National Library of Energy BETA

Sample records for methane hydrate deposits

  1. Methane Hydrates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Hydrates 2016 Methane Hydrates Funding Opportunity Announcement The objective of this Funding Opportunity Announcement is to select projects in FY16 that will further ongoing programmatic efforts to characterize naturally occurring gas hydrate deposits as well as their role in the natural environment and that will: Support fundamental laboratory and numerical simulation studies of gas hydrate reservoir response to potential production activities Support fundamental field, laboratory and

  2. Methane Hydrate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and

  3. Methane Hydrate Field Studies

    Broader source: Energy.gov [DOE]

    Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and...

  4. Methane Hydrates R&D Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and

  5. Methane Hydrate Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane

  6. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  7. International Cooperation in Methane Hydrates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil & Gas » Methane Hydrate » International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program (DSDP) recovered the first subsea substantial methane hydrate deposits, which spurred methane hydrate research in the US and other countries. The successor programs, the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) sampled hydrate deposits off Oregon (ODP 204, 2002) and in the Cascadia

  8. Methane Hydrates and Climate Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater

  9. DOE THREE-DIMENSIONAL STRUCTURE AND PHYSICAL PROPERTIES OF A METHANE HYDRATE DEPOSIT AND GAS RESERVOIR, BLAKE RIDGE

    SciTech Connect (OSTI)

    W. Steven Holbrook

    2004-11-11

    This report contains a summary of work conducted and results produced under the auspices of award DE-FC26-00NT40921, ''DOE Three-Dimensional Structure and Physical Properties of a Methane Hydrate Deposit and Gas Reservoir, Blake Ridge.'' This award supported acquisition, processing, and interpretation of two- and three-dimensional seismic reflection data over a large methane hydrate reservoir on the Blake Ridge, offshore South Carolina. The work supported by this project has led to important new conclusions regarding (1) the use of seismic reflection data to directly detect methane hydrate, (2) the migration and possible escape of free gas through the hydrate stability zone, and (3) the mechanical controls on the maximum thickness of the free gas zone and gas escape.

  10. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes May 15, 2014 Washington, DC...

  11. Methane Hydrate Program Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Reports Methane Hydrate Program Reports PDF icon Secretary of Energy Advisory Board Task Force Report on Methane Hydrate PDF icon FY14 Methane Hydrate Report to Congress ...

  12. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Houston, TX PDF icon July 26, 2012 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting...

  13. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Office of Environmental Management (EM)

    Washington, DC PDF icon July 16, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting...

  14. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Energy Savers [EERE]

    DC PDF icon March 27-28, 2014, Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory...

  15. Methane Hydrate Advisory Committee Meeting Minutes | Department...

    Broader source: Energy.gov (indexed) [DOE]

    June 6th - 7th, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting...

  16. methane hydrates | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methane hydrates methane-hydrates.jpg Maintaining a focused vision on what's next is one trait that makes NETL a lab of the future, and methane hydrates are one "cool" part of that vision. Found in Arctic and deep-water marine environments, methane hydrates are an untapped abundant source of natural gas. A hydrate comprises a crystal structure in which frozen water creates a cage that traps molecules of primarily methane (natural gas). NETL researchers are exploring and developing

  17. Methane Hydrate Program

    Broader source: Energy.gov (indexed) [DOE]

    ... of which aid in the characterization of the geology and hydrate occurrence at the site. ... Laboratories scaled up basin and regional scale models to simulate hydrate ...

  18. Methane Hydrate Production Technologies to be Tested on Alaska's North

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slope | Department of Energy Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will

  19. Methane Hydrate Advisory Committee Charter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter PDF icon Methane Hydrate Advisory Committee Charter More Documents & Publications ...

  20. May 15, 2014 Methane Hydrates Committee Meeting Agenda | Department...

    Office of Environmental Management (EM)

    May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda PDF icon...

  1. Methane Hydrate Advisory Committee Meeting Minutes, March 2010...

    Energy Savers [EERE]

    March 2010 Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes March 2010 Washington, DC PDF icon Methane Hydrate...

  2. Methane Hydrate Advisory Committee Meeting Minutes, June 6th...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee...

  3. Methane Hydrate Research and Development Act of 2000 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 PDF icon Methane Hydrate Research and ...

  4. Methane Hydrate Annual Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Reports Methane Hydrate Annual Reports Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per Fiscal Year. FY 14 Methane Hydrate Program Report to Congress (10.92 MB) FY 13 Methane Hydrates Annual Report to Congress (960.13 KB) FY 12 Methane Hydrates Annual Report to Congress (1.09 MB) FY 11 Methane Hydrates Annual Report to Congress (953.09 KB) FY

  5. Methane Hydrate Reservoir Simulator Code Comparison Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Reports Methane Hydrate Annual Reports Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per Fiscal Year. FY 14 Methane Hydrate Program Report to Congress (10.92 MB) FY 13 Methane Hydrates Annual Report to Congress (960.13 KB) FY 12 Methane Hydrates Annual Report to Congress (1.09 MB) FY 11 Methane Hydrates Annual Report to Congress (953.09 KB) FY

  6. METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------ 1. Committee's Official Designation. Methane Hydrate Advisory...

  7. Methane Hydrate Production Feasibility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the

  8. Methane Hydrate Advisory Committee Meeting Minutes, January 2010...

    Broader source: Energy.gov (indexed) [DOE]

    0 Atlanta, GA Methane Hydrate Advisory Committee Meeting Minutes, January 2010 More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane...

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-06-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

  10. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is

  11. May 15, 2014 Methane Hydrates Committee Meeting Agenda | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda May 15, 2014 Methane Hydrates Committee Meeting Agenda Meeting Agenda (443.71 KB) More Documents & Publications Advisory Committee Meeting Minutes, May 7, 2015 Methane Hydrate Program Reports Report of the Task Force on Methane Hydrates

  12. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new

  13. Methane Hydrate Program Annual Report to Congress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report

  14. New Methane Hydrate Research: Investing in Our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ...

  15. Data from Innovative Methane Hydrate Test on Alaska's North Slope...

    Office of Environmental Management (EM)

    Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on NETL Website Data from Innovative Methane Hydrate Test on Alaska's North Slope Now Available on ...

  16. Methane Hydrate Advisory Committee Meetings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meetings Methane Hydrate Advisory Committee Meetings May 7, 2015 Advisory Committee ... Federal Register Notice for May 15, 2014 Meeting Methane Hydrates Committee Meeting Agenda ...

  17. Methane Hydrate Advisory Committee Meeting Minutes, October 2011...

    Office of Environmental Management (EM)

    October 2011 Methane Hydrate Advisory Committee Meeting Minutes, October 2011 Methane Hydrate Advisory Committee Meeting Minutes October 2011 Washington, DC PDF icon Advisory...

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  20. Department of Energy Advance Methane Hydrates Science and Technology Projects

    Broader source: Energy.gov [DOE]

    Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

  1. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped

  2. Draft Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  3. Report of the Task Force on Methane Hydrates

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates.

  4. Methane Recovery from Hydrate-bearing Sediments

    SciTech Connect (OSTI)

    J. Carlos Santamarina; Costas Tsouris

    2011-04-30

    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  5. Methane Hydrate Advisory Committee (MHAC) Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrate Advisory Committee (MHAC) Meeting May 7, 2015 1:00 - 3:00PM (EDT) Via Teleconference MEETING SUMMARY Attached are the meeting agenda and the list of attendees; a quorum of Committee members was present. DFO Welcome and Introductions - Paula A. Gant, DFO The meeting was called to order at 1:00PM EDT by Paula A. Gant, Deputy Assistant Secretary (DAS) for Oil and Gas within the U.S. Department of Energy (DOE) and Designated Federal Officer (DFO) for the Methane Hydrate Advisory Committee

  6. Detection and Production of Methane Hydrate

    SciTech Connect (OSTI)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand processes

  7. DOE Announces $2 Million Funding for Methane Hydrates Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects November 7, 2005 - 12:43pm Addthis Seeks to Unlock World's Biggest Potential Source of "Ice That Burns" WASHINGTON, DC - The Department of Energy (DOE) today announced a total of $2 million in funding to five research projects that will assess the energy potential, safety, and environmental aspects of methane hydrate exploration and development. Termed the

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  9. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    SciTech Connect (OSTI)

    Thomas E. Williams; Keith Millheim; Buddy King

    2004-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

  10. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    SciTech Connect (OSTI)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

    2011-06-01

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

  11. MethaneHydrateRD_FC.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy (FE) has played a major role in developing technologies to help tap new, unconventional sources of natural gas. FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and managed a high-quality research portf olio that has enabled signifi cant progress toward the (DOE) Program's long-term

  12. Presentations from the March 27th - 28th Methane Hydrates Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting PDF icon International Gas ...

  13. Rapid Production of Methane Hydrates | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid Production of Methane Hydrates NETL Develops a Method for Rapidly Producing Methane Hydrates Natural gas, which is predominantly methane, is recognized as clean burning and an important bridge fuel to a future where renewable energy sources are more common. Natural gas currently accounts for nearly a quarter of the U.S. energy supply, and that share is expected to remain roughly constant over the next several decades. Energy demand during this time period is expected to continue growing,

  14. Effect of bubble size and density on methane conversion to hydrate

    SciTech Connect (OSTI)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methanewater solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  15. GAS METHANE HYDRATES-RESEARCH STATUS, ANNOTATED BIBLIOGRAPHY, AND ENERGY IMPLICATIONS

    SciTech Connect (OSTI)

    James Sorensen; Jaroslav Solc; Bethany Bolles

    2000-07-01

    The objective of this task as originally conceived was to compile an assessment of methane hydrate deposits in Alaska from available sources and to make a very preliminary evaluation of the technical and economic feasibility of producing methane from these deposits for remote power generation. Gas hydrates have recently become a target of increased scientific investigation both from the standpoint of their resource potential to the natural gas and oil industries and of their positive and negative implications for the global environment After we performed an extensive literature review and consulted with representatives of the U.S. Geological Survey (USGS), Canadian Geological Survey, and several oil companies, it became evident that, at the current stage of gas hydrate research, the available information on methane hydrates in Alaska does not provide sufficient grounds for reaching conclusions concerning their use for energy production. Hence, the original goals of this task could not be met, and the focus was changed to the compilation and review of published documents to serve as a baseline for possible future research at the Energy & Environmental Research Center (EERC). An extensive annotated bibliography of gas hydrate publications has been completed. The EERC will reassess its future research opportunities on methane hydrates to determine where significant initial contributions could be made within the scope of limited available resources.

  16. Methane Hydrate R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Methane Hydrate R&D Natural gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy has played a major role in developing technologies to help tap new, unconventional sources of natural gas. Fossil Energy Research Benefits - Methane Hydrate (1.01 MB) More Documents & Publications Idaho Operations AMWTP Fact Sheet Greenpower Trap Mufflerl System CERTIFIED REALTY SPECIALIST

  17. Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy June 6-7 2013 Methane Hydrates Advisory Meeting Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting ConocoPhillips test results and data analysis (8.24 MB) Methane Hydrate Workshop as part of the FY 2013 Methane Hydrate Field Program (904.56 KB) Methane Hydrates Advisory Committee Meeting: Program Funding (292.15 KB) Update on BOEM Lower 48 Assessment: A presentation to the Methane Hydrate Advisory Committee (9.13 MB) Gas Hydrate Program Activities in

  18. Methane Hydrate Research and Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Modeling Methane Hydrate Research and Modeling Research is focused on understanding the physical and chemical nature of gas hydrate-bearing sediments. These studies advance the understanding of the in situ nature of GHBS and their potential response in terms of fluid flow and geomechanical response to destabilizing forces. The latest research results from DOE projects, both current and completed, can be found on the NETL website. These include: Gas Hydrate Characterization in the

  19. Methane Hydrate Advisory Committee (MHAC) Meeting

    Energy Savers [EERE]

    ... International gas hydrate research programs were also discussed. While investments in gas hydrates are being made in Japan, South Korea, India, Germany and China, it is the U.S. ...

  20. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    SciTech Connect (OSTI)

    Collett, Tim; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta; Myers, Greg; Divins, David; Morell, Margo

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  1. MethaneHydrateRD_FC.indd

    Office of Environmental Management (EM)

    Last Updated: June 2011 www.fossil.energy.gov Gas Hydrate test well; Alaska North Slope, ... acti vely with researchers in Japan, Korea, India, China, Canada, and other nati ons. ...

  2. Presentations from the March 27th - 28th Methane Hydrates Advisory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Committee Meeting | Department of Energy March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate Research (5.5 MB) DOE's Natural Gas Hydrates Program (8.75 MB) Gas Hydrates as a Geohazard: What Really Are the Issues? (2.58 MB) Quantifying Climate-Hydrate Interactions: A Progress Report (616.36 KB) More Documents & Publications May 21, 2014 Committee Recommendations to

  3. Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates

    SciTech Connect (OSTI)

    Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

    2011-02-15

    Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

  4. Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?

    SciTech Connect (OSTI)

    Paull, C.K.; Ussler, W. III; Borowski, W.S.

    1993-09-01

    Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

  5. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk; Knott, Brandon C.; Beckham, Gregg T.; Yasuoka, Kenji; Wu, David T.; Amadeu K. Sum

    2015-01-06

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less

  6. U.S. and Japan Complete Successful Field Trial of Methane Hydrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Technologies | Department of Energy and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2, 2012 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the completion of a successful, unprecedented test of technology in the North Slope of Alaska that was able to safely extract a steady flow of natural gas from methane hydrates -

  7. Data from Alaska Test Could Help Advance Methane Hydrate R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    Methane Hydrates present an enormous energy resource. The Energy Department is working to advance technologies and reap the possible benefits for a more secure energy future.

  8. Presentations from the March 27th - 28th Methane Hydrates Advisory...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications May 21, 2014 Committee Recommendations to Secretary of Energy Methane Hydrate Annual Reports Presentations from the May 7, 2015 Advisory Committee...

  9. U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies

    Broader source: Energy.gov [DOE]

    Methane Hydrates May Exceed the Energy Content of All Other Fossil Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut America’s Foreign Oil Dependence

  10. X-ray CT Observations of Methane Hydrate Distribution Changes over Time in a Natural Sediment Core from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well

    SciTech Connect (OSTI)

    Kneafsey, T.J.; Rees, E.V.L.

    2010-03-01

    When maintained under hydrate-stable conditions, methane hydrate in laboratory samples is often considered a stable and immobile solid material. Currently, there do not appear to be any studies in which the long-term redistribution of hydrates in sediments has been investigated in the laboratory. These observations are important because if the location of hydrate in a sample were to change over time (e.g. by dissociating at one location and reforming at another), the properties of the sample that depend on hydrate saturation and pore space occupancy would also change. Observations of hydrate redistribution under stable conditions are also important in understanding natural hydrate deposits, as these may also change over time. The processes by which solid hydrate can move include dissociation, hydrate-former and water migration in the gas and liquid phases, and hydrate formation. Chemical potential gradients induced by temperature, pressure, and pore water or host sediment chemistry can drive these processes. A series of tests were performed on a formerly natural methane-hydrate-bearing core sample from the BPX-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well, in order to observe hydrate formation and morphology within this natural sediment, and changes over time using X-ray computed tomography (CT). Long-term observations (over several weeks) of methane hydrate in natural sediments were made to investigate spatial changes in hydrate saturation in the core. During the test sequence, mild buffered thermal and pressure oscillations occurred within the sample in response to laboratory temperature changes. These oscillations were small in magnitude, and conditions were maintained well within the hydrate stability zone.

  11. Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE)

    Projects Will Determine Whether methane Hydrates Are an Economically and Environmentally Viable Option for America's Energy Future

  12. Studying methane migration mechanisms at Walker Ridge, Gulf of Mexico, via 3D methane hydrate reservoir modeling

    SciTech Connect (OSTI)

    Nole, Michael; Daigle, Hugh; Mohanty, Kishore; Cook, Ann; Hillman, Jess

    2015-12-15

    We have developed a 3D methane hydrate reservoir simulator to model marine methane hydrate systems. Our simulator couples highly nonlinear heat and mass transport equations and includes heterogeneous sedimentation, in-situ microbial methanogenesis, the influence of pore size contrast on solubility gradients, and the impact of salt exclusion from the hydrate phase on dissolved methane equilibrium in pore water. Using environmental parameters from Walker Ridge in the Gulf of Mexico, we first simulate hydrate formation in and around a thin, dipping, planar sand stratum surrounded by clay lithology as it is buried to 295mbsf. We find that with sufficient methane being supplied by organic methanogenesis in the clays, a 200x pore size contrast between clays and sands allows for a strong enough concentration gradient to significantly drop the concentration of methane hydrate in clays immediately surrounding a thin sand layer, a phenomenon that is observed in well log data. Building upon previous work, our simulations account for the increase in sand-clay solubility contrast with depth from about 1.6% near the top of the sediment column to 8.6% at depth, which leads to a progressive strengthening of the diffusive flux of methane with time. By including an exponentially decaying organic methanogenesis input to the clay lithology with depth, we see a decrease in the aqueous methane supplied to the clays surrounding the sand layer with time, which works to further enhance the contrast in hydrate saturation between the sand and surrounding clays. Significant diffusive methane transport is observed in a clay interval of about 11m above the sand layer and about 4m below it, which matches well log observations. The clay-sand pore size contrast alone is not enough to completely eliminate hydrate (as observed in logs), because the diffusive flux of aqueous methane due to a contrast in pore size occurs slower than the rate at which methane is supplied via organic methanogenesis

  13. METHANE HYDRATE STUDIES: DELINEATING PROPERTIES OF HOST SEDIMENTS TO ESTABLISH REPRODUCIBLE DECOMPOSITION KINETICS.

    SciTech Connect (OSTI)

    Mahajan, Devinder; Jones, Keith W.; Feng, Huan; Winters, William J.

    2004-12-01

    The use of methane hydrate as an energy source requires development of a reliable method for its extraction from its highly dispersed locations in oceanic margin sediments and permafrost. The high pressure (up to 70 MPa) and low temperature (272 K to 278 K) conditions under which hydrates are stable in the marine environment can be mimicked in a laboratory setting and several kinetic studies of pure methane hydrate decomposition have been reported. However, the effect of host sediments on methane hydrate occurrence and decomposition are required to develop reliable hydrate models. In this paper, we describe methods to measure sediment properties as they relate to pore-space methane gas hydrate. Traditional geotechnical techniques are compared to the micrometer level by use of the synchrotron Computed Microtomography (CMT) technique. CMT was used to measure the porosity at the micrometer level and to show pore-space pathways through field samples. Porosities for three sediment samples: one from a site on Georges Bank and two from the known Blake Ridge methane hydrate site, from different depths below the mud line were measured by traditional drying and by the new CMT techniques and found to be in good agreement. The integration of the two analytical approaches is necessary to enable better understanding of methane hydrate interactions with the surrounding sediment particles.

  14. Molecular dynamics simulations of methane hydrate using polarizable force fields

    SciTech Connect (OSTI)

    Jiang, H.N.; Jordan, K.D.; Taylor, C.E.

    2007-03-01

    Molecular dynamics simulations of methane hydrate have been carried out using the AMOEBA and COS/G2 polarizable force fields. Properties examined include the temperature dependence of the lattice constant, the OC and OO radial distribution functions and the vibrational spectra. Both the AMOEBA and COS/G2 models are found to successfully account for the available experimental data, with overall slightly better agreement with experiment being found for the AMOEBA model. Several properties calculated using the AMOEBA and COS/G2 models differ appreciable from the corresponding results obtained previously using the polarizable TIP4P-FQ model. This appears to be due to the inadequacy of the treatment of polarization, especially, the restriction of polarization to in-plane only, in the TIP4P-FQ model.

  15. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Rack, Frank; Storms, Michael; Schroeder, Derryl; Dugan, Brandon; Schultheiss, Peter

    2002-12-31

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were (1) the preliminary postcruise evaluation of the tools and measurement systems that were used during ODP Leg 204 to study hydrate deposits on Hydrate Ridge, offshore Oregon from July through September 2002; and (2) the preliminary study of the hydrate-bearing core samples preserved in pressure vessels and in liquid nitrogen cryofreezers, which are now stored at the ODP Gulf Coast Repository in College Station, TX. During ODP Leg 204, several newly modified downhole tools were deployed to better characterize the subsurface lithologies and environments hosting microbial populations and gas hydrates. A preliminary review of the use of these tools is provided herein. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were used extensively and successfully during ODP Leg 204 aboard the D/V JOIDES Resolution. These systems provided a strong operational capability for characterizing the in situ properties of methane hydrates in subsurface environments on Hydrate Ridge during ODP Leg 204. Pressure was also measured during a trial run of the Fugro piezoprobe, which operates on similar principles as the DVTP-P. The final report describing the deployments of the Fugro Piezoprobe is provided in Appendix A of this report. A preliminary analysis and comparison between the piezoprobe and DVTP-P tools is provided in Appendix B of this report. Finally, a series of additional holes were cored at the crest of Hydrate Ridge (Site 1249) specifically geared toward the rapid recovery and preservation of hydrate samples as part of a hydrate geriatric study partially funded by the Department of Energy (DOE). In addition, the preliminary results from gamma density non-invasive imaging of the cores preserved in pressure vessels are provided in Appendix C of this report. An initial visual inspection of the samples stored in liquid nitrogen is provided in Appendix D of this

  16. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Rack, Frank; Bohrmann, Gerhard; Trehu, Anne; Storms, Michael; Schroeder, Derryl

    2002-09-30

    The primary accomplishment of the JOI Cooperative Agreement with DOE/NETL in this quarter was the deployment of tools and measurement systems on ODP Leg 204 to study hydrate deposits on Hydrate Ridge, offshore Oregon from July through September, 2002. During Leg 204, we cored and logged 9 sites on the Oregon continental margin to determine the distribution and concentration of gas hydrates in an accretionary ridge and adjacent slope basin, investigate the mechanisms that transport methane and other gases into the gas hydrate stability zone (GHSZ), and obtain constraints on physical properties of hydrates in situ. A 3D seismic survey conducted in 2000 provided images of potential subsurface fluid conduits and indicated the position of the GHSZ throughout the survey region. After coring the first site, we acquired Logging-While-Drilling (LWD) data at all but one site to provide an overview of downhole physical properties. The LWD data confirmed the general position of key seismic stratigraphic horizons and yielded an initial estimate of hydrate concentration through the proxy of in situ electrical resistivity. These records proved to be of great value in planning subsequent coring. The second new hydrate proxy to be tested was infrared thermal imaging of cores on the catwalk as rapidly as possible after retrieval. The thermal images were used to identify hydrate samples and to map estimate the distribution and texture of hydrate within the cores. Geochemical analyses of interstitial waters and of headspace and void gases provide additional information on the distribution and concentration of hydrate within the stability zone, the origin and pathway of fluids into and through the GHSZ, and the rates at which the process of gas hydrate formation is occurring. Bio- and lithostratigraphic description of cores, measurement of physical properties, and in situ pressure core sampling and thermal measurements complement the data set, providing ground-truth tests of inferred

  17. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Many countries have begun to explore alternative energy sources, including so- called ... What Role Do Gas Hydrates Play in Nature? Theme 2 Gas Hydrates as a Potential Energy ...

  18. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    SciTech Connect (OSTI)

    Yu Yanxin; Cheng Yipik; Xu Xiaomin; Soga, Kenichi

    2013-06-18

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.

  19. FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE SUMMARY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROZEN HEAT A GLOBAL OUTLOOK ON METHANE GAS HYDRATES EXECUTIVE SUMMARY Beaudoin, Y. C., Boswell, R., Dallimore, S. R., and Waite, W. (eds), 2014. Frozen Heat: A UNEP Global Outlook on Methane Gas Hydrates. United Nations Environment Programme, GRID-Arendal. © United Nations Environment Programme, 2014 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the

  20. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  1. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect (OSTI)

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy Joe

    2013-01-01

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  2. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Frank R. Rack

    2006-09-20

    Cooperative Agreement DE-FC26-01NT41329 between Joint Oceanographic Institutions and DOE-NETL was divided into two phases based on successive proposals and negotiated statements of work pertaining to activities to sample and characterize methane hydrates on ODP Leg 204 (Phase 1) and on IODP Expedition 311 (Phase 2). The Phase 1 Final Report was submitted to DOE-NETL in April 2004. This report is the Phase 2 Final Report to DOE-NETL. The primary objectives of Phase 2 were to sample and characterize methane hydrates using the systems and capabilities of the D/V JOIDES Resolution during IODP Expedition 311, to enable scientists the opportunity to establish the mass and distribution of naturally occurring gas and gas hydrate at all relevant spatial and temporal scales, and to contribute to the DOE methane hydrate research and development effort. The goal of the work was to provide expanded measurement capabilities on the JOIDES Resolution for a dedicated hydrate cruise to the Cascadia continental margin off Vancouver Island, British Columbia, Canada (IODP Expedition 311) so that hydrate deposits in this region would be well characterized and technology development continued for hydrate research. IODP Expedition 311 shipboard activities on the JOIDES Resolution began on August 28 and were concluded on October 28, 2005. The statement of work for this project included three primary tasks: (1) research management oversight, provided by JOI; (2) mobilization, deployment and demobilization of pressure coring and core logging systems, through a subcontract with Geotek Ltd.; and, (3) mobilization, deployment and demobilization of a refrigerated container van that will be used for degassing of the Pressure Core Sampler and density logging of these pressure cores, through a subcontract with the Texas A&M Research Foundation (TAMRF). Additional small tasks that arose during the course of the research were included under these three primary tasks in consultation with the DOE

  3. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology

    SciTech Connect (OSTI)

    Michalis, Vasileios K.; Costandy, Joseph; Economou, Ioannis G.; Tsimpanogiannis, Ioannis N.; Stubos, Athanassios K.

