation method affects the hydrate-sediment system in terms of elastic properties. An over-arching goal of this research is to calibrate geophysical

113

Notices DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

32 Federal Register 32 Federal Register / Vol. 77, No. 130 / Friday, July 6, 2012 / Notices DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770) requires that notice of these meetings be announced in the Federal Register. DATES: Thursday, July 26, 2012, 8:00 a.m. to 8:30 a.m. (CDT)- Registration, 8:30 a.m. to 5:00 p.m. (CDT)-Meeting. ADDRESSES: Marriott Houston Airport, 18700 John F. Kennedy Boulevard, Houston, Texas 77032. FOR FURTHER INFORMATION CONTACT: Lou Capitanio, U.S. Department of Energy, Office of Oil and Natural Gas, 1000

114

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

115

Marine gas hydrates in thin sand layers that soak up microbial methane  

Science Journals Connector (OSTI)

At Site U1325 (IODP Exp. 311, Cascadia margin), gas hydrates occupy 2060% of pore space in thin sand layers (hydrate. This is a common occurrence in gas hydrate-bearing marine sequences, and it has been related to the inhibition of hydrate formation in the small pores of fine-grained sediments. This paper applies a mass balance model to gas hydrate formation in a stack of alternating fine- and coarse-grained sediment layers. The only source of methane considered is in situ microbial conversion of a small amount of organic carbon (gas hydrates in the fine-grained layers. Methane generated in these layers is transported by diffusion into the coarse-grained layers where it forms concentrated gas hydrate deposits. The vertical distribution and amount of gas hydrate observed at Site U1325 can be explained by in situ microbial methane generation, and a deep methane source is not necessary.

Alberto Malinverno

2010-01-01T23:59:59.000Z

116

U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Methane Hydrates May Exceed the Energy Content of All Other Fossil Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut Americas Foreign Oil Dependence

117

NETL: Methane Hydrates - DOE/NETL Projects - Temporal Characterization of  

NLE Websites -- All DOE Office Websites (Extended Search)

Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters Last Reviewed 12/18/2013 Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters Last Reviewed 12/18/2013 DE-FE0010141 Goal The overall objective of the project is to investigate hydrate system dynamics beneath seafloor mounds—a structurally focused example of hydrate occurrence at the landward extreme of their stability field—in the northern Gulf of Mexico. Researchers will conduct observatory-based in situ measurements at Woolsey Mound, MC118 to: Characterize (geophysically) the sub-bottom distribution of hydrate and its temporal variability and, Contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents, and seafloor

118

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

E-Print Network (OSTI)

Gas hydrate formation in a variable volume bed of silica sandamount of sand, gas, and water. Although methane hydrate has

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

119

Experimental study on the formation and dissociation conditions of methane hydrates in porous media  

E-Print Network (OSTI)

hydrates formed by methane gas and pure water in porous media. Methane gas hydrates were formed in a cell packed with 0.177-mm (0.007 in) diameter single sand (U.S. Sieve Series Designation Mesh No. 80) and 0.420-mm (0.017 in) diameter single sand (U...

Jung, Woodong

2012-06-07T23:59:59.000Z

120

Methane Hydrates R&D U S  

NLE Websites -- All DOE Office Websites (Extended Search)

the Power of Working Together the Power of Working Together Interagency Coordination on Methane Hydrates R&D U . S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r g y N a t i o n a l E n e r g y T e c h n o l o g y L a b o r a t o r y  Introduction Perhaps no areas of science are receiving more care- ful scrutiny and public discussion than those that deal with the interactions among earth, ocean, climate, and humanity. At the same time, our growing demands for energy are challenging us to find additional sources of clean fuel. The science of methane hydrates, a poten- tially vast source of natural gas that is part of a complex of dynamic natural systems, sits squarely in the center of these issues and the debates that surround them. Over the past two decades, scientists have been

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Methane hydrate formation and dissociation in a partially saturated sand  

SciTech Connect

To predict the behavior of hydrate-bearing sediments and the economic extractability of natural gas from reservoirs containing gas hydrates, we need reservoir simulators that properly represent the processes that occur, as well as accurate parameters. Several codes are available that represent some or all of the expected processes, and values for some parameters are available. Where values are unavailable, modelers have used estimation techniques to help with their predictions. Although some of these techniques are well respected, measurements are needed in many cases to verify the parameters. We have performed a series of experiments in a partially water saturated silica sand sample. The series included methane hydrate formation, and dissociation by both thermal stimulation and depressurization. The sample was 7.6 cm in diameter and 25 cm in length. In addition to measuring the system pressure and temperatures at four locations in the sample, we measured local density within the sample using x-ray computed tomography. Our goals in performing the experiment were to gather information for estimating thermal properties of the medium and to examine nonequilibrium processes.

Kneafsey, Timothy J.; Tomutsa, Liviu; Taylor, Charles E.; Gupta, Arvind; Moridis, George; Freifeld, Barry; Seol, Yongkoo

2004-11-24T23:59:59.000Z

122

METHANE HYDRATE STUDIES: DELINEATING PROPERTIES OF HOST SEDIMENTS TO ESTABLISH REPRODUCIBLE DECOMPOSITION KINETICS.  

SciTech Connect

The use of methane hydrate as an energy source requires development of a reliable method for its extraction from its highly dispersed locations in oceanic margin sediments and permafrost. The high pressure (up to 70 MPa) and low temperature (272 K to 278 K) conditions under which hydrates are stable in the marine environment can be mimicked in a laboratory setting and several kinetic studies of pure methane hydrate decomposition have been reported. However, the effect of host sediments on methane hydrate occurrence and decomposition are required to develop reliable hydrate models. In this paper, we describe methods to measure sediment properties as they relate to pore-space methane gas hydrate. Traditional geotechnical techniques are compared to the micrometer level by use of the synchrotron Computed Microtomography (CMT) technique. CMT was used to measure the porosity at the micrometer level and to show pore-space pathways through field samples. Porosities for three sediment samples: one from a site on Georges Bank and two from the known Blake Ridge methane hydrate site, from different depths below the mud line were measured by traditional drying and by the new CMT techniques and found to be in good agreement. The integration of the two analytical approaches is necessary to enable better understanding of methane hydrate interactions with the surrounding sediment particles.

MAHAJAN,D.SERVIO,P.JONES,K.W.FENG,H.WINTERS,W.J.

2004-12-01T23:59:59.000Z

123

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

SciTech Connect

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle, May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

124

NETL-ORD Methane Hydrate Project - Micro XCT Characterization and  

NLE Websites -- All DOE Office Websites (Extended Search)

Micro-XCT Characterization and Examination of Pressured Cores Last Reviewed 7/15/2013 Micro-XCT Characterization and Examination of Pressured Cores Last Reviewed 7/15/2013 Goal The primary goal of this research is to visualize gas hydrate within sediment pore spaces under in situ conditions using a high-resolution micro-XCT scanner. Performers Yongkoo Seol – NETL Office of Research & Development Eilis Rosenbaum – NETL Office of Research & Development Jongho Cha- Oak Ridge Institute for Science and Education Location National Energy Technology Laboratory - Morgantown, West Virginia Description The initial phase of this research will focus on developing the experimental system needed to accommodate hydrate-bearing samples under in-situ conditions within an existing micro-XCT (X-ray transparent cell) system. Development will consist of designing, building, and testing the

125

Methane Main  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

126

Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes  

SciTech Connect

Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

2011-06-01T23:59:59.000Z

127

Microbial Communities from Methane Hydrate-Bearing Deep Marine Sediments in a Forearc Basin  

Science Journals Connector (OSTI)

...Proceedings of the Ocean Drilling Program Scientific Results, vol. 146. Oceanic Drilling Program, College Station...methane quantities in a large gas-hydrate reservoir...microbiological samples by drilling, p. 23-44. In P. S...

David W. Reed; Yoshiko Fujita; Mark E. Delwiche; D. Brad Blackwelder; Peter P. Sheridan; Takashi Uchida; Frederick S. Colwell

2002-08-01T23:59:59.000Z

128

The U.S. DOE Methane Hydrate R&D Program DOE Sponsored Student...  

NLE Websites -- All DOE Office Websites (Extended Search)

H. and D. Smith, 2002. "Synthesis and Homogeneity of Methane Hydrate in Unconsolidated Media," Journal of Testing and Evaluation, Vol. 30, p. 1-7. Smith, D., J. Wilder, and K....

129

NETL: Methane Hydrates - DOE/NETL Projects - Application of Crunch-Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of CrunchFlow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites Last Reviewed 12/11/2013 Application of CrunchFlow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites Last Reviewed 12/11/2013 DE-FE0010496 Goal The goal of this project is to apply a multi-component, multi-dimensional reactive transport simulation code to constrain modern day methane fluxes and to reconstruct past episodes of methane flux that can be correlated with environmental changes. Performers Oregon State University – Corvallis, OR Background The importance of understanding the role that gas hydrates play in the global carbon cycle and in understanding their potential as a future energy resource have long been recognized and are key components of the Methane Hydrate R&D Program. Fundamental questions remain, however, as to the residence time of gas hydrates near the seafloor and deeper within the

130

Data from Innovative Methane Hydrate Test on Alaska's North Slope Now  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data from Innovative Methane Hydrate Test on Alaska's North Slope Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website March 11, 2013 - 10:07am Addthis DOE participated in gas hydrate field production trials in early 2012 in partnership with ConocoPhillips and the Japan Oil, Gas and Metals National Corp at the IÄ¡nik Sikumi (Inupiat for “Fire in the Ice”) test well, shown here, on the north slope of Alaska. Datasets from that field trial are now available to the public. DOE participated in gas hydrate field production trials in early 2012 in partnership with ConocoPhillips and the Japan Oil, Gas and Metals National Corp at the Iġnik Sikumi (Inupiat for "Fire in the Ice") test well,

131

Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method  

SciTech Connect

Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.

Yu Yanxin; Cheng Yipik [Department of Civil, Environmental and Geomatic Engineering, University College London (UCL), Gower Street, London, WC1E 6BT (United Kingdom); Xu Xiaomin; Soga, Kenichi [Geotechnical and Environmental Research Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)

2013-06-18T23:59:59.000Z

132

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation  

E-Print Network (OSTI)

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate simulating reflectors (BSRs) imply the potential existence of gas hydrates offshore southwestern Taiwan that the fluxes are very high in offshore southwestern Taiwan. The depths of the SMI are different at sites GH6

Lin, Andrew Tien-Shun

133

Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change  

SciTech Connect

Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

2008-04-15T23:59:59.000Z

134

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

SciTech Connect

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

135

Structure H hydrate phase equilibria of paraffins, naphthalenes, and olefins with methane  

SciTech Connect

Initial phase equilibrium data are reported for 10 methane + liquid hydrocarbon systems forming structure H hydrates in the pressure range of 1--6 MPa. Four-phase equilibrium conditions were measured for each system, with paraffinic, naphthenic, and olefinic liquid hydrocarbons filling the large cage of structure H, and methane stabilizing the two smaller cages present in the hydrate. Many of these liquid hydrocarbons constitute a small fraction of crude oils and condensates, and the high stability and relative ease of formation of structure H suggest a possible impact of these hydrates upon hydrocarbon facilities.

Mehta, A.P.; Sloan, E.D. Jr. (Colorado School of Mines, Golden, CO (United States))

1994-10-01T23:59:59.000Z

136

Methane hydrate formation and dissociation in a partially saturated core-scale sand sample  

SciTech Connect

We performed a series of experiments to provide data for validating numerical models of gas hydrate behavior in porous media. Methane hydrate was formed and dissociated under various conditions in a large X-ray transparent pressure vessel, while pressure and temperature were monitored. In addition, X-ray computed tomography (CT) was used to determine local density changes during the experiment. The goals of the experiments were to observe changes occurring due to hydrate formation and dissociation, and to collect data to evaluate the importance of hydrate dissociation kinetics in porous media. In the series of experiments, we performed thermal perturbations on the sand/water/gas system, formed methane hydrate, performed thermal perturbations on the sand/hydrate/water/gas system resulting in hydrate formation and dissociation, formed hydrate in the resulting partially dissociated system, and dissociated the hydrate by depressurization coupled with thermal stimulation. Our CT work shows significant water migration in addition to possible shifting of mineral grains in response to hydrate formation and dissociation. The extensive data including pressure, temperatures at multiple locations, and density from CT data is described.

Kneafsey, T.J. (LBNL); Tomutsa, L. (LBNL); Moridis, G.J. (LBNL); Seol, Y. (LBNL); Freifeld, B.M. (LBNL); Taylor, C.E.; Gupta, A. (Colorado School of Mines, Golden, CO)

2007-03-01T23:59:59.000Z

137

Strength behavior of methane hydrate bearing sand in undrained triaxial testing  

Science Journals Connector (OSTI)

Gas hydrates represent a potential future energy source as well as a considerable geohazard. In order to assess both the benefits and risks that gas hydrate bearing sediments pose, fundamental information about their physical properties is required. In this study, the undrained shear strength of methane hydrate bearing sand was investigated. The experimental program required modifications to an existing triaxial apparatus and accurate determination of the hydrate saturation lead to the use of two methods for comparison of the saturation calculations. Strength results indicated that the presence of gas hydrate will increase the sediment's undrained shear strength and corresponding stiffness. The relative contribution of cohesion and friction angle was observed to be a function of the hydrate saturation, for this particular hydrate formation methodology.

Hossein Ghiassian; Jocelyn L.H. Grozic

2013-01-01T23:59:59.000Z

138

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

E-Print Network (OSTI)

stability zone, hydrate will first form at the methane-water interface, either as a film on a methane gas bubble

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

139

Methane Hydrates: Major Energy Source for the Future or Wishful Thinking?  

SciTech Connect

Methane hydrates are methane bearing, ice-like materials that occur in abundance in permafrost areas such as on the North Slope of Alaska and Canada and as well as in offshore continental margin environments throughout the world including the Gulf of Mexico and the East and West Coasts of the United States. Methane hydrate accumulations in the United States are currently estimated to be about 200,000 Tcf, which is enormous when compared to the conventional recoverable resource estimate of 2300 Tcf. On a worldwide basis, the estimate is 700,000 Tcf or about two times the total carbon in coal, oil and conventional gas in the world. The enormous size of this resource, if producible to any degree, has significant implications for U.S. and worldwide clean energy supplies and global environmental issues. Historically the petroleum industry's interests in methane hydrates have primarily been related to safety issues such as wellbore stability while drilling, seafloor stability, platform subsidence, and pipeline plugging. Many questions remain to be answered to determine if any of this potential energy resource is technically and economically viable to produce. Major technical hurdles include: 1) methods to find, characterize, and evaluate the resource; 2) technology to safely and economically produce natural gas from methane hydrate deposits; and 3) safety and seafloor stability issues related to drilling through gas hydrate accumulations to produce conventional oil and gas. The petroleum engineering profession currently deals with gas hydrates in drilling and production operations and will be key to solving the technical and economic problems that must be overcome for methane hydrates to be part of the future energy mix in the world.

Thomas, Charles Phillip

2001-09-01T23:59:59.000Z

140

Methane hydrate formation in turbidite sediments of northern Cascadia IODP Expedition 311  

SciTech Connect

Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SWNE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~8 km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~49 mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23 cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and N80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (N63 ?m) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245 mbsf.

Torres, M. E.; Trehu, Ann M.; cespedes, N.; Kastner, Miriam; Wortmann, Ulrich; Kim, J.; Long, Philip E.; Malinverno, Alberto; Pohlman, J. W.; Collett, T. S.

2008-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Carbon dioxide, argon, nitrogen and methane clathrate hydrates:1 thermodynamic modelling, investigation of their stability in Martian2  

E-Print Network (OSTI)

1 Carbon dioxide, argon, nitrogen and methane clathrate hydrates:1 thermodynamic modelling-4Dec2012 #12;3 Keywords: Mars, clathrate hydrate, nitrogen, carbon dioxide, argon, methane, equilibrium and allows to simulating a Martian gas, CO2 dominated (95.3%) plus nitrogen6 (2.7%) and argon (2

Paris-Sud XI, Université de

142

Methane hydrate formation and dissociationin a partially saturatedcore-scale sand sample  

SciTech Connect

We performed a series of experiments to provide data forvalidating numerical models of gas hydrate behavior in porous media.Methane hydrate was formed and dissociated under various conditions in alarge X-ray transparent pressure vessel, while pressure and temperaturewere monitored. In addition, X-ray computed tomography (CT) was used todetermine local density changes during the experiment. The goals of theexperiments were to observe changes occurring due to hydrate formationand dissociation, and to collect data to evaluate the importance ofhydrate dissociation kinetics in porous media. In the series ofexperiments, we performed thermal perturbations on the sand/water/gassystem, formed methane hydrate, performed thermal perturbations on thesand/hydrate/water/gas system resulting in hydrate formation anddissociation, formed hydrate in the resulting partially dissociatedsystem, and dissociated the hydrate by depressurization coupled withthermal stimulation. Our CT work shows significant water migration inaddition to possible shifting of mineral grains in response to hydrateformation and dissociation. The extensive data including pressure,temperatures at multiple locations, and density from CT data isdescribed.

Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.; Seol,Yongkoo; Freifeld, Barry M.; Taylor, Charles E.; Gupta, Arvind

2006-02-03T23:59:59.000Z

143

Assessing the Thermodynamic Feasibility of the Conversion of Methane Hydrate into Carbon Dioxide Hydrate in Porous Media  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing the Thermodynamic Feasibility of the Conversion of Methane Assessing the Thermodynamic Feasibility of the Conversion of Methane Hydrate into Carbon Dioxide Hydrate in Porous Media Duane H. Smith (dsmith@netl.doe.gov; 304-285-4069), U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 Kal Seshadri (kal.seshadri@netl.doe.gov; 304-285-4680), Parsons Infrastructure and Technology Group, Morgantown, WV 26505 Joseph W. Wilder (wilder@math.wvu.edu; 304-293-2011), U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 (Permanent Address: Dept of Mathematics, P. O. Box 6310, West Virginia University, Morgantown, WV, 26506-6310) Abstract Concerns about the potential effects of rising carbon dioxide levels in the atmosphere have stimulated interest in a number of carbon dioxide sequestration studies. One

144

Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations  

SciTech Connect

To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

2010-07-01T23:59:59.000Z

145

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

SciTech Connect

Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

2011-02-15T23:59:59.000Z

146

Modeling of structure H hydrate equilibria for methane, intermediate hydrocarbon molecules and water systems  

SciTech Connect

Clathrate hydrates are inclusion compounds in which guest molecules are engaged by water molecules under favorable conditions of pressure and temperature. The well known structures 1 and 2 have been discovered since last century, while a new structure called H has been recently described in the literature. Since that time, structure H hydrate equilibrium data involving methane and different intermediate liquid hydrocarbon molecules have been published. The equilibrium calculations involving hydrates are based on the fact that the chemical potential of water in the aqueous liquid phase is equal to the one in the hydrate phase. The chemical potential of water in the liquid aqueous phase can be easily described by classical thermodynamic relations, while the chemical potential of water in the hydrates phase is described by the expressions proposed by Van der Walls and Platteeuw derived from an adsorption model based on statistical thermodynamics. The authors present in this paper a set of Kihara potential parameters which enable the calculation of Langmuir constants which characterize the adsorption of some naphthenic and iso-paraffinic intermediate hydrocarbons in the larger cage of structure H hydrates. This work thus allows the computation of structural H hydrate equilibrium conditions for systems made of methane, intermediate hydrocarbon molecules and water.

Thomas, M.; Behar, E. [Inst. Francais du Petrole, Rueil-Malmaison (France)

1996-12-31T23:59:59.000Z

147

Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin  

Science Journals Connector (OSTI)

...fluids associated with a large gas hydrate reservoir...USA. Proc. Ocean Drilling Progr. Sci. Results...initial reports. Ocean Drilling Program, College Station...p. 18-22. Ocean Drilling Program, College Station...material turnover and large methane plumes at the...

F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

2008-03-14T23:59:59.000Z

148

NETL: Methane Hydrates - DOE/NETL Projects - Verification Of Capillary  

NLE Websites -- All DOE Office Websites (Extended Search)

Verification Of Capillary Pressure Functions And Relative Permeability Equations For Modeling Gas Production From Gas Hydrates Last Reviewed 12/12/2013 Verification Of Capillary Pressure Functions And Relative Permeability Equations For Modeling Gas Production From Gas Hydrates Last Reviewed 12/12/2013 DE-FE0009927 Goal The goal of this project is to verify and validate the capillary pressure functions and relative permeability equations that are frequently used in hydrate numerical simulators. In order to achieve this goal, numerical simulation using a network model will be used to suggest fitting parameters, modify existing equations or, if necessary, develop new equations for better simulation results. Performers Wayne State University, Detroit, MI 48202-3622 Background Numerical simulation is used to estimate and predict long-term behavior of hydrate-bearing sediments during gas production [Kurihara et al., 2008;

149

DOE Leads National Research Program in Gas Hydrates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leads National Research Program in Gas Hydrates Leads National Research Program in Gas Hydrates DOE Leads National Research Program in Gas Hydrates July 30, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies. Read Dr. Boswell's testimony Dr. Ray Boswell, Senior Management and Technology Advisor at the Office of Fossil Energy's National Energy Technology Laboratory, testified before the House Natural Resources Subcommittee on Energy and Mineral Resources that the R&D program in gas hydrates is working to integrate and leverage

150

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska  

SciTech Connect

The Walakpa Gas Field, located near the city of Barrow on Alaska's North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

151

Research News TEMPLATE  

NLE Websites -- All DOE Office Websites (Extended Search)

(DOE) Methane Hydrates R&D Program is addressing myriad questions NETL researcher Kelly Rose evaluates a natural gas hydrate research core from India's NGHP-01 natural...

152

Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin  

SciTech Connect

Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative polymerase chain reaction (QPCR) directed at the methyl coenzyme M reductase subunit A (mcrA) gene indicated that 75% of the HR sediments analyzed contained <1000 methanogens/g. The highest methanogen numbers were mostly from sediments <10 meters below seafloor. By combining methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported from such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

2008-06-01T23:59:59.000Z

153

Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations  

Science Journals Connector (OSTI)

Comparison of the Properties of Xenon, Methane, and Carbon Dioxide Hydrates from Equilibrium and Nonequilibrium Molecular Dynamics Simulations ... The VACFs of all three guests in the small cages oscillate between positive and negative values with the oscillation being damped out with increasing time. ... The oscillations are damped much more strongly for CO2 hydrate than for the Xe or methane hydrates, indicating that the coupling between the rattling motions of the encaged guest molecules and the vibrational motions of the host lattice is strongest for CO2 hydrate. ...

H. Jiang; K. D. Jordan

2009-11-11T23:59:59.000Z

154

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Processing Core Processing Photos and other pertinent images from the cruise will be posted in the "Photo Gallery" as they become available. Core Processing Photos taken by NETL scientist aboard the Uncle John. These photos show the various tools used to analyze pressurized and non-pressurized core taken from the first drilling location at Atwater Valley. A_Transferring core to lab B_Pressure Core Transfer Chamber BC_Pressure core lab BCC_Core Processing Lab Transferring core to lab Pressure core transfer chamber Pressure core lab Core Processing lab BD_Pressure core analysis tools2 C_Pressure core analysis tools Ga Tech Mechanical Measurements Tool GeoTek Core logger Pressure core analysis tools Pressure core analysis tools Georgia Tech Mechanical measurements tool GeoTek core logger

155

Project to evaluate natural gas hydrates  

Science Journals Connector (OSTI)

More than 170 scf of natural gas, mostly methane, may be contained in 1 cu ft of hydrate, according to Malcolm A. Goodman, president of Enertech & Research Co., Houston, which is involved in the new hydrate project. ...

