Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Methane Hydrate Research and Modeling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Modeling Clean Coal Carbon Capture and Storage Oil & Gas Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Research is focused on understanding...

2

NETL: Methane Hydrates - Methane Hydrate Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Ridge region Ongoing areas of study in the Hydrate Ridge region Map showing where gas hydrates occur off the Cascadia Margin Locations of methane hydrate off the Cascadia Margin...

3

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrates Primer provides background and general information about the history of hydrate R&D, the science of methane hydrates, their occurrences, and R&D related issues. Photo...

4

NETL: Methane Hydrates - Hydrate Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate R&D Program Newsletter Methane Hydrate R&D Program Newsletter An image of a hydrate burning overlayed with the Newsletter Title: Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a bi-annual publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in the Ice please send an email to karl.lang@contr.netl.doe.gov Please click on the links below to access issues of "Fire in the Ice". More on Methane Hydrates

5

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

6

Methane Hydrate Advisory Committee Charter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter...

7

Methane Hydrates - Methane Hydrate Graduate Fellowship  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Supply and Emerging Resources Future Supply and Emerging Resources The National Methane Hydrates R&D Program - Graduate Fellowship Program Methane Hydrate Graduate Fellowship Program Jeffrey James Marlow, a graduate student in Geobiology at the California Institute of Technology, was recently selected as the 2012 recipient of the NETL-National Academy of Sciences (NAS) Methane Hydrate Research Fellowship. Please see page 15 of the March 2013 issue (Vol. 13, Issue 1) of Fire in the Ice for more information on the recipient. The Department of Energy has a long history of building synergistic relationships with research universities. Funding academic research is a "win-win-win" situation. The U.S. government is able to tap into some of the best minds available for solving national energy problems, the universities get the support they need to maintain cutting edge faculty and laboratories, and the students involved are provided with opportunities that help them along their chosen path of study, strengthening the national pool of scientists and engineers. According to Samuel Bodman, speaking about graduate research in methane hydrates, "Students are the foundation of our energy future, bringing new ideas and fresh perspectives to the energy industry. What better way to assure technology innovation than to encourage students working on the development of a resource that has the potential to tip our energy balance toward clean-burning, domestic fuels."

8

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2011 FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of research. Pursuant to statutory requirements, this report is being provided to the following

9

Methane Hydrate Annual Reports  

Energy.gov (U.S. Department of Energy (DOE))

Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per...

10

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fiscal Year 2012 Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S. Department of Energy Fiscal Year 2012 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area

11

Methane Hydrate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

12

Methane Hydrate Advisory Committee Meeting Minutes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes June 6th - 7th, 2013...

13

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Methane Gas Hydrates Last Reviewed 6142013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate...

14

NETL: Methane Hydrates - Hydrate Model Code Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservoir Simulator Code Comparison Study An International Effort to Compare Methane Hydrate Reservoir Simulators Code Comparison Logo The National Energy Technology Laboratory...

15

NETL: Methane Hydrates - Methane Hydrate Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas A&M University - Geochemical & Research Environmental Group(GERG) - Gulf of Mexico Blue Mound w Tube Worms bulk hydrate sample oil slick showing possible hydrate location...

16

NETL: Methane Hydrates - Interagency Coordination  

NLE Websites -- All DOE Office Websites (Extended Search)

Links to interagency pdf. The multi-faceted issues associated with naturally occurring methane hydrates demand a coordinated approach to studying (1) the potential of this resource...

17

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

with sampling and observation from the surface ship. Activities included collection of methane hydrate, sediment, water, and other materials from methane hydrate and seep sites...

18

MethaneHydrateRD_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety...

19

NETL: Methane Hydrates - Methane Hydrate Library  

NLE Websites -- All DOE Office Websites (Extended Search)

from the ANS drilling and coring operation - February, 2007 DOEJoint Industry Project - Gulf of Mexico Hydrate Research Cruise Photos from the Gulf of Mexico research cruise -...

20

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of...

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

22

Methane Hydrate Advisory Committee Meeting Minutes, June 6th...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee...

23

Methane Hydrate Research and Development Act of 2000 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and...

24

Methane Hydrate Advisory Committee Meeting Minutes, January 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2010 Methane Hydrate Advisory Committee Meeting Minutes, January 2010 Methane Hydrate Advisory Committee Meeting Minutes January, 2010 Atlanta, GA Methane Hydrate Advisory...

25

Methane Hydrate Advisory Committee Meeting Minutes, March 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2010 Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes March 2010 Washington, DC Methane Hydrate Advisory...

26

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Projects If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed...

27

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

goal was to develop new methodologies to characterize the physical properties of methane hydrate and hydrate sediment systems. Performers Westport Technology Center...

28

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3182013 Project Goals The primary goals of the DOENETL Natural Gas Hydrate Field Studies...

29

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

natural and simulated sediment samples, and to use these sediments as hosts to form methane hydrate and to investigate the kinetics of hydrate formation and dissociation...

30

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL ORD Methane Hydrate Research - Thermal Properties of Hydrate Tool Development Last Reviewed 3182013 Project Goal The goal of this project is increased understanding of...

31

Methane Hydrates R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

32

Department of Energy Advance Methane Hydrates Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane...

33

Methane Hydrate Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Methane Hydrate Advisory Committee Methane Hydrate Advisory Committee The Methane Hydrate Advisory Committee was created in response to provisions of the Methane Hydrate Research and Development Act of 2000 and reauthorized by the Energy Policy Act of 2005. The Committee is to advise the Secretary of Energy on potential applications of methane hydrate; assist in developing recommendations and priorities for the methane hydrate research and development program; and submit to Congress one or more reports on an assessment of the research program and an assessment of the DOE 5-year research plan. The Committee's charter stipulates that up to 15 members can be appointed by the Secretary of Energy, representing institutions of higher education, industrial enterprises and oceanographic institutions and state agencies.

34

Methane Hydrate Production Feasibility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

35

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 EST-380-NEDA Goal The purpose of this study is to establish sediment lithology and quantification of methane in hydrates hosted in fine-grained sediments from the Gulf of Mexico (GoM), a marine site of methane hydrate occurrence. The results will help establish a correlation between laboratory data and hydrate accumulation field data on dispersed hydrates in the natural environment. Performer Brookhaven National Laboratory (BNL), Upton, New York 11973 Background Gas hydrates are located in permafrost and marine environments and show potential as a vast methane source worldwide. However, methane is about 17 times more potent a greenhouse gas than CO2 and the inherent instability of

36

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

is to develop analytical techniques capable of quantitatively evaluating the nature of methane hydrate reservoir systems through modeling of their acoustic response using...

37

NETL: Methane Hydrates - DOE/NETL Projects - Properties of Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

is to measure physical, chemical, mechanical, and hydrologic property changes in methane hydrate-bearing sediments subjected to injection of carbon dioxide and nitrogen....

38

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis - Fugro Operations and Geotechnical Investigations PDF-7.13MB National Methane Hydrate R&D Program website. Photos: Photo Gallery - miscellaneous - Photos from...

39

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

area, known as Mississippi Canyon lease block 118, is well-known for the occurrence of methane hydrate and is the location of the University of Mississippis gas hydrate...

40

Methane Hydrates - Mt. Elbert Well Log Data  

NLE Websites -- All DOE Office Websites (Extended Search)

more. Project background information - Alaska North Slope Gas Hydrate Reservoir Characterization - DE-FC26-01NT41332 More information on the National Methane Hydrates R&D Program...

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5102012 ESD05-048 Goal The project is bringing new laboratory measurements and...

42

Methane Hydrate Advisory Committee Meeting Minutes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2013 Washington, DC July 16, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Electricity Advisory Committee Notice of Open...

43

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

late Quaternary. An investigation of the nature of deposition and alteration of the methane hydrate in cores from the Umnak Plateau in the southeastern Bering Sea was conducted...

44

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

during NGHP Expedition 01 Background Gas hydrate distribution in sediments depends on methane supply, which in turn depends on fluid flow. When drilling data are available to...

45

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

(RUS) technique to examine hydrate formationdissociation processes. For determining methane abundance and location on a grain-to-grain scale, a completely new method of...

46

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with...

47

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of...

48

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02172010 EST-380-NEDA Goal The purpose of this study is to...

49

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and presentations as well as a listing of funded students can be found in the Methane Hydrate Program Bibliography PDF. A final report is available by request. Contact...

50

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and presentations as well as a listing of funded students can be found in the Methane Hydrate Program Bibliography PDF. Final Project Report PDF-23MB - October, 2009...

51

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization project has resulted in a characterization of two large prospective methane hydrate accumulations (or trends); the Eileen Trend, which underlies but extends well...

52

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure and Physical Properties of Methane Hydrate Deposit at Blake Ridge Last Reviewed 02052010 Bathymetric location map of the Blake Ridge study area Bathymetric location map...

53

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Slope represents an important milestone in an ongoing evaluation of Alaskan Arctic methane hydrate potential. This evaluation, a joint effort of DOE, USGS, BP Exploration...

54

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey, Woods Hole Field Center Location Woods Hole Massachusetts Background Oceanic methane hydrates are a major emerging research topic spanning energy resource issues, global...

55

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Seol, Y. and T. J. Kneafsey, Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media, Journal of Geophysical Research, 2011, In...

56

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of aerobic methanotrophy in preventing the escape of methane from marine, hydrate-bearing reservoirs to the atmosphere and ultimately to better define the role of aerobic methanotrophy in the global carbon cycle. Graph overlayed on photo - Methane seeps with the resulting methane plume Methane seeps with the resulting methane plume, Geophysical Research Letters, November 2007 Performers University of California – Santa Barbara, Santa Barbara (UCSB), CA 93106 Background The global methane reservoir in the form of gas hydrate is estimated at 500–10,000 Gt (KVENVOLDEN, 1995; MILKOV, 2004). This pool of carbon

57

NETL: News Release - Methane Hydrate Production Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

of CO2 molecules for methane molecules in the solid-water hydrate lattice, the release of methane gas, and the permanent storage of CO2 in the formation. This field experiment will...

58

Methane Hydrate Advisory Committee Meeting Minutes, October 2011...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2011 Methane Hydrate Advisory Committee Meeting Minutes, October 2011 Methane Hydrate Advisory Committee Meeting Minutes October 2011 Washington, DC Advisory Committee...

59

METHANE HYDRATE ADVISORY COMMITTEE U.S. DEPARTMENT OF ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

METHANE HYDRATE ADVISORY COMMITTEE U.S. DEPARTMENT OF ENERGY Advisory Committee Charter 1. Committee's Official Designation. Methane Hydrate Advisory Committee (MHAC) 2. Authority....

60

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 DE-FC26-06NT42963 Goal The goal of this project is to develop observational and experimental data that can provide a better understanding of the basic mechanisms at work in a methane hydrate reservoir that is under production. To this end, a thorough physical understanding of underlying phenomena associated with methane hydrate production will be acquired through unique, multi-scale experiments and associated analyses. In addition, one or more mathematical models that account for the observed phenomena and provide insights that may help to optimize methane hydrate production methods will be developed. Performers Georgia Tech Research Corporation, Atlanta, Georgia 30332 Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee 37831

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Sampling and Characterization of Naturally Occurring Methane Hydrate Using the D/V JOIDES Resolution Last Reviewed 02/05/2010 In Situ Sampling and Characterization of Naturally Occurring Methane Hydrate Using the D/V JOIDES Resolution Last Reviewed 02/05/2010 DE-FC26-01NT41329 photo of a man showing the pressure core sampler on the deck of JOIDES Resolution Pressure core sampler on deck courtesy Texas A&M University Goal The goal of the project was to characterize hydrate accumulation at Hydrate Ridge (offshore Oregon) and improve the ability to use geophysical and subsurface logging to identify hydrates. A follow-on goal was to characterize hydrate accumulation at offshore Vancouver Island, BC, Canada. Background This project focused on physically verifying the existence of hydrates at Hydrate Ridge through the collection of pressurized and non-pressurized core samples and logging data. This study developed and tested tools to

62

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Seismic-Scale Rock Physics of Methane Hydrate Seismic-Scale Rock Physics of Methane Hydrate DE-FC26-05NT42663 Goal The goal of this project was to establish rock physics models for use in generating synthetic seismic signatures of methane hydrate reservoirs. Ultimately, the intent was to improve seismic detection and quantification of offshore and onshore methane hydrate accumulations. Performer Stanford University, Stanford, CA 94305 Background Gas hydrate reservoir characterization is, in principle, no different from traditional hydrocarbon reservoir characterization. The seismic response of the subsurface is determined by the spatial distribution of the elastic properties (properties of the subsurface that deform as seismic waves pass through it) and attenuation. By mapping changes in the elastic properties, scientists can identify geologic features, including hydrocarbon reservoirs.

63

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 ESD05-048 Goal The project is bringing new laboratory measurements and evaluation techniques to bear on the difficult problems of characterization and gas recovery from methane hydrate deposits. Performer Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Background LBNL is performing laboratory tests to provide data to support the characterization and development of methane hydrate deposits. Major areas of research underway include hydrologic measurements, combined geomechanical/geophysical measurements, and synthetic hydrate formation studies. Hydrologic Measurements Relatively little research has been done to experimentally determine

64

Arctic Methane, Hydrates, and Global Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Arctic Methane, Hydrates, and Global Climate Arctic Methane, Hydrates, and Global Climate Speaker(s): Matthew T. Reagan Date: March 17, 2010 - 12:00pm Location: 90-3122 Paleooceanographic evidence has been used to postulate that methane may have had a significant role in regulating past climate. However, the behavior of contemporary permafrost deposits and oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. A recent expedition to the west coast of Spitsbergen discovered substantial methane gas plumes exiting the seafloor at depths that correspond to the upper limit of the receding gas hydrate stability zone. It has been suggested that these plumes may be the

65

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

66

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Energy.gov (U.S. Department of Energy (DOE))

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

67

NETL: Methane Hydrates - The National R&D Program - Hydrates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 (Enrolled Bill) H.R.1753 One Hundred Sixth Congress of the United States of America AT THE...

68

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

69

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

70

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

- Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 - Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 Project Goals The primary goals of the DOE/NETL Natural Gas Hydrate Field Studies (NGHFS) project are: Conduct field-based studies that advance the ability to predict, detect, characterize, and understand distribution of and controls on natural gas hydrate occurrences. Analyze geologic, geochemical, and microbiologic data for indications of past and current changes to the stability of natural gas hydrate in marine settings. Develop links between the U.S. Gas Hydrate Program and international R&D efforts through direct participation in international field programs and workshops. Evaluate the potential role natural gas hydrates may play in the global carbon cycle through analysis of modern and paleo-natural gas

71

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

– Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 – Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 Project Objective Observe hydrate formation and dissociation phenomena in various porous media and characterize hydrate-bearing sediments by estimating physical properties (kinetic parameters for hydrate formation and dissociation, thermal conductivity, permeability, relative permeability, and mechanical strength) to enhance fundamental understanding on hydrate formation and accumulation and to support numerical simulations and potential gas hydrate production Project Performers Yongkoo Seol – NETL Office of Research & Development Jeong Choi – Oak Ridge Institute for Science and Education Jongho Cha-Virginia Polytech Institute Project Location National Energy Technology Laboratory - Morgantown, West Virginia

72

Methane Hydrate Program Annual Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2010 FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled, U.S. Department of Energy FY 2010 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of

73

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Sampling and Characterization of Naturally Occurring Methane Hydrate Using the DV JOIDES Resolution Last Reviewed 02052010 DE-FC26-01NT41329 photo of a man showing the pressure...

74

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

that the hydrate in this region occurs in patchy deposits and may require a high methane flux from the subsurface in order to form more continuous drilling prospects. Project...

75

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-AF26-01NT00370 Goal The goal of the project is to better characterize potential methane hydrate drilling sites in the Gulf of Mexico for the Ocean Drilling Program....

76

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a...

77

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 182013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of...

78

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

to develop a two-dimensional, basin-scale model for the deep sediment biosphere with methane dynamics to provide a better picture of the distribution of hydrates on the sea floor...

79

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Goal The overall objective of this project is to develop a new method to assess methane hydrate distribution using 3-D seismic data calibrated to wellbore data. The method...

80

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Methane Hydrate Last Reviewed 5152012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas...

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection and Microbiological Analysis of Gas Hydrate Cores Collection and Microbiological Analysis of Gas Hydrate Cores FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a fundamental modeling parameter - the amount of methane generated in deep sediments by methanogenic microorganisms. This would allow methane distribution models of gas hydrate reservoirs to accurately reflect an unknown volume and the distribution of biogenic methane within in a reservoir. The personnel at INEL have experience in similar biologic research and are considered to be experts by their global peers. Performer Idaho National Engineering and Environmental Laboratory (INEEL) - sample collection and analysis Location

82

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane...  

NLE Websites -- All DOE Office Websites (Extended Search)

On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 6242013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced...

83

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas hydrate systems from three perspectives: as an energy resource, as a geohazard, and as a long-term influence on global climate. Performers Rice University, Houston, TX University of Texas, Austin, TX Oklahoma State University, Stillwater, OK Background Heterogeneity in the distribution of gas hydrate accumulations impacts all aspects of research into gas hydrate natural systems. The challenge is to delineate, understand, and appreciate these differences at the regional and local scales, where differences in in situ concentrations are relevant to the importance of gas hydrate as a resource, a geohazard, and a factor in

84

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Cruise Cruise Special Report - Bottom-Simulating Reflections(BSR). Seismic lines from deep continental shelves all around the world contain anomalous reflections known as bottom-simulating reflections(BSR). The reflections mimic the sea-floor topography at a near constant depth below the surface, and commonly cut across geological layers. The nature of the reflection indicates a horizon across which seismic velocity dramatically decreases. At one time, scientists thought the reflection must be due to some mineralogical alteration in the sediment due to heat and pressure. Once the existence of natural methane hydrate was established, BSRs were thought to record the decrease in velocity when passing from hydrate-bearing sediments to those containing only water. Therefore, BSRs were thought to be a direct indicator of hydrate: no BSR meant no hydrate. However, the velocity contrast between hydrate and no-hydrate was determined to be insufficient to cause BSRs. Today, scientists have established that BSRs are an indication of concentrations of free methane gas that is blocked from further upward migration by the presence of methane hydrate in the overlying layers. Consequently, the distribution of BSRs may mark only a subset of the areas containing hydrate.

85

NETL: Methane Hydrates - Hydrate Modeling - TOUGH-Fx/HYDRATE  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Modeling - TOUGH+/HYDRATE & HydrateResSim Hydrate Modeling - TOUGH+/HYDRATE & HydrateResSim TOUGH+/HYDRATE v1.0 LBNL's new hydrate reservoir simulator (TOUGH+/HYDRATE v1.0) is now publicly available for licensing. TOUGH+/HYDRATE models non-isothermal gas release, phase behavior and flow of fluids and heat in complex geologic media. The code can simulate production from natural CH4-hydrate deposits in the subsurface (i.e., in the permafrost and in deep ocean sediments), as well as laboratory experiments of hydrate dissociation/formation in porous/fractured media. TOUGH+/HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. More information on TOUGH+/Hydrate Also available is HydrateResSim. HydrateResSim (HRS) is a freeware, open-source reservoir simulator code available for use “as-is” from the NETL. HRS’ code was derived from an earlier version of the TOUGH+/Hydrate code.

86

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico DE-FC26-02NT41327 Goal The project goal was to develop new methodologies to characterize the physical properties of methane hydrate and hydrate sediment systems. Performers Westport Technology Center International - Houston, TX University of Houston - Houston, TX Results Project researchers created a pressure cell for measuring acoustic velocity and resistivity on hydrate-sediment cores. They utilized the measurements for input to an existing reservoir model for evaluating possible offshore hydrate accumulations. The organization of an industry-led Advisory Board and the development of a Research Management Plan have been completed. The development of a handbook for transporting, preserving, and storing hydrate core samples brought from the field to the laboratory was completed and distributed for review by industry and researchers.

87

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station DE-FC26-02NT41328 Goal Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of California, San Diego (Scripps Institution of Oceanography) - manage geochemical, hydrological and sedimentological investigations Texas A&M University - manage field monitoring program Location La Jolla, California 92093 Background This project will monitor, characterize, and quantify the rates of formation and dissociation of methane gas hydrates at and near the seafloor in the northern Gulf of Mexico, and determine linkages between formation/dissociation and physical/chemical parameters of the deposits over the course of a year. The stability and response of shallow gas hydrates to temperature and chemical perturbations will be monitored in situ, and localized seafloor and water column environmental impacts of hydrate formation and dissociation characterized. The following will be determined: 1) The equilibrium/steady state conditions for structure II methane gas hydrates at the field site,2) whether the system is in dynamic equilibrium and the local hydrology is characterized by steady state episodic fluid flow, and 3) how fluid fluxes and fluid composition work together to dynamically influence gas hydrate stability.

88

NETL: Methane Hydrates - DOE/NETL Projects - Mapping Permafrost...  

NLE Websites -- All DOE Office Websites (Extended Search)

20 percent of the land area in the northern hemisphere and often contains associated methane hydrate. Numerous studies have indicated that permafrost and hydrate are actively...