    2015-01-28

    The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermalisobaric ensemble in order to determine the coexistence temperature (T{sub 3}) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T{sub 3}, is treated with long simulations in the range of 10004000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T{sub 3} predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T{sub 3} of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.

  4. Hydrate decomposition conditions in the system hydrogen sulfide-methane, and propane

    SciTech Connect (OSTI)

    Schroeter, J.P.; Kobayashi, R.; Hildebrand, H.A.

    1982-12-01

    Experimental hydrate decomposition conditions are presented for 3 different H/sub 2/S-containing mixtures in the temperature region 0 C to 30 C. The 3 mixtures investigated were 4% H/sub 2/S, 7% propane, 89% methane; 12% H/sub 2/S, 7% propane, 81% methane; and 30% H/sub 2/S, 7% propane, 63% methane. Hydrate decomposition pressures and temperatures were obtained for each of these mixtures by observation of the pressure-temperature hysteresis curves associated with formation and decomposition of the hydrate crystals. A repeatable decomposition point was observed in every case, and this was identified as the hydrate point. The results for the 4% H/sub 2/S mixture were used to adjust parameters in a computer model based on the Parrish and Prausnitz statistical thermodynamics method, coupled with the BWRS equation of state. After the parameter adjustment, the computer model predicted the behavior of the 12% H/sub 2/S and the 30% H/sub 2/S mixtures to within 2 C. Experimental data for the 3 mixtures are given.

  5. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    SciTech Connect (OSTI)

    Valentine, David

    2012-09-30

    In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this

  6. Four Critical Needs to Change the Hydrate Energy Paradigm from Assessment to Production: The 2007 Report to Congress by the U.S. Federal methane Hydrate Advisory Committee

    SciTech Connect (OSTI)

    Mahajan,D.; Sloan, D.; Brewer, P.; Dutta, N.; Johnson, A.; Jones, E.; Juenger, K.; Kastner, M.; Masutani, S.; Swenson, R.; Whelan, J.; Wilson, s.; Woolsey, R.

    2009-03-11

    This work summarizes a two-year study by the U.S. Federal Methane Hydrate Advisory Committee recommending the future needs for federally-supported hydrate research. The Report was submitted to the US Congress on August 14, 2007 and includes four recommendations regarding (a) permafrost hydrate production testing, (b) marine hydrate viability assessment (c) climate effect of hydrates, and (d) international cooperation. A secure supply of natural gas is a vital goal of the U.S. national energy policy because natural gas is the cleanest and most widely used of all fossil fuels. The inherent cleanliness of natural gas, with the lowest CO2 emission per unit of heat energy of any fossil fuel, means substituting gas for coal and fuel oil will reduce emissions that can exacerbate the greenhouse effect. Both a fuel and a feedstock, a secure and reasonably priced supply of natural gas is important to industry, electric power generators, large and small commercial enterprises, and homeowners. Because each volume of solid gas hydrate contains as much as 164 standard volumes of methane, hydrates can be viewed as a concentrated form of natural gas equivalent to compressed gas but less concentrated than liquefied natural gas (LNG). Natural hydrate accumulations worldwide are estimated to contain 700,000 TCF of natural gas, of which 200,000 TCF are located within the United States. Compared with the current national annual consumption of 22 TCF, this estimate of in-place gas in enormous. Clearly, if only a fraction of the hydrated methane is recoverable, hydrates could constitute a substantial component of the future energy portfolio of the Nation (Figure 1). However, recovery poses a major technical and commercial challenge. Such numbers have sparked interest in natural gas hydrates as a potential, long-term source of energy, as well as concerns about any potential impact the release of methane from hydrates might have on the environment. Energy-hungry countries such as India and

  7. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect (OSTI)

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned

  8. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Rack, Frank; Schroeder, Derryl; Storms, Michael

    2001-03-31

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were the deployment of tools and measurement systems for testing on ODP Leg 201, which is intended to study hydrate deposits on the Peru margin as part of other scientific investigations. Additional accomplishments were related to the continuing evolution of tools and measurements systems in preparation for deployment on ODP Leg 204, Hydrate Ridge, offshore Oregon in July 2002. The design for PCS Gas Manifold was finalized and parts were procured to assemble the gas manifold and deploy this system with the Pressure Core Sampler (PCS) tool on ODP Leg 201. The PCS was deployed 17 times during ODP Leg 201 and successfully retrieved cores from a broad range of lithologies and sediment depths along the Peru margin. Eleven deployments were entirely successful, collecting between 0.5 and 1.0 meters of sediment at greater than 75% of hydrostatic pressure. The PCS gas manifold was used in conjunction with the Pressure Core Sampler (PCS) throughout ODP Leg 201 to measure the total volume and composition of gases recovered in sediment cores associated with methane hydrates. The results of these deployments will be the subject of a future progress report. The FUGRO Pressure Corer (FPC), one of the HYACE/HYACINTH pressure coring tools, and two FUGRO engineers were deployed on the D/V JOIDES Resolution during ODP Legs 201 to field-test this coring system at sites located offshore Peru. The HYACINTH project is a European Union (EU) funded effort to develop tools to characterize methane hydrate and measure physical properties under in-situ conditions. The field-testing of these tools provides a corollary benefit to DOE/NETL at no cost to this project. The opportunity to test these tools on the D/V JOIDES Resolution was negotiated as part of a cooperative agreement between JOI/ODP and the HYACINTH partners. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were

  9. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    SciTech Connect (OSTI)

    Rack, Frank R.; Dickens, Gerald; Ford, Kathryn; Schroeder, Derryl; Storms, Michael

    2002-08-01

    The primary accomplishment of the JOI Cooperative Agreement with DOE/NETL in this quarter was the preparation of tools and measurement systems for deployment, testing and use on ODP Leg 204, which will study hydrate deposits on Hydrate Ridge, offshore Oregon. Additional accomplishments were related to the postcruise evaluation of tools and measurements systems used on ODP Leg 201 along the Peru margin from January through March, 2002. The operational results from the use of the Pressure Core Sampler (PCS) tool and the PCS Gas Manifold on ODP Leg 201 are evaluated in this progress report in order to prepare for the upcoming deployments on ODP Leg 204 in July, 2002. The PCS was deployed 17 times during ODP Leg 201 and successfully retrieved cores from a broad range of lithologies and sediment depths along the Peru margin. Eleven deployments were entirely successful, collecting between 0.5 and 1.0 meters of sediment at greater than 75% of hydrostatic pressure. The PCS gas manifold was used in conjunction with the Pressure Core Sampler (PCS) throughout ODP Leg 201 to measure the total volume and composition of gases recovered in sediment cores associated with methane gas hydrates. The FUGRO Pressure Corer (FPC), one of the HYACE/HYACINTH pressure coring tools, was also deployed on the D/V JOIDES Resolution during ODP Legs 201 to field-test this coring system at three shallow-water sites located offshore Peru. The field-testing of these tools provides a corollary benefit to DOE/NETL at no cost to this project. The testing of these tools on the D/V JOIDES Resolution was negotiated as part of a cooperative agreement between JOI/ODP and the HYACINTH partners. The DVTP, DVTP-P, APC-methane, and APC-Temperature tools (ODP memory tools) were used extensively during ODP Leg 201. The data obtained from the successful deployments of these tools is still being evaluated by the scientists and engineers involved in this testing; however, preliminary results are presented in this

  10. Modeling pure methane hydrate dissociation using a numerical simulator from a novel combination of X-ray computed tomography and macroscopic data

    SciTech Connect (OSTI)

    Gupta, A.; Moridis, G.J.; Kneafsey, T.J.; Sloan, Jr., E.D.

    2009-08-15

    The numerical simulator TOUGH+HYDRATE (T+H) was used to predict the transient pure methane hydrate (no sediment) dissociation data. X-ray computed tomography (CT) was used to visualize the methane hydrate formation and dissociation processes. A methane hydrate sample was formed from granular ice in a cylindrical vessel, and slow depressurization combined with thermal stimulation was applied to dissociate the hydrate sample. CT images showed that the water produced from the hydrate dissociation accumulated at the bottom of the vessel and increased the hydrate dissociation rate there. CT images were obtained during hydrate dissociation to confirm the radial dissociation of the hydrate sample. This radial dissociation process has implications for dissociation of hydrates in pipelines, suggesting lower dissociation times than for longitudinal dissociation. These observations were also confirmed by the numerical simulator predictions, which were in good agreement with the measured thermal data during hydrate dissociation. System pressure and sample temperature measured at the sample center followed the CH{sub 4} hydrate L{sub w}+H+V equilibrium line during hydrate dissociation. The predicted cumulative methane gas production was within 5% of the measured data. Thus, this study validated our simulation approach and assumptions, which include stationary pure methane hydrate-skeleton, equilibrium hydrate-dissociation and heat- and mass-transfer in predicting hydrate dissociation in the absence of sediments. It should be noted that the application of T+H for the pure methane hydrate system (no sediment) is outside the general applicability limits of T+H.

  11. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    SciTech Connect (OSTI)

    Frank R. Rack; Tim Francis; Peter Schultheiss; Philip E. Long; Barry M. Freifeld

    2005-04-01

    The primary activities accomplished during this quarter were continued efforts to develop plans for Phase 2 of this cooperative agreement based on the evolving operational planning for IODP Expedition 311, which will use the JOIDES Resolution to study marine methane hydrates along the Cascadia margin, offshore Vancouver Island. IODP Expedition 311 has been designed to further constrain the models for the formation of marine gas hydrate in subduction zone accretionary prisms. The objectives include characterizing the deep origin of the methane, its upward transport, its incorporation in gas hydrate, and its subsequent loss to the seafloor. The main attention of this expedition is on the widespread seafloor-parallel layer of dispersed gas hydrate located just above the base of the predicted stability field. In a gas hydrate formation model, methane is carried upward through regional sediment or small-scale fracture permeability, driven by the tectonic consolidation of the accretionary prism. The upward moving methane is incorporated into the gas hydrate clathrate as it enters the methane hydrate stability zone. Also important is the focusing of a portion of the upward methane flux into localized plumes or channels to form concentrations of near-seafloor gas hydrate. The amount of gas hydrate in local concentrations near the seafloor is especially important for understanding the response of marine gas hydrate to climate change. The expedition includes coring and downhole measurements at five sites across the Northern Cascadia accretionary prism. The sites will track the history of methane in an accretionary prism from (1) its production by mainly microbiological processes over a thick sediment vertical extent, (2) its upward transport through regional or locally focused fluid flow, (3) its incorporation in the regional hydrate layer above the BSR or in local concentrations at or near the seafloor, (4) methane loss from the hydrate by upward diffusion, and (5) methane

  12. Coalbed Methane Procduced Water Treatment Using Gas Hydrate Formation at the Wellhead

    SciTech Connect (OSTI)

    BC Technologies

    2009-12-30

    Water associated with coalbed methane (CBM) production is a significant and costly process waste stream, and economic treatment and/or disposal of this water is often the key to successful and profitable CBM development. In the past decade, advances have been made in the treatment of CBM produced water. However, produced water generally must be transported in some fashion to a centralized treatment and/or disposal facility. The cost of transporting this water, whether through the development of a water distribution system or by truck, is often greater than the cost of treatment or disposal. To address this economic issue, BC Technologies (BCT), in collaboration with Oak Ridge National Laboratory (ORNL) and International Petroleum Environmental Consortium (IPEC), proposed developing a mechanical unit that could be used to treat CBM produced water by forming gas hydrates at the wellhead. This process involves creating a gas hydrate, washing it and then disassociating hydrate into water and gas molecules. The application of this technology results in three process streams: purified water, brine, and gas. The purified water can be discharged or reused for a variety of beneficial purposes and the smaller brine can be disposed of using conventional strategies. The overall objectives of this research are to develop a new treatment method for produced water where it could be purified directly at the wellhead, to determine the effectiveness of hydrate formation for the treatment of produced water with proof of concept laboratory experiments, to design a prototype-scale injector and test it in the laboratory under realistic wellhead conditions, and to demonstrate the technology under field conditions. By treating the water on-site, producers could substantially reduce their surface handling costs and economically remove impurities to a quality that would support beneficial use. Batch bench-scale experiments of the hydrate formation process and research conducted at ORNL

  13. Permeability of laboratory-formed methane-hydrate-bearing sand: Measurements and observations using x-ray computed tomography

    SciTech Connect (OSTI)

    Kneafsey, T. J.; Seol, Y.; Gupta, A.; Tomutsa, L.

    2010-09-15

    Methane hydrate was formed in two moist sands and a sand/silt mixture under a confining stress in an X-ray-transparent pressure vessel. Three initial water saturations were used to form three different methane-hydrate saturations in each medium. X-ray computed tomography (CT) was used to observe location-specific density changes caused by hydrate formation and flowing water. Gas-permeability measurements in each test for the dry, moist, frozen, and hydrate-bearing states are presented. As expected, the effective permeabilities (intrinsic permeability of the medium multiplied by the relative permeability) of the moist sands decreased with increasing moisture content. In a series of tests on a single sample, the effective permeability typically decreased as the pore space became more filled, in the order of dry, moist, frozen, and hydrate-bearing. In each test, water was flowed through the hydrate-bearing medium and we observed the location-specific changes in water saturation using CT scanning. We compared our data to a number of models, and our relative permeability data compare most favorably with models in which hydrate occupies the pore bodies rather than the pore throats. Inverse modeling (using the data collected from the tests) will be performed to extend the relative permeability measurements.

  14. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  15. X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand

    SciTech Connect (OSTI)

    Seol, Yongkoo; Kneafsey, Timothy J.

    2009-06-01

    We used X-ray computed tomography (CT) to image and quantify the effect of a heterogeneous sand grain-size distribution on the formation and dissociation of methane hydrate, as well as the effect on water flow through the heterogeneous hydrate-bearing sand. A 28 cm long sand column was packed with several segments having vertical and horizontal layers with sands of different grain-size distributions. During the hydrate formation, water redistribution occurred. Observations of water flow through the hydrate-bearing sands showed that water was imbibed more readily into the fine sand, and that higher hydrate saturation increased water imbibition in the coarse sand due to increased capillary strength. Hydrate dissociation induced by depressurization resulted in different flow patterns with the different grain sizes and hydrate saturations, but the relationships between dissociation rates and the grain sizes could not be identified using the CT images. The formation, presence, and dissociation of hydrate in the pore space dramatically impact water saturation and flow in the system.

  16. Challenges, uncertainties and issues facing gas production from gas hydrate deposits

    SciTech Connect (OSTI)

    Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswell, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.

    2010-11-01

    The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas hydrate petroleum system, to discuss advances, requirement and suggested practices in gas hydrate (GH) prospecting and GH deposit characterization, and to review the associated technical, economic and environmental challenges and uncertainties, including: the accurate assessment of producible fractions of the GH resource, the development of methodologies for identifying suitable production targets, the sampling of hydrate-bearing sediments and sample analysis, the analysis and interpretation of geophysical surveys of GH reservoirs, well testing methods and interpretation of the results, geomechanical and reservoir/well stability concerns, well design, operation and installation, field operations and extending production beyond sand-dominated GH reservoirs, monitoring production and geomechanical stability, laboratory investigations, fundamental knowledge of hydrate behavior, the economics of commercial gas production from hydrates, and the associated environmental concerns.

  17. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    SciTech Connect (OSTI)

    Frank R. Rack; Peter Schultheiss; Melanie Holland

    2005-01-01

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) follow-up logging of pressure cores containing hydrate-bearing sediment; and (2) opening of some of these cores to establish ground-truth understanding. The follow-up measurements made on pressure cores in storage are part of a hydrate geriatric study related to ODP Leg 204. These activities are described in detail in Appendices A and B of this report. Work also continued on developing plans for Phase 2 of this cooperative agreement based on evolving plans to schedule a scientific ocean drilling expedition to study marine methane hydrates along the Cascadia margin, in the NE Pacific as part of the Integrated Ocean Drilling Program (IODP) using the R/V JOIDES Resolution.

  18. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production

    SciTech Connect (OSTI)

    Rutqvist, J.; Moridis, G.J.; Grover, T.; Collett, T.

    2009-02-01

    In this simulation study, we analyzed the geomechanical response during depressurization production from two known hydrate-bearing permafrost deposits: the Mallik (Northwest Territories, Canada) deposit and Mount Elbert (Alaska, USA) deposit. Gas was produced from these deposits at constant pressure using horizontal wells placed at the top of a hydrate layer (HL), located at a depth of about 900 m at the Mallik and 600 m at the Mount Elbert. The simulation results show that general thermodynamic and geomechanical responses are similar for the two sites, but with substantially higher production and more intensive geomechanical responses at the deeper Mallik deposit. The depressurization-induced dissociation begins at the well bore and then spreads laterally, mainly along the top of the HL. The depressurization results in an increased shear stress within the body of the receding hydrate and causes a vertical compaction of the reservoir. However, its effects are partially mitigated by the relatively stiff permafrost overburden, and compaction of the HL is limited to less than 0.4%. The increased shear stress may lead to shear failure in the hydrate-free zone bounded by the HL overburden and the downward-receding upper dissociation interface. This zone undergoes complete hydrate dissociation, and the cohesive strength of the sediment is low. We determined that the likelihood of shear failure depends on the initial stress state as well as on the geomechanical properties of the reservoir. The Poisson's ratio of the hydrate-bearing formation is a particularly important parameter that determines whether the evolution of the reservoir stresses will increase or decrease the likelihood of shear failure.

  19. Studies of Reaction Kinetics of Methane Hydrate Dissocation in Porous Media

    SciTech Connect (OSTI)

    Moridis, George J.; Seol, Yongkoo; Kneafsey, Timothy J.

    2005-03-10

    The objective of this study is the description of the kinetic dissociation of CH4-hydrates in porous media, and the determination of the corresponding kinetic parameters. Knowledge of the kinetic dissociation behavior of hydrates can play a critical role in the evaluation of gas production potential of gas hydrate accumulations in geologic media. We analyzed data from a sequence of tests of CH4-hydrate dissociation by means of thermal stimulation. These tests had been conducted on sand cores partially saturated with water, hydrate and CH4 gas, and contained in an x-ray-transparent aluminum pressure vessel. The pressure, volume of released gas, and temperature (at several locations within the cores) were measured. To avoid misinterpreting local changes as global processes, x-ray computed tomography scans provided accurate images of the location and movement of the reaction interface during the course of the experiments. Analysis of the data by means of inverse modeling (history matching ) provided estimates of the thermal properties and of the kinetic parameters of the hydration reaction in porous media. Comparison of the results from the hydrate-bearing porous media cores to those from pure CH4-hydrate samples provided a measure of the effect of the porous medium on the kinetic reaction. A tentative model of composite thermal conductivity of hydrate-bearing media was also developed.

  20. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Rack, Frank

    2003-06-30

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) Frank Rack, Anne Trehu, and Tim Collett presented preliminary results and operational outcomes of ODP Leg 204 at the American Association of Petroleum Geologists annual meeting in Salt Lake City, UT; (2) several Leg 204 scientists participated in special hydrate sessions at the international EGS/AGU/EUG meeting in Nice, France and presented initial science results from the cruise, which included outcomes arising from this cooperative agreement; and, (3) postcruise evaluation of the data, tools and measurement systems that were used during ODP Leg 204 continued in the preparation of deliverables under this agreement. At the EGS/EUG/AGU meeting in Nice, France in April, Leg 204 Co-chiefs Anne Trehu and Gerhard Bohrmann, as well as ODP scientists Charlie Paull, Erwin Suess, and Jim Kennett, participated in a press conference on hydrates. The well-attended press conference entitled ''Gas Hydrates: Free methane found and controversy over the 'hydrate gun''' led to stories in Nature on-line and BBC radio, among others. There were six (6) oral and fifteen (15) poster presentations on ODP Leg 204 hydrate science at the EGS/AGU/EUG Meeting in Nice, France on April 6-11, 2003. This was a very strong showing at a meeting just over six month following the completion of the drilling cruise and highlighted many of the results of the leg, including the results obtained with instruments and equipment funded under this cooperative agreement. At the AAPG annual meeting in Salt Lake City, UT on May 11-14, 2003, Anne Trehu gave an oral presentation about the scientific results of Leg 204, and Frank Rack presented a poster outlining the operational and technical accomplishments. Work continued on analyzing data collected during ODP Leg 204 and preparing reports on the outcomes of Phase 1 projects as well as developing plans for Phase 2.

  1. Benchmarking the performance of density functional theory and point charge force fields in their description of sI methane hydrate against diffusion Monte Carlo

    SciTech Connect (OSTI)

    Cox, Stephen J.; Michaelides, Angelos; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ ; Towler, Michael D.; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE ; Alf, Dario; Department of Earth Sciences, University College London Gower Street, London WC1E 6BT

    2014-05-07

    High quality reference data from diffusion Monte Carlo calculations are presented for bulk sI methane hydrate, a complex crystal exhibiting both hydrogen-bond and dispersion dominated interactions. The performance of some commonly used exchange-correlation functionals and all-atom point charge force fields is evaluated. Our results show that none of the exchange-correlation functionals tested are sufficient to describe both the energetics and the structure of methane hydrate accurately, while the point charge force fields perform badly in their description of the cohesive energy but fair well for the dissociation energetics. By comparing to ice I{sub h}, we show that a good prediction of the volume and cohesive energies for the hydrate relies primarily on an accurate description of the hydrogen bonded water framework, but that to correctly predict stability of the hydrate with respect to dissociation to ice I{sub h} and methane gas, accuracy in the water-methane interaction is also required. Our results highlight the difficulty that density functional theory faces in describing both the hydrogen bonded water framework and the dispersion bound methane.

  2. Basin scale assessment of gas hydrate dissociation in response to climate change

    SciTech Connect (OSTI)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.; Cameron-Smith, P.

    2011-07-01

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating climate. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. Field investigations have discovered substantial methane gas plumes exiting the seafloor along the Arctic Ocean margin, and the plumes appear at depths corresponding to the upper limit of a receding gas hydrate stability zone. It has been suggested that these plumes may be the first visible signs of the dissociation of shallow hydrate deposits due to ongoing climate change in the arctic. We simulate the release of methane from oceanic deposits, including the effects of fully-coupled heat transfer, fluid flow, hydrate dissociation, and other thermodynamic processes, for systems representative of segments of the Arctic Ocean margins. The modeling encompasses a range of shallow hydrate deposits from the landward limit of the hydrate stability zone down to water depths beyond the expected range of century-scale temperature changes. We impose temperature changes corresponding to predicted rates of climate change-related ocean warming and examine the possibility of hydrate dissociation and the release of methane. The assessment is performed at local-, regional-, and basin-scales. The simulation results are consistent with the hypothesis that dissociating shallow hydrates alone can result in significant methane fluxes at the seafloor. However, the methane release is likely to be confined to a narrow region of high dissociation susceptibility, defined by depth and temperature, and that any release will be continuous and controlled, rather than explosive. This modeling also establishes the first realistic bounds for methane release along the arctic continental shelf for potential hydrate

  3. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Frank Rack

    2005-06-30

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were to refine budgets and operational plans for Phase 2 of this cooperative agreement based on the scheduling of a scientific ocean drilling expedition to study marine methane hydrates along the Cascadia margin, in the NE Pacific as part of the Integrated Ocean Drilling Program (IODP) using the R/V JOIDES Resolution. The proposed statement of work for Phase 2 will include three primary tasks: (1) research management oversight, provided by JOI; (2) mobilization, deployment and demobilization of pressure coring and core logging systems, through a subcontract with Geotek Ltd., who will work with Fugro and Lawrence Berkeley National Laboratory to accomplish some of the subtasks; and, (3) mobilization, deployment and demobilization of a refrigerated container van that will be used for degassing of the Pressure Core Sampler and density logging of these pressure cores, through a subcontract with the Texas A&M Research Foundation (TAMRF). More details about these tasks are provided in the following sections of this report. The appendices to this report contain a copy of the scientific prospectus for the upcoming IODP Expedition 311 (Cascadia Margin Hydrates), which provides details of operational and scientific planning for this expedition.

  4. Time-resolved x-ray diffraction and Raman studies of the phase transition mechanisms of methane hydrate

    SciTech Connect (OSTI)

    Hirai, Hisako Kadobayashi, Hirokazu; Hirao, Naohisa; Ohishi, Yasuo; Ohtake, Michika; Yamamoto, Yoshitaka; Nakano, Satoshi

    2015-01-14

    The mechanisms by which methane hydrate transforms from an sI to sH structure and from an sH to filled-ice Ih structure were examined using time-resolved X-ray diffractometry (XRD) and Raman spectroscopy in conjunction with charge-coupled device camera observation under fixed pressure conditions. The XRD data obtained for the sI–sH transition at 0.8 GPa revealed an inverse correlation between sI and sH, suggesting that the sI structure is replaced by sH. Meanwhile, the Raman analysis demonstrated that although the 12-hedra of sI are retained, the 14-hedra are replaced sequentially by additional 12-hedra, modified 12-hedra, and 20-hedra cages of sH. With the sH to filled-ice Ih transition at 1.8 GPa, both the XRD and Raman data showed that this occurs through a sudden collapse of the sH structure and subsequent release of solid and fluid methane that is gradually incorporated into the filled-ice Ih to complete its structure. This therefore represents a typical reconstructive transition mechanism.