1980-07-28T23:59:59.000Z

156

Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data  

SciTech Connect

The numerical simulator TOUGH+HYDRATE (T+H) was used to predict the transient pure methane hydrate (no sediment) dissociation data. X-ray computed tomography (CT) was used to visualize the methane hydrate formation and dissociation processes. A methane hydrate sample was formed from granular ice in a cylindrical vessel, and slow depressurization combined with thermal stimulation was applied to dissociate the hydrate sample. CT images showed that the water produced from the hydrate dissociation accumulated at the bottom of the vessel and increased the hydrate dissociation rate there. CT images were obtained during hydrate dissociation to confirm the radial dissociation of the hydrate sample. This radial dissociation process has implications for dissociation of hydrates in pipelines, suggesting lower dissociation times than for longitudinal dissociation. These observations were also confirmed by the numerical simulator predictions, which were in good agreement with the measured thermal data during hydrate dissociation. System pressure and sample temperature measured at the sample center followed the CH{sub 4} hydrate L{sub w}+H+V equilibrium line during hydrate dissociation. The predicted cumulative methane gas production was within 5% of the measured data. Thus, this study validated our simulation approach and assumptions, which include stationary pure methane hydrate-skeleton, equilibrium hydrate-dissociation and heat- and mass-transfer in predicting hydrate dissociation in the absence of sediments. It should be noted that the application of T+H for the pure methane hydrate system (no sediment) is outside the general applicability limits of T+H.

Gupta, A.; Moridis, G.J.; Kneafsey, T.J.; Sloan, Jr., E.D.

2009-08-15T23:59:59.000Z

157

Structure Analyses of Artificial Methane Hydrate Sediments by Microfocus X-ray Computed Tomography  

Science Journals Connector (OSTI)

The structure of natural gas hydrate sediments was characterized by microfocus X-ray computed tomography (CT). The obtained two-dimensional (2-D) and three-dimensional (3-D) images clearly showed the spatial distribution of the free-gas spaces, sand particles, and hydrates or ices. The estimated porosity from the X-ray CT data was consistent with the value that was obtained from the sample mass and volume. These results indicate that microfocus X-ray CT can be very useful for researching natural samples of hydrate sediments.

Shigeki Jin; Satoshi Takeya; Junko Hayashi; Jiro Nagao; Yasushi Kamata; Takao Ebinuma; Hideo Narita

2004-01-01T23:59:59.000Z

158

Geology, reservoir engineering and methane hydrate potential of the Walakpa Gas Field, North Slope, Alaska. Final report  

SciTech Connect

The Walakpa Gas Field, located near the city of Barrow on Alaska`s North Slope, has been proven to be methane-bearing at depths of 2000--2550 feet below sea level. The producing formation is a laterally continuous, south-dipping, Lower Cretaceous shelf sandstone. The updip extent of the reservoir has not been determined by drilling, but probably extends to at least 1900 feet below sea level. Reservoir temperatures in the updip portion of the reservoir may be low enough to allow the presence of in situ methane hydrates. Reservoir net pay however, decreases to the north. Depths to the base of permafrost in the area average 940 feet. Drilling techniques and production configuration in the Walakpa field were designed to minimize formation damage to the reservoir sandstone and to eliminate methane hydrates formed during production. Drilling development of the Walakpa field was a sequential updip and lateral stepout from a previously drilled, structurally lower confirmation well. Reservoir temperature, pressure, and gas chemistry data from the development wells confirm that they have been drilled in the free-methane portion of the reservoir. Future studies in the Walakpa field are planned to determine whether or not a component of the methane production is due to the dissociation of updip in situ hydrates.

Glenn, R.K.; Allen, W.W.

1992-12-01T23:59:59.000Z

159

X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand  

SciTech Connect

We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

Seol, Yongkoo; Kneafsey, Timothy J.

2009-06-01T23:59:59.000Z

160

X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well  

SciTech Connect

When maintained under hydrate-stable conditions, methane hydrate in laboratory samples is often considered a stable and immobile solid material. Currently, there do not appear to be any studies in which the long-term redistribution of hydrates in sediments has been investigated in the laboratory. These observations are important because if the location of hydrate in a sample were to change over time (e.g. by dissociating at one location and reforming at another), the properties of the sample that depend on hydrate saturation and pore space occupancy would also change. Observations of hydrate redistribution under stable conditions are also important in understanding natural hydrate deposits, as these may also change over time. The processes by which solid hydrate can move include dissociation, hydrate-former and water migration in the gas and liquid phases, and hydrate formation. Chemical potential gradients induced by temperature, pressure, and pore water or host sediment chemistry can drive these processes. A series of tests were performed on a formerly natural methane-hydrate-bearing core sample from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, in order to observe hydrate formation and morphology within this natural sediment, and changes over time using X-ray computed tomography (CT). Long-term observations (over several weeks) of methane hydrate in natural sediments were made to investigate spatial changes in hydrate saturation in the core. During the test sequence, mild buffered thermal and pressure oscillations occurred within the sample in response to laboratory temperature changes. These oscillations were small in magnitude, and conditions were maintained well within the hydrate stability zone.

Kneafsey, T.J.; Rees, E.V.L.

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Methane Hydrate Formation and Dissociation in a Partially Saturated Core-Scale Sand Sample  

E-Print Network (OSTI)

gas system and the sand/hydrate/water/gas systems, as wellproperties of the sand/water/gas system, hydrate formation,saturated sand/water/gas (s/w/g) system, hydrate formation,

2005-01-01T23:59:59.000Z

162

Methane Hydrate Formation and Dissocation in a Partially Saturated Sand--Measurements and Observations  

E-Print Network (OSTI)

gas system and the sand/hydrate/water/gas systems, as wellproperties of the sand/water/gas system, hydrate formation,saturated sand/water/gas (s/w/g) system, hydrate formation,

2005-01-01T23:59:59.000Z

163

Studies of Reaction Kinetics of Methane Hydrate Dissocation in Porous Media  

E-Print Network (OSTI)

sand cores partially satu- rated with water, hydrate and CH 4 gas,the formation of hydrates. For the sand/water/gas/CH 4 -

Moridis, George J.; Seol, Yongkoo; Kneafsey, Timothy J.

2005-01-01T23:59:59.000Z

164

The effect of methane hydrate morphology and water saturation on seismic wave attenuation in sand under shallow sub-seafloor conditions  

Science Journals Connector (OSTI)

Abstract A better understanding of seismic wave attenuation in hydrate-bearing sediments is needed for the improved geophysical quantification of seafloor methane hydrates, important for climate change, geohazard and economic resource assessment. Hence, we conducted a series of small strain (hydrate-bearing sands under excess-water seafloor conditions. The results show a complex dependence of P- and S-wave attenuation on hydrate saturation and morphology. P- and S-wave attenuation in excess-water hydrate-bearing sand is much higher than in excess-gas hydrate-bearing sand and increases with hydrate saturation between 0 and 0.44 (the experimental range). Theoretical modelling suggests that load-bearing hydrate is an important cause of heightened attenuation for both P- and S-waves in gas and water saturated sands, while pore-filling hydrate also contributes significantly to P-wave attenuation in water saturated sands. A squirt flow attenuation mechanism, related to microporous hydrate and low aspect ratio pores at the interface between sand grains and hydrate, is thought to be responsible for the heightened levels of attenuation in hydrate-bearing sands at low hydrate saturations (<0.44).

Angus I. Best; Jeffrey A. Priest; Christopher R.I. Clayton; Emily V.L. Rees

2013-01-01T23:59:59.000Z

165

Methane Hydrate Formation and Dissocation in a Partially Saturated Sand--Measurements and Observations  

SciTech Connect

We performed a sequence of tests on a partially water-saturated sand sample contained in an x-ray transparent aluminum pressure vessel that is conducive to x-ray computed tomography (CT) observation. These tests were performed to gather data for estimation of thermal properties of the sand/water/gas system and the sand/hydrate/water/gas systems, as well as data to evaluate the kinetic nature of hydrate dissociation. The tests included mild thermal perturbations for the estimation of the thermal properties of the sand/water/gas system, hydrate formation, thermal perturbations with hydrate in the stability zone, hydrate dissociation through thermal stimulation, additional hydrate formation, and hydrate dissociation through depressurization with thermal stimulation. Density changes throughout the sample were observed as a result of hydrate formation and dissociation, and these processes induced capillary pressure changes that altered local water saturation.

Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.; Seol, Yongkoo; Freifeld, Barry; Taylor, Charles E.; Gupta, Arvind

2005-03-01T23:59:59.000Z

166

Methane Hydrate Formation and Dissociation in a PartiallySaturated Core-Scale Sand Sample  

SciTech Connect

We performed a sequence of tests on a partiallywater-saturated sand sample contained in an x-ray transparent aluminumpressure vessel that is conducive to x-ray computed tomography (CT)observation. These tests were performed to gather data for estimation ofthermal properties of the sand/water/gas system and thesand/hydrate/water/gas systems, as well as data to evaluate the kineticnature of hydrate dissociation. The tests included mild thermalperturbations for the estimation of the thermal properties of thesand/water/gas system, hydrate formation, thermal perturbations withhydrate in the stability zone, hydrate dissociation through thermalstimulation, additional hydrate formation, and hydrate dissociationthrough depressurization with thermal stimulation. Density changesthroughout the sample were observed as a result of hydrate formation anddissociation, and these processes induced capillary pressure changes thataltered local water saturation.

Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.; Seol,Yongkoo; Freifeld, Barry M.; Taylor, Charles E.; Gupta, Arvind

2005-11-03T23:59:59.000Z

167

NETL: Methane Hydrates - DOE/NETL Projects - A New Approach to  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Approach to Understanding the Occurrence and Volume of Natural Gas Hydrate in the Northern Gulf of Mexico Using Petroleum Industry Well Logs Last Reviewed 12/18/2013 A New Approach to Understanding the Occurrence and Volume of Natural Gas Hydrate in the Northern Gulf of Mexico Using Petroleum Industry Well Logs Last Reviewed 12/18/2013 DE-FE0009949 Goal The overarching objective of the project is to significantly increase our understanding of the occurrence, volume, and fine scale distribution of natural gas hydrate in the northern Gulf of Mexico using petroleum industry and Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) well logs. Performer The Ohio State University, Columbus, OH 43210 Background A large quantity of natural gas hydrate certainly occurs within the sediments of the northern Gulf of Mexico; however, the total amount and distribution of gas hydrate across the basin is relatively unconstrained

168

Studies of Reaction Kinetics of Methane Hydrate Dissocation in Porous Media  

SciTech Connect

The objective of this study is the description of the kinetic dissociation of CH4-hydrates in porous media, and the determination of the corresponding kinetic parameters. Knowledge of the kinetic dissociation behavior of hydrates can play a critical role in the evaluation of gas production potential of gas hydrate accumulations in geologic media. We analyzed data from a sequence of tests of CH4-hydrate dissociation by means of thermal stimulation. These tests had been conducted on sand cores partially saturated with water, hydrate and CH4 gas, and contained in an x-ray-transparent aluminum pressure vessel. The pressure, volume of released gas, and temperature (at several locations within the cores) were measured. To avoid misinterpreting local changes as global processes, x-ray computed tomography scans provided accurate images of the location and movement of the reaction interface during the course of the experiments. Analysis of the data by means of inverse modeling (history matching ) provided estimates of the thermal properties and of the kinetic parameters of the hydration reaction in porous media. Comparison of the results from the hydrate-bearing porous media cores to those from pure CH4-hydrate samples provided a measure of the effect of the porous medium on the kinetic reaction. A tentative model of composite thermal conductivity of hydrate-bearing media was also developed.

Moridis, George J.; Seol, Yongkoo; Kneafsey, Timothy J.

2005-03-10T23:59:59.000Z

169

The Great Gas Hydrate Escape  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Gas Great Gas Hydrate Escape The Great Gas Hydrate Escape Computer simulations revealing how methane and hydrogen pack into gas hydrates could enlighten alternative fuel production and carbon dioxide storage January 25, 2012 | Tags: Carver, Chemistry, Energy Technologies, Hopper, Materials Science PNNL Contact: Mary Beckman , +1 509 375-3688, mary.beckman@pnl.gov NERSC Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov The methane trapped in frozen water burns easily, creating ice on fire. For some time, researchers have explored flammable ice for low-carbon or alternative fuel or as a place to store carbon dioxide. Now, a computer analysis of the ice and gas compound, known as a gas hydrate, reveals key details of its structure. The results show that hydrates can hold hydrogen

170

Ocean methane hydrates as a slow tipping point in the global carbon cycle  

Science Journals Connector (OSTI)

...Hydrates in the Gulf of Mexico and Hydrate Ridge...half flowing down. The geothermal gradient is 40 K/km...42) climates, as well as intercomparisons...subsurface in the Gulf of Mexico . Mar Petrol Geol 18 : 551 560...the northern Gulf of Mexico . Geophys Res Lett 32...

David Archer; Bruce Buffett; Victor Brovkin

2009-01-01T23:59:59.000Z

171

NETL: Methane Hydrates - DOE/NETL Projects - Kinetic Parameters for the  

NLE Websites -- All DOE Office Websites (Extended Search)

Kinetic Parameters for the Exchange of Hydrate Formers Last Reviewed 12/16/2013 Kinetic Parameters for the Exchange of Hydrate Formers Last Reviewed 12/16/2013 FWP 65213 Goal The overarching goal of this project is to gain an improved understanding of the dynamic processes of gas hydrate accumulations in geologic media by combining laboratory studies, numerical simulation, and analysis of shipboard infrared imaging of hydrate core samples. This project comprises four principal components: (1) fundamental laboratory investigations, (2) numerical simulator development and verification, (3) hydrate core characterization and analysis, and (4) applied laboratory and numerical investigations. Performer Pacific Northwest National Laboratory (PNNL), Richland, Washington Background Numerical Simulation A new simulator in the STOMP simulator series for the production of natural

172

NETL: Methane Hydrates - ANS Research Project - Modular Dynamics Tester  

NLE Websites -- All DOE Office Websites (Extended Search)

Well Well Modular Formation Dynamics Tester (MDT) Tool The scientific plan for the Mt. Elbert Prospect includes multiple tests using Schlumberger’s Modular Formation Dynamics Tester (MDT) tool. This device is deployed on wireline and will be used to sample formation fluids, and measure formation pressure and permeability. The tool’s design involves extension of a sampling probe pad against the borehole wall by backup pistons and the insertion of a smaller test probe a small distance into the formation. The probe is then opened to a sampling chamber within the tool, where fluids from the formation can flow, free of contamination by the borehole fluid. The formation pressure is measured using an extremely accurate gauge that can resolve small pressure differences. The pressure and the rate of fluid flow into the sample chamber can be used to calculate reservoir permeability. Multiple probes can also be used to determine both vertical and horizontal permeability data, which can be used to assess near-wellbore permeability anisotropy (i.e., the degree to which vertical and horizontal permeability within the same reservoir differ). All of these data are useful to engineers interested in predicting the productive capability of a reservoir. Various configurations of the MDT tool can be used to accomplish specific testing goals.

173

A collaborative Approach to Methane Hydrate Research and Development Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

1, Offshore Technology Conference 1, Offshore Technology Conference This paper was prepared for presentation at the 2001 Offshore Technology Conference held in Houston, Texas, 30 April-3 May 2001. This paper was selected for presentation by the OTC Program Committee following review of information contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not been reviewed by the Offshore Technology Conference and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any position of the Offshore Technology Conference or its officers. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of the Offshore Technology Conference is prohibited. Permission to reproduce in print

174

Methane Hydrate Research and Development Act of 2000 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act of 2000 More Documents & Publications NATIONAL DEFENSE AUTHORIZATION ACT FOR FISCAL YEAR 2000 E:PUBLAWPUBL404.106 Technology Transfer Commercialization Act of 2000...

175

Energy Department Expands Research into Methane Hydrates, a Vast...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

accumulations might be possible. DOE Investment: approximately 1.68 million Texas A&M Engineering Experiment Station (TEES) (College Station, TX) - TEES, in conjunction with...

176

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution  

SciTech Connect

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were the deployment of tools and measurement systems for testing on ODP Leg 201, which is intended to study hydrate deposits on the Peru margin as part of other scientific investigations. Additional accomplishments were related to the continuing evolution of tools and measurements systems in preparation for deployment on ODP Leg 204, Hydrate Ridge, offshore Oregon in July 2002. The design for PCS Gas Manifold was finalized and parts were procured to assemble the gas manifold and deploy this system with the Pressure Core Sampler (PCS) tool on ODP Leg 201. The PCS was deployed 17 times during ODP Leg 201 and successfully retrieved cores from a broad range of lithologies and sediment depths along the Peru margin. Eleven deployments were entirely successful, collecting between 0.5 and 1.0 meters of sediment at greater than 75% of hydrostatic pressure. The PCS gas manifold was used in conjunction with the Pressure Core Sampler (PCS) throughout ODP Leg 201 to measure the total volume and composition of gases recovered in sediment cores associated with methane hydrates. The results of these deployments will be the subject of a future progress report. The FUGRO Pressure Corer (FPC), one of the HYACE/HYACINTH pressure coring tools, and two FUGRO engineers were deployed on the D/V JOIDES Resolution during ODP Legs 201 to field-test this coring system at sites located offshore Peru. The HYACINTH project is a European Union (EU) funded effort to develop tools to characterize methane hydrate and measure physical properties under in-situ conditions. The field-testing of these tools provides a corollary benefit to DOE/NETL at no cost to this project. The opportunity to test these tools on the D/V JOIDES Resolution was negotiated as part of a cooperative agreement between JOI/ODP and the HYACINTH partners. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were deployed onboard the R/V JOIDES Resolution and used extensively during ODP Leg 201. Preliminary results indicate successful deployments of these tools. An infrared-thermal imaging system (IR-TIS) was delivered to JOI/ODP for testing and use on ODP Leg 201 to identify methane hydrate intervals in the recovered cores. The results of these experiments will be the subject of a future progress report. This report presents an overview of the primary methods used for deploying the ODP memory tools and PCS on ODP Leg 201 and the preliminary operational results of this leg. Discussions regarding the laboratory analysis of the recovered cores and downhole measurements made during these deployments will be covered in a future progress report.

Frank Rack; Derryl Schroeder; Michael Storms; ODP Leg 201 Shipboard Scientific Party

2001-03-31T23:59:59.000Z

177

NETL: National Methane Hydrates R&D Program- 2009 GOM JIP Expedition  

NLE Websites -- All DOE Office Websites (Extended Search)

Expedition - The LWD Program Expedition - The LWD Program GoM JIP Leg II will feature a state-of-the-art LWD tool combination that will provide unprecedented information on the nature of the sediments and their pore fill constituents. The program will feature full research-level LWD data on formation lithology and porosity, and will include Schlumberger’s MP3 (quadrapole sonic tool) and PeriScope (3-D high-resolution resistivity) tools. These tools will provide full 3-D information on the both acoustic (both compressional and shear wave) and electrical properties of the sediment enabling the improved evaluation of gas hydrate in both pore filling and fracture-filling modes. This full suite of LWD tools includes the 4.75" MP3 multipole acoustic tool immediately behind the 6.75" bit, followed by an 8.5" reamer which opens up the hole for the 6.75" LWD tools that follow. These include the geoVISION resistivity imaging tool, the EcoScope integrated propagation resistivity, density and neutron tool, the TeleScope MWD tool, the PeriScope directional propagation resistivity tool, and the sonicVISION monopole acoustic tool whose sensors are ~160 ft above the bit.

178

IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION  

SciTech Connect

The primary accomplishment of the JOI Cooperative Agreement with DOE/NETL in this quarter was the preparation of tools and measurement systems for deployment, testing and use on ODP Leg 204, which will study hydrate deposits on Hydrate Ridge, offshore Oregon. Additional accomplishments were related to the postcruise evaluation of tools and measurements systems used on ODP Leg 201 along the Peru margin from January through March, 2002. The operational results from the use of the Pressure Core Sampler (PCS) tool and the PCS Gas Manifold on ODP Leg 201 are evaluated in this progress report in order to prepare for the upcoming deployments on ODP Leg 204 in July, 2002. The PCS was deployed 17 times during ODP Leg 201 and successfully retrieved cores from a broad range of lithologies and sediment depths along the Peru margin. Eleven deployments were entirely successful, collecting between 0.5 and 1.0 meters of sediment at greater than 75% of hydrostatic pressure. The PCS gas manifold was used in conjunction with the Pressure Core Sampler (PCS) throughout ODP Leg 201 to measure the total volume and composition of gases recovered in sediment cores associated with methane gas hydrates. The FUGRO Pressure Corer (FPC), one of the HYACE/HYACINTH pressure coring tools, was also deployed on the D/V JOIDES Resolution during ODP Legs 201 to field-test this coring system at three shallow-water sites located offshore Peru. The field-testing of these tools provides a corollary benefit to DOE/NETL at no cost to this project. The testing of these tools on the D/V JOIDES Resolution was negotiated as part of a cooperative agreement between JOI/ODP and the HYACINTH partners. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were used extensively during ODP Leg 201. The data obtained from the successful deployments of these tools is still being evaluated by the scientists and engineers involved in this testing; however, preliminary results are presented in this report. An infrared-thermal imaging system (IR-TIS) was deployed for the first time on ODP Leg 201. This system was used to identify methane hydrate intervals in the recovered cores. Initial discussions of these experiments are provided in this report. This report is an overview of the field measurements made on recovered sediment cores and the downhole measurements made during ODP Leg 201. These results are currently being used to incorporate the ''lessons learned'' from these deployments to prepare for a dedicated ODP leg to study the characteristics of naturally-occurring hydrates in the subsurface environment of Hydrate Ridge, offshore Oregon during ODP Leg 204, which will take place from July through September, 2002.

Dr. Frank R. Rack; Dr. Gerald Dickens; Kathryn Ford; Derryl Schroeder; Michael Storms; ODP Leg 201 Shipboard Scientific Party

2002-08-01T23:59:59.000Z

179

New Project To Improve Characterization of U.S. Gas Hydrate Resources  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy today announced the selection of a multi-year, field-based research project designed to gain further insight into the nature, formation, occurrence and physical properties of methane hydrate?bearing sediments for the purpose of methane hydrate resource appraisal.

180

E-Print Network 3.0 - atmospheric methane extracted Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

search results for: atmospheric methane extracted Page: << < 1 2 3 4 5 > >> 1 Oceanic sediment methane, including methane clathrate hydrates (hydrates), is the Earth's largest...