89

Methane Hydrates and Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrates and Climate Change Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater sediments, the ocean or atmosphere. DOE is conducting research to understand the mechanisms and volumes involved in these little-studied processes. DOE environmental and climate change research projects related to Arctic methane hydrate deposits include: Characterization of Methane Degradation and Methane-Degrading

90

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical Testing of Gas Hydrate/Sediment Samples Mechanical Testing of Gas Hydrate/Sediment Samples DE-AT26-99FT40267 Goal Develop understanding of the mechanical characteristics of hydrate-containing sediments. Background The ACE CRREL has a unique group of experienced personnel that have studied the mechanical characteristics of ice and permafrost that can be applied to the study and characterization of the mechanical properties of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of sediments related to drilling and seafloor installations in the Gulf of Mexico. Performers US Army Corp of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory (CRREL) - project management and research products

91

MethaneHydrateRD_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gas is an important energy gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy (FE) has played a major role in developing technologies to help tap new, unconventional sources of natural gas. FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and managed a high-quality research portf olio that has enabled signifi cant progress toward the (DOE) Program's long-term goals." The Nati onal Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety of forms in sediments within and below thick permafrost in Arctic regions, and in the

92

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09/23/2009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through numerical simulation, conventional and innovative approaches for producing methane from gas hydrate-bearing geologic reservoirs. Numerical simulation is being used to assess the production of natural gas hydrates from geologic deposits using three production technologies: 1) depressurization, 2) direct CO2 exchange, and 3) dissociation-reformation CO2 exchange. Performers Battelle Pacific Northwest Division, Richland, Washington 99352 Background There are relatively few published studies of commercial production methods for gas hydrates, and all of these studies have examined essentially

93

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 DE-FC26-01NT41331 photo of new Anadarko drilling rig in place at Hot Ice No.1 on Alaska's North Slope Hot Ice No. 1 Drilling Platform courtesy Anadarko Petroleum Corp. Goal The goal of the project was to develop technologies for drilling and recovering hydrates in arctic areas. The specific objectives were to drill, core, and test a well through the hydrate stability zone in northern Alaska Performers Maurer Technology, Inc.* - Project coordination with DOE Anadarko Petroleum Corporation - Overall project management for the design, construction, and operation of the Arctic Drilling Platform and mobile core lab, and field coring operations Noble Engineering and Development* - Real time data collection and

94

Methane Hydrate Field Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Studies Field Studies Methane Hydrate Field Studies Arctic/Alaska North Slope Field Studies Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and currently lack outlets to commercial markets, Alaska provides an excellent laboratory to study E&P technology. The research also has implications for various Alaska resources, including potential gas hydrate resources for local communities, conventional "stranded" gas, as well as Alaska's large unconventional oil resources. The hydrate deposits have been delineated in the process of developing underlying oil fields, and drilling costs are much lower than offshore. DOE-BP Project

95

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gathering, Processing and Evaluating Seismic and Physical Data on Gas Hydrates in the Gulf of Mexico Last Reviewed 02/05/2010 Gathering, Processing and Evaluating Seismic and Physical Data on Gas Hydrates in the Gulf of Mexico Last Reviewed 02/05/2010 DE-AT26-97FT34343 photo of piston core apparatus prior to being dropped Piston core apparatus with 6-ton weight prior to being dropped Photo courtesy USGS Goal The goal of the project is to characterize hydrates in the Gulf of Mexico (GOM) and further develop field techniques for characterizing hydrates. Performer US Geological Survey, Woods Hole Field Center Location Woods Hole Massachusetts Background Oceanic methane hydrates are a major emerging research topic spanning energy resource issues, global climate change, seafloor stability, ocean acoustics, impact on deep marine biota, and a number of special topics. Recent developments in the last five years have both broadened and deepened

96

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat flow and gas hydrates on the continental margin of India Last Reviewed 12/15/2011 Heat flow and gas hydrates on the continental margin of India Last Reviewed 12/15/2011 DE-NT0005669 Goal The goals of this project are to construct maps of apparent and residual heat flow through the western continental margin of India and to investigate the relationship of residual heat flow anomalies to fluid flow and gas hydrate distribution in the subsurface. Performer Oregon State University, College of Oceanic and Atmospheric Science, Corvallis, OR 97331 Map of the four regions sampled during NGHP Expedition 01 Map of the four regions sampled during NGHP Expedition 01 Background Gas hydrate distribution in sediments depends on methane supply, which in turn depends on fluid flow. When drilling data are available to calibrate seismic observations of the base of the gas hydrate stability zone (GHSZ),

97

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

If you need help finding information on a particular project, please contact the content manager. If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed Projects Click on project number for a more detailed description of the project. Project Number Project Name Primary Performer DE-FC26-01NT41332 Alaska North Slope Gas Hydrate Reservoir Characterization BP Exploration Alaska, Inc. DE-FC26-01NT41330 Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration Chevron Energy Technology Company DE-FE0009897 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Georgia Tech Research Corporation DE-FE0009904 Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Oklahoma State University

98

NETL: Methane Hydrates - Hydrate Modeling - TOUGH-Fx/HYDRATE  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamics Geological & Env. Systems Materials Science Contacts TECHNOLOGIES Oil & Natural Gas Supply Deepwater Technology Enhanced Oil Recovery Gas Hydrates Natural Gas Resources...

99

NETL: Methane Hydrates - JIP Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Maurer Technology, Inc.,and Anadarko Petroleum Corp. Geologic Characterization of the Eileen and Tarn Gas Hydrate Accumulations on the North Slope of Alaska PDF- 1.12MB Author:...

100

Methane Recovery from Hydrate-bearing Sediments  

Science Conference Proceedings (OSTI)

Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with emphasis; (6) detailed study of CH4-CO2 exchange as a unique alternative to recover CH4 gas while sequestering CO2; (7) the relevance of fines in otherwise clean sand sediments on gas recovery and related phenomena such as fines migration and clogging, vuggy structure formation, and gas-driven fracture formation during gas production by depressurization.

J. Carlos Santamarina; Costas Tsouris

2011-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Hydrate Reservoir  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Hydrate Reservoir Modeling Using Rock Physics Techniques Last Reviewed 11/29/2013 Advanced Hydrate Reservoir Modeling Using Rock Physics Techniques Last Reviewed 11/29/2013 DE-FE0010160 Goal The primary goal of this research is to develop analytical techniques capable of quantitatively evaluating the nature of methane hydrate reservoir systems through modeling of their acoustic response using techniques that integrate rock physics theory, amplitude analysis, and spectral decomposition. Performers Fugro GeoConsulting, Inc., Houston TX Background Past efforts under the DOE-supported Gulf of Mexico Joint Industry project included the selection of well locations utilizing prospectivity analysis based primarily on a petroleum systems approach for gas hydrate using 3-D exploration seismic data and derivative analyses that produced predicted

102

Methane Hydrates R&D U S  

NLE Websites -- All DOE Office Websites (Extended Search)

the Power of Working Together Interagency Coordination on Methane Hydrates R&D U . S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r g y N a t i o n a l...

103

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields DE-FC26-06NT42962 Goal The goal of this project is to characterize and quantify the postulated gas hydrate resource associated with the Barrow Gas Fields – three producing fields located in a permafrost region near Barrow, the North Slope's biggest population center and economic hub. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Performers North Slope Borough, Barrow, Alaska (North Slope Borough) 99723

104

International Cooperation in Methane Hydrates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Methane Hydrate » Oil & Gas » Methane Hydrate » International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program (DSDP) recovered the first subsea substantial methane hydrate deposits, which spurred methane hydrate research in the US and other countries. The successor programs, the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) sampled hydrate deposits off Oregon (ODP 204, 2002) and in the Cascadia Margin off Vancouver Island, Canada (ODP 146, 1992 and IODP 311, 2005). In the Atlantic Ocean off the US, ODP Leg 146 sampled hydrate deposits on the Blake Ridge and Carolina Rise in 1995. International cooperation helps scientists in the US and other countries

105

Methane Hydrates - The National R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program The National Methane Hydrates R&D Program Welcome to the information portal for the National Methane Hydrate R&D Program. Over the past eight years, research carried out under this program has resulted in significant advances in our understanding of methane hydrates, their role in nature, and their potential as a future energy resource. This success is largely due to an unprecedented level of cooperation between federal agencies, industry, national laboratories, and academic institutions. For a quick introduction to methane hydrate and its potential as a fuel source, please read the 2011 Methane Hydrates Primer. Information on other elements of the program can be found under the remaining Key Links. Read More.

106

CFD Modeling of Methane Production from Hydrate-Bearing Reservoir  

Science Conference Proceedings (OSTI)

Methane hydrate is being examined as a next-generation energy resource to replace oil and natural gas. The U.S. Geological Survey estimates that methane hydrate may contain more organic carbon the the world's coal, oil, and natural gas combined. To assist in developing this unfamiliar resource, the National Energy Technology Laboratory has undertaken intensive research in understanding the fate of methane hydrate in geological reservoirs. This presentation reports preliminary computational fluid dynamics predictions of methane production from a subsurface reservoir.

Gamwo, I.K.; Myshakin, E.M.; Warzinski, R.P.

2007-04-01T23:59:59.000Z

107

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-06-01T23:59:59.000Z

108

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-07-01T23:59:59.000Z

109

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-03-01T23:59:59.000Z

110

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were generated of these seismic data with cores, logging, and other well data. Unfortunately, the Hot Ice No. 1 well did not encounter hydrates in the reservoir sands, although brine-saturated sands containing minor amounts of methane were encountered within the hydrate stability zone (HSZ). Synthetic seismograms created from well log data were in agreement with reflectivity data measured by the 3D VSP survey. Modeled synthetic seismograms indicated a detectable seismic response would be expected in the presence of hydrate-bearing sands. Such a response was detected in the 3D VSP data at locations up-dip to the west of the Hot Ice No. 1 wellbore. Results of this project suggest that the presence of hydrate-bearing strata may not be related as simply to HSZ thickness as previously thought. Geological complications of reservoir facies distribution within fluvial-deltaic environments will require sophisticated detection technologies to assess the locations of recoverable volumes of methane contained in hydrates. High-resolution surface seismic data and more rigorous well log data analysis offer the best near-term potential. The hydrate resource potential is huge, but better tools are needed to accurately assess their location, distribution and economic recoverability.

Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

2005-02-01T23:59:59.000Z

111

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

2005-02-01T23:59:59.000Z

112

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42960 Quarterly Progress Report Reporting Period: April-June 2007 Detection and Production of Methane Hydrate Submitted by: Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2007 Office of Fossil Energy Detection and Production of Methane Hydrate Quarterly Progress Report Reporting Period: April-June 2007 Prepared by: George Hirasaki Rice University August 2007 CONTRACT NO. DE-FC26-06NT42960 Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; Fax: 713-348-5478; Email: gjh@rice.edu

113

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Numerical Simulation Last Reviewed 3/8/2013 Numerical Simulation Last Reviewed 3/8/2013 Project Goal The goal of NETL's gas hydrate numerical simulation studies is to obtain pertinent, high-quality information on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with NETL's experimental and field studies programs to ensure the validity of input datasets and scenarios. Project Performers Brian Anderson, NETL/RUA Fellow (West Virginia University) Hema Siriwardane, NETL/RUA Fellow (West Virginia University) Eugene Myshakin, NETL/URS Project Locations National Energy Technology Laboratory, Pittsburgh PA, and Morgantown WV West Virginia University, Morgantown, WV Background Field-scale hydrate production tests rely heavily on reservoir-scale

114

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Research in Deep Sea Sediments - New Zealand Task Gas Hydrate Research in Deep Sea Sediments - New Zealand Task DE-AI26-06NT42878 Goal The objective of this research is to determine the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Specific objectives include: a). Refine geophysical, geochemical and microbiological technologies for prospecting hydrate distribution and content; b). Contribute to establishing high-priority geographical regions of prospective interest, in terms of methane volume estimates; c). Prediction of environmental effects and geologic risks at the continental margin associated to the natural resource occurrence and resource exploitation; and d). Expand understanding of the biogeochemical parameters and associated microbial community diversity in shallow sediments that influence the porewater sulfate gradient observed through anaerobic oxidation of methane. To accomplish these objectives, the Naval Research Laboratory (NRL) collaborated with New Zealand’s Institute of Geological and Nuclear Sciences (GNS) in a research cruise off the coast of New Zealand. NRL has conducted similar research cruises off the west coast and east coast of the United States, in the Gulf of Mexico and off the coast of Chile.

115

Detection and Production of Methane Hydrate  

Science Conference Proceedings (OSTI)

This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes that control production potential of hydrates in marine settings, Mallik was included because of the extensive data collected in a producible hydrate accumulation. To date, such a location had not been studied in the oceanic environment. The project worked closely with ongoing projects (e.g. GOM JIP and offshore India) that are actively investigating potentially economic hydrate accumulations in marine settings. The overall approach was fivefold: (1) collect key data concerning hydrocarbon fluxes which is currently missing at all locations to be included in the study, (2) use this and existing data to build numerical models that can explain gas hydrate variance at all four locations, (3) simulate how natural gas could be produced from each location with different production strategies, (4) collect new sediment property data at these locations that are required for constraining fluxes, production simulations and assessing sediment stability, and (5) develop a method for remotely quantifying heterogeneities in gas hydrate and free gas distributions. While we generally restricted our efforts to the locations where key parameters can be measured or constrained, our ultimate aim was to make our efforts universally applicable to any hydrate accumulation.

George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

2011-12-31T23:59:59.000Z

116

NETL: Methane Hydrates - DOE/NETL Projects - NT42496  

NLE Websites -- All DOE Office Websites (Extended Search)

Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates Last Reviewed 05162011 DE-AI26-05NT42496 Goal The United States Geological...

117

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation. In addition to the Final Report, several companion Topical Reports are being published.

Thomas E. Williams; Keith Millheim; Bill Liddell

2004-11-01T23:59:59.000Z

118

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

119

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-02-01T23:59:59.000Z

120

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

Science Conference Proceedings (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models and to research teams for developing future gas-hydrate projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and has been documented by the project team. This Topical Report documents drilling and coring operations and other daily activities.

Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NETL-ORD Methane Hydrate Project - Micro XCT Characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

the experimental systempressure vessel development and system parameter optimization, methane hydrate will be formed and dissociated in packed sediments. Micro-XCT scans will be...

122

NETL: Methane Hydrates - DOE/NETL Projects - Verification Of...  

NLE Websites -- All DOE Office Websites (Extended Search)

will help to determine bottomhole pressure, predict more accurate production rates of methane and water, and facilitate the selection of hydrate reservoirs for economic...

123

NETL: Methane Hydrates - DOE/NETL Projects - Development of a...  

NLE Websites -- All DOE Office Websites (Extended Search)

activities to assess the geologic occurrence, regional context, and characteristics of methane hydrate deposits along the continental margins of the U.S. with an emphasis on the...

124

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas...

125

NETL-ORD Methane Hydrate Project - Experimental Analysis and...  

NLE Websites -- All DOE Office Websites (Extended Search)

to describe the experimentally-observed stress-strain behavior as a function of methane hydrate saturation All the experimental data and their relationships will be...

126

Swapping Global Warming Gases for Methane in Gas Hydrate ...  

Science Conference Proceedings (OSTI)

Swapping Global Warming Gases for Methane in Gas Hydrate Layer ... would serve as energy sources as well as carbon dioxide storage sites in the ...

2006-07-20T23:59:59.000Z

127

NETL: Methane Hydrates - DOE/NETL Projects - Borehole Tool for...  

NLE Websites -- All DOE Office Websites (Extended Search)

liquid and gas permeabilities and their variation with saturation define flow rates; and heat capacity and conduction limit dissociation. The study of methane hydrate-bearing...

128

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

129

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

130

METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

METHANE HYDRATE ADVISORY COMMITTEE METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------~ 1. Committee's Official Designation. Methane Hydrate Advisory Committee (MHAC) 2. Authority:. This charter establishes the Methane Hydrate Advisory Committee (Committee) pursuant to Title IX, Subtitle F, Section 968, Methane Hydrate Research of the Energy Policy Act of 2005 (EPACT), Public Law 109-58. This charter establishes the MHAC under the authority of the Department of Energy (DOE). The MHAC is being renewed in accordance with the provisions of the Federal Advisory Committee Act (FACA), as amended, 5 U.S.C., App.2. 3. Objectives and Scope of Activities. The Committee provides advice to the Secretary of Energy by developing recommendations and broad programmatic priorities for the methane

131

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Well - Location Maps Well - Location Maps Maps of Prospect The Mt. Elbert prospect is located within the Milne Point Unit on Alaska’s North Slope. The Milne Point field, one of a number of distinct oil fields on the North Slope, extends offshore into the Beaufort Sea and is situated north of the large Kuparuk Field and northwest of the well known Prudhoe Bay Field. Map showing project location Map showing Milne Point Unit on Alaska’s North Slope The work done under the “Alaska North Slope Gas Hydrate Reservoir Characterization” project has resulted in a characterization of two large prospective methane hydrate accumulations (or trends); the Eileen Trend, which underlies but extends well beyond the Milne Point field, and the Tarn Trend to the west of the Kuparuk Field.

132

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

NLE Websites -- All DOE Office Websites (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program DOE/NETL Methane Hydrate Projects Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA

133

Separation and Purification of Methane from coal-Bed Methane via the Hydrate Technology  

Science Conference Proceedings (OSTI)

The separation of methane from coal-bed methane (CBM) via hydrate process using tetrahydrofuran (THF) + sodium dodecyl sulfate (SDS) as additives was investigated in this work. The effect of additives, the concentration of the additives and hydrate memory ... Keywords: CBM, hydrate, separation, THF, SDS

Cai Jing; Chen Zhaoyang; Li Xiaosen; Xu Chungang

2010-12-01T23:59:59.000Z

134

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

E-Print Network (OSTI)

of Methane Title: Carbon Dioxide Mixed Hydrates Tae-Hyukof methane with carbon dioxide in hydrate has been proposedsequestration of carbon dioxide ( CO 2 ) and/or production

Kwon, T.H.

2012-01-01T23:59:59.000Z

135

U.S. and Japan Complete Successful Field Trial of Methane Hydrate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2,...

136

Energy Department Advances Research on Methane Hydrates - the World's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research on Methane Hydrates - the Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource August 31, 2012 - 1:00pm Addthis Washington, DC - The Energy Department today announced the selection of 14 new research projects across 11 states that will be a part of an expanding portfolio of projects designed to increase our understanding of methane hydrates' potential as a future energy supply. Methane hydrates are 3D ice-lattice structures with natural gas locked inside, and are found both onshore and offshore - including under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world. Today's projects build on the completion of a successful, unprecedented test

137

Energy Department Advances Research on Methane Hydrates - the World's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Advances Research on Methane Hydrates - the Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource August 31, 2012 - 1:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - The Energy Department today announced the selection of 14 new research projects across 11 states that will be a part of an expanding portfolio of projects designed to increase our understanding of methane hydrates' potential as a future energy supply. Methane hydrates are 3D ice-lattice structures with natural gas locked inside, and are found both onshore and offshore - including under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world.

138

DOE Announces $2 Million Funding for Methane Hydrates Projects | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects November 7, 2005 - 12:43pm Addthis Seeks to Unlock World's Biggest Potential Source of "Ice That Burns" WASHINGTON, DC - The Department of Energy (DOE) today announced a total of $2 million in funding to five research projects that will assess the energy potential, safety, and environmental aspects of methane hydrate exploration and development. Termed the "ice that burns," methane hydrates are crystalline solids that release a flammable gas when melted. They are considered the Earth's biggest potential source of hydrocarbon energy and could be a key element in meeting natural gas demand in the United States,

139

NETL: Methane Hydrates - DOE/NETL Projects - A New Approach to...  

NLE Websites -- All DOE Office Websites (Extended Search)

of gas hydrate in over 1700 industry wells, this research will directly identify methane hydrate resources, and may identify new potentially commercial hydrate-bearing sand...

140

Effect of bubble size and density on methane conversion to hydrate  

SciTech Connect

Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methanewater solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

Leske, J.; Taylor, C.E.; Ladner, E.P.

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Energy Department Expands Research into Methane Hydrates, a Vast, Untapped  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands Research into Methane Hydrates, a Vast, Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. November 20, 2013 - 12:08pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, U.S. Energy Secretary Ernest Moniz announced nearly $5 million in funding across seven research projects nationwide designed to increase our understanding of methane hydrates - a large, completely untapped natural gas resource-and what it could mean for the environment, as well as American economic competiveness and energy security. "The recent boom in natural gas production - in part due to long-term Energy Department investments beginning in the 70's and 80's - has had

142

NETL: Methane Hydrates - DOE/NETL Projects - Structural and Stratigrap...  

NLE Websites -- All DOE Office Websites (Extended Search)

Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Last Reviewed 6242013 DE-FE0009904 Goal The goal of...

143

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04062010 DE-FC26-06NT42962 Goal The goal of this...

144

Energy Department Expands Research into Methane Hydrates, a Vast...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to safely and sustainably unlock the natural gas held within." Methane hydrates are ice-like structures with natural gas locked inside, which can be found both onshore and...

145

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

146

NETL: Methane Hydrates - DOE/NETL Projects - Fate of methane...  

NLE Websites -- All DOE Office Websites (Extended Search)

Numerical modeling: Constraining the conditions under which rising bubbles become armored with hydrate, the impact of hydrate armoring on the eventual fate of a bubbles...

147

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

represent components of dynamic biogeochemical environments with inputs and outputs of methane, accurate rates of biological methane production are poorly understood. Recent...

148

Data from Alaska Test Could Help Advance Methane Hydrate R&D | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from Alaska Test Could Help Advance Methane Hydrate R&D from Alaska Test Could Help Advance Methane Hydrate R&D Data from Alaska Test Could Help Advance Methane Hydrate R&D March 25, 2013 - 1:27pm Addthis Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Gayland Barksdale Technical Writer, Office of Fossil Energy DOE & Methane Hydrates The Methane Hydrate Research and Development Act of 2000 established DOE as the lead U.S. agency for methane hydrate R&D. Innovative technology is being developed to inject CO2 into methane hydrate deposits to both release the fuel and permanently store carbon dioxide. DOE's R&D program is focused on developing the tools and

149

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressurized Coring Equipment Pressurized Coring Equipment Pressure Core Equipment used by the Gulf of Mexico Gas Hydrate JIP Drilling Program Pressure Core Equipment - Photo Gallery One of the key objectives of the ChevronTexaco Gulf of Mexico hydrates Joint Industry Project is the collection and analyses of deepwater sediment samples. Because these samples may contain hydrate which is only stable at specific temperature and pressure conditions it is necessary to use specialized sampling equipment. Otherwise, the combination of reduced pressure and increased temperatures as the sample is retrieved through 4,000 feet of gulf seawater will fully dissociate the hydrate, leaving only gas and water. Although techniques exist to infer hydrates presence from distinctive geochemical markers, we have lost the ability to image the nature of hydrate distribution, or to conduct measurements of the various physical and chemical properties of hydrates in the host sediments.

150

NETL: Methane Hydrates - DOE/NETL Projects - NT42496  

NLE Websites -- All DOE Office Websites (Extended Search)

Conducting Scientific Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates Last Reviewed 05/16/2011 Conducting Scientific Studies of Natural Gas Hydrates to Support the DOE Efforts to Evaluate and Understand Methane Hydrates Last Reviewed 05/16/2011 DE-AI26-05NT42496 Goal The United States Geological Survey (USGS) conducts scientific studies of natural gas hydrates in support of DOE efforts to evaluate and understand methane hydrates, their potential as an energy resource, and the hazard they may pose to ongoing drilling efforts. This project extends USGS support to the DOE Methane Hydrate Research Program previously supported under DE-AT26-97FT34342 and DE-AT26-97FT34343. Performer U.S. Geological Survey at Denver, CO, Woods Hole, MA, and Menlo Park, CA. Background The USGS Interagency Agreement (IA) involves laboratory research and international field studies in which DOE/NETL has a significant interest.

151

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct ways. By far the most common occurrence is...