  5. Physical Properties of Gas Hydrates: A Review (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Physical Properties of Gas Hydrates: A Review Citation Details In-Document Search Title: Physical Properties of Gas Hydrates: A Review Methane gas hydrates in ...

  6. Physical Properties of Gas Hydrates: A Review (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Physical Properties of Gas Hydrates: A Review Citation Details In-Document Search Title: Physical Properties of Gas Hydrates: A Review Methane gas hydrates in sediments have been ...

  7. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Rack, Frank; Schultheiss, Peter

    2005-12-31

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were the implementation of a scientific ocean drilling expedition to study marine methane hydrates along the Cascadia margin, in the NE Pacific as part of Integrated Ocean Drilling Program (IODP) Expedition 311 using the R/V JOIDES Resolution and the deployment of all required equipment and personnel to provide the required services during this expedition. IODP Expedition 311 shipboard activities on the JOIDES Resolution began on August 28 and were concluded on October 28, 2005. New ODP Pressure Coring System (PCS) aluminum autoclave chambers were fabricated prior to the expedition. During the expedition, 16 PCS autoclaves containing pressure cores were X-rayed before and after depressurization using a modified Geotek MSCL-P (multi-sensor core logger-pressure) system. These PCS cores were density scanned using the MSCL-V (multi-sensor core logger-vertical) during depressurization to monitor gas evolution. The MSCL-V was set up in a 20-foot-long refrigerated container provided by Texas A&M University through the JOI contract with TAMRF. IODP Expedition 311 was the first time that PCS cores were examined before (using X-ray), during (using MSCL-V gamma density) and after (using X-ray) degassing to determine the actual volume and distribution of sediment and gas hydrate in the pressurized core, which will be important for more accurate determination of mass balances between sediment, gas, gas hydrate, and fluids in the samples collected. Geotek, Ltd was awarded a contract by JOI to provide equipment and personnel to perform pressure coring and related work on IODP Expedition 311 (Cascadia Margin Gas Hydrates). Geotek, Ltd. provided an automated track for use with JOI's infrared camera systems. Four auxiliary monitors showed infrared core images in real time to aid hydrate identification and sampling. Images were collected from 185 cores during the expedition and processed to

  8. In-place stabilization of pond ash deposits by hydrated lime columns

    SciTech Connect (OSTI)

    Chand, S.K.; Subbarao, C.

    2007-12-15

    Abandoned coal ash ponds cover up vast stretches of precious land and cause environmental problems. Application of suitable in situ stabilization methods may bring about improvement in the geotechnical properties of the ash deposit as a whole, converting it to a usable site. In this study, a technique of in-place stabilization by hydrated lime columns was applied to large-scale laboratory models of ash ponds. Samples collected from different radial distances and different depths of the ash deposit were tested to study the improvements in the water content, dry density, particle size distribution, unconfined compressive strength, pH, hydraulic conductivity, and leachate characteristics over a period of one year. The in-place stabilization by lime column technique has been found effective in increasing the unconfined compressive strength and reducing hydraulic conductivity of pond ash deposits in addition to modifying other geotechnical parameters. The method has also proved to be useful in reducing the contamination potential of the ash leachates, thus mitigating the adverse environmental effects of ash deposits.

  9. Feasibility of High Resolution P- and S-Wave Seismic Reflection to Detect Methane Hydrate

    SciTech Connect (OSTI)

    Hunter, J.A.

    2000-08-02

    In March, 1999, a combined geophysical field team from the Kansas Geological Survey, Oak Ridge National Laboratory, and the Geological Survey of Canada, performed some experimental high resolution seismic testing at the Mallik drill site in the Mackenzie Delta, Northwest Territories, where drilling and sampling had previously identified gas hydrates at depth beneath a thick permafrost zone. In this information document, we show data from this seismic test, along with comparisons and observations significant to the effective use of high resolution imaging and important considerations about high resolution operations in this environment. Included are discussions and examples based on previous studies at this site, data acquisition, processing, correlation of results with other data sets and some recommendations for future surveying.

  10. Improved carrier mobility of chemical vapor deposition-graphene by counter-doping with hydrazine hydrate

    SciTech Connect (OSTI)

    Chen, Zhiying; Zhang, Yanhui; Zhang, Haoran; Sui, Yanping; Zhang, Yaqian; Ge, Xiaoming; Yu, Guanghui Xie, Xiaoming; Li, Xiaoliang; Jin, Zhi; Liu, Xinyu

    2015-03-02

    We developed a counter-doping method to tune the electronic properties of chemical vapor deposition (CVD)-grown graphene by varying the concentration and time of graphene exposure to hydrazine hydrate (N{sub 2}H{sub 4}H{sub 2}O). The shift of G and 2D peaks of Raman spectroscopy is analyzed as a function of N{sub 2}H{sub 4}H{sub 2}O concentration. The result revealed that N{sub 2}H{sub 4}H{sub 2}O realized n-type doping on CVD grown graphene. X-ray photoelectron spectroscopy measurement proved the existence of nitrogen, which indicated the adsorption of N{sub 2}H{sub 4} on the surface of graphene. After counter-doping, carrier mobility, which was measured by Hall measurements, increased three fold.

  11. Large-scale simulation of methane dissociation along the West Spitzbergen Margin

    SciTech Connect (OSTI)

    Reagan, M.T.; Moridis, G.J.

    2009-07-15

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of methane into the atmosphere. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope west of Spitsbergen could be an indication of this process, if the source of the methane can be confidently attributed to dissociating hydrates. In the first large-scale simulation study of its kind, we simulate shallow hydrate dissociation in conditions representative of the West Spitsbergen margin to test the hypothesis that the observed gas release originated from hydrates. The simulation results are consistent with this hypothesis, and are in remarkable agreement with the recently published observations. They show that shallow, low-saturation hydrate deposits, when subjected to temperature increases at the seafloor, can release significant quantities of methane, and that the releases will be localized near the landward limit of the top of the GHSZ. These results indicate the possibility that hydrate dissociation and methane release may be both a consequence and a cause of climate change.

  12. Controls on Gas Hydrate Formation and Dissociation

    SciTech Connect (OSTI)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  13. Energy Department Advances Research on Methane Hydrates – the World’s Largest Untapped Fossil Energy Resource

    Office of Energy Efficiency and Renewable Energy (EERE)

    Projects to research the nature and occurrence of deepwater and arctic gas hydrates and its potential for dramatically expanding U.S. energy supplies

  14. Overview on Hydrate Coring, Handling and Analysis

    SciTech Connect (OSTI)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  15. Gas Production From a Cold, Stratigraphically Bounded Hydrate Deposit at the Mount Elbert Site, North Slope, Alaska

    SciTech Connect (OSTI)

    Moridis, G.J.; Silpngarmlert, S.; Reagan, M. T.; Collett, T.S.; Zhang, K.

    2009-09-01

    As part of an effort to identify suitable targets for a planned long-term field test, we investigate by means of numerical simulation the gas production potential from unit D, a stratigraphically bounded (Class 3) permafrost-associated hydrate occurrence penetrated in the ount Elbert well on North Slope, Alaska. This shallow, low-pressure deposit has high porosities, high intrinsic permeabilities and high hydrate saturations. It has a low temperature because of its proximity to the overlying permafrost. The simulation results indicate that vertical ells operating at a constant bottomhole pressure would produce at very low rates for a very long period. Horizontal wells increase gas production by almost two orders of magnitude, but production remains low. Sensitivity analysis indicates that the initial deposit temperature is y the far the most important factor determining production performance (and the most effective criterion for target selection) because it controls the sensible heat available to fuel dissociation.

  16. Methane Hydrate Program

    Broader source: Energy.gov (indexed) [DOE]

    ... In: Applications of Raman Spectroscopy to Earth Sciences and Cultural Heritage (J. Dubessy and F. Rull, editors), Chapter 6, EMU Notes in Mineralogy, pp. 227-246. 10. Collett, T.S. ...

  17. Methane Hydrate Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Resources * The Honorable Lamar Smith Chairman, House Committee on Science, ... Figure 3: Acting ASFE Christopher Smith and Alaska Department of Natural Resources ...

  18. DOE Expedition Discovers the First Gulf of Mexico Resource-Quality Gas Hydrate Deposits

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has established that gas hydrate can and does occur at high saturations within reservoir-quality sands in the Gulf of Mexico.

  19. CONTENTS Gas Hydrate-Bearing Sand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTENTS Gas Hydrate-Bearing Sand Reservoir Systems in the Offshore of India: Results of the India National Gas Hydrate Program Expedition 02 ..............1 The Potential for Abiotic Methane in Arctic Gas Hydrates .................9 Coupled Thermo-Hydro-Chemo- Mechanical (THCM) Models for Hydrate-Bearing Sediments ....13 Emerging Issues in the Development of Geologic Models for Gas Hydrate Numerical Simulation ................19 Announcements ...................... 23 * DOE/NETL FY2016 Methane

  20. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    SciTech Connect (OSTI)

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  1. The Secretary of Energy Advisory Board (SEAB) Task Force on Methane

    Energy Savers [EERE]

    Hydrates | Department of Energy Methane Hydrates The Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates The Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates is composed of SEAB members and independent experts charged with recommending a framework for DOE methane hydrate research programs. Purpose of the Task Force: The purpose of this task force is to provide a framework for DOE's pre-commercial methane hydrate research effort, in particular, the

  2. EA-2012: Strategic Test Well (s) Planning and Drilling for Long-Term Methane Hydrate Production Testing in Alaska

    Broader source: Energy.gov [DOE]

    DOE is preparing an EA that evaluates the potential environmental impacts of providing financial support for planning, analysis, and engineering services to support a proposed project of Petrotechnical Resources of Alaska with Japan Oil, Gas and Metals National Corporation to perform gas hydrate drilling and testing on the North Slope of Alaska.

  3. In-Situ Sampling and Characterization of Naturally Occuring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Rack, Frank; Guerin, Gilles; Goldberg, David

    2003-12-31

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) Leg 204 scientific party members presented preliminary results and operational outcomes of ODP Leg 204 at the American Geophysical Union Fall meeting, which was held in San Francisco, CA; and, (2) a report was prepared by Dr. Gilles Guerin and David Goldberg from Lamont-Doherty Earth Observatory of Columbia University on their postcruise evaluation of the data, tools and measurement systems that were used for vertical seismic profiling (VSP) experiments during ODP Leg 204. The VSP report is provided herein. Intermediate in scale and resolution between the borehole data and the 3-D seismic surveys, the Vertical Seismic Profiles (VSP) carried during Leg 204 were aimed at defining the gas hydrate distribution on hydrate ridge, and refining the signature of gas hydrate in the seismic data. VSP surveys were attempted at five sites, following completion of the conventional logging operations. Bad hole conditions and operational difficulties did not allow to record any data in hole 1245E, but vertical and constant offset VSP were successful in holes 1244E, 1247B and 1250F, and walk-away VSP were successfully completed in holes 1244E, 1250F and 1251H. Three different tools were used for these surveys. The vertical VSP provided the opportunity to calculate interval velocity that could be compared and validated with the sonic logs in the same wells. The interval velocity profiles in Holes 1244E and 1247B are in very good agreement with the sonic logs. Information about the Leg 204 presentations at the AGU meeting are included in a separate Topical Report, which has been provided to DOE/NETL in addition to this Quarterly Report. Work continued on analyzing data collected during ODP Leg 204 and preparing reports on the outcomes of Phase 1 projects as well as developing plans for Phase 2.

  4. Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates

    SciTech Connect (OSTI)

    Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

    2010-05-01

    As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

  5. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    SciTech Connect (OSTI)

    Frank R. Rack

    2004-05-01

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) Frank Rack presented preliminary results and operational outcomes of ODP Leg 204 at the DOE/NETL project review and two made two presentations at the ChevronTexaco Gulf of Mexico Hydrate JIP meeting, which were both held in Westminster, CO; and, (2) postcruise evaluation of the data, tools and measurement systems that were used during ODP Leg 204 continued in the preparation of deliverables under this agreement. Work continued on analyzing data collected during ODP Leg 204 and preparing reports on the outcomes of Phase 1 projects as well as developing plans for Phase 2.

  6. gas-hydrate-global-assessment | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gas-hydrate-global-assessment Frozen Heat: A Global Outlook on Methane Hydrate cover of executive summary The United Nations Environmental Programme released this new, two-volume report in March 2015. Frozen Heat: A Global Outlook on Methane Hydrate details the science and history of gas hydrates, evaluates the current state of gas hydrate research, and explores the potential impact of this untapped natural gas source on the future global energy mix. An executive summary of report is also

  7. Enhanced Dry Reforming of Methane on Ni and Ni-Pt Catalysts Synthesized by Atomic Layer Deposition

    SciTech Connect (OSTI)

    Gould, Troy D.; Montemore, Matthew M.; Lubers, Alia M.; Ellis, Lucas D.; Weimer, Alan; Falconer, John L.; Medlin, James W.

    2015-02-25

    Atomic layer deposition (ALD) was used to deposit Ni and Pt on alumina supports to form monometallic and bimetallic catalysts with initial particle sizes of 12.4 nm. The ALD catalysts were more active (per mass of metal) than catalysts prepared by incipient wetness (IW) for dry reforming of methane (DRM), and they did not form carbon whiskers during reaction due to their sufficiently small size. Catalysts modified by Pt ALD had higher rates of reaction per mass of metal and inhibited coking, whereas NiPt catalysts synthesized by IW still formed carbon whiskers. Temperature-programmed reduction of Ni catalysts modified by Pt ALD indicated the presence of bimetallic interaction. Density functional theory calculations suggested that under reaction conditions, the NiPt surfaces form Ni-terminated surfaces that are associated with higher DRM rates (due to their C and O adsorption energies, as well as the CO formation and CH4 dissociation energies).

  8. Methane Hydrate Advisory Committee Meeting

    Broader source: Energy.gov (indexed) [DOE]

    Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 mawdsley_anl_kickoff.pdf (449.33 KB) More Documents & Publications Nitrided Metallic Bipolar Plates Low Cost PEM Fuel Cell Metal Bipolar Plates 2013 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office

    PNNL-23892 Release 3.0 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Metering Best Practices: A Guide to

  9. An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs...

    Open Energy Info (EERE)

    based on the analysis of geochemical anomalies to the main components, such as methane and hydrocarbon series, an integrated assessment of prospective gas hydrate...

  10. Method for the photocatalytic conversion of gas hydrates

    DOE Patents [OSTI]

    Taylor, Charles E.; Noceti, Richard P.; Bockrath, Bradley C.

    2001-01-01

    A method for converting methane hydrates to methanol, as well as hydrogen, through exposure to light. The process includes conversion of methane hydrates by light where a radical initiator has been added, and may be modified to include the conversion of methane hydrates with light where a photocatalyst doped by a suitable metal and an electron transfer agent to produce methanol and hydrogen. The present invention operates at temperatures below 0.degree. C., and allows for the direct conversion of methane contained within the hydrate in situ.

  11. Hydrate detection

    SciTech Connect (OSTI)

    Dillon, W.P.; Ahlbrandt, T.S.

    1992-06-01

    Project objectives were: (1) to create methods of analyzing gas hydrates in natural sea-floor sediments, using available data, (2) to make estimates of the amount of gas hydrates in marine sediments, (3) to map the distribution of hydrates, (4) to relate concentrations of gas hydrates to natural processes and infer the factors that control hydrate concentration or that result in loss of hydrate from the sea floor. (VC)

  12. Hydrate detection

    SciTech Connect (OSTI)

    Dillon, W.P.; Ahlbrandt, T.S.

    1992-01-01

    Project objectives were: (1) to create methods of analyzing gas hydrates in natural sea-floor sediments, using available data, (2) to make estimates of the amount of gas hydrates in marine sediments, (3) to map the distribution of hydrates, (4) to relate concentrations of gas hydrates to natural processes and infer the factors that control hydrate concentration or that result in loss of hydrate from the sea floor. (VC)

  13. TOUGH-Fx/Hydrate

    Energy Science and Technology Software Center (OSTI)

    2005-02-01

    TOUGH-Fx/HYORATL can model the non-isothermal gas release. phase behavior and flow of fluids and heat in complex geologic media. The code can simulate production from natural gas hydrate deposits in the subsurtace (i.e., in the permafrost and in deep ocean sediments), as well as laboratory experiments of hydrate dissociation/formation in porous/fractured media. T006H-Fx/HYDRATE vi .0 includes both an equilibrium and a kinetic model of hydrate Ibmiation and dissociation. The model accounts for heat and upmore » to four mass components-- i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dIssociation or formation, phase changes, and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects, and inhibItor-Induced effects.« less

  14. Gas hydrates on the Atlantic Continental Margin of the United States - controls on concentration

    SciTech Connect (OSTI)

    Dillon, W.P.; Fehlhaber, K.; Coleman, D.F. ); Lee, M.W. )

    1993-01-01

    Large volumes of gas hydrates exist within ocean-floor deposits at water depths exceeding about 300 to 500 m. They cement a surface layer of sediments as much as about 1,000 m thick, limited at its base by increasing temperature. Gas hydrates are identified by drilled samples and by their characteristic responses in seismic reflection profiles. These seismic responses include, at the base of the hydrate-cemented surface layer, a marked velocity decrease and a sea-floor-paralleling reflection (known as the bottom-simulating reflection, or BSR), and, within the hydrate-cemented layer, a reduction in amplitude of seismic reflections (known as blanking), which is apparently caused by cementation of strata. By using seismic-reflection data we have mapped the volume of hydrate and thickness of the hydrate-cemented layer off the US East Coast. The sources of gas at these concentrations are probably bacterial generation of methane at the locations of rapid deposition, and possibly the migration of deep, thermogenic gap up faults near diapirs. The thickness of the gas-hydrate layer decreases markedly at landslide scars, possibly due to break-down of hydrate resulting from pressure reduction caused by removal of sediment by the slide. Gas traps appear to exist where a seal is formed by the gas-hydrate-cemented layer. Such traps are observed (1) where the sea floor forms a dome, and therefore the bottom-paralleling, hydrate-cemented layer also forms a dome; (2) above diapirs, where the greater thermal conductivity of salt creates a warm spot and salt ions act as antifreeze, both effects resulting in a local shallowing of the base of the hydrate; and (3) at locations where strata dip relative to the sea floor, and the updip regions of porous strata are sealed by the gas-hydrate-cemented layer to form a trap. In such situations the gas in the hydrate-sealed trap, as well as the gas that forms the hydrate, may become a resource. 32 refs., 19 figs.

  15. The effect of reservoir heterogeneity on gas production from hydrate accumulations in the permafrost

    SciTech Connect (OSTI)

    Reagan, M. T.; Kowalsky, M B.; Moridis, G. J.; Silpngarmlert, S.

    2010-05-01

    The quantity of hydrocarbon gases trapped in natural hydrate accumulations is enormous, leading to significant interest in the evaluation of their potential as an energy source. Large volumes of gas can be readily produced at high rates for long times from methane hydrate accumulations in the permafrost by means of depressurization-induced dissociation combined with conventional technologies and horizontal or vertical well configurations. Initial studies on the possibility of natural gas production from permafrost hydrates assumed homogeneity in intrinsic reservoir properties and in the initial condition of the hydrate-bearing layers (either due to the coarseness of the model or due to simplifications in the definition of the system). These results showed great promise for gas recovery from Class 1, 2, and 3 systems in the permafrost. This work examines the consequences of inevitable heterogeneity in intrinsic properties, such as in the porosity of the hydrate-bearing formation, or heterogeneity in the initial state of hydrate saturation. Heterogeneous configurations are generated through multiple methods: (1) through defining heterogeneous layers via existing well-log data, (2) through randomized initialization of reservoir properties and initial conditions, and (3) through the use of geostatistical methods to create heterogeneous fields that extrapolate from the limited data available from cores and well-log data. These extrapolations use available information and established geophysical methods to capture a range of deposit properties and hydrate configurations. The results show that some forms of heterogeneity, such as horizontal stratification, can assist in production of hydrate-derived gas. However, more heterogeneous structures can lead to complex physical behavior within the deposit and near the wellbore that may obstruct the flow of fluids to the well, necessitating revised production strategies. The need for fine discretization is crucial in all cases to

  16. Rapid gas hydrate formation processes: Will they work?

    SciTech Connect (OSTI)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOEs National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETLs 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.

  17. Rapid gas hydrate formation processes: Will they work?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  18. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time

  19. Coalbed Methane | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D. Fossil Energy Research Benefits - Coalbed Methane (920.32 KB) More Documents & Publications Before the Senate Energy and Natural

  20. Physical Properties of Gas Hydrates: A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  1. DOE-Sponsored Beaufort Sea Expedition Studies Methane's Role in Global Climate Cycle

    Broader source: Energy.gov [DOE]

    Washington, D.C. -- Increased understanding of methane's role in the global climate cycle and the potential of methane hydrate as a future energy resource could result from a recent joint research...

  2. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    SciTech Connect (OSTI)

    David Kirchman

    2011-12-31

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (??Methane in the Arctic Shelf? or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (??metagenomes?). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially

  3. Relative permeability of hydrate-bearing sediments from percolation theory and critical path analysis: theoretical and experimental results

    SciTech Connect (OSTI)

    Daigle, Hugh; Rice, Mary Anna; Daigle, Hugh

    2015-12-14

    Relative permeabilities to water and gas are important parameters for accurate modeling of the formation of methane hydrate deposits and production of methane from hydrate reservoirs. Experimental measurements of gas and water permeability in the presence of hydrate are difficult to obtain. The few datasets that do exist suggest that relative permeability obeys a power law relationship with water or gas saturation with exponents ranging from around 2 to greater than 10. Critical path analysis and percolation theory provide a framework for interpreting the saturation-dependence of relative permeability based on percolation thresholds and the breadth of pore size distributions, which may be determined easily from 3-D images or gas adsorption-desorption hysteresis. We show that the exponent of the permeability-saturation relationship for relative permeability to water is related to the breadth of the pore size distribution, with broader pore size distributions corresponding to larger exponents. Relative permeability to water in well-sorted sediments with narrow pore size distributions, such as Berea sandstone or Toyoura sand, follows percolation scaling with an exponent of 2. On the other hand, pore-size distributions determined from argon adsorption measurements we performed on clays from the Nankai Trough suggest that relative permeability to water in fine-grained intervals may be characterized by exponents as large as 10 as determined from critical path analysis. We also show that relative permeability to the gas phase follows percolation scaling with a quadratic dependence on gas saturation, but the threshold gas saturation for percolation changes with hydrate saturation, which is an important consideration in systems in which both hydrate and gas are present, such as during production from a hydrate reservoir. Our work shows how measurements of pore size distributions from 3-D imaging or gas adsorption may be used to determine relative permeabilities.

  4. Methane Hydrate Advisory Committee | Department of Energy

    Office of Environmental Management (EM)

    George Moridis Lawrence Berkeley National Lab Berkeley, CA Dr. Joel E. Johnson University of New Hampshire Durham, NH Dr. Robert L. Kleinberg Schlumberger-Doll Research Cambridge, ...

  5. New Project To Improve Characterization of U.S. Gas Hydrate Resources |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Project To Improve Characterization of U.S. Gas Hydrate Resources New Project To Improve Characterization of U.S. Gas Hydrate Resources October 22, 2014 - 10:02am Addthis WASHINGTON, D.C. -The U.S. Department of Energy (DOE) today announced the selection of a multi-year, field-based research project designed to gain further insight into the nature, formation, occurrence and physical properties of methane hydrate-bearing sediments for the purpose of methane hydrate

  6. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Daigle, Hugh; Cook, Ann; Malinverno, Alberto

    2015-10-14

    Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeabilitymore » measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.« less

  7. Permeability and porosity of hydrate-bearing sediments in the northern Gulf of Mexico

    SciTech Connect (OSTI)

    Daigle, Hugh; Cook, Ann; Malinverno, Alberto

    2015-10-14

    Hydrate-bearing sands are being actively explored because they contain the highest concentrations of hydrate and are the most economically recoverable hydrate resource. However, relatively little is known about the mechanisms or timescales of hydrate formation, which are related to methane supply, fluid flux, and host sediment properties such as permeability. We used logging-while-drilling data from locations in the northern Gulf of Mexico to develop an effective medium theory-based model for predicting permeability based on clay-sized sediment fraction. The model considers permeability varying between sand and clay endpoint permeabilities that are defined from laboratory data. We verified the model using permeability measurements on core samples from three boreholes, and then used the model to predict permeability in two wells drilled in Walker Ridge Block 313 during the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II expedition in 2009. We found that the cleanest sands (clay-sized fraction <0.05) had intrinsic (hydrate-free) permeability contrasts of 5-6 orders of magnitude with the surrounding clays, which is sufficient to provide focused hydrate formation due to advection of methane from a deep source or diffusion of microbial methane from nearby clay layers. In sands where the clay-sized fraction exceeds 0.05, the permeability reduces significantly and focused flow is less pronounced. In these cases, diffusion of dissolved microbial methane is most likely the preferred mode of methane supply for hydrate formation. In conclusion, our results provide important constraints on methane supply mechanisms in the Walker Ridge area and have global implications for evaluating rates of methane migration and hydrate formation in hydrate-bearing sands.