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NETL: Methane Hydrates - DOE/NETL Projects - Mapping Permafrost and Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 DE-FE0010144 Goal The objective of this project is to develop and test a towed electromagnetic source and receiver system suitable for deployment from small coastal vessels to map near-surface electrical structure in shallow water. The system will be used to collect permafrost data in the shallow water of the U.S. Beaufort Inner Shelf at locations coincident with seismic lines collected by the U.S. Geological Survey (USGS). The electromagnetic data will be used to identify the geometry, extent, and physical properties of permafrost and any associated gas hydrate in order to provide a baseline for future studies of the effects of any climate-driven dissociation of

182

Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations  

SciTech Connect

A preserved sample of hydrate-bearing sandstone from the Mount Elbert Test Well was dissociated by depressurization while monitoring the internal temperature of the sample in two locations and the density changes at high spatial resolution using x-ray CT scanning. The sample contained two distinct regions having different porosity and grain size distributions. The hydrate dissociation occurred initially throughout the sample as a result of depressing the pressure below the stability pressure. This initial stage reduced the temperature to the equilibrium point, which was maintained above the ice point. After that, dissociation occurred from the outside in as a result of heat transfer from the controlled temperature bath surrounding the pressure vessel. Numerical modeling of the test using TOUGH+HYDRATE yielded a gas production curve that closely matches the experimentally measured curve.

Kneafsey, T.; Moridis, G.J.

2011-01-15T23:59:59.000Z

183

ORIGINAL RESEARCH PAPER Canyon-infilling and gas hydrate occurrences in the frontal fold  

E-Print Network (OSTI)

ORIGINAL RESEARCH PAPER Canyon-infilling and gas hydrate occurrences in the frontal fold to infer the canyon-infilling, fold uplift, and gas hydrate occurrences beneath the frontal fold at the toe simu- lating reflector (BSR) on seismic sections indicates the base of gas hydrate stability zone

Lin, Andrew Tien-Shun

184

NETL: National Methane Hydrates R&D Program- 2009 GOM JIP Expedition  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Canyon Block 955 Green Canyon Block 955 The gas hydrates JIP site selection team identified numerous potential targets in Green Canyon block 955. Three of these sites were drilled in Leg II. The wells are located in over 6,500 ft of water near the foot of the Sigsbee Escarpment. The locations are near a major embayment into the Escarpment (“Green Canyon”) which has served as a persistent focal point for sediment delivery into the deep Gulf of Mexico. Topographic map of the seafloor in the Green Canyon area. Topographic map of the seafloor in the Green Canyon area. Block 955 lies just seaward of the Sigsbee Escarpment in ~6,500 feet of water Green Canyon block 995 includes a prominent channel/levee complex that has transported and deposited large volumes of sandy sediment from the canyon to the deep Gulf of Mexico abyssal plain. The southwest corner of the block includes a recently developed structural high caused by deeper mobilization of salt. The crest of the structural high is cut by complex network of faults that can provide pathways for migrating fluids and gases. Geophysical data reviewed during assessment of the site revealed a complex array of geophysical responses near the inferred base of gas hydrate stability. Some of these responses are suggestive of free gas and some indicative of gas hydrate, but all are limited to depths that are near or below the inferred base of gas hydrate stability.

185

Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling  

Science Journals Connector (OSTI)

...subtle differences in permeability between lithologically...hydrate filling 2% of porosity at Site 994 and...estimate of 1% of porosity, on average, occupied...estimate of 5 to 7% of porosity (33, 34...UNCONSOLIDATED POROUS SAND RESERVOIRS, GEOPHYSICS 42...SEISMIC-WAVES IN POROUS ROCKS, GEOPHYSICS...

W. Steven Holbrook; Hartley Hoskins; Warren T. Wood; Ralph A. Stephen; Daniel Lizarralde

1996-09-27T23:59:59.000Z

186

* Corresponding author. E-mail: herri@emse.fr Formation & Dissociation of Methane Hydrates in Sediments  

E-Print Network (OSTI)

Hydrates in Sediments. The first part of the project that is presented hereafter is designed to obtain that lead to such accumulations, to evaluate the feasibility of its industrial recovery as an energy silica gels, engraved plate or sand grains empilage (Handa & Stupin, 1992; Anderson et al., 2001; Buffet

Boyer, Edmond

187

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

hydrates, Fire In The Ice, NETL Methane Hydrates R&D ProgramCanada, Fire In The Ice, NETL Methane Hydrates R&D Programat MMS, Fire In The Ice, NETL Methane Hydrates R&D Program

Moridis, George J.

2008-01-01T23:59:59.000Z

188

Mathematical Modeling and Numerical Simulation of Methane Production in a Hydrate Reservoir  

Science Journals Connector (OSTI)

Contrary to more traditional reservoir simulations, the set of model unknowns or primary variables in HydrateResSim changes throughout the simulation as a result of the formation or dissociation of ice and hydrate phases during the simulation. ... For example, in the petroleum industry, CFD models have been developed since the 1970s to help optimize oil production by steam flooding. ... (2) Since the 1980s, an increasing number of problems in environmental engineering, such as the contamination of groundwater due to subsurface leakage of petroleum products, has been a concern for governments and industries that has led to the development of multiphase multicomponent models to simulate the transport of contaminants in the subsurface. ...

Isaac K. Gamwo; Yong Liu

2010-03-10T23:59:59.000Z

189

research-news | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Summer Interns Gain-and Give-Insight into Fossil Energy NETL's In-House Research Program: Natural Gas Hydrate R&D Fundamental Fun: Fundamentals of Methane Hydrate Applause...

190

Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations  

E-Print Network (OSTI)

voxel contained sand, gas, hydrate (under proper conditions)of Gas Hydrate Formation in a Bed of Silica Sand Particles.Gas Hydrate Formation in a Variable Volume Bed of Silica Sand

Rees, E.V.L.

2012-01-01T23:59:59.000Z

191

X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand  

E-Print Network (OSTI)

conductivity of gas hydrate-bearing sand. J. Geophys. Res.the water and gas flow through hydrate-bearing sands.The gas from hydrate dissociation in the fine sand appears

Seol, Yongkoo

2010-01-01T23:59:59.000Z

192

Methanation  

Science Journals Connector (OSTI)

Methanation describes the heterogeneous, gas-catalytic or biological synthesis of CH4 from H2 and CO/CO2...or in case of the biological path, alternatively from other carbon sources. It is the second substantial,...

Markus Lehner; Robert Tichler

2014-01-01T23:59:59.000Z

193

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution  

SciTech Connect

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were the implementation of a scientific ocean drilling expedition to study marine methane hydrates along the Cascadia margin, in the NE Pacific as part of Integrated Ocean Drilling Program (IODP) Expedition 311 using the R/V JOIDES Resolution and the deployment of all required equipment and personnel to provide the required services during this expedition. IODP Expedition 311 shipboard activities on the JOIDES Resolution began on August 28 and were concluded on October 28, 2005. New ODP Pressure Coring System (PCS) aluminum autoclave chambers were fabricated prior to the expedition. During the expedition, 16 PCS autoclaves containing pressure cores were X-rayed before and after depressurization using a modified Geotek MSCL-P (multi-sensor core logger-pressure) system. These PCS cores were density scanned using the MSCL-V (multi-sensor core logger-vertical) during depressurization to monitor gas evolution. The MSCL-V was set up in a 20-foot-long refrigerated container provided by Texas A&M University through the JOI contract with TAMRF. IODP Expedition 311 was the first time that PCS cores were examined before (using X-ray), during (using MSCL-V gamma density) and after (using X-ray) degassing to determine the actual volume and distribution of sediment and gas hydrate in the pressurized core, which will be important for more accurate determination of mass balances between sediment, gas, gas hydrate, and fluids in the samples collected. Geotek, Ltd was awarded a contract by JOI to provide equipment and personnel to perform pressure coring and related work on IODP Expedition 311 (Cascadia Margin Gas Hydrates). Geotek, Ltd. provided an automated track for use with JOI's infrared camera systems. Four auxiliary monitors showed infrared core images in real time to aid hydrate identification and sampling. Images were collected from 185 cores during the expedition and processed to provide continuous core temperature data. The HYACINTH pressure coring tools, subsystems, and core logging systems were mobilized to Astoria, Oregon. Both HYACINTH pressure coring tools, the HRC (HYACE Rotary Corer) and the FPC (Fugro Pressure Corer) were mobilized and used during the expedition. Two HYACINTH engineers supervised the use of the tools and five good pressure cores were obtained. Velocity, density and X-ray linear scanning data were collected from these cores at near in situ pressure using the MSCL-P system. Dr. Barry Freifeld from Lawrence Berkeley National Laboratory provided an X-ray source and detector for X-ray imaging of pressure cores and helped Geotek with the design and mobilization of the MSCL-P system. Pressure core handling, transfer, and logging was performed in a refrigerated 20-foot container supplied by Geotek, Ltd. After scanning, the pressure cores were stored for on-shore analysis in aluminum barrels. Additional studies were conducted at the Pacific Geoscience Center (PGC), where a shore based laboratory was established after Expedition 311.

Frank Rack; Peter Schultheiss; IODP Expedition 311 Scientific Party

2005-12-31T23:59:59.000Z

194

Status of DOE Research Efforts in Gas Hydrates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Status of DOE Research Efforts in Gas Hydrates Status of DOE Research Efforts in Gas Hydrates Status of DOE Research Efforts in Gas Hydrates July 30, 2009 - 1:38pm Addthis Statement of Dr. Ray Boswell, National Energy Technology Laboratory before the Committee on Natural Resources, Subcommittee on Energy and Mineral Resources, U.S. House of Representatives. Thank you, Mr. Chairman and Members of the Subcommittee. I appreciate this opportunity to provide testimony on the status of the United States Department of Energy's (DOE's) research efforts in naturally-occurring gas hydrates. INTRODUCTION Since 2000, DOE, through the Office of Fossil Energy's National Energy Technology Laboratory (NETL), has led the national research program in gas hydrates. The program is conducted through partnerships with private

195

Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode  

Science Journals Connector (OSTI)

...inductively coupled plasma optical emission...waters induced by the thermal dissociation of gas...large increases in atmospheric concentration...episode. | Past atmospheric methane-concentration...Research Support, Non-U.S. Gov't...2006036403 Past atmospheric methane-concentration...

Thibault de Garidel-Thoron; Luc Beaufort; Franck Bassinot; Pierre Henry

2004-01-01T23:59:59.000Z

196

NETL: National Methane Hydrates R&D Program- 2009 GOM JIP Expedition  

NLE Websites -- All DOE Office Websites (Extended Search)

- Site Summaries - Site Summaries Site Summary – Walker Ridge Block 313 The drill sites at Walker Ridge 313 lies in ~6,500 ft of water within the western part of the “Terrebonne” mini-basin in the northern Gulf of Mexico. The primary target of drilling were a series of strong seismic anomaly that lay approximately 3,000 fbsf (feet below the seafloor). These anomalies exhibit strong “positive” amplitude response, indicating a horizon in the subsurface across which the speed of sound waves significantly increases. In addition, these same horizons, when traced deeper to the west, are observed to switch “polarity” to a strong negative response. Pre-drill interpretations determined that this collection of seismic responses was indicative of free gas accumulations (the negative anomalies) being trapped within porous and permeable sand horizons by significant accumulations of overlying gas hydrate within the sediment pore space. The primary goal of JIP drilling at this site was to test the validity of this interpretation through drilling and logging of wells at this site.

197

Rapid Gas Hydrate Formation Process Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Formation Process Gas Hydrate Formation Process Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is a method and device for producing gas hydrates from a two-phase mixture of water and a hydrate forming gas such as methane (CH 4 ) or carbon dioxide (CO 2 ). The two-phase mixture is created in a mixing zone, which may be contained within the body of the spray nozzle. The two-phase mixture is subsequently sprayed into a reaction vessel, under pressure and temperature conditions suitable for gas hydrate formation. The reaction

198

Methane Hydrates Code Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

Code Comparison Code Comparison Set-up for Problem 7 (Long-term simulations for Mt Elbert and PBU L- Pad "Like" Deposits) As discussed in the phone conference held on 11/9/2007, it is proposed that Problem 7 be made up of three separate cases: Problem 7a will look at a deposit similar to the Mt Elbert site. Problem 7b will be based on the PBU L-Pad site, and Problem 7c will be a down-dip version of the L-Pad site. In all three cases, a standard set of parameters will be used based on those found in Problem 6 (the history matches to the MDT data). The parameters chosen were consensus values based on the experiences of the various groups in attempting to match the MDT data for the C2 formation at Mount Elbert. Given below are the detailed descriptions of the three problems and the proposed

199

Structural Investigation of Methane Hydrate Sediments by Microfocus X-ray Computed Tomography Technique under High-Pressure Conditions  

Science Journals Connector (OSTI)

The structure of natural gas hydrate sediments was observed by microfocus X-ray computed tomography (CT). A newly developed high-pressure vessel for the microfocus X-ray CT system was applied to observe the sediments at a temperature above 273 K and under high-pressure conditions. The obtained two-dimensional CT images clearly showed the spatial distribution of the free-gas pore, sand particles, water, and hydrates. These results demonstrated that microfocus X-ray CT can be effective for studying natural gas hydrate sediment samples.

Shigeki Jin; Jiro Nagao; Satoshi Takeya; Yusuke Jin; Junko Hayashi; Yasushi Kamata; Takao Ebinuma; Hideo Narita

2006-01-01T23:59:59.000Z

200

Hydrogen Production by Reforming Clathrate Hydrates Using the in-Liquid Plasma Method  

Science Journals Connector (OSTI)

Clathrate hydrates, which were formed from methane and cyclopentane, were decomposed by plasma at atmospheric pressure. Methane hydrate was synthesized by injecting methane into shaved ice in the reactor at a pre...

Andi Erwin Eka Putra; Shinfuku Nomura

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural Gas Hydrate Dissociation  

Science Journals Connector (OSTI)

Materials for hydrate synthesis mainly include methane gas of purity 99.9% (produced by Nanjing Special Gases Factory Co., Ltd.), natural sea sand of grain sizes 0.063?0.09,...

Qingguo Meng; Changling Liu; Qiang Chen; Yuguang Ye

2013-01-01T23:59:59.000Z

202

Environmental regulatory drivers for coal bed methane research and development.  

SciTech Connect

In 1999, the National Petroleum Council (NPC) stated that the resource base for meeting growing natural gas demands in the United States is adequate. A significant and increasing portion of natural gas production (8% by 2015) is expected to come from coal bed methane (CBM). The NPC cautions that for this to occur, certain factors, including compliance with environmental requirements, must be addressed. Numerous federal, state, and local programs address a variety of environmental issues, including water quality and quantity, air quality, wildlife, noise, and visibility. This paper examines existing and potential environmental regulatory requirements that could affect the timely development and production of CBM resources in the United States. Such an examination can help technology developers and policy makers target areas for research and development (R&D), demonstration, and implementation to help facilitate cost-effective CBM development and production to meet the nation's natural gas demands. It can also help identify R&D areas that will give rule-making bodies the information they need to incorporate more science into the regulatory development process.

Elcock, D.; Gasper, J.; Moses, D. O.

2002-10-10T23:59:59.000Z

203

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology DOE Field Work Proposal.: ESD12-011 2012 Annual Research Progress Report (April - December 2012) Numerical Studies for the Characterization of Recoverable Resources from Methane Hydrate Deposits Project Period (April 2012 - March 2013) Lawrence Berkeley National Laboratory George Moridis (Principal Investigator) GJMoridis@lbl.gov Tel: (510) 486-4746 Prepared for: United States Department of Energy National Energy Technology Laboratory Submission date: 2/4/2013 Office of Fossil Energy ii 2012Annual Progress Report Numerical Studies for the Characterization of Recoverable Resources from Methane Hydrate Deposits WORK PERFORMED UNDER ESD12-010 Lawrence Berkeley National Laboratory George Moridis (Principal Investigator)

204

New Method of Assessing Absolute Permeability of Natural Methane Hydrate Sediments by Microfocus X-ray Computed Tomography  

Science Journals Connector (OSTI)

The structure of natural-gas hydrate sediments was studied using a microfocus X-ray computed-tomography (CT) system. The free-gas spaces, sand particles, and hydrates or ices were identified from the obtained three-dimensional (3-D) images. We used CT data to analyze a continuous pore, which allows gas and water flow. The absolute permeability of sediment samples correlated well with horizontal-channel density in terms of direction. The grain-size distribution in sediment samples depended on the spread of flow channels. The average area and length of a channel evidently have little effect on absolute permeability. We determined that absolute permeability increased with the ratio of horizontal- to vertical-channel numbers. It was clear that the number ratio of the horizontal to vertical channels is a predominant factor that determines absolute permeability in similar porosity ranges. These results indicate that the pore network in sediments can be useful for assessing permeability.

Yusuke Jin; Junko Hayashi; Jiro Nagao; Kiyofumi Suzuki; Hideki Minagawa; Takao Ebinuma; Hideo Narita

2007-01-01T23:59:59.000Z

205

Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Structure Methane Hydrate Structure SNS Diffractometer puts the squeeze on methane hydrate cages, unraveling its high-pressure structure Compressed by 600,000 pounds per square inch, methane clathrate hydrate's high-pressure structure is revealed. Research Contact: Chris Tulk Mar. 2012, Written by: Agatha Bardoel Chris Tulk, SNAP instrument scientist Chris Tulk, SNAP instrument scientist. Imagine a robot sent out on the prowl on this energy hungry planet looking for methane, the principal component of what we call "natural gas" and probably the most abundant organic compound on earth. Our robot would find this energy source in shale deposits, notably here on the east coast of the United States. However, the most abundant deposits of natural gas are under water on the continental shelves and in the

206

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has already succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. As funding for this project, scheduled to commence December 1, 2002, had only been in place for less than half of the reporting period, project progress has been less than for other reporting periods. Nevertheless, significant progress has been made and several cruises are planned for the summer/fall of 2003 to test equipment, techniques and compatibility of systems. En route to reaching the primary goal of the Consortium, the establishment of a monitoring station on the sea floor, the following achievements have been made: (1) Progress on the vertical line array (VLA) of sensors: Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, Cabling upgrade to allow installation of positioning sensors, Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments. (3) Electromagnetic bubble detector and counter: Initial tests performed with standard conductivity sensors detected nonconductive objects as small as .6mm, a very encouraging result, Components for the prototype are being assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed. (4) Acoustic Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European Union-funded research project, Sub-Gate, for monitoring temporal variations in seabe

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2004-03-01T23:59:59.000Z

207

Gas Hydrate: A Realistic Future Source of Gas Supply? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? August 24, 2009 - 1:00pm Addthis Washington, D.C - A Department of Energy scientist writes in this week's Science magazine that a search is underway for a potentially immense untapped energy resource that, given its global distribution, has the potential to alter existing energy production and supply paradigms. In the article, Is Gas Hydrate Energy Within Reach?, Dr. Ray Boswell, technology manager for the Office of Fossil Energy's National Energy Technology Laboratory methane hydrates program, discusses recent findings and new research approaches that are clarifying gas hydrates energy potential. Driving the current interest in gas hydrate resource appraisal is the focus

208

Gas Hydrate: A Realistic Future Source of Gas Supply? | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? Gas Hydrate: A Realistic Future Source of Gas Supply? August 24, 2009 - 1:00pm Addthis Washington, D.C - A Department of Energy scientist writes in this week's Science magazine that a search is underway for a potentially immense untapped energy resource that, given its global distribution, has the potential to alter existing energy production and supply paradigms. In the article, Is Gas Hydrate Energy Within Reach?, Dr. Ray Boswell, technology manager for the Office of Fossil Energy's National Energy Technology Laboratory methane hydrates program, discusses recent findings and new research approaches that are clarifying gas hydrates energy potential. Driving the current interest in gas hydrate resource appraisal is the focus

209

HYDRATE CORE DRILLING TESTS  

SciTech Connect

The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large-grain sand in ice. Results with this core showed that the viscosity of the drilling fluid must also be carefully controlled. When coarse sand was being cored, the core barrel became stuck because the drilling fluid was not viscous enough to completely remove the large grains of sand. These tests were very valuable to the project by showing the difficulties in coring permafrost or hydrates in a laboratory environment (as opposed to a field environment where drilling costs are much higher and the potential loss of equipment greater). Among the conclusions reached from these simulated hydrate coring tests are the following: Frozen hydrate core samples can be recovered successfully; A spring-finger core catcher works best for catching hydrate cores; Drilling fluid can erode the core and reduces its diameter, making it more difficult to capture the core; Mud must be designed with proper viscosity to lift larger cuttings; and The bottom 6 inches of core may need to be drilled dry to capture the core successfully.