152

NETL: Methane Hydrates - DOE/NETL Projects - Structural and Stratigraphic  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Last Reviewed 12/24/2013 Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Last Reviewed 12/24/2013 DE-FE0009904 Goal The goal of this project is to determine structural and stratigraphic controls on hydrate occurrence and distribution in Green Canyon (GC) 955 and Walker Ridge (WR) 313 blocks with special emphasis on hydrate-bearing sand reservoirs. Structural and stratigraphic controls on hydrate distribution are examined by jointly analyzing surface-towed, multichannel seismic (MCS) and Ocean Bottom Seismometer (OBS) data and well logs through a combination of pre-stack depth migration (PSDM), traveltime and full-waveform inversion (FWI), and rock physics modeling methods. Performers Oklahoma State University, Stillwater, OK 74078-1026

153

Seismic-Scale Rock Physics of Methane Hydrate  

SciTech Connect

We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

Amos Nur

2009-01-08T23:59:59.000Z

154

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of hydrate saturated, fine grained sand core from the Mt. Elbert 1 well Hydrate saturated, fine grained sand core from the Mt. Elbert 1 well .- click on image to enlarge...

155

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrates Research Database and Web Dissemination Channel Last Reviewed 1202010 DE-AI26-06NT42938 Goal The goal of this project is to facilitate advances in hydrate applications...

156

Four Critical Needs to Change the Hydrate Energy Paradigm from Assessment to Production: The 2007 Report to Congress by the U.S. Federal methane Hydrate Advisory Committee  

Science Conference Proceedings (OSTI)

This work summarizes a two-year study by the U.S. Federal Methane Hydrate Advisory Committee recommending the future needs for federally-supported hydrate research. The Report was submitted to the US Congress on August 14, 2007 and includes four recommendations regarding (a) permafrost hydrate production testing, (b) marine hydrate viability assessment (c) climate effect of hydrates, and (d) international cooperation. A secure supply of natural gas is a vital goal of the U.S. national energy policy because natural gas is the cleanest and most widely used of all fossil fuels. The inherent cleanliness of natural gas, with the lowest CO2 emission per unit of heat energy of any fossil fuel, means substituting gas for coal and fuel oil will reduce emissions that can exacerbate the greenhouse effect. Both a fuel and a feedstock, a secure and reasonably priced supply of natural gas is important to industry, electric power generators, large and small commercial enterprises, and homeowners. Because each volume of solid gas hydrate contains as much as 164 standard volumes of methane, hydrates can be viewed as a concentrated form of natural gas equivalent to compressed gas but less concentrated than liquefied natural gas (LNG). Natural hydrate accumulations worldwide are estimated to contain 700,000 TCF of natural gas, of which 200,000 TCF are located within the United States. Compared with the current national annual consumption of 22 TCF, this estimate of in-place gas in enormous. Clearly, if only a fraction of the hydrated methane is recoverable, hydrates could constitute a substantial component of the future energy portfolio of the Nation (Figure 1). However, recovery poses a major technical and commercial challenge. Such numbers have sparked interest in natural gas hydrates as a potential, long-term source of energy, as well as concerns about any potential impact the release of methane from hydrates might have on the environment. Energy-hungry countries such as India and Japan are outspending the United States on hydrate science and engineering R&D by a factor of 10, and may bring this resource to market as much as a decade before the United States.

Mahajan,D.; Sloan, D.; Brewer, P.; Dutta, N.; Johnson, A.; Jones, E.; Juenger, K.; Kastner, M.; Masutani, S.; Swenson, R.; Whelan, J.; Wilson, s.; Woolsey, R.

2009-03-11T23:59:59.000Z

157

NETL: Methane Hydrates - DOE/NETL Projects - Hydrate-Bearing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and EngineeringGeological Implications Last Reviewed 6192013 DE-FE0009897 Goal The primary goal of...

158

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

The DOEJIP Gulf of Mexico Hydrate Research Cruise Status Reports During this expedition we will maintain an intermittent log of information relayed from the chief scientist on the...

159

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Pressurized Coring Equipment Pressure Core Equipment used by the Gulf of Mexico Gas Hydrate JIP Drilling Program Pressure Core Equipment - Photo Gallery One of the key objectives...

160

Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program  

SciTech Connect

This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these e?orts have been episodic in nature. To further our understanding, these e?orts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and o?ers solutions by systematically reviewing known methane hydrate Science Challenges and linking them with Technical Challenges and potential field program locations.

Collett, Tim; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta; Myers, Greg; Divins, David; Morell, Margo

2013-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Interrelation of Global Climate and the Response of Oceanic Hydrate Accumulations Last Reviewed 8/21/2013 Interrelation of Global Climate and the Response of Oceanic Hydrate Accumulations Last Reviewed 8/21/2013 Field Work Proposals: ESD07-014 (LBNL) and 08FE-003 (LANL) Project Goal The primary objectives of this project are to: 1) investigate the effect of rising water temperatures on the stability of oceanic hydrate accumulations, 2) estimate the global quantity of hydrate-originating carbon that could reach the upper atmosphere as CH4 or CO2 thus affecting global climate, 3) quantify the interrelationship between global climate and the amount of hydrate-derived carbon reaching the upper atmosphere focusing on the potential link between hydrate dissociation and cascading global warming and 4) test the discharge phase of the Clathrate Gun Hypothesis which stipulates large-scale hydrate dissociation and gas

162

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of Natural Hydrate Bearing Sediments and Hydrate Dissociation Kinetics Last Reviewed 12/6/2013 Characterization of Natural Hydrate Bearing Sediments and Hydrate Dissociation Kinetics Last Reviewed 12/6/2013 FWP-45133 Work conducted under this field work proposal (FWP) includes two distinct phases. Ongoing Phase 2 work is discussed directly below. Click here to review the completed, Phase 1 work, associated with this FWP. Phase 2 Project Information Characterization of Natural Hydrate Bearing Core Samples Goal The overarching goal of this project is to gain an improved understanding of the dynamic processes of gas hydrate accumulations in geologic media by combining laboratory studies, numerical simulation, and analysis of shipboard infrared imaging of hydrate core samples. This project comprises four principal components: (1) fundamental laboratory investigations, (2)

163

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

as described by Dillon, et al. (1998). Failure would be accompanied by the release of methane gas, but a portion of the methane is likely to be oxidized unless the gas release is...

164

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Waters Last Reviewed 5152012 DE-NT0005666 Goal The goal of this project is gain a better understanding of...

165

NETL: Methane Hydrates - DOE/NETL Projects - GAS HYDRATE DYNAMICS...  

NLE Websites -- All DOE Office Websites (Extended Search)

the first systematic geochemical and microbiological data to constrain subseafloor methane sinks and the spatio-temporal changes in the nature of microbial systems and pore...

166

NETL: Methane Hydrates - Gas Hydrate Research in Deep Sea Sediments...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemistry Section, Naval Research Laboratory, Washington, D.C. 20375 Background Methane is a potent greenhouse gas necessitating a better understanding of the mechanisms...

167

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field...  

NLE Websites -- All DOE Office Websites (Extended Search)

fluid, by flowmeters in the Low-flow Gas Measurement Skid. Compositional analysis of methane, nitrogen, carbon dioxide, and tracers pumped during injection are being monitored...

168

THERMOACOUSTIC LIQUEFACTION OF COAL MINE METHANE TO PRODUCE LNG FOR HEAVY VEHICLE APPLICAITONS  

Science Conference Proceedings (OSTI)

This report describes the activity undertaken by the project members under MORGANTOWN ENERGY TECHNOLOGY CENTER (METC) contract No. DE-AC21-95MC32185 to develop a project that will provide a commercial use for Coal Mine Methane (CMM). In particular, the report describes a project to convert CMM into Liquefied Natural Gas (LNG) and to market that LNG to the transportation sector in and around the I-79 corridor near Morgantown, West Virginia. The report discusses the sources of CMM and provides estimates of the extent of the resource specifically dedicated to the project. It discusses the novel refrigeration technology that will be employed to convert the CMM to LNG and the gas conditioning technology that will be used to bring the raw CMM up to cryogenic processing specifications. Summary capital and operating cost estimates are furnished for the project and specific monetary and schedule requirements are identified so the project can be examined in its entirety. The report discusses the immediate market potential for the successful commercial sale of LNG into the nearby market and provides estimates of future market penetration into local, regional and wider markets. Lastly, the report comments on the environmental effects of the project and extrapolates these benefits to future markets. One of the driving forces for the project is the reduction of environmentally harmful greenhouse gases currently escaping unchecked into the atmosphere. This final section analyzes the TASHER technology's potential net environmental benefits both in terms of greenhouse gases and criteria pollutants.

Dr. Kashi Aminian; Dr. Lloyd English; Dr. Douglas Patchen; Dr. Hema Siriwardane; Charles D. Estes; Raymond L. Zahradnik

1999-10-29T23:59:59.000Z

169

Energy Department Expands Research into Methane Hydrates, a Vast, Untapped  

NLE Websites -- All DOE Office Websites (Extended Search)

0, 2013 0, 2013 Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. WASHINGTON - Today, U.S. Energy Secretary Ernest Moniz announced nearly $5 million in funding across seven research projects nationwide designed to increase our understanding of methane hydrates - a large, completely untapped natural gas resource-and what it could mean for the environment, as well as American economic competiveness and energy security. "The recent boom in natural gas production - in part due to long-term Energy Department investments beginning in the 70's and 80's - has had a transformative impact on our energy landscape, helping to reduce greenhouse gas emissions and support thousands of American jobs," said Secretary Moniz. "While our research into methane hydrates is still in its early stages, these investments will increase our understanding of this domestic resource and the potential to safely and sustainably unlock the natural gas held within."

170

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects, and inhibitor-induced effects. Under this project, LBNL...

171

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and yield insight into the relative merit of various contemplated production and stimulation methods for gas hydrate. Accomplishments Field Testing (Phase 3) Completion of...

172

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Participants The organizations involved in the DOENETL-funded Alaska North Slope Gas Hydrate Reservoir Characterization project, of which the drilling of the Mt. Elbert...

173

Methane Hydrate Production from Alaskan Permafrost  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE and Maurer Technology are to evaluate the subsurface hydrate occurrence and its production potential. It is anticipated that it will require two to three months from spud...

174

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

associated gas hydrate deposits on continental margins by compiling a remote sensing inventory of active gas and oil vents, and completing sea-truth measurement of flux from...

175

Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting ConocoPhillips test results and data analysis...

176

NETL: Methane Hydrates - DOE/NETL Projects - Properties of Hydrate-Bearing  

NLE Websites -- All DOE Office Websites (Extended Search)

Properties of Hydrate-Bearing Sediments Subjected to Changing Gas Compositions Last Reviewed 12/11/2013 Properties of Hydrate-Bearing Sediments Subjected to Changing Gas Compositions Last Reviewed 12/11/2013 ESD12-011 Goal The objective of this research is to measure physical, chemical, mechanical, and hydrologic property changes in methane hydrate-bearing sediments subjected to injection of carbon dioxide and nitrogen. Performer Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720 Background A number of studies have investigated the impact of injecting carbon dioxide (CO2) and CO2-nitrogen (N2) mixtures into methane hydrate for the purpose of sequestering CO2 and releasing methane (CH4), and review articles have been published summarizing the literature. Most of these studies have investigated the fundamental physical/chemical nature of the exchange of CO2 and/or N2 with CH4 in the clathrate. These studies have

177

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas hydrates, and their implications for future resources, geohazards, and the environment Characterizing the Affect of Environmental Change on Gas-Hydrate-Bearing Deposits The University of California at San Diego (San Diego, Calif.) - Researchers at the University of California at San Diego will design, build, and test an electromagnetic (EM) system designed for very shallow water use and will apply the system to determine the extent of offshore permafrost on the U.S. Beaufort inner shelf. Energy Department Investment: $507,000 Duration: 36 months The University of Mississippi (Oxford, Miss.) - Using electronic measurements, the researchers will

178

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Gas Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparative Assessment of Advanced Gas Hydrate Production Methods Last Reviewed 09232009 DE-FC26-06NT42666 Goal The goal of this project is to compare and contrast, through...

179

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

While Drilling Operations The downhole logging while drilling (LWD) operations in the Gulf of Mexico Gas Hydrate JIP Drilling Program (GOM-JIP) was designed in part to obtain...

180

Fire in the Ice, August 2010 Methane Hydrate Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Figure 1: Simulation results of coupled thermo-dynamic and geomechanical changes around a hot Figure 1: Simulation results of coupled thermo-dynamic and geomechanical changes around a hot production well intersecting an HBS near a sloping seafloor after 30 years of production and heating (Rutqvist and Moridis, 2010). CONTENTS Geohazards of In Situ Gas Hydrates ...........................................1 Behavior of Methane Released in the Deep Ocean.....5 Core-Scale Heterogeneity ............6 Gas Volume Ratios ........................9 The Role of Methane Hydrates in the Earth System ....................12 Announcements .......................15 * Inter-Laboratory Comparison Project * Mississippi Canyon 118 * Research Fellowship * Call for Papers * Call for Abstracts * Upcoming Meetings Spotlight on Research .......... 20 Graham Westbrook CONTACT

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates in  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 Natural Gas Hydrates in Permafrost and Marine Settings: Resources, Properties, and Environmental Issues Last Reviewed 12/30/2013 DE-FE0002911 Goal The objective of this DOE-USGS Interagency Agreement is to provide world-class expertise and research in support of the goals of the 2005 Energy Act for National Methane Hydrates R&D, the DOE-led U.S. interagency roadmap for gas hydrates research, and elements of the USGS mission related to energy resources, global climate, and geohazards. This project extends USGS support to the DOE Methane Hydrate R&D Program previously conducted under DE-AI26-05NT42496. Performer U.S. Geological Survey at Woods Hole, MA, Denver, CO, and Menlo Park, CA Background The USGS Interagency Agreement (IA) involves laboratory research and

182

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo Gallery Photo Gallery Photo of hydrate saturated, fine grained sand core from the Mt. Elbert #1 well Hydrate saturated, fine grained sand core from the Mt. Elbert #1 well .- click on image to enlarge Photo of close up of fine grained sand core sample. This sample was taken for porewater geochemical analyses and was hydrate saturated at the time of recovery. Close up of fine grained sand core sample. This sample was taken for porewater geochemical analyses and was hydrate saturated at the time of recovery.- click on image to enlarge Photo of close up of fine grained sand core sample being placed in water. Links to video of hydrate dissociating One visual test used to confirm that a core contains hydrate is to place a small sample from the core in a canister of water. The gas dissociated from the hydrate-bearing sediment is released into the water and bubbles to the surface. In the video sequence shown here, dissociated hydrate gas from a sample of Mt. Elbert #1 core can be seen and heard as it is released into the water. - click on image to view video [MPEG]

183

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Properties of Hydrate – Tool Development Last Reviewed 3/18/2013 Thermal Properties of Hydrate – Tool Development Last Reviewed 3/18/2013 Project Goal The goal of this project is increased understanding of gas hydrate thermal properties through measurements on natural hydrate-bearing sediment cores and hydrate-bearing cores formed within laboratory pressure vessels. Project Performers Eilis Rosenbaum, NETL, Office of Research and Development Ronald Lynn, NETL, RDS/Parsons Dr. David Shaw, Geneva College Project Location National Energy Technology Laboratory, Pittsburgh, PA Background NETL utilizes a modified transient plane source (TPS) shown in Figure 1 using a technique originally developed by Gustafsson [1, 2] in a single-sided configuration (Figure 2). The TPS technique is capable of simultaneously determining both thermal conductivity and thermal

184

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to Arctic climate change Last Reviewed 632013 DE-NT0005665...

185

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

in the Gulf of Mexico and 2) NRL's Advanced Research Initiative on shallow sediment methane seeps. Geochemical data coupled with heat flow probe data were used to estimate...

186

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

establishing high-priority geographical regions of prospective interest, in terms of methane volume estimates; c). Prediction of environmental effects and geologic risks at the...

187

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

for this sample, but Raman bands from both samples were essentially identical: methane and ethane along with trace amounts of isobutene and trans-butane. Small angle...

188

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Horizon spill approximately 10 miles from the observatory showed increased levels of methane at two depths where detectable levels had not been seen in the past. The evidence...

189

methane hydrate science plan-final.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Revolu on. Methane in the atmosphere comes from many sources, including wetlands, rice cul va on, termites, cows and other ruminants, forest fi res, and fossil fuel...

190

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico - Applications for Safe Exploration and Production Last Reviewed 12/18/2013 Gulf of Mexico Gas Hydrates Joint Industry Project (JIP) Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico - Applications for Safe Exploration and Production Last Reviewed 12/18/2013 DE-FC26-01NT41330 Goal: The goal of this project is to develop technology and collect data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GoM). The intent of the project is to better understand the impact of hydrates on safety and seafloor stability as well as provide data for use by scientists in their study of climate change and assessment of the feasibility of marine hydrate as a potential future energy resource. Photo of the Helix Q4000 The Semi-Submersible Helix Q4000 used on the 21 day JIP Leg II Drilling and Logging Expedition

191

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

Thomas E. Williams; Keith Millheim; Buddy King

2004-03-01T23:59:59.000Z

192

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the US have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by maurer Technology, noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R and D in the area of onshore hydrate deposition. They plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. They also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. They are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. They hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, the goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

Thomas E. Williams; Keith Millheim; Buddy King

2003-12-01T23:59:59.000Z

193

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing Arctic Hydrates (Canadian Test Well and Alaskan "Wells of Opportunity") Characterizing Arctic Hydrates (Canadian Test Well and Alaskan "Wells of Opportunity") photo of drilling rig at Mallik 2L-38 location Rig at Mallik 2L-38 location courtesy Geological Survey of Canada DE-AT26-97FT34342 Goal The purpose of this project is to assess the recoverability and potential production characteristics of the onshore natural gas hydrate and associated free-gas accumulations in the Arctic of North America Performer United States Geological Survey, Denver, Colorado 80225 - partner in GSC-managed consortium and provide expertise in data gathering and analysis Background The U.S. Geological Survey has been participating in natural gas hydrate reservoir research with DOE NETL through an interagency agreement which began in the early 1980’s. The work has been an ongoing effort as part of

194

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Production Trial Using CO2 CH4 Exchange Last Reviewed 822013 DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a...

195

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

and Rice to be appropriate. The initial ocean locations are Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location is Mallik. Although the ultimate goal of the...

196

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Hydrates in the Deep Water Gulf of Mexico - Applications for Safe Exploration and Production Last Reviewed 6142013 DE-FC26-01NT41330 Goal: The goal of...

197

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Mallik 5L-39 location Drillsite at Mallik 5L-38 location courtesy Geological Survey of Canada Goal Obtain information that can be utilized to develop gas hydrate computer...

198

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of high chloride concentration and no sulfate reduction zone, indicating areas of high methane flux. The February 2005 RV Pelican cruise was a follow-up to the May 2004 cruise....

199

NETL: Methane Hydrates - Gas Hydrate Research in Deep Sea Sediments - New  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 DE-AI26-06NT42878 Goal The goal of the Interagency Agreement between the National Energy Technology Laboratory and the Naval Research Laboratory is to conduct research to enhance understanding of the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Performer Marine Biogeochemistry Section, Naval Research Laboratory, Washington, DC 20375 Background Methane is a potent greenhouse gas necessitating a better understanding of the mechanisms controlling its contribution to the atmospheric carbon cycle. Active methane fluxes (from deep sediment hydrates and seeps) contribute to shallow sediment biogeochemical carbon cycles, which in turn

200

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireline Logging Wireline Logging From: Timothy Collett, USGS Conventional Wireline Logging Operations in the Gulf of Mexico Gas Hydrate JIP Drilling Program Conventional wireline (CWL) logging operations in the Gulf of Mexico Gas Hydrate JIP Drilling Program (GOM-JIP) was scheduled to include the deployment of a signal logging string (Figure 1) and a vertical seismic profiling (VSP) tool (Figure 2) in several of the Atwater Valley and Keathley Canyon drill sites. The only wireline logging tool scheduled to be deployed was the FMS-sonic tool string, which consisted of the Formation MicroScanner (FMS), a general purpose inclinometer tool (GPIT), and scintillation gamma ray tool (SGT), and the dipole shear sonic imager tool (DSI). The vertical seismic imager tool (VSI) will also be deployed during the GOM-JIP drilling program. The wireline logging tools were provided by Schlumberger wireline services.