  8. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect (OSTI)

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  9. Comparative Assessment of Advanced Gay Hydrate Production Methods

    SciTech Connect (OSTI)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  10. DOE Leads National Research Program in Gas Hydrates

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today told Congress the agency is leading a nationwide program in search of naturally occurring natural gas hydrates - a potentially significant storehouse of methane--with far reaching implications for the environment and the nation's future energy supplies.

  11. Application of Crunch-Flow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites

    SciTech Connect (OSTI)

    Torres, Marta

    2014-01-31

    In November 2012, Oregon State University initiated the project entitled: Application of Crunch-Flow routines to constrain present and past carbon fluxes at gas-hydrate bearing sites. Within this project we developed Crunch-Flow based modeling modules that include important biogeochemical processes that need to be considered in gas hydrate environments. Our modules were applied to quantify carbon cycling in present and past systems, using data collected during several DOE-supported drilling expeditions, which include the Cascadia margin in US, Ulleung Basin in South Korea, and several sites drilled offshore India on the Bay of Bengal and Andaman Sea. Specifically, we completed modeling efforts that: 1) Reproduce the compositional and isotopic profiles observed at the eight drilled sites in the Ulleung Basin that constrain and contrast the carbon cycling pathways at chimney (high methane flux) and non-chimney sites (low methane, advective systems); 2) Simulate the Ba record in the sediments to quantify the past dynamics of methane flux in the southern Hydrate Ridge, Cascadia margin; and 3) Provide quantitative estimates of the thickness of individual mass transport deposits (MTDs), time elapsed after the MTD event, rate of sulfate reduction in the MTD, and time required to reach a new steady state at several sites drilled in the Krishna-Godavari (K-G) Basin off India. In addition we developed a hybrid model scheme by coupling a home-made MATLAB code with CrunchFlow to address the methane transport and chloride enrichment at the Ulleung Basins chimney sites, and contributed the modeling component to a study focusing on pore-scale controls on gas hydrate distribution in sediments from the Andaman Sea. These efforts resulted in two manuscripts currently under review, and contributed the modeling component of another pare, also under review. Lessons learned from these efforts are the basis of a mini-workshop to be held at Oregon State University (Feb 2014) to instruct

  12. ARM - Methane Background Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WarmingMethane Background Information Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Background Information What is Methane? Why Do We Use Methane? How is Methane Made? Where Do We Find Methane? Can Methane Be Dangerous? Does Methane Contribute to Climate Change? What is Methane?

  13. Evaluation of the geological relationships to gas hydrate formation and stability

    SciTech Connect (OSTI)

    Krason, J.; Finley, P.

    1988-01-01

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  14. Geochemical and geologic factors effecting the formulation of gas hydrate: Task No. 5, Final report

    SciTech Connect (OSTI)

    Kvenvolden, K.A.; Claypool, G.E.

    1988-01-01

    The main objective of our work has been to determine the primary geochemical and geological factors controlling gas hydrate information and occurrence and particularly in the factors responsible for the generation and accumulation of methane in oceanic gas hydrates. In order to understand the interrelation of geochemical/geological factors controlling gas hydrate occurrence, we have undertaken a multicomponent program which has included (1) comparison of available information at sites where gas hydrates have been observed through drilling by the Deep Sea Drilling Project (DSDP) on the Blake Outer Ridge and Middle America Trench; (2) regional synthesis of information related to gas hydrate occurrences of the Middle America Trench; (3) development of a model for the occurrence of a massive gas hydrate as DSDP Site 570; (4) a global synthesis of gas hydrate occurrences; and (5) development of a predictive model for gas hydrate occurrence in oceanic sediment. The first three components of this program were treated as part of a 1985 Department of Energy Peer Review. The present report considers the last two components and presents information on the worldwide occurrence of gas hydrates with particular emphasis on the Circum-Pacific and Arctic basins. A model is developed to account for the occurrence of oceanic gas hydrates in which the source of the methane is from microbial processes. 101 refs., 17 figs., 6 tabs.

  15. Towards bio-silicon interfaces: Formation of an ultra-thin self-hydrated artificial membrane composed of dipalmitoylphosphatidylcholine (DPPC) and chitosan deposited in high vacuum from the gas-phase

    SciTech Connect (OSTI)

    Retamal, María J. Cisternas, Marcelo A.; Seifert, Birger; Volkmann, Ulrich G.; Gutierrez-Maldonado, Sebastian E.; Perez-Acle, Tomas; Busch, Mark; Huber, Patrick

    2014-09-14

    The recent combination of nanoscale developments with biological molecules for biotechnological research has opened a wide field related to the area of biosensors. In the last years, device manufacturing for medical applications adapted the so-called bottom-up approach, from nanostructures to larger devices. Preparation and characterization of artificial biological membranes is a necessary step for the formation of nano-devices or sensors. In this paper, we describe the formation and characterization of a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) on a mattress of a polysaccharide (Chitosan) that keeps the membrane hydrated. The deposition of Chitosan (∼25 Å) and DPPC (∼60 Å) was performed from the gas phase in high vacuum onto a substrate of Si(100) covered with its native oxide layer. The layer thickness was controlled in situ using Very High Resolution Ellipsometry (VHRE). Raman spectroscopy studies show that neither Chitosan nor DPPC molecules decompose during evaporation. With VHRE and Atomic Force Microscopy we have been able to detect phase transitions in the membrane. The presence of the Chitosan interlayer as a water reservoir is essential for both DPPC bilayer formation and stability, favoring the appearance of phase transitions. Our experiments show that the proposed sample preparation from the gas phase is reproducible and provides a natural environment for the DPPC bilayer. In future work, different Chitosan thicknesses should be studied to achieve a complete and homogeneous interlayer.

  16. Strategies for gas production from hydrate accumulations under various geologic conditions

    SciTech Connect (OSTI)

    Moridis, G.; Collett, T.

    2003-04-29

    In this paper we classify hydrate deposits in three classes according to their geologic and reservoir conditions, and discuss the corresponding production strategies. Simple depressurization appears promising in Class 1 hydrates, but its appeal decreases in Class 2 and Class 3 hydrates. The most promising production strategy in Class 2 hydrates involves combinations of depressurization and thermal stimulation, and is clearly enhanced by multi-well production-injection systems. The effectiveness of simple depressurization in Class 3 hydrates is limited, and thermal stimulation (alone or in combination with depressurization) through single well systems seems to be the strategy of choice in such deposits.

  17. Discovery of New Materials to Capture Methane | U.S. DOE Office...

    Office of Science (SC) Website

    Summary Methane, a common gas emitted from natural gas systems, landfills, coal mining, waste water treatment and hydrates in the ocean, is both a great energy source and a ...

  18. Gas hydrate detection and mapping on the US east coast

    SciTech Connect (OSTI)

    Ahlbrandt, T.S.; Dillon, W.P.

    1993-12-31

    Project objectives are to identify and map gas hydrate accumulations on the US eastern continental margin using remote sensing (seismic profiling) techniques and to relate these concentrations to the geological factors that-control them. In order to test the remote sensing methods, gas hydrate-cemented sediments will be tested in the laboratory and an effort will be made to perform similar physical tests on natural hydrate-cemented sediments from the study area. Gas hydrate potentially may represent a future major resource of energy. Furthermore, it may influence climate change because it forms a large reservoir for methane, which is a very effective greenhouse gas; its breakdown probably is a controlling factor for sea-floor landslides; and its presence has significant effect on the acoustic velocity of sea-floor sediments.

  19. CONTENTS Concentrated Gas Hydrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Schoderbek, D., Martin, K., Howard, J., Silpngarmlert, S., and Hester, K., 2012. North Slope hydrate field trial: CO 2 -CH 4 exchange. Paper OTC-23725, presented at Offshore ...

  20. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    SciTech Connect (OSTI)

    Koh, Carolyn Ann

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  1. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    SciTech Connect (OSTI)

    Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

    2011-04-01

    Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas

  2. Hydrate Evolution in Response to Ongoing Environmental Shifts

    SciTech Connect (OSTI)

    Rempel, Alan

    2015-12-31

    Natural gas hydrates have the potential to become a vital domestic clean-burning energy source. However, past changes in environmental conditions have caused hydrates to become unstable and trigger both massive submarine landslides and the development of crater-like pockmarks, thereby releasing methane into the overlying seawater and atmosphere, where it acts as a powerful greenhouse gas. This project was designed to fill critical gaps in our understanding of domestic hydrate resources and improve forecasts for their response to environmental shifts. Project work can be separated into three interrelated components, each involving the development of predictive mathematical models. The first project component concerns the role of sediment properties on the development and dissociation of concentrated hydrate anomalies. To this end, we developed numerical models to predict equilibrium solubility of methane in twophase equilibrium with hydrate as a function of measureable porous medium characteristics. The second project component concerned the evolution of hydrate distribution in heterogeneous reservoirs. To this end, we developed numerical models to predict the growth and decay of anomalies in representative physical environments. The third project component concerned the stability of hydrate-bearing slopes under changing environmental conditions. To this end, we developed numerical treatments of pore pressure evolution and consolidation, then used "infinite-slope" analysis to approximate the landslide potential in representative physical environments, and developed a "rate-and-state" frictional formulation to assess the stability of finite slip patches that are hypothesized to develop in response to the dissociation of hydrate anomalies. The increased predictive capabilities that result from this work provide a framework for interpreting field observations of hydrate anomalies in terms of the history of environmental forcing that led to their development. Moreover

  3. CONTENTS Gas Hydrate Assessment in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... at the upcoming International Conference on Gas Hydrates, to be held in Beijing, China. ... Proceedings of the 8th International Conference on Gas Hydrates (ICGH8- 2014), Beijing, ...

  4. Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)

    SciTech Connect (OSTI)

    Ian MacDonald

    2011-05-31

    A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation

  5. Physical property changes in hydrate-bearingsediment due to depressurization and subsequent repressurization

    SciTech Connect (OSTI)

    Kneafsey, Timothy; Waite, W.F.; Kneafsey, T.J.; Winters, W.J.; Mason, D.H.

    2008-06-01

    Physical property measurements of sediment cores containing natural gas hydrate are typically performed on material exposed at least briefly to non-in situ conditions during recovery. To examine effects of a brief excursion from the gas-hydrate stability field, as can occur when pressure cores are transferred to pressurized storage vessels, we measured physical properties on laboratory-formed sand packs containing methane hydrate and methane pore gas. After depressurizing samples to atmospheric pressure, we repressurized them into the methane-hydrate stability field and remeasured their physical properties. Thermal conductivity, shear strength, acoustic compressional and shear wave amplitudes and speeds are compared between the original and depressurized/repressurized samples. X-ray computed tomography (CT) images track how the gas-hydrate distribution changes in the hydrate-cemented sands due to the depressurization/repressurization process. Because depressurization-induced property changes can be substantial and are not easily predicted, particularly in water-saturated, hydrate-bearing sediment, maintaining pressure and temperature conditions throughout the core recovery and measurement process is critical for using laboratory measurements to estimate in situ properties.

  6. Evaluation of the geological relationships to gas hydrate formation and stability. Progress report, June 16--September 30, 1988

    SciTech Connect (OSTI)

    Krason, J.; Finley, P.

    1988-12-31

    The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

  7. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  8. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    SciTech Connect (OSTI)

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  9. Geologic interrelations relative to gas hydrates within the North Slope of Alaska: Task No. 6, Final report

    SciTech Connect (OSTI)

    Collett, T.S.; Bird, K.J.; Kvenvolden, K.A.; Magoon, L.B.

    1988-01-01

    The five primary objectives of the US Geological Survey North Slope Gas Hydrate Project were to: (1) Determine possible geologic controls on the occurrence of gas hydrate; (2) locate and evaluate possible gas-hydrate-bearing reservoirs; (3) estimate the volume of gas within the hydrates; (4) develop a model for gas-hydrate formation; and (5) select a coring site for gas-hydrate sampling and analysis. Our studies of the North Slope of Alaska suggest that the zone in which gas hydrates are stable is controlled primarily by subsurface temperatures and gas chemistry. Other factors, such as pore-pressure variations, pore-fluid salinity, and reservior-rock grain size, appear to have little effect on gas hydrate stability on the North Slope. Data necessary to determine the limits of gas hydrate stability field are difficult to obtain. On the basis of mud-log gas chromatography, core data, and cuttings data, methane is the dominant species of gas in the near-surface (0--1500 m) sediment. Gas hydrates were identified in 34 wells utilizing well-log responses calibrated to the response of an interval in one well where gas hydrates were actually recovered in a core by an oil company. A possible scenario describing the origin of the interred gas hydrates on the North Slope involves the migration of thermogenic solution- and free-gas from deeper reservoirs upward along faults into the overlying sedimentary rocks. We have identified two (dedicated) core-hole sites, the Eileen and the South-End core-holes, at which there is a high probability of recovering a sample of gas hydrate. At the Eileen core-hole site, at least three stratigraphic units may contain gas hydrate. The South-End core-hole site provides an opportunity to study one specific rock unit that appears to contain both gas hydrate and oil. 100 refs., 72 figs., 24 tabs.

  10. Methane Credit | Open Energy Information

    Open Energy Info (EERE)

    Methane Credit Jump to: navigation, search Name: Methane Credit Place: Charlotte, North Carolina Zip: 28273 Product: Specialises in utilising methane produced on municipal landfill...

  11. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    SciTech Connect (OSTI)

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces the initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.

  12. Pathways through equilibrated states with coexisting phases for gas hydrate formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, Edyta; Keyes, Tom

    2015-12-01

    Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less

  13. FY 2014 Methane Hydrate Program Report to Congress.pdf

    Office of Environmental Management (EM)

  14. Energy Department Advances Research on Methane Hydrates - the...

    Broader source: Energy.gov (indexed) [DOE]

    ... conditions.Energy Department Investment: 420,000Duration: 12 months University of New Hampshire (Durham, N.H.) -- The University of New Hampshire will study the dynamic response ...

  15. Energy Department Expands Research into Methane Hydrates, a Vast...

    Broader source: Energy.gov (indexed) [DOE]

    be found both onshore and offshore - including under the ... by reaching beyond the zone disturbed by drilling. ... The project will provide a geochemical evaluation of the ...

  16. Comparison of kinetic and equilibrium reaction models insimulating gas hydrate behavior in porous media

    SciTech Connect (OSTI)

    Kowalsky, Michael B.; Moridis, George J.

    2006-11-29

    In this study we compare the use of kinetic and equilibriumreaction models in the simulation of gas (methane) hydrate behavior inporous media. Our objective is to evaluate through numerical simulationthe importance of employing kinetic versus equilibrium reaction modelsfor predicting the response of hydrate-bearing systems to externalstimuli, such as changes in pressure and temperature. Specifically, we(1) analyze and compare the responses simulated using both reactionmodels for natural gas production from hydrates in various settings andfor the case of depressurization in a hydrate-bearing core duringextraction; and (2) examine the sensitivity to factors such as initialhydrate saturation, hydrate reaction surface area, and numericaldiscretization. We find that for large-scale systems undergoing thermalstimulation and depressurization, the calculated responses for bothreaction models are remarkably similar, though some differences areobserved at early times. However, for modeling short-term processes, suchas the rapid recovery of a hydrate-bearing core, kinetic limitations canbe important, and neglecting them may lead to significantunder-prediction of recoverable hydrate. The use of the equilibriumreaction model often appears to be justified and preferred for simulatingthe behavior of gas hydrates, given that the computational demands forthe kinetic reaction model far exceed those for the equilibrium reactionmodel.

  17. ARM - Methane Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane Gas Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Methane Gas Methane gas is another naturally occurring greenhouse gas. It is produced as a result of microbial activity in the absence of oxygen. Pre-industrial concentrations of methane were about 700 ppb and in 1994 they were up

  18. Rapid gas hydrate formation process

    DOE Patents [OSTI]

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  19. Heat pipe methanator

    DOE Patents [OSTI]

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  20. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  1. Wax and hydrate control with electrical power

    SciTech Connect (OSTI)

    1997-08-01

    Electrical heating of subsea flowlines is an effective way to prevent wax and hydrate information, especially for long transportation distances and in low-temperature deep water. Systems are available for use in conjunction with bundles, pipe-in-pipe, and wet-thermal-insulation systems. These systems provide environmentally friendly fluid-temperature control without chemicals or flaring for pipeline depressurizing. Enhanced production is achieved because no time is lost by unnecessary depressurizing, pigging, heating-medium circulation, or removal of hydrate and wax blockages. The seabed temperature at 100-m and greater water depths may range from 7 to {minus}1.5 C, causing a rapid cooling of the hot well streams being transported in subsea flowlines. Under these supercooling conditions, vulnerable crude oils and multiphase compositions will deposit wax and asphalts; also the gas/water phase may freeze solid with hydrate particles. The paper discusses thermal-insulated flowlines, heat-loss compensation with electrical power, electrical power consumption and operation, and subsea electrical-power distribution system.

  2. Method and apparatus for recovering a gas from a gas hydrate located on the ocean floor

    DOE Patents [OSTI]

    Wyatt, Douglas E.

    2001-01-01

    A method and apparatus for recovering a gas from a gas hydrate on the ocean floor includes a flexible cover, a plurality of steerable base members secured to the cover, and a steerable mining module. A suitable source for inflating the cover over the gas hydrate deposit is provided. The mining module, positioned on the gas hydrate deposit, is preferably connected to the cover by a control cable. A gas retrieval conduit or hose extends upwardly from the cover to be connected to a support ship on the ocean surface.

  3. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    SciTech Connect (OSTI)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    saturations. Large volumes (of order one pore volume) of gaseous and aqueous phases must be transported into the gas hydrate stability zone. The driver for this transport is the pressure sink induced by a reduction in occupied pore volume that accompanies the formation of hydrate from gas and water. Pore-scale imbibition models and bed-scale multiphase flow models indicate that the rate-limiting step in converting gas to hydrate is the supply of water to the hydrate stability zone. Moreover, the water supply rate is controlled by capillarity-driven flux for conditions typical of the Alaska North Slope. A meter-scale laboratory experiment confirms that significant volumes of fluid phases move into the hydrate stability zone and that capillarity is essential for the water flux. The model shows that without capillarity-driven flux, large saturations of hydrate cannot form. The observations of thick zones of large saturation at Mallik and Mt Elbert thus suggest that the primary control on these systems is the rate of transport of gaseous and aqueous phases, driven by the pressure sink at the base of the gas hydrate stability zone. A key finding of our project is the elucidation of ?capillary fracturing? as a dominant gas transport mechanism in low-permeability media. We initially investigate this phenomenon by means of grain-scale simulations in which we extended a discrete element mechanics code (PFC, by Itasca) to incorporate the dynamics of first singlephase and then multiphase flow. A reductionist model on a square lattice allows us to determine some of the fundamental dependencies of the mode of gas invasion (capillary fingering, viscous fingering, and fracturing) on the parameters of the system. We then show that the morphology of the gas-invaded region exerts a fundamental control on the fabric of methane hydrate formation, and on the overpressures caused by methane hydrate dissociation. We demonstrate the existence of the different invasion regimes by means of controlled

  4. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    SciTech Connect (OSTI)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    saturations. Large volumes (of order one pore volume) of gaseous and aqueous phases must be transported into the gas hydrate stability zone. The driver for this transport is the pressure sink induced by a reduction in occupied pore volume that accompanies the formation of hydrate from gas and water. Pore-scale imbibition models and bed-scale multiphase flow models indicate that the rate-limiting step in converting gas to hydrate is the supply of water to the hydrate stability zone. Moreover, the water supply rate is controlled by capillarity-driven flux for conditions typical of the Alaska North Slope. A meter-scale laboratory experiment confirms that significant volumes of fluid phases move into the hydrate stability zone and that capillarity is essential for the water flux. The model shows that without capillarity-driven flux, large saturations of hydrate cannot form. The observations of thick zones of large saturation at Mallik and Mt Elbert thus suggest that the primary control on these systems is the rate of transport of gaseous and aqueous phases, driven by the pressure sink at the base of the gas hydrate stability zone. A key finding of our project is the elucidation of ?capillary fracturing? as a dominant gas transport mechanism in low-permeability media. We initially investigate this phenomenon by means of grain-scale simulations in which we extended a discrete element mechanics code (PFC, by Itasca) to incorporate the dynamics of first single-phase and then multiphase flow. A reductionist model on a square lattice allows us to determine some of the fundamental dependencies of the mode of gas invasion (capillary fingering, viscous fingering, and fracturing) on the parameters of the system. We then show that the morphology of the gas-invaded region exerts a fundamental control on the fabric of methane hydrate formation, and on the overpressures caused by methane hydrate dissociation. We demonstrate the existence of the different invasion regimes by means of controlled

  5. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    SciTech Connect (OSTI)

    Seol, Yongkoo Choi, Jeong-Hoon; Dai, Sheng

    2014-08-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field.

  6. Some thermodynamical aspects of protein hydration water

    SciTech Connect (OSTI)

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Vasi, Cirino; Stanley, H. Eugene; Chen, Sow-Hsin

    2015-06-07

    We study by means of nuclear magnetic resonance the self-diffusion of protein hydration water at different hydration levels across a large temperature range that includes the deeply supercooled regime. Starting with a single hydration shell (h = 0.3), we consider different hydrations up to h = 0.65. Our experimental evidence indicates that two phenomena play a significant role in the dynamics of protein hydration water: (i) the measured fragile-to-strong dynamic crossover temperature is unaffected by the hydration level and (ii) the first hydration shell remains liquid at all hydrations, even at the lowest temperature.

  7. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    SciTech Connect (OSTI)

    Moridis, George; Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    2008-03-01

    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH{sub 4}-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH{sub 4}, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is the first member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  8. DPF-"Hydrated EGR" Fuel Saver System

    Office of Energy Efficiency and Renewable Energy (EERE)

    GreenPower muffler uses hydrated exhaust gas recirculation to reduce NOx and improve fuel efficiency

  9. The future of methane

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  10. Coalbed Methane (CBM) is natural

    Broader source: Energy.gov (indexed) [DOE]

    and continued ural gas liquids and crude oil, which have a higher value in energy ... Submersible pump Coal Methane released from coal Methane to pipeline Water (discharged) ...

  11. Methanation assembly using multiple reactors

    DOE Patents [OSTI]

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  12. Scientific Objectives of the Gulf of Mexico Gas Hydrate JIP Leg II Drilling

    SciTech Connect (OSTI)

    Jones, E.; Latham, T.; McConnell, D.; Frye, M.; Hunt, J.; Shedd, W.; Shelander, D.; Boswell, R.M.; Rose, K.K.; Ruppel, C.; Hutchinson, D.; Collett, T.; Dugan, B.; Wood, W.

    2008-05-01

    The Gulf of Mexico Methane Hydrate Joint Industry Project (JIP) has been performing research on marine gas hydrates since 2001 and is sponsored by both the JIP members and the U.S. Department of Energy. In 2005, the JIP drilled the Atwater Valley and Keathley Canyon exploration blocks in the Gulf of Mexico to acquire downhole logs and recover cores in silt- and clay-dominated sediments interpreted to contain gas hydrate based on analysis of existing 3-D seismic data prior to drilling. The new 2007-2009 phase of logging and coring, which is described in this paper, will concentrate on gas hydrate-bearing sands in the Alaminos Canyon, Green Canyon, and Walker Ridge protraction areas. Locations were selected to target higher permeability, coarser-grained lithologies (e.g., sands) that have the potential for hosting high saturations of gas hydrate and to assist the U.S. Minerals Management Service with its assessment of gas hydrate resources in the Gulf of Mexico. This paper discusses the scientific objectives for drilling during the upcoming campaign and presents the results from analyzing existing seismic and well log data as part of the site selection process. Alaminos Canyon 818 has the most complete data set of the selected blocks, with both seismic data and comprehensive downhole log data consistent with the occurrence of gas hydrate-bearing sands. Preliminary analyses suggest that the Frio sandstone just above the base of the gas hydrate stability zone may have up to 80% of the available sediment pore space occupied by gas hydrate. The proposed sites in the Green Canyon and Walker Ridge areas are also interpreted to have gas hydrate-bearing sands near the base of the gas hydrate stability zone, but the choice of specific drill sites is not yet complete. The Green Canyon site coincides with a 4-way closure within a Pleistocene sand unit in an area of strong gas flux just south of the Sigsbee Escarpment. The Walker Ridge site is characterized by a sand

  13. HYDRATE v1.5 OPTION OF TOUGH+ v1.5

    Energy Science and Technology Software Center (OSTI)

    2015-08-27

    HYDRATE v1.5 is a numerical code that for the simulation of the behavior of hydrate-bearing geologic systems, and represents the third update of the code since its first release [Moridis et al., 2008]. It is an option of TOUGH+ v1.5 [Moridis and Pruess, 2014], a successor to the TOUGH2 [Pruess et al., 1999, 2012] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. HYDRATE v1.5 needs themore » TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available. By solving the coupled equations of mass and heat balance, the fully operational TOUGH+HYDRATE code can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.5 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects.« less

  14. Development of a Numerical Simulator for Analyzing the Geomechanical Performance of Hydrate-Bearing Sediments

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Rutqvist, J.; Moridis, G.J.