John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

2002-11-01T23:59:59.000Z

210

CONTENTS BOEM Releases Assessment of In-Place Gas Hydrate Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

BOEM Releases Assessment of BOEM Releases Assessment of In-Place Gas Hydrate Resources of the Lower 48 United States Outer Continental Shelf ..............1 Re-examination of Seep Activity at the Blake Ridge Diapir ............6 Field Data from 2011/2012 ConocoPhillips-JOGMEC-DOE Iġnik Sikumi Gas Hydrate Field Trial Now Available .......................9 Announcements .......................11 * Norwegian Center of Excellence to Receive Ten Years of Arctic Research Funding * Release of Mallik 2007-2008 Results * Goldschmidt Conference * 2012 Methane Hydrate Research Fellowship Awarded to Jeffrey James Marlow Spotlight on Research........... 16 Bjørn Kvamme CONTACT Ray Boswell Technology Manager-Methane Hydrates, Strategic Center for Natural Gas & Oil 304-285-4541 ray.boswell@netl.doe.gov

211

DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beaufort Sea Expedition Studies Methane's Role in Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle October 29, 2009 - 1:00pm Addthis Washington, D.C. -- Increased understanding of methane's role in the global climate cycle and the potential of methane hydrate as a future energy resource could result from a recent joint research expedition off the coast of northeastern Alaska involving the Office of Fossil Energy's National Energy Technology Laboratory (NETL). Link to the project web siteThe Beaufort Sea expedition, which included research partners from the U.S. Naval Research Laboratory and Royal Netherlands Institute for Sea Research, gathered a wealth of data to help understand "fluxes," or changes in the concentration of methane within and

212

DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle October 29, 2009 - 1:00pm Addthis Washington, D.C. -- Increased understanding of methane's role in the global climate cycle and the potential of methane hydrate as a future energy resource could result from a recent joint research expedition off the coast of northeastern Alaska involving the Office of Fossil Energy's National Energy Technology Laboratory (NETL). Link to the project web siteThe Beaufort Sea expedition, which included research partners from the U.S. Naval Research Laboratory and Royal Netherlands Institute for Sea Research, gathered a wealth of data to help understand "fluxes," or changes in the concentration of methane within and

213

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to innovate research methods and construct necessary instrumentation. A year into the life of this cooperative agreement, we note the following achievements: (1) Progress on the vertical line array (VLA) of sensors: (A) Software and hardware upgrades to the data logger for the prototype vertical line array, including enhanced programmable gains, increased sampling rates, improved surface communications, (B) Cabling upgrade to allow installation of positioning sensors, (C) Adaptation of SDI's Angulate program to use acoustic slant ranges and DGPS data to compute and map the bottom location of the vertical array, (D) Progress in T''0'' delay and timing issues for improved control in data recording, (E) Successful deployment and recovery of the VLA twice during an October, 2003 cruise, once in 830m water, once in 1305m water, (F) Data collection and recovery from the DATS data logger, (G) Sufficient energy supply and normal functioning of the pressure compensated battery even following recharge after the first deployment, (H) Survival of the acoustic modem following both deployments though it was found to have developed a slow leak through the transducer following the second deployment due, presumably, to deployment in excess of 300m beyond its rating. (2) Progress on the Sea Floor Probe: (A) The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed, (B) The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments, (C) The MPS has been adapted to serve as an energy source for both p- and s-wave studies at the station as well as to deploy the horizontal line arrays and the SFP. (3) Progress on the Electromagnetic Bubble Detector and Counter: (A) Components for the prototype have been assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed, (B) The prototype has been constructed and preliminary data collected, (C) The construction of the field system is underway. (4) Progress on the Acoustic Systems for Monitoring Gas Hydrates: (A) Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate. These measurements have been used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station, (B) Laboratory tests performed using the project prototype have produced a conductivity data set that is being used to refine parameters of the field model. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: (A) Preliminary designs of mounting pieces for electrical components of ''sphereIR'' have been completed using AutoCAD software, (B) The preliminary design of an electronics baseplate has been completed and aided in the optimization of

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2005-08-01T23:59:59.000Z

214

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements six months into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: Analysis and repair attempts of the VLA used in the deep water deployment during October 2003 have been completed; Definition of an interface protocol for the VLA DATS to the SFO has been established; Design modifications to allow integration of the VLA to the SFO have been made; Experience gained in the deployments of the first VLA is being applied to the design of the next VLAs; One of the two planned new VLAs being modified to serve as an Oceanographic Line Array (OLA). (2) Progress on the Sea Floor Probe: The decision to replace the Sea Floor Probe technology with the borehole emplacement of a geophysical array was reversed due to the 1300m water depth at the JIP selected borehole site. The SFP concept has been revisited as a deployment technique for the subsea floor array; The SFP has been redesigned to include gravity driven emplacement of an array up to 10m into the shallow subsurface of the sea floor. (3) Progress on the Acoustic Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been analyzed for effects of currents and temperature changes; Several acoustic monitoring system concepts have been evaluated for their appropriateness to MC118, i.e., on the deep sea floor; A mock-up system was built but was rejected as too impractical for deployment on the sea floor. (4) Progress on the Electromagnetic Bubble Detector and Counter: The initial Inductive Conductivity Cell has been constructed from components acquired during the previous reporting period; Laboratory tests involving measuring bubble volume as a component of conductivity have been performed; The laboratory tests were performed in a closed system, under controlled conditions; the relationship between voltage and bubble volume appears to be linear. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: Designs and construction schematics for all electronic mounting pieces and an electronics system baseplate were finalized after extensive modeling to facilitate the successful fabrication and implementation of electronic components into the deep-sea, glass instrument housing; Construction schematics and fabrication of an electronics system baseplate have been completed with successful integration of all currently fabricated electronic mounting pieces; Modeling and design of an optics platform complementary to the constructed electronics platform for successful incorporation into ''sphereIR'' has commenced; A second generation chemometric data evaluation software package for evaluating complex spectra including corrections for baseline drifts and spectral anomalies resulting from matrix substances has been developed and will be incorporated into an optimized ''deepSniff'' program upon c

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2005-09-01T23:59:59.000Z

215

Gas hydrates: past and future geohazard?  

Science Journals Connector (OSTI)

...David Pyle, John Smellie and David Tappin Gas hydrates: past and future geohazard? Mark...University of Bristol, , Bristol, UK Gas hydrates are ice-like deposits containing a mixture of water and gas; the most common gas is methane. Gas hydrates...

2010-01-01T23:59:59.000Z

216

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

A Consortium, designed to assemble leaders in gas hydrates research, has been established at the University of Mississippi's Center for Marine Resources and Environmental Technology, CMRET. The primary objective of the group is to design and emplace a remote monitoring station on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station allows for the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Noteworthy achievements one year into the extended life of this cooperative agreement include: (1) Progress on the vertical line array (VLA) of sensors: (1a) Repair attempts of the VLA cable damaged in the October >1000m water depth deployment failed; a new design has been tested successfully. (1b) The acoustic modem damaged in the October deployment was repaired successfully. (1c) Additional acoustic modems with greater depth rating and the appropriate surface communications units have been purchased. (1d) The VLA computer system is being modified for real time communications to the surface vessel using radio telemetry and fiber optic cable. (1e) Positioning sensors--including compass and tilt sensors--were completed and tested. (1f) One of the VLAs has been redesigned to collect near sea floor geochemical data. (2) Progress on the Sea Floor Probe: (2a) With the Consortium's decision to divorce its activities from those of the Joint Industries Program (JIP), due to the JIP's selection of a site in 1300m of water, the Sea Floor Probe (SFP) system was revived as a means to emplace arrays in the shallow subsurface until arrangements can be made for boreholes at >1000m water depth. (2b) The SFP penetrometer has been designed and construction begun. (2c) The SFP geophysical and pore-fluid probes have been designed. (3) Progress on the Acoustic Systems for Monitoring Gas Hydrates: (3a) Video recordings of bubbles emitted from a seep in Mississippi Canyon have been analyzed for effects of currents and temperature changes. (3b) Several acoustic monitoring system concepts have been evaluated for their appropriateness to MC118, i.e., on the deep sea floor. (3c) A mock-up system was built but was rejected as too impractical for deployment on the sea floor. (4) Progress on the Electromagnetic Bubble Detector and Counter: (4a) Laboratory tests were performed using bubbles of different sizes in waters of different salinities to test the sensitivity of the. Differences were detected satisfactorily. (4b) The system was field tested, first at the dock and then at the shallow water test site at Cape Lookout Bight where methane bubbles from the sea floor, naturally, in 10m water depth. The system successfully detected peaks in bubbling as spike decreases in conductivity. (5) Progress on the Mid-Infrared Sensor for Continuous Methane Monitoring: (5a) Modeling and design of an optics platform complementary to the constructed electronics platform for successful incorporation into ''sphereIR'' continues. AutoCAD design and manual construction of mounting pieces for major optical components have been completed. (5b) Initial design concepts for IR-ATR sensor probe geometries have been established and evaluated. Initial evaluations of a horizontal ATR (HATR) sensing probe with fiber optic guiding light have been performed and validate the design concept as a potentially viable deep sea sensing pr

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

2005-11-01T23:59:59.000Z

217

NETL: News Release - Ocean Research Vessel Returns with Undersea 'Treasure'  

NLE Websites -- All DOE Office Websites (Extended Search)

23, 2002 23, 2002 Ocean Research Vessel Returns with Undersea 'Treasure' of Methane Hydrates Largest Amount of Marine Hydrate Core Ever Recovered - The R/V JOIDES Resolution - The R/V JOIDES Resolution VICTORIA, BRITISH COLUMBIA - An internationally funded ocean research vessel has returned to port after a two-month expedition off the Oregon coast, bringing with it the largest amount of marine methane hydrate core samples ever recovered for scientific study. The R/V JOIDES Resolution, the world's largest scientific drillship, docked at Victoria, British Columbia earlier this month and began offloading pressure vessels containing methane hydrates recovered 50 miles offshore of Oregon from an area known as Hydrate Ridge. The pressure vessels, each six feet long and four inches in diameter, will

218

Strategies for gas production from oceanic Class 3 hydrate accumulations  

E-Print Network (OSTI)

Mexico, Fire In The Ice: NETL Methane Hydrates R&D Programand Kelly Boswell of DOE-NETL for making the Tigershark data

Moridis, George J.; Reagan, Matthew T.

2007-01-01T23:59:59.000Z

219

Macroscopic Biofilms in Fracture-Dominated Sediment That Anaerobically Oxidize Methane  

Science Journals Connector (OSTI)

...resistivity values caused by high gas hydrate saturation in the fractures (41...fractures partially filled with gas hydrate and feeding methane upwards toward...collected as a part of the National Gas Hydrate Program cruise 01 (NGHP01) in...

B. R. Briggs; J. W. Pohlman; M. Torres; M. Riedel; E. L. Brodie; F. S. Colwell

2011-08-05T23:59:59.000Z

220

Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico May 14, 2013 - 10:00am Addthis USGS technicians Eric Moore and Jenny White deploy instruments at the start of a seismic survey to explore gas hydrates in the deepwater Gulf of Mexico from April to May 2013 | Photo courtesy of USGS USGS technicians Eric Moore and Jenny White deploy instruments at the start of a seismic survey to explore gas hydrates in the deepwater Gulf of Mexico from April to May 2013 | Photo courtesy of USGS Washington, DC - A joint-federal-agency 15-day research expedition in the northern Gulf of Mexico yielded innovative high-resolution seismic data and imagery that will help refine characterizations of large methane

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence? Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

222

Well log evaluation of natural gas hydrates  

SciTech Connect

Gas hydrates are crystalline substances composed of water and gas, in which a solid-water-lattice accommodates gas molecules in a cage-like structure. Gas hydrates are globally widespread in permafrost regions and beneath the sea in sediment of outer continental margins. While methane, propane, and other gases can be included in the clathrate structure, methane hydrates appear to be the most common in nature. The amount of methane sequestered in gas hydrates is probably enormous, but estimates are speculative and range over three orders of magnitude from about 100,000 to 270,000,000 trillion cubic feet. The amount of gas in the hydrate reservoirs of the world greedy exceeds the volume of known conventional gas reserves. Gas hydrates also represent a significant drilling and production hazard. A fundamental question linking gas hydrate resource and hazard issues is: What is the volume of gas hydrates and included gas within a given gas hydrate occurrence Most published gas hydrate resource estimates have, of necessity, been made by broad extrapolation of only general knowledge of local geologic conditions. Gas volumes that may be attributed to gas hydrates are dependent on a number of reservoir parameters, including the areal extent ofthe gas-hydrate occurrence, reservoir thickness, hydrate number, reservoir porosity, and the degree of gas-hydrate saturation. Two of the most difficult reservoir parameters to determine are porosity and degreeof gas hydrate saturation. Well logs often serve as a source of porosity and hydrocarbon saturation data; however, well-log calculations within gas-hydrate-bearing intervals are subject to error. The primary reason for this difficulty is the lack of quantitative laboratory and field studies. The primary purpose of this paper is to review the response of well logs to the presence of gas hydrates.

Collett, T.S.

1992-10-01T23:59:59.000Z

223

Research on Methane-Electricity-Heatpump System Model in Cold Area  

Science Journals Connector (OSTI)

The heat energy loss of methane liquid is the most important reason for low temperature of methane biochemical reaction in cold area by energy-flow analysis. The heat energy recovery of methane liquid can build a self-energizing system. Vegetable greenhouses ... Keywords: cold area, self-energizing, methane, heat pump, model

Zhang Chenghu; Pan Yawen; Ma Fang; Sun Dexing; Qiu Shan

2011-01-01T23:59:59.000Z

224

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION P  

NLE Websites -- All DOE Office Websites (Extended Search)

2NT00041628 2NT00041628 Final Report Covering research during the period 1 June, 2002 through 30 September, 2008 Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project Submitted by: University of Mississippi Center for Marine Resources and Environmental Technology 310 Lester Hall, University, MS 38677 Principal Authors: J. Robert Woolsey, Thomas M. McGee, Carol B. Lutken Prepared for: United States Department of Energy National Energy Technology Laboratory January, 2009 Office of Fossil Energy ii SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT DOE Award Number DE-FC26-02NT41628 FINAL TECHNICAL REPORT

225

Gas hydrate formation in fine sand  

Science Journals Connector (OSTI)

Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in ... Sea. The testing media consisted of silica sand particles with diameters of ...

XiaoYa Zang; DeQing Liang; NengYou Wu

2013-04-01T23:59:59.000Z

226

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION P  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42877 Semiannual Progress Report HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO Submitted by: CENTER FOR MARINE RESOURCES AND ENVIRONMENTAL TECHNOLOGY 111 BREVARD HALL, UNIVERSITY, MS 38677 Principal Author: Carol Lutken, PI Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2011 Office of Fossil Energy ii HYDRATE RESEARCH ACTIVITIES THAT BOTH SUPPORT AND DERIVE FROM THE MONITORING STATION/SEA-FLOOR OBSERVATORY, MISSISSIPPI CANYON 118, NORTHERN GULF OF MEXICO SEMIANNUAL PROGRESS REPORT 1 JANUARY, 2011 THROUGH 30 JUNE, 2011

227

Overview of GRI research at the Rock Creek Site, Black Warrior Basin. Overview of GRI research at Rock Creek: Eight years of cooperative research, coalbed methane shortcourse. Held in Abingdon, Virginia on October 23, 1992. Topical report  

SciTech Connect

The presentation slides from the October 23, 1992 workshop on coalbed methane exploration and production are assembled in this volume. They illustrate the following discussions: Overview of GRI Research at Rock Creek: Eight Years of Cooperative Research, Drilling and Completing Coalbed Methane Wells: Techniques for Fragile Formations, Connecting the Wellborne to the Formation: Perforations vs. Slotting, Coalbed Methane Well Testing in the Warrior Basin, Reservoir Engineering: A Case Study at Rock Creek, Fraccing of Multiple Thin Seams: Considerations and Constraints, Implementing Coal Seam Stimulations: Requirements for Successful Treatments, Coal-Fluid Interactions, Mine-Through Observations of Coal Seam Stimulations: Reality vs. Theory, and Recompleting Coalbed Methane Wells: The Second Try at Success.

Schraufnagel, R.

1992-10-01T23:59:59.000Z

228

Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation  

NLE Websites -- All DOE Office Websites (Extended Search)

Results of Research Engine and Results of Research Engine and Vehicle Drive Cycle Testing during Blended Hydrogen/Methane Operation Thomas Wallner, Henning Lohse-Busch, Henry Ng Argonne National Laboratory Robert Peters University of Alabama at Birmingham NHA Annual Hydrogen Conference 2007 San Antonio/Texas March 19 th - 22 nd 2007 DOE-Sponsors: Lee Slezak, Gurpreet Singh Government license The submitted manuscript was developed by the UChicago Argonne LLC as Operator of Argonne National Laboratory ("Argonne") under Contract No. DE-AC-02-06CH11357 with DOE. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on

229

Stable Conditions of Marine Gas Hydrate  

Science Journals Connector (OSTI)

Figure9.7 shows the P-T...curve determined by the temperature-pressure method in a sediment-water-methane-hydrate system (natural sand of 20?40, 40?60, and 220?240mesh). Methane gas is injected into the reactor...

Shicai Sun; Yuguang Ye; Changling Liu; Jian Zhang

2013-01-01T23:59:59.000Z

230

Potential effects of gas hydrate on human welfare  

Science Journals Connector (OSTI)

...distribution of gas hydrate (Fig. 4). According...sediment) of methane hydrate is 10-fold greater...unconventional sources of gas, such as coal beds, tight sands, black shales...conventional natural gas. Given these attractive...that natural gas hydrate could serve as...

Keith A. Kvenvolden

1999-01-01T23:59:59.000Z

231

Gas Hydrate Equilibrium Measurements for Multi-Component Gas Mixtures and Effect of Ionic Liquid Inhibitors  

E-Print Network (OSTI)

hydrate inhibition data from a newly commissioned micro bench top reactor, a high-pressure autoclave and a rocking cell. The conditions for hydrate formation for pure methane and carbon dioxide were also measured, for validation purposes. The measured data...

Othman, Enas Azhar

2014-04-07T23:59:59.000Z

232

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel, the M/V Ocean Quest and its two submersibles, but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

2006-06-01T23:59:59.000Z

233

Sensitivity Analysis of Gas Production from Class 2 and Class 3 Hydrate Deposits  

E-Print Network (OSTI)

Mexico, Fire In The Ice, NETL Methane Hydrates R&D ProgramBoswell and Kelly Rose of DOE-NETL for making the Tigershark

Reagan, Matthew

2009-01-01T23:59:59.000Z

234

Resource Characterization and Quantification of Natural Gas-Hydrate and Associated Free-Gas Accumulations in the Prudhoe Bay - Kuparuk River Area on the North Slope of Alaska  

SciTech Connect

Natural gas hydrates have long been considered a nuisance by the petroleum industry. Hydrates have been hazards to drilling crews, with blowouts a common occurrence if not properly accounted for in drilling plans. In gas pipelines, hydrates have formed plugs if gas was not properly dehydrated. Removing these plugs has been an expensive and time-consuming process. Recently, however, due to the geologic evidence indicating that in situ hydrates could potentially be a vast energy resource of the future, research efforts have been undertaken to explore how natural gas from hydrates might be produced. This study investigates the relative permeability of methane and brine in hydrate-bearing Alaska North Slope core samples. In February 2007, core samples were taken from the Mt. Elbert site situated between the Prudhoe Bay and Kuparuk oil fields on the Alaska North Slope. Core plugs from those core samples have been used as a platform to form hydrates and perform unsteady-steady-state displacement relative permeability experiments. The absolute permeability of Mt. Elbert core samples determined by Omni Labs was also validated as part of this study. Data taken with experimental apparatuses at the University of Alaska Fairbanks, ConocoPhillips laboratories at the Bartlesville Technology Center, and at the Arctic Slope Regional Corporation's facilities in Anchorage, Alaska, provided the basis for this study. This study finds that many difficulties inhibit the ability to obtain relative permeability data in porous media-containing hydrates. Difficulties include handling unconsolidated cores during initial core preparation work, forming hydrates in the core in such a way that promotes flow of both brine and methane, and obtaining simultaneous two-phase flow of brine and methane necessary to quantify relative permeability using unsteady-steady-state displacement methods.

Shirish Patil; Abhijit Dandekar

2008-12-31T23:59:59.000Z

235

Physical Properties of Gas Hydrates: A Review  

SciTech Connect

Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

2010-01-01T23:59:59.000Z

236

Experimental Research on Low-Temperature Methane Steam Reforming Technology in a Chemically Recuperated Gas Turbine  

Science Journals Connector (OSTI)

Under the operating parameters of a chemically recuperated gas turbine (CRGT), the low-temperature methane steam reforming test bench is designed and built; systematic experimental studies about fuel steam reforming are conducted. Four different reforming ...

Qian Liu; Hongtao Zheng

2014-09-24T23:59:59.000Z

237

Controls on Gas Hydrate Formation and Dissociation  

SciTech Connect

The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both up-flow and down-flow of fluid at rates that range between 0.5 to 214 cm/yr and 2-162 cm/yr, respectively. The fluid flow system at the mound and background sites are coupled having opposite polarities that oscillate episodically between 14 days to {approx}4 months. Stability calculations suggest that despite bottom water temperature fluctuations, of up to {approx}3 C, the Bush Hill gas hydrate mound is presently stable, as also corroborated by the time-lapse video camera images that did not detect change in the gas hydrate mound. As long as methane (and other hydrocarbon) continues advecting at the observed rates the mound would remain stable. The {_}{sup 13}C-DIC data suggest that crude oil instead of methane serves as the primary electron-donor and metabolic substrate for anaerobic sulfate reduction. The oil-dominated environment at Bush Hill shields some of the methane bubbles from being oxidized both anaerobically in the sediment and aerobically in the water column. Consequently, the methane flux across the seafloor is higher at Bush hill than at non-oil rich seafloor gas hydrate regions, such as at Hydrate Ridge, Cascadia. The methane flux across the ocean/atmosphere interface is as well higher. Modeling the methane flux across this interface at three bubble plumes provides values that range from 180-2000 {_}mol/m{sup 2} day; extrapolating it over the Gulf of Mexico basin utilizing satellite data is in progress.

Miriam Kastner; Ian MacDonald

2006-03-03T23:59:59.000Z

238

Diffusive Accumulation of Methane Bubbles in Seabed  

E-Print Network (OSTI)

We consider seabed bearing methane bubbles. In the absence of fractures the bubbles are immovably trapped in a porous matrix by surface tension forces; therefore the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. The adequate description of this process requires accounting "other-than-normal" (non-Fickian) diffusion effects, thermodiffusion and gravity action. We evaluate the diffusive flux of aqueous methane and predict the possibility of existence of bubble mass accumulation zones (which can appear independently from the presence/absence of hydrate stability zone) and effect of non-Fickian drift on the capacity of shallow and deep methane-hydrate deposits.

Goldobin, D S; Levesley, J; Lovell, M A; Rochelle, C A; Jackson, P; Haywood, A; Hunter, S; Rees, J

2010-01-01T23:59:59.000Z

239

Natural gas hydrates on the continental slope off Pakistan: constraints from seismic techniques  

Science Journals Connector (OSTI)

......2000 research-article Articles Natural gas hydrates on the continental slope...J. Int. (2000) 140, 295310 Natural gas hydrates on the continental slope...adequate gas supplies for hydrate Natural gas hydrates (clathrates) are a crystalline......

Ingo Grevemeyer; Andreas Rosenberger; Heinrich Villinger

2000-02-01T23:59:59.000Z

240

Microsoft Word - Quarterly Report 4- DOE Hydrates.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

10195 10195 Quarterly Research Performance Progress Report (Period ending 8/31/2013) Methane Hydrate Field Program Project Period (October 1, 2012 - December 31, 2013) Submitted by: Greg Myers - Principal Investigator _________________________ Signature Consortium for Ocean Leadership DUNS #:046862582 1201 New York Avenue, NW Fourth Floor e-mail: gmyers@oceanleadership.org Phone number: (202) 448-1258 Prepared for: United States Department of Energy National Energy Technology Laboratory October 31, 2013 Office of Fossil Energy 2 ACCOMPLISHMENTS: The primary objective of the project is to conduct scientific planning that will help enable future scientific ocean drilling, coring, logging, testing and analytical activities to assess the geologic occurrence, regional

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Support of Gulf of Mexico Hydrate Research Consortium: Activities of Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research that shared the need for a way to conduct investigations of gas hydrates and their stability zone in the Gulf of Mexico in situ on a more-or-less continuous basis. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (SFO) on the sea floor in the northern Gulf of Mexico, in an area where gas hydrates are known to be present at, or just below, the sea floor and to discover the configuration and composition of the subsurface pathways or 'plumbing' through which fluids migrate into and out of the hydrate stability zone (HSZ) to the sediment-water interface. Monitoring changes in this zone and linking them to coincident and perhaps consequent events at the seafloor and within the water column is the eventual goal of the Consortium. This mission includes investigations of the physical, chemical and biological components of the gas hydrate stability zone - the sea-floor/sediment-water interface, the near-sea-floor water column, and the shallow subsurface sediments. The eventual goal is to monitor changes in the hydrate stability zone over time. Establishment of the Consortium succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among those involved in gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative methods and construct necessary instrumentation. Following extensive investigation into candidate sites, Mississippi Canyon 118 (MC118) was chosen by consensus of the Consortium at their fall, 2004, meeting as the site most likely to satisfy all criteria established by the group. Much of the preliminary work preceding the establishment of the site - sensor development and testing, geophysical surveys, and laboratory studies - has been reported in agency documents including the Final Technical Report to DOE covering Cooperative Agreement DEFC26-00NT40920 and Semiannual Progress Reports for this award, DE-FC26-02NT41628. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in MC118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. SFO completion, now anticipated for 2009-10, has, therefore, been delayed. Although delays caused scheduling and deployment difficulties, many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). During the life of this Cooperative Agreement (CA), the CMRET conducted many cruises. Early in the program these were executed primarily to survey potential sites and test sensors and equipment being developed for the SFO. When MC118 was established as the observatory site, subsequent cruises focused on this location. Beginning in 2005 and continuing to the present, 13 research cruises to MC118 have been conducted by the Consortium. During September, 2006, the Consortium was able to secure 8 days aboard the R/V Seward Johnson with submersible Johnson SeaLink, a critical chapter in the life of the Observatory project as important documentation, tests, recoveries and deployments were accomplished during this trip (log appended). Consortium members have participated materially in a number of additional cruises including several of the NIUST autonomous underwater vehicle (AUV), Ea

J. Robert Woolsey; Thomas McGee; Carol Lutken

2008-05-31T23:59:59.000Z

242

SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being made to locate and retain the services of a replacement vessel and submersibles or Remotely Operated Vehicles (ROVs) but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in the previous report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs.

Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

2006-05-18T23:59:59.000Z

243

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (??Methane in the Arctic Shelf? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (??metagenomes?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

244

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of a Sea Floor Monitoring Station Project  

SciTech Connect

The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health, was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical, geological, and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 (MC118) in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. These delays caused scheduling and deployments difficulties but many sensors and instruments were completed during this period. Software has been written that will accommodate the data that the station retrieves, when it begins to be delivered. In addition, new seismic data processing software has been written to treat the peculiar data to be received by the vertical line array (VLA) and additional software has been developed that will address the horizontal line array (HLA) data. These packages have been tested on data from the test deployments of the VLA and on data from other, similar, areas of the Gulf (in the case of the HLA software). The CMRET has conducted one very significant research cruise during this reporting period: a March cruise to perform sea trials of the Station Service Device (SSD), the custom Remotely Operated Vehicle (ROV) built to perform several of the unique functions required for the observatory to become fully operational. March's efforts included test deployments of the SSD and Florida Southern University's mass spectrometer designed to measure hydrocarbon gases in the water column and The University of Georgia's microbial collector. The University of Georgia's rotational sea-floor camera was retrieved as was Specialty Devices storm monitor array. The former was deployed in September and the latter in June, 2006. Both were retrieved by acoustic release from a dispensable weight. Cruise participants also went prepared to recover any and all instruments left on the sea-floor during the September Johnson SeaLink submersible cruise. One of the pore-fluid samplers, a small ''peeper'' was retrieved successfully and in fine condition. Other instrumentation was left on the sea-floor until modifications of the SSD are complete and a return cruise is accomplished.

J. Robert Woolsey; Thomas M. McGee; Carol Blanton Lutken; Elizabeth Stidham

2007-03-31T23:59:59.000Z

245

Measurement of Gas Hydrate by Laser Raman Spectrometry  

Science Journals Connector (OSTI)

Four types of natural sand (respectively 250350, 180250, 125 ... ) are used as media to synthesize methane hydrate that is measured by laser Raman spectrometry. ... show that sediment grain sizes do not influen...

Changling Liu; Qingguo Meng; Yuguang Ye

2013-01-01T23:59:59.000Z

246

Experiments on Hydrocarbon Gas Hydrates in Unconsolidated Sand  

Science Journals Connector (OSTI)

Experiments were carried out to observe the formation and decomposition of hydrocarbon gas hydrates in an unconsolidated sand pack 4.4 cm in diameter and ... 43 bars and 5 to 10C; gas used was 90% methane and 10...

P. E. Baker

1974-01-01T23:59:59.000Z

247

Natural Gas Hydrate Dissociation by Presence of Ethylene Glycol  

Science Journals Connector (OSTI)

Natural Gas Hydrate Dissociation by Presence of Ethylene Glycol ... solids that form from mixts. of water and light natural gases such as methane, carbon dioxide, ethane, propane and butane. ... Pulse Combustion Characteristics of Various Gaseous Fuels ...

Shuanshi Fan; Yuzhen Zhang; Genlin Tian; Deqing Liang; Dongliang Li

2005-11-08T23:59:59.000Z

248

I/I ratios and halogen concentrations in pore waters of the Hydrate Ridge: Relevance for the origin of gas hydrates in ODP Leg 204  

E-Print Network (OSTI)

in fluids associated with hydrocarbons, such as oil field brines (Moran et al., 1995) or coal-bed methane association of iodine with methane allows the identification of the organic source material responsible for iodine and methane in gas hydrates. In all cores, iodine concentrations were found to increase strongly

Fehn, Udo

249

Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling  

SciTech Connect

The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand-prone sedimentary section that rises stratigraphically across the base of the gas hydrate stability zone and that has seismic indicators of gas hydrate. Copyright 2008, Offshore Technology Conference

Jones, E. (Chevron); Latham, T. (Chevron); McConnell, D. (AOA Geophysics); Frye, M. (Minerals Management Service); Hunt, J. (Minerals Management Service); Shedd, W. (Minerals Management Service); Shelander, D. (Schlumberger); Boswell, R.M. (NETL); Rose, K.K. (NETL); Ruppel, C. (USGS); Hutchinson, D. (USGS); Collett, T. (USGS); Dugan, B. (Rice University); Wood, W. (Naval Research Laboratory)

2008-05-01T23:59:59.000Z

250

Overview on Hydrate Coring, Handling and Analysis  

SciTech Connect

Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

2003-06-30T23:59:59.000Z

251

Basin scale assessment of gas hydrate dissociation in response to climate change  

SciTech Connect

Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating climate. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. Field investigations have discovered substantial methane gas plumes exiting the seafloor along the Arctic Ocean margin, and the plumes appear at depths corresponding to the upper limit of a receding gas hydrate stability zone. It has been suggested that these plumes may be the first visible signs of the dissociation of shallow hydrate deposits due to ongoing climate change in the arctic. We simulate the release of methane from oceanic deposits, including the effects of fully-coupled heat transfer, fluid flow, hydrate dissociation, and other thermodynamic processes, for systems representative of segments of the Arctic Ocean margins. The modeling encompasses a range of shallow hydrate deposits from the landward limit of the hydrate stability zone down to water depths beyond the expected range of century-scale temperature changes. We impose temperature changes corresponding to predicted rates of climate change-related ocean warming and examine the possibility of hydrate dissociation and the release of methane. The assessment is performed at local-, regional-, and basin-scales. The simulation results are consistent with the hypothesis that dissociating shallow hydrates alone can result in significant methane fluxes at the seafloor. However, the methane release is likely to be confined to a narrow region of high dissociation susceptibility, defined by depth and temperature, and that any release will be continuous and controlled, rather than explosive. This modeling also establishes the first realistic bounds for methane release along the arctic continental shelf for potential hydrate dissociation scenarios, and ongoing work may help confirm whether climate change is already impacting the stability of the vast oceanic hydrate reservoir.

Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.; Cameron-Smith, P.

2011-07-01T23:59:59.000Z

252

methane hydrate science plan-final.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Period Start Date: October 1, 2012 Period Start Date: October 1, 2012 Project Period End Date: December 31, 2013 Principal Authors: / h [ a I t { { / h [ DUNS #:046862582 1201 New York Avenue, NW Fourth Floor, Washington, D.C. 20005 Prepared for: { 5 9 b 9 [ DO E Aw ard No .: DE -FE 00 10 19 5 Proje ct Title: Met hane Hyd rate Field Prog ram : Deve lopm ent of { t Met hane Hyd rate -Foc used Mar ine Drill ing, Logg ing and Cori ng Prog

253

IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE  

E-Print Network (OSTI)

and particles. As the natural gas resources are enormous, it represents a good alternative to oil in term natural gas distribution network. Secondly, at low pressure, the tank geometry can adopt various shapes, gas storage INTRODUCTION. With the massive increase of the urban traffic, coupled with its large

Paris-Sud XI, Université de

254

Recovery of gas from hydrate deposits using conventional production technology. [Salt-frac technique  

SciTech Connect

Methane hydrate gas could be a sizeable energy resource if methods can be devised to produce this gas economically. This paper examines two methods of producing gas from hydrate deposits by the injection of hot water or steam, and also examines the feasibility of hydraulic fracturing and pressure reduction as a hydrate gas production technique. A hydraulic fracturing technique suitable for hydrate reservoirs is also described.

McGuire, P.L.

1982-01-01T23:59:59.000Z

255

Storms, polar deposits and the methane cycle in Titan's atmosphere  

Science Journals Connector (OSTI)

...2004GL021415 . Lorenz, R.D , 2006The sand seas on Titan: Cassini RADAR...Stevenson1985Thermodynamics of clathrate hydrate at low and high pressures with...constituent, methane, exists as a gas, liquid and solid, and cycles...constituent, methane, exists as a gas, liquid and solid, and cycles...

2009-01-01T23:59:59.000Z

256

Measurement and modeling of hydrate dissociation: Final report  

SciTech Connect

Natural gas could be recovered from hydrate deposits by either of two basic methods (1) thermal stimulation in which an external source of energy is provided and (2) lowering of the equilibrium pressure (depressurization) in which the energy of the hydrate-containing and the surrounding media is utilized. In this work, we have measured and modeled mathematically the dissociation of hydrates in consolidated and unconsolidated porous media. Hydrates were formed in laboratory samples of Ottawa sand and Berea sandstone using miscible and non-miscible hydrate formers. A state-of-the-art, computer-controlled transient hot wire needle probe apparatus was developed for the measurements of thermal conductivity of pure hydrates and hydrate-containing porous media. We have measured the thermal conductivity of hydrate-containing Ottawa sand and Berea sandstone samples in order to determine the physical properties necessary for the mathematical models. We have also measured the electric resistivity of methane hydrate-containing Berea sandstone in order to verify the formation of the hydrate and to track the dissociation front during hydrate depressurization. Two mathematical models were developed for the process of hydrate dissociation in porous media using the two recovery schemes thermal stimulation and depressurization. 10 refs., 9 figs., 1 tab.

Sloan, E.D.; Selim, M.S.

1988-04-01T23:59:59.000Z

257

Das Methan  

Science Journals Connector (OSTI)

Bei Einwirkung von Salzsure auf Aluminiumkarbid entwickelt sich ein farbloses Gas, welches, angezndet, mit schwach leuchtender Flamme brennt: Es ist Methan.

A. Lipp

1928-01-01T23:59:59.000Z

258

Natural Gas Hydrates  

Science Journals Connector (OSTI)

Natural Gas Hydrates ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ... Formation Characteristics of Synthesized Natural Gas Hydrates in Meso- and Macroporous Silica Gels ...

Willard I. Wilcox; D. B. Carson; D. L. Katz

1941-01-01T23:59:59.000Z

259

Gas hydrates in the Gulf of Mexico  

E-Print Network (OSTI)

filled by one or more gases. In marine sediments gas hydrates are found in regions where high pressure, low temperature and gas in excess of solubility are present. Low molecular weight hydrocarbons (LMWH), I. e. methane through butane, carbon dioxide... loop at a helium carrier flow of 12 ml/min with an elution order of methane, ethane, carbon dioxide and propane. Each fraction was trapped in a U- shaped Porpak-Q filled glass tube immersed in LN2. Butanes and heartier weight gases were trapped...

Cox, Henry Benjamin

1986-01-01T23:59:59.000Z

260

Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments  

E-Print Network (OSTI)

bound gas in marine sediments: how much is really out there?methane hydrate in ocean sediment. Energy & Fuels 2005: 19:Accumulations in Oceanic Sediments George J. Moridis 1 and

Moridis, George J.; Sloan, E. Dendy

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network (OSTI)

gas such as tight gas, shale gas, or coal bed methane gas tolocation. Development of shale oil and gas, tar sands, coalGas hydrates will undoubtedly also be present in shales,

Moridis, G.J.

2011-01-01T23:59:59.000Z

262

Evidence for natural gas hydrate occurrences in Colombia Basin  

SciTech Connect

Multichannel and selected single-channel seismic lines of the continental margin sediments of the Colombia basin display compelling evidence for large accumulations of natural gas hydrate. Seismic bottom simulating reflectors (BSRs), interpreted to mark the base of the hydrate stability zone, are pronounced and very widespread along the entire Panama-Colombia lower continental slope. BSRs have also been identified at two locations on the abyssal plain. Water depths for these suspected hydrate occurrences range from 900 to 4000 m. Although no gas hydrate samples have been recovered from this area, biogenic methane is abundant in Pliocene turbidites underlying the abyssal plain. More deeply buried rocks beneath the abyssal plain are thermally mature. Thermogenic gas from these rocks may migrate upward along structural pathways into the hydrate stability zone and form hydrate. Impermeable hydrate layers may form caps over large accumulations of free gas, accounting for the very well-defined BSRs in the area. The abyssal plain and the deformed continental margin hold the highest potential for major economic accumulations of gas hydrate in the basin. The extensive continuity of BSRs, relatively shallow water depths, and promixity to onshore production facilities render the marginal deformed belt sediments the most favorable target for future economic development of the gas hydrate resource within the Colombia basin. The widespread evidence of gas hydrates in the Colombia basin suggests a high potential for conventional hydrocarbon deposits offshore of Panama and Colombia.

Finley, P.D.; Krason, J.; Dominic, K.

1987-05-01T23:59:59.000Z

263

NETL-ORD4 | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

ORD4 Unconventional Resources Enhanced Oil Recovery Deepwater Tech Methane Hydrate NETL ORD - Methane Hydrate Research - Thermal Properties of Hydrate - Tool Development Last...

264

Small Business Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilization Advanced Separation (CO2, H2, O2) Oil & Gas Unconventional Resources (Oil Shale, Methane Hydrates, etc.) Gasification (IGCC, Coal and Biomass) Algae to Fuels Solid...

265

Analysis of the Development of Messoyakha Gas Field: A Commercial Gas Hydrate Reservoir  

E-Print Network (OSTI)

). Natural gas from methane hydrate has the potential to play a major role in ensuring adequate future energy supplies in the US. The worldwide volume of gas in the hydrate state has been estimated to be approximately 1.5 x 10^16 m^3 (Makogon 1984). More than...

Omelchenko, Roman 1987-

2012-12-11T23:59:59.000Z

266

Enhanced coalbed methane recovery  

SciTech Connect

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

267

CO2 Sequestration Enhances Coalbed Methane Production.  

E-Print Network (OSTI)

??Since 1980s, petroleum engineers and geologists have conducted researches on Enhanced Coalbed Methane Recovery (ECBM). During this period, many methods are introduced to enhance the (more)

Pang, Yu

2013-01-01T23:59:59.000Z

268

Oil & Gas Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Research Oil & Gas Research Section 999 Report to Congress DOE issues the 2013 annual plan for the ultra-deepwater and unconventional fuels program. Read more DOE Signs MOU with Alaska New accord to help develop Alaska's potentially vast and important unconventional energy resources. Read more Methane Hydrate R&D DOE is conducting groundbreaking research to unlock the energy potential of gas hydrates. Read more LNG Safety Research Report This Report to Congress summarizes the progress of DOE's LNG safety research Read more FE's Office of Oil & Natural Gas supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas. Resource/Safety R&D Hydraulic Fracturing & Shale Gas Research. Natural gas from shales has the

269

Massive dissociation of gas hydrate during a Jurassic  

E-Print Network (OSTI)

release of methane from gas hydrate contained in marine continental-margin sediments. The better-known positive carbon-isotope excursion of the Early Toarcian is well illustrated by European organic-poor marine-resolution ammonite biostratigraphy is simply determined. Fossil wood is also present, preserved as coal (some

Hesselbo, Stephen P.

270

Evaluation of the geological relationships to gas hydrate formation and stability  

SciTech Connect

The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

Krason, J.; Finley, P.

1988-01-01T23:59:59.000Z

271

Chitosan as green kinetic inhibitors for gas hydrate formation  

Science Journals Connector (OSTI)

The kinetic inhibiting effect of a number of chitosans on hydrate formation was investigated using methane and methane/ethane gas mixtures. The results indicated that chitosan was a good kinetic inhibitor. The induction time of gas hydrate formation evidently increased with the degree of deacetylation (DD), however, when DD was higher than 80%, the effect of DD on the induction time was negligible. Moreover, it was found that the molecular weight (MW) of chitosan and the addition of polyethylene oxide (PEO) had little effect on the induction time. The optimal concentration of chitosan was found to be 0.6 wt%. Finally, the mechanisms of the kinetic inhibitor on the hydrate formation were discussed.

Yongjun Xu; Minlin Yang; Xiaoxi Yang

2010-01-01T23:59:59.000Z

272

Methane- and Sulfur-Metabolizing Microbial Communities Dominate the Lost City Hydrothermal Field Ecosystem  

Science Journals Connector (OSTI)

...physically associated with Gulf of Mexico gas hydrates. Appl. Environ...hydrate mounds in the Gulf of Mexico. FEMS Microbiol. Ecol. 46...bioenergetics in the Yellowstone geothermal ecosystem. Proc. Natl. Acad...methane-oxidizing Bacteria as well as methanogenic and anaerobic...

William J. Brazelton; Matthew O. Schrenk; Deborah S. Kelley; John A. Baross

2006-09-01T23:59:59.000Z

273

Hydrate-phobic surfaces  

E-Print Network (OSTI)

Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for ultra deep-sea production. Current methods for hydrate mitigation focus on injecting thermodynamic ...

Smith, Jonathan David, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

274

Geochemical and geologic factors effecting the formulation of gas hydrate: Task No. 5, Final report  

SciTech Connect

The main objective of our work has been to determine the primary geochemical and geological factors controlling gas hydrate information and occurrence and particularly in the factors responsible for the generation and accumulation of methane in oceanic gas hydrates. In order to understand the interrelation of geochemical/geological factors controlling gas hydrate occurrence, we have undertaken a multicomponent program which has included (1) comparison of available information at sites where gas hydrates have been observed through drilling by the Deep Sea Drilling Project (DSDP) on the Blake Outer Ridge and Middle America Trench; (2) regional synthesis of information related to gas hydrate occurrences of the Middle America Trench; (3) development of a model for the occurrence of a massive gas hydrate as DSDP Site 570; (4) a global synthesis of gas hydrate occurrences; and (5) development of a predictive model for gas hydrate occurrence in oceanic sediment. The first three components of this program were treated as part of a 1985 Department of Energy Peer Review. The present report considers the last two components and presents information on the worldwide occurrence of gas hydrates with particular emphasis on the Circum-Pacific and Arctic basins. A model is developed to account for the occurrence of oceanic gas hydrates in which the source of the methane is from microbial processes. 101 refs., 17 figs., 6 tabs.

Kvenvolden, K.A.; Claypool, G.E.

1988-01-01T23:59:59.000Z

275

Newly Installed Alaska North Slope Well Will Test Innovative Hydrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newly Installed Alaska North Slope Well Will Test Innovative Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies May 17, 2011 - 1:00pm Addthis Washington, DC - A fully instrumented well that will test innovative technologies for producing methane gas from hydrate deposits has been safely installed on the North Slope of Alaska. As a result, the "Iġnik Sikumi" (Iñupiaq for "fire in the ice") gas hydrate field trial well will be available for field experiments as early as winter 2011-12. The well, the result of a partnership between ConocoPhillips and the Office of Fossil Energy's (FE) National Energy Technology Laboratory, will test a technology that involves injecting carbon dioxide (CO2) into sandstone

276

Gas hydrate detection and mapping on the US east coast  

SciTech Connect

Project objectives are to identify and map gas hydrate accumulations on the US eastern continental margin using remote sensing (seismic profiling) techniques and to relate these concentrations to the geological factors that-control them. In order to test the remote sensing methods, gas hydrate-cemented sediments will be tested in the laboratory and an effort will be made to perform similar physical tests on natural hydrate-cemented sediments from the study area. Gas hydrate potentially may represent a future major resource of energy. Furthermore, it may influence climate change because it forms a large reservoir for methane, which is a very effective greenhouse gas; its breakdown probably is a controlling factor for sea-floor landslides; and its presence has significant effect on the acoustic velocity of sea-floor sediments.

Ahlbrandt, T.S.; Dillon, W.P.

1993-12-31T23:59:59.000Z

277

ARM - Methane Background Information  

NLE Websites -- All DOE Office Websites (Extended Search)

our atmosphere's methane levels have more than doubled in the last 200 years. These methane levels contribute to the greenhouse effect, which contributes to overall climate change....

278

Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)  

SciTech Connect

A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation, respectively. Based on the contemporaneous wind speeds at this site, contemporary estimates of the diffusive fluxes from the mixed layer to the atmosphere for methane, ethane, and propane are 26.5, 2.10, and 2.78 {micro}mol/m{sup 2}d, respectively. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 ppm and 2.40 ppm during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Considering that the majority of seeps in the GOM are deep (>500 m), elevated CH{sub 4} concentrations in near-surface waters resulting from bubble-mediated CH4 transport in the water column are expected to be widespread in the Gulf of Mexico.

Ian MacDonald

2011-05-31T23:59:59.000Z

279

Examination of Hydrate Formation Methods: Trying to Create Representative Samples  

SciTech Connect

Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas is placed in a sample, then the sample is flooded with water and cooled [Priest et al., 2009]. We have performed a number of tests in which hydrate was formed and the uniformity of the hydrate formation was examined. These tests have primarily used a variety of modifications of the excess gas method to make the hydrate, although we have also used a version of the excess water technique. Early on, we found difficulties in creating uniform samples with a particular sand/ initial water saturation combination (F-110 Sand, {approx} 35% initial water saturation). In many of our tests we selected this combination intentionally to determine whether we could use a method to make the samples uniform. The following methods were examined: Excess gas, Freeze/thaw/form, Freeze/pressurize/thaw, Excess gas followed by water saturation, Excess water, Sand and kaolinite, Use of a nucleation enhancer (SnoMax), and Use of salt in the water. Below, each method, the underlying hypothesis, and our results are briefly presented, followed by a brief conclusion. Many of the hypotheses investigated are not our own, but were presented to us. Much of the data presented is from x-ray CT scanning our samples. The x-ray CT scanner provides a three-dimensional density map of our samples. From this map and the physics that is occurring in our samples, we are able to gain an understanding of the spatial nature of the processes that occur, and attribute them to the locations where they occur.

Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

2011-04-01T23:59:59.000Z

280

Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization  

SciTech Connect

Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

2008-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microsoft Word - Oct2011_Semi-Annual Report_Hydrates_GRID-Arendal.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

October October 15 2011 2 ADMINISTRATIVE SUMMARY The UNEP Global Outlook on Methane Gas Hydrates project has received funding from the US Department of Energy under award number DE-FE0003060. The project director is Yannick Beaudoin and the recipient institution is Stiftelsen GRID-Arendal in Arendal, Norway. The current report is for the period starting April 1, 2010 and ending September 30, 2011. EXECUTIVE SUMMARY The UNEP Global Outlook on Methane Gas Hydrates seeks to provide policy makers, the gen- eral public and the media with a synthesis of aspects of natural, social and applied sciences that relate to this type of natural gas occurrence. With an emphasis on visual media, the Outlook is working to define global methane gas hydrate occurrences in their natural settings and examine

282

Evaluation of the geological relationships to gas hydrate formation and stability. Progress report, June 16--September 30, 1988  

SciTech Connect

The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

Krason, J.; Finley, P.

1988-12-31T23:59:59.000Z

283

Obsidian Hydration Rates  

Science Journals Connector (OSTI)

...OBSIDIAN HYDRATION RATE FOR KLAMATH BASIN OF CALIFORNIA AND OREGON...as the material is excreted, falls through the air, and dries...Friedman. Table 1 presents two new groups of hydra-tion readings for...the true age is believed to fall (3). The Snaketown age is...

