Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

2

Louisiana--State Offshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

3

Ohio Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Ohio Coalbed Methane Proved Reserves, Reserves...

4

Florida Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves...

5

Michigan Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Michigan Coalbed Methane Proved Reserves, Reserves...

6

Estimating the Carbon Sequestration Capacity of Shale Formations Using Methane Production Rates  

Science Journals Connector (OSTI)

Estimating the Carbon Sequestration Capacity of Shale Formations Using Methane Production Rates ... Even though both of these strategies have some potential to sequester CO2, the magnitude is much smaller than current or projected CO2 emissions. ... This distribution is combined with stochastic estimates for (4) the ratio of CH4 volume to CO2 volume that can sorb to the fracture surface and (5) the ratio of the gas diffusivities at the fracture surface to estimate the volume of CO2 that could be sequestered in these wells. ...

Zhiyuan Tao; Andres Clarens

2013-08-29T23:59:59.000Z

7

Coalbed Methane Production  

U.S. Energy Information Administration (EIA) Indexed Site

NA Not Available; W Withheld to avoid disclosure of individual company data. Notes: Coalbed Methane production data collected in conjunction with proved reserves data on Form...

8

Texas--RRC District 9 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 9 Coalbed Methane Proved Reserves,...

9

Texas--RRC District 6 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 6 Coalbed Methane Proved Reserves,...

10

Alaska (with Total Offshore) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves...

11

Texas--RRC District 1 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 1 Coalbed Methane Proved Reserves,...

12

California (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves...

13

New York Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves...

14

North Dakota Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production North Dakota Coalbed Methane Proved Reserves,...

15

Mississippi (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves...

16

Louisiana--South Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production LA, South Onshore Coalbed Methane Proved Reserves,...

17

Lower 48 Federal Offshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Federal Offshore U.S. Coalbed Methane Proved...

18

Texas--RRC District 8 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8 Coalbed Methane Proved Reserves,...

19

Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin  

SciTech Connect (OSTI)

Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative polymerase chain reaction (QPCR) directed at the methyl coenzyme M reductase subunit A (mcrA) gene indicated that 75% of the HR sediments analyzed contained <1000 methanogens/g. The highest methanogen numbers were mostly from sediments <10 meters below seafloor. By combining methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported from such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.

F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

2008-06-01T23:59:59.000Z

20

Methane Production Quantification and Energy Estimation for Bangalore Municipal Solid Waste  

Science Journals Connector (OSTI)

Landfills are considered as cornerstone of solid waste management. Landfill gas (LFG) and leachate are principal outputs ... from landfills. Methane, occupying significant volume of landfill gas, has considerable...

A. Kumar; R. Dand; P. Lakshmikanthan…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Measurements of Methane Emissions at Natural Gas Production Sites  

E-Print Network [OSTI]

Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study · Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions · Measured data for some sources of methane emissions during natural gas

Lightsey, Glenn

22

Estimates of Biogenic Methane Production Rates in Deep Marine Sediments at Hydrate Ridge, Cascadia Margin  

Science Journals Connector (OSTI)

...fluids associated with a large gas hydrate reservoir...USA. Proc. Ocean Drilling Progr. Sci. Results...initial reports. Ocean Drilling Program, College Station...p. 18-22. Ocean Drilling Program, College Station...material turnover and large methane plumes at the...

F. S. Colwell; S. Boyd; M. E. Delwiche; D. W. Reed; T. J. Phelps; D. T. Newby

2008-03-14T23:59:59.000Z

23

Enhanced Renewable Methane Production System | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

24

Texas--RRC District 8A Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8A Coalbed Methane Proved Reserves,...

25

Texas--RRC District 7C Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7C Coalbed Methane Proved Reserves,...

26

Texas--RRC District 7B Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7B Coalbed Methane Proved Reserves,...

27

Method of coalbed methane production  

SciTech Connect (OSTI)

This patent describes a method for producing coalbed methane from a coal seam containing coalbed methane and penetrated by at least one injection well and at least one producing well. It comprises: injecting an inert gas through the injection well and into the coal seam. The inert gas being a gas that does not react with the coal under conditions of use and that does not significantly adsorb to the coal; and producing a gas from the production well which consists essentially of the inert gas, coalbed methane, or mixtures thereof.

Puri, R.; Stein, M.H.

1989-11-28T23:59:59.000Z

28

Coalbed Methane Estimated Production  

Gasoline and Diesel Fuel Update (EIA)

1,966 1,914 1,886 1,763 1,655 1,466 1989-2013 Federal Offshore U.S. 0 0 0 0 0 0 2005-2013 Pacific (California) 0 0 0 0 0 0 2005-2013 Gulf of Mexico (Louisiana & Alabama) 0 0 0 0 0...

29

NETL: News Release - DOE Study Raises Estimates of Coalbed Methane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 16, 2002 December 16, 2002 DOE Study Raises Estimates of Coalbed Methane Potential in Powder River Basin Actual Production Will Hinge on Water Disposal Method WASHINGTON, DC - The Powder River Basin, a vast region of high plains in Wyoming and Montana known for producing low-sulfur coal, is also becoming a primary source of America's fastest growing natural gas resource, coalbed methane. Now, a new Department of Energy report projects that the region may hold more coalbed methane than previously estimated but the amount that will actually be produced will depend largely on the choice of the water disposal method. MORE INFO Download report [7.35MB PDF] The study, Powder River Basin Coalbed Methane Development and Produced Water Management Study, was prepared by Advanced Resources International of

30

Methane Hydrate Production Feasibility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

31

Coalbed methane production potential in U. S. basins  

SciTech Connect (OSTI)

The major emphasis of the U.S. DOE's coalbed methane research has been on estimating the magnitude of the resource and developing systems for recovery. Methane resource estimates for 16 basins show that the greatest potential is in the Piceance, Northern Appalachian, Central Appalachian, Powder River, and Greater Green River coal basins. Small, high-potential target areas have been selected for in-depth analysis of the resource. Industry interest is greatest in the Warrior, San Juan, Piceance, Raton Mesa, and Northern and Central Appalachian basins. Production curves for several coalbed methane wells in these basins are included.

Byer, C.W.; Mroz, T.H.; Covatch, G.L.

1987-07-01T23:59:59.000Z

32

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

33

Montana Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

34

Virginia Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

35

Colorado Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Colorado Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12...

36

Alabama Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23...

37

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

38

Kansas Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Kansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 25 38...

39

Oklahoma Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Oklahoma Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 58 68...

40

Arkansas Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3...

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Utah Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Utah Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 74 83 103...

42

Pennsylvania Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Pennsylvania Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 5...

43

Processes for Methane Production from Gas Hydrates  

Science Journals Connector (OSTI)

The main cost here is only that of the pipeline used to transport the gas to the production platform. For subsea systems that do not ... group of wells. Transporting methane from the production site to the shore ...

2010-01-01T23:59:59.000Z

44

Development of gas production type curves for coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists on methane production from the coal seams. The unique coal characteristic results in a dual-porosity system.… (more)

Garcia Arenas, Anangela.

2004-01-01T23:59:59.000Z

45

Table 17. Coalbed methane proved reserves, reserves changes, and production, 201  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011" Coalbed methane proved reserves, reserves changes, and production, 2011" "billion cubic feet" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

46

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect (OSTI)

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

47

Methane production by attached film  

DOE Patents [OSTI]

A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

1981-01-01T23:59:59.000Z

48

Eastern States Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Production (Billion Cubic Feet) Eastern States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

49

Western States Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

50

Tool to predict the production performance of vertical wells in a coalbed methane reservoir.  

E-Print Network [OSTI]

??Coalbed Methane (CBM) is an unconventional gas resource that consists of methane production from coal seams. Coalbed Methane gas production is controlled be interactions of… (more)

Enoh, Michael E.

2007-01-01T23:59:59.000Z

51

Detection and Production of Methane Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

52

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-06-01T23:59:59.000Z

53

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope drilled and cored a well The HOT ICE No.1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report.

Thomas E. Williams; Keith Millheim; Buddy King

2004-07-01T23:59:59.000Z

54

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports.

Thomas E. Williams; Keith Millheim; Bill Liddell

2005-03-01T23:59:59.000Z

55

Detection and Production of Methane Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42960 Quarterly Progress Report Reporting Period: April-June 2007 Detection and Production of Methane Hydrate Submitted by: Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2007 Office of Fossil Energy Detection and Production of Methane Hydrate Quarterly Progress Report Reporting Period: April-June 2007 Prepared by: George Hirasaki Rice University August 2007 CONTRACT NO. DE-FC26-06NT42960 Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; Fax: 713-348-5478; Email: gjh@rice.edu

56

Development of water production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. The key parameters for the evaluation of coalbed methane… (more)

Burka Narayana, Praveen Kumar.

2007-01-01T23:59:59.000Z

57

Methane in lakes and wetlands Microbiological production, ecosystem  

E-Print Network [OSTI]

Methane in lakes and wetlands Microbiological production, ecosystem uptake, climatological significance LAKES AND WETLANDS ­ A RELEVANT METHANE SOURCE Lakes and other wetlands are an important source methane from wetlands will respond to future climatic change. Dr. Paul Bodelier (Netherlands Institute

MĂĽhlemann, Oliver

58

Water production in enhanced coalbed methane operations  

Science Journals Connector (OSTI)

Coalbed methane (CBM) formations provides a considerable amount of the US natural gas production and have the potential of storing significant amounts of carbon dioxide (CO2) through enhanced gas recovery operations. Enhanced coalbed methane (ECBM) recovery by injection of CO2 or a mixture of CO2 and nitrogen (N2) has been proven to recover additional natural gas resources. However, since coalbeds are normally saturated with water and can be in communication with an aquifer, a large amount of water is often co-produced during the natural gas extraction. The conventional approach for CBM production relies on the reduction of the gas partial pressure in the coal seam. This can be accomplished by either pumping the formation water to the surface and/or by injecting gases such as N2 and CO2. Disposal of the produced water is an environmental challenge as harmful impurities must be removed by appropriate purification techniques. Consequently, a reduction of water production in CBM operations is desirable. In this paper we present a numerical investigation of the potential reduction in water production during ECBM operations that are commonly used to increase methane (CH4) recovery. We use a three-dimensional coalbed model with an aquifer located at the bottom to investigate the amounts of gas and water produced in ECBM operations per volume of coal seam as a function of aquifer strength and sorption characteristics including sorption induced strain. The amount of gas/water that is produced varies significantly depending on the aquifer strength and injection gas composition. We demonstrate that injection of CO2 and/or N2 in some settings reduces the water handling problem substantially. CBM is an important worldwide energy source with a large number of formations being excellent candidates for ECBM recovery processes. Our analysis of the interplay between coal characteristics, aquifer support and the resultant behavior in terms of gas/water production provides valuable input for optimization of future planning and operations.

M. Jamshidi; K. Jessen

2012-01-01T23:59:59.000Z

59

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists planning hydrate exploration and development projects. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this and other project reports. This Topical Report contains details describing logging operations.

Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

2005-02-01T23:59:59.000Z

60

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored a well (the Hot Ice No. 1) on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in the project reports. Documenting the results of this effort are key to extracting lessons learned and maximizing the industry's benefits for future hydrate exploitation. In addition to the Final Report, several companion Topical Reports are being published.

Thomas E. Williams; Keith Millheim; Bill Liddell

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

,"U.S. Coalbed Methane Production (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Production (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

62

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the revolutionary and new Arctic Drilling Platform in search of gas hydrate and free gas accumulations at depths of approximately 1200 to 2500 ft MD. A secondary objective was the gas-charged sands of the uppermost Campanian interval at approximately 3000 ft. Summary results of geophysical analysis of the well are presented in this report.

Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

2005-02-01T23:59:59.000Z

63

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

SciTech Connect (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

64

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

65

Lower 48 States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Lower 48 States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

66

U.S. Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 91 1990's...

67

Texas (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

68

West Virginia Coalbed Methane Production (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) West Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30...

69

Louisiana (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

70

Texas--RRC District 3 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

71

Texas--RRC District 10 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

72

Louisiana--North Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Louisiana--North Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

73

CO2 Sequestration Enhances Coalbed Methane Production.  

E-Print Network [OSTI]

??Since 1980s, petroleum engineers and geologists have conducted researches on Enhanced Coalbed Methane Recovery (ECBM). During this period, many methods are introduced to enhance the… (more)

Pang, Yu

2013-01-01T23:59:59.000Z

74

State Energy Production Estimates  

U.S. Energy Information Administration (EIA) Indexed Site

State Energy Production Estimates 1960 Through 2012 2012 Summary Tables Table P1. Energy Production Estimates in Physical Units, 2012 Alabama 19,455 215,710 9,525 0 Alaska 2,052...

75

Electrolysed palladium has the potential to increase methane production by a mixed rumen population in vitro  

E-Print Network [OSTI]

Electrolysed palladium has the potential to increase methane production by a mixed rumen population the proportion of protozoa with attached methanogens decreased, however no estimate of CH4 production under were re-filled with H2:CO2, sealed with butyl rubber stoppers and incubated at 39�C with shaking

Paris-Sud XI, Université de

76

A Compact and Efficient Steam Methane Reformer for Hydrogen Production.  

E-Print Network [OSTI]

??A small-scale steam-methane reforming system for localized, distributed production of hydrogen offers improved performance and lower cost by integrating the following technologies developed at the… (more)

Quon, Willard

2012-01-01T23:59:59.000Z

77

Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes  

E-Print Network [OSTI]

Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like ...

Faraji, Sedigheh

2010-06-08T23:59:59.000Z

78

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

79

Hydrogen production from methane and solar energy – Process evaluations and comparison studies  

Science Journals Connector (OSTI)

Abstract Three conventional and novel hydrogen and liquid fuel production schemes, i.e. steam methane reforming (SMR), solar SMR, and hybrid solar-redox processes are investigated in the current study. H2 (and liquid fuel) productivity, energy conversion efficiency, and associated CO2 emissions are evaluated based on a consistent set of process conditions and assumptions. The conventional SMR is estimated to be 68.7% efficient (HHV) with 90% CO2 capture. Integration of solar energy with methane in solar SMR and hybrid solar-redox processes is estimated to result in up to 85% reduction in life-cycle CO2 emission for hydrogen production as well as 99–122% methane to fuel conversion efficiency. Compared to the reforming-based schemes, the hybrid solar-redox process offers flexibility and 6.5–8% higher equivalent efficiency for liquid fuel and hydrogen co-production. While a number of operational parameters such as solar absorption efficiency, steam to methane ratio, operating pressure, and steam conversion can affect the process performances, solar energy integrated methane conversion processes have the potential to be efficient and environmentally friendly for hydrogen (and liquid fuel) production.

Feng He; Fanxing Li

2014-01-01T23:59:59.000Z

80

Hydrogen production in Multi-Channel Membrane Reactor via Steam Methane Reforming and Methane Catalytic Combustion  

Science Journals Connector (OSTI)

Abstract A novel Multi-Channel Membrane Reactor (MCMR) was designed and built for the small-scale production of hydrogen via Steam Methane Reforming (SMR). The prototype alternates an SMR gas channel to produce hydrogen catalytically, with a Methane Catalytic Combustion (MCC) gas channel to provide the heat of reaction needed by the endothermic reforming. A palladium–silver membrane inside the reforming gas channel shifts the reaction equilibrium, allowing lower operating temperatures, and producing pure hydrogen in a single vessel. Using an innovative air-spray coating technique, channels were coated with Ru–MgO–La2O3/?-Al2O3 and Pd/?-Al2O3 catalyst particles for the SMR and MCC reactions, respectively. Results for the proof-of-concept MCMR showed that methane conversion in the reformer of 91% and a hydrogen purity in excess of 99.99% were possible with the reformer operating at 570 °C and 15 bar.

Alexandre Vigneault; John R. Grace

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis  

E-Print Network [OSTI]

a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production the electrodes.1,2 Combined biological and electrochemical methods for methane production show great promise

82

Atmospheric Inverse Estimates of Methane Emissions from Central California  

SciTech Connect (OSTI)

Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

2008-11-21T23:59:59.000Z

83

Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996  

SciTech Connect (OSTI)

The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

NONE

1998-12-31T23:59:59.000Z

84

METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST  

SciTech Connect (OSTI)

Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the second year of a three-year endeavor being sponsored by Maurer Technology, Noble, and Anadarko Petroleum, in partnership with the DOE. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition. We plan to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. We also plan to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope is to drill and core a well on Anadarko leases in FY 2003 and 2004. We are also using an on-site core analysis laboratory to determine some of the physical characteristics of the hydrates and surrounding rock. The well is being drilled from a new Anadarko Arctic Platform that will have minimal footprint and environmental impact. We hope to correlate geology, geophysics, logs, and drilling and production data to allow reservoir models to be calibrated. Ultimately, our goal is to form an objective technical and economic evaluation of reservoir potential in Alaska.

Thomas E. Williams; Keith Millheim; Buddy King

2004-03-01T23:59:59.000Z

85

Weekly Coal Production Estimation Methodology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio...

86

Texas--RRC District 5 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

5 Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 - No Data Reported;...

87

Texas--RRC District 2 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

2 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 - No Data...

88

Texas--RRC District 4 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 - No Data...

89

Methane Production in Shallow-Water, Tropical Marine Sediments  

Science Journals Connector (OSTI)

...influences methane production rates. APPLIED MICROBIOLOGY...University ofMiami, Miami, Florida 33149 Received for publication...located in Caesar Creek (Florida Keys) exhibited the...methanogenic activity (initial rates = 1.81 to 1.86 gmol...useful in the design of fuel-producing systems...

Ronald S. Oremland

1975-10-01T23:59:59.000Z

90

US COALBED METHANE The Past: Production The Present: Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Panel 2 of 2 Panel 2 of 2 US COALBED METHANE The Past: Production The Present: Reserves The Future: Resources Annual coalbed methane gas production data through 12/31/2006 was obtained from 17 state oil & gas regulatory entities or geological surv eys and one producing company. Data for 2006 were not yet av ailable for West Virginia and Pennsy lvania so the 2005 v olumes were assumed to repeat in 2006. Produced CBM gas v olumes from each state were clas sified by basin. The cumulative production pie chart to the left shows the sum of all reported CBM gas volumes by basin through 2006. The San Juan Bas in dominates the chart. The only other bas in to ex ceed 10% is the Pow der River Basin (12%). Relative cumulative production volumes by basin are spatially depicted in the c

91

Methanation  

Science Journals Connector (OSTI)

Methanation describes the heterogeneous, gas-catalytic or biological synthesis of CH4 from H2 and CO/CO2...or in case of the biological path, alternatively from other carbon sources. It is the second substantial,...

Markus Lehner; Robert Tichler…

2014-01-01T23:59:59.000Z

92

Optimal(Estimation(of(North(American(Methane( Emissions(using(GOSAT(data:(  

E-Print Network [OSTI]

Optimal(Estimation(of(North(American(Methane( Emissions(using(GOSAT(data:( A&Sciences&Division,&Lawrence&Berkeley&National&Laboratory,&Berkeley,&CA,&USA.! *aturner@fas.harvard.edu& Harvard(University( #12;Prior Methane Emissions from EDGARv4.2/Kaplan Major/Gas Waste Coal 0 5 10 15 20 Wetlands Livestock Oil/Gas Landfills Coal North America Global #12;Satellites

Jacob, Daniel J.

93

Coalbed methane production enhancement by underground coal gasification  

SciTech Connect (OSTI)

The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

1997-12-31T23:59:59.000Z

94

Preliminary relative permeability estimates of methane hydrate-bearing sand  

E-Print Network [OSTI]

sand, the gas permeability of the sand with hydrate, and thefor gas and water through methane hydrate-bearing sand. X-hydrate dissociation and making a single-phase (gas or water) permeability measurement of the sand

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

2006-01-01T23:59:59.000Z

95

Diffusion Characterization of Coal for Enhanced Coalbed Methane Production.  

E-Print Network [OSTI]

??This thesis explores the concept of displacement of sorbed methane and enhancement of methane recovery by injection of CO2 into coal, while sequestering CO2. The… (more)

Chhajed, Pawan

2011-01-01T23:59:59.000Z

96

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network [OSTI]

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K 73019 Received October 11, 2002 In this study, synthesis gas production in an AC electric gas discharge of methane and air mixtures at room temperature and ambient pressure was investigated. The objective

Mallinson, Richard

97

Coalbed methane gains viability  

SciTech Connect (OSTI)

In recent government studies, the Department of Energy (DOE) states that coal bed methane can be produced economically by using recovery systems that maximize return on investment rather than a system to produce a single coal seam just prior to mining. DOE suggests that the cost of recovering coal bed methane can be substantially reduced by increasing well spacing and employing multizone production if possible. Created as a by-product during the formation of coal, methane frequently is trapped in coal beds and associated strata. Estimates of total US methane contained in coal beds range from 260 to 860 TCF. The Pittsburgh seam in the N. Appalachia basin has estimates of 0.6 to 4 TCF alone. With current technology, DOE thinks that approximately 300 TCF of coal bed methane can be extracted from coal beds.

Not Available

1981-08-01T23:59:59.000Z

98

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network [OSTI]

production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

99

Improving the Methane Production in the Co-Digestion of Microalgae and Cattle Manure  

E-Print Network [OSTI]

that biogas production increased when algae was added to the digester. The highest methane production in the control groups, containing only manure, digestion sludge, and newsprint was 48120 L, while the highest in the mixtures containing algae and pretreated...