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field trial  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Ignik Sikumi gas hydrate field trial 2012 Ignik Sikumi gas hydrate field trial Photo of the Ignik Drilling Pad Download 2011/2012 Field Test Data Ignik Sikumi #1 "Fire in the Ice" Video Project Background Participants Ignik Sikumi Well Review CO2-Ch4 Exchange Overview August 2, 2013 - Project operations are complete. Read the Final Project Technical Report [PDF-44.1MB] February 19, 2013 - Data from the 2011/2012 field test is now available! Click here to access data. Status Report - May 7, 2012 Final abandonment of Ignik Sikumi #1 wellsite has been completed. Tubing, casing-tubing annulus, and flatpack were filled with cement per the abandonment procedure approved by the Alaska Oil and Gas Conservation Commission. To minimize effects on the landscape and leave as little trace of the operations as possible, a small area around the wellhead was

202

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gulf of Mexico Gas Hydrates Sea-floor Observatory Project Last Reviewed 12/18/2013 Gulf of Mexico Gas Hydrates Sea-floor Observatory Project Last Reviewed 12/18/2013 DE-FE26-06NT42877, DE-FC26-02NT41628, and DE-FC26-00NT40920 Goal The goal of this project is to conduct activities leading to the development, implementation, and operation of a remote, multi-sensor seafloor observatory focused on behavior of the marine hydrocarbon system within the gas hydrate stability zone of the deepwater Gulf of Mexico and analysis of data resultant from that observatory over time. Attaining this goal will lead to an enhanced understanding of the role the hydrocarbon system plays in the environment surrounding the site. Investigations include physical, chemical, and microbiological studies. Models developed from these studies are designed to provide a better understanding of gas

203

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

204

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

Science Conference Proceedings (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle, May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

205

NETL: Methane Hydrates Interagency R&D Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates Interagency R&D Conference Methane Hydrates Interagency R&D Conference March 20-22, 2002 Table of Contents Disclaimer Papers and Presentations The Curiosity of Hydrates Methane Hydrates Issues Arctic Region Projects West Coast Projects East Coast Projects Gulf of Mexico Projects Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

206

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane Expulsion  

NLE Websites -- All DOE Office Websites (Extended Search)

Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced temperature change, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the updip limit of the stability zone on continental margins. The behavior shall be explored in response to both longer term changes in sea level (e.g., twenty-thousand years) and shorter term due to atmospheric

207

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

The DOE/JIP Gulf of Mexico Hydrate Research Cruise The DOE/JIP Gulf of Mexico Hydrate Research Cruise Status Reports During this expedition we will maintain an intermittent log of information relayed from the chief scientist on the expedition. To view a report for a particular day click on the "Day x" link in any highlighted box. The planned cruise timeline [PDF-13KB] is April 17 - May 21, 2005. This is the "planned" timeline. The schedule may change without prior notification due weather conditions or other unplanned occurrences. April 17 Day 1 April 18 Day 2 April 19 Day 3 April 20 Day 4 April 21 Day 5 April 22 Day 6 April 23 Day 7 April 24 Day 8 April 25 Day 9 April 26 Day 10 April 27 Day 11 April 28 Day 12 April 29 Day 13 April 30 Day 14 May 1 Day 15 May 2 Day 16 May 3 Day 17 May 4 Day 18 May 5

208

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

The Alaska North Slope Stratigraphic Test Well The Alaska North Slope Stratigraphic Test Well image showing Donyon Rig Photo courtesy Doyon Drilling Inc Project Background Participants Status Report Maps of Research Area Science Plan Photo Gallery Well log Data From BP-DOE-US "Mount Elbert" Test Is Now Available. Digital well log data acquired at the February 2007 gas hydrates test well at Milne Point, Alaska are now available. Data include Gamma ray, neutron porosity, density porosity, three-dimensional high resolution resistivity, acoustics including compressional- and shear-wave data and nuclear magnetic resonance. A listing of the available data, as well as instructions on obtaining the data, can be found on the NETL Gas Hydrates Website . The drilling of the “Mt. Elbert prospect” within the Milne Point Unit

209

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Handling Core Handling From: Cruise Prospectus [PDF-827KB] Visit the Photo Gallery for more pictures showing core handling Non-pressurized and Pressure Core Handling Non-pressurized Core Handling (Fugro Hydraulic Piston Corer and Fugro Corer) Photo of Core packed in ice bath Core packed in ice bath Cores that might contain gas hydrates should be recovered as quickly as possible. An ice bath may be used in some cases to slow the dissociation process. A core reception/preparation van will be on the deck of the Uncle John where individual cores (perhaps up to 9 m long) can be laid on ‘core hooks' and quickly drilled, labeled and sectioned. Infrared (IR) camera imaging will be done as soon as practical after core recovery. Both track-mounted and hand held IR cameras will be used to identify the

210

The U.S. DOE Methane Hydrate R&D Program DOE Sponsored Student Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DOE Methane Hydrate R&D Program U.S. DOE Methane Hydrate R&D Program DOE Sponsored Student Researchers Publications and Presentations of DOE Supported Methane Hydrate R&D 1999-2013 December 2013 Table of Contents Section I: Documentation of Support for Education .................................................................................... 5 Additional Post-Degree Assignments at National Labs and USGS .......................................................... 14 Papers Authored and Presentations Given by NETL Methane Hydrate Fellows .................................... 15 Section II: Publications Related to the Program's Major Field Projects .................................................... 21 Alaska North Slope Gas Hydrate Reservoir Characterization (DE-FC26-01NT41332) ............................ 21

211

Notices DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

32 Federal Register 32 Federal Register / Vol. 77, No. 130 / Friday, July 6, 2012 / Notices DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane Hydrate Advisory Committee. The Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770) requires that notice of these meetings be announced in the Federal Register. DATES: Thursday, July 26, 2012, 8:00 a.m. to 8:30 a.m. (CDT)- Registration, 8:30 a.m. to 5:00 p.m. (CDT)-Meeting. ADDRESSES: Marriott Houston Airport, 18700 John F. Kennedy Boulevard, Houston, Texas 77032. FOR FURTHER INFORMATION CONTACT: Lou Capitanio, U.S. Department of Energy, Office of Oil and Natural Gas, 1000

212

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

213

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Resolution Sidescan Sonar and Multibeam Bathymetric Data Collection and Processing, Atwater Canyon, Gulf of Mexico High-Resolution Sidescan Sonar and Multibeam Bathymetric Data Collection and Processing, Atwater Canyon, Gulf of Mexico DE-AT26-97FT34344 photo of DTAGS seismic source being deployed DTAG seismic source being deployed courtesy Naval Research Laboratory Goal: During February 14-18, 2005, a scientific cruise was conducted using the R/V Pelican to obtain high-resolution sidescan sonar and multibeam bathymetric data of Mounds D and F in the Atwater Valley area of the Gulf of Mexico, to better characterize sites selected for experimental drilling by the ChevronTexaco Gas Hydrates Joint Industry Project (JIP). Performers: Naval Research Lab - Dr. Joan Gardner Location: Washington, DC 20375 Atwater Valley, Gulf of Mexico Background: During May, 2004 the Naval Research Lab (NRL) collected piston cores and

214

U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Methane Hydrates May Exceed the Energy Content of All Other Fossil Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut Americas Foreign Oil Dependence

215

Simulations of Methane Hydrate Phenomena Over Geologic Timescales. Part I: Effect of Sediment Compaction Rates on Methans Hydrate and Free Gas Accumulation  

Science Conference Proceedings (OSTI)

The focus of this work is a model that describes migration and biogenic formation of methane under conditions representative of dynamic marine basins, and the conversion of soluble methane into either solid hydrate or exsolved gas. Incorporated into the overall model are an accurate phase equilibria model for seawater-methane, a methane source term based on biogenesis data, and a sediment compaction model based on porosity as a function of position, time, and the local volume fractions of hydrate solids and free gas. Simulations have shown that under some compaction scenarios, liquid overpressures reach the lithostatic limit due to permeability constraints, which can diminish the advective transfer of soluble methane within the porous sediment. As such, the formation of methane hydrate can be somewhat of a self-moderating process. The occurrence and magnitude of hydrate formation is directly tied to fundamental parameters such as the compaction/sedimentation rates, liquid advection rates, seafloor depth, geothermal gradient, etc. Results are shown for simulations covering 20 million years, wherein growth profiles for methane hydrate and free gas (neither exceeding 10 vol% at any location) are tracked within a vertical sediment column spanning over 3000 m. A case study is also presented for the Blake Ridge region (Ocean Drilling Program Leg 164, Sites 994, 995, and 997) based on simulations covering 6 Ma, wherein it is concluded that methane migration from compaction-driven advection may account for 15-30% of the total hydrate mass present in this region.

Gering, Kevin Leslie

2003-01-01T23:59:59.000Z

216

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation  

E-Print Network (OSTI)

­510 INTRODUCTION Gas hydrates are naturally occurring solids, nonstoichio- metric clathrates, stable at relatively and in sedimentary strata of continen- tal deep sea areas and are typically composed of natural gas, mainly methane have suggested that methane concentra- tions play an important role in gas hydrate investigations. Very

Lin, Andrew Tien-Shun

217

Methane Hydrates R&D U S  

NLE Websites -- All DOE Office Websites (Extended Search)

the Power of Working Together the Power of Working Together Interagency Coordination on Methane Hydrates R&D U . S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r g y N a t i o n a l E n e r g y T e c h n o l o g y L a b o r a t o r y  Introduction Perhaps no areas of science are receiving more care- ful scrutiny and public discussion than those that deal with the interactions among earth, ocean, climate, and humanity. At the same time, our growing demands for energy are challenging us to find additional sources of clean fuel. The science of methane hydrates, a poten- tially vast source of natural gas that is part of a complex of dynamic natural systems, sits squarely in the center of these issues and the debates that surround them. Over the past two decades, scientists have been

218

Numerical Modeling of Gas Recovery from Methane Hydrate Reservoirs.  

E-Print Network (OSTI)

??ABSTRACTClass 1 hydrate deposits are characterized by a hydrate bearing layer underlain by a two phase, free-gas and water, zone. A Class 1 hydrate reservoir (more)

Silpngarmlert, Suntichai

2007-01-01T23:59:59.000Z

219

3 , LNG (Liquefied Natural Gas) -165oC  

E-Print Network (OSTI)

C / . Natural Gas Hydrate (NGH) Liquefied Natural Gas (LNG) Modes of Transport and Storage , , . . . , . , LNG (Liquefied Natural Gas) -165oC , . (Piped Natural Gas, PNG) , , . PNG, LNG ( 2-3 ), . (Natural Gas Hydrate, NGH) / . -20o

Hong, Deog Ki

220

Structure Stability of Methane Hydrate at High Pressures  

SciTech Connect

The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil cells. The diffraction data for types II (sII) and H (sH) were refined to the known structures with space groups Fd3m and P6{sub 3}/mmc, respectively. Upon compression, sI methanehydrate transforms to the sII phase at 120 MPa, and then to the sH phase at 600 MPa. The sII methanehydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methanehydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3mstructure and ice VII (Pn3m). The results highlight the role of guest (CH{sub 4})-host (H{sub 2}O) interactions in the stabilization of the hydratestructures under pressure.

J Shu; X Chen; I Chou; W Yang; J Hu; R Hemley; K Mao

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes  

SciTech Connect

Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

2011-06-01T23:59:59.000Z

222

Methane Main  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

223

Experimental study on the formation and dissociation conditions of methane hydrates in porous media  

E-Print Network (OSTI)

Gas hydrates are crystalline compounds formed when gas and water molecules are combined under low temperature and high pressure conditions. This study experimentally investigates the conditions leading to the formation and dissociation of gas hydrates formed by methane gas and pure water in porous media. Methane gas hydrates were formed in a cell packed with 0.177-mm (0.007 in) diameter single sand (U.S. Sieve Series Designation Mesh No. 80) and 0.420-mm (0.017 in) diameter single sand (U.S. Sieve Series Designation Mesh No. 40), which were saturated with pure methane gas and distilled deionized water. From the plots of pressure and temperature curves for the formation and dissociation of methane hydrates in porous media, the beginning and ending points of hydrate formation as the cell was cooled are investigated. The ending point of hydrate dissociation occurs as the cell is heated, so that the cell pressure increases at the conditions of hydrate dissociation. The initial conditions in this experiment were in the range of 82.4 bars (1,200 psi) to 102.7 bars (1,497 psi) of pressure and in the range of 24.3?C (75.7?F) to 27.3?C (81.1?F) of temperature. At the end of hydrate dissociation, the conditions of equilibrium phase was found approximately at a pressure of 88.8 bars (1,294 psi) and temperature of 14.5oC (58.1?F) in Runs 1 to 10, at a pressure of 91.8 bars (1,337 psi) and temperature of 17.4?C (63.3?F) in Runs 11 and 12, at a pressure of 86.5 bars (1,260 psi) and temperature of 17.31oC (63.2?F) in Run 13, and at a pressure of 93.2 bars (1,359 psi) and temperature of 15.9?C (60.6?F) in Runs 14 to 16. Temperature jumping data at the beginning point of hydrate formation and the variation with time of pressure and temperature during hydrate formation and dissociation were recorded. These experimental data may be used to improve predictive thermodynamic models of methane hydrates in porous media. The accurate prediction of methane hydrates in porous media may remove a hazard to drilling from seafloor hydrate slides resulting from the dissociation of gas hydrates. A predictive thermodynamic model would also allow the prediction of the onset of hydrate formation conditions in porous media, and the evaluation of methods to recover methane gas from gas hydrate reservoirs.

Jung, Woodong

2002-01-01T23:59:59.000Z

224

U.S. and Japan Complete Successful Field Trial of Methane Hydrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. and Japan Complete Successful Field Trial of Methane Hydrate U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2, 2012 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the completion of a successful, unprecedented test of technology in the North Slope of Alaska that was able to safely extract a steady flow of natural gas from methane hydrates - a vast, entirely untapped resource that holds enormous potential for U.S. economic and energy security. Building upon this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic as well as research to test additional technologies that could be used to locate,

225

NETL: Methane Hydrates - DOE/NETL Projects - Planning of a Marine...  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine Methane Hydrate Pressure Coring Program for the Walker Ridge and Green Canyon Areas of the Gulf of Mexico Last Reviewed 6192013 DE-FE0010175 Goal The primary goal of this...

226

NETL: Methane Hydrates - DOE/NETL Projects - Application of Crunch-Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of CrunchFlow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites Last Reviewed 12/11/2013 Application of CrunchFlow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites Last Reviewed 12/11/2013 DE-FE0010496 Goal The goal of this project is to apply a multi-component, multi-dimensional reactive transport simulation code to constrain modern day methane fluxes and to reconstruct past episodes of methane flux that can be correlated with environmental changes. Performers Oregon State University – Corvallis, OR Background The importance of understanding the role that gas hydrates play in the global carbon cycle and in understanding their potential as a future energy resource have long been recognized and are key components of the Methane Hydrate R&D Program. Fundamental questions remain, however, as to the residence time of gas hydrates near the seafloor and deeper within the

227

Data from Innovative Methane Hydrate Test on Alaska's North Slope Now  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data from Innovative Methane Hydrate Test on Alaska's North Slope Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website March 11, 2013 - 10:07am Addthis DOE participated in gas hydrate field production trials in early 2012 in partnership with ConocoPhillips and the Japan Oil, Gas and Metals National Corp at the IÄ¡nik Sikumi (Inupiat for “Fire in the Ice”) test well, shown here, on the north slope of Alaska. Datasets from that field trial are now available to the public. DOE participated in gas hydrate field production trials in early 2012 in partnership with ConocoPhillips and the Japan Oil, Gas and Metals National Corp at the Iġnik Sikumi (Inupiat for "Fire in the Ice") test well,

228

NETL: Methane Hydrates - DOE/NETL Projects - Application of Crunch...  

NLE Websites -- All DOE Office Websites (Extended Search)

multi-dimensional reactive transport simulation code to constrain modern day methane fluxes and to reconstruct past episodes of methane flux that can be correlated with...

229

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

Science Conference Proceedings (OSTI)

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

230

GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS  

SciTech Connect

The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

James Sorensen; Jaroslav Solc; Bethany Bolles

2000-07-01T23:59:59.000Z

231

Methane Hydrates: Major Energy Source for the Future or Wishful Thinking?  

SciTech Connect

Methane hydrates are methane bearing, ice-like materials that occur in abundance in permafrost areas such as on the North Slope of Alaska and Canada and as well as in offshore continental margin environments throughout the world including the Gulf of Mexico and the East and West Coasts of the United States. Methane hydrate accumulations in the United States are currently estimated to be about 200,000 Tcf, which is enormous when compared to the conventional recoverable resource estimate of 2300 Tcf. On a worldwide basis, the estimate is 700,000 Tcf or about two times the total carbon in coal, oil and conventional gas in the world. The enormous size of this resource, if producible to any degree, has significant implications for U.S. and worldwide clean energy supplies and global environmental issues. Historically the petroleum industry's interests in methane hydrates have primarily been related to safety issues such as wellbore stability while drilling, seafloor stability, platform subsidence, and pipeline plugging. Many questions remain to be answered to determine if any of this potential energy resource is technically and economically viable to produce. Major technical hurdles include: 1) methods to find, characterize, and evaluate the resource; 2) technology to safely and economically produce natural gas from methane hydrate deposits; and 3) safety and seafloor stability issues related to drilling through gas hydrate accumulations to produce conventional oil and gas. The petroleum engineering profession currently deals with gas hydrates in drilling and production operations and will be key to solving the technical and economic problems that must be overcome for methane hydrates to be part of the future energy mix in the world.

Thomas, Charles Phillip

2001-09-01T23:59:59.000Z

232

NETL: Methane Hydrates - DOE/NETL Projects - Measurement and Interpretation  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement and Interpretation of Seismic Velocities and Attenuation in Hydrate-Bearing Sediments Last Reviewed 12/18/2013 Measurement and Interpretation of Seismic Velocities and Attenuation in Hydrate-Bearing Sediments Last Reviewed 12/18/2013 DE-FE0009963 Goal The primary project objectives are to relate seismic and acoustic velocities and attenuations to hydrate saturation and texture. The information collected will be a unique dataset in that seismic attenuation will be acquired within the seismic frequency band. The raw data, when combined with other measurements (e.g., complex resistivity, micro-focus x-ray computed tomography, etc.), will enable researchers to understand not only the interaction between mineral surfaces and gas hydrates, but also how the hydrate formation method affects the hydrate-sediment system in terms of elastic properties. An over-arching goal of this research is to calibrate geophysical

233

Methane hydrate formation in turbidite sediments of northern Cascadia IODP Expedition 311  

Science Conference Proceedings (OSTI)

Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SWNE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~8 km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~49 mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23 cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and N80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (N63 ?m) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245 mbsf.

Torres, M. E.; Trehu, Ann M.; cespedes, N.; Kastner, Miriam; Wortmann, Ulrich; Kim, J.; Long, Philip E.; Malinverno, Alberto; Pohlman, J. W.; Collett, T. S.

2008-07-15T23:59:59.000Z

234

NETL: Methane Hydrates - DOE/NETL Projects - Hydrate-Bearing Clayey  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Last Reviewed 12/30/2013 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Last Reviewed 12/30/2013 DE-FE0009897 Goal The primary goal of this research effort is to contribute to an in-depth understanding of hydrate bearing, fine-grained sediments with a focus on investigation of their potential for hydrate-based gas production. Performer Georgia Tech Research Corporation, Atlanta GA Background Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. Yet hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate-lense topology, system connectivity, and physical

235

NETL: Methane Hydrates - DOE/NETL Projects - Numerical Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects, and inhibitor-induced effects. Under this project, LBNL...

236

NETL: Methane Hydrates - DOE/NETL Projects - Downhole Oxyfuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

for producing natural gas from hydrate-bearing sediments are depressurization and thermal stimulation. Test well results indicate that depressurization alone may not be sufficient...

237

NETL: Methane Hydrates - DOE/NETL Projects - THCM Coupled Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

effort are to develop a truly coupled numerical model that addresses the complex thermo-hydro-chemo-mechanical (THCM) phenomena in hydrate-bearing sediments through incorporation...

238

NETL: National Methane Hydrates R&D Program- 2009 GOM JIP Expedition  

NLE Websites -- All DOE Office Websites (Extended Search)

The National Methane Hydrates R&D Program The National Methane Hydrates R&D Program 2009 Gulf of Mexico JIP - Leg II DOE-Sponsored Expedition Confirms Resource-Quality Gas Hydrate in the Gulf of Mexico Leg II Initial Scientific Reports Now Available Photo of semi-submersible Helix Project Background Participants Pre-Drilling Expedition Overview Drilling/Logging Sites The LWD Program Site Summaries Walker Ridge-Block 313 Green Canyon-Block 955 Alaminos Canyon block 21 and East Breaks block 992 JIP Website [external site] FITI article - Summer 2009 Leg II Initial Scientific Reports On May 6, 2009, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL)in collaboration with the U.S. Geological Survey (USGS), the U.S. Minerals Management Service, an industry research consortium led by Chevron, and others completed a landmark gas hydrate

239

Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction  

SciTech Connect

Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

Everett, Susan M [ORNL; Rawn, Claudia J [ORNL; Keffer, David J. [University of Tennessee, Knoxville (UTK); Mull, Derek L [ORNL; Payzant, E Andrew [ORNL; Phelps, Tommy Joe [ORNL

2013-01-01T23:59:59.000Z

240

Assessing the Thermodynamic Feasibility of the Conversion of Methane Hydrate into Carbon Dioxide Hydrate in Porous Media  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing the Thermodynamic Feasibility of the Conversion of Methane Assessing the Thermodynamic Feasibility of the Conversion of Methane Hydrate into Carbon Dioxide Hydrate in Porous Media Duane H. Smith (dsmith@netl.doe.gov; 304-285-4069), U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 Kal Seshadri (kal.seshadri@netl.doe.gov; 304-285-4680), Parsons Infrastructure and Technology Group, Morgantown, WV 26505 Joseph W. Wilder (wilder@math.wvu.edu; 304-293-2011), U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 (Permanent Address: Dept of Mathematics, P. O. Box 6310, West Virginia University, Morgantown, WV, 26506-6310) Abstract Concerns about the potential effects of rising carbon dioxide levels in the atmosphere have stimulated interest in a number of carbon dioxide sequestration studies. One

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations  

SciTech Connect

To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

2010-07-01T23:59:59.000Z

242

NETL: Methane Hydrates - DOE/NETL Projects - Temporal Characterization of  

NLE Websites -- All DOE Office Websites (Extended Search)

Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters Last Reviewed 12/18/2013 Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters Last Reviewed 12/18/2013 DE-FE0010141 Goal The overall objective of the project is to investigate hydrate system dynamics beneath seafloor mounds—a structurally focused example of hydrate occurrence at the landward extreme of their stability field—in the northern Gulf of Mexico. Researchers will conduct observatory-based in situ measurements at Woolsey Mound, MC118 to: Characterize (geophysically) the sub-bottom distribution of hydrate and its temporal variability and, Contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents, and seafloor

243

NETL: Methane Hydrates - DOE/NETL Projects - Reconstructing Paleo...  

NLE Websites -- All DOE Office Websites (Extended Search)

to track diagenetic changes that are associated with the anaerobic oxidation of methane. To achieve this goal, this project aims to (1) reconstruct the paleo-positions of...

244

Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir  

E-Print Network (OSTI)

on lateral variations of the BGHS and BSR. This may be important for gas hydrate studies in regions of the manuscript. References Brown, K.M., 1996. The nature, distribution, and origin of gas hydrate in the ChileTrapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge

Taylor, Michael H.

245

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

SciTech Connect

Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

2011-02-15T23:59:59.000Z

246

NETL: Methane Hydrates - DOE/NETL Projects - Verification Of Capillary  

NLE Websites -- All DOE Office Websites (Extended Search)

Verification Of Capillary Pressure Functions And Relative Permeability Equations For Modeling Gas Production From Gas Hydrates Last Reviewed 12/12/2013 Verification Of Capillary Pressure Functions And Relative Permeability Equations For Modeling Gas Production From Gas Hydrates Last Reviewed 12/12/2013 DE-FE0009927 Goal The goal of this project is to verify and validate the capillary pressure functions and relative permeability equations that are frequently used in hydrate numerical simulators. In order to achieve this goal, numerical simulation using a network model will be used to suggest fitting parameters, modify existing equations or, if necessary, develop new equations for better simulation results. Performers Wayne State University, Detroit, MI 48202-3622 Background Numerical simulation is used to estimate and predict long-term behavior of hydrate-bearing sediments during gas production [Kurihara et al., 2008;

247

NETL: Methane Hydrates - DOE/NETL Projects - Measurement and...  

NLE Websites -- All DOE Office Websites (Extended Search)

of CO2 for CH4 has been proposed (and briefly tested) as a method of both extracting methane and sequestering carbon dioxide. Our suite of measurements can be systematically...

248

NETL: Methane Hydrates - DOE/NETL Projects - Temporal Characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

330m, worldwide, in association with a variety of other seafloor features including methane seeps (Crutchley et al., 2010), cold-seeps (Barnes et al., 2010), pockmarks (Chand et...