Clement W. Meighan

1970-10-02T23:59:59.000Z

284

Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research  

DOE Data Explorer (OSTI)

NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

285

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - June 2012 2 - June 2012 ASSESSING THE EFFICACY OF THE AEROBIC METHANOTROPHIC BIOFIL- TER IN METHANE HYDRATE ENVIRONMENTS Submitted by: University of California Santa Barbara CA 93106 Principal Investigator: David L. Valentine Prepared for: United States Department of Energy National Energy Technology Laboratory July 31, 2012 Office of Fossil Energy 1 TABLE OF CONTENTS Executive Summary.......................................................................................... 2 Progress, Results and Discussion............................................................................3 Conclusion..................................................................................................... 4 Cost Status......................................................................................................5

286

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Quarterly Progress Report (April - June 2009) ASSESSING THE EFFICACY OF THE AEROBIC METHANOTROPHIC BIOFILTER IN METHANE HYDRATE ENVIRONMENTS Submitted by: University of California Santa Barbara CA 93106 Principal Investigator: David L. Valentine Prepared for: United States Department of Energy National Energy Technology Laboratory July 17, 2009 Office of Fossil Energy 1 TABLE OF CONTENTS Executive Summary.......................................................................................... 2 Progress, Results and Discussion........................................................................... 3 Conclusion..................................................................................................... 5 Cost Status..................................................................................................... 6

287

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

09 - December 2009 09 - December 2009 ASSESSING THE EFFICACY OF THE AEROBIC METHANOTROPHIC BIOFIL- TER IN METHANE HYDRATE ENVIRONMENTS Submitted by: University of California Santa Barbara CA 93106 Principal Investigator: David L. Valentine Prepared for: United States Department of Energy National Energy Technology Laboratory January 16, 2010 Office of Fossil Energy 1 TABLE OF CONTENTS Executive Summary.......................................................................................... 2 Progress, Results and Discussion........................................................................... 3 Conclusion..................................................................................................... 6 Cost Status..................................................................................................... 7

288

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

2 - March 2012 2 - March 2012 ASSESSING THE EFFICACY OF THE AEROBIC METHANOTROPHIC BIOFIL- TER IN METHANE HYDRATE ENVIRONMENTS Submitted by: University of California Santa Barbara CA 93106 Principal Investigator: David L. Valentine Prepared for: United States Department of Energy National Energy Technology Laboratory April 26, 2012 Office of Fossil Energy 1 TABLE OF CONTENTS Executive Summary.......................................................................................... 2 Progress, Results and Discussion............................................................................3 Conclusion..................................................................................................... 4 Cost Status......................................................................................................5

289

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

0 - March 2010 0 - March 2010 ASSESSING THE EFFICACY OF THE AEROBIC METHANOTROPHIC BIOFIL- TER IN METHANE HYDRATE ENVIRONMENTS Submitted by: University of California Santa Barbara CA 93106 Principal Investigator: David L. Valentine Prepared for: United States Department of Energy National Energy Technology Laboratory April 15, 2010 Office of Fossil Energy 1 TABLE OF CONTENTS Executive Summary.......................................................................................... 2 Progress, Results and Discussion........................................................................... 3 Conclusion..................................................................................................... 6 Cost Status..................................................................................................... 7

290

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

0 - September 2010 0 - September 2010 ASSESSING THE EFFICACY OF THE AEROBIC METHANOTROPHIC BIOFIL- TER IN METHANE HYDRATE ENVIRONMENTS Submitted by: University of California Santa Barbara CA 93106 Principal Investigator: David L. Valentine Prepared for: United States Department of Energy National Energy Technology Laboratory October 30, 2010 Office of Fossil Energy 1 TABLE OF CONTENTS Executive Summary....................................................................................... 2 Progress, Results and Discussion........................................................................ 3 Conclusion....................................................................................................5 Cost Status...................................................................................................6

291

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

09 - September 2009 09 - September 2009 ASSESSING THE EFFICACY OF THE AEROBIC METHANOTROPHIC BIOFIL- TER IN METHANE HYDRATE ENVIRONMENTS Submitted by: University of California Santa Barbara CA 93106 Principal Investigator: David L. Valentine Prepared for: United States Department of Energy National Energy Technology Laboratory October 31, 2009 Office of Fossil Energy 1 TABLE OF CONTENTS Executive Summary.......................................................................................... 2 Progress, Results and Discussion........................................................................... 3 Conclusion..................................................................................................... 6 Cost Status..................................................................................................... 7

292

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

0 - June 2010 0 - June 2010 ASSESSING THE EFFICACY OF THE AEROBIC METHANOTROPHIC BIOFIL- TER IN METHANE HYDRATE ENVIRONMENTS Submitted by: University of California Santa Barbara CA 93106 Principal Investigator: David L. Valentine Prepared for: United States Department of Energy National Energy Technology Laboratory July 17, 2010 Office of Fossil Energy 1 TABLE OF CONTENTS Executive Summary.......................................................................................... 2 Progress, Results and Discussion........................................................................... 3 Conclusion..................................................................................................... 6 Cost Status..................................................................................................... 7

293

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

0 - December 2010 0 - December 2010 ASSESSING THE EFFICACY OF THE AEROBIC METHANOTROPHIC BIOFIL- TER IN METHANE HYDRATE ENVIRONMENTS Submitted by: University of California Santa Barbara CA 93106 Principal Investigator: David L. Valentine Prepared for: United States Department of Energy National Energy Technology Laboratory January 31, 2011 Office of Fossil Energy 1 TABLE OF CONTENTS Executive Summary.......................................................................................... 2 Progress, Results and Discussion............................................................................3 Conclusion.................................................................................................... 5 Cost Status......................................................................................................7

294

Task 1: Hydrate Code release, Maintenance and Support  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - September 2011 1 - September 2011 ASSESSING THE EFFICACY OF THE AEROBIC METHANOTROPHIC BIOFIL- TER IN METHANE HYDRATE ENVIRONMENTS Submitted by: University of California Santa Barbara CA 93106 Principal Investigator: David L. Valentine Prepared for: United States Department of Energy National Energy Technology Laboratory October 23, 2011 Office of Fossil Energy 1 TABLE OF CONTENTS Executive Summary.......................................................................................... 2 Progress, Results and Discussion............................................................................3 Conclusion..................................................................................................... 4 Cost Status......................................................................................................5

295

EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS  

E-Print Network (OSTI)

methane levels. KEYWORDS Ventilation, water sprays, methane, coal mining, dust scrubber INTRODUCTIONChapter 65 EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS Ch.D. Taylor-mounted scrubber and water sprays can reduced methane levels at the face. The current research was conducted

Saylor, John R.

296

Marine Gas Hydrates  

Science Journals Connector (OSTI)

In several review articles, e.g., Boswell and Collett (2010), four gas hydrate reservoir types are evaluated in terms of their resource potential: sand-dominated reservoirs, clay-dominated fractured reservoirs, ....

Gerhard Bohrmann; Marta E. Torres

2014-09-01T23:59:59.000Z

297

X-ray Scanner for ODP Leg 204: Drilling Gas Hydrates on Hydrate Ridge, Cascadia Continental Margin  

SciTech Connect

An x-ray scanner was designed and fabricated at Lawrence Berkeley National Laboratory to provide high speed acquisition of x-ray images of sediment cores collected on the Ocean Drilling Program (ODP) Leg 204: Drilling Gas Hydrates On Hydrate Ridge, Cascadia Continental Margin. This report discusses the design and fabrication of the instrument, detailing novel features that help reduce the weight and increase the portability of the instrument. Sample x-ray images are included. The x-ray scanner was transferred to scientific drilling vessel, the JOIDES Resolution, by the resupply ship Mauna Loa, out of Coos Bay, Oregon on July 25. ODP technicians were trained in the instruments operation. The availability of the x-ray scanner at the drilling site allows real-time imaging of cores containing methane hydrate immediately after retrieval. Thus, imaging experiments on cores can yield information on the distribution and quantity of methane hydrates. Performing these measurements at the location of core collection eliminates the need for high pressures or low temperature core handling while the cores are stored and transported to a remote imaging laboratory.

Freifeld, Barry; Kneafsey, Tim; Pruess, Jacob; Reiter, Paul; Tomutsa, Liviu

2002-08-08T23:59:59.000Z

298

Methane-steam reforming  

SciTech Connect

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

299

Oil and Gas CDT Gas hydrate distribution on tectonically active continental  

E-Print Network (OSTI)

Oil and Gas CDT Gas hydrate distribution on tectonically active continental margins: Impact on gas. Gregory F. Moore, University of Hawaii (USA) http://www.soest.hawaii.edu/moore/ Key Words Gas Hydrates, Faults, Fluid Flow, gas prospectivity Overview Fig. 1. Research on gas hydrates is often undertaken

Henderson, Gideon

300

R&D Research/Demonstration Greenhouse Using Methane Gas from a Landfill for Co-Generation  

Science Journals Connector (OSTI)

A research/demonstration greenhouse for the production of greenhouse tomatoes using the single truss tomato production ... from landfills or other sources for heating and lighting to maximize crop production whil...

William J. Roberts

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geologic interrelations relative to gas hydrates within the North Slope of Alaska: Task No. 6, Final report  

SciTech Connect

The five primary objectives of the US Geological Survey North Slope Gas Hydrate Project were to: (1) Determine possible geologic controls on the occurrence of gas hydrate; (2) locate and evaluate possible gas-hydrate-bearing reservoirs; (3) estimate the volume of gas within the hydrates; (4) develop a model for gas-hydrate formation; and (5) select a coring site for gas-hydrate sampling and analysis. Our studies of the North Slope of Alaska suggest that the zone in which gas hydrates are stable is controlled primarily by subsurface temperatures and gas chemistry. Other factors, such as pore-pressure variations, pore-fluid salinity, and reservior-rock grain size, appear to have little effect on gas hydrate stability on the North Slope. Data necessary to determine the limits of gas hydrate stability field are difficult to obtain. On the basis of mud-log gas chromatography, core data, and cuttings data, methane is the dominant species of gas in the near-surface (0--1500 m) sediment. Gas hydrates were identified in 34 wells utilizing well-log responses calibrated to the response of an interval in one well where gas hydrates were actually recovered in a core by an oil company. A possible scenario describing the origin of the interred gas hydrates on the North Slope involves the migration of thermogenic solution- and free-gas from deeper reservoirs upward along faults into the overlying sedimentary rocks. We have identified two (dedicated) core-hole sites, the Eileen and the South-End core-holes, at which there is a high probability of recovering a sample of gas hydrate. At the Eileen core-hole site, at least three stratigraphic units may contain gas hydrate. The South-End core-hole site provides an opportunity to study one specific rock unit that appears to contain both gas hydrate and oil. 100 refs., 72 figs., 24 tabs.

Collett, T.S.; Bird, K.J.; Kvenvolden, K.A.; Magoon, L.B.

1988-01-01T23:59:59.000Z

302

A Palaeogene perspective on climate sensitivity and methane hydrate instability  

Science Journals Connector (OSTI)

...atmospheric grid cells over 10kyr. The explicit production of a synthetic...calcium carbonate/organic carbon export...involved in the production and use of the...reduction in solar constant compared...the CaCO3 to organic carbon export...

2010-01-01T23:59:59.000Z

303

Drilling through gas hydrates formations: possible problems and suggested solution  

E-Print Network (OSTI)

Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper...

Amodu, Afolabi Ayoola

2009-05-15T23:59:59.000Z

304

Membrane Ion Channels and Ionic Hydration Energies [Abstract Only  

Science Journals Connector (OSTI)

25 November 1980 research-article Membrane Ion Channels and Ionic Hydration Energies [Abstract Only] D. T. Edmonds The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings...

1980-01-01T23:59:59.000Z

305

Coalbed Methane Production  

U.S. Energy Information Administration (EIA) Indexed Site

NA Not Available; W Withheld to avoid disclosure of individual company data. Notes: Coalbed Methane production data collected in conjunction with proved reserves data on Form...

306

Coalbed Methane | Department of Energy  

Energy Savers (EERE)

Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable...

307

Coalbed methane gains viability  

SciTech Connect

In recent government studies, the Department of Energy (DOE) states that coal bed methane can be produced economically by using recovery systems that maximize return on investment rather than a system to produce a single coal seam just prior to mining. DOE suggests that the cost of recovering coal bed methane can be substantially reduced by increasing well spacing and employing multizone production if possible. Created as a by-product during the formation of coal, methane frequently is trapped in coal beds and associated strata. Estimates of total US methane contained in coal beds range from 260 to 860 TCF. The Pittsburgh seam in the N. Appalachia basin has estimates of 0.6 to 4 TCF alone. With current technology, DOE thinks that approximately 300 TCF of coal bed methane can be extracted from coal beds.

Not Available

1981-08-01T23:59:59.000Z

308

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

309

Benefits of Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Benefits of Research Benefits of Research Benefits of Research Return on Investment Since its creation in 1977, FE has established a legacy of achievement, return-of-value, and tangible benefits for the taxpayer dollars invested. Read more Natural Gas from Shale Office of Fossil Energy research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, making hundreds of trillions of cubic feet of natural gas technically recoverable. Read more Methane Hydrate R&D FE has played a major role in developing technologies to help tap new, unconventional sources of natural gas. Read more Carbon Capture & Storage Through FE R&D, the United States has become a world leader in carbon capture and storage science and technology. Read more Research and development activities at the U.S. Department of Energy's

310

Gas hydrate cool storage system  

DOE Patents (OSTI)

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

311

Ground movements associated with gas hydrate production. Progress report, October 1--December 31, 1992  

SciTech Connect

The grantee will evaluate the influence of hydrate production on ground subsidence near the wellbore and the surface. The objective of this research will be achieved by using computer simulations of what is expected in a hydrate reservoir during the production stage as reported by hydrate production models and available data. The model will be based on theories of continuum mechanics, thermomechanics of hydrate production, principles of rock mechanics and geomechanics, and special features of geomaterials under cold temperatures such as those found in permafrost regions. The research work involved in the proposed investigation will be divided into three major tasks; mechanics of subsidence in permafrost regions, modeling of subsidence, and parametric studies.

Siriwardane, H.J.

1992-12-31T23:59:59.000Z

312

Carbon deposition in steam reforming and methanation  

SciTech Connect

The purpose of this review is to survey recent studies of carbon deposition on metals used as catalysts in steam reforming and methanation, emphasizing research where significant progress has been made. Where possible, an attempt is made to treat the fundamental nature of carbon formation and deactivation by carbon and the relationships between these two phenomena. Steam reforming and methanation are emphasized in this review because (1) deactivation of catalysts by carbon deposits is a serious concern in both processes, (2) much of the previous research with carbon formation on metals involved one or the other of these two reactions, and (3) there are interesting differences and similarities between these two reactions; for example, methanation is typically carried out at moderate reaction temperatures (200-450/sup 0/C) while steam reforming is typically carried out at significantly higher reaction temperatures (600-900/sup 0/C). Yet the two reactions are very closely related, since methane steam reforming is the reverse of methanation of CO. Moreover, there is evidence that some of the carbons formed in these two different processes are similar in their morphology.

Bartholomew, C.H.

1982-01-01T23:59:59.000Z

313

Atmosphrisches Methan als Treibhausgas  

Science Journals Connector (OSTI)

Methan (CH4) gehrt neben Wasser(dampf), Kohlendioxid (CO2), Distickstoffmonoxid (Lachgas, N2O), Ozon (O3) und den Fluorchlorkohlenwasserstoffen (FCKW) zu den sog.Treibhausgasen, von denen man mit groer Sicherhe...

W. Klpffer

1990-09-01T23:59:59.000Z

314

Ionisierungsspannung von Methan  

Science Journals Connector (OSTI)

In einer nher skizzierten Versuchsanordnung wird die Ionisierungsspannung von Methan zu 14,580,05 Volt, die...4?Molekel erforderliche Energie zu 15,400,05 Volt in guter bereinstimmung mit der fr den homogene...

Erich Pietsch; Gertrud Wilcke

1927-01-01T23:59:59.000Z

315

Electrochemical methane sensor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

316

TRENDS: METHANE EMISSIONS - INTRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Wm-2), almost 20% is attributable to methane (CH4), according to the 1995 report of the Intergovernmental Panel on Climate Change (IPCC 1995). Since the mid-1700s, the atmospheric concentration of methane has increased by about 145% (IPCC 1995). Thus, an understanding of the various sources of methane is important. Atmospheric methane is produced both from natural sources (e.g., wetlands) and from human activities (see global methane cycle, from Professor W.S. Reeburgh at the University of California Irvine). Total sources of methane to the atmosphere for the period 1980-1990 were about 535 (range of 410-660) Tg (1 Teragram = 1 million metric tons) CH4 per year, of which 160 (110-210) Tg CH4/yr were from natural sources and 375 (300-450) Tg CH4/yr

317

Exploiting coalbed methane and protecting the global environment  

SciTech Connect

The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

Yuheng, Gao

1996-12-31T23:59:59.000Z

318

Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO2  

Science Journals Connector (OSTI)

Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO2 ... Industrial & Engineering Chemistry Research2014 53 (42), 16341-16348 ...

Duane D. Miller; Ranjani Siriwardane

2013-02-28T23:59:59.000Z

319

Prediction and inhibition of hydrate and wax formation. Annual report, January-December 1991  

SciTech Connect

The first objective of the research project is to quantify and explain kinetics of co-precipitation of natural gas hydrates and wax. The second objective is to find means for inhibiting the rate of formation of natural gas hydrates, and the rate of natural gas/wax co-precipitation. During the first contract year, a method for measuring the rate of formation of natural gas hydrates was developed. This method has five advantages over other possible methods. First, it provides a defined surface area on which the hydrate nucleation and growth can proceed. Second, it minimizes the initial resistance to mass and heat transfer, thus maximizing sensitivity to kinetics. Third, it provides a way to test the effect of a variety of solid surfaces on hydrate formation. Fourth, it requires a low-cost apparatus with low operational cost. Fifth, it can be applied with little modification to the scheduled studies of kinetic inhibition and hydrate/wax-co-precipitation.

Sloan, E.D.; Christiansen, R.L.

1992-08-01T23:59:59.000Z

320

Measurement of in situ hydrate thermodynamic properties  

SciTech Connect

Heat capacities and heats of fusion measured in simulated in situ natural gas hydrates using tetrahydrofuran hydrates in clean sand indicated that sediments significantly affect hydrate formation conditions. These data are required to devise and evaluate methods for producing natural gas from hydrates, a potentially significant energy resource.

Sloan, E.D.

1982-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The basics of coalbed methane  

SciTech Connect

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

322

Hydrates represent gas source, drilling hazard  

SciTech Connect

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

323

NETL: News Release - Six Minority Universities Selected for Energy Research  

NLE Websites -- All DOE Office Websites (Extended Search)

November 28, 2005 November 28, 2005 Six Minority Universities Selected for Energy Research Grants Projects to Advance Methane Hydrate Research, Produce Hydrogen, and Improve Oil Recovery Among Selections Washington, DC - The Department of Energy has selected six institutions to receive grants for energy research through its Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) program. Carried out under the Energy Department's Office of Fossil Energy, the program gives students hands-on experience in developing technologies to promote the efficient and environmentally safe use of coal, oil, and natural gas. "I'm pleased to see the strong interest of faculty in conducting this research and training a promising group of college students," said Mark Maddox, Principal Deputy Assistant Secretary for Fossil Energy. "Their activities promote our nation's energy security and the educational growth of future energy researchers."

324

Scientific results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2)  

Science Journals Connector (OSTI)

Abstract As a part of Korean National Gas Hydrate Program, the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) was conducted from 9 July to 30 September, 2010 in the Ulleung Basin, East Sea, offshore Korea using the D/V Fugro Synergy. The UBGH2 was performed to understand the distribution of gas hydrates as required for a resource assessment and to find potential candidate sites suitable for a future offshore production test, especially targeting gas hydrate-bearing sand bodies in the basin. The UBGH2 sites were distributed across most of the basin and were selected to target mainly sand-rich turbidite deposits. The 84-day long expedition consisted of two phases. The first phase included logging-while-drilling/measurements-while-drilling (LWD/MWD) operations at 13 sites. During the second phase, sediment cores were collected from 18 holes at 10 of the 13 LWD/MWD sites. Wireline logging (WL) and vertical seismic profile (VSP) data were also acquired after coring operations at two of these 10 sites. In addition, seafloor visual observation, methane sensing, as well as push-coring and sampling using a Remotely Operated Vehicle (ROV) were conducted during both phases of the expedition. Recovered gas hydrates occurred either as pore-filling medium associated with discrete turbidite sand layers, or as fracture-filling veins and nodules in muddy sediments. Gas analyses indicated that the methane within the sampled gas hydrates is primarily of biogenic origin. This paper provides a summary of the operational and scientific results of the UBGH2 expedition as described in 24 papers that make up this special issue of the Journal of Marine and Petroleum Geology.

Byong-Jae Ryu; Timothy S. Collett; Michael Riedel; Gil Young Kim; Jong-Hwa Chun; Jang-Jun Bahk; Joo Yong Lee; Ji-Hoon Kim; Dong-Geun Yoo

2013-01-01T23:59:59.000Z

325

Hydrates as an Energy Source  

Science Journals Connector (OSTI)

As an energy resource, gas hydrates are considered together with other unconventional hydrocarbon ... of these unconventional resources. Besides the tar sands and extra heavy oils, other examples are shale gas an...

Carlo Giavarini; Keith Hester

2011-01-01T23:59:59.000Z

326

Hydrogen Storage in Clathrate Hydrates  

Science Journals Connector (OSTI)

Structure, stability, and reactivity of clathrate hydrates with or without hydrogen encapsulation are studied using standard density functional calculations. Conceptual density functional theory based reactivity descriptors and the associated electronic ...

Pratim Kumar Chattaraj; Sateesh Bandaru; Sukanta Mondal

2010-12-14T23:59:59.000Z

327

The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost  

SciTech Connect

The quantity of hydrocarbon gases trapped in natural hydrate accumulations is enormous, leading to significant interest in the evaluation of their potential as an energy source. Large volumes of gas can be readily produced at high rates for long times from methane hydrate accumulations in the permafrost by means of depressurization-induced dissociation combined with conventional technologies and horizontal or vertical well configurations. Initial studies on the possibility of natural gas production from permafrost hydrates assumed homogeneity in intrinsic reservoir properties and in the initial condition of the hydrate-bearing layers (either due to the coarseness of the model or due to simplifications in the definition of the system). These results showed great promise for gas recovery from Class 1, 2, and 3 systems in the permafrost. This work examines the consequences of inevitable heterogeneity in intrinsic properties, such as in the porosity of the hydrate-bearing formation, or heterogeneity in the initial state of hydrate saturation. Heterogeneous configurations are generated through multiple methods: (1) through defining heterogeneous layers via existing well-log data, (2) through randomized initialization of reservoir properties and initial conditions, and (3) through the use of geostatistical methods to create heterogeneous fields that extrapolate from the limited data available from cores and well-log data. These extrapolations use available information and established geophysical methods to capture a range of deposit properties and hydrate configurations. The results show that some forms of heterogeneity, such as horizontal stratification, can assist in production of hydrate-derived gas. However, more heterogeneous structures can lead to complex physical behavior within the deposit and near the wellbore that may obstruct the flow of fluids to the well, necessitating revised production strategies. The need for fine discretization is crucial in all cases to capture dynamic behavior during production.