Cantu, Matthew Scott

2014-04-28T23:59:59.000Z

100

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation  

E-Print Network [OSTI]

Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate simulating reflectors (BSRs) imply the potential existence of gas hydrates offshore southwestern Taiwan that the fluxes are very high in offshore southwestern Taiwan. The depths of the SMI are different at sites GH6

Lin, Andrew Tien-Shun

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geologic evaluation of critical production parameters for coalbed methane resources. Part 1. San Juan Basin. Annual report, August 1988-July 1989  

SciTech Connect (OSTI)

In the San Juan Basin, Fruitland Formation coal seams contain an estimated 43 to 49 Tcf of methane. With more than 500 producing coalbed methane wells and approximately 1,000 wells scheduled for drilling in 1990, the basin is one of the most active areas of coalbed methane exploration and production in the United States. Among the most important geologic factors affecting the occurrence and producibility of coalbed methane are depositional setting, structural attitude and fracturing of the coal, and regional hydraulic setting. In the second year of the study, the Bureau of Economic Geology evaluated the depositional setting and structure of Fruitland coal seams, which are both source rocks and reservoirs for coalbed methane, throughout the basin. The report summarizes the regional tectonic setting of the San Juan Basin; describes the Cretaceous stratigraphy, structure, and basin evolution; relates these factors to Fruitland coal and coalbed methane occurrence; describes studies of lineaments, fractures, and cleats; presents hydrodynamic controls on the producibility of coalbed methane from the Fruitland Formation; summarizes production from the Fruitland Formation; and evaluates geologic and hydrologic controls on coalbed methane producibility.

Ayers, W.B.; Kaiser, W.R.; Ambrose, W.A.; Swartz, T.E.; Laubach, S.E.

1990-01-01T23:59:59.000Z

102

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6/30/1989" ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","ng_enr_coalbed_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_enr_coalbed_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

103

Methane Production from Acetate and Associated Methane Fluxes from Anoxic Coastal Sediments  

Science Journals Connector (OSTI)

...ORGANIC-RICH COASTAL MARINE BASIN .1. METHANE SEDIMENT-WATER...IRRIGATION IN CAPE LOOKOUT BIGHT, NORTH-CAROLINA, SCIENCE...sediments ofa small coastal basin on the Outer Banks ofNorth...site was Cape Lookout Bight, North Carolina, an organic-rich marine basin of approximately 2 km2...

FRANCIS J. SANSONE; CHRISTOPHER S. MARTENS

1981-02-13T23:59:59.000Z

104

Mississippi Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

105

California Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

106

Pennsylvania Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Pennsylvania Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

107

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

108

Table 17. Coalbed methane proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed methane proved reserves, reserves changes, and production, 2011 Coalbed methane proved reserves, reserves changes, and production, 2011 billion cubic feet Published New Reservoir Proved Revision Revision New Field Discoveries Estimated Proved Reserves Adjustments Increases Decreases Sales Acquisitions Extensions Discoveries in Old Fields Production Reserves State and Subdivision 12/31/10 (+,-) (+) (-) (-) (+) (+) (+) (+) (-) 12/31/11 Alaska 0 0 0 0 0 0 0 0 0 0 0 Lower 48 States 17,508 -15 2,071 1,668 1,775 1,710 736 0 13 1,763 16,817 Alabama 1,298 -45 23 86 104 219 3 0 0 98 1,210 Arkansas 28 0 0 3 0 0 0 0 0 4 21 California 0 0 0 0 0 0 0 0 0 0 0 Colorado 6,485 73 698 367 1,034 1,021 220 0 0 516 6,580 Florida 0 0 0 0 0 0 0 0 0 0 0 Kansas 258 -6 24 14 0 0 3 0 0 37 228 Kentucky 0 0 0 0 0 0 0 0 0 0 0 Louisiana 0 0 0 0 0 0 0 0 0 0 0 North Onshore 0 0 0 0 0 0 0 0 0 0 0 South Onshore 0 0 0 0 0 0 0 0 0 0 0 State Offshore 0 0 0 0 0 0 0 0 0 0 0 Michigan 0 0 0 0 0 0 0 0 0 0 0 Mississippi 0 0 0 0 0 0 0 0 0

109

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Municipal Solid Waste-Sewage Sludge. b 4.15 SCF CH 4 / cu ftUP I j methane 31.5 scf sludge 18.61b water 161b Btu/scfsewer 65.3 lb ( 7.9 gal) sludge ash 1.74 lb stack emissions

Haven, Kendall F.

2011-01-01T23:59:59.000Z

110

Physiology and Genetics of Biogenic Methane-Production from Acetate  

SciTech Connect (OSTI)

Biomass conversion catalyzed by methanogenic consortia is a widely available, renewable resource for both energy production and waste treatment. The efficiency of this process is directly dependent upon the interaction of three metabolically distinct groups of microorganisms; the fermentative and acetogenic Bacteria and the methanogenic Archaea. One of the rate limiting steps in the degradation of soluble organic matter is the dismutation of acetate, a predominant intermediate in the process, which accounts for 70 % or more of the methane produced by the methanogens. Acetate utilization is controlled by regulation of expression of carbon monoxide dehydrogensase (COdh), which catalyzes the dismutation of acetate. However, physiological and molecular factors that control differential substrate utilization have not been identified in these Archaea. Our laboratory has identified sequence elements near the promoter of the gene (cdh) encoding for COdh and we have confirmed that these sequences have a role in the in vivo expression of cdh. The current proposal focuses on identifying the regulatory components that interact with DNA and RNA elements, and identifying the mechanisms used to control cdh expression. We will determine whether expression is controlled at the level of transcription or if it is mediated by coordinate interaction of transcription initiation with other processes such as transcription elongation rate and differential mRNA stability. Utilizing recently sequenced methanosarcinal genomes and a DNA microarray currently under development genes that encode regulatory proteins and transcription factors will be identified and function confirmed by gene disruption and subsequent screening on different substrates. Functional interactions will be determined in vivo by assaying the effects of gene dosage and site-directed mutagenesis of the regulatory gene on the expression of a cdhAÂ?::lacZ operon fusion. Results of this study will reveal whether this critical catabolic pathway is controlled by mechanisms similar to those employed by the Bacteria and Eukarya, or by a regulatory paradigm that is unique to the Archaea. The mechanism(s) revealed by this investigation will provide insight into the regulatory strategies employed by the aceticlastic methanogenic Archaea to efficiently direct carbon and electron flow in anaerobic consortia during fermentative processes.

Sowers, Kevin R

2013-04-04T23:59:59.000Z

111

Quantitative Influences of Butyrate or Propionate on Thermophilic Production of Methane from Biomass  

Science Journals Connector (OSTI)

...Propionate on Thermophilic Production of Methane from Biomass...Microbiology and Cell Science, University...Present address: Solar Energy Research Institute...new stable external organic acid pool sizes and new stable gas production rates were observed...Microbiology and Cell Science, University...

J. Michael Henson; F. M. Bordeaux; Christopher J. Rivard; P. H. Smith

1986-02-01T23:59:59.000Z

112

Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge  

Science Journals Connector (OSTI)

Abstract The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 ?mol g?1 dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production.

Minh Tuan Nguyen; Nazlina Haiza Mohd Yasin; Toshiki Miyazaki; Toshinari Maeda

2014-01-01T23:59:59.000Z

113

Global methane emissions from landfills: New methodology and annual estimates 19801996  

E-Print Network [OSTI]

Change: Instruments and techniques; KEYWORDS: landfill, landfill gas, methane emissions, methanotrophy

114

Hydrogen Production Cost Estimate Using Biomass Gasification  

E-Print Network [OSTI]

Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

115

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents [OSTI]

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

1996-11-12T23:59:59.000Z

116

Functionally gradient material for membrane reactors to convert methane gas into value-added products  

DOE Patents [OSTI]

A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

Balachandran, Uthamalingam (Hinsdale, IL); Dusek, Joseph T. (Lombard, IL); Kleefisch, Mark S. (Napersville, IL); Kobylinski, Thadeus P. (Lisle, IL)

1996-01-01T23:59:59.000Z

117

Renewable Syngas Production via Dry Reforming of Methane  

Science Journals Connector (OSTI)

Biogas produced by the anaerobic digestion of biomass can be exploited directly as a fuel for small-to-medium-scale combined heat and power production, or as a renewable carbon source for the production of synthe...

R. Navarro; B. Pawelec; M. C. Alvarez-Galván…

2013-01-01T23:59:59.000Z

118

Conversion of Methane and Carbon Dioxide to Higher Value Products  

Science Journals Connector (OSTI)

Currently, proven world natural gas reserves are estimated to 6609 trillion cubic feet or around 187 trillion cubic meters according to the latest reports (U.S. Energy Information Administration, Figure 1). ... lignite ...

Vesna Havran; Milorad P. Dudukovi?; Cynthia S. Lo

2011-05-23T23:59:59.000Z

119

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

SciTech Connect (OSTI)

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& amp; G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

120

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Diffusional methane fluxes within continental margin sediments and depositional constraints on formation factor estimates  

E-Print Network [OSTI]

subsurface life in deep-sea sediments. Science , 295 , 2067-consumption in anoxic marine sediments. Geology , 4 , 297-oxidation in methane-rich sediments overlying the Blake

Berg, Richard D.

2008-01-01T23:59:59.000Z

122

Single-well Modeling of Coalbed Methane Production  

E-Print Network [OSTI]

curves. Further solution of a specific CBM single-well problem and parametric study for evaluation impact of separate parameters were conducted. Focus of the studies was on well production forecasting, effect of mechanical properties of coal...

Martynova, Elena

2014-01-14T23:59:59.000Z

123

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seam Well Completion Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Strategic Center for Natural Gas September 2003 DOE/NETL-2003/1193 Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy National Energy Technology Laboratory (NETL) (Strategic Center for Natural Gas) DOE/NETL-2003/1193 September 2003 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

124

Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process  

Science Journals Connector (OSTI)

Abstract There has been considerable interest in the development of more efficient processes to generate hydrogen. Currently, steam methane reforming (SMR) is the most widely applied route for producing hydrogen from natural gas. Researchers worldwide have been working to invent more efficient routes to produce hydrogen. One of the routes is thermocatalytic decomposition of methane (TCDM) - a process that decomposes methane thermally to produce hydrogen from natural gas. TCDM has not yet been commercialized. However, the aim of this work was to conduct an economic and environmental analysis to determine whether the TCDM process is competitive with the more popular SMR process. The results indicate that the TCDM process has a lower carbon footprint. Further research on TCDM catalysts could make this process economically competitive with steam methane reforming.

Kartick C. Mondal; S. Ramesh Chandran

2014-01-01T23:59:59.000Z

125

Enhanced methane production from wool textile residues by thermal and enzymatic pretreatment  

Science Journals Connector (OSTI)

Abstract Methane production from two types of wool textile wastes (TW1 and TW2) was investigated. To improve the digestibility of these textiles, different pretreatments were applied, and comprised thermal treatment (at 120 °C for 10 min), enzymatic hydrolysis (using an alkaline endopeptidase at different levels of enzymatic loading, at 55 °C for 0, 2, and 8 h), and a combination of these two treatments. Soluble protein concentration and sCOD (soluble chemical oxygen demand) were measured to evaluate the effectivity of the different pretreatment conditions to degrade wool keratin. The sCOD as well as the soluble protein content had increased in both textile samples in comparison to untreated samples, as a response to the different pretreatments indicating breakdown of the wool keratin structure. The combined treatments and the thermal treatments were further evaluated by anaerobic batch digestion assays at 55 °C. Combined thermal and enzymatic treatment of TW1 and TW2 resulted in methane productions of 0.43 N m3/kg VS and 0.27 N m3/kg VS, i.e., 20 and 10 times higher yields, respectively, than that gained from untreated samples. The application of thermal treatment by itself was less effective and resulted in increasing the methane production by 10-fold for TW1 and showing no significant improvement for TW2.

Maryam M. Kabir; Gergely Forgács; Ilona Sárvári Horváth

2013-01-01T23:59:59.000Z

126

Methane Decomposition: Production of Hydrogen and Carbon Filaments  

E-Print Network [OSTI]

for hydrogen is to power fuel cells. Major automobile manufac- turers are currently working towards developing ppm in the preferential oxidation reactor (PROX). The hydrogen can be introduced in the fuel cell only for the performance of PEM fuel cells.6 Other conventional process of hydrogen production such as partial oxidation

Goodman, Wayne

127

The analysis of the factors effect on coalbed methane pool concentration and high-production -- The North China coalbed methane districts as an example  

SciTech Connect (OSTI)

The factors which affect coalbed methane (CBM) pool concentration and high-production based upon the exploration and research of the North China CBM districts are coal facies, coal rank and metamorphic types, structural features, the surrounding rocks and their thickness, and hydrogeological conditions. Coal facies, coal rank and their metamorphic types mainly affect the CBM forming characteristic, while the other factors effect the trap of CBM pool. The interaction of the above factors determines the petrophysics of coal reservoirs and extractability of CBM. The high-production areas where CBM pools develop well in North China CBM districts are sites which have a favorable coordination of the five factors. The poor-production areas where CBM pools are undeveloped in North China are caused by action of one or more unfavorable factors. Therefore the favorable factors coordination is the prerequisite in selecting sites for coalbed methane recovery.

Wang Shengwei; Zhang Ming; Zhuang Xiaoli

1997-12-31T23:59:59.000Z

128

Methane Steam Reforming in Hydrogen-permeable Membrane Reactor for Pure Hydrogen Production  

Science Journals Connector (OSTI)

Steam reforming of methane over a ruthenium catalyst has been carried ... hydrogen separation from the reaction mixture, the methane conversion significantly exceeds the equilibrium value, which ... an important ...

Yasuyuki Matsumura; Jianhua Tong

2008-12-01T23:59:59.000Z

129

Adjusted Estimates of Texas Natural Gas Production  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information Administration 1 Energy Information Administration Adjusted Estimates of Texas Natural Gas Production Background The Energy Information Administration (EIA) is adjusting its estimates of natural gas production in Texas for 2004 and 2005 to correctly account for carbon dioxide (CO 2 ) production. Normally, EIA would wait until publication of the Natural Gas Annual (NGA) before revising the 2004 data, but the adjustments for CO 2 are large enough to warrant making the changes at this time. Prior to 2005, EIA relied exclusively on the voluntary sharing of production data by state and federal government entities to develop its natural gas production estimates. In 2005, EIA began collecting production data directly from operators on the new EIA-914 production

130

Heavy oil recovery process: Conceptual engineering of a downhole methanator and preliminary estimate of facilities cost for application to North Slope Alaska  

SciTech Connect (OSTI)

The West Sak (Upper Cretaceous) sands, overlaying the Kuparuk field, would rank among the largest known oil fields in the US, but technical difficulties have so far prevented its commercial exploitation. Steam injection is the most successful and the most commonly-used method of heavy oil recovery, but its application to the West Sak presents major problems. Such difficulties may be overcome by using a novel approach, in which steam is generated downhole in a catalytic Methanator, from Syngas made at the surface from endothermic reactions (Table 1). The Methanator effluent, containing steam and soluble gases resulting from exothermic reactions (Table 1), is cyclically injected into the reservoir by means of a horizontal drainhole while hot produced fluids flow form a second drainhole into a central production tubing. The downhole reactor feed and BFW flow downward to two concentric tubings. The large-diameter casing required to house the downhole reactor assembly is filled above it with Arctic Pack mud, or crude oil, to further reduce heat leaks. A quantitative analysis of this production scheme for the West Sak required a preliminary engineering of the downhole and surface facilities and a tentative forecast of well production rates. The results, based on published information on the West Sak, have been used to estimate the cost of these facilities, per daily barrel of oil produced. A preliminary economic analysis and conclusions are presented together with an outline of future work. Economic and regulatory conditions which would make this approach viable are discussed. 28 figs.

Gondouin, M.

1991-10-31T23:59:59.000Z

131

Methane/CO{sub 2} sorption modeling for coalbed methane production and CO{sub 2} sequestration  

SciTech Connect (OSTI)

A thorough study of the sorption behavior of coals to methane and carbon dioxide (CO{sub 2}) is critical for carbon sequestration in coal seams and enhanced coalbed methane recovery. This paper discusses the results of an ad/de-sorption study of methane and CO{sub 2}, in single gas environment, on a set of coal samples taken from the San Juan and Illinois Basins. The results indicate that, under similar temperature and pressure conditions, coals exhibit higher affinity to CO{sub 2} as compared to methane and that the preferential sorption ratio varies between 2:1 and 4:1. Furthermore, the experimental data were modeled using Langmuir, BET, and Dubinin-Polanyi equations. The accuracy of the models in quantifying coal-gas sorption was compared using an error analysis technique. The Dubinin-Radushkevich equation failed to model the coal-gas sorption behavior satisfactorily. For methane, Langmuir, BET, and Dubinin-Astakhov (D-A) equations all performed satisfactorily within comparable accuracy. However, for CO{sub 2}, the performance of the D-A equation was found to be significantly better than the other two. Overall, the D-A equation fitted the experimental sorption data the best, followed by the Langmuir and BET equations. Since the D-A equation is capable of deriving isotherms for any temperature using a single isotherm, thus providing added flexibility to model the temperature variation due to injection/depletion, this is the recommended model to use. 49 refs., 9 figs., 5 tabs.

Satya Harpalani; Basanta K. Prusty; Pratik Dutta [Southern Illinois University-Carbondale, Carbondale, IL (United States). Department of Mining and Mineral Resources Engineering

2006-08-15T23:59:59.000Z

132

Chapter 18 - Worldwide Coal Mine Methane and Coalbed Methane Activities  

Science Journals Connector (OSTI)

Abstract The chapter provides an overview of coal bed methane production in all countries (except USA; covered in Chapter 17) around the world where there is a viable coal deposit. Coal deposits are shown in a map and coal bed methane reserves are estimated. All countries can follow the lead provided by USA in CBM production where 10% of total gas consumption (2 TCF/year) comes from coal seams. Exploitation of thick and deep coal seams using the latest technology can create a vast source of domestic energy for many countries around the world.

Charlee Boger; James S. Marshall; Raymond C. Pilcher

2014-01-01T23:59:59.000Z

133

Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin  

SciTech Connect (OSTI)

The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production tends to decline hyperbolically. Hyperbolic decline indicates that water volume is of greatest concern early in the life of a coalbed methane project. Regional mapping indicates that gas production is controlled primarily by the ability to depressurize permeable coal seams that are natively within the steep part of the adsorption isotherm. Water production is greatest within the freshwater intrusion and below thick Cretaceous cover strata and is least in areas of underpressure. Water management strategies include instream disposal, which can be applied effectively in most parts of the basin. Deep disposal may be applicable locally, particularly where high salinity limits the ability to dispose into streams. Artificial wetlands show promise for the management of saline water, especially where the reservoir yield is limited. Beneficial use options include municipal water supply, agricultural use, and industrial use. The water may be of use to an inland shrimp farming industry, which is active around the southwestern coalbed methane fields. The best opportunities for beneficial use are reuse of water by the coalbed methane industry for drilling and hydraulic fracturing. This research has further highlighted opportunities for additional research on treatment efficiency, the origin of nitrogen compounds, organic geochemistry, biogenic gas generation, flow modeling, and computer simulation. Results of this study are being disseminated through a vigorous technology transfer program that includes web resources, numerous presentations to stakeholders, and a variety of technical publications.

Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

2013-10-31T23:59:59.000Z

134

Coalbed Methane Production Analysis and Filter Simulation for Quantifying Gas Drainage from Coal Seams  

Science Journals Connector (OSTI)

Gas and water production rate analysis of CBM wells help determining dynamic reservoir properties of ... for estimating GIP and its change between particular production periods. Moreover, geostatistics can be use...

C. Özgen Karacan; Ricardo A. Olea

2014-01-01T23:59:59.000Z

135

Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells  

Science Journals Connector (OSTI)

Abstract Cobalt was successfully recovered with simultaneous methane and acetate production in biocathode microbial electrolysis cells (MECs). At an applied voltage of 0.2 V, 88.1% of Co(II) was reduced with concomitantly achieving yields of 0.266 ± 0.001 mol Co/mol COD, 0.113 ± 0.000 mol CH4/mol COD, and 0.103 ± 0.003 mol acetate/mol COD. Energy efficiencies relative to the electrical input were 21.2 ± 0.05% (Co), 100.9 ± 3.2% (CH4), and 1.0 ± 0.01% (acetate), and overall energy efficiencies relative to both electrical input and energy of anodic substrate averaged 3.7 ± 0.05% (Co), 17.5 ± 1.4% (CH4) and 0.5 ± 0.001% (acetate). Applied voltage, initial Co(II) concentration, and temperature affected system performance. The apparent activation energy (Ea) obtained in \\{MECs\\} was 26.7 kJ/mol compared to 40.5 kJ/mol in the abiotic controls, highlighting the importance of cathodic microbial catalysis to Co(II) reduction. Dominant microorganisms most similar to Geobacter psychrophilus, Acidovorax ebreus, Diaphorobacter oryzae, Pedobacter duraquae, and Prolixibacter bellariivorans were observed on the biocathodes. This study provides a new process for cobalt recovery and recycle of spent lithium ion batteries with simultaneous methane and acetate production in the biocathode MECs.

Liping Huang; Linjie Jiang; Qiang Wang; Xie Quan; Jinhui Yang; Lijie Chen

2014-01-01T23:59:59.000Z

136

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel...