249

Cage occupancies in the high pressure structure H methane hydrate: A neutron diffraction study  

SciTech Connect

A neutron diffraction study was performed on the CD{sub 4}: D{sub 2}O structure H clathrate hydrate to refine its CD{sub 4} fractional cage occupancies. Samples of ice VII and hexagonal (sH) methane hydrate were produced in a Paris-Edinburgh press and in situ neutron diffraction data collected. The data were analyzed with the Rietveld method and yielded average cage occupancies of 3.1 CD{sub 4} molecules in the large 20-hedron (5{sup 12}6{sup 8}) cages of the hydrate unit cell. Each of the pentagonal dodecahedron (5{sup 12}) and 12-hedron (4{sup 3}5{sup 6}6{sup 3}) cages in the sH unit cell are occupied with on average 0.89 and 0.90 CD{sub 4} molecules, respectively. This experiment avoided the co-formation of Ice VI and sH hydrate, this mixture is more difficult to analyze due to the proclivity of ice VI to form highly textured crystals, and overlapping Bragg peaks of the two phases. These results provide essential information for the refinement of intermolecular potential parameters for the water methane hydrophobic interaction in clathrate hydrates and related dense structures.

Tulk, Christopher A [ORNL; Klug, Dennis D [National Research Council of Canada; Moreira Dos Santos, Antonio F [ORNL; Karotsis, Georgios [ORNL; Guthrie, Malcolm [Carnegie Institution of Washington; Molaison, Jamie J [ORNL; Pradhan, Neelam [ORNL

2012-01-01T23:59:59.000Z

250

Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments  

SciTech Connect

In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methanes carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications to date, with five more circulating in draft form, and several others planned.

Valentine, David

2012-09-30T23:59:59.000Z

251

NETL-ORD Methane Hydrate Project - Micro XCT Characterization and  

NLE Websites -- All DOE Office Websites (Extended Search)

Micro-XCT Characterization and Examination of Pressured Cores Last Reviewed 7/15/2013 Micro-XCT Characterization and Examination of Pressured Cores Last Reviewed 7/15/2013 Goal The primary goal of this research is to visualize gas hydrate within sediment pore spaces under in situ conditions using a high-resolution micro-XCT scanner. Performers Yongkoo Seol – NETL Office of Research & Development Eilis Rosenbaum – NETL Office of Research & Development Jongho Cha- Oak Ridge Institute for Science and Education Location National Energy Technology Laboratory - Morgantown, West Virginia Description The initial phase of this research will focus on developing the experimental system needed to accommodate hydrate-bearing samples under in-situ conditions within an existing micro-XCT (X-ray transparent cell) system. Development will consist of designing, building, and testing the

252

Application of numerical, experimental and life cycle assessment methods to the investigation of natural gas production from methane hydrate deposits using carbon dioxide clathrate sequestration.  

E-Print Network (OSTI)

??Natural gas hydrates, commonly called methane (CH4) hydrates, are ice-like materials belonging to the family of clathrates that form at low temperature and high pressure. (more)

Nago, Annick

2013-01-01T23:59:59.000Z

253

Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data  

SciTech Connect

The numerical simulator TOUGH+HYDRATE (T+H) was used to predict the transient pure methane hydrate (no sediment) dissociation data. X-ray computed tomography (CT) was used to visualize the methane hydrate formation and dissociation processes. A methane hydrate sample was formed from granular ice in a cylindrical vessel, and slow depressurization combined with thermal stimulation was applied to dissociate the hydrate sample. CT images showed that the water produced from the hydrate dissociation accumulated at the bottom of the vessel and increased the hydrate dissociation rate there. CT images were obtained during hydrate dissociation to confirm the radial dissociation of the hydrate sample. This radial dissociation process has implications for dissociation of hydrates in pipelines, suggesting lower dissociation times than for longitudinal dissociation. These observations were also confirmed by the numerical simulator predictions, which were in good agreement with the measured thermal data during hydrate dissociation. System pressure and sample temperature measured at the sample center followed the CH{sub 4} hydrate L{sub w}+H+V equilibrium line during hydrate dissociation. The predicted cumulative methane gas production was within 5% of the measured data. Thus, this study validated our simulation approach and assumptions, which include stationary pure methane hydrate-skeleton, equilibrium hydrate-dissociation and heat- and mass-transfer in predicting hydrate dissociation in the absence of sediments. It should be noted that the application of T+H for the pure methane hydrate system (no sediment) is outside the general applicability limits of T+H.

Gupta, A.; Moridis, G.J.; Kneafsey, T.J.; Sloan, Jr., E.D.

2009-08-15T23:59:59.000Z

254

IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION  

Science Conference Proceedings (OSTI)

The primary activities accomplished during this quarter were continued efforts to develop plans for Phase 2 of this cooperative agreement based on the evolving operational planning for IODP Expedition 311, which will use the JOIDES Resolution to study marine methane hydrates along the Cascadia margin, offshore Vancouver Island. IODP Expedition 311 has been designed to further constrain the models for the formation of marine gas hydrate in subduction zone accretionary prisms. The objectives include characterizing the deep origin of the methane, its upward transport, its incorporation in gas hydrate, and its subsequent loss to the seafloor. The main attention of this expedition is on the widespread seafloor-parallel layer of dispersed gas hydrate located just above the base of the predicted stability field. In a gas hydrate formation model, methane is carried upward through regional sediment or small-scale fracture permeability, driven by the tectonic consolidation of the accretionary prism. The upward moving methane is incorporated into the gas hydrate clathrate as it enters the methane hydrate stability zone. Also important is the focusing of a portion of the upward methane flux into localized plumes or channels to form concentrations of near-seafloor gas hydrate. The amount of gas hydrate in local concentrations near the seafloor is especially important for understanding the response of marine gas hydrate to climate change. The expedition includes coring and downhole measurements at five sites across the Northern Cascadia accretionary prism. The sites will track the history of methane in an accretionary prism from (1) its production by mainly microbiological processes over a thick sediment vertical extent, (2) its upward transport through regional or locally focused fluid flow, (3) its incorporation in the regional hydrate layer above the BSR or in local concentrations at or near the seafloor, (4) methane loss from the hydrate by upward diffusion, and (5) methane oxidation and incorporation in seafloor carbonate, or expulsion to the ocean. This expedition builds on the previous Cascadia gas hydrate drilling of ODP Leg 146 and on more recent ODP Leg 204 off Oregon. Important experiments being considered for DOE/NETL funding as part of the JOI cooperative agreement include, (1) Logging-While-Drilling/Measurements-While-Drilling (LWD/MWD), (2) Pressure Core Sampling (PCS/HYACINTH) of gas hydrate, and fluid recovery under in situ conditions, (3) X-ray CT logging of whole cores under in situ conditions, and (4) Infrared thermal imaging of whole round cores to map temperature variations resulting from the presence of hydrate. Preliminary budget estimates have been made for each of these tasks and discussions are ongoing with DOE/NETL program managers to develop a final plan that can be implemented within the constraints of the available funding and logistical considerations.

Frank R. Rack; Tim Francis; Peter Schultheiss; Philip E. Long; Barry M. Freifeld

2005-04-01T23:59:59.000Z

255

Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead  

Science Conference Proceedings (OSTI)

Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL confirmed the feasibility of the process. However, researchers at BCT were unable to develop equipment suitable for continuous operation and demonstration of the process in the field was not attempted. The significant achievements of the research area: Bench-scale batch results using carbon dioxide indicate >40% of the feed water to the hydrate formation reactor was converted to hydrate in a single pass; The batch results also indicate >23% of the feed water to the hydrate formation reactor (>50% of the hydrate formed) was converted to purified water of a quality suitable for discharge; Continuous discharge and collection of hydrates was achieved at atmospheric pressure. Continuous hydrate formation and collection at atmospheric conditions was the most significant achievement and preliminary economics indicate that if the unit could be made operable, it is potentially economic. However, the inability to continuously separate the hydrate melt fraction left the concept not ready for field demonstration and the project was terminated after Phase Two research.

BC Technologies

2009-12-30T23:59:59.000Z

256

Permeability of laboratory-formed methane-hydrate-bearing sand: Measurements and observations using x-ray computed tomography  

SciTech Connect

Methane hydrate was formed in two moist sands and a sand/silt mixture under a confining stress in an X-ray-transparent pressure vessel. Three initial water saturations were used to form three different methane-hydrate saturations in each medium. X-ray computed tomography (CT) was used to observe location-specific density changes caused by hydrate formation and flowing water. Gas-permeability measurements in each test for the dry, moist, frozen, and hydrate-bearing states are presented. As expected, the effective permeabilities (intrinsic permeability of the medium multiplied by the relative permeability) of the moist sands decreased with increasing moisture content. In a series of tests on a single sample, the effective permeability typically decreased as the pore space became more filled, in the order of dry, moist, frozen, and hydrate-bearing. In each test, water was flowed through the hydrate-bearing medium and we observed the location-specific changes in water saturation using CT scanning. We compared our data to a number of models, and our relative permeability data compare most favorably with models in which hydrate occupies the pore bodies rather than the pore throats. Inverse modeling (using the data collected from the tests) will be performed to extend the relative permeability measurements.

Kneafsey, T. J.; Seol, Y.; Gupta, A.; Tomutsa, L.

2010-09-15T23:59:59.000Z

257

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

258

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution  

Science Conference Proceedings (OSTI)

The primary accomplishment of the JOI Cooperative Agreement with DOE/NETL in this quarter was the deployment of tools and measurement systems on ODP Leg 204 to study hydrate deposits on Hydrate Ridge, offshore Oregon from July through September, 2002. During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to map estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which the process of gas hydrate formation is occurring. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred physical and sedimentological properties. Among the most interesting preliminary results are: (1) the discovery that gas hydrates are distributed through a broad depth range within the GHSZ and that different physical and chemical proxies for hydrate distribution and concentration give generally consistent results; (2) evidence for the importance of sediment properties for controlling the migration of fluids in the accretionary complex; (3) geochemical indications that the gas hydrate system at Hydrate Ridge contains significant concentrations of higher order hydrocarbons and that fractionation and mixing signals will provide important constraints on gas hydrate dynamics; and (4) the discovery of very high chlorinity values that extend for at least 10 mbsf near the summit, indicating that hydrate formation here must be very rapid.

Frank Rack; Gerhard Bohrmann; Anne Trehu; Michael Storms; Derryl Schroeder; ODP Leg 204 Shipboard Scientific Party

2002-09-30T23:59:59.000Z

259

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution  

Science Conference Proceedings (OSTI)

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were (1) the preliminary postcruise evaluation of the tools and measurement systems that were used during ODP Leg 204 to study hydrate deposits on Hydrate Ridge, offshore Oregon from July through September 2002; and (2) the preliminary study of the hydrate-bearing core samples preserved in pressure vessels and in liquid nitrogen cryofreezers, which are now stored at the ODP Gulf Coast Repository in College Station, TX. During ODP Leg 204, several newly modified downhole tools were deployed to better characterize the subsurface lithologies and environments hosting microbial populations and gas hydrates. A preliminary review of the use of these tools is provided herein. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were used extensively and successfully during ODP Leg 204 aboard the D/V JOIDES Resolution. These systems provided a strong operational capability for characterizing the in situ properties of methane hydrates in subsurface environments on Hydrate Ridge during ODP Leg 204. Pressure was also measured during a trial run of the Fugro piezoprobe, which operates on similar principles as the DVTP-P. The final report describing the deployments of the Fugro Piezoprobe is provided in Appendix A of this report. A preliminary analysis and comparison between the piezoprobe and DVTP-P tools is provided in Appendix B of this report. Finally, a series of additional holes were cored at the crest of Hydrate Ridge (Site 1249) specifically geared toward the rapid recovery and preservation of hydrate samples as part of a hydrate geriatric study partially funded by the Department of Energy (DOE). In addition, the preliminary results from gamma density non-invasive imaging of the cores preserved in pressure vessels are provided in Appendix C of this report. An initial visual inspection of the samples stored in liquid nitrogen is provided in Appendix D of this report.

Frank Rack; Michael Storms; Derryl Schroeder; Brandon Dugan; Peter Schultheiss; ODP Leg 204 Shipboard Scientific Party

2002-12-31T23:59:59.000Z

260

X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand  

SciTech Connect

We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

Seol, Yongkoo; Kneafsey, Timothy J.

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION  

Science Conference Proceedings (OSTI)

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) follow-up logging of pressure cores containing hydrate-bearing sediment; and (2) opening of some of these cores to establish ground-truth understanding. The follow-up measurements made on pressure cores in storage are part of a hydrate geriatric study related to ODP Leg 204. These activities are described in detail in Appendices A and B of this report. Work also continued on developing plans for Phase 2 of this cooperative agreement based on evolving plans to schedule a scientific ocean drilling expedition to study marine methane hydrates along the Cascadia margin, in the NE Pacific as part of the Integrated Ocean Drilling Program (IODP) using the R/V JOIDES Resolution.

Frank R. Rack; Peter Schultheiss; Melanie Holland

2005-01-01T23:59:59.000Z

262

LNG transportation  

Science Conference Proceedings (OSTI)

In the beginning of 1965, the participants to the starting up of first French LNG transportation system between ARZEW and LE HAVRE were indeed pioneers when they started the cool-down of the three tanks of LE HAVRE, with a LNG freight delivered by old liberty-ship ''BEAUVAIS''. Could they forecast the development of LNG industry in FRANCE and in the world and imagine that modest 'JULES VERNE' and his two english brothers would have, 25 years later, 80 successors - more than five times as big, for the main part of them, that 12 liquefaction plants would be running in the world, supplying about twenty LNG terminals. For the first time, a country - FRANCE - can draw the lessons from the exploitation of the 3 LNG transportation systems during a long period. That is the subject of the present paper.

Picard, J.

1988-01-01T23:59:59.000Z

263

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution  

Science Conference Proceedings (OSTI)

Cooperative Agreement DE-FC26-01NT41329 between Joint Oceanographic Institutions and DOE-NETL was divided into two phases based on successive proposals and negotiated statements of work pertaining to activities to sample and characterize methane hydrates on ODP Leg 204 (Phase 1) and on IODP Expedition 311 (Phase 2). The Phase 1 Final Report was submitted to DOE-NETL in April 2004. This report is the Phase 2 Final Report to DOE-NETL. The primary objectives of Phase 2 were to sample and characterize methane hydrates using the systems and capabilities of the D/V JOIDES Resolution during IODP Expedition 311, to enable scientists the opportunity to establish the mass and distribution of naturally occurring gas and gas hydrate at all relevant spatial and temporal scales, and to contribute to the DOE methane hydrate research and development effort. The goal of the work was to provide expanded measurement capabilities on the JOIDES Resolution for a dedicated hydrate cruise to the Cascadia continental margin off Vancouver Island, British Columbia, Canada (IODP Expedition 311) so that hydrate deposits in this region would be well characterized and technology development continued for hydrate research. IODP Expedition 311 shipboard activities on the JOIDES Resolution began on August 28 and were concluded on October 28, 2005. The statement of work for this project included three primary tasks: (1) research management oversight, provided by JOI; (2) mobilization, deployment and demobilization of pressure coring and core logging systems, through a subcontract with Geotek Ltd.; and, (3) mobilization, deployment and demobilization of a refrigerated container van that will be used for degassing of the Pressure Core Sampler and density logging of these pressure cores, through a subcontract with the Texas A&M Research Foundation (TAMRF). Additional small tasks that arose during the course of the research were included under these three primary tasks in consultation with the DOE-NETL Program Manager. All tasks outlined in the original statement of work were accomplished except for the deployment and use of the X-ray CT system under Subtask 2-2. This reduction in scope provided resources that were applied to other activities to support the overall project. Post-expedition analysis of results and report writing will continue beyond this reporting period, however, all field deployments associated with this project have been successfully concluded as of this writing.

Frank R. Rack

2006-09-20T23:59:59.000Z

264

Gas production from hydrate-bearing sediments.  

E-Print Network (OSTI)

??Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane (more)

Jang, Jaewon

2011-01-01T23:59:59.000Z

265

Formation & Dissociation of Methane Hydrates in Sediments Part II : Numerical modelling  

E-Print Network (OSTI)

Nomenclature cw mass fraction of water in water phase cw,q mass fraction of water produced or injected in water phase cch4 mass fraction of methane in water phase cw,q mass fraction of methane produced or injected into account the solubility of methane in water and the heat of phase transitions. * e-mail: laurent

Paris-Sud XI, Université de

266

LNG Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LNG Reports LNG Reports LNG Reports December 9, 2013 LNG Monthly Report - November 2013 LNG Monthly Report - November 2013 March 21, 2013 LNG Annual Report - 2012 LNG Annual Report - 2012 January 28, 2013 LNG Export Study - Related Documents EIA and NERA analysis of LNG exports, and associated documents March 15, 2012 LNG Annual Report - 2011 LNG Annual Report - 2011 March 1, 2011 LNG Annual Report - 2010 LNG Annual Report - 2010 March 1, 2010 LNG Annual Report - 2009 LNG Annual Report - 2009 October 14, 2009 LNG Annual Report - 2008 LNG Annual Report - 2008 October 10, 2008 LNG Annual Report - 2007 LNG Annual Report - 2007 March 1, 2007 LNG Annual Report - 2006 LNG Annual Report - 2006 March 1, 2006 LNG Annual Report - 2005 LNG Annual Report - 2005 March 1, 2005 LNG Annual Report - 2004

267

NETL: Methane Hydrates - DOE/NETL Projects - A New Approach to  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Approach to Understanding the Occurrence and Volume of Natural Gas Hydrate in the Northern Gulf of Mexico Using Petroleum Industry Well Logs Last Reviewed 12/18/2013 A New Approach to Understanding the Occurrence and Volume of Natural Gas Hydrate in the Northern Gulf of Mexico Using Petroleum Industry Well Logs Last Reviewed 12/18/2013 DE-FE0009949 Goal The overarching objective of the project is to significantly increase our understanding of the occurrence, volume, and fine scale distribution of natural gas hydrate in the northern Gulf of Mexico using petroleum industry and Gulf of Mexico Gas Hydrate Joint Industry Project (JIP) well logs. Performer The Ohio State University, Columbus, OH 43210 Background A large quantity of natural gas hydrate certainly occurs within the sediments of the northern Gulf of Mexico; however, the total amount and distribution of gas hydrate across the basin is relatively unconstrained

268

NETL: National Methane Hydrates R&D Program- 2009 GOM JIP Expedition  

NLE Websites -- All DOE Office Websites (Extended Search)

of fracture-filling gas hydrate. As drilling proceeding, the lack of use of heavy drilling fluids and slow penetration rates (both designed intentionally to maximize the...

269

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution  

SciTech Connect

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) Frank Rack, Anne Trehu, and Tim Collett presented preliminary results and operational outcomes of ODP Leg 204 at the American Association of Petroleum Geologists annual meeting in Salt Lake City, UT; (2) several Leg 204 scientists participated in special hydrate sessions at the international EGS/AGU/EUG meeting in Nice, France and presented initial science results from the cruise, which included outcomes arising from this cooperative agreement; and, (3) postcruise evaluation of the data, tools and measurement systems that were used during ODP Leg 204 continued in the preparation of deliverables under this agreement. At the EGS/EUG/AGU meeting in Nice, France in April, Leg 204 Co-chiefs Anne Trehu and Gerhard Bohrmann, as well as ODP scientists Charlie Paull, Erwin Suess, and Jim Kennett, participated in a press conference on hydrates. The well-attended press conference entitled ''Gas Hydrates: Free methane found and controversy over the 'hydrate gun''' led to stories in Nature on-line and BBC radio, among others. There were six (6) oral and fifteen (15) poster presentations on ODP Leg 204 hydrate science at the EGS/AGU/EUG Meeting in Nice, France on April 6-11, 2003. This was a very strong showing at a meeting just over six month following the completion of the drilling cruise and highlighted many of the results of the leg, including the results obtained with instruments and equipment funded under this cooperative agreement. At the AAPG annual meeting in Salt Lake City, UT on May 11-14, 2003, Anne Trehu gave an oral presentation about the scientific results of Leg 204, and Frank Rack presented a poster outlining the operational and technical accomplishments. Work continued on analyzing data collected during ODP Leg 204 and preparing reports on the outcomes of Phase 1 projects as well as developing plans for Phase 2.

Frank Rack; ODP Leg 204 Shipboard Scientific Party

2003-06-30T23:59:59.000Z

270

Landfill Gas Conversion to LNG and LCO{sub 2}. Final Report  

Science Conference Proceedings (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery. Work was done in the following areas: (1) production of natural gas pipeline methane for liquefaction at an existing LNG facility, (2) production of LNG from sewage digester gas, (3) the use of mixed refrigerants for process cooling in the production of LNG, liquid CO{sub 2} and pipeline methane, (4) cost estimates for an LNG production facility at the Arden Landfill in Washington PA.

Brown, W.R.; Cook, W. J.; Siwajek, L.A.

2000-10-20T23:59:59.000Z

271

NETL: Methane Hydrates - DOE/NETL Projects - Kinetic Parameters for the  

NLE Websites -- All DOE Office Websites (Extended Search)

Kinetic Parameters for the Exchange of Hydrate Formers Last Reviewed 12/16/2013 Kinetic Parameters for the Exchange of Hydrate Formers Last Reviewed 12/16/2013 FWP 65213 Goal The overarching goal of this project is to gain an improved understanding of the dynamic processes of gas hydrate accumulations in geologic media by combining laboratory studies, numerical simulation, and analysis of shipboard infrared imaging of hydrate core samples. This project comprises four principal components: (1) fundamental laboratory investigations, (2) numerical simulator development and verification, (3) hydrate core characterization and analysis, and (4) applied laboratory and numerical investigations. Performer Pacific Northwest National Laboratory (PNNL), Richland, Washington Background Numerical Simulation A new simulator in the STOMP simulator series for the production of natural

272

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution  

SciTech Connect

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were the deployment of tools and measurement systems for testing on ODP Leg 201, which is intended to study hydrate deposits on the Peru margin as part of other scientific investigations. Additional accomplishments were related to the continuing evolution of tools and measurements systems in preparation for deployment on ODP Leg 204, Hydrate Ridge, offshore Oregon in July 2002. The design for PCS Gas Manifold was finalized and parts were procured to assemble the gas manifold and deploy this system with the Pressure Core Sampler (PCS) tool on ODP Leg 201. The PCS was deployed 17 times during ODP Leg 201 and successfully retrieved cores from a broad range of lithologies and sediment depths along the Peru margin. Eleven deployments were entirely successful, collecting between 0.5 and 1.0 meters of sediment at greater than 75% of hydrostatic pressure. The PCS gas manifold was used in conjunction with the Pressure Core Sampler (PCS) throughout ODP Leg 201 to measure the total volume and composition of gases recovered in sediment cores associated with methane hydrates. The results of these deployments will be the subject of a future progress report. The FUGRO Pressure Corer (FPC), one of the HYACE/HYACINTH pressure coring tools, and two FUGRO engineers were deployed on the D/V JOIDES Resolution during ODP Legs 201 to field-test this coring system at sites located offshore Peru. The HYACINTH project is a European Union (EU) funded effort to develop tools to characterize methane hydrate and measure physical properties under in-situ conditions. The field-testing of these tools provides a corollary benefit to DOE/NETL at no cost to this project. The opportunity to test these tools on the D/V JOIDES Resolution was negotiated as part of a cooperative agreement between JOI/ODP and the HYACINTH partners. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were deployed onboard the R/V JOIDES Resolution and used extensively during ODP Leg 201. Preliminary results indicate successful deployments of these tools. An infrared-thermal imaging system (IR-TIS) was delivered to JOI/ODP for testing and use on ODP Leg 201 to identify methane hydrate intervals in the recovered cores. The results of these experiments will be the subject of a future progress report. This report presents an overview of the primary methods used for deploying the ODP memory tools and PCS on ODP Leg 201 and the preliminary operational results of this leg. Discussions regarding the laboratory analysis of the recovered cores and downhole measurements made during these deployments will be covered in a future progress report.