Reagan, M. T.; Kowalsky, M B.; Moridis, G. J.; Silpngarmlert, S.

2010-05-01T23:59:59.000Z

328

Quarterly Review of Methane from Coal-Seams Technology. Volume 8, Number 4, July 1991. Report for October-December 1990  

SciTech Connect

Contents include reports on: Powder River Basin, Wyoming and Montana; Piceance Basin, Colorado; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; Coalbed Methane Development in the Appalachian Basin; Geologic Evaluation of Critical Production Parameters for Coalbed Methane Resources; Reservoir Engineering and Analysis; Coordinated Laboratory Studies in Support of Hydraulic Fracturing of Coalbed Methane; Physical Sciences Coalbed Methane Research; Coalbed Methane Opportunities in Alberta.

McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

1991-01-01T23:59:59.000Z

329

Direct Aromaization of Methane  

SciTech Connect

The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

George Marcelin

1997-01-15T23:59:59.000Z

330

Can Algae utilize Methane?  

Science Journals Connector (OSTI)

... in connexion with oil prospecting, corrosion problems and formation of a microbial sludge in jet fuel tanks?. The scope of hydrocarbon microbiology has expanded rapidly in the meantime and currently ... the growth of photosynthetic sulphur bacteria in different gaseous environments Dr Enebo isolated the green alga Chlorella from highly reducing enrichment media in which carbonate and methane provided the carbon sources ...

Our Correspondent in Microbiology

1967-07-01T23:59:59.000Z

331

Methane from Anaerobic Fermentation  

Science Journals Connector (OSTI)

...removal rate; and recycling. Many studies have...di-gestion is utilized for wastewater stabili-zation...processes are used in some wastewater treatment plants...sludge is separated for recycling from the digester effluent...percent meth-ane. Many wastewater treatment plants in...

Donald L. Klass

1984-03-09T23:59:59.000Z

332

Methane and Coal  

Science Journals Connector (OSTI)

... stored source of the energy supplies of the world ; every twenty years the world burns a volume of coal equivalent to the volume of Snowdon (a cone of base ... hole method being most in favour. This method is being applied in about twelve British pits. The amount of methane drawn off appears to depend on the movement of the ...

ALFRED EGERTON

1952-07-19T23:59:59.000Z

333

Coalbed methane production potential in U. S. basins  

SciTech Connect

The major emphasis of the U.S. DOE's coalbed methane research has been on estimating the magnitude of the resource and developing systems for recovery. Methane resource estimates for 16 basins show that the greatest potential is in the Piceance, Northern Appalachian, Central Appalachian, Powder River, and Greater Green River coal basins. Small, high-potential target areas have been selected for in-depth analysis of the resource. Industry interest is greatest in the Warrior, San Juan, Piceance, Raton Mesa, and Northern and Central Appalachian basins. Production curves for several coalbed methane wells in these basins are included.

Byer, C.W.; Mroz, T.H.; Covatch, G.L.

1987-07-01T23:59:59.000Z

334

Terr. Atmos. Ocean. Sci., Vol. 17, No. 4, 829-843, December 2006 Gas Hydrate Stability Zone in Offshore Southern Taiwan  

E-Print Network (OSTI)

in Offshore Southern Taiwan Wu-Cheng Chi 1, *, Donald L. Reed 2 , and Chih-Chin Tsai 3 (Manuscript received 17 in meeting natural gas demand in the future. To study the feasibility of recovering methane from the offshore hydrates in the sediments offshore of southern Taiwan. We used a dense grid of 6-channel and 120-channel

Lin, Andrew Tien-Shun

335

Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process  

Science Journals Connector (OSTI)

Abstract There has been considerable interest in the development of more efficient processes to generate hydrogen. Currently, steam methane reforming (SMR) is the most widely applied route for producing hydrogen from natural gas. Researchers worldwide have been working to invent more efficient routes to produce hydrogen. One of the routes is thermocatalytic decomposition of methane (TCDM) - a process that decomposes methane thermally to produce hydrogen from natural gas. TCDM has not yet been commercialized. However, the aim of this work was to conduct an economic and environmental analysis to determine whether the TCDM process is competitive with the more popular SMR process. The results indicate that the TCDM process has a lower carbon footprint. Further research on TCDM catalysts could make this process economically competitive with steam methane reforming.

Kartick C. Mondal; S. Ramesh Chandran

2014-01-01T23:59:59.000Z

336

HydrateNewsIssue2  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 T H E N A T I O N A L E N E R G Y T E C H N O L O G Y L A B O R A T O R Y M E T H A N E H Y D R A T E N E W S L E T T E R Announcements ChevronTexaco Gulf of Mexico Gas Hydrates Joint Industry Project Naturally Occurring Gas Hydrate Data Collection Workshop March 14-15, 2002, Adam's Mark Hotel, Houston, Texas The ChevronTexaco Gulf of Mexico Gas Hydrates Joint Industry Project (JIP), in collaboration with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), will be holding a workshop to collect data on naturally occurring hydrates in the Gulf of Mexico (GOM). All key contributors to the understanding of naturally occurring hydrates are invited to apply to participate in the first of three workshops sponsored by the JIP. The purpose of the workshop is to develop a clear understanding of what

337

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

338

Methane-steam reforming  

SciTech Connect

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

339

Steady-state and transient catalytic oxidation and coupling of methane  

SciTech Connect

This project addresses the conversion of methane from natural gas into ethane, ethylene and higher hydrocarbons. Our research explores the mechanistic and practical implications of carrying out the methane oxidative coupling reaction in reactor designs other than conventional packed-beds with co-fed reactants. These alternate reactor designs are needed to prevent the full oxidation of methane, which limits C{sub 2}, yields in methane oxidative coupling reactions. The research strategy focuses on preventing contact between the 0{sub 2} reactant required for favorable overall thermodynamics and the C{sub 2+} products of methane coupling. The behavior of various reactor designs are simulated using detailed kinetic transport models. These simulations have suggested that the best way to prevent high C0{sub 2} yields is to separate the oxygen and hydrocarbon streams altogether. As a result, the project has focused on the experimental demonstration of proton transport membrane reactors for the selective conversion of methane into higher hydrocarbons.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1995-06-01T23:59:59.000Z

340

Hydration water dynamics and instigation of protein structuralrelaxation  

SciTech Connect

Until a critical hydration level is reached, proteins do not function. This critical level of hydration is analogous to a similar lack of protein function observed for temperatures below a dynamical temperature range of 180-220K that also is connected to the dynamics of protein surface water. Restoration of some enzymatic activity is observed in partially hydrated protein powders, sometimes corresponding to less than a single hydration layer on the protein surface, which indicates that the dynamical and structural properties of the surface water is intimately connected to protein stability and function. Many elegant studies using both experiment and simulation have contributed important information about protein hydration structure and timescales. The molecular mechanism of the solvent motion that is required to instigate the protein structural relaxation above a critical hydration level or transition temperature has yet to be determined. In this work we use experimental quasi-elastic neutron scattering (QENS) and molecular dynamics simulation to investigate hydration water dynamics near a greatly simplified protein system. We consider the hydration water dynamics near the completely deuterated N-acetyl-leucine-methylamide (NALMA) solute, a hydrophobic amino acid side chain attached to a polar blocked polypeptide backbone, as a function of concentration between 0.5M-2.0M under ambient conditions. We note that roughly 50-60% of a folded protein's surface is equally distributed between hydrophobic and hydrophilic domains, domains whose lengths are on the order of a few water diameters, that justify our study of hydration dynamics of this simple model protein system. The QENS experiment was performed at the NIST Center for Neutron Research, using the disk chopper time of flight spectrometer (DCS). In order to separate the translational and rotational components in the spectra, two sets of experiments were carried out using different incident neutron wavelengths of 7.5{angstrom} and 5.5{angstrom} to give two different time resolutions. All the spectra have been measure at room temperature. The spectra were corrected for the sample holder contribution and normalized using the vanadium standard. The resulting data were analyzed with DAVE programs (http://www.ncnr.nist.gov/dave/). The AMBER force field and SPCE water model were used for modeling the NALMA solute and water, respectively. For the analysis of the water dynamics in the NALMA aqueous solutions, we performed simulations of a dispersed solute configuration consistent with our previous structural analysis, where we had primarily focused on the structural organization of these peptide solutions and their connection to protein folding. Further details of the QENS experiment and molecular dynamics simulations are reported elsewhere.

Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SUBSURFACE CHARACTERIZATION OF THE HYDRATE BEARING  

E-Print Network (OSTI)

fps). The underlying wet sand at the base of the gas hydrate stability zone (GHSZ) has low resistivity

Sediments Near; Alaminos Canyon; Thomas Latham; Dianna Shelander; Ray Boswell; Timothy Collett; Myung Lee

342

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

343

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

344

Bioconversion of biomass to methane  

SciTech Connect

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

345

Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling  

SciTech Connect

Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

2009-09-01T23:59:59.000Z

346

Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation  

SciTech Connect

Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

2011-06-01T23:59:59.000Z

347

Gas hydrates: past and future geohazard?  

Science Journals Connector (OSTI)

...seafloor samples were recovered in the Black Sea...warm to support the solid gas hydrates, so...stored in other fossil fuel reservoirs. However...Kvenvolden (2007). Solid points are locations...hydrates have been recovered. Figure 4. This...trapped below the solid gas hydrate layer...

2010-01-01T23:59:59.000Z

348

Phase equilibrium conditions for simulated landfill gas hydrate formation in aqueous solutions of tetrabutylammonium nitrate  

Science Journals Connector (OSTI)

Abstract Hydrate phase equilibrium conditions for the simulated landfill gas (LFG) of methane and carbon dioxide (50mol% methane, 50mol% carbon dioxide) were investigated with the pressure range of (1.90 to 13.83)MPa and temperature range of (280.0 to 288.3)K at (0.050, 0.170, 0.340, and 0.394) mass fraction (w) of tetrabutylammonium nitrate (TBANO3). The phase boundary between liquidvaporhydrate (LVH) phases and liquidvapor (LV) phases was determined by employing an isochoric pressure-search method. The phase equilibrium data measured showed that TBANO3 appeared a remarkable promotion effect at w TBANO 3 =0.394, corresponding to TBANO326H2O, but inhibition effect at w TBANO 3 =(0.050, or 0.170) on the semiclathrate hydrate formation. In addition, the application of TBANO3 at 0.340 mass fraction, corresponding to TBANO332H2O, displayed promotion effect at lower pressures (below 6.38MPa) and inhibition effect at higher pressures (above 6.38MPa).

Ling-Li Shi; De-Qing Liang; Dong-Liang Li

2014-01-01T23:59:59.000Z

349

Federal Offshore California Coalbed Methane Proved Reserves ...  

Gasoline and Diesel Fuel Update (EIA)

12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California) Coalbed Methane Proved Reserves, Reserves Changes, and...

350

Ohio Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Ohio Coalbed Methane Proved Reserves, Reserves...

351

Florida Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves...

352

Michigan Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Michigan Coalbed Methane Proved Reserves, Reserves...

353

Enhanced Renewable Methane Production System | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

354

Introductory overview: Hydrate knowledge development  

Science Journals Connector (OSTI)

...both within and without the pipeline is outlined, and examples...magnitude more problematic than wax, the next largest obstruction...energy resources, (2) pipeline blockage prevention and remediation...funding for hydrates inside the pipeline has provided physics and chemistry...

E. Dendy Sloan

355

Ground movements associated with gas hydrate production. Final report  

SciTech Connect

This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The present study is expected to provide a ``lower bound`` solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir.

Siriwardane, H.J.; Kutuk, B.

1992-03-01T23:59:59.000Z

356

Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea  

Science Journals Connector (OSTI)

Abstract Multi-channel seismic reflection data, well logs, and recovered sediment cores have been used in this study to characterize the geologic controls on the occurrence of gas hydrate in the Shenhu area of the South China Sea. The concept of the gas hydrate petroleum system has allowed for the systematic analysis of the impact of gas source, geologic controls on gas migration, and the role of the host sediment in the formation and stability of gas hydrates as encountered during the 2007 Guangzhou Marine Geological Survey Gas Hydrate Expedition (GMGS-1) in the Shenhu area. Analysis of seismic and bathymetric data identified seventeen sub-linear, near-parallel submarine canyons in this area. These canyons, formed in the Miocene, migrated in a northeasterly direction, and resulted in the burial and abandonment of canyons partially filled by coarse-grained sediments. Downhole wireline log (DWL) data were acquired from eight drill sites and sediment coring was conducted at five of these sites, which revealed the presence of suitable reservoirs for the occurrence of concentrated gas hydrate accumulations. Gas hydrate-bearing sediment layers were identified from well log and core data at three sites mainly within silt and silt clay sediments. Gas hydrate was also discovered in a sand reservoir at one site as inferred from the analysis of the DWL data. Seismic anomalies attributed to the presence of gas below the base of gas hydrate stability zone, provided direct evidence for the migration of gas into the overlying gas hydrate-bearing sedimentary sections. Geochemical analyses of gas samples collected from cores confirmed that the occurrence of gas hydrate in the Shenhu area is controlled by the presence thermogenic methane gas that has migrated into the gas hydrate stability zone from a more deeply buried source.

Xiujuan Wang; Timothy S. Collett; Myung W. Lee; Shengxiong Yang; Yiqun Guo; Shiguo Wu

2014-01-01T23:59:59.000Z

357

Handbook of gas hydrate properties and occurrence  

SciTech Connect

This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

Kuustraa, V.A.; Hammershaimb, E.C.

1983-12-01T23:59:59.000Z

358

Coal mine methane global review  

SciTech Connect

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

359

Regulation of methane genes and genome expression  

SciTech Connect

At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the methane genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ?H (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein, designated TFE, that had sequences in common with the eukaryotic general transcription factor TFIIE, stimulated archaeal transcription initiation and that the archaeal TATA-box binding protein (TBP) remained attached to the promoter region whereas the transcription factor TFB dissociated from the template DNA following initiation. DNA sequences that directed the localized assembly of archaeal histones into archaeal nucleosomes were identified, and we established that transcription by an archaeal RNA polymerase was slowed but not blocked by archaeal nucleosomes. We developed a new protocol to purify archaeal RNA polymerases and with this enzyme and additional improvements to the in vitro transcription system, we established the template requirements for archaeal transcription termination, investigated the activities of proteins predicted to be methane gene regulators, and established how TrpY, a novel archaeal regulator of expression of the tryptophan biosynthetic operon functions in M. thermautotrophicus. This also resulted in the discovery that almost all M. thermautotrophicus mutants isolated as spontaneously resistant to 5-methyl tryptophan (5MTR) had mutations in trpY and were therefore 5MTR through de-repressed trp operon expression. This established a very simple, practical procedure to determine and quantify the DNA sequence changes that result from exposure of this Archaeon to any experimental mutagenesis protocol. Following the discovery that the Thermococcus kodakaraensis was amenable to genetic manipulation, we established this technology at OSU and subsequently added plasmid expression, a reporter system and additional genetic selections to the T. kodakaraensis genetic toolbox. We established that transcription and translation are coupled in this Archaeon, and by combining in vitro transcription and in vivo genetics, we documented that both TFB1 and TFB2 support transcription initiation in T. kodakaraensis. We quantified the roles of ribosome binding sequences and alternative initiation codons in translation initiation, established that polarity e

John N. Reeve

2009-09-09T23:59:59.000Z

360

7.4 Landfill Methane Utilization  

Energy.gov (U.S. Department of Energy (DOE))

A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Ground movements associated with gas hydrate production. Progress report, July 1--September 30, 1992  

SciTech Connect

The grantee will evaluate the influence of hydrate production on ground subsidence near the wellbore and the surface. The objective of this research will be achieved by using computer simulations of what is expected in a hydrate reservoir during the production stage as reported by hydrate production models and available data. The model will be based on theories of continuum mechanics, thermomechanics of hydrate production, principles of rock mechanics and geomechanics, and special features of geomaterials under cold temperatures such as those found in permafrost regions. The research work involved in the proposed investigation will be divided into three major tasks: (1) Mechanics of subsidence in permafrost regions; (2) modeling of subsidence; and (3) parametric studies. Progress reports are presented for tasks 1 and 2.

Siriwardane, H.J.

1992-12-31T23:59:59.000Z

362

Method of coalbed methane production  

SciTech Connect

This patent describes a method for producing coalbed methane from a coal seam containing coalbed methane and penetrated by at least one injection well and at least one producing well. It comprises: injecting an inert gas through the injection well and into the coal seam. The inert gas being a gas that does not react with the coal under conditions of use and that does not significantly adsorb to the coal; and producing a gas from the production well which consists essentially of the inert gas, coalbed methane, or mixtures thereof.

Puri, R.; Stein, M.H.

1989-11-28T23:59:59.000Z

363

2.0 Closed-Domain Hydrate Dissociation (Base Case w/ Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Closed-Domain Hydrate Dissociation (Base Case w/ Hydrate) Closed-Domain Hydrate Dissociation (Base Case w/ Hydrate) 2.1 Problem Description One half of a 20-m, one-dimensional horizontal domain, discretized using uniformly spaced 1-m grid cells (optionally 0.1-m grid cells) is initialized with aqueous-hydrate conditions; whereas, the other half of the domain is initialized with gas-aqueous conditions. As with the Base Case problem, a closed horizontal domain is used to eliminate gravitational body forces and boundary condition effects. The initial conditions are specified to yield complete dissociation of the hydrate, via the thermal capacitance of the domain-half initialized with gas-aqueous conditions. To initialize the aqueous-hydrate half of the domain, temperature, pressure, and hydrate saturation are

364

Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction  

E-Print Network (OSTI)

Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy ...

Smith, J. David

365

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

366

Louisiana--State Offshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

367

Methane Credit | Open Energy Information  

Open Energy Info (EERE)

Methane Credit Methane Credit Jump to: navigation, search Name Methane Credit Place Charlotte, North Carolina Zip 28273 Product Specialises in utilising methane produced on municipal landfill sites. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Der atmosphrische Kreislauf von Methan  

Science Journals Connector (OSTI)

Present methane concentrations in the northern troposphere average 1.65 ppm. Most CH4 is of recent biogenic origin. 14C analyses indicate that no more than 10% is released by fossil sources. The various CH4-produ...

D. H. Ehhalt

1979-06-01T23:59:59.000Z

369

ISSUE PAPER METHANE AVOIDANCE FROM  

E-Print Network (OSTI)

.........................................................................................1 1.2. GHG Emissions from Organic Waste...........................................................................................................39 6.2. Standard Methods for Quantifying Methane from Organic Waste in Landfills...40 6.3. GHG.2. Compost GHG Potential

Brown, Sally

370

Emission of methane from plants  

Science Journals Connector (OSTI)

...basis for the efforts to ameliorate fluxes of this potent greenhouse gas, which may contribute significantly to global warming...was emitting significant quantities of methane under ambient lighting in laboratory-controlled conditions. We also examined other...

2009-01-01T23:59:59.000Z

371

Hydration dynamics near a model protein surface  

E-Print Network (OSTI)

AE, Onuchic JN. 2002. Protein folding mediated by solvation:of hydration forces in protein folding. Journal of Physicalthe broader context of protein folding and function and as

Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

2003-01-01T23:59:59.000Z

372

Imaging Hydrated Microbial Extracellular Polymers: Comparative...  

NLE Websites -- All DOE Office Websites (Extended Search)

dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to...

373

Examination of Hydrate Formation Methods: Trying to Create Representative Samples  

E-Print Network (OSTI)

gas hydrate morphology on the seismic velocities of sands,sand does not distribute water and gas evenly. Resultant hydrateHydrate Using Excess Gas Method Followed by Water Saturation Description In this method, moist sand

Kneafsey, T.J.

2012-01-01T23:59:59.000Z

374

Methane emissions from rice fields: The effects of climatic and agricultural factors. Final report, March 1, 1994--April 30, 1997  

SciTech Connect

The work reported was performed for the purpose of refining estimates of methane emissions from rice fields. Research performed included methane flux measurements, evaluation of variables affecting emissions, compilation of a data base, and continental background measurements in China. The key findings are briefly described in this report. Total methane emissions, seasonal patterns, and spatial variability were measured for a 7-year periods. Temperature was found to be the most important variable studies affecting methane emissions. The data archives for the research are included in the report. 5 refs., 6 figs.

Khalil, M.A.K. [Portland State Univ., OR (United States). Dept. of Physics] [Portland State Univ., OR (United States). Dept. of Physics; Rasmussen, R.A. [Oregon Graduate Institute, Portland, OR (United States). Dept. of Environmental Science and Engineering] [Oregon Graduate Institute, Portland, OR (United States). Dept. of Environmental Science and Engineering

1997-10-01T23:59:59.000Z

375

Assessment of sorbent reactivation by water hydration for fluidized bed combustion application  

SciTech Connect

Disposal of fluidized bed combustion (FBC) solid residues currently represents one of the major issues in FBC design and operation, and contributes significantly to its operating cost. This issue has triggered research activities on the enhancement of sorbent utilization for in situ sulfur removal. The present study addresses the effectiveness of the reactivation by liquid water hydration of FB spent sorbents. Two materials are considered in the study, namely the bottom ash from the operation of a full-scale utility FB boiler and the raw commercial limestone used in the same boiler. Hydration-reactivation tests were carried out at temperatures of 40{sup o}C and 80{sup o}C and for curing times ranging from 15 minutes to 2d, depending on the sample. The influence of hydration conditions on the enhancement of sulfur utilization has been assessed. A combination of methods has been used to characterize the properties of liquid water-hydrated materials

Fabio Montagnaro; Piero Salatino; Fabrizio Scala; Yinghai Wu; Edward J. Anthony; Lufei Jia [Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant'Angelo, Naples (Italy). Dipartimento di Chimica

2006-06-15T23:59:59.000Z

376

Gas hydrate-filled fracture reservoirs on continental margins.  

E-Print Network (OSTI)

?? Many scientists predicted that gas hydrate forms in fractures or lenses in fine-grained sediments, but only in the last decade were gas hydrates found (more)

Cook, Ann Elizabeth

2010-01-01T23:59:59.000Z

377

Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite...  

NLE Websites -- All DOE Office Websites (Extended Search)

Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical CO2. Microstructural Response of Variably Hydrated Ca-Rich Montmorillonite to Supercritical...

378

Chemically reacting plumes, gas hydrate dissociation and dendrite solidification  

E-Print Network (OSTI)

the coated bubbles leave the hydrate stability zone thestability zone extends far enough above the sea ?oor, gas hydrates may nucleate on the bubble

Conroy, Devin Thomas

2008-01-01T23:59:59.000Z

379

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

380

NREL: News - NREL to Help Convert Methane to Liquid Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

113 113 NREL to Help Convert Methane to Liquid Diesel Advanced research project could lead to lower greenhouse emissions, new life for spent gas and oil wells January 3, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will help develop microbes that convert methane found in natural gas into liquid diesel fuel, a novel approach that if successful could reduce greenhouse gas emissions and lower dependence on foreign oil. The amount of natural gas simply flared or vented from oil wells globally is enormous - equal to one-third of the amount of petroleum used in the United States each year. And every molecule of methane vented to the atmosphere in that process has the global-warming capacity of 12 molecules of carbon dioxide.