137

Louisiana - North Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana - North Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

138

Nebraska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

139

Florida Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Florida Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

140

Alabama Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

New Mexico - West Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

142

Utah Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

143

Texas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

144

Wyoming Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

145

Indiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

146

Arkansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Arkansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

147

Ohio Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Ohio Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

148

Kansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Kansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

149

Alaska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

150

New Mexico - East Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

151

Colorado Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

152

Miscellaneous States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Miscellaneous States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

153

Oklahoma Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Oklahoma Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

154

Texas State Offshore Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

155

Louisiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

156

Michigan Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Michigan Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

157

New Mexico Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

158

Montana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

159

Illinois Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Illinois Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

160

Lower 48 States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Lower 48 States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

North Dakota Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) North Dakota Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

162

West Virginia Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) West Virginia Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

163

Resource Assessment & Production Testing for Coal Bed Methane in the Illinois Basin  

SciTech Connect (OSTI)

In order to assess the economic coal bed methane potential of the Illinois Basin, the geological surveys of Illinois, Indiana and Kentucky performed a geological assessment of their respective parts of the Illinois Basin. A considerable effort went into generating cumulative coal thickness and bed structure maps to identify target areas for exploratory drilling. Following this, the first project well was drilled in White County, Illinois in October 2003. Eight additional wells were subsequently drilled in Indiana (3) and Kentucky (5) during 2004 and 2005. In addition, a five spot pilot completion program was started with three wells being completed. Gas contents were found to be variable, but generally higher than indicated by historical data. Gas contents of more than 300 scf/ton were recovered from one of the bore holes in Kentucky. Collectively, our findings indicate that the Illinois Basin represents a potentially large source of economic coal bed methane. Additional exploration will be required to refine gas contents and the economics of potential production.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2005-11-01T23:59:59.000Z

164

Ethanol and Methane Production from Oil Palm Frond by Two Stage SSF  

Science Journals Connector (OSTI)

Abstract A two step, included process producing ethanol from oil palm fronts (OPF) by two-stage simultaneous saccharification and Saccharomyces cerevisiae fermentation followed by anaerobic digestion of its effluent to produce methane was investigated. OPF was soaked in dilute sulfuric acid, hydrogen peroxide and water consequently pretreated by microwave for preparing of cellulose and followed by simultaneous saccharification and fermentation. The result indicated OPF soaking in water gave a maximal ethanol yield was 0.32 g-ethanol/g-glucose which was 62.75% of the ethanol theoretical yield (0.51g-ethanol/g-glucose). The effluent from the ethanol production process was used to produce methane with the yield of 514 ml CH4/g VS added. Therefore, soaking in water and microwave co-pretreatment could helpful due to its low toxicity and low corrosion compare to sulfuric acid and hydrogen peroxide which improves the efficiency of enzymatic hydrolysis. The maximum energy output of the process (745 kWh/ ton of OPF) was about 72% of the energy contributed by cellulose fraction, contained in the oil palm frond.

Tussanee Srimachai; Veerasak Thonglimp; Sompong O-Thong

2014-01-01T23:59:59.000Z

165

Design of an annular microchannel reactor (AMR) for hydrogen and/or syngas production via methane steam reforming  

Science Journals Connector (OSTI)

Abstract A bench-scale annular microchannel reactor (AMR) prototype with microchannel width of 0.3 mm and total catalyst length of 9.53 × 10?2 m active for the endothermic steam reforming of methane is presented. Experimental results at a steam to methane feed molar ratio of 3.3:1, reactor temperature of 1023 K, and pressure of 11 bar confirm catalyst power densities upwards of 1380 W per cm3 of catalyst at hydrogen yields >98% of thermodynamic equilibrium. A two-dimensional steady-state computational fluid dynamic model of the AMR prototype was validated using experimental data and subsequently employed to identify suitable operating conditions for an envisioned mass-production AMR design with 0.3 mm annular channel width and a single catalyst length of 254 mm. Thermal efficiencies, defined based upon methane and product hydrogen higher heating values (HHVs), of 72.7–57.7% were obtained from simulations for methane capacities of 0.5–2S LPM (space velocities of 195,000–782,000 h?1) at hydrogen yields corresponding to 99%–75% of equilibrium values. Under these conditions, analysis of local composition, temperature and pressure indicated that catalyst deactivation via coke formation or Nickel oxidation is not thermodynamically favorable. Lastly, initial analysis of an envisioned 10 kW autothermal reformer combining 19 parallel \\{AMRs\\} within a single methane-air combustion chamber, based upon existing manufacturing capabilities within Power & Energy, Inc., is presented.

Holly Butcher; Casey J.E. Quenzel; Luis Breziner; Jacques Mettes; Benjamin A. Wilhite; Peter Bossard

2014-01-01T23:59:59.000Z

166

CO2 conversion for syngas production in methane catalytic partial oxidation  

Science Journals Connector (OSTI)

Abstract The catalytic partial oxidation of methane (CPOM) involves the interaction among methane combustion (MC), steam reforming (SR), and dry reforming (DR), and CO2 generated from MC is utilized for syngas production in DR. To evaluate the potential of CO2 utilization in CPOM for syngas production, a numerical study is carried out where CO2 is added into the feed gas and CPOM is triggered in a rhodium-based catalyst bed. Two important parameters of CO2/O2 ratio and O2/CH4 ratio (or O/C ratio) in the feed gas are taken into account. The predictions suggest that CO2 addition plays no part in MC, but it retards SR and intensifies DR. The CO2 consumption increases with CO2/O2 ratio; however, the CO2 conversion goes down. As a whole, increasing CO2 addition enhances CO formation but reduces H2 formation. The maximum syngas production is exhibited at CO2/O2 = 0.2 when the O/C ratio is 1. At a fixed CO2/O2 ratio, the maximum H2 yield and CO2 consumption are located at O/C = 1.8 and 1.0, respectively. However, the CO2 conversion monotonically decreases with increasing O/C ratio. Within the investigated range of CO2/O2 and O/C ratios, the H2 yield and CO2 conversion in CPOM are in the ranges of approximately 0.42–1.34 mol(mol CH4)?1 and 10–41%, respectively.

Wei-Hsin Chen

2014-01-01T23:59:59.000Z

167

Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production  

SciTech Connect (OSTI)

Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450şC. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450şC (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300şC (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300şC. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

2014-10-31T23:59:59.000Z

168

Powder River Basin coalbed methane: The USGS role in investigating this ultimate clean coal by-product  

SciTech Connect (OSTI)

For the past few decades, the Fort Union Formation in the Powder River Basin has supplied the Nation with comparatively clean low ash and low sulfur coal. However, within the past few years, coalbed methane from the same Fort Union coal has become an important energy by-product. The recently completed US Geological Survey coal resource assessment of the Fort Union coal beds and zones in the northern Rocky Mountains and Great Plains (Fort Union Coal Assessment Team, 1999) has added useful information to coalbed methane exploration and development in the Powder River Basin in Wyoming and Montana. Coalbed methane exploration and development in the Powder River Basin has rapidly accelerated in the past three years. During this time more than 800 wells have been drilled and recent operator forecasts projected more than 5,000 additional wells to be drilled over the next few years. Development of shallow (less than 1,000 ft. deep) Fort Union coal-bed methane is confined to Campbell and Sheridan Counties, Wyoming, and Big Horn County, Montana. The purpose of this paper is to report on the US Geological Survey's role on a cooperative coalbed methane project with the US Bureau of Land Management (BLM), Wyoming Reservoir Management Group and several gas operators. This paper will also discuss the methodology that the USGS and the BLM will be utilizing for analysis and evaluation of coalbed methane reservoirs in the Powder River Basin. The USGS and BLM need additional information of coalbed methane reservoirs to accomplish their respective resource evaluation and management missions.

Stricker, G.D.; Flores, R.M.; Ochs, A.M.; Stanton, R.W.

2000-07-01T23:59:59.000Z

169

Thermodynamic Analysis of Syngas Production via the Solar Thermochemical Cerium Oxide Redox Cycle with Methane-Driven Reduction  

Science Journals Connector (OSTI)

Thermodynamic Analysis of Syngas Production via the Solar Thermochemical Cerium Oxide Redox Cycle with Methane-Driven Reduction ... Of particular interest is the storage of solar energy in chemical bonds via the splitting of water and carbon dioxide to produce hydrogen and carbon monoxide, referred to collectively as syngas. ... The coupled cycle produces high-quality syngas by the partial oxidation of methane in the ceria reduction step in addition to the carbon monoxide and hydrogen produced by splitting carbon dioxide and water in the oxidation step. ...

Peter T. Krenzke; Jane H. Davidson

2014-05-16T23:59:59.000Z

170

Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase  

E-Print Network [OSTI]

Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

Kopp, Daniel Arthur

2003-01-01T23:59:59.000Z

171

Effect of Sulfur Compounds and Higher Homologues of Methane on Hydrogen Cyanide Production by the Andrussow Method  

Science Journals Connector (OSTI)

The influence of sulfur compounds, higher homologues of methane on the parameters ofoxidative ammonolysis of methane was studied.

N. V. Trusov

2001-10-01T23:59:59.000Z

172

Estimating climatological variability of solar energy production  

Science Journals Connector (OSTI)

Abstract A method is presented for estimating the climatological variability of yearly and monthly photovoltaic power production per 1 kWp of installed power. This quantity is computed for a specified portfolio of sources on the basis of historical data. Its climatological variability is derived from a simulation of 33 years of power production with hourly time step. Underlying meteorological variables are taken from the MERRA reanalysis for the years 1979–2011. Since the MERRA reanalysis is not a traditional data source for photovoltaic power modelling, various comparisons to available and more frequently used data sources are included. The method of estimation has the advantage of wide applicability due to the global coverage of the meteorological data.

Pavel Juruš; Kryštof Eben; Jaroslav Resler; Pavel Kr?; Ivan Kasanický; Emil Pelikán; Marek Brabec; Ji?í Hošek

2013-01-01T23:59:59.000Z

173

Evaluation of factors that influence microbial communities and methane production in coal microcosms.  

E-Print Network [OSTI]

??Vast reserves of coal represent a largely untapped resource that can be used to produce methane gas, a cleaner energy alternative compared to burning oil… (more)

Gallagher, Lisa K.

2014-01-01T23:59:59.000Z

174

U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies  

Broader source: Energy.gov [DOE]

Methane Hydrates May Exceed the Energy Content of All Other Fossil Fuels Combined; Could Ensure Decades of Affordable Natural Gas and Cut America’s Foreign Oil Dependence

175

A dynamic prediction model for gas–water effective permeability based on coalbed methane production data  

Science Journals Connector (OSTI)

Abstract An understanding of the relative permeability of gas and water in coal reservoirs is vital for coalbed methane (CBM) development. In this work, a prediction model for gas–water effective permeability is established to describe the permeability variation within coal reservoirs during production. The effective stress and matrix shrinkage effects are taken into account by introducing the Palmer and Mansoori (PM) absolute permeability model. The endpoint relative permeability is calibrated through experimentation instead of through the conventional Corey relative permeability model, which is traditionally employed for the simulation of petroleum reservoirs. In this framework, the absolute permeability model and the relative permeability model are comprehensively coupled under the same reservoir pressure and water saturation conditions through the material balance equation. Using the Qinshui Basin as an example, the differences between the actual curve that is measured with the steady-state method and the simulation curve are compared. The model indicates that the effective permeability is expressed as a function of reservoir pressure and that the curve shape is controlled by the production data. The results illustrate that the PM–Corey dynamic prediction model can accurately reflect the positive and negative effects of coal reservoirs. In particular, the model predicts the matrix shrinkage effect, which is important because it can improve the effective permeability of gas production and render the process more economically feasible.

H. Xu; D.Z. Tang; S.H. Tang; J.L. Zhao; Y.J. Meng; S. Tao

2014-01-01T23:59:59.000Z

176

Modeling of coal bed methane (CBM) production and CO2 sequestration in coal seams  

Science Journals Connector (OSTI)

A mathematical model was developed to predict the coal bed methane (CBM) production and carbon dioxide (CO2) sequestration in a coal seam accounting for the coal seam properties. The model predictions showed that, for a CBM production and dewatering process, the pressure could be reduced from 15.17 MPa to 1.56 MPa and the gas saturation increased up to 50% in 30 years for a 5.4 × 105 m2 of coal formation. For the CO2 sequestration process, the model prediction showed that the CO2 injection rate was first reduced and then slightly recovered over 3 to 13 years of injection, which was also evidenced by the actual in seam data. The model predictions indicated that the sweeping of the water in front of the CO2 flood in the cleat porosity could be important on the loss of injectivity. Further model predictions suggested that the injection rate of CO2 could be about 11 × 103 m3 per day; the injected CO2 would reach the production well, which was separated from the injection well by 826 m, in about 30 years. During this period, about 160 × 106 m3 of CO2 could be stored within a 21.4 × 105 m2 of coal seam with a thickness of 3 m.

Ekrem Ozdemir

2009-01-01T23:59:59.000Z

177

Production of methane-rich syngas from hydrocarbon fuels using multi-functional catalyst/capture agent  

DOE Patents [OSTI]

The disclosure provides a gasification process for the production of a methane-rich syngas at temperatures exceeding 700.degree. C. through the use of an alkali hydroxide MOH, using a gasification mixture comprised of at least 0.25 moles and less than 2 moles of water for each mole of carbon, and at least 0.15 moles and less than 2 moles of alkali hydroxide MOH for each mole of carbon. These relative amounts allow the production of a methane-rich syngas at temperatures exceeding 700.degree. C. by enabling a series of reactions which generate H.sub.2 and CH.sub.4, and mitigate the reforming of methane. The process provides a methane-rich syngas comprised of roughly 20% (dry molar percentage) CH.sub.4 at temperatures above 700.degree. C., and may effectively operate within an IGFC cycle at reactor temperatures between 700-900.degree. C. and pressures in excess of 10 atmospheres.

Siefert, Nicholas S; Shekhawat, Dushyant; Berry, David A; Surdoval, Wayne A

2014-12-30T23:59:59.000Z

178

Methane Main  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

179

NETL: Methane Hydrates - DOE/NETL Projects - Estimate Gas-Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico Last Reviewed 6/14/2013 DE-FC26-06NT42959 Goal The goal of this project is to evaluate the direct-current electrical resistivity (DCR) method for remotely detecting and characterizing the concentration of gas hydrates in the deep marine environment. This will be accomplished by adapting existing DCR instrumentation for use on the sea floor in the deep marine environment and testing the new instrumentation at Mississippi Canyon Block 118. Performer Baylor University, Waco, TX 76798 Collaborators Advanced Geosciences Inc., Austin, TX 78726 Specialty Devices Inc., Wylie, TX 75098 Background Marine occurrences of methane hydrates are known to form in two distinct

180

Aerosol Best Estimate Value-Added Product  

SciTech Connect (OSTI)

The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

2012-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Estimation of composite thermal conductivity of a heterogeneous methane hydrate sample using iTOUGH2  

E-Print Network [OSTI]

15–17, 2006 ESTIMATION OF COMPOSITE THERMAL CONDUCTIVITY OFABSTRACT We determined the composite thermal conductivity (kfrom granular ice. The composite thermal conductivity was

Gupta, Arvind; Kneafsey, Timothy J.; Moridis, George J.; Seol, Yongkoo; Kowalsky, Michael B.; Sloan Jr., E.D.

2006-01-01T23:59:59.000Z

182

Estimation of coalbed methane resources using a probabilistic scheme from geological data of coal basin in Mongolia  

Science Journals Connector (OSTI)

A general material balance equation of coal deposits was developed for gas and water by King (1993). The original gas in place for CBM can be estimated from the initial drilling core data or production data. The ...

Youngmin Kim; Budzaya Unurbayan; Jeonghwan Lee

2014-08-01T23:59:59.000Z

183

Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production  

Science Journals Connector (OSTI)

Abstract Steam methane reforming (SMR) is currently the main hydrogen production process in industry, but it has high emissions of CO2, at almost 7 kg CO2/kg H2 on average, and is responsible for about 3% of global industrial sector CO2 emissions. Here, the results are reported of an investigation of the effect of steam-to-carbon ratio (S/C) on CO2 capture criteria from various locations in the process, i.e. synthesis gas stream (location 1), pressure swing adsorber (PSA) tail gas (location 2), and furnace flue gases (location 3). The CO2 capture criteria considered in this study are CO2 partial pressure, CO2 concentration, and CO2 mass ratio compared to the final exhaust stream, which is furnace flue gases. The CO2 capture number (Ncc) is proposed as measure of capture favourability, defined as the product of the three above capture criteria. A weighting of unity is used for each criterion. The best S/C ratio, in terms of providing better capture option, is determined. CO2 removal from synthesis gas after the shift unit is found to be the best location for CO2 capture due to its high partial pressure of CO2. However, furnace flue gases, containing almost 50% of the CO2 in produced in the process, are of great significance environmentally. Consequently, the effects of oxygen enrichment of the furnace feed are investigated, and it is found that this measure improves the CO2 capture conditions for lower S/C ratios. Consequently, for an S/C ratio of 2.5, CO2 capture from a flue gas stream is competitive with two other locations provided higher weighting factors are considered for the full presence of CO2 in the flue gases stream. Considering carbon removal from flue gases, the ratio of hydrogen production rate and Ncc increases with rising reformer temperature.

R. Soltani; M.A. Rosen; I. Dincer

2014-01-01T23:59:59.000Z

184

Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production.  

E-Print Network [OSTI]

??Interference for adjacent wells may be beneficial to Coalbed-Methane production. The effect is the acceleration of de-watering which should lead to earlier and higher gas… (more)

Zulkarnain, Ismail

2006-01-01T23:59:59.000Z

185

The Interaction Between SrFeCo0.5O x Ceramic Membranes and Pt/CeZrO2 During Syngas Production from Methane  

Science Journals Connector (OSTI)

Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane to higher value products. In this work, th...

Sedigheh Faraji; Karen J. Nordheden; Susan M. Stagg-Williams

2009-08-01T23:59:59.000Z

186

Syngas production from burner-stabilized methane/air flames: The effect of preheated reactants  

Science Journals Connector (OSTI)

The effect of preheated reactants on syngas production from a methane/air flame was investigated over a range of inlet temperatures up to 630 K. In addition to experimental measurements, the results from a burner-stabilized flame and freely-propagating flame models are presented. A comparison of the modeling and experimental results in terms of flame standoff distance, stability limit conditions and species yields show excellent agreement across a broad range of equivalence ratios and preheat temperatures. Preheating of reactants increased the rich limit for stable operation from 1.26 to 1.75 for a given inlet velocity, and syngas yields were shown to increase with equivalence ratio. The preheat temperature of the reactants was shown to have little impact on syngas yields beyond extending the limits of stable operation. The results of this study are useful for the design and analysis of heat recirculating reactors and other reactors that are designed for producing syngas through the combustion of rich mixtures.

Colin H. Smith; Daniel I. Pineda; Janet L. Ellzey

2013-01-01T23:59:59.000Z

187

Hydrogen production through CO2 sorption-enhanced methane steam reforming: Comparison between different adsorbents  

Science Journals Connector (OSTI)

A two-dimensional transient model has been developed to describe the catalytic methane reforming (MSR) coupled with simultaneous CO2...removal by different absorbents under non-isothermal, non-isobaric and non-ad...

YuMing Chen; YongChun Zhao; JunYing Zhang…

2011-11-01T23:59:59.000Z

188

Use of Pd membranes in catalytic reactors for steam methane reforming for pure hydrogen production  

Science Journals Connector (OSTI)

This review analyzes publications on experimental studies and mathematical modeling in the field of development of a catalytic reformer (mainly, steam methane conversion) with a fixed catalytic bed. The specif...

A. B. Shigarov; V. D. Meshcheryakov…

2011-10-01T23:59:59.000Z

189

Coal-bed methane production in eastern Kansas: Its potential and restraints  

SciTech Connect (OSTI)

In 1921 and again in 1988, workers demonstrated that the high volatile A and B coals of the Pennsylvanian Cherokee Group can be produced economically from vertically drilled holes, and that some of these coals have a gas content as high as 200 ft{sup 3}/ton. Detailed subsurface mapping on a county-by-county basis using geophysical logs shows the Weir coal seam to be the thickest (up to 6 ft thick) and to exist in numerous amoeba-shaped pockets covering several thousand acres. Lateral pinch-out into deltaic sands offers a conventional gas source. New attention to geophysical logging shows most coals have a negative SP response, high resistivities, and densities of 1.6 g/cm{sup 3}. Highly permeable coals cause lost circulation during drilling and thief zones during cementing, and they are the source of abundant unwanted salt water. Low-permeability coals can be recognized by their high fracture gradients, which are difficult to explain but are documented to exceed 2.2. Current successful completions use both limited-entry, small-volume nitrogen stimulations or an open hole below production casing. Subsurface coals are at normal Mid-Continent pressures and may be free of water. Initially, some wells flow naturally without pumping. Saltwater disposal is often helped by the need for water in nearby waterflood projects and the easy availability of state-approved saltwater disposal wells in Mississippi and Arbuckle carbonates. Recent attempts to recomplete coal zones in slim-hole completions are having mixed results. The major restraints to coal-bed methane production are restricted to low permeability of the coals and engineering problems, not to the availability or gas content of the coals.

Stoeckinger, B.T.

1989-08-01T23:59:59.000Z

190

The basics of coalbed methane  

SciTech Connect (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

191

Hydrogen production from methane steam reforming: parametric and gradient based optimization of a Pd-based membrane reactor  

Science Journals Connector (OSTI)

In this work three mathematical models for methane steam reforming in membrane reactors were developed. The first ... , the influence of five important parameters on methane conversion (X ...

Leandro C. Silva; Valéria V. Murata; Carla E. Hori…

2010-09-01T23:59:59.000Z

192

Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal  

SciTech Connect (OSTI)

Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young’s modulus, Poisson’s ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses of the simulation results included profits due to methane production, and potential incentives for CO2 sequestered. This work shows that for some coal-property values, the compressibility and cleat porosity of coal may be more important than more purely economic criteria.

Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

2005-09-01T23:59:59.000Z

193

Production-data analysis of single-phase (gas) coalbed-methane wells  

SciTech Connect (OSTI)

The current work illustrates how single-well production-data-analysis (PDA) techniques, such as type curve, flowing material balance (FMB), and pressure-transient (PT) analysis, may be altered to analyze single-phase CBM wells. Examples of how reservoir inputs to the PDA techniques and subsequent calculations are modified to account for CBM-reservoir behavior are given. This paper demonstrates, by simulated and field examples, that reasonable reservoir and stimulation estimates can be obtained from PDA of CBM reservoirs only if appropriate reservoir inputs (i.e., desorption compressibility, fracture porosity) are used in the analysis. As the field examples demonstrate, type-curve, FMB, and PT analysis methods for PDA are not used in isolation for reservoir-property estimation, but rather as a starting point for single-well and multiwell reservoir simulation, which is then used to history match and forecast CBM-well production (e.g., for reserves assignment). To study the effects of permeability anisotropy upon production, a 2D, single-phase, numerical CBM-reservoir simulator was constructed to simulate single-well production assuming various permeability-anisotropy ratios. Only large permeability ratios ({lt} 16:1) appear to have a significant effect upon single-well production characteristics. Multilayer reservoir characteristics may also be observed with CBM reservoirs because of vertical heterogeneity, or in cases where the coals are commingled with conventional (sandstone) reservoirs. In these cases, the type-curve, FMB, and PT analysis techniques are difficult to apply with confidence. Methods and tools for analyzing multilayer CBM (plus sand) reservoirs are presented. Using simulated and field examples, it is demonstrated that unique reservoir properties may be assigned to individual layers from commingled (multilayer) production in the simple two-layer case.