Frank Rack; Derryl Schroeder; Michael Storms; ODP Leg 201 Shipboard Scientific Party

2001-03-31T23:59:59.000Z

273

Vapor--liquid equilibria of nitrogen, methane, ethane, and propane binary mixtures at LNG temperatures from total pressure measurements. [For use in design of equipment for storage and handling of LNG  

SciTech Connect

Vapor-liquid equilibrium data have been measured on four binary mixtures relative to the calculation of phase equilibria at temperatures of liquid natural gas. Measurements at -260/sup 0/F were made by a total pressure method for mixtures of nitrogen-methane, nitrogen-ethane, methane-ethane, and methane-propane. Interaction coefficients were derived for the P-V-T, Inc. Mark V computer program. Good agreement is found with literature data where comparisons can be made.

Wilson, G.M.

1975-01-01T23:59:59.000Z

274

IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION  

SciTech Connect

The primary accomplishment of the JOI Cooperative Agreement with DOE/NETL in this quarter was the preparation of tools and measurement systems for deployment, testing and use on ODP Leg 204, which will study hydrate deposits on Hydrate Ridge, offshore Oregon. Additional accomplishments were related to the postcruise evaluation of tools and measurements systems used on ODP Leg 201 along the Peru margin from January through March, 2002. The operational results from the use of the Pressure Core Sampler (PCS) tool and the PCS Gas Manifold on ODP Leg 201 are evaluated in this progress report in order to prepare for the upcoming deployments on ODP Leg 204 in July, 2002. The PCS was deployed 17 times during ODP Leg 201 and successfully retrieved cores from a broad range of lithologies and sediment depths along the Peru margin. Eleven deployments were entirely successful, collecting between 0.5 and 1.0 meters of sediment at greater than 75% of hydrostatic pressure. The PCS gas manifold was used in conjunction with the Pressure Core Sampler (PCS) throughout ODP Leg 201 to measure the total volume and composition of gases recovered in sediment cores associated with methane gas hydrates. The FUGRO Pressure Corer (FPC), one of the HYACE/HYACINTH pressure coring tools, was also deployed on the D/V JOIDES Resolution during ODP Legs 201 to field-test this coring system at three shallow-water sites located offshore Peru. The field-testing of these tools provides a corollary benefit to DOE/NETL at no cost to this project. The testing of these tools on the D/V JOIDES Resolution was negotiated as part of a cooperative agreement between JOI/ODP and the HYACINTH partners. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were used extensively during ODP Leg 201. The data obtained from the successful deployments of these tools is still being evaluated by the scientists and engineers involved in this testing; however, preliminary results are presented in this report. An infrared-thermal imaging system (IR-TIS) was deployed for the first time on ODP Leg 201. This system was used to identify methane hydrate intervals in the recovered cores. Initial discussions of these experiments are provided in this report. This report is an overview of the field measurements made on recovered sediment cores and the downhole measurements made during ODP Leg 201. These results are currently being used to incorporate the ''lessons learned'' from these deployments to prepare for a dedicated ODP leg to study the characteristics of naturally-occurring hydrates in the subsurface environment of Hydrate Ridge, offshore Oregon during ODP Leg 204, which will take place from July through September, 2002.

Dr. Frank R. Rack; Dr. Gerald Dickens; Kathryn Ford; Derryl Schroeder; Michael Storms; ODP Leg 201 Shipboard Scientific Party

2002-08-01T23:59:59.000Z

275

NETL: Methane Hydrates - DOE/NETL Projects - Mapping Permafrost and Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 Mapping Permafrost and Gas Hydrate using Marine Controlled Source Electromagnetic Methods (CSEM) Last Reviewed 12/18/2013 DE-FE0010144 Goal The objective of this project is to develop and test a towed electromagnetic source and receiver system suitable for deployment from small coastal vessels to map near-surface electrical structure in shallow water. The system will be used to collect permafrost data in the shallow water of the U.S. Beaufort Inner Shelf at locations coincident with seismic lines collected by the U.S. Geological Survey (USGS). The electromagnetic data will be used to identify the geometry, extent, and physical properties of permafrost and any associated gas hydrate in order to provide a baseline for future studies of the effects of any climate-driven dissociation of

276

Methane Hydrate Dissociation by Depressurization in a Mount Elbert Sandstone Sample: Experimental Observations and Numerical Simulations  

SciTech Connect

A preserved sample of hydrate-bearing sandstone from the Mount Elbert Test Well was dissociated by depressurization while monitoring the internal temperature of the sample in two locations and the density changes at high spatial resolution using x-ray CT scanning. The sample contained two distinct regions having different porosity and grain size distributions. The hydrate dissociation occurred initially throughout the sample as a result of depressing the pressure below the stability pressure. This initial stage reduced the temperature to the equilibrium point, which was maintained above the ice point. After that, dissociation occurred from the outside in as a result of heat transfer from the controlled temperature bath surrounding the pressure vessel. Numerical modeling of the test using TOUGH+HYDRATE yielded a gas production curve that closely matches the experimentally measured curve.

Kneafsey, T.; Moridis, G.J.

2011-01-15T23:59:59.000Z

277

LNG Engine Delivery  

This is a method of improved delivery of liquid natural gas (LNG) within an engine delivery system. The LNG gas is first be pumped into the insulated ...

278

LNG Annual Report - 2011 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LNG Annual Report - 2011 LNG Annual Report - 2011 LNG Annual Report - 2011 (Revised 3152012) LNG Annual Report 2011 More Documents & Publications LNG Monthly Report - June 2013...

279

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution  

Science Conference Proceedings (OSTI)

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were to refine budgets and operational plans for Phase 2 of this cooperative agreement based on the scheduling of a scientific ocean drilling expedition to study marine methane hydrates along the Cascadia margin, in the NE Pacific as part of the Integrated Ocean Drilling Program (IODP) using the R/V JOIDES Resolution. The proposed statement of work for Phase 2 will include three primary tasks: (1) research management oversight, provided by JOI; (2) mobilization, deployment and demobilization of pressure coring and core logging systems, through a subcontract with Geotek Ltd., who will work with Fugro and Lawrence Berkeley National Laboratory to accomplish some of the subtasks; and, (3) mobilization, deployment and demobilization of a refrigerated container van that will be used for degassing of the Pressure Core Sampler and density logging of these pressure cores, through a subcontract with the Texas A&M Research Foundation (TAMRF). More details about these tasks are provided in the following sections of this report. The appendices to this report contain a copy of the scientific prospectus for the upcoming IODP Expedition 311 (Cascadia Margin Hydrates), which provides details of operational and scientific planning for this expedition.

Frank Rack

2005-06-30T23:59:59.000Z

280

NETL: National Methane Hydrates R&D Program- 2009 GOM JIP Expedition  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Canyon Block 955 Green Canyon Block 955 The gas hydrates JIP site selection team identified numerous potential targets in Green Canyon block 955. Three of these sites were drilled in Leg II. The wells are located in over 6,500 ft of water near the foot of the Sigsbee Escarpment. The locations are near a major embayment into the Escarpment (“Green Canyon”) which has served as a persistent focal point for sediment delivery into the deep Gulf of Mexico. Topographic map of the seafloor in the Green Canyon area. Topographic map of the seafloor in the Green Canyon area. Block 955 lies just seaward of the Sigsbee Escarpment in ~6,500 feet of water Green Canyon block 995 includes a prominent channel/levee complex that has transported and deposited large volumes of sandy sediment from the canyon to the deep Gulf of Mexico abyssal plain. The southwest corner of the block includes a recently developed structural high caused by deeper mobilization of salt. The crest of the structural high is cut by complex network of faults that can provide pathways for migrating fluids and gases. Geophysical data reviewed during assessment of the site revealed a complex array of geophysical responses near the inferred base of gas hydrate stability. Some of these responses are suggestive of free gas and some indicative of gas hydrate, but all are limited to depths that are near or below the inferred base of gas hydrate stability.

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Effect of Potential Future Climate Change on the Marine Methane Hydrate Stability Zone  

Science Conference Proceedings (OSTI)

The marine gas hydrate stability zone (GHSZ) is sensitive to temperature changes at the seafloor, which likely affected the GHSZ in the past and may do so in the future in response to anthropogenic greenhouse gas emissions. A series of climate ...

Jeremy G. Fyke; Andrew J. Weaver

2006-11-01T23:59:59.000Z

282

Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska  

E-Print Network (OSTI)

Mallik 2002 Gas Hydrate Production Research Well Program,Of Methane Hydrate Production Methods To Reservoirs WithNumerical Studies of Gas Production From Methane Hydrates,

Moridis, G.J.

2010-01-01T23:59:59.000Z

283

Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand...  

Annual Energy Outlook 2012 (EIA)

Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2...

284

In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution  

Science Conference Proceedings (OSTI)

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were the implementation of a scientific ocean drilling expedition to study marine methane hydrates along the Cascadia margin, in the NE Pacific as part of Integrated Ocean Drilling Program (IODP) Expedition 311 using the R/V JOIDES Resolution and the deployment of all required equipment and personnel to provide the required services during this expedition. IODP Expedition 311 shipboard activities on the JOIDES Resolution began on August 28 and were concluded on October 28, 2005. New ODP Pressure Coring System (PCS) aluminum autoclave chambers were fabricated prior to the expedition. During the expedition, 16 PCS autoclaves containing pressure cores were X-rayed before and after depressurization using a modified Geotek MSCL-P (multi-sensor core logger-pressure) system. These PCS cores were density scanned using the MSCL-V (multi-sensor core logger-vertical) during depressurization to monitor gas evolution. The MSCL-V was set up in a 20-foot-long refrigerated container provided by Texas A&M University through the JOI contract with TAMRF. IODP Expedition 311 was the first time that PCS cores were examined before (using X-ray), during (using MSCL-V gamma density) and after (using X-ray) degassing to determine the actual volume and distribution of sediment and gas hydrate in the pressurized core, which will be important for more accurate determination of mass balances between sediment, gas, gas hydrate, and fluids in the samples collected. Geotek, Ltd was awarded a contract by JOI to provide equipment and personnel to perform pressure coring and related work on IODP Expedition 311 (Cascadia Margin Gas Hydrates). Geotek, Ltd. provided an automated track for use with JOI's infrared camera systems. Four auxiliary monitors showed infrared core images in real time to aid hydrate identification and sampling. Images were collected from 185 cores during the expedition and processed to provide continuous core temperature data. The HYACINTH pressure coring tools, subsystems, and core logging systems were mobilized to Astoria, Oregon. Both HYACINTH pressure coring tools, the HRC (HYACE Rotary Corer) and the FPC (Fugro Pressure Corer) were mobilized and used during the expedition. Two HYACINTH engineers supervised the use of the tools and five good pressure cores were obtained. Velocity, density and X-ray linear scanning data were collected from these cores at near in situ pressure using the MSCL-P system. Dr. Barry Freifeld from Lawrence Berkeley National Laboratory provided an X-ray source and detector for X-ray imaging of pressure cores and helped Geotek with the design and mobilization of the MSCL-P system. Pressure core handling, transfer, and logging was performed in a refrigerated 20-foot container supplied by Geotek, Ltd. After scanning, the pressure cores were stored for on-shore analysis in aluminum barrels. Additional studies were conducted at the Pacific Geoscience Center (PGC), where a shore based laboratory was established after Expedition 311.

Frank Rack; Peter Schultheiss; IODP Expedition 311 Scientific Party

2005-12-31T23:59:59.000Z

285

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from...

286

U.S. LNG Imports from Brunei  

Annual Energy Outlook 2012 (EIA)

GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from...

287

LNG Annual Report - 2012 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Report - 2012 LNG Annual Report - 2012 LNG Annual Report - 2012 (Revised 3212013) LNG Annual Report - 2012...

288

NETL: National Methane Hydrates R&D Program- 2009 GOM JIP Expedition  

NLE Websites -- All DOE Office Websites (Extended Search)

- Site Summaries - Site Summaries Site Summary – Walker Ridge Block 313 The drill sites at Walker Ridge 313 lies in ~6,500 ft of water within the western part of the “Terrebonne” mini-basin in the northern Gulf of Mexico. The primary target of drilling were a series of strong seismic anomaly that lay approximately 3,000 fbsf (feet below the seafloor). These anomalies exhibit strong “positive” amplitude response, indicating a horizon in the subsurface across which the speed of sound waves significantly increases. In addition, these same horizons, when traced deeper to the west, are observed to switch “polarity” to a strong negative response. Pre-drill interpretations determined that this collection of seismic responses was indicative of free gas accumulations (the negative anomalies) being trapped within porous and permeable sand horizons by significant accumulations of overlying gas hydrate within the sediment pore space. The primary goal of JIP drilling at this site was to test the validity of this interpretation through drilling and logging of wells at this site.

289

NETL: National Methane Hydrates R&D Program- 2009 GOM JIP Expedition  

NLE Websites -- All DOE Office Websites (Extended Search)

Expedition - The LWD Program Expedition - The LWD Program GoM JIP Leg II will feature a state-of-the-art LWD tool combination that will provide unprecedented information on the nature of the sediments and their pore fill constituents. The program will feature full research-level LWD data on formation lithology and porosity, and will include Schlumberger’s MP3 (quadrapole sonic tool) and PeriScope (3-D high-resolution resistivity) tools. These tools will provide full 3-D information on the both acoustic (both compressional and shear wave) and electrical properties of the sediment enabling the improved evaluation of gas hydrate in both pore filling and fracture-filling modes. This full suite of LWD tools includes the 4.75" MP3 multipole acoustic tool immediately behind the 6.75" bit, followed by an 8.5" reamer which opens up the hole for the 6.75" LWD tools that follow. These include the geoVISION resistivity imaging tool, the EcoScope integrated propagation resistivity, density and neutron tool, the TeleScope MWD tool, the PeriScope directional propagation resistivity tool, and the sonicVISION monopole acoustic tool whose sensors are ~160 ft above the bit.

290

Methane Hydrates Code Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

Code Comparison Code Comparison Set-up for Problem 7 (Long-term simulations for Mt Elbert and PBU L- Pad "Like" Deposits) As discussed in the phone conference held on 11/9/2007, it is proposed that Problem 7 be made up of three separate cases: Problem 7a will look at a deposit similar to the Mt Elbert site. Problem 7b will be based on the PBU L-Pad site, and Problem 7c will be a down-dip version of the L-Pad site. In all three cases, a standard set of parameters will be used based on those found in Problem 6 (the history matches to the MDT data). The parameters chosen were consensus values based on the experiences of the various groups in attempting to match the MDT data for the C2 formation at Mount Elbert. Given below are the detailed descriptions of the three problems and the proposed

291

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13-17. Ziervogel, K., McKay, L., Yang, T., Nigro, L., Gutierrez, T., Rhodes, B., Dickson-Brown, J., Osburn, C., Arnosti C., Teske, A., 2010. Formation of marine snow and...

292

Methane Hydrates Code Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

formation) Model Domain 2-D Radial Grid System : 450 m x 152.5 m (700m + 12.5m + 700m) SHALE - 800 grid cells (10 X 80) used to allow for appropriate heat transfer. No Fluid flow...

293

Natural Gas - CNG & LNG  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

294

Lng weathering effects: Theoretical and empirical. Topical report, March-August 1992. [LNG (Liquified Natural Gas)  

Science Conference Proceedings (OSTI)

The report details the composition change of LNG as it weathers in a vehicle size tank. The composition methane number and stoichiometric air-fuel ratios each change with composition. The results show that the factor controlling weathering is the tank heat leak rate. Weathering occurs at a constant rate when plotted against tank volume, that is composition change is primarily a function of tank volume and the percentage of initial fill boiled off. Heat leak defines the rate at which weathering occurs.

Acker, G.H.; Moulton, S.D.

1992-12-01T23:59:59.000Z

295

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

296

U.S. LNG Imports from Indonesia  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

297

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

298

U.S. LNG Imports from Qatar  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

299

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

300

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

302

U.S. LNG Imports from Australia  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

303

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

304

U.S. LNG Imports from Algeria  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

305

LNG Monthly Report - August 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monthly Report - August 2013 LNG Monthly Report - August 2013 LNG Monthly Report - August 2013 LNG Monthly Report - August 2013...

306

LNG Monthly Report - June 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monthly Report - June 2013 LNG Monthly Report - June 2013 LNG Monthly Report - June 2013 LNG Monthly Report - June 2013 Rev1 More Documents & Publications LNG Annual Report - 2011...

307

In-Situ Sampling and Characterization of Naturally Occuring Marine Methane Hydrate Using the D/V JOIDES Resolution  

Science Conference Proceedings (OSTI)

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) Leg 204 scientific party members presented preliminary results and operational outcomes of ODP Leg 204 at the American Geophysical Union Fall meeting, which was held in San Francisco, CA; and, (2) a report was prepared by Dr. Gilles Guerin and David Goldberg from Lamont-Doherty Earth Observatory of Columbia University on their postcruise evaluation of the data, tools and measurement systems that were used for vertical seismic profiling (VSP) experiments during ODP Leg 204. The VSP report is provided herein. Intermediate in scale and resolution between the borehole data and the 3-D seismic surveys, the Vertical Seismic Profiles (VSP) carried during Leg 204 were aimed at defining the gas hydrate distribution on hydrate ridge, and refining the signature of gas hydrate in the seismic data. VSP surveys were attempted at five sites, following completion of the conventional logging operations. Bad hole conditions and operational difficulties did not allow to record any data in hole 1245E, but vertical and constant offset VSP were successful in holes 1244E, 1247B and 1250F, and walk-away VSP were successfully completed in holes 1244E, 1250F and 1251H. Three different tools were used for these surveys. The vertical VSP provided the opportunity to calculate interval velocity that could be compared and validated with the sonic logs in the same wells. The interval velocity profiles in Holes 1244E and 1247B are in very good agreement with the sonic logs. Information about the Leg 204 presentations at the AGU meeting are included in a separate Topical Report, which has been provided to DOE/NETL in addition to this Quarterly Report. Work continued on analyzing data collected during ODP Leg 204 and preparing reports on the outcomes of Phase 1 projects as well as developing plans for Phase 2.

Frank Rack; Gilles Guerin; David Goldberg; ODP Leg 204 Shipboard Scientific Party

2003-12-31T23:59:59.000Z

308

LIQUID NATURAL GAS (LNG): AN ALTERNATIVE FUEL FROM LANDFILL GAS (LFG) AND WASTEWATER DIGESTER GAS  

DOE Green Energy (OSTI)

This Research and Development Subcontract sought to find economic, technical and policy links between methane recovery at landfill and wastewater treatment sites in New York and Maryland, and ways to use that methane as an alternative fuel--compressed natural gas (CNG) or liquid natural gas (LNG) -- in centrally fueled Alternative Fueled Vehicles (AFVs).

VANDOR,D.

1999-03-01T23:59:59.000Z

309

IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION  

Science Conference Proceedings (OSTI)

The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) Frank Rack presented preliminary results and operational outcomes of ODP Leg 204 at the DOE/NETL project review and two made two presentations at the ChevronTexaco Gulf of Mexico Hydrate JIP meeting, which were both held in Westminster, CO; and, (2) postcruise evaluation of the data, tools and measurement systems that were used during ODP Leg 204 continued in the preparation of deliverables under this agreement. Work continued on analyzing data collected during ODP Leg 204 and preparing reports on the outcomes of Phase 1 projects as well as developing plans for Phase 2.

Frank R. Rack

2004-05-01T23:59:59.000Z

310

LNG annotated bibliography  

SciTech Connect

This document updates the bibliography published in Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: third status report (PNL-4172) and is a complete listing of literature reviewed and reported under the LNG Technical Surveillance Task. The bibliography is organized alphabetically by author.

Bomelburg, H.J.; Counts, C.A.; Cowan, C.E.; Davis, W.E.; DeSteese, J.G.; Pelto, P.J.

1982-09-01T23:59:59.000Z

311

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

312

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

313

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

314

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

315

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

316

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

317

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

318

U.S. LNG Imports from Norway  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

319

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

320

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. LNG Imports from Qatar  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

322

Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data  

E-Print Network (OSTI)

CT images showed that the water produced from the hydrateporous hydrate sample). Water produced from the dissociation

Gupta, A.

2010-01-01T23:59:59.000Z

323

Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data  

E-Print Network (OSTI)

propane). Gas hydrates are mainly studied in five research areas: flow assurance, energy recovery, climate change, safety,

Gupta, A.

2010-01-01T23:59:59.000Z

324

U.S. LNG Imports from Indonesia  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

325

U.S. LNG Imports from Australia  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

326

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

327

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

328

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

329

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

330

U.S. LNG Imports from Oman  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

331

U.S. LNG Imports from Egypt  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

332

U.S. LNG Imports from Norway  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

333

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

334

U.S. LNG Imports from Brunei  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

335

U.S. LNG Imports from Indonesia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

336

U.S. LNG Imports from Brunei  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

337

U.S. LNG Imports from Egypt  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

338

U.S. LNG Imports from Peru  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

339

U.S. LNG Imports from Malaysia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

340

U.S. LNG Imports from Oman  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

U.S. LNG Imports from Australia  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

342

U.S. LNG Imports from Nigeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

343

U.S. LNG Imports from Yemen  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

344

U.S. LNG Imports from Algeria  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

345

EIA-176 Instructions w-LNG  

U.S. Energy Information Administration (EIA)

LNG MARINE TERMINALS REPORTING Liquefied natural gas (LNG) terminals should report the origin of natural gas imported, along with its ultimate destination, whether it

346

U.S. LNG Markets and Uses  

U.S. Energy Information Administration (EIA)

Energy Information Administration, Office of Oil and Gas January 2003 1 U.S. LNG Markets and Uses Introduction Liquefied natural gas (LNG) is expected to play an

347

LNG Export Study | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Marketing Administration Other Agencies You are here Home Services Natural Gas Regulation LNG Export Study LNG Export Study Petroleum Reserves International...