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Modeling of Chemical Looping Combustion of Methane Using a Ni-Based Oxygen Carrier  

Science Journals Connector (OSTI)

Modeling of Chemical Looping Combustion of Methane Using a Ni-Based Oxygen Carrier ... The FR and loop seal are both bubbling fluidized beds. ... Industrial & Engineering Chemistry Research (2010), 49 (21), 10200-10211 CODEN: IECRED; ISSN:0888-5885. ...

Ahmed Bougamra; Lu Huilin

2014-03-31T23:59:59.000Z

382

Spectrum of hot methane in astronomical objects using a comprehensive computed line list  

Science Journals Connector (OSTI)

...2004 ) Standards development of global warming gas species: Methane, nitrous oxide...measurement of toxic gases produced during firefighting...Marran D ( 2001 ) Turbine engine exhaust gas measurements using...by the Science and Technology Research Council...

Sergei N. Yurchenko; Jonathan Tennyson; Jeremy Bailey; Morgan D. J. Hollis; Giovanna Tinetti

2014-01-01T23:59:59.000Z

383

Use of computed X-ray tomographic data for analyzing the thermodynamics of a dissociating porous sand/hydrate mixture  

SciTech Connect

X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation.

Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.

2002-02-28T23:59:59.000Z

384

Use of Computed X-ray Tomographic Data for Analyzing the Thermodynamics of a Dissociating Porous Sand/Hydrate Mixture  

DOE R&D Accomplishments (OSTI)

X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation.

Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.

2002-02-28T23:59:59.000Z

385

Methane oxidation rates in the anaerobic sediments of Saanich Inlet  

Science Journals Connector (OSTI)

water methane concentration were avail- able. ... water solute concentrations and methane oxidation rates ..... Diffusion of light paraffin hydrocarbons in water.

2000-02-09T23:59:59.000Z

386

Discovery of New Materials to Capture Methane | U.S. DOE Office of Science  

Office of Science (SC) Website

Discovery of New Materials to Capture Methane Discovery of New Materials to Capture Methane Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » April 2013 Discovery of New Materials to Capture Methane Predicted materials could economically produce high-purity methane from natural gas systems and separate methane from coal mine ventilation systems. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Berend Smit, UC-Berkeley

387

A 25kWe low concentration methane catalytic combustion gas turbine prototype unit  

Science Journals Connector (OSTI)

Abstract Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 1921kWe of electricity output.

Shi Su; Xinxiang Yu

2014-01-01T23:59:59.000Z

388

Chapter 18 - Worldwide Coal Mine Methane and Coalbed Methane Activities  

Science Journals Connector (OSTI)

Abstract The chapter provides an overview of coal bed methane production in all countries (except USA; covered in Chapter 17) around the world where there is a viable coal deposit. Coal deposits are shown in a map and coal bed methane reserves are estimated. All countries can follow the lead provided by USA in CBM production where 10% of total gas consumption (2 TCF/year) comes from coal seams. Exploitation of thick and deep coal seams using the latest technology can create a vast source of domestic energy for many countries around the world.

Charlee Boger; James S. Marshall; Raymond C. Pilcher

2014-01-01T23:59:59.000Z

389

Why Sequence a Methane-Oxidizing Archaean?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Methane-Oxidizing Archaeon? a Methane-Oxidizing Archaeon? Methane is a potent greenhouse gas whose atmospheric concentration has increased significantly because of anthropogenic activities and fluctuated naturally over glacial and interglacial cycles. While the importance of methane in Earth's climate dynamics has been well established, the global processes regulating its oceanic cycling remain poorly understood. Although there are high rates of methane production in many marine sedimentary environments (including a number that have been targeted as petroleum reserves), net methane sources from the ocean to the atmosphere appear to be small. This is due in large part to a biogeochemical process known as the anaerobic oxidation of methane (AOM). Microbially mediated AOM reduces methane flux from ocean to atmosphere, stimulates subsurface microbial

390

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

391

Carbon Dioxide and Methane Emissions from Estuaries  

Science Journals Connector (OSTI)

Carbon dioxide and methane emissions from estuaries are reviewed in relation with biogeochemical processes and carbon cycling. In estuaries, carbon dioxide and methane emissions show a large spatial and temporal ...

Gwenal Abril; Alberto Vieira Borges

2005-01-01T23:59:59.000Z

392

Optical constants of liquid and solid methane  

Science Journals Connector (OSTI)

The optical constants nr + ini of liquid methane and phase I solid methane were determined over the entire spectral range by the use of various data sources published in the...

Martonchik, John V; Orton, Glenn S

1994-01-01T23:59:59.000Z

393

Gas Hydrate Storage of Natural Gas  

SciTech Connect

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

394

coalbed methane | OpenEI  

Open Energy Info (EERE)

coalbed methane coalbed methane Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations Source NREL Date Released April 30th, 2005 (9 years ago) Date Updated November 07th, 2007 (7 years ago) Keywords coalbed methane GEF Kenya NREL SWERA TMY UNEP Data application/zip icon Download Data (zip, 5.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

395

Method for the photocatalytic conversion of methane  

DOE Patents (OSTI)

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

1998-02-24T23:59:59.000Z

396

Master—April Corrections  

NLE Websites -- All DOE Office Websites (Extended Search)

STRATEGY FOR STRATEGY FOR A STRATEGY FOR A STRATEGY FOR A STRATEGY FOR A STRATEGY FOR METHANE HYDRATES METHANE HYDRATES METHANE HYDRATES METHANE HYDRATES METHANE HYDRATES RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT RESEARCH & DEVELOPMENT U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY OFFICE OF FOSSIL ENERGY OFFICE OF FOSSIL ENERGY OFFICE OF FOSSIL ENERGY OFFICE OF FOSSIL ENERGY OFFICE OF FOSSIL ENERGY AUGUST 1998 AUGUST 1998 AUGUST 1998 AUGUST 1998 AUGUST 1998 DOE/FE-0378 DOE/FE-0378 A STRATEGY FOR METHANE HYDRATES RESEARCH & DEVELOPMENT U.S. Department of Energy Office of Fossil Energy Washington, DC August 1998 A Strategy for Methane Hydrates Research & Development

397

Opacity reduction using hydrated lime injection  

SciTech Connect

The purpose of this investigation is to study the effects of injecting dry hydrated lime into flue gas to reduce sulfur trioxide (SO{sub 3}) concentrations and consequently stack opacity at the University of Missouri, Columbia power plant. Burning of high sulfur coal (approx. 4% by weight) at the power plant resulted in opacity violations. The opacity problem was due to sulfuric acid mist (H{sub 2}SO{sub 4}) forming at the stack from high SO{sub 3} concentrations. As a result of light scattering by the mist, a visible plume leaves the stack. Therefore, reducing high concentrations of SO{sub 3} reduces the sulfuric acid mist and consequently the opacity problem. The current hydrated lime injection system has reduced the opacity to acceptable limits. To reduce SO{sub 3} concentrations, dry hydrated lime is injected into the flue gas upstream of a particulate collection device (baghouse) and downstream of the induced draft fan. The lime is periodically injected into the flue via a pneumatic piping system. The hydrated lime is transported down the flue and deposited on the filter bags in the baghouse. As the hydrated lime is deposited on the bags a filter cake is established. The reaction between the SO{sub 3} and the hydrated lime takes place on the filter bags. The hydrated lime injection system has resulted in at least 95% reduction in the SO{sub 3} concentration. Low capital equipment requirements and operating cost coupled with easy installation and maintenance makes the system very attractive to industries with similar problems. This paper documents the hydrated lime injection system and tests the effectiveness of the system on SO{sub 3} removal and subsequent opacity reduction. Measurements Of SO{sub 3} concentrations, flue gas velocities, and temperatures have been performed at the duct work and baghouse. A complete analysis of the hydrated lime injection system is provided.

Wolf, D.E.; Seaba, J.P. [Univ. of Missouri, Columbia, MO (United States)

1993-12-31T23:59:59.000Z

398

Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 6, Basin analysis, formation and stability of gas hydrates in the Panama Basin  

SciTech Connect

This report presents a geological description of the Panama Basin, including regional and local structural settings, geomorphology, geological history, stratigraphy, and physical properties. It provides the necessary regional and geological background for more in-depth research of the area. Detailed discussion of bottom simulating acoustic reflectors, sediment acoustic properties, distribution of hydrates within the sediments, and the relation of hydrate distribution to other features such as salt diapirism are also included. The formation and stabilization of gas hydrates in sediments are considered in terms of phase relations, nucleation, and crystallization constraints, gas solubility, pore fluid chemistry, inorganic diagenesis, and sediment organic content. Together with a depositional analysis of the area, this report is a better understanding of the thermal evolution of the locality. It should lead to an assessment of the potential for both biogenic and thermogenic hydrocarbon generation. 63 refs., 38 figs., 7 tabs.

Krason, J.; Ciesnik, M.

1986-03-01T23:59:59.000Z

399

Electron Transport in Methane Gas  

Science Journals Connector (OSTI)

We propose a kinetic theory for electron-drift-velocity maxima in polyatomic gases. The case of methane is considered in detail, and good agreement with experiment is obtained with use of model cross sections. The Boltzmann equation is solved directly by applying an iterative numerical technique, which converges well when inelastic scattering effects are important.

Peter Kleban and H. Ted Davis

1977-08-22T23:59:59.000Z

400

Methane production by attached film  

DOE Patents (OSTI)

A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Methane generation from waste materials  

DOE Patents (OSTI)

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

402

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

403

ConocoPhillips Gas Hydrate Production Test  

SciTech Connect

Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

2013-06-30T23:59:59.000Z

404

Weakening of ice by magnesium perchlorate hydrate  

E-Print Network (OSTI)

I show that perchlorate hydrates, which have been indirectly detected at high Martian circumpolar latitudes by the Phoenix Mars Lander, have a dramatic effect upon the rheological behavior of polycrystalline water ice under ...

Lenferink, Hendrik J., 1985-

2012-01-01T23:59:59.000Z

405

Hydrate Control for Gas Storage Operations  

SciTech Connect

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

406

Metal-Catalyzed Hydration of 2-Pyridyloxirane  

E-Print Network (OSTI)

In the presence of CuII the hydration of 2-pyridyloxiran is accelerated 18,000-fold, and its reaction with Cl, Br, and MeO becomes 100% regiospecific for ?-attack.

Hanzlik, Robert P.; Michaely, William J.

1975-01-01T23:59:59.000Z

407

Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration  

Science Journals Connector (OSTI)

Abstract Understanding the kinetics of carbon dioxide (CO2) hydrate formation in pure water, seawater and porous media aids in developing technologies for CO2 gas storage, carbon capture and sequestration (CCS) and potentially for methane production from methane hydrates. The present work is focused on understanding the kinetics of CO2 hydrate formation in pure water and seawater at an initial formation pressure of 6MPa (providing a driving force of about 4.0MPa) and a formation temperature of 276.15K with 75% water saturation in three silica sand particle sizes (0.16mm, 0.46mm and 0.92mm). The seawater (3.3wt% salinity) used in the present study is obtained from sea coast of Chennai (India). It is observed that the gas consumption of CO2 in hydrate is more for smaller silica sand particle and decreases as the size of the sand increases. The total gas consumed at the end of the seawater experiment is found to be less than the gas consumed at the end of the pure water experiment. This is due to the fact that salts in seawater act as a thermodynamic inhibitor resulting in lower gas consumption of CO2 in hydrate. The average rate of hydrate formation observed is optimum in 0.46mm particles and is observed to be higher as compared to 0.16 and 0.92mm particles over 10h experimental time. This indicates that 0.46mm silica sand provides an optimum environment for efficient hydrate formation. The study can be useful to understand the suitability of potential sandstone reservoir for CO2 sequestration in the form of hydrate in the presence of saline formation water.

Prathyusha Mekala; Marc Busch; Deepjyoti Mech; Rachit S. Patel; Jitendra S. Sangwai

2014-01-01T23:59:59.000Z

408

U . S . D e p a r t m e n t o f E n e r g y * O f fi  

NLE Websites -- All DOE Office Websites (Extended Search)

Mallik Hydrate Research Project Mallik Hydrate Research Project Progress............................................. 1 Profiles of Dissolved Sulfate ......... 6 Paleocene-Eocene Thermal Maximum Methane Release .......... 9 Seismic-Scale Rock Physics of Methane Hydrates .........................13 Announcements .......................18 * "Waves of Change" * International Lecture Tour * International Cooperation * Biodiversity Hot-Spots * JIP Update Spotlight on Research ............20 Koji Yamamoto CONTACT Ray Boswell Technology Manager-Methane Hydrates, Strategic Center for Natural Gas & Oil

409

Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites  

SciTech Connect

In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct graduate students (OSU and UW) as well as DOE staff from the NETL lab in Albany on the use of Crunch Flow for geochemical applications.

Torres, Marta

2014-01-31T23:59:59.000Z

410

Cold seeps at the salt front in the Lower Congo Basin I: Current methane accumulation and active seepage  

Science Journals Connector (OSTI)

Abstract Active high intensity gas seepage is documented for the first time at the seaward edge of the salt occurrence in the southern Lower Congo Basin. Microbial methane release from the seafloor occurs on the crests of two 800 m high ridges formed by fault-propagation folding. Intense uplift is documented since the end of the Miocene by distinct onlapping reflections on the landward flank of these ridges. A paleo-pockmark structure suggests an onset of seepage coincident with this deformation period. High-resolution seismic imaging reveals methane migration along strata from Oligocene/Miocene fan deposits towards the ridge crests where large gas accumulations form beneath a discontinuous Bottom Simulating Reflection (BSR). Detailed mapping revealed that free gas and gas hydrate occurrences below and above the base of the gas hydrate stability zone are closely linked to sedimentary strata in the flanks of topographic ridges. Gas transport through the gas hydrate stability zone originates from the shallowest area of the BSR directly beneath the seafloor seep sites, suggesting pressure controlled venting. These sites represent the most seaward salt-related gas seepage features documented in the area and illustrate the initiation of long-lasting seepage at the front of an area of compressional tectonics at a passive continental margin.

S. Wenau; V. Spiess; T. Pape; N. Fekete

2014-01-01T23:59:59.000Z

411

Estimation of composite thermal conductivity of a heterogeneous methane hydrate sample using iTOUGH2  

E-Print Network (OSTI)

1517, 2006 ESTIMATION OF COMPOSITE THERMAL CONDUCTIVITY OFABSTRACT We determined the composite thermal conductivity (kfrom granular ice. The composite thermal conductivity was

Gupta, Arvind; Kneafsey, Timothy J.; Moridis, George J.; Seol, Yongkoo; Kowalsky, Michael B.; Sloan Jr., E.D.

2006-01-01T23:59:59.000Z

412

Hollow fiber membrane process for the pretreatment of methane hydrate from landfill gas  

Science Journals Connector (OSTI)

Abstract Landfill gas is major source of green house effect because it is mainly composed of CH4 and CO2. Especially, the separation of CH4 from landfill gas was studied actively due to its high heating value which can be used for energy resource. In this study, polymeric hollow fiber membrane was produced by drywet phase inversion method to separate CH4 from the landfill gas. The morphology of the membranes was examined by scanning electron microscopy (SEM) to understand and correlate the morphology with the performance of the membrane. Firstly, single gas permeation and mixed gas separation were performed in lab-scale. After then, a pilot scale membrane process was designed using a simulation program. The manufactured process settled in Gyeong-ju landfill site and operated at various conditions. As a result, CH4 was concentrated to 88vol.% and also CO2 removal efficiency increases up to 86.7%.

KeeHong Kim; WonKil Choi; HangDae Jo; JongHak Kim; Hyung Keun Lee

2014-01-01T23:59:59.000Z

413

Nickel crystallite thermometry during methanation  

SciTech Connect

A magnetic method to measure the average temperature of superparamagnetic nickel crystallites has been applied during CO methanation. The method takes advantage of the temperature dependence of the low field magnetization of such catalysts; however, the adsorption of carbon monoxide and the formation of surface carbon species complicate the interpretation of results. Calibrations to account for temperature change and the adsorption of reactants are described. The calibration for the effects of CO is based on the assumption that the interaction of CO with nickel is the same for methanation and disproportionation. Interphase heat transfer calculations based on the thermometric data compare favorably with previous results from ethane hyrogenolysis, and give no indication of microscopic temperature differences between the nickel crystallites and support.

Ludlow, D.K.; Cale, T.S.

1986-01-01T23:59:59.000Z

414

Doubling of atmospheric methane supported  

SciTech Connect

Atmospheric methane over the past 27,000 years was measured by analyzing air trapped in glacial ice in Greenland and Antarctica. Atmospheric concentrations were stable over that period until about 200 years b.p. In the last 200 years they have more than doubled. This change in concentration is correlated with the increase in human population; the implications for climate modification are discussed. 1 figure, 3 references.

Kerr, R.A.

1984-11-23T23:59:59.000Z

415

A study on the solubility of heavy hydrocarbons in liquid methane and methane containing mixtures.  

E-Print Network (OSTI)

??The solubilities of the hydrocarbons n-butane, n-pentane, n-hexane, n-octane, and n-nonane in liquid methane and of n-hexane in the mixed solvents of methane and ethane (more)

Brew, T. C. L.

2009-01-01T23:59:59.000Z

416

Plasma catalytic reforming of methane  

Science Journals Connector (OSTI)

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This article describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius), and a high degree of dissociation and a substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (40% H2, 17% CO2 and 33% N2, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (23 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H2 with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content (?1.5%) with power densities of ?30 kW (H2 HHV)/l of reactor, or ?10m3/h H2 per liter of reactor. Power density should further increase with increased power and improved design.

L Bromberg; D.R Cohn; A Rabinovich; N Alexeev

1999-01-01T23:59:59.000Z

417

Chapter 14 - Coal bed methane  

Science Journals Connector (OSTI)

Publisher Summary Methane adsorbed to the surface of coal is a very old issue with some new commercial ramifications. This explosive gas has made underground coal mines dangerous both from the risk of explosion and the possibility of an oxygen-poor atmosphere that wouldn't support life. The miner's main concern with coal bed methane (CBM) has been how to get rid of it. Techniques to deal with CBM in mines have ranged from the classic canary in a cage to detect an oxygen-poor atmosphere to huge ventilation fans to force the replacement of a methane-rich environment with outside air, to drilling CBM wells in front of the coal face to try to degas the coal prior to exposing the mine to the CBM. All these techniques have met with some amount of success. None of the techniques to prevent CBM from fouling the air in an underground mine has been totally successful. With the CBM's unique method of gas storage, the preponderance of the gas is available only to very low coalface pressures. The coalface pressure is set by a combination of flowing wellhead pressure and the hydrostatic head exerted by standing liquid within the well bore. Effective compression strategies can lower the wellhead pressure to very low values. Effective deliquification techniques can reduce or remove the backpressure caused by accumulated liquid. CBM's economic impact is briefly explained in this chapter.

James F. Lea; Henry V. Nickens; Mike R. Wells

2008-01-01T23:59:59.000Z

418

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013...

419

Miscellaneous States Coalbed Methane Proved Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

420

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

422

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

423

,"Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

424

A guide to coalbed methane operations  

SciTech Connect

A guide to coalbed methane production is presented. The guide provides practical information on siting, drilling, completing, and producing coalbed methane wells. Information is presented for experienced coalbed methane producers and coalbed methane operations. The information will assist in making informed decisions about producing this resource. The information is presented in nine chapters on selecting and preparing of field site, drilling and casing the wellbore, wireline logging, completing the well, fracturing coal seams, selecting production equipment and facilities, operating wells and production equipment, treating and disposing of produced water, and testing the well.

Hollub, V.A.; Schafer, P.S.

1992-01-01T23:59:59.000Z

425

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

426

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

427

,"Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

428

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

429

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

430

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

431

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

432

,"California - Coastal Region Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

433

GAS PRODUCTION POTENTIAL OF DISPERSE LOW-SATURATION HYDRATE ACCUMULATIONS IN  

NLE Websites -- All DOE Office Websites (Extended Search)

61446 61446 GAS PRODUCTION POTENTIAL OF DISPERSE LOW-SATURATION HYDRATE ACCUMULATIONS IN OCEANIC SEDIMENTS George J. Moridis Earth Sciences Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 E. Dendy Sloan Center for Hydrate Research and Chemical Engineering Department Colorado School of Mines Golden, CO 80401 August 2006 This work was partly supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy, Contract No. DE-AC03-76SF00098. Gas Production Potential of Disperse Low-Saturation Hydrate Accumulations in Oceanic Sediments George J. Moridis 1 and E. Dendy Sloan 2 1 Earth Sciences Division, Lawrence Berkeley National Laboratory, MS 90-1166

434

5, 9711015, 2008 Methane seepage in  

E-Print Network (OSTI)

of layers of sand and stiff clay, and gas emission was observed from small cracks in the seafloor. At both water seeps associated with gas hydrates such as Hydrate Ridge or Eel River25 basin. 972 #12;BGD 5, 971 Interactive Discussion Abstract Fluid-flow related seafloor structures and gas seeps were detected

Paris-Sud XI, Université de

435

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network (OSTI)

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

436

Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities  

SciTech Connect

In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

Bent, Jimmy

2014-05-31T23:59:59.000Z

437

DPF -"Hydrated EGR" Fuel Saver System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Saver System DPF -"Hydrated EGR" Fuel Saver System GreenPower muffler uses hydrated exhaust gas recirculation to reduce NOx and improve fuel efficiency deer08rim.pdf More...

438

Method for production of hydrocarbons from hydrates  

DOE Patents (OSTI)

A method of recovering natural gas entrapped in frozen subsurface gas hydrate formations in arctic regions. A hot supersaturated solution of CaCl.sub.2 or CaBr.sub.2, or a mixture thereof, is pumped under pressure down a wellbore and into a subsurface hydrate formation so as to hydrostatically fracture the formation. The CaCl.sub.2 /CaBr.sub.2 solution dissolves the solid hydrates and thereby releases the gas entrapped therein. Additionally, the solution contains a polymeric viscosifier, which operates to maintain in suspension finely divided crystalline CaCl.sub.2 /CaBr.sub.2 that precipitates from the supersaturated solution as it is cooled during injection into the formation.

McGuire, Patrick L. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

439

CHARACTERIZATION OF MIXED CO2-TBPB HYDRATE FOR REFRIGERATION APPLICATIONS  

E-Print Network (OSTI)

in a dynamic loop and an Ostwald-de Waele model was obtained. Keywords: CO2, TBPB, mixed hydrates, solubility

Paris-Sud XI, Université de

440

Scientists detect methane levels three times larger than expected...  

NLE Websites -- All DOE Office Websites (Extended Search)

methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

Note: This page contains sample records for the topic "methane hydrate research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Three-dimensional model synthesis of the global methane cycle  

E-Print Network (OSTI)

39, Ehhalt, D. H. , The atmoheric cycle of methane, Tellugworld-wide increase in theric methane, 1978-1987, Science,

1991-01-01T23:59:59.000Z

442

Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

443

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

444

Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore Texas Coalbed Methane Proved Reserves, Reserves Changes, and Production...

445

California--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production...