Clarkson, C.R.; Bustin, R.M.; Seidle, J.P. [ConocoPhillips Canada, Calgary, AB (Canada)

2007-06-15T23:59:59.000Z

194

Kinetic evaluation of the tri-reforming process of methane for syngas production  

Science Journals Connector (OSTI)

The conversion of natural gas was carried out via tri-reforming of methane in a fixed bed reactor employing a Ni/?-Al2O3 catalyst. The kinetic evaluations were performed in a temperature range from 923 to 1,123 K...

Leonardo J. L. Maciel…

2010-12-01T23:59:59.000Z

195

Comparison of energy potentials from combined ethanol and methane production using steam-pretreated corn stover impregnated with acetic acid  

Science Journals Connector (OSTI)

Abstract Acetic acid was investigated as a catalyst in steam pretreatment of corn stover. The purpose was to study ethanol production using either baker's yeast or a genetically modified pentose-fermenting version of Saccharomyces cerevisiae, KE6-12. Biogas production was investigated as an alternative for utilization of xylose. The high levels of acetic acid was found to be toxic using KE6-12. Some pentose fermentation was achieved, but the ethanol end concentration was almost the same as using baker's yeast (28 g L?1 compared to 27 g L?1). Using xylose for biogas production resulted in a high total energy recovery. The highest total energy recovery in the products, i.e. ethanol, methane and solids, obtained was 88% compared with the energy in ingoing raw material. This result was achieved when the solids and the liquid was separated after pretreatment.

Pia-Maria Bondesson; Mats Galbe; Guido Zacchi

2014-01-01T23:59:59.000Z

196

,"New York Dry Natural Gas Reserves Estimated Production (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2012...

197

Downgrading Recent Estimates of Land Available for Biofuel Production  

Science Journals Connector (OSTI)

? National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina ... Recent estimates of additional land available for bioenergy production range from 320 to 1411 million ha. ...

Steffen Fritz; Linda See; Marijn van der Velde; Rachel A. Nalepa; Christoph Perger; Christian Schill; Ian McCallum; Dmitry Schepaschenko; Florian Kraxner; Ximing Cai; Xiao Zhang; Simone Ortner; Rubul Hazarika; Anna Cipriani; Carlos Di Bella; Ahmed H. Rabia; Alfredo Garcia; Mar’yana Vakolyuk; Kuleswar Singha; Maria E. Beget; Stefan Erasmi; Franziska Albrecht; Brian Shaw; Michael Obersteiner

2012-12-24T23:59:59.000Z

198

Development of Vanadium Phosphaate Catalysts for Methanol Production by Selective Oxidation of Methane.  

SciTech Connect (OSTI)

This DOE sponsored study of methane partial oxidation was initiated at Amax Research and Development in Golden, CO in October of 1993. Shortly thereafter the management of Amax closed this R&D facility and the PI moved to the Colorado School of Mines. The project was begun again after contract transfer via a novation agreement. Experimental work began with testing of vandyl pyrophosphate (VPO), a well known alkane selective oxidation catalyst. It was found that VPO was not a selective catalyst for methane conversion yielding primarily CO. However, promotion of VPO with Fe, Cr, and other first row transition metals led to measurable yields for formaldehyde, as noted in the summary table. Catalyst characterization studies indicated that the role of promoters was to stabilize some of the vanadium in the V{sup 5+} oxidation state rather than the V{sup 4+} state formally expected for (VO){sub 2}P{sub 2}O{sub 7}.

McCormick, R.L.

1997-10-01T23:59:59.000Z

199

Exploiting coalbed methane and protecting the global environment  

SciTech Connect (OSTI)

The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

Yuheng, Gao

1996-12-31T23:59:59.000Z

200

Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent–catalyst  

Science Journals Connector (OSTI)

Abstract A bifunctional CaO-Zr/Ni (13, 18, and 20.5 wt% NiO) sorbent–catalyst was developed using the wet-mixing/sonication technique and applied for hydrogen production by sorption-enhanced steam methane reforming (SESMR), an intensified process that integrates hydrogen production with CO2 capture. The material was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2 physisorption (BET). CO2 sorption efficiency of the developed materials was evaluated during 25 CO2 sorption/regeneration cycles. The prepared sorbent–catalysts were then applied in the SESMR during 10 reaction cycles. The results showed that the bifunctional sorbent–catalyst with 20.5 wt% NiO loading presented the most suitable activity. The H2 yield of ?91% at the end of the 10th SESMR cycle is considerably higher than equilibrium H2 yield that could be obtained by traditional steam methane reforming.

Hamid R. Radfarnia; Maria C. Iliuta

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Energy Production . C.Benefits and Renewable Energy Production One source ofsource of renewable energy production from such facilities.

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

202

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Renewable Energy Production .Benefits and Renewable Energy Production One source ofauspicious source of renewable energy production from such

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

203

Coalbed methane resource potential of the Piceance Basin, northwestern Colorado  

SciTech Connect (OSTI)

As predicted, from an evolving coalbed methane producibility model, prolific coalbed methane production is precluded in the Piceance Basin by the absence of coal bed reservoir continuity and dynamic ground-water flow. The best potential for production may lie at the transition zone from hydropressure to hydrocarbon overpressure and/or in conventional traps basinward of where outcrop and subsurface coals are in good reservoir and hydraulic communication. Geologic and hydrologic synergy among tectonic and structural setting, depositional systems and coal distribution, coal rank, gas content, permeability and hydrodynamics are the controls that determine the coalbed methane resource potential of the Piceance Basin. Within the coal-bearing Upper Cretaceous Williams Fork Formation, the prime coalbed methane target, reservoir heterogeneity and thrust faults cause coal beds along the Grand Hogback and in the subsurface to be in modest to poor reservoir and hydraulic communication, restricting meteoric ground water recharge and basinward flow. Total subsurface coalbed methane resources are still estimated to be approximately 99 Tcf (3.09 Tm{sup 3}), although coalbed methane resource estimates range between 80 (2.49 Tm{sup 3}) and 136 Tcf (4.24 Tm{sup 3}), depending on the calculation method used. To explore for high gas contents or fully gas-saturated coals and consequent high productivity in the Piceance Basin, improved geologic and completion technologies including exploration and development for migrated conventionally and hydrodynamically trapped gases, in-situ generated secondary biogenic gases, and solution gases will be required.

Tyler, R.; Scott, A.R.; Kaiser, W.R. [Univ. of Texas, Austin, TX (United States)

1996-06-01T23:59:59.000Z

204

Volumetric strain associated with methane desorption and its impact on coalbed gas production from deep coal seams  

SciTech Connect (OSTI)

For deep coal seams, significant reservoir pressure drawdown is required to promote gas desorption because of the Langmuir-type isotherm that typifies coals. Hence, a large permeability decline may occur because of pressure drawdown and the resulting increase in effective stress, depending on coal properties and the stress field during production. However, the permeability decline can potentially be offset by the permeability enhancement caused by the matrix shrinkage associated with methane desorption. The predictability of varying permeability is critical for coalbed gas exploration and production-well management. We have investigated quantitatively the effects of reservoir pressure and sorption-induced volumetric strain on coal-seam permeability with constraints from the adsorption isotherm and associated volumetric strain measured on a Cretaceous Mesaverde Group coal (Piceance basin) and derived a stress-dependent permeability model. Our results suggest that the favorable coal properties that can result in less permeability reduction during earlier production and an earlier strong permeability rebound (increase in permeability caused by coal shrinkage) with methane desorption include (1) large bulk or Young's modulus; (2) large adsorption or Langmuir volume; (3) high Langmuir pressure; (4) high initial permeability and dense cleat spacing; and (5) low initial reservoir pressure and high in-situ gas content. Permeability variation with gas production is further dependent on the orientation of the coal seam, the reservoir stress field, and the cleat structure. Well completion with injection of N2 and displacement of CH{sub 4} only results in short-term enhancement of permeability and does not promote the overall gas production for the coal studied.

Cui, X.J.; Bustin, R.M. [University of British Columbia, Vancouver, BC (Canada). Dept. of Earth & Ocean Science

2005-09-01T23:59:59.000Z

205

Application of the Continuous EUR Method to Estimate Reserves in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Reservoirs 19. Cheng et al. (2007) Decline Curve Analysis for Multilayered Tight Gas Reservoirs 20. Blasingame and Rushing Method for Gas-in-Place and Reserves Estimation (2005) 21. Clarkson et al. (2007) Production Data Analysis for Coalbed-Methane... Wells 22. Clarkson et al. (2008) Production Data Analysis for Coalbed-Methane Wells 23. Rushing et al. (2008) Production Data Analysis for Coalbed-Methane Wells 24. Lewis and Hughes (2008) Production Data Analysis for Shale Gas Wells 25. Mattar et al...

Currie, Stephanie M.

2010-10-12T23:59:59.000Z

206

Distribution of thermogenic methane in Carboniferous coal seams of the Donets Basin (Ukraine): “Applications to exploitation of methane and forecast of mining hazards”  

Science Journals Connector (OSTI)

The main purpose of this contribution is to estimate methane production and to define its migration paths and storage in the Donets Basin formations for exploitation of methane and forecast of mining hazards. In order to study methane migration and storage, maps of production calculated by 2D modelling, adsorption capacity of methane in coal, and present-day methane contents were constructed for an altitude of ? 300 m (close to 500 m depth) in this basin. The results show that three principal factors influenced the methane migration and accumulation in Donets Basin: 1) faults that acted as migration pathways, 2) a replacement of thermogenic methane by endogenic CO2 in the central and SE parts, and 3) the occurrence of magmatic events in some areas in this basin. Finally, in Donbas, the areas with the highest methane potential and the maximum risk of outburst are not the areas with anthracite that produce the highest volume of methane, but areas with volatile bituminous coals where an impermeable cover preserved the accumulated gas until the Cenozoic and where dextral shear belts facilitated its migration.

D. Alsaab; M. Elie; A. Izart; R.F. Sachsenhofer; V.A. Privalov; I. Suarez-Ruiz; L. Martinez; E.A. Panova

2009-01-01T23:59:59.000Z

207

Thermodynamic analysis of hydrogen production via chemical looping steam methane reforming coupled with in situ CO2 capture  

Science Journals Connector (OSTI)

Abstract In this study, a detailed thermodynamic analysis of the sorption enhanced chemical looping reforming of methane (SE-CL-SMR), using CaO and NiO as CO2 sorbent and oxygen transfer material respectively, was conducted. The effect of different parameters, such as reactor temperature, pressure, H2O/CH4 ratio, CaO/CH4 ratio and CaO/NiO ratio was investigated. Moreover, the use of different sweep gases and oxidants for the re-oxidation/calcination cycle, like pure oxygen, air, steam and CO2, was specifically addressed. Conventional steam reforming (SMR) and sorption enhanced steam reforming (SE-SMR) were also investigated for comparison reasons. The results of thermodynamic analysis show that there are significant advantages of both sorption enhanced processes compared to conventional steam reforming. Presence of CaO sorbent in the reformer leads to higher methane conversion, hydrogen purity and yield at low temperatures (?650 °C). Addition of the oxygen carrier, in the chemical looping reforming concept, minimizes thermal requirements of the process, and results in superior performance compared to SE-SMR and SMR processes. A negative effect from NiO addition is reduction in hydrogen production (due to the reaction of part of methane with NiO to form CO/CO2). Hydrogen yield is up to 11% lower compared to SE-SMR for a NiO/CaO ratio of 0.7. It was found that only pure O2 can be used for re-oxidation/regeneration in order to reduce the energy requirements of the SE-CL-SMR process up to 26% compared to SE-SMR and up to 55% compared to conventional SMR.

A. Antzara; E. Heracleous; D.B. Bukur; A.A. Lemonidou

2015-01-01T23:59:59.000Z

208

Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore Texas Coalbed Methane Proved Reserves, Reserves Changes, and Production...

209

California--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production...

210

Prediction of coalbed methane reservoir performance with type curves.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoirs are dual-porosity systems that are characterized by… (more)

Bhavsar, Amol Bhaskar.

2005-01-01T23:59:59.000Z

211

Modeling of fixed bed methanation reactor for syngas production: Operating window and performance characteristics  

Science Journals Connector (OSTI)

Abstract The present work focuses on the development of phenomenological model for the bio-syngas to methane conversion process. One dimensional heterogeneous and pseudo-homogeneous model were simulated for a typical pilot plant scale fixed bed methanator processing 55 mol/h of CO (total molar flow rate of 310 mol/h) with inlet composition of H2/CO = 3, CO2/CO = 1, CH4/CO = 0.5 at 550 K and 1 atm. Performance of the fixed bed reactor at different operating conditions like CO2/CO ratio, H2/CO ratio, effect of H2O in the feed was studied. It was found that for feeds that were not pre-enriched with hydrogen, presence of water and water gas shift activity was found to decrease the catalyst inventory substantially. CO2 in the inlet feed stream would help to decrease the temperature due to dilution effect and more importantly, can be chosen to maximize methane yield per mole of CO converted. Further, the model was simulated to predict the performance characteristics of reactor with a mixture containing two types of catalyst, one of them being specifically added to increase H2/CO ratio in feed through water gas shift reaction. The work also laid the importance of incorporating pore diffusion and external mass transfer locally in the computation of actual catalyst inventory and reactor volume. The work was useful in selection of operating window and assessing the various viable options for an industrial reactor. The model developed will serve in selection of operability window for commercialization of substitute natural gas synthesis (SNG) process.

Naren Rajan Parlikkad; Stéphane Chambrey; Pascal Fongarland; Nouria Fatah; Andrei Khodakov; Sandra Capela; Olivier Guerrini

2013-01-01T23:59:59.000Z

212

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network [OSTI]

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

213

Simulation study of the effect of well spacing, effect of permeability anisotropy, and effect of Palmer and Mansoori model on coalbed methane production  

E-Print Network [OSTI]

Interference for adjacent wells may be beneficial to Coalbed-Methane production. The effect is the acceleration of de-watering which should lead to earlier and higher gas rate peaks. It is inherent that permeability anisotropy exists in the coalbed...

Zulkarnain, Ismail

2006-04-12T23:59:59.000Z

214

Use of experience curves to estimate the future cost of power plants with CO2 capture  

E-Print Network [OSTI]

production plants, and steam methane reforming (SMR) systemsproduction via steam methane reforming, (e) power plant FGD

Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

2007-01-01T23:59:59.000Z

215

RESOURCE ASSESSMENT & PRODUCTION TESTING FOR COAL BED METHANE IN THE ILLINOIS BASIN  

SciTech Connect (OSTI)

The geological surveys of Illinois, Indiana and Kentucky have completed the initial geologic assessment of their respective parts of the Illinois Basin. Cumulative thickness maps have been generated and target areas for drilling have been selected. The first well in the Illinois area of the Illinois Basin coal bed methane project was drilled in White County, Illinois in October 2003. This well was cored in the major coal interval from the Danville to the Davis Coals and provided a broad spectrum of samples for further analyses. Sixteen coal samples and three black shale samples were taken from these cores for canister desorption tests and were the subject of analyses that were completed over the following months, including desorbed gas volume, gas chemical and isotope composition, coal proximate, calorific content and sulfur analyses. Drilling programs in Indiana and Kentucky are expected to begin shortly.

Cortland Eble; James Drahovzal; David Morse; Ilham Demir; John Rupp; Maria Mastalerz; Wilfrido Solano

2004-06-01T23:59:59.000Z

216

Production, Cost, and Soil Compaction Estimates for Two Western Juniper  

E-Print Network [OSTI]

Production, Cost, and Soil Compaction Estimates for Two Western Juniper Extraction Systems, production rates, and soil compaction impacts of two systems for harvesting western juniper (Juniperus, and bucking using a chainsaw and skidding logs with a rubber-tired grapple skidder and a mechanical system

Dodson, Beth

217

Das Methan  

Science Journals Connector (OSTI)

Bei Einwirkung von Salzsäure auf Aluminiumkarbid entwickelt sich ein farbloses Gas, welches, angezündet, mit schwach leuchtender Flamme brennt: Es ist Methan.

A. Lipp

1928-01-01T23:59:59.000Z

218

Estimating production functions with damage control inputs: an application to Korean vegetable production  

E-Print Network [OSTI]

This thesis focuses on the use of chemicals for pest control in Korean cucumber production. The empirical issue addressed is whether estimating crop production functions consistent with the economic theory of damage control inputs makes significant...

Park, Pil Ja

2002-01-01T23:59:59.000Z

219

Hydrogen production from methane dry reforming over nickel-based nanocatalysts using surfactant-assisted or polyol method  

Science Journals Connector (OSTI)

Abstract In this study, two series of Ni-based nanocatalysts were synthesized successfully by the polyol and surfactant-assisted methods and subsequently tested for hydrogen production from CO2–CH4 reforming. Surfactant-assisted catalysts were prepared by using cetyl trimethyl ammonium bromide (CTAB) as a surfactant, whereas polyol catalysts were prepared in ethylene glycol (EG) medium with polyvinylpyrrolidone (PVP) as a nucleation-protective agent. The catalytic performance of each catalyst, in terms of H2 yield and selectivity, was evaluated at different temperatures (500–800 °C). In order to clarify and explain the differences in catalytic activities of catalysts, the prepared samples were characterized by various techniques, such as BET, H2-TPR, CO2-TPD, XRD, TGA, SEM, HRTEM and CO pulse chemisorption. The results demonstrated that the method of preparation had a significant effect on the catalytic performance of tested catalysts. Overall, polyol catalysts showed high activity and selectivity for hydrogen production, while surfactant-assisted catalysts exhibited a fairly high resistance towards carbon deposition under similar reaction conditions of dry reforming of methane. Moreover, due to the reverse water gas shift reaction (RWGS), surfactant-assisted catalysts always produced smaller values of H2/CO product ratio than their corresponding polyol catalysts.

Muhammad Awais Naeem; Ahmed Sadeq Al-Fatesh; Anis Hamza Fakeeha; Ahmed Elhag Abasaeed

2014-01-01T23:59:59.000Z

220

ARM - Evaluation Product - Quantitative Precipitation Estimates (QPE) from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsQuantitative Precipitation Estimates (QPE) ProductsQuantitative Precipitation Estimates (QPE) from the CSAPR Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Quantitative Precipitation Estimates (QPE) from the CSAPR Site(s) SGP TWP General Description Precipitation rates from cloud systems can give a fundamental insight into the processes occurring in-cloud. While rain gauges and disdrometers can give information at a single point, remote sensors such as radars can provide rainfall information over a defined area. The QPE value-added product (VAP) takes the Corrected Moments in Antenna Coordinates VAP and maps the Rain_rate_A field onto a Cartesian grid at the surface. This field is the rain rate as determined using the specific attenuation (A, dBZ/km) due to two-way liquid attenuation after Ryzhkov et

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia  

Science Journals Connector (OSTI)

Coal bed methane (CBM) is a significant growing industry in Queensland's energy sector. It is, however, a relatively new industry with little local water quality data and stable isotope compositions of production waters and gases available in the public domain. This study aims to determine whether water quality and stable isotope data can be correlated with gas and groundwater production and flow pathways, and identify zones of recharge and water mixing. Stable isotope analysis and accessory water quality tests were conducted on CBM production gas and water samples collected from two CBM producing bituminous coal seams within a single field in the Bowen Basin. In the production field, the reservoir seams are gently folded with eastwardly dipping fold axes, and compartmentalised by an ENE normal fault on the flank of a broad central anticline that contains minor faults. For one seam, splitting and a change in coal quality parallels the fault and fold axes. Although virgin reservoir conditions were similar, differing production performance north and south of the main fault suggests it acts as a barrier to water and gas flow along strike. The stable isotope analysis on the production water showed that waters with more positive ?D and ?18O compositions were associated with areas of higher water production and shallower depths, whereas more negative ?D and ?18O compositions were associated with lower water production and high gas production. The gas isotope analysis showed that production gases had both biogenic and thermogenic origins and that secondary biogenic gas generated through CO2 reduction comprises a significant portion of the CBM produced from this field. More negative CH4 ?13C values characterize the zones of meteoric recharge in shallow, up-dip areas. Gas production data and CO2 ?13C values suggest that this may result from 13CH4 stripping by the recharge waters and/or increased biogenic activity in this area. Smaller CO2–CH4 carbon isotopic fractionation values characterized zones of meteoric recharge, whereas higher isotopic fractionation values characterized the high gas production domain.