    2008-06-01

    In this paper, we describe the development and application of a numerical simulator that analyzes the geomechanical performance of hydrate-bearing sediments, which may become an important future energy supply. The simulator is developed by coupling a robust numerical simulator of coupled fluid flow, hydrate thermodynamics, and phase behavior in geologic media (TOUGH+HYDRATE) with an established geomechanical code (FLAC3D). We demonstrate the current simulator capabilities and applicability for two examples of geomechanical responses of hydrate bearing sediments during production-induced hydrate dissociation. In these applications, the coupled geomechanical behavior within hydrate-bearing seducements are considered through a Mohr-Coulomb constitutive model, corrected for changes in pore-filling hydrate and ice content, based on laboratory data. The results demonstrate how depressurization-based gas production from oceanic hydrate deposits may lead to severe geomechanical problems unless care is taken in designing the production scheme. We conclude that the coupled simulator can be used to design production strategies for optimizing production, while avoiding damaging geomechanical problems.

  15. Enhanced carbon monoxide utilization in methanation process

    DOE Patents [OSTI]

    Elek, Louis F.; Frost, Albert C.

    1984-01-01

    Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

  16. Enzymatic Oxidation of Methane

    SciTech Connect (OSTI)

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  17. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Science on the Hill: Methane cloud hunting Los Alamos researchers go ... Science on the Hill: Methane cloud hunting When our team from Los Alamos National ...

  18. Electrochemical methane sensor

    DOE Patents [OSTI]

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  19. ARM - Measurement - Methane concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  20. ARM - Measurement - Methane flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane flux Vertical flux of methane near the surface due to turbulent transport. Categories Surface Properties, Atmospheric Carbon Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  1. Natural Gas Hydrates Update 1998-2000

    Reports and Publications (EIA)

    2001-01-01

    Significant events have transpired on the natural gas hydrate research and development front since "Future Supply Potential of Natural Gas Hydrates" appeared in Natural Gas 1998 Issues and Trends and in the Potential Gas Committee's 1998 biennial report.

  2. Natural Gas Hydrates Update 2000-2002

    Reports and Publications (EIA)

    2003-01-01

    Natural gas hydrates research and development (R&D) activity expanded significantly during the 2000-2002.

  3. Insights into the structure of mixed CO2/CH4 in gas hydrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Everett, S. Michelle; Rawn, Claudia J.; Chakoumakos, Bryan C.; Keffer, David J.; Huq, Ashfia; Phelps, Tommy J.

    2015-05-12

    The exchange of carbon dioxide for methane in natural gas hydrates is an attractive approach to harvesting CH4 for energy production while simultaneously sequestering CO2. In addition to the energy and environmental implications, the solid solution of clathrate hydrate (CH4)1-x(CO2)x·5.75H2O provides a model system to study how the distinct bonding and shapes of CH4 and CO2 influence the structure and properties of the compound. In this paper, high-resolution neutron diffraction was used to examine mixed CO2/CH4 gas hydrates. CO2-rich hydrates had smaller lattice parameters, which were attributed to the higher affinity of the CO2 molecule interacting with H2O molecules thatmore » form the surrounding cages, and resulted in a reduction in the unit-cell volume. Experimental nuclear scattering densities illustrate how the cage occupants and energy landscape change with composition. Finally, these results provide important insights on the impact and mechanisms for the structure of mixed CH4/CO2 gas hydrate.« less

  4. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    SciTech Connect (OSTI)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  5. Handbook of gas hydrate properties and occurrence

    SciTech Connect (OSTI)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  6. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    SciTech Connect (OSTI)

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  7. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation

    SciTech Connect (OSTI)

    Kneafsey, T.J.; Liu, T.J. H.; Winters, W.; Boswell, R.; Hunter, R.; Collett, T.S.

    2011-06-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  8. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    SciTech Connect (OSTI)

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  9. Gas hydrate cool storage system

    DOE Patents [OSTI]

    Ternes, Mark P. (Knoxville, TN); Kedl, Robert J. (Oak Ridge, TN)

    1985-01-01

    This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.

  10. Multiple stage multiple filter hydrate store

    DOE Patents [OSTI]

    Bjorkman, H.K. Jr.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means for separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means. 7 figs.

  11. Multiple stage multiple filter hydrate store

    DOE Patents [OSTI]

    Bjorkman, Jr., Harry K.

    1983-05-31

    An improved hydrate store for a metal halogen battery system is disclosed which employs a multiple stage, multiple filter means or separating the halogen hydrate from the liquid used in forming the hydrate. The filter means is constructed in the form of three separate sections which combine to substantially cover the interior surface of the store container. Exit conduit means is provided in association with the filter means for transmitting liquid passing through the filter means to a hydrate former subsystem. The hydrate former subsystem combines the halogen gas generated during the charging of the battery system with the liquid to form the hydrate in association with the store. Relief valve means is interposed in the exit conduit means for controlling the operation of the separate sections of the filter means, such that the liquid flow through the exit conduit means from each of the separate sections is controlled in a predetermined sequence. The three separate sections of the filter means operate in three discrete stages to provide a substantially uniform liquid flow to the hydrate former subsystem during the charging of the battery system. The separation of the liquid from the hydrate causes an increase in the density of the hydrate by concentrating the hydrate along the filter means.

  12. Direct Aromaization of Methane

    SciTech Connect (OSTI)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  13. Gas Hydrate Characterization in the GoM using Marine EM Methods

    SciTech Connect (OSTI)

    Constable, Steven

    2012-03-31

    In spite of the importance of gas hydrate as a low-carbon fuel, a possible contributor to rapid climate change, and a significant natural hazard, our current understanding about the amount and distribution of submarine gas hydrate is somewhat poor; estimates of total volume vary by at least an order of magnitude, and commercially useful concentrations of hydrate have remained an elusive target. This is largely because conventional geophysical tools have intrinsic limitations in their ability to quantitatively image hydrate. It has long been known from well logs that gas hydrate is resistive compared to the host sediments, and electrical and electromagnetic methods have been proposed and occasionally used to image hydrates. This project seeks to expand our capabilities to use electromagnetic methods to explore for gas hydrate in the marine environment. An important basic science aspect of our work was to quantify the resistivity of pure gas hydrate as a function of temperature at seafloor pressures. We designed, constructed, and tested a highpressure cell in which hydrate could be synthesized and then subjected to electrical conductivity measurements. Impedance spectroscopy at frequencies between 20 Hz and 2 MHz was used to separate the effect of the blocking electrodes from the intrinsic conductivity of the hydrate. We obtained very reproducible results that showed that pure methane hydrate was several times more resistive than the water ice that seeded the synthesis, 20,000 {Ohm}m at 0{degrees} C, and that the activation energy is 30.6 kJ/mol over the temperature range of -15 to 15{degrees} C. Adding silica sand to the hydrate, however, showed that the addition of the extra phase caused the conductivity of the assemblage to increase in a counterintuitive way. The fact that the increased conductivity collapsed after a percolation threshold was reached, and that the addition of glass beads does not produce a similar increase in conductivity, together suggest that

  14. Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane ... Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed Methane Proved ...

  15. Development of Alaskan gas hydrate resources

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  16. Guest Molecule Exchange Kinetics for the 2012 Ignik Sikumi Gas Hydrate Field Trial

    SciTech Connect (OSTI)

    White, Mark D.; Lee, Won Suk

    2014-05-14

    A commercially viable technology for producing methane from natural gas hydrate reservoirs remains elusive. Short-term depressurization field tests have demonstrated the potential for producing natural gas via dissociation of the clathrate structure, but the long-term performance of the depressurization technology ultimately requires a heat source to sustain the dissociation. A decade of laboratory experiments and theoretical studies have demonstrated the exchange of pure CO2 and N2-CO2 mixtures with CH4 in sI gas hydrates, yielding critical information about molecular mechanisms, recoveries, and exchange kinetics. Findings indicated the potential for producing natural gas with little to no production of water and rapid exchange kinetics, generating sufficient interest in the guest-molecule exchange technology for a field test. In 2012 the U.S. DOE/NETL, ConocoPhillips Company, and Japan Oil, Gas and Metals National Corporation jointly sponsored the first field trial of injecting a mixture of N2-CO2 into a CH4-hydrate bearing formation beneath the permafrost on the Alaska North Slope. Known as the Ignik Sikumi #1 Gas Hydrate Field Trial, this experiment involved three stages: 1) the injection of a N2-CO2 mixture into a targeted hydrate-bearing layer, 2) a 4-day pressurized soaking period, and 3) a sustained depressurization and fluid production period. Data collected during the three stages of the field trial were made available after an extensive quality check. These data included continuous temperature and pressure logs, injected and recovered fluid compositions and volumes. The Ignik Sikumi #1 data set is extensive, but contains no direct evidence of the guest-molecule exchange process. This investigation is directed at using numerical simulation to provide an interpretation of the collected data. A numerical simulator, STOMP-HYDT-KE, was recently completed that solves conservation equations for energy, water, mobile fluid guest molecules, and hydrate guest

  17. Desalination utilizing clathrate hydrates (LDRD final report).

    SciTech Connect (OSTI)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy; Greathouse, Jeffery A.; Majzoub, Eric H.

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  18. Insights into the structure of mixed CO2/CH4 in gas hydrates

    SciTech Connect (OSTI)

    Everett, Susan M; Rawn, Claudia J; Chakoumakos, Bryan C; Keffer, David J.; Huq, Ashfia; Phelps, Tommy Joe

    2015-01-01

    The exchange of CO2 for CH4 in natural gas hydrates is an attractive approach to methane for energy production while simultaneously sequestering CO2. In addition to the energy and environmental implications, the solid solution of clathrate hydrate (CH4)1-x(CO2)x 5.75H2O provides a model system to study how the distinct bonding and shapes of CH4 and CO2 influence the structure and properties of the compound. High-resolution neutron diffraction was used to examine mixed CO2/CH4 gas hydrates. CO2-rich hydrates had smaller lattice parameters, which were attributed to the higher affinity of the CO2 molecule interacting with H2O molecules that form the surrounding cages, and resulted in a reduction in the unit cell volume. Experimental nuclear scattering densities illustrate how the cage occupants and energy landscape change with composition. These results provide important insights on the impact and mechanisms for exchanging CH4 and CO2.

  19. Project identification for methane reduction options

    SciTech Connect (OSTI)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  20. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    SciTech Connect (OSTI)

    Lutken, Carol; Macelloni, Leonardo; D'Emidio, Marco; Dunbar, John; Higley, Paul

    2015-01-31

    This study was designed to investigate temporal variations in hydrate system dynamics by measuring changes in volumes of hydrate beneath hydrate-bearing mounds on the continental slope of the northern Gulf of Mexico, the landward extreme of hydrate occurrence in this region. Direct Current Resistivity (DCR) measurements were made contemporaneously with measurements of oceanographic parameters at Woolsey Mound, a carbonate-hydrate complex on the mid-continental slope, where formation and dissociation of hydrates are most vulnerable to variations in oceanographic parameters affected by climate change, and where changes in hydrate stability can readily translate to loss of seafloor stability, impacts to benthic ecosystems, and venting of greenhouse gases to the water-column, and eventually, the atmosphere. We focused our study on hydrate within seafloor mounds because the structurally-focused methane flux at these sites likely causes hydrate formation and dissociation processes to occur at higher rates than at sites where the methane flux is less concentrated and we wanted to maximize our chances of witnessing association/dissociation of hydrates. We selected a particularly well-studied hydrate-bearing seafloor mound near the landward extent of the hydrate stability zone, Woolsey Mound (MC118). This mid-slope site has been studied extensively and the project was able to leverage considerable resources from the team’s research experience at MC118. The site exhibits seafloor features associated with gas expulsion, hydrates have been documented at the seafloor, and changes in the outcropping hydrates have been documented, photographically, to have occurred over a period of months. We conducted observatory-based, in situ measurements to 1) characterize, geophysically, the sub-bottom distribution of hydrate and its temporal variability, and 2) contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents) to

  1. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-06-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  2. Methane conversion to methanol

    SciTech Connect (OSTI)

    Noble, R.D.; Falconer, J.L.

    1992-01-01

    The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

  3. Regional long-term production modeling from a single well test, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    SciTech Connect (OSTI)

    Anderson, Brian J.; Kurihara, Masanori; White, Mark D.; Moridis, George J.; Wilson, Scott J.; Pooladi-Darvish, Mehran; Gaddipati, Manohar; Masuda, Yoshihiro; Collett, Timothy S.; Hunter, Robert B.; Narita, Hideo; Rose, Kelly; Boswell, Ray

    2011-02-01

    Following the results from the open-hole formation pressure response test in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool, the International Methane Hydrate Reservoir Simulator Code Comparison project performed long-term reservoir simulations on three different model reservoirs. These descriptions were based on 1) the Mount Elbert gas hydrate accumulation as delineated by an extensive history-matching exercise, 2) an estimation of the hydrate accumulation near the Prudhoe Bay L-pad, and 3) a reservoir that would be down-dip of the Prudhoe Bay L-pad and therefore warmer and deeper. All of these simulations were based, in part, on the results of the MDT results from the Mount Elbert Well. The comparison group's consensus value for the initial permeability of the hydrate-filled reservoir (k = 0.12 mD) and the permeability model based on the MDT history match were used as the basis for subsequent simulations on the three regional scenarios. The simulation results of the five different simulation codes, CMG STARS, HydrateResSim, MH-21 HYDRES, STOMP-HYD, and TOUGH+HYDRATE exhibit good qualitative agreement and the variability of potential methane production rates from gas hydrate reservoirs is illustrated. As expected, the predicted methane production rate increased with increasing in situ reservoir temperature; however, a significant delay in the onset of rapid hydrate dissociation is observed for a cold, homogeneous reservoir and it is found to be repeatable. The inclusion of reservoir heterogeneity in the description of this cold reservoir is shown to eliminate this delayed production. Overall, simulations utilized detailed information collected across the Mount Elbert reservoir either obtained or determined from geophysical well logs, including thickness (37 ft), porosity (35%), hydrate saturation (65%), intrinsic permeability (1000 mD), pore water

  4. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  5. Methane/nitrogen separation process

    DOE Patents [OSTI]

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  6. Methanation of gas streams containing carbon monoxide and hydrogen

    DOE Patents [OSTI]

    Frost, Albert C.

    1983-01-01

    Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

  7. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    ; (7) Design, construction, and successful deployment of an in situ pore-water sampling device; (8) Improvements to the original Raman spectrometer (methane sensor); (9) Laboratory demonstration of the impact of bacterially-produced surfactants' rates of hydrate formation; (10) Construction and sea floor emplacement and testing--with both watergun and ship noise sources--of the prototypal vertical line array (VLA); (11) Initiation of studies of spatial controls on hydrates; (12) Compilation and analyses of seismic data, including mapping of surface anomalies; (13) Additional field verification (bottom samples recovered), in support of the site selection effort; (14) Collection and preliminary analyses of gas hydrates from new sites that exhibit variant structures; (15) Initial shear wave tests carried out in shallow water; (16) Isolation of microbes for potential medicinal products development; (17) Preliminary modeling of occurrences of gas hydrates.

  8. Estimating the upper limit of gas production from Class 2 hydrate accumulations in the permafrost: 2. Alternative well designs and sensitivity analysis

    SciTech Connect (OSTI)

    Moridis, G.; Reagan, M.T.

    2011-01-15

    In the second paper of this series, we evaluate two additional well designs for production from permafrost-associated (PA) hydrate deposits. Both designs are within the capabilities of conventional technology. We determine that large volumes of gas can be produced at high rates (several MMSCFD) for long times using either well design. The production approach involves initial fluid withdrawal from the water zone underneath the hydrate-bearing layer (HBL). The production process follows a cyclical pattern, with each cycle composed of two stages: a long stage (months to years) of increasing gas production and decreasing water production, and a short stage (days to weeks) that involves destruction of the secondary hydrate (mainly through warm water injection) that evolves during the first stage, and is followed by a reduction in the fluid withdrawal rate. A well configuration with completion throughout the HBL leads to high production rates, but also the creation of a secondary hydrate barrier around the well that needs to be destroyed regularly by water injection. However, a configuration that initially involves heating of the outer surface of the wellbore and later continuous injection of warm water at low rates (Case C) appears to deliver optimum performance over the period it takes for the exhaustion of the hydrate deposit. Using Case C as the standard, we determine that gas production from PA hydrate deposits increases with the fluid withdrawal rate, the initial hydrate saturation and temperature, and with the formation permeability.

  9. Methane Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name: Methane Power Inc. Address: 121 Edinburgh South Drive Place: Cary, NC Zip: 27511 Sector: Renewable Energy...

  10. Gas Hydrate Storage of Natural Gas

    SciTech Connect (OSTI)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  11. Gas Hydrates Research Programs: An International Review

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  12. Coal mine methane global review

    SciTech Connect (OSTI)

    2008-07-01

    This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

  13. Use of Computed X-ray Tomographic Data for Analyzing the Thermodynamics of a Dissociating Porous Sand/Hydrate Mixture

    DOE R&D Accomplishments [OSTI]

    Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Stern, Laura A.; Kirby, Stephen H.

    2002-02-28

    X-ray computed tomography (CT) is a method that has been used extensively in laboratory experiments for measuring rock properties and fluid transport behavior. More recently, CT scanning has been applied successfully to detect the presence and study the behavior of naturally occurring hydrates. In this study, we used a modified medical CT scanner to image and analyze the progression of a dissociation front in a synthetic methane hydrate/sand mixture. The sample was initially scanned under conditions at which the hydrate is stable (atmospheric pressure and liquid nitrogen temperature, 77 K). The end of the sample holder was then exposed to the ambient air, and the core was continuously scanned as dissociation occurred in response to the rising temperature. CT imaging captured the advancing dissociation front clearly and accurately. The evolved gas volume was monitored as a function of time. Measured by CT, the advancing hydrate dissociation front was modeled as a thermal conduction problem explicitly incorporating the enthalpy of dissociation, using the Stefan moving-boundary-value approach. The assumptions needed to perform the analysis consisted of temperatures at the model boundaries. The estimated value for thermal conductivity of 2.6 W/m K for the remaining water ice/sand mixture is higher than expected based on conduction alone; this high value may represent a lumped parameter that incorporates the processes of heat conduction, methane gas convection, and any kinetic effects that occur during dissociation. The technique presented here has broad implications for future laboratory and field testing that incorporates geophysical techniques to monitor gas hydrate dissociation.

  14. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Archer, D.

    2015-05-21

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression

  15. Enhanced catalyst stability for cyclic co methanation operations

    DOE Patents [OSTI]

    Risch, Alan P.; Rabo, Jule A.

    1983-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

  16. ConocoPhillips Gas Hydrate Production Test

    SciTech Connect (OSTI)

    Schoderbek, David; Farrell, Helen; Howard, James; Raterman, Kevin; Silpngarmlert, Suntichai; Martin, Kenneth; Smith, Bruce; Klein, Perry

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  17. Hydrate Control for Gas Storage Operations

    SciTech Connect (OSTI)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  18. 7.4 Landfill Methane Utilization

    Office of Energy Efficiency and Renewable Energy (EERE)

    A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

  19. Coalbed Methane Production

    Gasoline and Diesel Fuel Update (EIA)

    Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2009 2010 2011 2012 2013 2014 View History U.S. 1,914 1,886 1,763 1,655 1,466 1,404 1989-2014 Alabama 105 102 98 91 62 78 1989-2014 Alaska 0 0 0 0 0 0 2005-2014 Arkansas 3 3 4 2 2 2 2005-2014 California 0 0 0 0 0 0 2005-2014 Colorado 498 533 516 486 444 412 1989-2014 Florida 0 0 0 0 0 0 2005-2014 Kansas 43 41 37 34 30 27

  20. Microbial distributions detected by an oligonucleotide microarray across geochemical zones associated with methane in marine sediments from the Ulleung Basin

    SciTech Connect (OSTI)

    Briggs, Brandon R.; Graw, Michael; Brodie, Eoin L.; Bahk, Jang-Jun; Kim, Sung-Han; Hyun, Jung-Ho; Kim, Ji-Hoon; Torres, Marta; Colwell, Frederick S.

    2013-11-01

    The biogeochemical processes that occur in marine sediments on continental margins are complex; however, from one perspective they can be considered with respect to three geochemical zones based on the presence and form of methane: sulfatemethane transition (SMTZ), gas hydrate stability zone (GHSZ), and free gas zone (FGZ). These geochemical zones may harbor distinct microbial communities that are important in biogeochemical carbon cycles. The objective of this study was to describe the microbial communities in sediments from the SMTZ, GHSZ, and FGZ using molecular ecology methods (i.e. PhyloChip microarray analysis and terminal restriction fragment length polymorphism (T-RFLP)) and examining the results in the context of non-biological parameters in the sediments. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine whether microbial community compositions were significantly different in the three geochemical zones and to correlate samples with abiotic characteristics of the sediments. This analysis indicated that microbial communities from all three zones were distinct from one another and that variables such as sulfate concentration, hydrate saturation of the nearest gas hydrate layer, and depth (or unmeasured variables associated with depth e.g. temperature, pressure) were correlated to differences between the three zones. The archaeal anaerobic methanotrophs typically attributed to performing anaerobic oxidation of methane were not detected in the SMTZ; however, the marine benthic group-B, which is often found in SMTZ, was detected. Within the GHSZ, samples that were typically closer to layers that contained higher hydrate saturation had indicator sequences related to Vibrio-type taxa. These results suggest that the biogeographic patterns of microbial communities in marine sediments are distinct based on geochemical zones defined by methane.

  1. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Methane cloud hunting Los Alamos researchers go hunting for methane gas over the Four Corners area of northwest New Mexico and find a strange daily pattern. July 12, 2015 methane map Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico, Colorado, Utah and Arizona meet, prompting scientists to go in search of the sources.

  2. Methane Stakeholder Roundtables | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane Stakeholder Roundtables Methane Stakeholder Roundtables April 24, 2014 - 3:00pm Addthis Methane Stakeholder Roundtables Advancing the Interagency Methane Strategy As directed by President Obama in his Climate Action Plan, the Department of Energy (DOE) collaborated with other Federal agencies to develop a Strategy to Reduce Methane Emissions, which was formally announced by the White House last month. To advance this strategy, DOE is now working with other Federal agencies and the White

  3. Methane emissions from MBT landfills

    SciTech Connect (OSTI)

    Heyer, K.-U. Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  4. China United Coalbed Methane Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Coalbed Methane Co Ltd Jump to: navigation, search Name: China United Coalbed Methane Co Ltd Place: Beijing Municipality, China Zip: 100011 Product: Coal bed methane developer in...

  5. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  6. New Mexico Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico Coalbed Methane Production (Billion Cubic Feet) ... Referring Pages: Coalbed Methane Estimated Production New Mexico Coalbed Methane Proved ...

  7. New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion ... Coalbed Methane Proved Reserves as of Dec. 31 New Mexico Coalbed Methane Proved Reserves, ...

  8. North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved ...

  9. Methane generation from animal wastes

    SciTech Connect (OSTI)

    Fulton, E.L.

    1980-06-01

    The conversion of manure to biogas via anaerobic digestion is described. The effluent resulting from the conversion retains fertilizer value and is environmentally acceptable. Discussion is presented under the headings: methane formation in the digester; the Tarleton State Poultry Waste to Methane production system; operating experience at Tarleton State; economics of biogas production from poultry waste; construction cost and biogas value; energy uses; feed and waste processing; and advantages of anaerobic digestion. (DMC)

  10. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

    SciTech Connect (OSTI)

    Hong, Wei-Li; Torres, Marta E.; Kim, Ji-Hoon; Choi, Jiyoung; Bahk, Jang-Jun

    2014-09-01

    We present a kinetic model based upon pore water data collected from eight sites drilled during the second Ulleung Basin gas hydrate drilling expedition (UBGH2) in 2010. Three sites were drilled at locations where acoustic chimneys were identified in seismic data, and the rest were drilled on non-chimney (i.e. background) environments. Our model, coupled a comprehensive compositional and isotopic data set, is used to illustrate the different biogeochemical processes at play in those two environments, in terms of reactions around the sulfate-methane-transition-zone (SMTZ). Organic matter decomposition is an important process for production of methane, dissolved inorganic carbon (DIC) and consumption of sulfate in the non-chimney sites, whereas anaerobic oxidation of methane (AOM) dominates both carbon and sulfur cycles in the chimney environment. Different sources of methane mediate AOM in the two settings. Internally produced methane through CO₂ reduction (CR) and methanogenesis fuels AOM in the non-chimney sites, whereas AOM is sustained by methane from external sources in the chimney sites. We also simulate the system evolution from non-chimney to chimney conditions by increasing the bottom methane supply to a non-chimney setting. We show that the higher CH₄ flux leads to a higher microbial activity of AOM, and more organic matter decomposition through methanogenesis. A higher methanogenesis rate and a smaller CR contribution relative to AOM in the chimney sites is responsible for the isotopically light DIC and heavy methane in this environment, relative to the non-chimney sites.

  11. ESD05-048 | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits ESD05-048 Last Reviewed 5102012 Project Goal The project is...

  12. Complex admixtures of clathrate hydrates in a water desalination method

    DOE Patents [OSTI]

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  13. Release of Methane from Bering Sea Sediments During the Last Glacial Period

    SciTech Connect (OSTI)

    Mea Cook; Lloyd Keigwin

    2007-11-30

    Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers produced by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.