348

U.S. LNG Imports from Canada  

U.S. Energy Information Administration (EIA) Indexed Site

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

349

Pending LT LNG Export Apps (12-6-13).xlsx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Current Current Processing Position Company DOE/FE Docket No. 1 Cameron LNG, LLC 11-162-LNG 2 Jordan Cove Energy Project, L.P. 12-32-LNG 3 LNG Development Company, LLC (d/b/a Oregon LNG) 12-77-LNG 4 Cheniere Marketing, LLC 12-97-LNG 5 Excelerate Liquefaction Solutions I, LLC 12-146-LNG 6 Carib Energy (USA) LLC 11-141-LNG 7 Gulf Coast LNG Export, LLC 12-05-LNG 8 Southern LNG Company, L.L.C. 12-100-LNG 9 Gulf LNG Liquefaction Company, LLC 12-101-LNG 10 CE FLNG, LLC 12-123-LNG 11 Golden Pass Products LLC 12-156-LNG 12 Pangea LNG (North America) Holdings, LLC 12-184-LNG 13 Trunkline LNG Export, LLC 13-04-LNG 14 Freeport-McMoRan Energy LLC 13-26-LNG 15 Sabine Pass Liquefaction, LLC 13-30-LNG 16 Sabine Pass Liquefaction, LLC 13-42-LNG 17 Venture Global LNG, LLC 13-69-LNG 18 Eos LNG LLC 13-116-LNG 19 Barca LNG LLC

350

Landfill Gas Conversion to LNG and LCO{sub 2}. Phase II Final Report for January 25, 1999 - April 30, 2000  

Science Conference Proceedings (OSTI)

This report summarizes work on the development of a process to produce LNG (liquefied methane) for heavy vehicle use from landfill gas (LFG) using Acrion's CO{sub 2} wash process for contaminant removal and CO{sub 2} recovery.

Brown, W. R.; Cook, W. J.; Siwajek, L. A.

2000-10-20T23:59:59.000Z

351

Large neighborhood search for LNG inventory routing  

Science Conference Proceedings (OSTI)

Liquefied Natural Gas (LNG) is steadily becoming a common mode for commercializing natural gas. Due to the capital intensive nature of LNG projects, the optimal design of LNG supply chains is extremely important from a profitability perspective. Motivated ... Keywords: LNG, Liquefied natural gas, Maritime inventory routing, Ship schedule optimization

Vikas Goel; Kevin C. Furman; Jin-Hwa Song; Amr S. El-Bakry

2012-12-01T23:59:59.000Z

352

The dynamic response of oceanic hydrate deposits to ocean temperature change  

E-Print Network (OSTI)

phase behavior of water, methane, solid hydrate, ice, andgaseous phase (V), solid hydrate (H), and solid ice (I). Thegaseous phase (V), solid hydrate (H), and solid ice (I). The

Reagan, Matthew T.

2008-01-01T23:59:59.000Z

353

Complete LNG Terminal Status Maps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LNG Terminal Status Maps Complete LNG Terminal Status Maps A series of slides showing the status of various LNG terminals (existing, under construction, proposed, etc.) in North...

354

LNG Export Study - Related Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LNG Export Study - Related Documents LNG Export Study - Related Documents Federal Register Notice of Availability of the LNG Export Study EIA Analysis (Study - Part 1) NERA...

355

Detailed Monthly and Annual LNG Import Statistics (2004-2012...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Detailed Monthly and Annual LNG Import Statistics (2004-2012) Detailed Monthly and Annual LNG Import Statistics (2004-2012) Detailed Monthly and Annual LNG Import Statistics...

356

LNG Observer: Second Qatargas train goes onstream  

Science Conference Proceedings (OSTI)

The January-February, 1997 issue of the LNG Observer is presented. The following topics are discussed: second Qatargas train goes onstream; financing for the eighth Indonesian liquefaction train; Koreans take stakes in Oman LNG; US imports and exports of LNG in 1996; A 60% increase in proved reserves on the North West Shelf; proposals for Indian LNG terminal CEDIGAZ forecasts world LNG trade by 2010; growth for North African gas production and exports; and new forecast sees strong growth for Asian gas.

NONE

1997-01-01T23:59:59.000Z

357

LNG -- Technology on the edge  

Science Conference Proceedings (OSTI)

With immense promise and many supporters, LNG as a vehicular fuel is still, a nascent industry. In about two years, an array of LNG engines should be commercially available, and infrastructure greatly expanded. These developments should reduce the present premium of LNG equipment, greatly improving industry economics. The most propitious sign for LNG-market developed lies in the natural gas industry`s recently refined strategy for natural gas vehicles. The new strategy targets the right competitor--diesel, not gasoline. It also targets the right market for an emerging fuel--high-fuel-usage fleets made up of medium- and heavy-duty vehicles, often driven long distances. But problems persist in critical areas of development. These problems are related to the materials handling of LNG and the refueling of vehicles. The paper discusses the studies on LNG handling procedures, its performance benefits to high-fuel use vehicles, economic incentives for its use, tax disadvantages that are being fought, and LNG competition with ``clean`` diesel fuels.

Alexander, C.B.

1995-10-01T23:59:59.000Z

358

Status of the LNG industry  

Science Conference Proceedings (OSTI)

A status report on the liquefied natural gas (LNG) industry after 22 years of international trade compares developments during 1984-1985 for the major exporting and importing countries. Japan, the leading consumer, imports over 72% of the world production, while Europe imports 27% and the US 1%. There are 10 baseload liquefaction plants with a collective capacity of about 230 million m/sup 3//streamday. Japan has 85% of the world's LNG storage facilities because its geology is not suitable for underground storage. Utilities are looking to LNG for peakshaving, but it will be necessary to time projects so that production and demand will develop a reliable trade climate. 3 tables.

Anderson, P.J.

1986-06-30T23:59:59.000Z

359

The Great Gas Hydrate Escape  

NLE Websites -- All DOE Office Websites (Extended Search)

Great Gas Great Gas Hydrate Escape The Great Gas Hydrate Escape Computer simulations revealing how methane and hydrogen pack into gas hydrates could enlighten alternative fuel production and carbon dioxide storage January 25, 2012 | Tags: Carver, Chemistry, Energy Technologies, Hopper, Materials Science PNNL Contact: Mary Beckman , +1 509 375-3688, mary.beckman@pnl.gov NERSC Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov The methane trapped in frozen water burns easily, creating ice on fire. For some time, researchers have explored flammable ice for low-carbon or alternative fuel or as a place to store carbon dioxide. Now, a computer analysis of the ice and gas compound, known as a gas hydrate, reveals key details of its structure. The results show that hydrates can hold hydrogen

360

Method for the photocatalytic conversion of gas hydrates  

DOE Patents (OSTI)

A method for converting methane hydrates to methanol, as well as hydrogen, through exposure to light. The process includes conversion of methane hydrates by light where a radical initiator has been added, and may be modified to include the conversion of methane hydrates with light where a photocatalyst doped by a suitable metal and an electron transfer agent to produce methanol and hydrogen. The present invention operates at temperatures below 0.degree. C., and allows for the direct conversion of methane contained within the hydrate in situ.

Taylor, Charles E. (Pittsburg, PA); Noceti, Richard P. (Pittsburg, PA); Bockrath, Bradley C. (Bethel Park, PA)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

362

U.S. LNG Imports from Equatorial Guinea  

Annual Energy Outlook 2012 (EIA)

Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports...

363

Summary of LNG Export Applications | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary of LNG Export Applications Summary of LNG Export Applications List of current LNG Export Applications before the Department of Energy (as of August 7, 2013). Summary of LNG...

364

North American LNG Project Sourcebook  

SciTech Connect

The report provides a status of the development of LNG Import Terminal projects in North America, and includes 1-2 page profiles of 63 LNG projects in North America which are either in operation, under construction, or under development. For each project, the sourcebook provides information on the following elements: project description, project ownership, project status, projected operation date, storage capacity, sendout capacity, and pipeline interconnection.

NONE

2007-06-15T23:59:59.000Z

365

The application of expansion foam on liquefied natural gas (LNG) to suppress LNG vapor and LNG pool fire thermal radiation  

E-Print Network (OSTI)

Liquefied Natural Gas (LNG) hazards include LNG flammable vapor dispersion and LNG pool fire thermal radiation. A large LNG pool fire emits high thermal radiation thus preventing fire fighters from approaching and extinguishing the fire. One of the strategies used in the LNG industry and recommended by federal regulation National Fire Protection Association (NFPA) 59A is to use expansion foam to suppress LNG vapors and to control LNG fire by reducing the fire size. In its application, expansion foam effectiveness heavily depends on application rate, generator location, and LNG containment pit design. Complicated phenomena involved and previous studies have not completely filled the gaps increases the needs for LNG field experiments involving expansion foam. In addition, alternative LNG vapor dispersion and pool fire suppression methodology, Foamglas pool fire suppression (PFS), is investigated as well. This dissertation details the research and experiment development. Results regarding important phenomena are presented and discussed. Foamglas PFS effectiveness is described. Recommendations for advancing current guidelines in LNG vapor dispersion and pool fire suppression methods are developed. The gaps are presented as the future work and recommendation on how to do the experiment better in the future. This will benefit LNG industries to enhance its safety system and to make LNG facilities safer.

Suardin, Jaffee Arizon

2008-08-01T23:59:59.000Z

366

Recommended research on LNG safety  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is conducting research on the safety and other environmental aspects of liquefied energy gases including liquefied natural gas (LNG). The effort reported here was conducted as part of the planning for further research into the safety aspects of transporting and storing LNG, with primary emphasis on public safety. Although the modern LNG industry has enjoyed excellent success in providing for safe operations, significant questions remain on the part of many, the expressions of which were intensified with the addition of marine-based LNG import terminals. Public safety with regard to large-scale importation of this fuel has received widespread attention in the US Congress, state legislatures, county and city governments, and from various individuals and public groups, with coverage in all the news media, including books published on the subject. The safety concerns have centered around the consequences to the public of a large spill of the cryogenic liquid from an ocean tanker or a larger storage tank, either of which might hold as much as 125,000 m/sup 3/ of LNG.

Carpenter, H.J.; Gilmore, F.R.

1981-03-01T23:59:59.000Z

367

Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam  

E-Print Network (OSTI)

Liquefied Natural Gas (LNG) is flammable when it forms a 5 15 percent volumetric concentration mixture with air at atmospheric conditions. When the LNG vapor comes in contact with an ignition source, it may result in fire and/or explosion. Because of flammable characteristics and dense gas behaviors, expansion foam has been recommended as one of the safety provisions for mitigating accidental LNG releases. However, the effectiveness of foam in achieving this objective has not been sufficiently reported in outdoor field tests. Thus, this research focused on experimental determination of the effect of expansion foam application on LNG vapor dispersion and pool fire. Specifically, for evaluating the use of foam to control the vapor hazard from spilled LNG, this study aimed to obtain key parameters, such as the temperature changes of methane and foam and the extent reduction of vapor concentration. This study also focused on identifying the effectiveness of foam and thermal exclusion zone by investigating temperature changes of foam and fire, profiles of radiant heat flux, and fire height changes by foam. Additionally, a schematic model of LNG-foam system for theoretical modeling and better understanding of underlying mechanism of foam was developed. Results showed that expansion foam was effective in increasing the buoyancy of LNG vapor by raising the temperature of the vapor permeated through the foam layer and ultimately decreasing the methane concentrations in the downwind direction. It was also found that expansion foam has positive effects on reducing fire height and radiant heat fluxes by decreasing fire heat feedback to the LNG pool, thus resulting in reduction in the safe separation distance. Through the extensive data analysis, several key parameters, such as minimum effective foam depth and mass evaporation rate of LNG with foam, were identified. However, caution must be taken to ensure that foam application can result in initial adverse effects on vapor and fire control. Finally, based on these findings, several recommendations were made for improving foam delivery methods which can be used for controlling the hazard of spilled LNG.

Yun, Geun Woong

2010-08-01T23:59:59.000Z

368

Mack LNG vehicle development  

DOE Green Energy (OSTI)

The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

Southwest Research Institute

2000-01-05T23:59:59.000Z

369

Western LNG project - Project summary  

Science Conference Proceedings (OSTI)

The Western LNG Project is a major new undertaking involving the liquefaction of conventional natural gas from the Western Canadian Sedimentary Basin at a plant on the British Columbia north coast. The gas in its liquid form will be shipped to Japan for consumption by utility companies. The Project represents a new era in gas processing and marketing for the Canadian natural gas industry.

Forgues, E.L.

1984-02-01T23:59:59.000Z

370

LNG 2006.xls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Algeria 3.0 2.8 3.0 2.8 0.0 2.8 3.0 0.0 0.0 0.0 0.0 0.0 17.4 Malaysia 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Nigeria 3.0 3.1 0.0 6.0 3.1 6.0 6.1 6.2 6.0 9.0 5.7 3.1 57.3 Oman 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Trinidad 30.5 27.6 30.2 36.4 44.3 38.6 33.4 37.0 25.2 24.7 24.6 36.7 389.3 Egypt 3.0 5.3 0.0 13.6 19.8 14.3 15.0 8.9 8.8 2.6 16.9 11.4 119.5 Qatar 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 TOTAL 39.5 38.7 33.2 58.8 67.3 61.7 57.6 52.1 40.0 36.2 47.2 51.2 583.5 LNG Imports by Receiving Terminal (Bcf) 2006 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Cove Point, MD 11.9 11.0 8.9 14.4 11.6 14.6 12.0 11.8 5.4 3.0 3.0 9.0 116.6 Elba Island, GA 7.9 7.9 7.9 13.4 13.7 13.8 13.6 16.8 13.9 10.4 13.5 14.0 146.8 Everett, MA 16.6 16.8 16.4 13.9 16.6 13.6 14.3 14.2 9.1 13.9 14.0 16.6 176.1 Lake Charles, LA 3.0 3.1

371

LNG 2005.xls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Algeria 6.0 11.3 2.8 9.0 11.4 12.0 6.0 3.2 6.0 11.8 9.0 8.6 97.2 Malaysia 3.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.0 8.7 Nigeria 2.7 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 2.9 0.0 0.0 8.1 Oman 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 Trinidad 43.7 39.2 40.4 35.7 41.2 41.5 41.2 26.8 34.8 33.2 30.1 31.4 439.2 Egypt 0.0 0.0 0.0 2.9 0.0 2.9 5.9 11.1 11.0 8.5 18.9 11.3 72.5 Qatar 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 TOTAL 57.8 53.5 45.9 47.6 52.6 56.4 53.1 43.6 51.8 59.6 58.0 51.3 631.3 LNG Imports by Receiving Terminal (Bcf) 2005 Jan Feb March April May June July Aug Sept Oct Nov Dec TOTAL Cove Point, MD 18.3 20.6 18.7 17.1 23.5 20.7 20.4 8.3 17.3 17.6 18.8 20.5 221.7 Elba Island, GA 7.9 10.6 7.9 7.8 7.9 13.3 13.1 11.1 15.6 13.6 12.5 10.7 132.1 Everett, MA 18.0 13.8 16.7 13.6 12.8 13.4 13.6 13.3 10.4 16.5 12.3 14.3 168.5 Lake Charles, LA 13.7

372

U.S. LNG Imports from Other Countries  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

373

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

374

U.S. LNG Imports from Equatorial Guinea  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

375

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

Noyes, MN Warroad, MN Babb, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Galvan Ranch, TX LNG Imports from Algeria LNG Imports from Australia LNG Imports from Brunei LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Elba Island, GA Freeport, TX Gulf LNG, MS LNG Imports from Equatorial Guinea LNG Imports from Indonesia LNG Imports from Malaysia LNG Imports from Nigeria Cove Point, MD LNG Imports from Norway Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Sabine Pass, LA LNG Imports from United Arab Emirates LNG Imports from Yemen Everett, MA Freeport, TX Sabine Pass, LA LNG Imports from Other Countries Period: Monthly Annual

376

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

Cove Point, MD Freeport, TX Sabine Pass, LA LNG Imports from Oman LNG Imports from Peru Cameron, LA Freeport, TX LNG Imports from Qatar Elba Island, GA Golden Pass, TX Sabine...

377

U.S. LNG Imports from United Arab Emirates  

Annual Energy Outlook 2012 (EIA)

Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba...

378

U.S. LNG Imports from Equatorial Guinea  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

379

U.S. LNG Imports from Other Countries  

Annual Energy Outlook 2012 (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

380

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island,...

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The dynamic response of oceanic hydrate deposits to ocean temperature change  

E-Print Network (OSTI)

during transit through the ocean water column Geophys. Res.hydrate in the world's oceans. Global Biogeochem. Cycles, 8,of methane hydrate in ocean sediment. Energy and Fuels, 19,

Reagan, Matthew T.

2008-01-01T23:59:59.000Z

382

,"California Natural Gas LNG Storage Additions (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

383

,"California Natural Gas LNG Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

384

Large Neighborhood Search for LNG Inventory Routing  

E-Print Network (OSTI)

Feb 3, 2012 ... Large Neighborhood Search for LNG Inventory Routing. Vikas Goel (vikas.goel ** *at*** exxonmobil.com) Kevin Furman (kevin.c.furman ***at***...

385

,"Idaho Natural Gas LNG Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2012 ,"Release Date:","17...

386

,"Idaho Natural Gas LNG Storage Additions (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2012 ,"Release Date:","172014"...

387

U.S. LNG Imports from Trinidad/Tobago  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

388

U.S. LNG Imports from United Arab Emirates  

Gasoline and Diesel Fuel Update (EIA)

International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT LNG Imports into Cameron, LA LNG Imports into Cove Point, MD LNG Imports into Elba Island, GA LNG Imports into Everett, MA LNG Imports into Freeport, TX LNG Imports into Golden Pass, TX LNG Imports into Gulf Gateway, LA LNG Imports into Gulf LNG, MS LNG Imports into Lake Charles, LA LNG Imports into Neptune Deepwater Port LNG Imports into Northeast Gateway LNG Imports into Sabine Pass, LA U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake Charles, LA LNG Imports from Australia Everett, MA Lake Charles, LA LNG Imports from Brunei Lake Charles, LA LNG Imports from Canada Highgate Springs, VT LNG Imports from Egypt Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf LNG, MS Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Equatorial Guinea Elba Island, GA Lake Charles, LA LNG Imports from Indonesia Lake Charles, LA LNG Imports from Malaysia Gulf Gateway, LA Lake Charles, LA LNG Imports from Nigeria Cove Point, MD Elba Island, GA Freeport, TX Gulf Gateway, LA Lake Charles, LA Sabine Pass, LA LNG Imports from Norway Cove Point, MD Sabine Pass, LA LNG Imports from Oman Lake Charles, LA LNG Imports from Peru Cameron, LA Freeport, TX Sabine Pass, LA LNG Imports from Qatar Cameron, LA Elba Island, GA Golden Pass, TX Gulf Gateway, LA Lake Charles, LA Northeast Gateway Sabine Pass, LA LNG Imports from Trinidad/Tobago Cameron, LA Cove Point, MD Elba Island, GA Everett, MA Freeport, TX Gulf Gateway, LA Gulf LNG, MS Lake Charles, LA Neptune Deepwater Port Northeast Gateway Sabine Pass, LA LNG Imports from United Arab Emirates Lake Charles, LA LNG Imports from Yemen Everett, MA Freeport, TX Neptune Deepwater Port Sabine Pass, LA LNG Imports from Other Countries Lake Charles, LA Period: Monthly Annual

389

EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG...  

NLE Websites -- All DOE Office Websites (Extended Search)

88: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project, Cameron Parish, LA EIS-0488: Cameron Pipeline Expansion Project and Cameron LNG Liquefaction Project,...

390

Northeast Gateway Natural Gas LNG Imports (Price) From Qatar...  

Gasoline and Diesel Fuel Update (EIA)

Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per Thousand Cubic Feet) Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per Thousand...

391

Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea...  

Annual Energy Outlook 2012 (EIA)

Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per Thousand Cubic Feet) Lake Charles, LA Natural Gas LNG Imports from Equatorial Guinea (Dollars per...

392

LNG Safety Research Report to Congress | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Research Report to Congress LNG Safety Research Report to Congress LNG Safety Research Report to Congress May 2012 The February 2007 Government Accountability Office Report...

393

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic Feet) Freeport, TX Natural Gas LNG Imports (Price) From Nigeria (Dollars per Thousand Cubic...

394

Opening of the Cheniere Energy Sabine Pass LNG Regasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheniere Energy Sabine Pass LNG Regasification Facility Opening of the Cheniere Energy Sabine Pass LNG Regasification Facility April 21, 2008 - 10:49am Addthis Remarks As Prepared...

395

EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

92: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA) EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

396

LNG storage: Safety analysis. Annual report, January-December 1980  

SciTech Connect

Progress is summarized on three projects in the areas of LNG safety: Rollover phenomena; Simultaneous boiling and spreading of cryogenic liquids; Modelling of LNG tank dynamics.

Reid, R.C.; Smith, K.A.; Virk, P.S.

1981-02-01T23:59:59.000Z

397

Storage and regasification of liquefied natural gas (LNG)  

Science Conference Proceedings (OSTI)

A discussion covers the historical background of LNG; a description of Columbia LNG Corp.'s LNG terminal at Cove Point, Maryland, including physical plant layout; LNG unloading facilities; the primary vaporization system, which uses submerged combustion to vaporize approximately 75% of the LNG; waste heat LNG vaporizers; four 375,000 bbl aluminum, double-wall storage tanks; the centrifugal, single-stage, pot-mounted LNG pumps; safety features including the large separation between units, and fire protection and monitoring; the construction, operating, and transportation costs; and the world-wide safety record of the LNG industry.

Litchfield, A.B.

1980-01-01T23:59:59.000Z

398

South Dakota Natural Gas LNG Storage Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas LNG Storage Withdrawals (Million Cubic Feet) South Dakota Natural Gas LNG Storage Withdrawals (Million Cubic...