E.C.P. Kinnon; S.D. Golding; C.J. Boreham; K.A. Baublys; J.S. Esterle

2010-01-01T23:59:59.000Z

222

Sorption-Enhanced Synthetic Natural Gas (SNG) Production from Syngas: A Novel Process Combining CO Methanation, Water-Gas Shift, and CO2 Capture  

SciTech Connect (OSTI)

Synthetic natural gas (SNG) production from syngas is under investigation again due to the desire for less dependency from imports and the opportunity for increasing coal utilization and reducing green house gas emission. CO methanation is highly exothermic and substantial heat is liberated which can lead to process thermal imbalance and deactivation of the catalyst. As a result, conversion per pass is limited and substantial syngas recycle is employed in conventional processes. Furthermore, the conversion of syngas to SNG is typically performed at moderate temperatures (275 to 325°C) to ensure high CH4 yields since this reaction is thermodynamically limited. In this study, the effectiveness of a novel integrated process for the SNG production from syngas at high temperature (i.e. 600?C) was investigated. This integrated process consists of combining a CO methanation nickel-based catalyst with a high temperature CO2 capture sorbent in a single reactor. Integration with CO2 separation eliminates the reverse-water-gas shift and the requirement for a separate water-gas shift (WGS) unit. Easing of thermodynamic constraint offers the opportunity of enhancing yield to CH4 at higher operating temperature (500-700şC) which also favors methanation kinetics and improves the overall process efficiency due to exploitation of reaction heat at higher temperatures. Furthermore, simultaneous CO2 capture eliminates green house gas emission. In this work, sorption-enhanced CO methanation was demonstrated using a mixture of a 68% CaO/32% MgAl2O4 sorbent and a CO methanation catalyst (Ni/Al2O3, Ni/MgAl2O4, or Ni/SiC) utilizing a syngas ratio (H2/CO) of 1, gas-hour-space velocity (GHSV) of 22 000 hr-1, pressure of 1 bar and a temperature of 600oC. These conditions resulted in ~90% yield to methane, which was maintained until the sorbent became saturated with CO2. By contrast, without the use of sorbent, equilibrium yield to methane is only 22%. Cyclic stability of the methanation catalyst and durability of the sorbent were also studied in the multiple carbonation-decarbonation cycle studies proving the potential of this integrated process in a practical application.

Lebarbier, Vanessa MC; Dagle, Robert A.; Kovarik, Libor; Albrecht, Karl O.; Li, Xiaohong S.; Li, Liyu; Taylor, Charles E.; Bao, Xinhe; Wang, Yong

2014-01-01T23:59:59.000Z

223

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect (OSTI)

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

224

New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1,099 1,149 1980's 1,064 1,086 942 799 856 843 628 728 731 760 1990's 887 1,013 1,143 1,337 1,362 1,397 1,423 1,547 1,449 1,539 2000's 1,508 1,536 1,524 1,415 1,527 1,493 1,426 1,349 1,349 1,350 2010's 1,220 1,170 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production New Mexico Dry Natural Gas Proved Reserves Dry Natural Gas Estimated Production

225

Use of novel compounds to reduce methane production and in pre-harvest strategies to decrease foodborne pathogens  

E-Print Network [OSTI]

.90, 1.36 and 1.38 ± 0.50 ?mol/g h-1) methane-producing activity for treatments 0, 80 and 160 mg nitroethane/kg body weight per day, respectively. Whole animal methane emissions, expressed as L/d or as a proportion of gross energy intake (%GEI) were...

Gutierrez Banuelos, Hector

2009-05-15T23:59:59.000Z

226

A dynamic prediction model for gas-water effective permeability in unsaturated coalbed methane reservoirs based on production data  

Science Journals Connector (OSTI)

Abstract Effective permeability of gas and water in coalbed methane (CBM) reservoirs is vital during CBM development. However, few studies have investigated it for unsaturated CBM reservoirs rather than saturated CBM reservoirs. In this work, the dynamic prediction model (PM-Corey model) for average gas-water effective permeability in two-phase flow in saturated CBM reservoirs was improved to describe unsaturated CBM reservoirs. In the improved effective permeability model, Palmer et al. absolute permeability model segmented based on critical desorption pressure and Chen et al. relative permeability model segmented based on critical water saturation were introduced and coupled comprehensively under conditions with the identical reservoir pressures and the identical water saturations through production data and the material balance equations (MBEs) in unsaturated CBM reservoirs. Taking the Hancheng CBM field as an example, the differences between the saturated and unsaturated effective permeability curves were compared. The results illustrate that the new dynamic prediction model could characterize not only the stage of two-phase flow but also the stage of single-phase water drainage. Also, the new model can accurately reflect the comprehensive effects of the positive and negative effects (the matrix shrinking effect and the effective stress effect) and the gas Klinkenberg effect of coal reservoirs, especially for the matrix shrinkage effect and the gas Klinkenberg effect, which can improve the effective permeability of gas production and render the process more economically. The new improved model is more realistic and practical than previous models.

Junlong Zhao; Dazhen Tang; Hao Xu; Yanjun Meng; Yumin Lv; Shu Tao

2014-01-01T23:59:59.000Z

227

ARM - Evaluation Product - Radiatively Important Parameters Best Estimate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsRadiatively Important Parameters Best ProductsRadiatively Important Parameters Best Estimate (RIPBE) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Radiatively Important Parameters Best Estimate (RIPBE) 2002.03.01 - 2007.06.30 Site(s) SGP General Description The Radiatively Important Parameters Best Estimate (RIPBE) VAP combines multiple input datastreams, each with their own temporal and vertical resolution, to create a complete set of radiatively important parameters on a uniform vertical and temporal grid with quality control and source information for use as input to a radiative transfer model. One of the main drivers for RIPBE was to create input files for the BroadBand Heating Rate Profiles (BBHRP) VAP, but we also envision use of RIPBE files for user-run

228

Influence of coal quality factors on seam permeability associated with coalbed methane production.  

E-Print Network [OSTI]

??Cleats are natural fractures in coal that serve as permeability avenues for darcy flow of gas and water to the well bore during production. Theoretically,… (more)

Wang, Xingjin

2007-01-01T23:59:59.000Z

229

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect (OSTI)

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

William A. Williams

2004-03-01T23:59:59.000Z

230

Investigation of Bio-hydrogen and Bio-methane Production From Thin Stillage.  

E-Print Network [OSTI]

??An evaluation of single-stage and two-stage anaerobic digestion processes for biomethane and biohydrogen production using thin stillage was performed to assess the viability of biohydrogen… (more)

Nasr, Noha El-Sayed

2012-01-01T23:59:59.000Z

231

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of aerobic methanotrophy in preventing the escape of methane from marine, hydrate-bearing reservoirs to the atmosphere and ultimately to better define the role of aerobic methanotrophy in the global carbon cycle. Graph overlayed on photo - Methane seeps with the resulting methane plume Methane seeps with the resulting methane plume, Geophysical Research Letters, November 2007 Performers University of California – Santa Barbara, Santa Barbara (UCSB), CA 93106 Background The global methane reservoir in the form of gas hydrate is estimated at 500–10,000 Gt (KVENVOLDEN, 1995; MILKOV, 2004). This pool of carbon

232

Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Reserves Estimated Production Oklahoma Dry Natural Gas Proved Reserves

233

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect (OSTI)

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Carbon dioxide (CO{sub 2}) emissions to the atmosphere are an inherent part of energy-related activities, such as electricity generation, transportation, and building systems. These energy-related activities are responsible for roughly 85% of the U.S. greenhouse gas emissions, and 95% of these emissions are dominated by CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Many scientists believe greenhouse gases, particularly CO{sub 2}, trap heat in the earth's atmosphere. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils, and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coal bed methane (CBM) provides a value-added stream, reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy, with support from the U.S. DOE, is conducting a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through overlying coal seams in the subsurface. Once completed, the wells will be used to initially drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and CBM produced, the program includes a plan to monitor horizontal migration of CO{sub 2} within the lower seam. This is the second Technical Progress report for the project. Progress to date has been focused on pre-construction activities; in particular, attaining site approvals and securing property rights for the project. This report provides a concise overview of project activity this period and plans for future work. This is the second semi-annual Technical Progress report under the subject agreement. During this report period, progress was made in completing the environmental assessment report, securing land and coal rights, and evaluating drilling strategies. These aspects of the project are discussed in detail in this report.

Gary L. Cairns

2002-10-01T23:59:59.000Z

234

Production characteristics and drainage optimization of coalbed methane wells: A case study from low-permeability anthracite hosted reservoirs in southern Qinshui Basin, China  

Science Journals Connector (OSTI)

Abstract Monitoring the production from 94 coalbed methane (CBM) wells in the southern part of the Qinshui Basin of China this study demonstrates production characteristics of CBM wells, and how the incorrect production system, including improper water drainage rates and wellhead pressures, can lead to diminished gas production. Using data from these wells our results suggest that high-production rate wells, medium-production rate wells, low-production rate wells, and drainage wells, are controlled by drainage conditions in addition to the well location and structural geology. The analysis of drainage parameters shows that the maximum wellhead pressure should be maintained around 1.5 MPa before stable production, and between 0.10 MPa and 0.30 MPa after stable production. The most efficient average water production rate is approximately 4 m3/day before gas production and should be maintained near 1 m3/day during gas production. Initial daily average water production rate should be maintained around 1.5 m3/day. Maximum water production rate should be regulated between 4 and 17 m3/day. The rate of water level reduction should be within 4 m/d and drainage time should be maintained for 50–200 days prior to gas production. Implementation of these optimal drainage parameters will promote and sustain peak gas production for several years. In addition, reservoirs with adequate permeability, > 0.1 mD, are ideal for electric submersible pump systems while sucker-rod pumps are better suited for reservoirs with poor permeability. The combination of these operating conditions and the appropriate pumps optimizes the extraction efficiency and recovery of coalbed methane from the anthracitic coals in the Qinshui Basin.

Huihu Liu; Shuxun Sang; Michael Formolo; Mengxi Li; Shiqi Liu; Hongjie Xu; Shikai An; Junjun Li; Xingzhen Wang

2013-01-01T23:59:59.000Z

235

Mathematical Modeling and Numerical Simulation of Methane Production in a Hydrate Reservoir  

Science Journals Connector (OSTI)

Contrary to more traditional reservoir simulations, the set of model unknowns or primary variables in HydrateResSim changes throughout the simulation as a result of the formation or dissociation of ice and hydrate phases during the simulation. ... For example, in the petroleum industry, CFD models have been developed since the 1970s to help optimize oil production by steam flooding. ... (2) Since the 1980s, an increasing number of problems in environmental engineering, such as the contamination of groundwater due to subsurface leakage of petroleum products, has been a concern for governments and industries that has led to the development of multiphase multicomponent models to simulate the transport of contaminants in the subsurface. ...

Isaac K. Gamwo; Yong Liu

2010-03-10T23:59:59.000Z

236

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

SciTech Connect (OSTI)

This is the sixth semi-annual Technical Progress report under the subject agreement. During this report period, progress was made on drilling the north, center, and south well sites. Water production commenced at the center and south well sites. New drilling plans were formulated for the last remaining well, which is in the Upper Freeport Seam at the north site. Core samples were submitted to laboratories for analytical testing. These aspects of the project are discussed in detail in this report.

William A. Williams

2004-10-01T23:59:59.000Z

237

Why Sequence a Methane-Oxidizing Archaean?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Methane-Oxidizing Archaeon? a Methane-Oxidizing Archaeon? Methane is a potent greenhouse gas whose atmospheric concentration has increased significantly because of anthropogenic activities and fluctuated naturally over glacial and interglacial cycles. While the importance of methane in Earth's climate dynamics has been well established, the global processes regulating its oceanic cycling remain poorly understood. Although there are high rates of methane production in many marine sedimentary environments (including a number that have been targeted as petroleum reserves), net methane sources from the ocean to the atmosphere appear to be small. This is due in large part to a biogeochemical process known as the anaerobic oxidation of methane (AOM). Microbially mediated AOM reduces methane flux from ocean to atmosphere, stimulates subsurface microbial

238

Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report 10, July 1, 1995--September 31, 1995  

SciTech Connect (OSTI)

This document is the tenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes}. Activities focused on testing of additional modified and promoted catalysts and characterization of these materials. Attempts at improving the sensitivity of our GC based analytical systems were also made with some success. Methanol oxidation studies were initiated. These results are reported. Specific accomplishments include: (1) Methane oxidation testing of a suite of catalysts promoted with most of the first row transition metals was completed. Several of these materials produced low, difficult to quantify yields of formaldehyde. (2) Characterization of these materials by XRD and FTIR was performed with the goal of correlating activity and selectivity with catalyst properties. (3) We began to characterize catalysts prepared via modified synthesis methods designed to enhance acidity using TGA measurements of acetonitrile chemisorption and methanol dehydration to dimethyl ether as a test reaction. (4) A catalyst prepared in the presence of naphthalene methanol as a structural disrupter was tested for activity in methane oxidation. It was found that this material produced low yields of formaldehyde which were difficult to quantify. (5) Preparation of catalysts with no Bronsted acid sites. This was accomplished by replacement of exchangeable protons with potassium, and (6) Methanol oxidation studies were initiated to provide an indication of catalyst activity for decomposition of this desired product and as a method of characterizing the catalyst surface.

McCormick, R.L.

1995-12-07T23:59:59.000Z

239

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

– Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 – Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 Project Objective Observe hydrate formation and dissociation phenomena in various porous media and characterize hydrate-bearing sediments by estimating physical properties (kinetic parameters for hydrate formation and dissociation, thermal conductivity, permeability, relative permeability, and mechanical strength) to enhance fundamental understanding on hydrate formation and accumulation and to support numerical simulations and potential gas hydrate production Project Performers Yongkoo Seol – NETL Office of Research & Development Jeong Choi – Oak Ridge Institute for Science and Education Jongho Cha-Virginia Polytech Institute Project Location National Energy Technology Laboratory - Morgantown, West Virginia

240

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

242

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

243

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

244

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

245

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

246

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

247

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

248

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

249

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

SciTech Connect (OSTI)

The purpose of this study is to evaluate the potential benefits of applying multiseam [well] completion (MSC) technology to the massive stack of low-rank coals in the Powder River Basin. As part of this, the study objectives are: Estimate how much additional CBM resource would become accessible and technically recoverable--compared to the current practice of drilling one well to drain a single coal seam; Determine whether there are economic benefits associated with MSC technology utilization (assuming its widespread, successful application) and if so, quantify the gains; Briefly examine why past attempts by Powder River Basin CBM operators to use MSC technology have been relatively unsuccessful; Provide the underpinnings to a decision whether a MSC technology development and/or demonstration effort is warranted by DOE. To a great extent, this assessment builds on the previously published study (DOE, 2002), which contains many of the key references that underlie this analysis. It is available on the U.S. Department of Energy, National Energy technology Laboratory, Strategic Center for Natural Gas website (www.netl.doe.gov/scng). It is suggested that readers obtain a copy of the original study to complement the current report.

Office of Fossil Energy; National Energy Technology Laboratory

2003-09-01T23:59:59.000Z

250

Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Production Cost Estimate Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL/BK-6A10-51726 October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

251

Coal mine methane global review  

SciTech Connect (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

252

Direct Aromaization of Methane  

SciTech Connect (OSTI)

The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

George Marcelin

1997-01-15T23:59:59.000Z

253

A guide to coalbed methane operations  

SciTech Connect (OSTI)

A guide to coalbed methane production is presented. The guide provides practical information on siting, drilling, completing, and producing coalbed methane wells. Information is presented for experienced coalbed methane producers and coalbed methane operations. The information will assist in making informed decisions about producing this resource. The information is presented in nine chapters on selecting and preparing of field site, drilling and casing the wellbore, wireline logging, completing the well, fracturing coal seams, selecting production equipment and facilities, operating wells and production equipment, treating and disposing of produced water, and testing the well.

Hollub, V.A.; Schafer, P.S.

1992-01-01T23:59:59.000Z

254

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

07 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost for systems...

255

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

Application Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application This report estimates fuel cell system cost for systems produced in the...

256

Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh,,111...  

E-Print Network [OSTI]

of the incident beam's translational energy, and approaches unity for energies greater than 1.3 eV. Comparison for methanol synthesis. One method is the direct partial oxidation of methane, CH4 + 1/2 O2 CO + 2H2. 1 This process has been extensively studied using high surface area supported Rh catalysts in flow reactors

Sibener, Steven

257

Methane Hydrates R&D Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

258

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

0 0 0 0 0 0 2005-2012 Arkansas 3 3 3 3 4 2 2005-2012 California 0 0 0 0 0 0 2005-2012 Colorado 519 497 498 533 516 486 1989-2012 Florida 0 0 0 0 0 0 2005-2012 Kansas 38 47 43...

259

Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal  

SciTech Connect (OSTI)

In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio, cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.

Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H. [Penn State University, University Park, PA (United States)

2007-08-15T23:59:59.000Z

260

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect (OSTI)

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The 1991 coalbed methane symposium proceedings  

SciTech Connect (OSTI)

The proceedings of the 1991 coalbed methane symposium are presented. The proceedings contains 50 papers on environmental aspects of recovering methane from coal seams, reservoir characterization and testing mine safety and productivity, coalbed stimulation, geology and resource assessment, well completion and production technologies, reservoir modeling and case histories, and resources and technology.

Not Available

1991-01-01T23:59:59.000Z

262

Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

263

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application  

Broader source: Energy.gov [DOE]

This presentation reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems.

264

Hydrogen production by methane steam reforming over Ru supported on Ni–Mg–Al mixed oxides prepared via hydrotalcite route  

Science Journals Connector (OSTI)

Abstract Catalytic performance of Ru/NixMg6?xAl2 800 800 mixed oxides, with x = 2, 4 and 6, x being the molar ratio, towards Methane Steam Reforming, was studied. NixMg6?xAl2 800 oxide, used as support, was prepared via hydrotalcite route. It was thermally stabilized at 800 °C, impregnated with 0.5 wt.% ruthenium using ruthenium (III) nitrosyl nitrate Ru(NO) (NO3)3 precursor and then calcined again at 800 °C under an air flow. Ruthenium impregnation significantly enhanced the reactivity of the oxides in Methane Steam Reforming. In fact, it was found, that even with a low ruthenium content (0.5 wt.%), ruthenium oxide particles are formed but are well dispersed over the surface of the oxide NixMg6?xAl2 800. Ru/Ni6Al2 800 800 showed better catalytic performances, towards Methane Steam Reforming, than ruthenium impregnated on the two other supports. Indeed, nickel content is higher in Ni6Al2 800 than in the other studied supports and therefore the probability of Ni–Ru interaction should be greater and consequently catalytic performances could be improved.

Mira Nawfal; Cédric Gennequin; Madona Labaki; Bilal Nsouli; Antoine Aboukaďs; Edmond Abi-Aad

2014-01-01T23:59:59.000Z

265

Numerical analysis of hydrogen production via methane steam reforming in porous media solar thermochemical reactor using concentrated solar irradiation as heat source  

Science Journals Connector (OSTI)

Abstract The calorific value of syngas can be greatly upgraded during the methane steam reforming process by using concentrated solar energy as heat source. In this study, the Monte Carlo Ray Tracing (MCRT) and Finite Volume Method (FVM) coupling method is developed to investigate the hydrogen production performance via methane steam reforming in porous media solar thermochemical reactor which includes the mass, momentum, energy and irradiative transfer equations as well as chemical reaction kinetics. The local thermal non-equilibrium (LTNE) model is used to provide more temperature information. The modified P1 approximation is adopted for solving the irradiative heat transfer equation. The MCRT method is used to calculate the sunlight concentration and transmission problems. The fluid phase energy equation and transport equations are solved by Fluent software. The solid phase energy equation, irradiative transfer equation and chemical reaction kinetics are programmed by user defined functions (UDFs). The numerical results indicate that concentrated solar irradiation on the fluid entrance surface of solar chemical reactor is highly uneven, and temperature distribution has significant influence on hydrogen production.

Fuqiang Wang; Jianyu Tan; Yong Shuai; Liang Gong; Heping Tan

2014-01-01T23:59:59.000Z

266

Methane Credit | Open Energy Information  

Open Energy Info (EERE)

Methane Credit Methane Credit Jump to: navigation, search Name Methane Credit Place Charlotte, North Carolina Zip 28273 Product Specialises in utilising methane produced on municipal landfill sites. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

ARM - Methane Background Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

our atmosphere's methane levels have more than doubled in the last 200 years. These methane levels contribute to the greenhouse effect, which contributes to overall climate change....

268

Recovery economics of coalbed methane and cost implications of pipeline hookup  

SciTech Connect (OSTI)

For Appalachian coal mines, the totaled methane emission rates exceed 180 MMCF/D, with active mines pushing deeper into virgin seams having higher relative gas contents. While most of this gas currently is vented into the atmosphere to prevent gas-related explosions, the technology exists to develop this valuable gas resource either in conjunction with mining or independently. In 1977, the U.S. Department of Energy (DOE) began the Methane Recovery from Coalbeds Project (MRCP) to characterize and help encourage utilization of this resource. Since the project inception, TRW has been involved in the collection and analysis of data, and is in the process of forming a coherent picture of the coalbed methane resource potential for the entire Appalachian region. Preliminary analysis indicates an estimated in-place coalbed methane resource in the Appalachian Basin of up to 150 TCF. Eastern coal operators are beginning to better understand the production potential of coalbed methane. In Buchanan County, Virginia, the Island Creek Coal Company produced up to 434 MCF/d from 12 horizontal boreholes drilled into the mine face. In Alabama, U.S. Steel's mines recently began commercial production and sold 25 MMCF of pipeline quality gas in December of 1981. This study examines the recovery economics of coalbed methane, and specifically addresses the cost implications of pipeline hook-up. An analysis which addresses the size of a project, pipeline construction costs, and anticipated contract gas price helps determine an economical project-topipeline hook-up distance.

Dickehuth, D.A.; Adams, M.A.; Hayoz, F.P.