  14. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  15. Fuel cell membrane hydration and fluid metering

    DOE Patents [OSTI]

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  16. Method for production of hydrocarbons from hydrates

    DOE Patents [OSTI]

    McGuire, Patrick L.

    1984-01-01

    A method of recovering natural gas entrapped in frozen subsurface gas hydrate formations in arctic regions. A hot supersaturated solution of CaCl.sub.2 or CaBr.sub.2, or a mixture thereof, is pumped under pressure down a wellbore and into a subsurface hydrate formation so as to hydrostatically fracture the formation. The CaCl.sub.2 /CaBr.sub.2 solution dissolves the solid hydrates and thereby releases the gas entrapped therein. Additionally, the solution contains a polymeric viscosifier, which operates to maintain in suspension finely divided crystalline CaCl.sub.2 /CaBr.sub.2 that precipitates from the supersaturated solution as it is cooled during injection into the formation.

  17. In situ molecular imaging of hydrated biofilm in a microfluidic reactor by ToF-SIMS

    SciTech Connect (OSTI)

    Hua, Xin; Yu, Xiao-Ying; Wang, Zhaoying; Yang, Li; Liu, Bingwen; Zhu, Zihua; Tucker, Abigail E.; Chrisler, William B.; Hill, Eric A.; Thevuthasan, Suntharampillai; Lin, Yuehe; Liu, Songqin; Marshall, Matthew J.

    2014-02-26

    The first results of using a novel single channel microfluidic reactor to enable Shewanella biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in the hydrated environment are presented. The new microfluidic interface allows direct probing of the liquid surface using ToF-SIMS, a vacuum surface technique. The detection window is an aperture of 2 m in diameter on a thin silicon nitride (SiN) membrane and it allows direct detection of the liquid surface. Surface tension of the liquid flowing inside the microchannel holds the liquid within the aperture. ToF-SIMS depth profiling was used to drill through the SiN membrane and the biofilm grown on the substrate. In situ 2D imaging of the biofilm in hydrated state was acquired, providing spatial distribution of the chemical compounds in the biofilm system. This data was compared with a medium filled microfluidic reactor devoid of biofilm and dried biofilm samples deposited on clean silicon wafers. Principle Component Analysis (PCA) was used to investigate these observations. Our results show that imaging biofilms in the hydrated environment using ToF-SIMS is possible using the unique microfluidic reactor. Moreover, characteristic biofilm fatty acids fragments were observed in the hydrated biofilm grown in the microfluidic channel, illustrating the advantage of imaging biofilm in its native environment.

  18. Dehydration of plutonium or neptunium trichloride hydrate

    DOE Patents [OSTI]

    Foropoulos, Jr., Jerry (Los Alamos, NM); Avens, Larry R. (Los Alamos, NM); Trujillo, Eddie A. (Espanola, NM)

    1992-01-01

    A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

  19. Dehydration of plutonium or neptunium trichloride hydrate

    DOE Patents [OSTI]

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  20. DOE Award No.: DE-FE0010406 Final Scientific Report: CONTROLS ON METHANE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Award No.: DE-FE0010406 Final Scientific Report: CONTROLS ON METHANE EXPULSION DURING MELTING OF NATURAL GAS HYDRATE SYSTEMS: TOPIC AREA 2 Type: Final Scientific Report Reporting Period Start Date: October 1, 2012 Reporting Period End Date: January 14, 2016 Principal Author: Peter B. Flemings Date Report issued: February 2016 DOE Award No.: DE-FE0010406 Peter B. Flemings The University of Texas at Austin 101 East 27th Street, Suite 4.300 Austin, TX 78712-1500 e-mail: pflemings@jsg.utexas.edu

  1. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    SciTech Connect (OSTI)

    Bihani, Abhishek; Daigle, Hugh; Cook, Ann; Glosser, Deborah; Shushtarian, Arash

    2015-12-15

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  2. U.S. and Japan Complete Successful Field Trial of Methane Hydrate...

    Energy Savers [EERE]

    completion of a successful, unprecedented test of technology in the North Slope of Alaska ... Building upon this initial, small-scale test, the Department is launching a new research ...

  3. Analysis and Methane Gas Separations Studies for City of Marsing, Idaho An Idaho National Laboratory Technical Assistance Program Study

    SciTech Connect (OSTI)

    Christopher Orme

    2012-08-01

    Introduction and Background Large amounts of methane in well water is a wide spread problem in North America. Methane gas from decaying biomass and oil and gas deposits escape into water wells typically through cracks or faults in otherwise non-porous rock strata producing saturated water systems. This methane saturated water can pose several problems in the delivery of drinking water. The problems range from pumps vapor locking (cavitating), to pump houses exploding. The City of Marsing requested Idaho National Laboratory (INL) to assist with some water analyses as well as to provide some engineering approaches to methane capture through the INL Technical Assistance Program (TAP). There are several engineering approaches to the removal of methane and natural gas from water sources that include gas stripping followed by compression and/or dehydration; membrane gas separators coupled with dehydration processes, membrane water contactors with dehydration processes.

  4. File:Methane.pdf | Open Energy Information

    Open Energy Info (EERE)

    Methane.pdf Jump to: navigation, search File File history File usage File:Methane.pdf Size of this preview: 448 600 pixels. Go to page 1 2 3 4 5 Go next page next page ...

  5. Miscellaneous States Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  6. Methane Gas Conversion Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Under Iowa's methane gas conversion property tax exemption, real and personal property used to decompose waste and convert the waste to gas, collect the methane or other gases, convert the gas to...

  7. Videos of Experiments from ORNL Gas Hydrate Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gas hydrate research performed by the Environmental Sciences Division utilizes the ORNL Seafloor Process Simulator, the Parr Vessel, the Sapphire Cell, a fiber optic distributed sensing system, and Raman spectroscopy. The group studies carbon sequestration in the ocean, desalination, gas hydrates in the solar system, and nucleation and dissociation kinetics. The videos available at the gas hydrates website are very short clips from experiments.

  8. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  9. Method for the photocatalytic conversion of methane

    DOE Patents [OSTI]

    Noceti, Richard P.; Taylor, Charles E.; D'Este, Joseph R.

    1998-01-01

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  10. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    SciTech Connect (OSTI)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but

  11. Methane generation from waste materials

    SciTech Connect (OSTI)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  12. Methane production by attached film

    DOE Patents [OSTI]

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  13. Methane sources and emissions in Italy

    SciTech Connect (OSTI)

    Guidotti, G.R.; Castagnola, A.M.

    1994-12-31

    Methane emissions in Italy were assessed in the framework of the measures taken to follow out the commitments undertaken at the 1992 U.N. Conference for Environment and Development. Methane emissions of anthropic origin were estimated to be in the range of 1.6 to 2.3 million ton of methane per year. Some of these methane sources (natural gas production, transmission and distribution; rice paddies; managed livestock enteric fermentation and waste; solid waste landfills) are given here particular care as they mainly contribute to the total methane emission budget.

  14. CHARACTERIZING NATURAL GAS HYDRATES IN THE DEEP WATER GULF OF MEXICO: APPLICATIONS FOR SAFE EXPLORATION AND PRODUCTION ACTIVITIES

    SciTech Connect (OSTI)

    Steve Holditch; Emrys Jones

    2003-01-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deep water Gulf of Mexico (GOM). These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. During the first six months of operation, the primary activities of the JIP were to conduct and plan Workshops, which were as follows: (1) Data Collection Workshop--March 2002 (2) Drilling, Coring and Core Analyses Workshop--May 2002 (3) Modeling, Measurement and Sensors Workshop--May 2002.

  15. Laser hydrothermal reductive ablation of titanium monoxide: Hydrated TiO particles with modified Ti/O surface

    SciTech Connect (OSTI)

    Blazevska-Gilev, Jadranka; Jandova, Vera; Kupcik, Jaroslav; Bastl, Zdenek; Subrt, Jan; Bezdicka, Petr; Pola, Josef

    2013-01-15

    IR laser- and UV laser-induced ablation of titanium monoxide (TM) in hydrogen (50 Torr) is compared to the same process induced in vacuum and shown to result in deposition of hydrated surface modified nanostructured titanium suboxide films. Complementary analyses of the films deposited in vacuum and in hydrogen by Fourier transform infrared, Raman and X-ray photoelectron spectroscopy, X-ray diffraction and electron microscopy allowed to determine different features of both films and propose a mechanism of surface modification of ejected particles, which involves hydrothermal reduction of TM and subsequent reactions of evolved water. The films exert good adhesion to metal and quartz surfaces and are hydrophobic in spite of having their surface coated with adsorbed water. - Graphical abstract: Laser ablation of titanium monoxide (TiO) in hydrogen involves a sequence of H{sub 2} and H{sub 2}O eliminations and additions and yields hydrated amorphous nanostructured titanium suboxide which is richer in oxygen than TiO. Highlights: Black-Right-Pointing-Pointer IR and UV laser ablated particles of titanium monoxide (TiO) undergo amorphization. Black-Right-Pointing-Pointer Films deposited in vacuum have TiO stoichiometry and are oxidized in atmosphere. Black-Right-Pointing-Pointer Films deposited in hydrogen are hydrated and have more O in topmost layers. Black-Right-Pointing-Pointer Films modification in hydrogen is explained by reactions in hydrogen plasma.

  16. Turbulent burning rates of methane and methane-hydrogen mixtures

    SciTech Connect (OSTI)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  17. The Methane to Markets Coal Mine Methane Subcommittee meeting

    SciTech Connect (OSTI)

    2008-07-01

    The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

  18. Cyclic process for producing methane with catalyst regeneration

    DOE Patents [OSTI]

    Frost, Albert C.; Risch, Alan P.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

  19. Cyclic process for producing methane in a tubular reactor with effective heat removal

    DOE Patents [OSTI]

    Frost, Albert C.; Yang, Chang-Lee

    1986-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  20. Cyclic process for producing methane from carbon monoxide with heat removal

    DOE Patents [OSTI]

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  1. Development of Alaskan gas hydrate resources. Final report

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  2. Modeling Methane Adsorption in Interpenetrating Porous Polymer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks Previous Next List Richard L. Martin, Mahdi Niknam Shahrak, Joseph A. Swisher, Cory M. Simon, Julian P....

  3. EIA - Greenhouse Gas Emissions - Methane Emissions

    Gasoline and Diesel Fuel Update (EIA)

    3. Methane Emissions 3.1. Total emissions The major sources of U.S. methane emissions are energy production, distribution, and use; agriculture; and waste management (Figure 17). U.S. methane emissions in 2009 totaled 731 MMTCO2e, 0.9 percent higher than the 2008 total of 724 MMTCO2e (Table 17). Methane emissions declined steadily from 1990 to 2001, as emissions from coal mining and landfills fell, then rose from 2002 to 2009 as a result of moderate increases in emissions related to energy,

  4. Capping methane leaks a win-win

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capping methane leaks a win-win Capping methane leaks a win-win As special correspondent Kathleen McCleery explains, that's why both environmentalists and the energy industry are trying to find ways to capture leaks from oil and gas facilities. November 13, 2015 Capping methane leaks a win-win Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico,

  5. Method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.

  6. Tricalcium aluminate hydration in additivated systems. A crystallograp...

    Office of Scientific and Technical Information (OSTI)

    ... GYPSUM; HYDRATION; LATTICE PARAMETERS; NUCLEATION; PORTLAND CEMENT; PRECIPITATION; SULFITES; SYNCHROTRON RADIATION; X-RAY DIFFRACTION Word Cloud More Like This Full Text Journal ...

  7. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    SciTech Connect (OSTI)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31

    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We

  8. Oil & Natural Gas Technology Temporal Characterization of Hydrates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Natural Gas Technology Temporal Characterization of Hydrates System Dynamics ... the northern GOM (http:www.boem.govOil-and-Gas-Energy-ProgramMapping- and-Data...

  9. Four Corners methane hotspot points to coal-related sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane hotspot points to coal-related sources Four Corners methane hotspot points to coal-related sources Methane is very efficient at trapping heat in the atmosphere and, like ...

  10. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    SciTech Connect (OSTI)

    Cha, Jong-Ho; Seol, Yongkoo

    2013-10-07

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  11. 2012 Ignik Sikumi gas hydrate field trial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 Ignik Sikumi gas hydrate field trial August 2, 2013 - Project operations are complete. Read the Final Project Technical Report [PDF-44.1MB] February 19, 2013 - Data from the 2011/2012 field test is now available! Click here to access data. Status Report - May 7, 2012 Photo of the Ignik Drilling Pad Ignik Sikumi #1 "Fire in the Ice" Video Project Background Participants Ignik Sikumi Well Review CO2-CH4 Exchange Overview Final abandonment of Ignik Sikumi #1 wellsite has been

  12. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of...

    Office of Scientific and Technical Information (OSTI)

    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE ...

  13. Estimating global and North American methane emissions with high...

    Office of Scientific and Technical Information (OSTI)

    methane emissions with high spatial resolution using GOSAT satellite data Citation Details In-Document Search Title: Estimating global and North American methane emissions ...

  14. Landfill Methane Project Development Handbook | Open Energy Informatio...

    Open Energy Info (EERE)

    Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook AgencyCompany Organization: United...

  15. US EPA Landfill Methane Outreach Program | Open Energy Information

    Open Energy Info (EERE)

    EPA Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program AgencyCompany Organization United States Environmental Protection...

  16. New York Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves Changes, and ...

  17. New York Coalbed Methane Proved Reserves (Billion Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 New York Coalbed Methane Proved Reserves, Reserves Changes, ...

  18. Methane and Methanotrophic Bacteria as a Biotechnological Platform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: NewEmerging Pathways ...

  19. Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore

  20. ,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion ...

  1. Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ...2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore U.S.

  2. ,"Texas (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas (with State Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Texas (with State Offshore) Coalbed Methane Proved Reserves ...

  3. ,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Alaska (with Total Offshore) Coalbed Methane Proved Reserves ...

  4. ,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ... to Contents","Data 1: Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion ...

  5. ,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Federal Offshore--Texas Coalbed Methane Proved Reserves ... AM" "Back to Contents","Data 1: Federal Offshore--Texas Coalbed Methane Proved Reserves ...

  6. ,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Louisiana (with State Offshore) Coalbed Methane Proved Reserves ... Contents","Data 1: Louisiana (with State Offshore) Coalbed Methane Proved Reserves ...

  7. Texas--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ...312016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, State Offshore

  8. ,"Texas--State Offshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas--State Offshore Coalbed Methane Proved Reserves (Billion ... "Back to Contents","Data 1: Texas--State Offshore Coalbed Methane Proved Reserves (Billion ...

  9. ,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Coalbed Methane Proved Reserves ... 9:22:44 AM" "Back to Contents","Data 1: North Dakota Coalbed Methane Proved Reserves ...

  10. ,"Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Louisiana--North Coalbed Methane Proved Reserves (Billion ... "Back to Contents","Data 1: Louisiana--North Coalbed Methane Proved Reserves (Billion ...

  11. Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  12. Alaska (with Total Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  13. U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Extensions (Billion ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  14. U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  15. ,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic ...

  16. U.S. Coalbed Methane Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  17. Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  18. Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  19. Towards a Computational Model of a Methane Producing Archaeum...

    Office of Scientific and Technical Information (OSTI)

    Towards a Computational Model of a Methane Producing Archaeum Citation Details In-Document Search Title: Towards a Computational Model of a Methane Producing Archaeum Authors: ...

  20. Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  1. U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Increases ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  2. ,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves (Billion Cubic ...

  3. Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  4. U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Decreases ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  5. Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  6. U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  7. U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Adjustments (Billion ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  8. Mississippi (with State off) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi (with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  9. ,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves (Billion Cubic ...

  10. U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Acquisitions ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  11. Florida Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  12. Process for separating nitrogen from methane using microchannel...

    Office of Scientific and Technical Information (OSTI)

    Process for separating nitrogen from methane using microchannel process technology Citation Details In-Document Search Title: Process for separating nitrogen from methane using ...

  13. ,"Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at ... Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves (Billion Cubic ...

  14. Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  15. Surfactant process for promoting gas hydrate formation and application of the same

    DOE Patents [OSTI]

    Rogers, Rudy E.; Zhong, Yu

    2002-01-01

    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  16. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulphidic marine sediments

    SciTech Connect (OSTI)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua; Dawson, Katherine; Sun, S; Chourey, Karuna; Pan, Chongle; Hettich, Robert {Bob} L; Orphan, V

    2013-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyse important biogeochemical reactions. In anoxic methane- and sulphiderich environments, microbes may have unique adaptations for metal acquisition and utilization because of decreased bioavailability as a result of metal sulphide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulphidic (> 1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5 270 nM), cobalt (0.5 6 nM), molybdenum (10 5600 nM) and tungsten (0.3 8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalysing anaerobic oxidation of methane (AOM) utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria. Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrophilic microorganisms. Overall, our data suggest that AOM consortia use specialized biochemical strategies to overcome the challenges of metal availability in sulphidic environments.

  17. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    SciTech Connect (OSTI)

    Glass, DR. Jennifer; Yu, DR. Hang; Steele, Joshua; Dawson, Katherine; Sun, S; Chourey, Karuna; Hettich, Robert {Bob} L; Orphan, V

    2014-01-01

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  18. Ice method for production of hydrogen clathrate hydrates

    DOE Patents [OSTI]

    Lokshin, Konstantin; Zhao, Yusheng

    2008-05-13

    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  19. Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hong, Wei-Li; Torres, Marta E.; Kim, Ji-Hoon; Choi, Jiyoung; Bahk, Jang-Jun

    2014-09-01

    We present a kinetic model based upon pore water data collected from eight sites drilled during the second Ulleung Basin gas hydrate drilling expedition (UBGH2) in 2010. Three sites were drilled at locations where acoustic chimneys were identified in seismic data, and the rest were drilled on non-chimney (i.e. background) environments. Our model, coupled a comprehensive compositional and isotopic data set, is used to illustrate the different biogeochemical processes at play in those two environments, in terms of reactions around the sulfate-methane-transition-zone (SMTZ). Organic matter decomposition is an important process for production of methane, dissolved inorganic carbon (DIC) and consumptionmore » of sulfate in the non-chimney sites, whereas anaerobic oxidation of methane (AOM) dominates both carbon and sulfur cycles in the chimney environment. Different sources of methane mediate AOM in the two settings. Internally produced methane through CO₂ reduction (CR) and methanogenesis fuels AOM in the non-chimney sites, whereas AOM is sustained by methane from external sources in the chimney sites. We also simulate the system evolution from non-chimney to chimney conditions by increasing the bottom methane supply to a non-chimney setting. We show that the higher CH₄ flux leads to a higher microbial activity of AOM, and more organic matter decomposition through methanogenesis. A higher methanogenesis rate and a smaller CR contribution relative to AOM in the chimney sites is responsible for the isotopically light DIC and heavy methane in this environment, relative to the non-chimney sites.« less

  20. Before the House Natural Resources Subcommittee on Energy and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Part II: The Promise of Methane Hydrates PDF icon 7-30-09FinalTestimony(Boswell).pdf More Documents & Publications Methane Hydrate Program Reports Methane Hydrate ...

  1. Hydration of Portland cement with additions of calcium sulfoaluminates

    SciTech Connect (OSTI)

    Le Saout, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank

    2013-01-15

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C-S-H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA-OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  2. Heat of Hydration of Low Activity Cementitious Waste Forms

    SciTech Connect (OSTI)

    Nasol, D.

    2015-07-23

    During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulants of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.

  3. Methane

    Energy Savers [EERE]

    ... implications for resource use efficiency, worker and public safety, air pollution, and human health (4), and for the climate impact of NG as a large and growing source of energy. ...

  4. Enhanced Renewable Methane Production System | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates biological methane production rates at least fivefold. Low cost Delivers near-pipeline-quality gas and eliminates carbon dioxide emissions PDF icon methane_production_system

  5. Metal halogen battery system with multiple outlet nozzle for hydrate

    DOE Patents [OSTI]

    Bjorkman, Jr., Harry K.

    1983-06-21

    A metal halogen battery system, including at least one cell having a positive electrode and a negative electrode contacted by aqueous electrolyte containing the material of said metal and halogen, store means whereby halogen hydrate is formed and stored as part of an aqueous material, means for circulating electrolyte through the cell and to the store means, and conduit means for transmitting halogen gas formed in the cell to a hydrate former whereby the hydrate is formed in association with the store means, said store means being constructed in the form of a container which includes a filter means, said filter means being inoperative to separate the hydrate formed from the electrolyte, said system having, a hydrate former pump means associated with the store means and being operative to intermix halogen gas with aqueous electrolyte to form halogen hydrate, said hydrate former means including, multiple outlet nozzle means connected with the outlet side of said pump means and being operative to minimize plugging, said nozzle means being comprised of at least one divider means which is generally perpendicular to the rotational axes of gears within the pump means, said divider means acting to divide the flow from the pump means into multiple outlet flow paths.

  6. Volume and accessibility of entrained (solution) methane in deep geopressured reservoirs - tertiary formations of the Texas Gulf Coast. Final report

    SciTech Connect (OSTI)

    Gregory, A.R.; Dodge, M.M.; Posey, J.S.; Morton, R.A.

    1980-10-01

    The objective of this project was to appraise the total volume of in-place methane dissolved in formation waters of deep sandstone reservoirs of the onshore Texas Gulf Coast within the stratigraphic section extending from the base of significant hydrocarbon production (8000 ft)* to the deepest significant sandstone occurrence. The area of investigation is about 50,000 mi/sup 2/. Factors that determine the total methane resource are reservoir bulk volume, porosity, and methane solubility; the latter is controlled by the temperature, pressure, and salinity of formation waters. Regional assessment of the volume and the distribution of potential sandstone reservoirs was made from a data base of 880 electrical well logs, from which a grid of 24 dip cross sections and 4 strike cross sections was constructed. Solution methane content in each of nine formations or divisions of formations was determined for each subdivision. The distribution of solution methane in the Gulf Coast was described on the basis of five reservoir models. Each model was characterized by depositional environment, reservoir continuity, porosity, permeability, and methane solubility.

  7. The growth rate of gas hydrate from refrigerant R12

    SciTech Connect (OSTI)

    Kendoush, Abdullah Abbas; Jassim, Najim Abid; Joudi, Khalid A.

    2006-07-15

    Experimental and theoretical investigations were presented dealing with three phase direct-contact heat transfer by evaporation of refrigerant drops in an immiscible liquid. Refrigerant R12 was used as the dispersed phase, while water and brine were the immiscible continuous phase. A numerical solution is presented to predict the formation rate of gas hydrates in test column. The solution provided an acceptable agreement when compared with experimental results. The gas hydrate growth rate increased with time. It increased with increasing dispersed phase flow rate. The presence of surface-active sodium chloride in water had a strong inhibiting effect on the gas hydrate formation rate. (author)

  8. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    DOE Patents [OSTI]

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  9. Methane storage capabilities of diamond analogues

    SciTech Connect (OSTI)

    Haranczyk, M; Lin, LC; Lee, K; Martin, RL; Neaton, JB; Smit, B

    2013-01-01

    Methane can be an alternative fuel for vehicular usage provided that new porous materials are developed for its efficient adsorption-based storage. Herein, we search for materials for this application within the family of diamond analogues. We used density functional theory to investigate structures in which tetrahedral C atoms of diamond are separated by-CC-or-BN-groups, as well as ones involving substitution of tetrahedral C atoms with Si and Ge atoms. The adsorptive and diffusive properties of methane are studied using classical molecular simulations. Our results suggest that the all-carbon structure has the highest volumetric methane uptake of 280 VSTP/V at p = 35 bar and T = 298 K. However, it suffers from limited methane diffusion. Alternatively, the considered Si and Ge-containing analogies have fast diffusive properties but their adsorption is lower, ca. 172-179 VSTP/V, at the same conditions.

  10. Method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, E.D. Jr.

    1995-07-11

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  11. Method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, Jr., Earle D.

    1995-01-01

    Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone. Additives can also contain multiple cyclic chemical groupings having different size rings. One such additive is sold under the name Gaffix VC-713.

  12. Formation and Behavior of Composite CO2 Hydrate Particles in...

    Office of Scientific and Technical Information (OSTI)

    a High-Pressure Water Tunnel Facility Citation Details In-Document Search Title: Formation and Behavior of Composite CO2 Hydrate Particles in a High-Pressure Water Tunnel Facility ...

  13. Rapid Gas Hydrate Formation Process - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Rapid Gas Hydrate Formation Process National Energy Technology Laboratory Contact NETL About This Technology Technology Marketing Summary The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is

  14. Structure and Hydration of Highly-Branched, Monodisperse Phytoglycogen Nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nickels, Jonathan D.; Atkinson, John; Papp-Szabo, Erzsebet; Stanley, Christopher; Diallo, Souleymane O.; Perticaroli, Stefania; Baylis, Benjamin; Mahon, Perry; Ehlers, Georg; Katsaras, John; et al

    2016-01-30

    Phytoglycogen is a naturally occurring polysaccharide nanoparticle made up of extensively branched glucose monomers. It has a number of unusual and advantageous properties, such as high water retention, low viscosity, and high stability in water, which make this biomaterial a promising candidate for a wide variety of applications. For this paper, we have characterized the structure and hydration of aqueous dispersions of phytoglycogen nanoparticles using neutron scattering. Small angle neutron scattering results suggest that the phytoglycogen nanoparticles behave similar to hard sphere colloids and are hydrated by a large number of water molecules (each nanoparticle contains between 250% and 285%more » of its mass in water). This suggests that phytoglycogen is an ideal sample in which to study the dynamics of hydration water. To this end, we used quasielastic neutron scattering (QENS) to provide an independent and consistent measure of the hydration number, and to estimate the retardation factor (or degree of water slow-down) for hydration water translational motions. These data demonstrate a length-scale dependence in the measured retardation factors that clarifies the origin of discrepancies between retardation factor values reported for hydration water using different experimental techniques. Finally, the present approach can be generalized to other systems containing nanoconfined water.« less

  15. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-16

    In spite of the massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Here we show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases, and we usemore » molecular simulations to demonstrate it. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Finally, our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.« less

  16. Effect of under-inhibition with methanol and ethylene glycol on the hydrate control process

    SciTech Connect (OSTI)

    Yousif, M.H.