399

Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation  

SciTech Connect

The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (United States). Civil and Environmental Engineering Department

2007-09-15T23:59:59.000Z

400

Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG Dominion Cove Point LNG, LP - FE Dkt. No 11-128-LNG ORDER CONDITIONALLY GRANTING LONG-TERM MULTI-CONTRACT AUTHORIZATION TO EXPORT LIQUEFIED NATURAL GAS BY VESSEL FROM THE COVE POINT LNG TERMINAL TO NON-FREE TRADE AGREEMENT NATIONS Based on a review of the complete record and for the reasons set forth below, DOE/FE has concluded that the opponents of the DCP Application have not demonstrated that the requested authorization will be inconsistent with the public interest and finds that the exports proposed in this Application are likely to yield net economic benefits to the United States. DOE/FE further finds that DCP's proposed exports on behalf of other entities should be conditionally authorized at a volumetric rate not to exceed the

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Waste Management's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

2001-01-25T23:59:59.000Z

402

LNG links remote supplies and markets  

Science Conference Proceedings (OSTI)

Liquefied natural gas (LNG) has established a niche for itself by matching remote gas supplies to markets that both lacked indigenous gas reserves and felt threatened in the aftermath of the energy crises of the 1970s and 1980s. It has provided a cost-effective energy source for these markets, while also offering an environmentally friendly fuel long before that was fashionable. The introduction of natural-gas use via LNG in the early years (mostly into France and Japan) has also allowed LNG to play a major role in developing gas infrastructure. Today, natural gas, often supplied as LNG, is particularly well-suited for use in the combined cycle technology used in independent power generation projects (IPPs). Today, LNG players cannot simply focus on monetizing gas resources. Instead, they must adapt their projects to meet the needs of changing markets. The impact of these changes on the LNG industry has been felt throughout the value chain from finding and producing gas, gas treatment, liquefaction, transport as a liquid, receiving terminals and regasification, and finally, to consumption by power producers, industrial users, and households. These factors have influenced the evolution of the LNG industry and have implications for the future of LNG, particularly in the context of worldwide natural gas.

Avidan, A.A.; Gardner, R.E.; Nelson, D.; Borrelli, E.N. [Mobil LNG Inc., Houston, TX (United States); Rethore, T.J. [Arthur D. Little Inc., Houston, TX (United States)

1997-06-02T23:59:59.000Z

403

Physical Properties of Gas Hydrates: A Review  

SciTech Connect

Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

2010-01-01T23:59:59.000Z

404

Natural gas production from Arctic gas hydrates  

Science Conference Proceedings (OSTI)

The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

Collett, T.S. (Geological Survey, Denver, CO (United States))

1993-01-01T23:59:59.000Z

405

LNG Export Study | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LNG Export Study LNG Export Study LNG Export Study As part of a broader effort to further inform decisions related to LNG exports, the Department of Energy commissioned NERA Economic Consulting to conduct a third party study in order to gain a better understanding of how U.S. LNG exports could affect the public interest, with an emphasis on the energy and manufacturing sectors. The Department is releasing that study and making it available for public review and comment. As this is not a Department of Energy product, the Department will be conducting its own review of the study as well as consideration of relevant comments made throughout the process prior to making final determinations. Federal law generally requires approval of natural gas exports to countries that have a free trade agreement with the United States. For countries that

406

Reserves hike to buoy Bontang LNG  

SciTech Connect

This paper reports that a redetermination of reserves in an Indonesian production sharing contract (PSC) will boost liquefied natural gas sales for an Indonesian joint venture (IJV) of Lasmo plc, Union Texas (South East Asia) Inc., Chinese Petroleum Corp. (CPC), and Japex Rantau Ltd. The Indonesian reserves increase involves the Sanga PSC operated by Virginia Indonesia Co., a 50-50 joint venture of Lasmo and Union Texas. Union Texas holds a 38% interest in the IJV and Lasmo 37.8%, with remaining interests held by CPC and Japex. meantime, in US LNG news: Shell LNG Co. has shelved plans to buy an added interest in the LNG business of Columbia Gas System Inc. Panhandle Eastern Corp. units Trunkline Gas Co., Trunkline LNG Co., and Panhandle Eastern Pipe Line Co. (PEPL) filed settlement agreements with the Federal Energy Regulatory Commission to recover from customers $243 million in costs associated with Panhandle's Trunkline LNG operation at Lake Charles, Louisiana.

Not Available

1992-07-27T23:59:59.000Z

407

How Gaz de France optimizes LNG regasification  

Science Conference Proceedings (OSTI)

A regasification optimization program was implemented at Montoir-de-Bretagne in 1984, and rapidly accepted by the operators. It has been an important tool for decision-making in the optimizing operation of this liquefied natural gas (LNG) storage and regasification terminal. The models used are regularly and easily updated on the basis of equipment behavior: aging or fouling. The Montoir-de-Bretagne LNG terminal is in the port area of Nates-Saint Nazaire on the Atlantic coast. It was commissioned in 1982 by Gaz de France. This terminal is used for receiving, storing, and regasifying the Algerian LNG received under a contract between Gaz de France and Sonatrach, as well as the LNG imported by Belgium and temporarily routed through France. It is designed to receive 25,000 to 200,000 cu m LNG carriers and has three 120,000 cm m LNG storage tanks. The daily sendout ranges between 6.7 million cu m and 36 million cu m. Monitor terminal supplies mainly Brittany and the Paris area. Two identifical berths allow the simultaneous reception of two LNG carriers. LNG is carried to the storage tanks in 32-in. lines at a rate of 12,000 cu m/hr. Each storage tank is equipped with three submerged 450 cu m/hr pumps with which the LNG is sent from the tanks to the secondary pumps at 8 bar. The nine high-pressure (HP) secondary pumps, with a capacity of either 450 cu m/hr or 180 cu m/hr, raise the LNG pressure to a level at least equal to pipeline pressure prior to revaporization.

Colonna, J.L.; Lecomte, B.; Caudron, S.

1986-05-05T23:59:59.000Z

408

Controls on Gas Hydrate Formation and Dissociation  

SciTech Connect

The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both up-flow and down-flow of fluid at rates that range between 0.5 to 214 cm/yr and 2-162 cm/yr, respectively. The fluid flow system at the mound and background sites are coupled having opposite polarities that oscillate episodically between 14 days to {approx}4 months. Stability calculations suggest that despite bottom water temperature fluctuations, of up to {approx}3 C, the Bush Hill gas hydrate mound is presently stable, as also corroborated by the time-lapse video camera images that did not detect change in the gas hydrate mound. As long as methane (and other hydrocarbon) continues advecting at the observed rates the mound would remain stable. The {_}{sup 13}C-DIC data suggest that crude oil instead of methane serves as the primary electron-donor and metabolic substrate for anaerobic sulfate reduction. The oil-dominated environment at Bush Hill shields some of the methane bubbles from being oxidized both anaerobically in the sediment and aerobically in the water column. Consequently, the methane flux across the seafloor is higher at Bush hill than at non-oil rich seafloor gas hydrate regions, such as at Hydrate Ridge, Cascadia. The methane flux across the ocean/atmosphere interface is as well higher. Modeling the methane flux across this interface at three bubble plumes provides values that range from 180-2000 {_}mol/m{sup 2} day; extrapolating it over the Gulf of Mexico basin utilizing satellite data is in progress.

Miriam Kastner; Ian MacDonald

2006-03-03T23:59:59.000Z

409

LNG 2013 Rev 1.xls  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TX 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Golden Pass, TX 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Gulf LNG, MS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Lake Charles, LA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Neptune...

410

Damage of Land Biosphere due to Intense Warming by 1000-Fold Rapid Increase in Atmospheric Methane: Estimation with a ClimateCarbon Cycle Model  

Science Conference Proceedings (OSTI)

Decadal-time-scale responses of climate and the global carbon cycle to warming associated with rapid increases in atmospheric methane from a massive methane release from marine sedimentary methane hydrates are investigated with a coupled climate...

Atsushi Obata; Kiyotaka Shibata

2012-12-01T23:59:59.000Z

411

Rapid Gas Hydrate Formation Processes: Will They Work?  

SciTech Connect

Researchers at DOEs National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETLs 15-Liter Hydrate Cell. Results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve (see Figure 1).

Brown, T.D.; Taylor, C.E.; Bernardo, M.P.

2010-01-01T23:59:59.000Z

412

Rapid Gas Hydrate Formation Process Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Formation Process Gas Hydrate Formation Process Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is a method and device for producing gas hydrates from a two-phase mixture of water and a hydrate forming gas such as methane (CH 4 ) or carbon dioxide (CO 2 ). The two-phase mixture is created in a mixing zone, which may be contained within the body of the spray nozzle. The two-phase mixture is subsequently sprayed into a reaction vessel, under pressure and temperature conditions suitable for gas hydrate formation. The reaction

413

Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Liquefied Natural Gas Liquefied Natural Gas (LNG) Measurement to someone by E-mail Share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on Facebook Tweet about Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on Twitter Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on Google Bookmark Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on Delicious Rank Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on Digg Find More places to share Alternative Fuels Data Center: Liquefied Natural Gas (LNG) Measurement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Liquefied Natural Gas (LNG) Measurement LNG is taxed based on the gasoline gallon equivalent, or 6.6 pounds of LNG

414

Diffusive Accumulation of Methane Bubbles in Seabed  

E-Print Network (OSTI)

We consider seabed bearing methane bubbles. In the absence of fractures the bubbles are immovably trapped in a porous matrix by surface tension forces; therefore the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. The adequate description of this process requires accounting "other-than-normal" (non-Fickian) diffusion effects, thermodiffusion and gravity action. We evaluate the diffusive flux of aqueous methane and predict the possibility of existence of bubble mass accumulation zones (which can appear independently from the presence/absence of hydrate stability zone) and effect of non-Fickian drift on the capacity of shallow and deep methane-hydrate deposits.

Goldobin, D S; Levesley, J; Lovell, M A; Rochelle, C A; Jackson, P; Haywood, A; Hunter, S; Rees, J

2010-01-01T23:59:59.000Z

415

U.S. LNG Imports from Canada  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

416

LNG fire and vapor control system technologies  

SciTech Connect

This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

1982-06-01T23:59:59.000Z

417

Potential for world trade in LNG  

Science Conference Proceedings (OSTI)

Deliveries of LNG in 1978 in international trade amounted to about 24.77 billion cu m; of the actual deliveries, 9% were received by the U.S., 30% by West European countries, and 61% by Japan. For Spain, these deliveries represented 100% of its natural gas supply; for the U.S., they represented only 2% of natural gas demand. By the mid-1980's, the international LNG growth rate will slow to approx. 16%/yr, although projects totaling 130 million cu m/day may be completed. During the late 1980's, another 94.1 million cu m/day of LNG projects could be implemented. The over-all growth rate for the decade would then be approx. 11%/yr in LNG volumes. After 1990, several LNG export projects could be put into operation, possibly in the Middle East, West Africa, and the U.S.S.R. In 1980-2000, energy demand may increase by 2%/yr. Oil should retain its 65-70% of the primary energy supply; whether natural gas can increase its relative share depends on economic and political factors. Pipeline transport of gas costs twice as much as crude oil, and sea transport of LNG costs four to five times as much as crude oil. Wider use of the refrigeration available at LNG import terminals could affect project economics favorably. Tables.

Anderson, P.J.

1980-01-01T23:59:59.000Z

418

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

419

Raley's LNG Truck Site Final Data Report  

DOE Green Energy (OSTI)

Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

Battelle

1999-07-01T23:59:59.000Z

420

LNG importing project in Taiwan, ROC  

Science Conference Proceedings (OSTI)

To cope with an ever-increasing demand for natural gas facing a dwindling indigenous supply and to follow the national policy of diversification of energy resources in the Republic of China, Chinese Petroleum Corporation (CPC) has launched its first LNG Receiving Terminal project at Yung-An, Kaohsiung for the importation of LNG to Taiwan. This paper presents selected design essentials and distinguished characteristics of this project. In pursuit of safety, operability and energy efficiency, the design and engineering of this facility features the following: Higher pressure LNG in-ground storage tanks. Application of recondensers for BOG in process. Integrated control system.

Liu, J.C.; Chung, S.T.; Shen, R.H.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (??Methane in the Arctic Shelf? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (??metagenomes?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

422

Norcal Prototype LNG Truck Fleet: Final Results  

SciTech Connect

U.S. DOE and National Renewable Energy Laboratory evaluated Norcal Waste Systems liquefied natural gas (LNG) waste transfer trucks. Trucks had prototype Cummins Westport ISXG engines. Report gives final evaluation results.

Not Available

2004-07-01T23:59:59.000Z

423

Microsoft Word - LNG_Jan2007.doc  

Gasoline and Diesel Fuel Update (EIA)

07 1 January 2007 Short-Term Energy Outlook Supplement: U.S. LNG Imports - The Next Wave Damien Gaul and Kobi Platt Overview * This supplement to the Energy Information...

424

DOE - Fossil Energy: 2013 LNG Export Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Us on Twitter Sign Up for NewsAlerts Subscribe to our RSS Feeds You are here: 2013 - LNG Export, Re-Exports & Long Term Natural Gas Applications Please note: To view the complete...

425

U.S. LNG Imports and Exports (2004-2012) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LNG Imports and Exports (2004-2012) U.S. LNG Imports and Exports (2004-2012) U.S. LNG Imports and Exports (2004-2012) U.S. LNG Imports and Exports (2004-2012)...

426

Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project  

E-Print Network (OSTI)

The combination of changing global markets for natural gas liquids (NGL) with the simultaneous increase in global demand for liquefied natural gas (LNG) has stimulated an interest in the integration of NGL recovery technology with LNG liquefaction technologies. Historically, the removal of heavy or high-freezing-point hydrocarbons from the feed to LNG plants has been characterized as gas conditioning and achieved using one or more distillation columns. While some attempts to provide reflux to the distillation columns marginally enhanced NGL recovery, little emphasis was placed on maximizing NGL recovery as a product from the LNG process. As such, the integration of the two processes was not a priority. Integrating state-of-the art NGL recovery technology within the CoP LNGSM Process1, formerly the Phillips Optimized Cascade LNG Process, results in a significant reduction in the specific power required to produce LNG, while maximizing NGL recovery. This corresponds to a production increase in both LNG and NGL for comparable compression schemes as compared to stand-alone LNG liquefaction and NGL extraction facilities. In addition, there are potential enhancements to the overall facility availability and project economics and environmental impacts using the integrated concept. This integrated concept has been applied to three ongoing international NGL/LNG projects using the CoP LNG Process in Iran LNG project. In this respect, simulation has been performed in THERMOFLEX software. Moreover, thermo economic analysis has been applied for economic and thermodynamic analysis of base and integrated cases through computer code has been provided here. Finally, the base and integrated case have been evaluated and comprised in view of thermodynamics, economics and environmental impacts.

Manesh, M. H. K.; Mazhari, V.

2009-05-01T23:59:59.000Z

427

Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan  

E-Print Network (OSTI)

as methane clathrates or clathrate hydrates of natural gas, these substances are similar to ice accumulations of natural gas on Earth are in the form of gas hydrates (Collett, 1994) that occur mainly offshore water, concern over the potential hazard posed by gas hydrates has become an important issue. Chev- ron

Knapp, James Howard

428

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Processing Core Processing Photos and other pertinent images from the cruise will be posted in the "Photo Gallery" as they become available. Core Processing Photos taken by NETL scientist aboard the Uncle John. These photos show the various tools used to analyze pressurized and non-pressurized core taken from the first drilling location at Atwater Valley. A_Transferring core to lab B_Pressure Core Transfer Chamber BC_Pressure core lab BCC_Core Processing Lab Transferring core to lab Pressure core transfer chamber Pressure core lab Core Processing lab BD_Pressure core analysis tools2 C_Pressure core analysis tools Ga Tech Mechanical Measurements Tool GeoTek Core logger Pressure core analysis tools Pressure core analysis tools Georgia Tech Mechanical measurements tool GeoTek core logger

429

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field...  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Performers ConocoPhillips Company, Houston TX and Anchorage AK ConocoPhillips Japan Oil, Gas and Metals National Corporation (JOGMEC), Japan JOGMEC...

430

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

- Contacts Contact information for technical or media related information is listed below. Media Related Inquiries: Otis Mills Office of Public Affairs Coordination, NETL...

431

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

available. Day 10 - 26 April 2005 Day 10 photos showing core taken using the Fugro Hydraulic Piston Corer (FHPC) and the seabed frame which houses the FHPC. Core1 core2...

432

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Non-pressurized and Pressure Core Handling Non-pressurized Core Handling (Fugro Hydraulic Piston Corer and Fugro Corer) Photo of Core packed in ice bath Core packed in ice...

433

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Geochemistry Program On-Board Uncle John From: Miriam Kastner, University of California at San Diego On-Board Geochemistry Analyses The objectives of the geochemistry program are...

434

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

the omni-directional source generates compressional, shear, and Stoneley waves into hard formations. The configuration of the DSI also allows recording of both in-line and...

435

NETL: Methane Hydrates - DOE/NETL Projects - Natural Gas Hydrates...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fire in the Ice articles; October 2012 and October 2013). PCCT devices include a manipulator for moving pressure cores from storage chambers into various testing chambers,...

436

Overview on Hydrate Coring, Handling and Analysis  

SciTech Connect

Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

2003-06-30T23:59:59.000Z

437

RECORD OF CATEGORICAL EXCLUSION DETERMINATION SEMPRA LNG MARKETING, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEMPRA LNG MARKETING, LLC SEMPRA LNG MARKETING, LLC FE DOCKET NO. lO-llO-LNG PROPOSED ACTIONS: 5empra LNG Marketing, lLC (Sempra) filed an application with the Office of Fossil Energy (FE) on September 2,2010, seeking authorization to export LNG from the Cameron LNG Terminal to any co untry not prohibited by U.S. law or policy. The Application was submitted pursuant to section 3 of the Natural Gas Act and 10 CFR part 590 of the Department of Energy's (DOE) regulations. No new facilities or modification to any existing facilities at the Cameron LNG Terminal are required in order for 5empra to export LNG from that facility. CATEGORICAL EXCLUSION TO BE APPLIED: Under th e above circumstances, DOE's NEPA procedures provide for a categorical exclusio n for which neither an environmental assessment (EA) nor an

438

Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Alaska Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

439

U.S. LNG Markets and Uses: June 2004 Update  

U.S. Energy Information Administration (EIA)

U.S. LNG Markets and Uses: June 2004 Update This article is an update of the Energy Information Administrations January 2003 report U.S. LNG Markets

440

Oil & Gas Research | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and Storage Oil & Gas Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Section 999 Report to Congress DOE issues the 2013 annual plan for the...

Note: This page contains sample records for the topic "methane hydrate lng" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Section 999 Program Library | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

999 Program Library Clean Coal Carbon Capture and Storage Oil & Gas Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Cost-Shared Program Publications July...

442

Tempe Transportation Division: LNG Turbine Hybrid Electric Buses  

SciTech Connect

Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

Not Available

2002-02-01T23:59:59.000Z

443

U.S. LNG Markets and Uses: June 2004 Update  

Reports and Publications (EIA)

This article is an update of the Energy Information Administration's January 2003 report U.S. LNG Markets and Uses.

Information Center

2004-06-01T23:59:59.000Z

444

NETL: News Release - Energy Department Advances Research on Methane...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Methane Hydrate opens new window "The Energy Department's long term investments in shale gas research during the 70s and 80s helped pave the way for today's boom in domestic...

445

methane hydrate science plan-final.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Period Start Date: October 1, 2012 Period Start Date: October 1, 2012 Project Period End Date: December 31, 2013 Principal Authors: / h [ a I t { { / h [ DUNS #:046862582 1201 New York Avenue, NW Fourth Floor, Washington, D.C. 20005 Prepared for: { 5 9 b 9 [ DO E Aw ard No .: DE -FE 00 10 19 5 Proje ct Title: Met hane Hyd rate Field Prog ram : Deve lopm ent of { t Met hane Hyd rate -Foc used Mar ine Drill ing, Logg ing and Cori ng Prog

446

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

with 3-D conditions using sediment columns. These experiments are examining formation stimulation using pressure, chemical, thermal, and electromagnetic sources alone as well...

447

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Science Plan The Mt. Elbert prospect will be drilled as a vertical stratigraphic test using the Doyon 14 rig. The well is being drilled beneath an exploration ice pad...

448

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

During the drilling and evaluation of the Mt. Elbert prospect well, NETL is maintaining an intermittent log of information relayed from NETL scientists actively involved with the...

449

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

costs), and the potential for enhancing the possibility of commercial development of a gas-to-liquids (GTL) facility on the North Slope to provide transportation fuels (diesel)...

450

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

by Dr. Jack Dvorkin, Stanford University September 2007 Project Review PDF-1.40MB E&P Paper PDF-294KB Technical Status Assessment PDF-512KB Peer-Reviewed Publications...

451

Methane Hydrate Advisory Committee Meeting Minutes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Regulation Advisory Committees Science & Innovation Clean Coal Carbon Capture and Storage Oil & Gas Mission News & Blog About Us Offices All Offices Program Offices Staff...

452

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

TOUGHREACT, a geochemical code for simulating chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media; and C.CANDI, a code used to describe...

453

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

during formation and dissociation were obtained. A thermodynamically consistent model for multiphase flows in porous media was developed. Current Status and Remaining Tasks The...

454

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2008 Project End: March 31, 2012 Project Funding Information: Phase 1 12 months, DOE Contribution: 622,131; Performer Contribution: 615,584 Phase 2 12 months, DOE...

455

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

at Mallik 2L-38 location Rig at Mallik 2L-38 location courtesy Geological Survey of Canada DE-AT26-97FT34342 Goal The purpose of this project is to assess the recoverability and...

456

Basin scale assessment of gas hydrate dissociation in response to climate change  

SciTech Connect

Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating climate. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. Field investigations have discovered substantial methane gas plumes exiting the seafloor along the Arctic Ocean margin, and the plumes appear at depths corresponding to the upper limit of a receding gas hydrate stability zone. It has been suggested that these plumes may be the first visible signs of the dissociation of shallow hydrate deposits due to ongoing climate change in the arctic. We simulate the release of methane from oceanic deposits, including the effects of fully-coupled heat transfer, fluid flow, hydrate dissociation, and other thermodynamic processes, for systems representative of segments of the Arctic Ocean margins. The modeling encompasses a range of shallow hydrate deposits from the landward limit of the hydrate stability zone down to water depths beyond the expected range of century-scale temperature changes. We impose temperature changes corresponding to predicted rates of climate change-related ocean warming and examine the possibility of hydrate dissociation and the release of methane. The assessment is performed at local-, regional-, and basin-scales. The simulation results are consistent with the hypothesis that dissociating shallow hydrates alone can result in significant methane fluxes at the seafloor. However, the methane release is likely to be confined to a narrow region of high dissociation susceptibility, defined by depth and temperature, and that any release will be continuous and controlled, rather than explosive. This modeling also establishes the first realistic bounds for methane release along the arctic continental shelf for potential hydrate dissociation scenarios, and ongoing w