1982-11-01T23:59:59.000Z

269

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

270

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 DE-FC26-06NT42963 Goal The goal of this project is to develop observational and experimental data that can provide a better understanding of the basic mechanisms at work in a methane hydrate reservoir that is under production. To this end, a thorough physical understanding of underlying phenomena associated with methane hydrate production will be acquired through unique, multi-scale experiments and associated analyses. In addition, one or more mathematical models that account for the observed phenomena and provide insights that may help to optimize methane hydrate production methods will be developed. Performers Georgia Tech Research Corporation, Atlanta, Georgia 30332 Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee 37831

271

Hydraulic fracturing and wellbore completion of coalbed methane wells in the Powder River Basin, Wyoming: Implications for water and gas production  

SciTech Connect (OSTI)

Excessive water production (more than 7000 bbl/month per well) from many coalbed methane (CBM) wells in the Powder River Basin of Wyoming is also associated with significant delays in the time it takes for gas production to begin. Analysis of about 550 water-enhancement activities carried out during well completion demonstrates that such activities result in hydraulic fracturing of the coal. Water-enhancement activities, consists of pumping 60 bbl of water/min into the coal seam during approximately 15 min. This is done to clean the well-bore and to enhance CBM production. Hydraulic fracturing is of concern because vertical hydraulic fracture growth could extend into adjacent formations and potentially result in excess CBM water production and inefficient depressurization of coals. Analysis of the pressure-time records of the water-enhancement tests enabled us to determine the magnitude of the least principal stress (S{sub 3}) in the coal seams of 372 wells. These data reveal that because S{sub 3} switches between the minimum horizontal stress and the overburden at different locations, both vertical and horizontal hydraulic fracture growth is inferred to occur in the basin, depending on the exact location and coal layer. Relatively low water production is observed for wells with inferred horizontal fractures, whereas all of the wells associated with excessive water production are characterized by inferred vertical hydraulic fractures. The reason wells with exceptionally high water production show delays in gas production appears to be inefficient depressurization of the coal caused by water production from the formations outside the coal. To minimize CBM water production, we recommend that in areas of known vertical fracture propagation, the injection rate during the water-enhancement tests should be reduced to prevent the propagation of induced fractures into adjacent water-bearing formations.

Colmenares, L.B.; Zoback, M.D. [Stanford University, Stanford, CA (United States). Dept. of Geophysics

2007-01-15T23:59:59.000Z

272

Factors affecting the origin and distribution of methane in the Sparta Aquifer, Brazos and Burleson Counties, Texas  

E-Print Network [OSTI]

is interpreted as being biogenically derived. High concentrations of methane were found in wells having the 'lowest sulfate concen- trations. The absence of sulfate is necessary for the biogenic production of methane, Unlike thermogenic methane, carbon dioxide...

Hahn, Robert Warren

1985-01-01T23:59:59.000Z

273

A highly reactive and stable Ru/Co6?xMgxAl2 catalyst for hydrogen production via methane steam reforming  

Science Journals Connector (OSTI)

Abstract Hydrogen production by methane steam reforming is an important yet challenging process. A performing catalyst will favor the thermodynamic equilibrium while ensuring good hydrogen selectivity. We hereby report the synthesis of a ruthenium based catalyst on a cobalt, magnesium, and aluminum mixed oxides supports. An interaction between cobalt and ruthenium favors the formation of smaller, well dispersed cobalt/ruthenium oxide species. The Ru/Co6Al2 catalyst outmatches the widely used industrial Ru/Al2O3 catalyst. The catalyst is stable for 100 h on stream. After test characterization shows the formation of carbon and coke deposits at trace levels. However, this does not affect the catalytic performance of the catalysts making it good candidates for industrial applications.

Doris Homsi; Samer Aouad; Cédric Gennequin; Antoine Aboukaďs; Edmond Abi-Aad

2014-01-01T23:59:59.000Z

274

A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process  

Science Journals Connector (OSTI)

Abstract Development of the syngas production from solid oxide H2O/CO2 co-electrolysis is limited by the intensive energy input and low efficiency. Here, we present a new concept to efficiently generate syngas in both sides of the solid oxide electrolyzer by synergistically combining co-electrolysis with partial oxidation of methane (POM). Thermodynamic calculation and electrochemical measurements for the POM assisted solid oxide co-electrolysis processes on the SFM-SDC/LSGM/SFM-SDC cells exhibited an reduced electric input, increased energy conversion efficiency and decreased cathodic co-electrolysis polarization resistance in comparison with the conventional co-electrolysis. This method will be crucial to establish a clean and effective energy conversion system to meet global sustainable energy needs.

Yao Wang; Tong Liu; Shumin Fang; Guoliang Xiao; Huanting Wang; Fanglin Chen

2015-01-01T23:59:59.000Z

275

Impact of satellite based PAR on estimates of terrestrial net primary productivity  

E-Print Network [OSTI]

of the satellite- based estimates of PAR for modelling terrestrial primary productivity. 1. Introduction The global energy is referred to as net primary production (NPP). For terrestrial ecosystems GPP and NPP are givenImpact of satellite based PAR on estimates of terrestrial net primary productivity RACHEL T. PINKER

Montana, University of

276

Consumer Surplus in the Digital Economy: Estimating the Value of Increased Product Variety at Online Booksellers  

E-Print Network [OSTI]

We present a framework and empirical estimates that quantify the economic impact of increased product variety made available through electronic markets. While efficiency ...

Brynjolfsson, Erik

2003-05-23T23:59:59.000Z

277

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

278

A tool to estimate materials and manufacturing energy for a product  

E-Print Network [OSTI]

This study proposes an easy-to-use methodology to estimate the materials embodied energy and manufacturing energy for a product. The tool requires as input the product's Bill of Materials and the knowledge on how these ...

Duque Ciceri, Natalia

279

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect (OSTI)

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

280

Chapter 8 - Methane Hydrates  

Science Journals Connector (OSTI)

Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.

Ray Boswell; Koji Yamamoto; Sung-Rock Lee; Timothy Collett; Pushpendra Kumar; Scott Dallimore

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Estimating production and cost for clamshell mechanical dredges  

E-Print Network [OSTI]

by predicting cycle time which is the time required to complete one dredge cycle. By varying the cycle time according to site characteristics production can be predicted. A second important component to predicting clamshell dredge production is bucket fill...

Adair, Robert Fletcher

2005-02-17T23:59:59.000Z

282

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6...

283

Biomass Gasification and Methane Digester Property Tax Exemption  

Broader source: Energy.gov [DOE]

Michigan exempts certain energy production related farm facilities from real and personal property taxes. Among exempted property are certain methane digesters, biomass gasification equipment,...

284

,"North Louisiana Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

285

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"630...

286

,"Kansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

287

,"NM, West Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

288

,"West Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

289

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

290

,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

291

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

292

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

293

,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

294

,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

295

,"NM, East Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

296

,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

297

,"Texas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

298

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate  

E-Print Network [OSTI]

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis National Cost Estimate Using Water Electrolysis To: Mr. Mark Ruth, NREL, DOE Hydrogen Systems Integration Office. For central production, the hydrogen cost is at the plant gate of an electrolysis facility with a capacity

299

Production and analysis of a Southern Ocean state estimate  

E-Print Network [OSTI]

A modern general circulation model of the Southern Ocean with one-sixth of a degree resolution is optimized to the observed ocean in a weighted least squares sense. Convergence toward the state estimate solution is carried ...

Mazloff, Matthew R

2006-01-01T23:59:59.000Z

300

Source of methane and methods to control its formation in single chamber microbial electrolysis cells  

E-Print Network [OSTI]

Exoelectrogenic a b s t r a c t Methane production occurs during hydrogen gas generation in microbial electrolysis consumption of hydrogen gas in the headspace (applied voltage of 0.7 V) with methane production. High applied, there was a greater production of methane than hydrogen gas due to low current densities and long cycle times

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Modeling ruminant methane emissions from the U.S. beef cattle industry  

E-Print Network [OSTI]

Computer models were constructed to estimate methane emissions from cow/calf, replacement heifers, burs, stockers and feedlot sectors of the U.S. beef cattle industry. Methane (CH4) yields were calculated based on net energy values and forage...

Turk, Danny Carroll

2012-06-07T23:59:59.000Z

302

Methane-steam reforming  

SciTech Connect (OSTI)

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

303

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

304

Methane Hydrates: Major Energy Source for the Future or Wishful Thinking?  

SciTech Connect (OSTI)

Methane hydrates are methane bearing, ice-like materials that occur in abundance in permafrost areas such as on the North Slope of Alaska and Canada and as well as in offshore continental margin environments throughout the world including the Gulf of Mexico and the East and West Coasts of the United States. Methane hydrate accumulations in the United States are currently estimated to be about 200,000 Tcf, which is enormous when compared to the conventional recoverable resource estimate of 2300 Tcf. On a worldwide basis, the estimate is 700,000 Tcf or about two times the total carbon in coal, oil and conventional gas in the world. The enormous size of this resource, if producible to any degree, has significant implications for U.S. and worldwide clean energy supplies and global environmental issues. Historically the petroleum industry's interests in methane hydrates have primarily been related to safety issues such as wellbore stability while drilling, seafloor stability, platform subsidence, and pipeline plugging. Many questions remain to be answered to determine if any of this potential energy resource is technically and economically viable to produce. Major technical hurdles include: 1) methods to find, characterize, and evaluate the resource; 2) technology to safely and economically produce natural gas from methane hydrate deposits; and 3) safety and seafloor stability issues related to drilling through gas hydrate accumulations to produce conventional oil and gas. The petroleum engineering profession currently deals with gas hydrates in drilling and production operations and will be key to solving the technical and economic problems that must be overcome for methane hydrates to be part of the future energy mix in the world.

Thomas, Charles Phillip

2001-09-01T23:59:59.000Z

305

Estimation of Radiation Resistance Values of Microorganisms in Food Products  

Science Journals Connector (OSTI)

...Weibull 12D equivalent of a radiation process, or the minimal radiation dose (MRD), for cured ham...experimental sterilizing dose (ESD) and the Schmidt-Nank...9 Printed in U.S.A Estimation of Radiation Resistance Values of Microorganisms...

Abe Anellis; Stanley Werkowski

1968-09-01T23:59:59.000Z

306

Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review  

Broader source: Energy.gov [DOE]

This independent review report assesses the 2009 state-of-the-art and 2020 projected capital cost, energy efficiency, and levelized cost for hydrogen production from biomass via gasification.

307

Product Selectivity Control and Organic Oxygenate Pathways from Partial Oxidation of Methane in a Silent Electric Discharge Reactor  

E-Print Network [OSTI]

distribution from organic oxygenate products to ethane, ethylene, and acetylene. This is because the energy, are located in remote areas, so that it is economically infeasible to transport the gas via pipeline. One

Mallinson, Richard

308

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

309

Direct estimation of gas reserves using production data  

E-Print Network [OSTI]

Virginia Well A (Fetkovich, et al.8): qg versus t ............................................................ 36 4.2 West Virginia Well A (Fetkovich, et al.8): qg versus t and pwf versus t ? Production History Plot... ................................................................................... 36 4.3 West Virginia Well A (Fetkovich, et al.8): Gp versus t ........................................................... 37 4.4 West Virginia Well A (Fetkovich, et al.8): qg versus Gp ......................................................... 38...

Buba, Ibrahim Muhammad

2004-09-30T23:59:59.000Z

310

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

10 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update This report is the fourth annual update of a comprehensive...

311

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

Application: 2009 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update This report is the third annual update of a...

312

Microsoft Word - 2012_EIA_Coal_Production_Estimates_Comparison.docx  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Performance Evaluation of the Weekly Coal Production Report for 2012 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. December 2013

313

Microsoft Word - Coal Production Estimates Evaluation.docx  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 November 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Performance Evaluation of the Weekly Coal Production Report for 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. November 2012

314

Production of methane gas from organic fraction municipal solid waste (OFMSW) via anaerobic process: application methodology for the Malaysian condition  

Science Journals Connector (OSTI)

Solid waste management in Malaysia is confronted with many problems, including low collection coverage, irregular collection services, inadequate equipment used for waste collection, crude open dumping and burning without air and water pollution control systems, inadequate legal provisions and resource constraints. These problems have various effects on the development of the solid waste management system in Malaysia. Anaerobic digestion has been suggested as an alternative method for removing high concentrations of organic waste. In this study, two types of anaerobic digesters which are Simulated Landfill Bioreactor (SLBR) and Anaerobic Solid-Liquid (ASL) reactor were proposed. The reactors were operated at a temperature 60°C, analysed for biogas production and volatile fatty acid.

Irnis Azura Zakarya; Ismail Abustan; Norli Ismail; Mohd Suffian Yusoff

2013-01-01T23:59:59.000Z

315

E-Print Network 3.0 - air methane vam Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reagents Methane (99.99 v.%, Air Products and Chemicals, Inc.) and propane (99.0 v.%, Praxair) were used... of carbon catalyst activation on the rate of methane decomposition...

316

Department of Mechanical & Nuclear Engineering Spring 2011 Converting Methane into Ethylene  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical & Nuclear Engineering Spring 2011 Converting Methane catalyst production labs, reactor testing lab, and testing equipment. Team Methane Fuzion was responsible. Temperature of the catalyst was closely monitored in order to prevent catalyst sintering. Testing

Demirel, Melik C.

317

Methane Hydrate Field Program  

SciTech Connect (OSTI)

This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

None

2013-12-31T23:59:59.000Z

318

Methane Digester Loan Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Digester Loan Program Methane Digester Loan Program Methane Digester Loan Program < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate RFA can provide up to $250,000 of loan principal Program Info Funding Source Minnesota Rural Finance Authority (RFA) State Minnesota Program Type State Loan Program Rebate Amount RFA participation limited to 45% of loan principal Provider Minnesota Department of Agriculture Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by providing zero-interest loans to eligible borrowers. The loan program is part of the Rural Finance Authority (RFA) revolving loan fund, through which farmers can receive financial aid

319

Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks And Methane Addition  

Science Journals Connector (OSTI)

With the decline of oil reserves and production, the gas-to-liquids (GTL) part of Fischer–Tropsch (F-T) synthesis technology has become increasing important. ... The Department of Energy (DOE) Energy Information Administration (EIA) estimates that over 50% of the coal reserve base in the United States (U.S.) is bituminous coal, about 30% is sub-bituminous, and 9% is lignite. ...

Yan Cao; Zhengyang Gao; Jing Jin; Hongchang Zhou; Marten Cohron; Houying Zhao; Hongying Liu; Weiping Pan

2008-03-25T23:59:59.000Z

320

Coalbed Methane | Department of Energy  

Energy Savers [EERE]

Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable...

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia  

Science Journals Connector (OSTI)

... primarily through the microbial degradation of organic matter, but abiogenic methane emitted from seeps and geothermal areas is also a major contribution to the atmospheric budget, estimated at 45–75? ... at 45–75?Tg annually. Hell’s Gate (Tikitere), New Zealand, is a geothermal area rich in abiogenic methane. We studied methane oxidation in an area of woody ...

Peter F. Dunfield; Anton Yuryev; Pavel Senin; Angela V. Smirnova; Matthew B. Stott; Shaobin Hou; Binh Ly; Jimmy H. Saw; Zhemin Zhou; Yan Ren; Jianmei Wang; Bruce W. Mountain; Michelle A. Crowe; Tina M. Weatherby; Paul L. E. Bodelier; Werner Liesack; Lu Feng; Lei Wang; Maqsudul Alam

2007-11-14T23:59:59.000Z

322

Closing Data Gaps for LCA of Food Products: Estimating the Energy Demand of Food Processing  

Science Journals Connector (OSTI)

Closing Data Gaps for LCA of Food Products: Estimating the Energy Demand of Food Processing ... To quantify the environmental impacts arising from food production, environmental assessment tools such as life cycle assessment (LCA) should be applied. ... Most of the published LCA’s on food are assessing primary agricultural products, e.g., refs 4 and 5, whereas the number of studies available on processed food is lower, e.g., refs 6?8. ...

Neus Sanjuán; Franziska Stoessel; Stefanie Hellweg

2013-12-17T23:59:59.000Z

323

Plasma catalytic reforming of methane  

Science Journals Connector (OSTI)

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This article describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius), and a high degree of dissociation and a substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (40% H2, 17% CO2 and 33% N2, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2–3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H2 with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content (?1.5%) with power densities of ?30 kW (H2 HHV)/l of reactor, or ?10 m3/h H2 per liter of reactor. Power density should further increase with increased power and improved design.

L Bromberg; D.R Cohn; A Rabinovich; N Alexeev

1999-01-01T23:59:59.000Z

324

Coalbed methane: A partial solution to Indonesia`s growing energy problems  

SciTech Connect (OSTI)

Indonesia contains the largest resources of coal in Southeast Asia. Indonesian scientists estimate that the in-place coalbed methane resource in 16 onshore basins is about 213 Tcf ({approximately}6 Tcm). This volume is approximately double Indonesia`s current reserves of natural gas. Indonesia is a rapidly industrializing nation of 186 million people, of which 111 million live in Java and 38 million in Sumatra. As industrialization progresses from the present low level, the growth in energy demand will be very rapid. Indonesia`s domestic gas demand is expected to increase form 1.6 Bcf/d (0.05 Bcm/d) in 1991 to 5.7 Bcf/d (0.2 Bcm/d) in 2021. Because the major gas resources of East Kalimantan, North Sumatra, and Natuna are so remote from the main consuming area in northwest Java and are dedicated for export by virtue of the national energy policy, the need is becoming urgent to develop new resources of natural gas, including coalbed methane, for the domestic market. Due to the high geothermal gradient, the coal deposits in the back-arc basins of Sumatra and Java are expected to be of higher than normal rank at depths favorable for coalbed methane production. The oil- and gas-productive Jatibarang sub-basin in northwest Java, with estimated in-place resources of coalbed methane in excess of 20 Tcf (0.6 Tcm), is considered to be the most prospective area in Indonesia for the near-term development of coalbed methane. This area includes Jakarta and vicinity, the most populous and most heavily industrialized part of Indonesia.

Murray, D.K. [D. Keith Murray & Associates, Lakewood, CO (United States); Gold, J.P. [Consulting Geologist, Evergreen, CO (United States)

1995-04-01T23:59:59.000Z

325

Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production  

Science Journals Connector (OSTI)

Abstract Double-walled reactor tubes containing thermal storage materials based on the molten carbonate salts—100 wt% Na2CO3 molten salt, 90 wt% Na2CO3/10 wt% MgO and 80 wt% Na2CO3/20 wt% MgO composite materials—were studied for the performances of the reactor during the heat charging mode, while those of methane reforming with steam during heat discharging mode for solar steam reforming. The variations in the temperatures of the catalyst and storage material, methane conversion, duration of reforming for obtaining high levels of methane conversion (>90%), higher heating value (HHV) power of reformed gas and efficiency of the reactor tubes were evaluated for the double-walled reactor tubes and a single-wall reactor tube without the thermal storage. The results for the heat charging mode indicated that the composite thermal storage could successfully store the heat transferred from the exterior wall of the reactor in comparison to the pure molten-salt. The double-walled reactor tubes with the 90 wt% Na2CO3/10 wt% MgO composite material was the most desirable for steam reforming of methane to realize large HHV amounts of reformed gas and higher efficiencies during heat-discharging mode.

Nobuyuki Gokon; Shohei Nakamura; Tsuyoshi Hatamachi; Tatsuya Kodama

2014-01-01T23:59:59.000Z

326

Production of High-Quality Particulate Methane Monooxygenase in High Yields from Methylococcus capsulatus (Bath) with a Hollow-Fiber Membrane Bioreactor  

Science Journals Connector (OSTI)

...monooxygenase from Methylococcus capsulatus (Bath). Cu(I) ions and their implications. J. Am. Chem. Soc. 118: 12766-12776. 17 Nguyen, H.-H. T., S. J. Elliott, J. H. Yip, and S. I. Chan. 1998. The particulate methane monooxygenase...

Steve S.-F. Yu; Kelvin H.-C. Chen; Mandy Y.-H. Tseng; Yane-Shih Wang; Chiu-Feng Tseng; Yu-Ju Chen; Ded-Shih Huang; Sunney I. Chan

2003-10-01T23:59:59.000Z

327

RETRACTED ARTICLE: Effect of Gd2O3 over Ni/SiO2 on syngas production via methane autothermal reforming  

Science Journals Connector (OSTI)

Gd2O3-promoted Ni/SiO2 catalysts exhibited higher activity and selectivity than Ni/SiO2 in methane autothermal reforming. The results of the temperature-programmed surface reaction of CH4 indicated that Gd2O3 mig...

Jian-Zhong Guo; Zhao-Yin Hou…

2010-10-01T23:59:59.000Z

328

Estimate of federal relighting potential and demand for efficient lighting products  

SciTech Connect (OSTI)

The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

1993-11-01T23:59:59.000Z

329

Methane production from marine biomass  

SciTech Connect (OSTI)

The overall concept of the giant brown kelp farm and conversion system, the integrated research program engaged in its study, and IGT's work on biogasification process development are discussed. A summary of results to date on anaerobic digestion will be emphasized. (MHR)

Chynoweth, D.P.; Srivastava, V.J.

1980-01-01T23:59:59.000Z

330

A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol  

Science Journals Connector (OSTI)

...con-version of methane to methanol with...for commercial economics. See N. D. Parkyns...How-ever, most methane (CH4) is in locations...desirable to convert methane into liquid products...process termed steam reforming (l): CH4 + H2O-C...

Roy A. Periana; Douglas J. Taube; Eric R. Evitt; Daniel G. Löffler; Paul R. Wentrcek; George Voss; Toshihiko Masuda

1993-01-15T23:59:59.000Z

331

The Irreversible Formation of Methane in the System Ethane-Ethylene-Hydrogen  

Science Journals Connector (OSTI)

...System Ethane-Ethylene-Hydrogen C. J. Danby B. C. Spall...mass-spectrometric analysis and by kinetic methods. The methane is formed directly...concluded that the major mode of production of methane from ethane is...circumstances. From the ethylene-hydrogen side the methane arises by...