    1996-12-31

    Hydrate control can be achieved by chemical injection. Currently, methanol and ethylene glycol are the most widely used inhibitors in offshore hydrate control operations. To achieve effective hydrate inhibition, a sufficient amount of inhibitor must be injected to shift the thermodynamic equilibrium condition for hydrate formation outside the pipeline operating pressure and temperature. Recently published field experiments showed that hydrate blockages form more readily in under-inhibited systems than in systems completely without inhibitor. A laboratory study is conducted to determine the effect of low concentration (1--5wt%) methanol and ethylene glycol on the hydrate formation process. The results show that, although these chemicals are effective hydrate inhibitors when added in sufficient quantities, they actually enhance the rate of hydrate formation when added at low concentrations to the water. Furthermore, the presence of these chemicals seems to affect the size of the forming hydrate particles.

  17. Dynamics of lysozyme and its hydration water under electric field

    SciTech Connect (OSTI)

    Favi, Pelagie M; Zhang, Qiu; O'Neill, Hugh Michael; Mamontov, Eugene; Omar Diallo, Souleymane; Palmer, Jeremy

    2014-01-01

    The effects of static electric field on the dynamics of lysozyme and its hydration water have been investigated by means of incoherent quasi-elastic neutron scattering (QENS). Measurements were performed on lysozyme samples, hydrated respectively with heavy water (D2O) to capture the protein dynamics, and with light water (H2O), to probe the dynamics of the hydration shell, in the temperature range from 210 < T < 260 K. The hydration fraction in both cases was about 0.38 gram of water per gram of dry protein. The field strengths investigated were respectively 0 kV/mm and 2 kV/mm ( 2 106 V/m) for the protein hydrated with D2O and 0 kV and 1 kV/mm for the H2O-hydrated counterpart. While the overall internal protons dynamics of the protein appears to be unaffected by the application of electric field up to 2 kV/mm, likely due to the stronger intra-molecular interactions, there is also no appreciable quantitative enhancement of the diffusive dynamics of the hydration water, as would be anticipated based on our recent observations in water confined in silica pores under field values of 2.5 kV/mm. This may be due to the difference in surface interactions between water and the two adsorption hosts (silica and protein), or to the existence of a critical threshold field value Ec 2 3 kV/mm for increased molecular diffusion, for which electrical breakdown is a limitation for our sample.

  18. Response of oceanic hydrate-bearing sediments to thermalstresses

    SciTech Connect (OSTI)

    Moridis, G.J.; Kowalsky, M.B.

    2006-05-01

    In this study, we evaluate the response of oceanicsubsurface systems to thermal stresses caused by the flow of warm fluidsthrough noninsulated well systems crossing hydrate-bearing sediments.Heat transport from warm fluids, originating from deeper reservoirs underproduction, into the geologic media can cause dissociation of the gashydrates. The objective of this study is to determine whether gasevolution from hydrate dissociation can lead to excessive pressurebuildup, and possibly to fracturing of hydrate-bearing formations andtheir confining layers, with potentially adverse consequences on thestability of the suboceanic subsurface. This study also aims to determinewhether the loss of the hydrate--known to have a strong cementing effecton the porous media--in the vicinity of the well, coupled with thesignificant pressure increases, can undermine the structural stability ofthe well assembly.Scoping 1D simulations indicated that the formationintrinsic permeability, the pore compressibility, the temperature of theproduced fluids andthe initial hydrate saturation are the most importantfactors affecting the system response, while the thermal conductivity andporosity (above a certain level) appear to have a secondary effect.Large-scale simulations of realistic systems were also conducted,involving complex well designs and multilayered geologic media withnonuniform distribution of properties and initial hydrate saturationsthat are typical of those expected in natural oceanic systems. Theresults of the 2D study indicate that although the dissociation radiusremains rather limited even after long-term production, low intrinsicpermeability and/or high hydrate saturation can lead to the evolution ofhigh pressures that can threaten the formation and its boundaries withfracturing. Although lower maximum pressures are observed in the absenceof bottom confining layers and in deeper (and thus warmer and morepressurized) systems, the reduction is limited. Wellbore designs withgravel

  19. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    SciTech Connect (OSTI)

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska�s North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska�s interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  20. ,"New York Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New York Coalbed Methane Proved Reserves ... 8:49:43 AM" "Back to Contents","Data 1: New York Coalbed Methane Proved Reserves ...

  1. ,"New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--West Coalbed Methane Proved ... 8:49:40 AM" "Back to Contents","Data 1: New Mexico--West Coalbed Methane Proved ...

  2. ,"New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves ... 9:00:33 AM" "Back to Contents","Data 1: New Mexico Coalbed Methane Proved Reserves ...

  3. ,"New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","Frequency","Latest Data for" ,"Data 1","New Mexico--East Coalbed Methane Proved ... 8:49:39 AM" "Back to Contents","Data 1: New Mexico--East Coalbed Methane Proved ...

  4. Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 ... Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Gulf of ...

  5. Solubility of methane in water under natural conditions: a laboratory...

    Office of Scientific and Technical Information (OSTI)

    302sup 0F. Also the solubility of crude oil and water in methane has been determined ... Increasing pressure increases the solubility of crude oil in methane gas. At an elevated ...

  6. Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  7. Louisiana (with State Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  8. Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  9. Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  10. Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  11. Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  12. Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  13. Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  14. Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  15. Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  16. Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  17. Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  18. Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  19. Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  20. Texas (with State Offshore) Coalbed Methane Proved Reserves ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  1. Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  2. Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ...

  3. ,"U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves (Billion Cubic ... "Back to Contents","Data 1: U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)" ...

  4. Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  5. West Virginia Coalbed Methane Proved Reserves (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  6. Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  7. Hydration water dynamics and instigation of protein structuralrelaxation

    SciTech Connect (OSTI)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    Until a critical hydration level is reached, proteins do not function. This critical level of hydration is analogous to a similar lack of protein function observed for temperatures below a dynamical temperature range of 180-220K that also is connected to the dynamics of protein surface water. Restoration of some enzymatic activity is observed in partially hydrated protein powders, sometimes corresponding to less than a single hydration layer on the protein surface, which indicates that the dynamical and structural properties of the surface water is intimately connected to protein stability and function. Many elegant studies using both experiment and simulation have contributed important information about protein hydration structure and timescales. The molecular mechanism of the solvent motion that is required to instigate the protein structural relaxation above a critical hydration level or transition temperature has yet to be determined. In this work we use experimental quasi-elastic neutron scattering (QENS) and molecular dynamics simulation to investigate hydration water dynamics near a greatly simplified protein system. We consider the hydration water dynamics near the completely deuterated N-acetyl-leucine-methylamide (NALMA) solute, a hydrophobic amino acid side chain attached to a polar blocked polypeptide backbone, as a function of concentration between 0.5M-2.0M under ambient conditions. We note that roughly 50-60% of a folded protein's surface is equally distributed between hydrophobic and hydrophilic domains, domains whose lengths are on the order of a few water diameters, that justify our study of hydration dynamics of this simple model protein system. The QENS experiment was performed at the NIST Center for Neutron Research, using the disk chopper time of flight spectrometer (DCS). In order to separate the translational and rotational components in the spectra, two sets of experiments were carried out using different incident neutron wavelengths of 7

  8. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  9. Direct use of methane in coal liquefaction

    DOE Patents [OSTI]

    Sundaram, Muthu S.; Steinberg, Meyer

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  10. Methane recovery from landfill in China

    SciTech Connect (OSTI)

    Gaolai, L.

    1996-12-31

    GEF has approved a special project for a demonstration project for Methane Recovery from the Urban Refuse Land Fill. This paper will introduce the possibility of GHG reduction from the landfill in China, describe the activities of the GEF project, and the priorities for international cooperation in this field. The Global Environment Facility (GEF) approved the project, China Promoting Methane Recovery and Unlization from Mixed Municipal Refuse, at its Council meeting in last April. This project is the first one supported by international organization in this field.

  11. Method for removal of methane from coalbeds

    DOE Patents [OSTI]

    Pasini, III, Joseph; Overbey, Jr., William K.

    1976-01-01

    A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

  12. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Frank Rack

    2001-12-31

    The primary accomplishments during the first quarter were to mobilize materials and supplies to meet the deployment schedule for equipment and activities, as proposed under the DOE/NETL cooperative agreement with JOI, with initial testing and use of specialized tools and equipment on Ocean Drilling Program (ODP) Leg 201. As a requirement of the award, two copies of a technical feasibility report entitled ''Preliminary Evaluation of Existing Pressure/Temperature Coring Systems'' were delivered to DOE/NETL on October 22, 2001. The report was written to provide a discussion of the availability and compatibility of the four existing pressure coring devices in existence. Most of these systems are available for use by JOI/ODP aboard the D/V JOIDES Resolution, via purchase, lease, modification, etc. and the proposed capabilities to upgrade existing devices or systems for use on other platforms. In addition, the report provided a discussion of the compatibility of each existing coring device in conjunction with the use of the other coring devices, such as the advanced piston coring (APC) system used by ODP. Based on an evaluation of the JOI report, the DOE/NETL Program Manager William Gwilliam provided a ''Go'' decision to JOI for the further development of the ODP Pressure Coring System (PCS) and PCS Gas Manifold. During the reporting period negotiations were conducted with various potential subcontractors and vendors to establish the specific cost-sharing arrangements and work breakdown necessary to definitize the terms of the DOE/NETL cooperative agreement with JOI. The discussions were communicated with the DOE/NETL Program Manager, William Gwilliam, to keep NETL closely informed about events as this project evolved. A series of meetings were also held with ODP engineers, technical staff, and to plan for the implementation of the various tasks outlined in the JOI proposal to DOE for deployment during ODP Legs 201 and 204. These meetings helped to answer numerous unresolved questions and establish a firm timetable of remaining activities that needed to be accomplished by January 28, 2002, when ODP Leg 201 will begin.

  13. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Rack, Frank R

    2004-09-30

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) postcruise evaluation of the data, tools and measurement systems that were used during ODP Leg 204 continued in the preparation of deliverables under this agreement. Work continued on analyzing data collected during ODP Leg 204 and preparing reports on the outcomes of Phase 1 projects as well as developing plans for Phase 2.

  14. In-Situ Sampling and Characterization of Naturally Occurring Marine Methane Hydrate Using the D/V JOIDES Resolution

    SciTech Connect (OSTI)

    Rack, Frank

    2004-06-30

    The primary accomplishments of the JOI Cooperative Agreement with DOE/NETL in this quarter were that: (1) post-cruise evaluation of the data, tools and measurement systems that were used during ODP Leg 204 continued in the preparation of deliverables under this agreement. Work continued on analyzing data collected during ODP Leg 204 and preparing reports on the outcomes of Phase 1 projects as well as developing plans for Phase 2.

  15. Protein structure and hydration probed by SANS and osmotic stress

    SciTech Connect (OSTI)

    Rau, Dr. Donald [National Institutes of Health

    2008-01-01

    Interactions governing protein folding, stability, recognition, and activity are mediated by hydration. Here, we use small-angle neutron scattering coupled with osmotic stress to investigate the hydration of two proteins, lysozyme and guanylate kinase (GK), in the presence of solutes. By taking advantage of the neutron contrast variation that occurs upon addition of these solutes, the number of protein-associated (solute-excluded) water molecules can be estimated from changes in both the zero-angle scattering intensity and the radius of gyration. Poly(ethylene glycol) exclusion varies with molecular weight. This sensitivity can be exploited to probe structural features such as the large internal GK cavity. For GK, small-angle neutron scattering is complemented by isothermal titration calorimetry with osmoticstress to also measure hydration changes accompanying ligand binding. These results provide a framework for studying other biomolecular systems and assemblies using neutron scattering together with osmotic stress.

  16. Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal Hydrocarbon and Deposit Morphology Effects on EGR Cooler Deposit Stability and Removal This paper reports ...

  17. Ground movements associated with gas hydrate production. Final report

    SciTech Connect (OSTI)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The present study is expected to provide a ``lower bound`` solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir.

  18. Microsoft Word - NETL-TRS-6-2015 Detection of Hydrates on Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection of Hydrates on Gas Bubbles during a Subsea OilGas Leak 22 July 2015 Office of ... of Hydrates on Gas Bubbles during a Subsea OilGas Leak; NETL-TRS-6- 2015; EPAct Technical ...

  19. Promotion of n-Butane isomerization activity by hydration of sulfated zirconia

    SciTech Connect (OSTI)

    Gonzalez, M.R.; Kobe, J.M.; Fogash, K.B.; Dumesic, J.A.

    1996-05-01

    The effects of sulfated zirconia catalyst hydration on the activity for n-butane isomerization is reported. The catalytic activity of of a partially hydrated catalyst is enhanced. 66 refs., 11 figs.

  20. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    SciTech Connect (OSTI)

    Collett, T.S.; Riedel, M.; Cochran, J.R.; Boswell, R.M.; Kumar, Pushpendra; Sathe, A.V.

    2008-07-01

    Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

  1. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  2. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  3. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    SciTech Connect (OSTI)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  4. Thermodynamic properties and diffusion of water + methane binary mixtures

    SciTech Connect (OSTI)

    Shvab, I.; Sadus, Richard J.

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methane concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.

  5. Phase I (CATTS Theory), Phase II (Milne Point), Phase III (Hydrate Ridge)

    SciTech Connect (OSTI)

    2009-10-31

    This study introduces a new type of “cumulative seismic attribute” (CATT) which quantifies gas hydrates resources in Hydrate Ridge offshore Oregon. CATT is base on case-specific transforms that portray hydrated reservoir properties. In this study we used a theoretical rock physics model to correct measured velocity log data.

  6. Production of hydrocarbons from hydrates. [DOE patent application

    DOE Patents [OSTI]

    McGuire, P.L.

    1981-09-08

    An economical and safe method of producing hydrocarbons (or natural gas) from in situ hydrocarbon-containing hydrates is given. Once started, the method will be self-driven and will continue producing hydrocarbons over an extended period of time (i.e., many days).

  7. Time-dependent water dynamics in hydrated uranyl fluoride

    SciTech Connect (OSTI)

    Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; Huq, Ashfia; Mamontov, Eugene; Rondinone, Adam; Trowbridge, Lee D.

    2015-09-15

    In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translational diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.

  8. Time-dependent water dynamics in hydrated uranyl fluoride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; Huq, Ashfia; Mamontov, Eugene; Rondinone, Adam; Trowbridge, Lee D.

    2015-09-15

    In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translationalmore » diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.« less

  9. Deposition head for laser

    DOE Patents [OSTI]

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    1999-01-01

    A deposition head for use as a part of apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. The deposition head delivers the laser beam and powder to a deposition zone, which is formed at the tip of the deposition head. A controller comprised of a digital computer directs movement of the deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which the deposition head moves along the tool path.

  10. direct_deposit_111609

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PROTECT YOUR BANKING INFORMATION: DO NOT complete this form until you are ready to submit it to the Payroll Department. DIRECT DEPOSIT REQUEST Directions: 1. Provide required information neatly, legibly; 2. If Checking Account Direct Deposit, include a voided check. a. DO NOT submit a deposit slip! 3. If Savings Account Direct Deposit, include a copy of savings card. 4. Sign this form; 5. Inter-office mail it to Craft Payroll at "P238." DIRECT DEPOSITION AUTHORIZATION I hereby

  11. Ethane enrichment and propane depletion in subsurface gases indicate gas hydrate occurrence in marine sediments at southern Hydrate Ridge offshore Oregon

    SciTech Connect (OSTI)

    Milkov, Alexei V.; Claypool, G E.; Lee, Young-Joo; Torres, Marta E.; Borowski, W S.; Tomaru, H; Sassen, Roger; Long, Philip E.

    2004-07-02

    The recognition of finely disseminated gas hydrate in deep marine sediments heavily depends on various indirect techniques because this mineral quickly decomposes upon recovery from in situ pressure and temperature conditions. Here, we discuss molecular properties of closely spaced gas voids (formed as a result of core recovery) and gas hydrates from an area of relatively low gas flux at the flanks of the southern Hydrate Ridge Offshore Oregon (ODP Sites 1244, 1245 and 1247).

  12. Process for producing methane from gas streams containing carbon monoxide and hydrogen

    DOE Patents [OSTI]

    Frost, Albert C.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

  13. TITAN'S TRANSPORT-DRIVEN METHANE CYCLE

    SciTech Connect (OSTI)

    Mitchell, Jonathan L.

    2012-09-10

    The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

  14. Cross Sections for Electron Collisions with Methane

    SciTech Connect (OSTI)

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  15. Geomechanical Performance of Hydrate-Bearing Sediments in Offshore Environments

    SciTech Connect (OSTI)

    Stephen A. Holditch

    2006-12-31

    The main objective of this study is to develop the necessary knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus is on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. To achieve this objective, we have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. To be sure our geomechanical modeling is realistic, we are also investigating the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. In Phase II of the project, we will review all published core data and generate additional core data to verify the models. To generate data for our models, we are using data from the literature and we will be conducting laboratory studies in 2007 that generate data to (1) evaluate the conceptual pore-scale models, (2) calibrate the mathematical models, (3) determine dominant relations and critical parameters defining the geomechanical behavior of HBS, and (4) establish relationships between the geomechanical status of HBS and the corresponding geophysical signature. The milestones for Phase I of this project are given as follows: Literature survey on typical sediments containing gas hydrates in the ocean (TAMU); Recommendations on how to create typical sediments in the laboratory (TAMU); Demonstrate that typical sediments can be created in a repeatable manner in the laboratory and gas hydrates can be created in the pore space (TAMU); Develop a conceptual pore-scale model based on available data and reports (UCB); Test the developed pore-scale concepts on simple configurations and verify the results against known measurements and observations (UCB

  16. Process for separating nitrogen from methane using microchannel process technology

    DOE Patents [OSTI]

    Tonkovich, Anna Lee; Qiu, Dongming; Dritz, Terence Andrew; Neagle, Paul; Litt, Robert Dwayne; Arora, Ravi; Lamont, Michael Jay; Pagnotto, Kristina M.

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  17. Methane and Methanotrophic Bacteria as a Biotechnological Platform |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: New/Emerging Pathways Methane and Methanotrophic Bacteria as a Biotechnological Platform Dr. Lori Giver, Vice President of Biological Engineering, Calysta Energy, Inc. giver_bioenergy_2015.pdf (1.68 MB) More Documents & Publications CX-100166 Categorical Exclusion Determination Biobased Chemicals Landscape in

  18. Enhanced Renewable Methane Production System Benefits Wastewater Treatment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants, Farms, and Landfills - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Enhanced Renewable Methane Production System Benefits Wastewater Treatment Plants, Farms, and Landfills Argonne National Laboratory Contact ANL About This Technology <p> Argonne&rsquo;s Enhanced Renewable Methane Production System &mdash; Process Schematic.</p> Argonne's Enhanced Renewable Methane Production System - Process Schematic.

  19. Converting Methane to Methanol: Structural Insight into the Reaction Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Particulate Methane Monooxygenase 3 Raquel L. Lieberman,* Amy C. Rosenzweig,* and Timothy L. Stemmler# *Depts. of Biochemistry, Molecular Biology, and Cell Biology and of Chemistry, Northwestern University, Evanston, Illinois 60208, USA #Dept. of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA. Methane-oxidizing bacteria (methanotrophs) are extremely attractive from a chemist's perspective because these organisms convert methane

  20. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"06301989"...

  1. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State ... often are constrained in the investments that they are willing or able to make ...

  2. Minimizing the formation of coke and methane on Co nanoparticles...

    Office of Scientific and Technical Information (OSTI)

    that leads to high hydrogen selectivity and low methane formation on Co-based catalysts. ... We gratefully acknowledge the financial support from U. S. Department of Energy (DOE), ...

  3. ,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"0...

  4. Scientists detect methane levels three times larger than expected...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "We attribute this hot spot to fugitive leaks from coal-bed methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect ...

  5. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Methane Storage Capacity in Aluminum Metal-Organic Frameworks Previous Next List Felipe Gndara, Hiroyasu Furukawa, Seungkyu Lee, and Omar M. Yaghi, J. Am. Chem. Soc., 136,...

  6. Critical Factors Driving the High Volumetric Uptake of Methane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Factors Driving the High Volumetric Uptake of Methane in Cu-3(btc)(2) Previous Next List Hulvey, Zeric; Vlaisavljevich, Bess; Mason, Jarad A.; Tsivion, Ehud; Dougherty,...

  7. Table 16. Coalbed methane proved reserves, reserves changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves, reserves changes, and production, 2014" "billion cubic feet" ,,"Changes in Reserves During 2014" ,"Published",,,..."New Reservoir" ...

  8. Table 15. Coalbed methane proved reserves and production, 2010...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed methane proved reserves and production, 2010-14" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2010,2011,2012,2013,2014,,2010,2011,2012,2013,...

  9. UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2004-01-01

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

  10. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-02-23

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less

  11. Hydration of Kr(aq) in dilute and concentrated solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chaudhari, Mangesh I.; Sabo, Dubravko; Pratt, Lawrence R.; Rempe, Susan B.

    2014-10-13

    Molecular dynamics simulations of water with both multi-Kr and single Kr atomic solutes are carried out to implement quasi-chemical theory evaluation of the hydration free energy of Kr(aq). This approach obtains free energy differences reflecting Kr–Kr interactions at higher concentrations. Those differences are negative changes in hydration free energies with increasing concentrations at constant pressure. The changes are due to a slight reduction of packing contributions in the higher concentration case. The observed Kr–Kr distributions, analyzed with the extrapolation procedure of Krüger et al., yield a modestly attractive osmotic second virial coefficient, B2 ≈ -60 cm3/mol. Moreover, the thermodynamic analysismore » interconnecting these two approaches shows that they are closely consistent with each other, providing support for both approaches.« less

  12. Determining the role of hydration forces in protein folding

    SciTech Connect (OSTI)

    Sorenson, J.M. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry] [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Hura, G. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States); [Lawrence Berkeley National Lab., CA (United States). Life Sciences Div.; Soper, A.K. [Rutherford Appleton Lab., Didcot (United Kingdom). ISIS Facility] [Rutherford Appleton Lab., Didcot (United Kingdom). ISIS Facility; Pertsemlidis, A. [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry] [Univ. of Texas Southwestern Medical Center, Dallas, TX (United States). Dept. of Biochemistry; Head-Gordon, T. [Lawrence Berkeley National Lab., CA (United States)] [Lawrence Berkeley National Lab., CA (United States)

    1999-07-01

    One of the primary issues in protein folding is determining what forces drive folding and eventually stabilize the native state. A delicate balance exists between electrostatic forces such as hydrogen bonding and salt bridges, and the hydrophobic effect, which are present for both intramolecular protein interactions and intermolecular contributions with the surrounding aqueous environment. This article describes a combined experimental, theoretical, and computational effort to show how the complexity of aqueous hydration can influence the structure, folding and aggregation, and stability of model protein systems. The unification of the theoretical and experimental work is the development or discovery of effective amino acid interactions that implicitly include the effects of aqueous solvent. The authors show that consideration of the full range of complexity of aqueous hydration forces such as many-body effects, long-ranged character of aqueous solvation, and the assumptions made about the degree of protein hydrophobicity can directly impact the observed structure, folding, and stability of model protein systems.

  13. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    SciTech Connect (OSTI)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  14. Additives and method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, E.D. Jr.; Christiansen, R.L.; Lederhos, J.P.; Long, J.P.; Panchalingam, V.; Du, Y.; Sum, A.K.W.

    1997-06-17

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hindrance and/or charge repulsion. Also, polymers having an amide on which a C{sub 1}-C{sub 4} group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  15. Additives and method for controlling clathrate hydrates in fluid systems

    DOE Patents [OSTI]

    Sloan, Jr., Earle Dendy; Christiansen, Richard Lee; Lederhos, Joseph P.; Long, Jin Ping; Panchalingam, Vaithilingam; Du, Yahe; Sum, Amadeu Kun Wan

    1997-01-01

    Discussed is a process for preventing clathrate hydrate masses from detrimentally impeding the possible flow of a fluid susceptible to clathrate hydrate formation. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member, six member and/or seven member cyclic chemical groupings. Additives include polymers having lactam rings. Additives can also contain polyelectrolytes that are believed to improve conformance of polymer additives through steric hinderance and/or charge repulsion. Also, polymers having an amide on which a C.sub.1 -C.sub.4 group is attached to the nitrogen and/or the carbonyl carbon of the amide may be used alone, or in combination with ring-containing polymers for enhanced effectiveness. Polymers having at least some repeating units representative of polymerizing at least one of an oxazoline, an N-substituted acrylamide and an N-vinyl alkyl amide are preferred.