1953-01-01T23:59:59.000Z

332

The Application of Microhole Technology to the Development of Coalbed Methane Resources at Remote Locations  

E-Print Network [OSTI]

The Application of Microhole Technology to the Development of Coalbed Methane Resources at Remote technology to the development of coalbed methane (CBM) resources in remote, environmentally sensitive areas, or are immediately adjacent to, coal deposits that may be capable of methane production. These same communities pay

333

Methane Hydrates - Methane Hydrate Graduate Fellowship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Future Supply and Emerging Resources Future Supply and Emerging Resources The National Methane Hydrates R&D Program - Graduate Fellowship Program Methane Hydrate Graduate Fellowship Program Jeffrey James Marlow, a graduate student in Geobiology at the California Institute of Technology, was recently selected as the 2012 recipient of the NETL-National Academy of Sciences (NAS) Methane Hydrate Research Fellowship. Please see page 15 of the March 2013 issue (Vol. 13, Issue 1) of Fire in the Ice for more information on the recipient. The Department of Energy has a long history of building synergistic relationships with research universities. Funding academic research is a "win-win-win" situation. The U.S. government is able to tap into some of the best minds available for solving national energy problems, the universities get the support they need to maintain cutting edge faculty and laboratories, and the students involved are provided with opportunities that help them along their chosen path of study, strengthening the national pool of scientists and engineers. According to Samuel Bodman, speaking about graduate research in methane hydrates, "Students are the foundation of our energy future, bringing new ideas and fresh perspectives to the energy industry. What better way to assure technology innovation than to encourage students working on the development of a resource that has the potential to tip our energy balance toward clean-burning, domestic fuels."

334

In vitro starch digestibility and estimated glycemic index of sorghum products  

E-Print Network [OSTI]

Index (GI) of some extruded or puffed products reported in the literature (from in vivo studies).............................................. 42 11 Particle size distribution of sorghum and corn flours used in the porridges...) and estimated Glycemic Index (EGI) of porridges. ....................................................................................... 63 15 Glycemic Index (GI) of some cereal porridges reported in the literature (from in vivo studies...

De Castro Palomino Siller, Angelina

2007-09-17T23:59:59.000Z

335

Population and Production Estimates for Decapod Crustaceans in Wetlands of Galveston Bay, Texas  

E-Print Network [OSTI]

Population and Production Estimates for Decapod Crustaceans in Wetlands of Galveston Bay, Texas in regularly flooded wetlands of lower Galveston Bay, Texas, with data on small-scale (1�50- m) distribution sizes within shallow wetland habitats of the Galveston Bay system in Texas by combining regression

336

Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: Modeling and simulation  

Science Journals Connector (OSTI)

Abstract In this study, tri-reforming process has been utilized as an energy source for driving highly endothermic process of methane dry reforming process in a multi-tubular recuperative thermally coupled reactor (TCTDR). 184 two-concentric-tubes have been proposed for this configuration. Outer tube sides of the two-concentric-tubes have been considered for the tri-reforming reactions while dry reforming process takes place in inner tube sides. Simulation results of co-current mode have been compared with corresponding predictions of thermally coupled tri- and steam reformer (TCTSR); in which the tri-reforming process has been coupled with steam reforming of methane in same conditions. A mathematical heterogeneous model has been applied to simulate both dry and tri-reforming sides of the TCTDR. Results showed that methane conversion at the output of dry and tri-reforming sides reached to 63% and 93%, respectively. Also, molar flow rate of syngas at the output of DR side of TCTDR reached to 7464 kmol h?1 in comparison to 3912 kmol h?1 for SR side of TCTSR.

Mehdi Farniaei; Mohsen Abbasi; Hamid Rahnama; Mohammad Reza Rahimpour; Alireza Shariati

2014-01-01T23:59:59.000Z

337

Econometric estimation of the petroleum products consumption in Nigeria: Assessing the premise for biofuels adoption  

Science Journals Connector (OSTI)

Abstract The promotion and adoption of biofuels in Nigeria must be predicated on sufficient capacity for absorbing biofuels produced from the increasing investments in biofuels plantations, plants and processing facilities. This paper assesses the socioeconomic and related premises for biofuels development in Nigeria by conducting an econometric estimation of the petroleum products consumption. The paper first estimates aggregated petroleum product consumption, and then assess the response to specific petroleum products in terms of consumption, market (population), electricity generation, installed electricity generation capacity, and GDP. The result shows that all the petroleum products contribute significantly and about equally to aggregate petroleum consumption. The high proportion of petrol (about 44 percent) as a percentage of the aggregate petroleum product consumption validates the push for implementing the E10 petrol-ethanol blending for Nigeria. The consumption of diesel is also significant. Diesel is another petroleum product for which D20 biofuel blending policy has been proposed. The increase in population and GDP, coupled with the poor electricity situation, will keep driving the consumption of petroleum products. As the population increases, and the country continues to struggle to match electricity generation with population growth, the petrol-ethanol and diesel-biodiesel blending policy must be pursued tenaciously to ensure a reduction in carbon emission in Nigeria.

Nelson Abila

2015-01-01T23:59:59.000Z

338

Methane Hydrate Program  

Broader source: Energy.gov (indexed) [DOE]

FY 2011 FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of research. Pursuant to statutory requirements, this report is being provided to the following

339

Atmosphärisches Methan als Treibhausgas  

Science Journals Connector (OSTI)

Methan (CH4) gehört neben Wasser(dampf), Kohlendioxid (CO2), Distickstoffmonoxid (Lachgas, N2O), Ozon (O3) und den Fluorchlorkohlenwasserstoffen (FCKW) zu den sog.Treibhausgasen, von denen man mit großer Sicherhe...

W. Klöpffer

1990-09-01T23:59:59.000Z

340

Ionisierungsspannung von Methan  

Science Journals Connector (OSTI)

In einer näher skizzierten Versuchsanordnung wird die Ionisierungsspannung von Methan zu 14,58±0,05 Volt, die...4?Molekel erforderliche Energie zu 15,40±0,05 Volt in guter Übereinstimmung mit der für den homogene...

Erich Pietsch; Gertrud Wilcke

1927-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Methane Hydrate Program  

Broader source: Energy.gov (indexed) [DOE]

Fiscal Year 2012 Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S. Department of Energy Fiscal Year 2012 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area

342

Appalachian basin coal-bed methane: Elephant or flea  

SciTech Connect (OSTI)

Historically, interest in the Appalachian basin coal-bed methane resource extends at least over the last 50 years. The Northern and Central Appalachian basins are estimated to contain 61 tcf and 5 tcf of coal-bed methane gas, respectively. Development of this resource has not kept pace with that of other basins, such as the Black Warrior basin of Alabama of the San Juan basin of northern New Mexico and Colorado. Without the benefit of modern completion, stimulation, and production technology, some older Appalachian basin coal-bed methane wells were reported to have produced in excess of 150 used here to characterize some past projects and their results. This work is not intended to comprise a comprehensive survey of all Appalachian basin projects, but rather to provide background information from which to proceed for those who may be interested in doing so. Several constraints to the development of this resource have been identified, including conflicting legal rights of ownership of the gas produced from the coal seams when coal and conventional oil and gas rights are controlled by separate parties. In addition, large leaseholds have been difficult to acquire and finding costs have been high. However, the threshold of minimum economic production may be relatively low when compared with other areas, because low-pressures pipelines are available and gas prices are among the highest in the nation. Interest in the commercial development of the resource seems to be on the increase with several projects currently active and more reported to be planned for the near future.

Hunt, A.M. (Dames and Moore, Cincinnati, OH (United States))

1991-08-01T23:59:59.000Z

343

Electrochemical methane sensor  

DOE Patents [OSTI]

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

344

TRENDS: METHANE EMISSIONS - INTRODUCTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Wm-2), almost 20% is attributable to methane (CH4), according to the 1995 report of the Intergovernmental Panel on Climate Change (IPCC 1995). Since the mid-1700s, the atmospheric concentration of methane has increased by about 145% (IPCC 1995). Thus, an understanding of the various sources of methane is important. Atmospheric methane is produced both from natural sources (e.g., wetlands) and from human activities (see global methane cycle, from Professor W.S. Reeburgh at the University of California Irvine). Total sources of methane to the atmosphere for the period 1980-1990 were about 535 (range of 410-660) Tg (1 Teragram = 1 million metric tons) CH4 per year, of which 160 (110-210) Tg CH4/yr were from natural sources and 375 (300-450) Tg CH4/yr

345

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

346

Methane Hydrate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

347

Plasma catalytic reforming of methane  

SciTech Connect (OSTI)

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

Bromberg, L.; Cohn, D.R.; Rabinovich, A. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center; Alexeev, N. [Russian Academy of Sciences, Moscow (Russian Federation). Baikov Inst. of Metallurgy

1998-08-01T23:59:59.000Z

348

Photocoupling of Methane in Water Vapor to Saturated Hydrocarbons  

Science Journals Connector (OSTI)

Methane can be converted into alkanes (from C2 to C6) continuously by ultraviolet (185 nm) irradiation in the presence of water vapor. The products from this reaction are alkanes, which is different from the comp...

JunePyo Oh; Taketoshi Matsumoto; Junji Nakamura

2008-08-01T23:59:59.000Z

349

Coalbed methane produced water in China: status and environmental issues  

Science Journals Connector (OSTI)

As one of the unconventional natural gas family members, coalbed methane (CBM) receives great attention throughout the world. The major associated problem of CBM production is the management of produced water. In...

Yanjun Meng; Dazhen Tang; Hao Xu; Yong Li…

2014-06-01T23:59:59.000Z

350

Methane Power Inc | Open Energy Information  

Open Energy Info (EERE)

Methane Power Inc Methane Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name Methane Power Inc. Address 121 Edinburgh South Drive Place Cary, NC Zip 27511 Sector Renewable Energy Product Methane Power is a renewable energy project developer that focuses on landfill gas-to-energy projects. Currently, they are a supplier of landfill gas generated energy to Duke Energy in North Carolina. Phone number 919-297-7206 Website http://www.methanepower.net Coordinates 35.7395875°, -78.8029226° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7395875,"lon":-78.8029226,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Challenges in assessment, management and development of coalbed methane resources in the Powder River Basin, Wyoming  

SciTech Connect (OSTI)

Coalbed methane development in the Powder River Basin has accelerated rapidly since the mid-1990's. forecasts of coalbed methane (CBM) production and development made during the late 1980's and early 1990's have proven to be distinctly unreliable. Estimates of gas in place and recoverable reserves have also varied widely. This lack of reliable data creates challenges in resource assessment, management and development for public resource management agencies and the CBM operators. These challenges include a variety of complex technical, legal and resource management-related issues. The Bureau of Land Management's Wyoming Reservoir Management Group (WRMG) and US Geological Survey (USGS), with the cooperation and assistance of CBM operators and other interested parties have initiated cooperative studies to address some of these issues. This paper presents results of those studies to date and outlines the agencies' goals and accomplishments expected at the studies' conclusion.

McGarry, D.E.

2000-07-01T23:59:59.000Z

352

Reduced methane emissions from large-scale changes in water management of China's rice paddies during 19802000  

E-Print Network [OSTI]

Reduced methane emissions from large-scale changes in water management of China's rice paddies contributed to the decline in the rate of increase of global atmospheric methane (CH4) concentration over mid-season drainage to generate estimates of total methane flux for 1980­2000. CH4 emissions from

353

Modeling of membrane reactor for steam methane reforming: From granular to structured catalysts  

Science Journals Connector (OSTI)

Different types and operating modes of a tubular membrane reactor for steam methane reforming with a production rate of 0.6...

A. B. Shigarov; V. A. Kirillov

2012-04-01T23:59:59.000Z

354

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network [OSTI]

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds… (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

355

Impact of relative permeability on type curves for coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane (CBM) is considered an unconventional gas resource produced from coal seams usually with low permeability at shallow depths. Analyzing the production performance in… (more)

Lakshminarayanan, Sunil.

2006-01-01T23:59:59.000Z

356

Impact of Langmuir isotherm on production behavior of CBM reservoirs.  

E-Print Network [OSTI]

??Coalbed Methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoir performance is also influenced by the interrelationship… (more)

Arrey, Efundem Ndipanquang.

2004-01-01T23:59:59.000Z

357

Estimating coal production peak and trends of coal imports in China  

SciTech Connect (OSTI)

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

358

Preliminary resource assessment of coalbed methane in the United States  

SciTech Connect (OSTI)

Preliminary results of the DOE Methane Recovery from Coalbeds Project reveal that many of the coal regions in the United States have significant volumes of coalbed methane. These results show that 45 cooperative wells drilled to date have helped to update the estimates of methane in the various coal regions. The most promising coal region is in the Green River Basin where preliminary estimates show that the methane potential may be over 23 trillion cubic feet. Another area of considerable interest is in the Arkoma Basin where the methane content of coal samples ranged from 200 to 400 cubic feet per ton (cf/ton) of coal. The methane estimte in this basin is between 1.6 to 3.6 trillion cubic feet. The Piceance Creek coal region is an area presently generating considerable interest and industry activity. The methane content of the coal samples extracted from this basin averaged over 100 cf/ton. The Northern Appalachian region also shows considerable promise.

Not Available

1981-04-01T23:59:59.000Z

359

Estimates of central Appalachian coal reserves by cost of production and sulfur content  

SciTech Connect (OSTI)

This study provides information on the quantity, quality, and production costs for all minable coal reserves in the major coal-producing counties of central Appalachia, a region that contains the large majority of low-sulfur and compliance coal reserves in the eastern US. Presently, the best source of detailed reserve information in the Appalachian region is the estimates produced by the mining and land holding companies that control the reserves. The authors have been able to obtain overall reserve estimates based on the detailed geological and engineering studies conducted by these companies. In areas where this information does not exist, the authors have relied on published estimates of reserves and modified these estimates based on known conditions on surrounding properties. This reserve information has been combined with data on coal quality and mining costs to produce cost curves for all minable coal reserves by sulfur content. Results to date indicate that most of the major coal-producing counties in central Appalachia will be able to increase production levels significantly on a sustainable basis for at least the next 20 years, without major real increases in coal prices.

Watkins, J.

1988-08-01T23:59:59.000Z

360

Enhanced coalbed methane recovery  

SciTech Connect (OSTI)

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE/SC-ARM/TR-115 Aerosol Best Estimate (AEROSOLBE) Value-Added Product  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Aerosol Best Estimate (AEROSOLBE) Value-Added Product C Flynn D Turner A Koontz D Chand C Sivaraman July 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

362

Quarterly Review of Methane from Coal-Seams Technology. Volume 8, Number 4, July 1991. Report for October-December 1990  

SciTech Connect (OSTI)

Contents include reports on: Powder River Basin, Wyoming and Montana; Piceance Basin, Colorado; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; Coalbed Methane Development in the Appalachian Basin; Geologic Evaluation of Critical Production Parameters for Coalbed Methane Resources; Reservoir Engineering and Analysis; Coordinated Laboratory Studies in Support of Hydraulic Fracturing of Coalbed Methane; Physical Sciences Coalbed Methane Research; Coalbed Methane Opportunities in Alberta.

McBane, R.A.; Schwochow, S.D.; Stevens, S.H.

1991-01-01T23:59:59.000Z

363

Open-Source LCA Tool for Estimating Greenhouse Gas Emissions from Crude Oil Production Using Field Characteristics  

Science Journals Connector (OSTI)

Open-Source LCA Tool for Estimating Greenhouse Gas Emissions from Crude Oil Production Using Field Characteristics ... OPGEE models oil production emissions in more detail than previous transport LCA models. ... El-Houjeiri, H. and Brandt, A.Exploring the variation of GHG emissions from conventional oil production using an engineering-based LCA model. ...

Hassan M. El-Houjeiri; Adam R. Brandt; James E. Duffy

2013-05-01T23:59:59.000Z

364

Can Algae utilize Methane?  

Science Journals Connector (OSTI)

... in connexion with oil prospecting, corrosion problems and formation of a microbial sludge in jet fuel tanks?. The scope of hydrocarbon microbiology has expanded rapidly in the meantime and currently ... the growth of photosynthetic sulphur bacteria in different gaseous environments Dr Enebo isolated the green alga Chlorella from highly reducing enrichment media in which carbonate and methane provided the carbon sources ...

Our Correspondent in Microbiology

1967-07-01T23:59:59.000Z

365

Methane from Anaerobic Fermentation  

Science Journals Connector (OSTI)

...removal rate; and recycling. Many studies have...di-gestion is utilized for wastewater stabili-zation...processes are used in some wastewater treatment plants...sludge is separated for recycling from the digester effluent...percent meth-ane. Many wastewater treatment plants in...

Donald L. Klass

1984-03-09T23:59:59.000Z

366

Methane and Coal  

Science Journals Connector (OSTI)

... stored source of the energy supplies of the world ; every twenty years the world burns a volume of coal equivalent to the volume of Snowdon (a cone of base ... hole method being most in favour. This method is being applied in about twelve British pits. The amount of methane drawn off appears to depend on the movement of the ...

ALFRED EGERTON

1952-07-19T23:59:59.000Z

367

NETL: Oil & Natural Gas Technologies Reference Shelf - Coalbed Methane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Coalbed Methane Production and Reclamation Field Tour Author: John Wheaton, Montana Tech of the University of Montana, Butte, MT. Venue: The tour will be conducted starting in Gillette, WY, and extend along the northern Powder River Basin, on June 3, 2007, under the auspices of the American Society for Mining and Reclamation (http://ces.ca.uky.edu/asmr/ [external site]). Abstract: This field tour will emphasize successful reclamation in an alternative type of coal industry in the Powder River Basin: coalbed methane. The tour will leave Gillette, WY, at 7:30 a.m., Sunday, June 3, 2007, and travel to Sheridan, WY, and back, touring coalbed methane production areas. Stops will include active drilling and producing areas to learn about the footprint and approach to development of coalbed methane. Reclamation includes drilling pads and linear trenching for water and gas pipelines. Produced-water management is a major expense and concern. Among the water management options we plan to see are stock-watering facilities, infiltration ponds, irrigation sites, and water treatment facilities. A landowner will join us and be able to answer questions from the ranching perspective for part of the tour. Lunches are included in the price of the tour.

368

Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria  

Science Journals Connector (OSTI)

The viability of algae-based biodiesel industry depends on the selection of adequate ... fatty acid profiles, used for estimating the biodiesel fuel properties. Volumetric lipid productivity varied among...?1 day

Iracema Andrade Nascimento; Sheyla Santa Izabel Marques…

2013-03-01T23:59:59.000Z

369

Title III section 313 release reporting guidance: Estimating chemical releases from rubber production and compounding  

SciTech Connect (OSTI)

Facilities engaged in rubber production and compounding may be required to report annually any releases to the environment of certain chemicals regulated under Section 313, Title III, of the Superfund Amendments and Reauthorization Act (SARA) of 1986. The document has been developed to assist those who produce rubber in the completion of Part III (Chemical Specific Information) of the Toxic Chemical Release Inventory Reporting Form. Included herein is general information on toxic chemicals used and process wastes generated, along with several examples to demonstrate the types of data needed and various methodologies available for estimating releases.

Not Available

1988-03-01T23:59:59.000Z

370

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network [OSTI]

H. T. Black, " U . S. Coalbed Methane Production," NaturalBlack, "Update on U.S. Coalbed Methane Production," NaturalC. F. Brandenburg, "Coalbed Methane Sparks a New Industry,"

Delucchi, Mark

1997-01-01T23:59:59.000Z

371

Proceedings of the international coalbed methane symposium. Volume 2  

SciTech Connect (OSTI)

Volume 2 contains 36 papers divided among the following sessions: Resources/development potential; Mine safety and productivity issues; Reservoir characterization, modeling, and well testing; and a Poster session whose papers discuss coal geology, well completion methods, origin of coalbed methane, rock mechanics of coal seams, geologic fractures in coal seams, and the use of coalbed methane for mitigation of greenhouse gases. All papers have been processed for inclusion on the data base.

NONE

1993-09-01T23:59:59.000Z

372

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect (OSTI)

Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2004-01-01T23:59:59.000Z

373

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas hydrate systems from three perspectives: as an energy resource, as a geohazard, and as a long-term influence on global climate. Performers Rice University, Houston, TX University of Texas, Austin, TX Oklahoma State University, Stillwater, OK Background Heterogeneity in the distribution of gas hydrate accumulations impacts all aspects of research into gas hydrate natural systems. The challenge is to delineate, understand, and appreciate these differences at the regional and local scales, where differences in in situ concentrations are relevant to the importance of gas hydrate as a resource, a geohazard, and a factor in

374

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 DE-FC26-01NT41331 photo of new Anadarko drilling rig in place at Hot Ice No.1 on Alaska's North Slope Hot Ice No. 1 Drilling Platform courtesy Anadarko Petroleum Corp. Goal The goal of the project was to develop technologies for drilling and recovering hydrates in arctic areas. The specific objectives were to drill, core, and test a well through the hydrate stability zone in northern Alaska Performers Maurer Technology, Inc.* - Project coordination with DOE Anadarko Petroleum Corporation - Overall project management for the design, construction, and operation of the Arctic Drilling Platform and mobile core lab, and field coring operations Noble Engineering and Development* - Real time data collection and

375

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect (OSTI)

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

376

Development of coalbed methane in Mississippi Warrior Basin  

SciTech Connect (OSTI)

Since 1980, over 3,863 coalbed methane wells have been drilled in the Warrior basin of Alabama at a drilling cost of $1.138 billion. Production of 119 bcf of gas has been sold. The important findings of this study were probable coalbeds across Monroe County at depths and thicknesses being produced profitably in Alabama as well as in the Northern Appalachian and Central Appalachian basins. The logs showed the coal to often be close to conventional gas reservoirs in sandstone, indicating a probable equilibrium gas content of the adjacent coals. The most prevalent depth of the coal seams was 1,600-1,800 ft across northeast Monroe County from near the Alabama state line in the Splunge Field to the Four Mile Creek Field near the Tombigbee River. Individual seam thickness ranged up to 11 ft. Cumulative thickness of all coal in a single well was a maximum of 30 ft in the 1,000 ft to 2,000 ft interval usually logged. These estimates were based on density, compensated neutron, caliper, and gamma ray logs. A core hole would be necessary to verify exact thicknesses, presence of a seam, gas content, and permeability of the coal seams. It is stressed that conventional well logs have limitations, but they are a valid first estimate of the potential of an area. The subject study also verified the discovery of coal in Clay County reported by the Mississippi Bureau of Geology in 1989. Also, deep-lying coals were observed on logs of single wells in Noxubee, Oktibbeha, and Lowndes Counties, where one deep well had a cumulative 72 ft of coal indicated. Although beyond the reach of industry now, technology of the coalbed methane process is progressing toward eventually managing coal at those depths.