  16. Properties and hydration of blended cements with steelmaking slag

    SciTech Connect (OSTI)

    Kourounis, S.; Tsivilis, S. . E-mail: stsiv@central.ntua.gr; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z.

    2007-06-15

    The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the '0-5 mm', due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C{sub 2}S and its low content in calcium silicates.

  17. Order and disorder in calcium–silicate–hydrate

    SciTech Connect (OSTI)

    Bauchy, M.; Qomi, M. J. Abdolhosseini; Ulm, F.-J.; Pellenq, R. J.-M.

    2014-06-07

    Despite advances in the characterization and modeling of cement hydrates, the atomic order in Calcium–Silicate–Hydrate (C–S–H), the binding phase of cement, remains an open question. Indeed, in contrast to the former crystalline model, recent molecular models suggest that the nanoscale structure of C–S–H is amorphous. To elucidate this issue, we analyzed the structure of a realistic simulated model of C–S–H, and compared the latter to crystalline tobermorite, a natural analogue of C–S–H, and to an artificial ideal glass. The results clearly indicate that C–S–H appears as amorphous, when averaged on all atoms. However, an analysis of the order around each atomic species reveals that its structure shows an intermediate degree of order, retaining some characteristics of the crystal while acquiring an overall glass-like disorder. Thanks to a detailed quantification of order and disorder, we show that, while C–S–H retains some signatures of a tobermorite-like layered structure, hydrated species are completely amorphous.

  18. A Path to Reduce Methane Emissions from Gas Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Path to Reduce Methane Emissions from Gas Systems A Path to Reduce Methane Emissions from Gas Systems July 29, 2014 - 3:33pm Addthis A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy

  19. Exploiting coalbed methane and protecting the global environment

    SciTech Connect (OSTI)

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  20. Application of the Split Hopkinson Resonant Bar Test for Seismic Property Characterization of Hydrate-bearing Sand Undergoing Water Saturation

    SciTech Connect (OSTI)

    Nakagawa, S.; Kneafsey, T.J.

    2011-05-03

    Conventional resonant bar tests allow the measurement of seismic properties of rocks and sediments at low frequencies (several kilohertz). However, the tests require a long, slender sample which is often difficult to obtain from the deep subsurface and weak and fractured formations. We present an alternative low-frequency measurement technique to the conventional resonant bar tests. This technique involves a jacketed core sample placed between a pair of long, metal extension rods with attached seismic source and receiver—the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the added length and mass to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The proposed “Split Hopkinson Resonant Bar (SHRB)” test is applied in two steps. In the first step, extension and torsion-mode resonance frequencies and attenuation of the system are measured. Then, numerical inversions for the compressional and shear wave velocities and attenuation are performed. We initially applied the SHRB test to synthetic materials (plastics) for testing its accuracy, then used it for measuring the seismic velocities and attenuation of a rock core containing supercritical CO{sub 2}, and a sediment core while methane hydrate formed in the pore space.

  1. U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  2. U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  3. Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    A Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  4. Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    C Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  5. Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    B Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  6. H. R. 2998: A bill to amend the Natural Gas Act to permit the development of coalbed methane gas in areas where its development has been impeded or made impossible by uncertainty and litigation over ownership rights, and for other purposes, introduced in the US House of Representatives, One Hundred Second Congress, First Session, July 23, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill would direct the Secretary of Energy to compile a list of affected states which are determined to be states in which disputes, uncertainty, or litigation exist or potentially exists regarding the ownership of coalbed methane; in which the development of significant deposits of coalbed methane may be impeded by such disputes; in which statutory or regulatory procedures permitting and encouraging development of coalbed methane prior to final resolution of disputes are not in place; and in which extensive development of coalbed methane does not exist. Colorado, Montana, New Mexico, Wyoming, Utah, Virginia, and Alabama are excluded from such a list since they currently have development of coalbed methane. Until the Secretary of Energy publishes a different list, the affected states are West Virginia, Pennsylvania, Kentucky, Ohio, Tennessee, Indiana, and Illinois, effective on the date of enactment of this bill.

  7. Methanation process utilizing split cold gas recycle

    DOE Patents [OSTI]

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  8. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  9. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    SciTech Connect (OSTI)

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  10. Methane production from grape skins. Final technical report

    SciTech Connect (OSTI)

    Yunghans, W.N.

    1981-10-09

    Methane production from grape pomace was measured for a 50-day digestion period. Gas production was calculated to be 2400 ft/sup 3//10 d/ton at 53% methane content. Microorganisms particularly a fungus which grows on grape pomace and lignin was isolated. Lignin content of pomace was measured at approximately 60%. Lignin is slowly digested and may represent a residue which requires long term digestion. Research is continuing on isolation of anaerobic methane bacteria and codigestion of pomace with enzymes as cellulase and pectinase. The sewage sludge functioned adequately as a mixed source of organisms capable of digesting grape pomace. A sediment from stored grape juice produced significant amounts of methane and represents a nutrient substrate for additional studies on continuous flow methane production. 3 figs.

  11. Ground movements associated with gas hydrate production. Progress report, October 1--December 31, 1992

    SciTech Connect (OSTI)

    Siriwardane, H.J.

    1992-12-31

    The grantee will evaluate the influence of hydrate production on ground subsidence near the wellbore and the surface. The objective of this research will be achieved by using computer simulations of what is expected in a hydrate reservoir during the production stage as reported by hydrate production models and available data. The model will be based on theories of continuum mechanics, thermomechanics of hydrate production, principles of rock mechanics and geomechanics, and special features of geomaterials under cold temperatures such as those found in permafrost regions. The research work involved in the proposed investigation will be divided into three major tasks; mechanics of subsidence in permafrost regions, modeling of subsidence, and parametric studies.

  12. Expedition Provides New Insight on Gas Hydrates in Gulf of Mexico...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will be used to refine estimates of the nature, distribution and concentration of gas ... "Understanding the nature and setting of deepwater gas hydrates is central to the National ...

  13. Hydrates Annual FY13 Format (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Office of Fossil Energy (FE) Country of Publication: United States Language: English Subject: 03 NATURAL GAS; 58 GEOSCIENCES natural gas hydrates; reservoir ...

  14. Dense ceramic membranes for methane conversion

    SciTech Connect (OSTI)

    Balachandran, U.; Mieville, R.L.; Ma, B.; Udovich, C.A.

    1996-05-01

    This report focuses on a mechanism for oxygen transport through mixed- oxide conductors as used in dense ceramic membrane reactors for the partial oxidation of methane to syngas (CO and H{sub 2}). The in-situ separation of O{sub 2} from air by the membrane reactor saves the costly cryogenic separation step that is required in conventional syngas production. The mixed oxide of choice is SrCo{sub 0.5}FeO{sub x}, which exhibits high oxygen permeability and has been shown in previous studies to possess high stability in both oxidizing and reducing conditions; in addition, it can be readily formed into reactor configurations such as tubes. An understanding of the electrical properties and the defect dynamics in this material is essential and will help us to find the optimal operating conditions for the conversion reactor. In this paper, we discuss the conductivities of the SrFeCo{sub 0.5}O{sub x} system that are dependent on temperature and partial pressure of oxygen. Based on the experimental results, a defect model is proposed to explain the electrical properties of this system. The oxygen permeability of SrFeCo{sub 0.5}O{sub x} is estimated by using conductivity data and is compared with that obtained from methane conversion reaction.

  15. METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS

    SciTech Connect (OSTI)

    Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z.; Grundy, W. M.; Romanishin, W.; Vilas, F. E-mail: David.Cornelison@nau.ed E-mail: wjr@nhn.ou.ed

    2010-12-10

    We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

  16. Formation of carbon deposits from coal in an arc plasma

    SciTech Connect (OSTI)

    Wang, B.; Tian, Y.; Zhang, Y.; Zhu, S.; Lu, Y.; Zhang, Y.; Xie, K.

    2007-07-01

    The issue of deposited carbon (DC) on a reactor wall during the production of acetylene by the coal/arc plasma process is a potential obstacle for the industrialization process. The formation mechanism of DC is very difficult to reveal because the high complexity of coal and the volatile matter. Combining with quenching technique, the methane, liquid petroleum gas and benzene were employed as the model materials to roughly act as the light gas, chain and aromatic subcomponents of volatile matter, and then the reasonable formation mechanism of DC was subtly speculated accordingly.

  17. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis

    2004-03-01

    , Incorporation of capability to map the bottom location of the VLA, Improvements in timing issues for data recording. (2) Sea Floor Probe: The Sea Floor Probe and its delivery system, the Multipurpose sled have been completed; The probe has been modified to penetrate the <1m blanket of hemipelagic ooze at the water/sea floor interface to provide the necessary coupling of the accelerometer with the denser underlying sediments. (3) Electromagnetic bubble detector and counter: Initial tests performed with standard conductivity sensors detected nonconductive objects as small as .6mm, a very encouraging result, Components for the prototype are being assembled, including a dedicated microcomputer to control power, readout and logging of the data, all at an acceptable speed. (4) Acoustic Systems for Monitoring Gas Hydrates: Video recordings of bubbles emitted from a seep in Mississippi Canyon have been made from a submersible dive and the bubbles analyzed with respect to their size, number, and rise rate; these measurements will be used to determine the parameters to build the system capable of measuring gas escaping at the site of the monitoring station; A scattering system and bubble-producing device, being assembled at USM, will be tested in the next two months, and the results compared to a physical scattering model. (5) Mid-Infrared Sensor for Continuous Methane Monitoring: Progress has been made toward minimizing system maintenance through increased capacity and operational longevity, Miniaturization of many components of the sensor systems has been completed, A software package has been designed especially for the MIR sensor data evaluation, Custom electronics have been developed that reduce power consumption and, therefore, increase the length of time the system can remain operational. (6) Seismo-acoustic characterization of sea floor properties and processes at the hydrate monitoring station. (7) Adaptation of the acoustic-logging device, developed as part of the European

  18. Effect Of Preparation Methods On The Performance Of Co/Al2O3 Catalysts For Dry Reforming Of Methane

    SciTech Connect (OSTI)

    Ewbank, Jessica L.; Kovarik, Libor; Kenvin, Christian C.; Sievers, Carsten

    2014-01-06

    Two methods, dry impregnation (DI) and controlled adsorption (CA), are used for the preparation of Co/ Al2O3 catalysts for methane dry reforming reactions. Point of zero charge (PZC) measurements, pH-precipitation studies, and adsorption isotherms are used to develop a synthesis procedure in which deposition of Co2+ takes place in a more controlled manner than metal deposition during drying in synthesis by dry impregnation. The possible adsorption phenomena that occur during preparation of Co/Al2O3 catalysts by controlled adsorption are discussed. H2 chemisorption and TEM show that catalysts prepared by CA have smaller average particle sizes and higher dispersions. TPR studies show that for the sample prepared by CA a higher amount of cobalt is reduced to its metallic state and that more CoAl2O4 spinel species are present relative to DI samples. The catalyst prepared by CA shows higher activity and slower deactivation for methane dry reforming than the catalyst prepared by DI. XPS and C, H, N analysis on spent catalysts confirm two types of carbonaceous deposits are formed depending on the preparation method.

  19. Table 11.3 Methane Emissions, 1980-2009 (Million Metric Tons of Methane)

    U.S. Energy Information Administration (EIA) Indexed Site

    Methane Emissions, 1980-2009 (Million Metric Tons of Methane) Year Energy Sources Waste Management Agricultural Sources Industrial Processes 9 Total 5 Coal Mining Natural Gas Systems 1 Petroleum Systems 2 Mobile Com- bustion 3 Stationary Com- bustion 4 Total 5 Landfills Waste- water Treatment 6 Total 5 Enteric Fermen- tation 7 Animal Waste 8 Rice Cultivation Crop Residue Burning Total 5 1980 3.06 4.42 NA 0.28 0.45 8.20 10.52 0.52 11.04 5.47 2.87 0.48 0.04 8.86 0.17 28.27 1981 2.81 5.02 NA .27

  20. Radionuclide deposition control

    DOE Patents [OSTI]

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  1. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    SciTech Connect (OSTI)

    Garca-Mat, M.; De la Torre, A.G.; Len-Reina, L.; Aranda, M.A.G.; CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona ; Santacruz, I.

    2013-12-15

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 2 and 72 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  2. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previousmore » measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).« less

  3. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    SciTech Connect (OSTI)

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).

  4. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect (OSTI)

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  5. The thermodynamic properties of hydrated -Al2O3 nanoparticles

    SciTech Connect (OSTI)

    Spencer, Elinor; Huang, Baiyu; Parker, Stewart F.; Kolesnikov, Alexander I; Ross, Dr. Nancy; Woodfield, Brian

    2013-01-01

    In this paper we report a combined calorimetric and inelastic neutron scattering (INS) study of hydrated -Al2O3 ( -alumina) nanoparticles. These complementary techniques have enabled a comprehensive evaluation of the thermodynamic properties of this technological and industrially important metal oxide to be achieved. The isobaric heat capacity (Cp) data presented herein provide further critical insights into the much-debated chemical composition of -alumina nanoparticles. Furthermore, the isochoric heat capacity (Cv) of the surface water, which is so essential to the stability of all metal-oxides at the nanoscale, has been extracted from the high-resolution INS data and differs significantly from that of ice Ih due to the dominating influence of strong surface-water interactions. This study also encompassed the analysis of four -alumina samples with differing pore diameters [4.5 (1), 13.8 (2), 17.9 (3), and 27.2 nm (4)], and the results obtained allow us to unambiguously conclude that the water content and pore size have no influence on the thermodynamic behaviour of hydrated -alumina nanoparticles.

  6. Solution deposition assembly

    DOE Patents [OSTI]

    Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

    2014-01-21

    Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

  7. California (with State off) Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 California Coalbed Methane Proved Reserves, Reserves Changes, and

  8. California - Coastal Region Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, Coastal Region Onshore Coalbed Methane Proved Reserves, Reserves

  9. California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, State Offshore Coalbed Methane Proved Reserves,

  10. Methane recovery from animal manures: A current opportunities casebook

    SciTech Connect (OSTI)

    1995-08-01

    This Casebook examines some of the current opportunities for the recovery of methane from the anaerobic digestion of animal manures US livestock operations currently employ four types of anaerobic digester technology: Slurry, plug flow, complete mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Regression models, which can be used to estimate digester cost and internal rate of return, are developed from the evaluations.

  11. California (with State off) Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  12. Mississippi (with State off) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  13. Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 11 8 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved Reserves, Reserves

  14. Economic analysis of vertical wells for coalbed methane recovery

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    Previous economic studies of the recovery and utilization of methane from coalbeds using vertical wells were based on drainage in advance of mining where a single seam is drained with well spacing designed for rapid predrainage. This study extends the earlier work and shows that methane recovery costs can be reduced significantly by increasing well spacing and draining multiple coalbeds. A favorable return on investment can be realized in many geologic settings using this method. Sensitivity of recovery economics to certain development costs and parametric variations are also examined as are the economics of three methane utilization options.

  15. Unconventional gas hydrate seals may trap gas off southeast US. [North Carolina, South Carolina

    SciTech Connect (OSTI)

    Dillion, W.P.; Grow, J.A.; Paull, C.K.

    1980-01-07

    Seismic profiles have indicated to the US Geological Survey that an unconventional seal, created by gas hydrates that form in near-bottom sediments, may provide gas traps in continental slopes and rises offshore North and South Carolina. The most frequently cited evidence for the presence of gas hydrate in ocean sediments is the observation of a seismic reflection event that occurs about 1/2 s below and parallel with the seafloor. If gas-hydrate traps do exist, they will occur at very shallow sub-bottom depths of about 1600 ft (500m). Exploration of such traps will probably take place in the federally controlled Blake Ridge area off the coast of South Carolina where seismic data suggest a high incidence of gas hydrates. However, drilling through the gas-hydrate-cemented layer may require new engineering techniques for sealing the casing.

  16. DIRECT DECOMPOSITION OF METHANE TO HYDROGEN ON METAL LOADED ZEOLITE CATALYST

    SciTech Connect (OSTI)

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch; Harry W. Rollins

    2005-08-01

    The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.

  17. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    SciTech Connect (OSTI)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  18. Temperature effect on the small-to-large crossover lengthscale of hydrophobic hydration

    SciTech Connect (OSTI)

    Djikaev, Y. S. Ruckenstein, E.

    2013-11-14

    The thermodynamics of hydration is expected to change gradually from entropic for small solutes to enthalpic for large ones. The small-to-large crossover lengthscale of hydrophobic hydration depends on the thermodynamic conditions of the solvent such as temperature, pressure, presence of additives, etc. We attempt to shed some light on the temperature dependence of the crossover lengthscale by using a probabilistic approach to water hydrogen bonding that allows one to obtain an analytic expression for the number of bonds per water molecule as a function of both its distance to a solute and solute radius. Incorporating that approach into the density functional theory, one can examine the solute size effects on its hydration over the entire small-to-large lengthscale range at a series of different temperatures. Knowing the dependence of the hydration free energy on the temperature and solute size, one can also obtain its enthalpic and entropic contributions as functions of both temperature and solute size. These functions can provide some interesting insight into the temperature dependence of the crossover lengthscale of hydrophobic hydration. The model was applied to the hydration of spherical particles of various radii in water in the temperature range from T = 293.15 K to T = 333.15 K. The model predictions for the temperature dependence of the hydration free energy of small hydrophobes are consistent with the experimental and simulational data on the hydration of simple molecular solutes. Three alternative definitions for the small-to-large crossover length-scale of hydrophobic hydration are proposed, and their temperature dependence is obtained. Depending on the definition and temperature, the small-to-large crossover in the hydration mechanism is predicted to occur for hydrophobes of radii from one to several nanometers. Independent of its definition, the crossover length-scale is predicted to decrease with increasing temperature.

  19. Critical Factors Driving the High Volumetric Uptake of Methane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu3(btc)2 (btc3- 1,3,5-benzenetricarboxylate; HKUST-1). ...

  20. Biomass Gasification and Methane Digester Property Tax Exemption

    Broader source: Energy.gov [DOE]

    In order to be eligible for the exemption, methane digester equipment must be certified by the Michigan Department of Agriculture (MDA) and the farm must be verified as compliant under the Michig...

  1. Methane storage in advanced porous materials | Center for Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane storage in advanced porous materials Previous Next List Trevor A. Makal, Jian-Rong Li, Weigang Lu and Hong-Cai Zhou, Chem. Soc. Rev., 2012,41, 7761-7779 DOI: 10.1039...

  2. Commodity chemicals from natural gas by methane chlorination

    SciTech Connect (OSTI)

    Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

    1987-01-01

    Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

  3. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Rather, methane emission reductions from this sector have typically occurred as a co-benefit of policies that target air pollution (such as smog) and improve safety. In general, ...

  4. New Mexico--West Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico--West Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's ...

  5. New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Proved Reserves (Billion Cubic Feet) New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  6. New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 ...

  7. New Mexico--East Coalbed Methane Production (Billion Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) New Mexico--East Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's ...

  8. Influence of hydrogen and hydrogen/methane plasmas on AlN thin films

    SciTech Connect (OSTI)

    Pobedinskas, P. Hardy, A.; Van Bael, M. K.; Haenen, K.; Degutis, G.; Dexters, W.

    2014-02-24

    Polycrystalline aluminum nitride (AlN) thin films are exposed to hydrogen and hydrogen/methane plasmas at different conditions. The latter plays an indispensable role in the subsequent deposition of nanocrystalline diamond thin films on AlN. The changes of AlN properties are investigated by means of Fourier transform infrared (FTIR) and Raman spectroscopies as well as atomic force microscopy. The E{sub 1}(TO) and E{sub 2}{sup 2} phonon mode frequencies blue-shift after the exposure to plasmas. The damping constant of E{sub 1}(TO) phonon, calculated from FTIR transmission spectra using the factorized model of a damped oscillator, and the width of E{sub 2}{sup 2} peak in Raman spectra decrease with increasing substrate temperature till the decomposition of AlN thin film becomes notable. It is proven that these changes are driven by the plasmas as annealing in vacuum does not induce them.

  9. NREL Research Helps Convert Overabundant Methane into Useful Products |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy | NREL Research Helps Convert Overabundant Methane into Useful Products March 18, 2016 Photo of a fermentation vessel cultivating our bacteria to produce lactic acid. Using fermentation vessels such as the one pictured here, NREL researchers have discovered how to cultivate genetically engineered methanotrophic bacteria to produce lactic acid, a high-value precursor to bioplastics. Photo by Holly Smith, NREL Methane is Earth's second most abundant greenhouse gas (GHG) after carbon

  10. NREL Research Helps Convert Overabundant Methane into Useful Products -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Research Helps Convert Overabundant Methane into Useful Products March 18, 2016 Photo of a fermentation vessel cultivating our bacteria to produce lactic acid. Using fermentation vessels such as the one pictured here, NREL researchers have discovered how to cultivate genetically engineered methanotrophic bacteria to produce lactic acid, a high-value precursor to bioplastics. Photo by Holly Smith, NREL Methane is Earth's second most abundant greenhouse gas (GHG) after

  11. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, K.

    1997-07-15

    A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

  12. Membrane-augmented cryogenic methane/nitrogen separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid

    1997-01-01

    A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

  13. Ownership questions can stymie development of coalbed methane

    SciTech Connect (OSTI)

    Counts, R.A. )

    1990-01-01

    Although the technology exists for commercial recovery of coalbed methane, production has been hindered because of the legal quandary as to ownership. The author discusses how claims to ownership of coalbed methane can and have been made by the coal owner or lessee, the oil and gas owner or lessee, the surface owner, or any combination thereof. The federal perspective on this question of ownership is described and several state rulings are assessed.

  14. Anaerobic Digestion (AD): not only methane | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion (AD): not only methane Anaerobic Digestion (AD): not only methane Breakout Session 1: New Developments and Hot Topics Session 1-C: Beyond Biofuels Larry Baresi, Professor of Biology, California State University, Northridge b13_baresi_1-C.pdf (980.78 KB) More Documents & Publications Electrobiocommodities from Carbon Dioxide: Enhancing Microbial Electrosynthesis with Synthetic Electromicrobiology and System Design Hydrogen, Hydrocarbons, and Bioproduct Precursors from

  15. Method of determining methane and electrochemical sensor therefor

    DOE Patents [OSTI]

    Zaromb, Solomon; Otagawa, Takaaki; Stetter, Joseph R.

    1986-01-01

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about about 1.4 volts versus R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  16. CNEEC - Atomic Layer Deposition Tutorial by Stacey Bent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition

  17. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y.; Litt, Robert D.; Dongming, Qiu; Silva, Laura J.; Lamont, Micheal Jay; Fanelli, Maddalena; Simmons, Wayne W.; Perry, Steven

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  18. CO{sub 2} HYDRATE PROCESS FOR GAS SEPARATION

    SciTech Connect (OSTI)

    G. Deppe; R. Currier; D. Spencer

    2004-01-01

    Modifications were implemented to the hydrogen flow test rig per safety review comments, and the apparatus was tested for leaks. Tests were then done using Helium/CO{sub 2} mixtures to re-verify performance prior to hydrogen testing. It was discovered that hydrate formation was more difficult to initiate, and new initiation methods were developed to improve the tests. Delivery of ETM hardware continued and buildup of the ETM system continued, the ETM is now mechanically complete. The STU (pilot plant) site selection process was resumed because Tennessee Eastman declined to participate in the program. Two potential sites were visited: The Global Energy/Conoco-Phillips Wabash River Plant, and the Tampa Electric Polk Power Plant.

  19. Structural characteristics and hydration kinetics of modified steel slag

    SciTech Connect (OSTI)

    Li Jianxin; Yu Qijun; Wei Jiangxiong Zhang Tongsheng

    2011-03-15

    This study investigates the structural characteristics and hydration kinetics of modified basic oxygen furnace steel slag. The basic oxygen furnace steel slag (BOFS) was mixed with electric arc furnace steel slag (EAFS) in appropriate ratios and heated again at high temperature in the laboratory. The mineralogical and structural characteristics of both BOFS and modified steel slag (MSS) were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, Raman and Fourier transform infrared spectroscopies. The results show that modification increases alite content in MSS and decreases alite crystal size with the formation of C{sub 6}AF{sub 2}. One more obvious heat evolution peak appears in MSS's heat-flow rate curves in comparison to BOFS, becoming similar to that of typical Portland cement paste. As a result, its cementitious activity is much improved.

  20. Ion mixing, hydration, and transport in aqueous ionic systems

    SciTech Connect (OSTI)

    Tse, Ying-Lung Steve; Voth, Gregory A.; Witten, Thomas A.

    2015-05-14

    The enhancement effect on the ion mobility of fluoride (and that of chloride) in a polycationic system, as the chloride content increases, is shown to also exist in other more simple ionic systems with cations such as the cesium ion and an organic ammonium ion. As the chloride content increases, in addition to the finding that there is more unbound water associated with the cation, we also observe that the average lifetime of a hydrogen bond decreases. This change to the hydrogen bonds is correlated to significant changes to both the structural and dynamical properties of water. The more disordered water structure and faster water dynamics are hypothesized to be also responsible for the enhanced ion mobilities. Furthermore, when either the chloride content or hydration level is changed, the self-diffusion constant of each co-ion changes by almost the same factor, implying the existence of a single universal transport mechanism that determines ion mobilities.