Rogers, R.E.

1991-01-01T23:59:59.000Z

377

Methane-steam reforming  

SciTech Connect (OSTI)

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

378

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

379

Dewatering of coalbed methane wells with hydraulic gas pump  

SciTech Connect (OSTI)

The coalbed methane industry has become an important source of natural gas production. Proper dewatering of coalbed methane (CBM) wells is the key to efficient gas production from these reservoirs. This paper presents the Hydraulic Gas Pump as a new alternative dewatering system for CBM wells. The Hydraulic Gas Pump (HGP) concept offers several operational advantages for CBM wells. Gas interference does not affect its operation. It resists solids damage by eliminating the lift mechanism and reducing the number of moving parts. The HGP has a flexible production rate and is suitable for all production phases of CBM wells. It can also be designed as a wireline retrievable system. We conclude that the Hydraulic Gas Pump is a suitable dewatering system for coalbed methane wells.

Amani, M.; Juvkam-Wold, H.C. [Texas A& M Univ., College Station, TX (United States)

1995-12-31T23:59:59.000Z

380

Bio-methane via fast pyrolysis of biomass  

Science Journals Connector (OSTI)

Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production.

Martin Görling; Mĺrten Larsson; Per Alvfors

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Simultaneous Production of Syngas and Ethylene from Methane by Combining its Catalytic Oxidative Coupling over Mn/Na2WO4/SiO2 with Gas Phase Partial Oxidation  

Science Journals Connector (OSTI)

A new route of methane utilization is presented, in which methane is converted to H2, CO and C2H4 simultaneously with equal mole ratio, in order that the produced mixture could be used in the synthesis of propana...

Haili Zhang; Jingjing Wu; Bin Xu; Changwei Hu

2006-02-01T23:59:59.000Z

382

Energy Department Expands Research into Methane Hydrates, a Vast, Untapped  

Broader source: Energy.gov (indexed) [DOE]

Expands Research into Methane Hydrates, a Vast, Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. November 20, 2013 - 12:08pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, U.S. Energy Secretary Ernest Moniz announced nearly $5 million in funding across seven research projects nationwide designed to increase our understanding of methane hydrates - a large, completely untapped natural gas resource-and what it could mean for the environment, as well as American economic competiveness and energy security. "The recent boom in natural gas production - in part due to long-term Energy Department investments beginning in the 70's and 80's - has had

383

Commodity chemicals from natural gas by methane chlorination  

SciTech Connect (OSTI)

Ethylene and vinyl chloride monomer (VCM) can be produced from natural gas through methane chlorination by reacting methane and chlorine at 900/sup 0/C or higher. Experimental results indicate total ethylene equivalent yield from methane of 45%(wt) and marginal process economics. Fundamental kinetic modeling predicts improved C/sub 2/ yields of up to 70%(wt) at optimum reaction conditions. This optimum condition established the basis for the process design study to evaluate the potential for producing ethylene and VCM from natural gas. HCl by-product is recycled for economic viability. Using the Kel-Chlor process for recycling HCl, the proposed plant produces 27,200 TPA of C/sub 2/H/sub 4/ and 383,800 TPA of VCM. The Midwest is an ethylene consumption area requiring imports of ethylene derivatives from other regions. A methane chlorination plant located on a Midwestern natural gas pipeline network has a good commercial potential.

Che, S.C.; Minet, R.G.; Giacobbe, F.; Mullick, S.L.

1987-01-01T23:59:59.000Z

384

Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma  

Science Journals Connector (OSTI)

Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. In all experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor. A mixture of methane and carbon dioxide was fed vertically into the jet. In order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.

Sun Yanpeng (???); Nie Yong (??); Wu Angshan (???); Ji Dengxiang (???); Yu Fengwen (???); Ji Jianbing (???)

2012-01-01T23:59:59.000Z

385

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

386

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

387

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

388

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update March 26, 2009 v.30.2021.052209 Prepared by: Brian D. James & Jeffrey A. Kalinoski One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared for: Contract No. GS-10F-0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gas and pollutants than

389

Alternative technologies to steam-methane reforming  

SciTech Connect (OSTI)

Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

1995-11-01T23:59:59.000Z

390

Federal Offshore California Coalbed Methane Proved Reserves ...  

Gasoline and Diesel Fuel Update (EIA)

12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California) Coalbed Methane Proved Reserves, Reserves Changes, and...

391

methane hydrate science plan-final.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 Principal Authors: Consor um for Ocean Leadership and the Methane Hydrate Project Science Team December 2013 DOE Award Number: DE-FE0010195 Project Title: Methane Hydrate...

392

Storms, polar deposits and the methane cycle in Titan's atmosphere  

Science Journals Connector (OSTI)

...systems indicate the production of virga, with...daily averaged solar insolation (Brown...mid-troposphere convection cell evident from the...Sun lowers the solar heating two orders...methane and the production of haze causes...2008Titan's inventory of organic surface materials...application to the outer solar system. Astrophys...

2009-01-01T23:59:59.000Z

393

Methane Hydrate Field Studies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Field Studies Field Studies Methane Hydrate Field Studies Arctic/Alaska North Slope Field Studies Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and currently lack outlets to commercial markets, Alaska provides an excellent laboratory to study E&P technology. The research also has implications for various Alaska resources, including potential gas hydrate resources for local communities, conventional "stranded" gas, as well as Alaska's large unconventional oil resources. The hydrate deposits have been delineated in the process of developing underlying oil fields, and drilling costs are much lower than offshore. DOE-BP Project

394

Quarterly review of methane from coal-seams technology. Volume 7, Number 3, July-September 1989  

SciTech Connect (OSTI)

The report contains: sources of coal well information; Powder River Basin, Wyoming; greater Green River coal region, Wyoming and Colorado; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; the United States coalbed methane resource; western cretaceous coal seams project; multiple coal seams project; spalling and the development of a hydraulic fracturing strategy for coal; geologic evaluation of critical production parameters for coalbed methane resources; coalbed methane opportunities in Alberta; the coalbed methane forum; eastern coalbed methane forum.

Not Available

1990-01-01T23:59:59.000Z

395

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench-scale. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. The project is on schedule and on budget. Task 4, a bench-scale demonstration of the ultra-fast TSA system is complete. Rapid thermal swing of an adsorbent bed using microchannels has been successfully demonstrated and the separation of a 70% methane and 30% nitrogen was purified to 92% methane. The bench-scale demonstration unit was small relative to the system dead volume for the initial phase of experiments and a purge step was added to sweep the dead volume prior to desorbing the bed and measuring purity. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement.

Anna Lee Tonkovich

2005-07-01T23:59:59.000Z

396

Steady-state and transient catalytic oxidation and coupling of methane  

SciTech Connect (OSTI)

This project addresses the conversion of methane from natural gas into ethane, ethylene and higher hydrocarbons. Our research explores the mechanistic and practical implications of carrying out the methane oxidative coupling reaction in reactor designs other than conventional packed-beds with co-fed reactants. These alternate reactor designs are needed to prevent the full oxidation of methane, which limits C{sub 2}, yields in methane oxidative coupling reactions. The research strategy focuses on preventing contact between the 0{sub 2} reactant required for favorable overall thermodynamics and the C{sub 2+} products of methane coupling. The behavior of various reactor designs are simulated using detailed kinetic transport models. These simulations have suggested that the best way to prevent high C0{sub 2} yields is to separate the oxygen and hydrocarbon streams altogether. As a result, the project has focused on the experimental demonstration of proton transport membrane reactors for the selective conversion of methane into higher hydrocarbons.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1995-06-01T23:59:59.000Z

397

Central-northern Appalachian coalbed methane flow grows  

SciTech Connect (OSTI)

Over the past decade in the US, coalbed methane (CBM) has become an increasingly important source of unconventional natural gas. The most significant CBM production occurs in the San Juan basin of Colorado and new Mexico and the Black Warrior basin of Alabama, which collective in 1995 accounted for about 94% of US CBM production. The paper discusses early CBM production, recent production, gas composition, undiscovered potential, and new exploration areas.

Lyons, P.C. [Geological Survey, Reston, VA (United States)

1997-07-07T23:59:59.000Z

398

Fire in the Ice, August 2010 Methane Hydrate Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Figure 1: Simulation results of coupled thermo-dynamic and geomechanical changes around a hot Figure 1: Simulation results of coupled thermo-dynamic and geomechanical changes around a hot production well intersecting an HBS near a sloping seafloor after 30 years of production and heating (Rutqvist and Moridis, 2010). CONTENTS Geohazards of In Situ Gas Hydrates ...........................................1 Behavior of Methane Released in the Deep Ocean.....5 Core-Scale Heterogeneity ............6 Gas Volume Ratios ........................9 The Role of Methane Hydrates in the Earth System ....................12 Announcements .......................15 * Inter-Laboratory Comparison Project * Mississippi Canyon 118 * Research Fellowship * Call for Papers * Call for Abstracts * Upcoming Meetings Spotlight on Research .......... 20 Graham Westbrook CONTACT

399

AT A GLANCE Title: Hydrogen, Methane and Nitrous oxide: Trend  

E-Print Network [OSTI]

to increases in atmospheric molecular hydrogen (H2) and reductions of fossil fuel burning emissions burning emissions have been calculated with one of the models. MAIN RESULTS Improved methane emissions (from ruminants and waste) is larger. First robust estimates of the uptake of hydrogen by

Haak, Hein

400

Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling  

SciTech Connect (OSTI)

Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

2014-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geologic and hydrologic controls critical to coalbed methane producibility and resource assessment: Williams Fork Formation, Piceance Basin, Northwest Colorado. Topical report, December 1, 1993-November 30, 1995  

SciTech Connect (OSTI)

The objectives of this report are: To further evaluate the interplay of geologic and hydrologic controls on coalbed methane production and resource assessment; to refine and validate our basin-scale coalbed methane producibility model; and to analyze the economics of coalbed methane exploration and development in the Piceance Basin.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G.

1996-03-01T23:59:59.000Z

402

Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day  

SciTech Connect (OSTI)

A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

403

7.4 Landfill Methane Utilization  

Broader source: Energy.gov [DOE]

A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

404

Interim report Assessment of Baseline and Advanced Hydrogen Production Plants Case 1-1 Baseline Steam Methane Reforming (SMR) Hydrogen Plant With CO2 Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 CAPTURE READY COAL POWER PLANTS DOE/NETL-2007/1301 Final Report April 2008 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

405

Investigations on catalyzed steam gasification of biomass: feasibility study of methane production via catalytic gasification of 200 tons of wood per day  

SciTech Connect (OSTI)

This report is a result of an additional study made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory. The goal of this additional work was to determine the feasibility of a smaller scale plant one-tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 2.16 MM Scfd of SNG with a HHV of 956 Btu per Scf. All process and support facilities necessary to convert wood to SNG are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $26,680,000 - September 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood prices represent the cost of unchipped wood delivered to the plant site. For utility financing, the gas production costs are, respectively, $14.34, $14.83, $15.86, and $17.84 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $18.76, $19.26, $20.28, and $22.31 per MM Btu for the corresponding wood costs. The costs calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for char is 57.4%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

406

Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report  

SciTech Connect (OSTI)

In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

1993-09-01T23:59:59.000Z

407

Performance tests for steam methane reformers  

SciTech Connect (OSTI)

Most of the synthesis gas plants in operation in the United States for production of hydrogen, carbon monoxide, methanol, and ammonia use steam methane reforming (SMR). Economic projections indicate that the SMR plant may continue to be the most favorable process choice through the 1980s or until partial oxidation or coal gasification processes are technically proven. The complexity of an efficiently designed SMR plant for production of these chemicals requires a thorough understanding of many unit operations to correctly evaluate the performance of an operating plant. Air Products and Chemicals, Inc. (APCI) owns and operates various types of SMR plants for production of hydrogen and carbon monoxide gases for pipe line sales, liquid hydrogen for merchant sale, methanol and ammonia. Over the past few years, APCI has developed guidelines and procedures for plant performance tests done at its major SMR plants. This article documents the plant test procedure used in conducting onsite SMR plant performance tests.

Wang, S.I.; DiMartino, S.P.; Patel, N.M.; Smith, D.D.

1982-08-01T23:59:59.000Z

408

Integrated process for coalbed brine and methane disposal  

SciTech Connect (OSTI)

This paper describes a technology and project to demonstrate and commercialize a brine disposal process for converting the brine stream of a coalbed gas producing site into clean water for agricultural use and dry solids that can be recycled for industrial consumption. The process also utilizes coalbed methane (CBM) released from coal mining for the combustion process thereby substantially reducing the potential for methane emissions to the atmosphere. The technology is ideally suited for the treatment and disposal of produced brines generated from the development of coal mines and coalbed methane resources worldwide. Over the next 10 to 15 years, market potential for brine elimination equipment and services is estimated to be in the range of $1 billion.

Byam, J.W. Jr.; Tait, J.H.; Brandt, H.

1996-12-31T23:59:59.000Z

409

NETL: Methane Hydrates - Hydrate Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrate R&D Program Newsletter Methane Hydrate R&D Program Newsletter An image of a hydrate burning overlayed with the Newsletter Title: Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a bi-annual publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in the Ice please send an email to karl.lang@contr.netl.doe.gov Please click on the links below to access issues of "Fire in the Ice". More on Methane Hydrates

410

Der atmosphärische Kreislauf von Methan  

Science Journals Connector (OSTI)

Present methane concentrations in the northern troposphere average 1.65 ppm. Most CH4 is of recent biogenic origin. 14C analyses indicate that no more than 10% is released by fossil sources. The various CH4-produ...

D. H. Ehhalt

1979-06-01T23:59:59.000Z

411

ISSUE PAPER METHANE AVOIDANCE FROM  

E-Print Network [OSTI]

.........................................................................................1 1.2. GHG Emissions from Organic Waste...........................................................................................................39 6.2. Standard Methods for Quantifying Methane from Organic Waste in Landfills...40 6.3. GHG.2. Compost GHG Potential

Brown, Sally

412

Emission of methane from plants  

Science Journals Connector (OSTI)

...basis for the efforts to ameliorate fluxes of this potent greenhouse gas, which may contribute significantly to global warming...was emitting significant quantities of methane under ambient lighting in laboratory-controlled conditions. We also examined other...

2009-01-01T23:59:59.000Z

413

Methane emissions from rice fields: The effects of climatic and agricultural factors. Final report, March 1, 1994--April 30, 1997  

SciTech Connect (OSTI)

The work reported was performed for the purpose of refining estimates of methane emissions from rice fields. Research performed included methane flux measurements, evaluation of variables affecting emissions, compilation of a data base, and continental background measurements in China. The key findings are briefly described in this report. Total methane emissions, seasonal patterns, and spatial variability were measured for a 7-year periods. Temperature was found to be the most important variable studies affecting methane emissions. The data archives for the research are included in the report. 5 refs., 6 figs.

Khalil, M.A.K. [Portland State Univ., OR (United States). Dept. of Physics] [Portland State Univ., OR (United States). Dept. of Physics; Rasmussen, R.A. [Oregon Graduate Institute, Portland, OR (United States). Dept. of Environmental Science and Engineering] [Oregon Graduate Institute, Portland, OR (United States). Dept. of Environmental Science and Engineering

1997-10-01T23:59:59.000Z

414

ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)  

SciTech Connect (OSTI)

This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

2014-06-12T23:59:59.000Z

415

ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

Laura Riihimaki; Krista Gaustad; Sally McFarlane

416

Energy Department Expands Research into Methane Hydrates, a Vast, Untapped  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0, 2013 0, 2013 Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. WASHINGTON - Today, U.S. Energy Secretary Ernest Moniz announced nearly $5 million in funding across seven research projects nationwide designed to increase our understanding of methane hydrates - a large, completely untapped natural gas resource-and what it could mean for the environment, as well as American economic competiveness and energy security. "The recent boom in natural gas production - in part due to long-term Energy Department investments beginning in the 70's and 80's - has had a transformative impact on our energy landscape, helping to reduce greenhouse gas emissions and support thousands of American jobs," said Secretary Moniz. "While our research into methane hydrates is still in its early stages, these investments will increase our understanding of this domestic resource and the potential to safely and sustainably unlock the natural gas held within."

417

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

418

Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis: Independent Review  

SciTech Connect (OSTI)

This independent review examines DOE cost targets for state-of-the art hydrogen production using water electrolysis.

Not Available

2009-09-01T23:59:59.000Z

419

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect (OSTI)

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

420

Exploration strategies based on a coalbed methane producibility model  

SciTech Connect (OSTI)

Knowing geologic and hydrologic characteristics of a basin does not necessarily lead to a determination of its coalbed methane producibility because it is the synergy among key hydrogeologic controls that governs producibility. Detailed studies performed in the San Juan, Piceance, and Sand Wash Basins determined that the key hydrogeologic factors affecting producibility include depositional setting and coal distribution, tectonic and structural setting, coal rank and gas generation, hydrodynamics, permeability, and gas content. The conceptual model based on these factors provides a rationale for exploration and development strategies for unexplored areas or in basins having established or limited production. Exceptionally high productivity requires good permeability; thick, laterally continuous high-rank and high-gas-content coals; dynamic flow of ground water through those coals; generation of secondary biogenic gases; and migration and conventional trapping of thermogenic and biogenic gases. Higher coalbed methane producibility commonly occurs in areas of upward flow associated with permeability barriers (no-flow boundaries). Fluid migration across a large gathering area orthogonal to permeability barriers and/or in situ generation of secondary biogenic gases concentrate the coal gas, resulting in higher gas contents. Low coalbed methane production is typically associated with very low permeability systems; the absence of conventional or hydrodynamic traps; and thin, low-rank coals below the threshold of thermogenic gas generation. Production from relatively low-gas-content coals in highly permeable recharge areas may result in excessive water and limited coalbed methane production. Thus, high permeability can be as detrimental to coalbed methane producibility as is low permeability.

Scott, A.R.; Kaiser, W.R.; Hamilton, D.S.; Tyler, R.; Finley, R.J. [Univ. of Texas, Austin, TX (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Exploration strategies based on a coalbed methane producibility model  

SciTech Connect (OSTI)

Knowing geologic and hydrologic characteristics of a basin does not necessarily lead to a determination of its coalbed methane producibility because it is the synergy among key hydrogeologic controls that governs producibility. Detailed studies performed in the San Juan, Piceance, and Sand Wash Basins determined that the key hydrogeologic factors affecting producibility include depositional setting and coal distribution, tectonic and structural setting, coal rank and gas generation, hydrodynamics, permeability, and gas content. The conceptual model based on these factors provides a rationale for exploration and development strategies for unexplored areas or in basins having established or limited production. Exceptionally high productivity requires good permeability; thick, laterally continuous high-rank and high-gas-content coals; dynamic flow of ground water through those coals; generation of secondary biogenic gases; and migration and conventional trapping of thermogenic and biogenic gases. Higher coalbed methane producibility commonly occurs in areas of upward flow associated with permeability barriers (no-flow boundaries). Fluid migration across a large gathering area orthogonal to permeability barriers and/or in situ generation of secondary biogenic gases concentrate the coal gas, resulting in higher gas contents. Low coalbed methane production is typically associated with very low permeability systems; the absence of conventional or hydrodynamic traps; and thin, low-rank coals below the threshold of thermogenic gas generation. Production from relatively low-gas-content coals in highly permeable recharge areas may result in excessive water and limited coalbed methane production. Thus, high permeability can be as detrimental to coalbed methane producibility as is low permeability.

Scott, A.R.; Kaiser, W.R.; Hamilton, D.S.; Tyler, R.; Finley, R.J. (Univ. of Texas, Austin, TX (United States))

1996-01-01T23:59:59.000Z

422

Methane oxidation rates in the anaerobic sediments of Saanich Inlet  

Science Journals Connector (OSTI)

water methane concentration were avail- able. ... water solute concentrations and methane oxidation rates ..... Diffusion of light paraffin hydrocarbons in water.

2000-02-09T23:59:59.000Z

423

Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment  

SciTech Connect (OSTI)

Systematic seasonal variations in the stable carbon isotopic signature of methane gas occur in the anoxic sediments of Cape Lookout Bight, a lagoonal basin on North Carolina's Outer Banks. Values for the carbon isotope ratio (delta /sup 13/C) of methane range from -57.3 per mil during summer to -68.5 per mil during winter in gas bubbles with an average methane content of 95%. The variations are hypothesized to result from changes in the pathways of microbial methane production and cycling of key substrates including acetate and hydrogen. The use of stable isotopic signatures to investigate the global methane cycle through mass balance calculations, involving various sediment and soil biogenic sources, appears to require seasonally averaged data from individual sites. 17 references, 2 figures, 2 tables.

Martens, C.S.; Blair, N.E.; Green, C.D.; Des Marais, D.J.

1986-09-19T23:59:59.000Z

424

Factors controlling high-yield coalbed methane vertical wells in the Fanzhuang Block, Southern Qinshui Basin  

Science Journals Connector (OSTI)

Abstract Whether a coalbed methane (CBM) well achieves high yield is controlled by various factors. Structural and hydrological control models of CBM productivity in vertical wells were built using a combined investigation of basic tectonic settings and hydrological conditions, as well as drainage parameters of the coal reservoir in the Fanzhuang Block, Southern Qinshui Basin. This study indicates that gas/water production differs significantly among wells with different structural settings or hydrogeological conditions. Low and unstable gas production rates in individual wells are the primary problem for the CBM development in the Fanzhuang Block. The impacts of some geologic and engineering factors on gas production were analyzed and estimated based on comparative analysis, quantitative analysis, and gray system theory. The results indicate that the critical reservoir ratio (CRR), liquid column height (LCH), and gas content are the most important factors in determining well productivity, followed by the equivalent drainage radius (EDR), the volume of frac sand, and the decline rate of working fluid levels during initial production. High-yield wells in the Fanzhuang Block always have the following conditions: gas content > 20 m3/t; burial depth of 500–700 m; CRR > 0.7; LCH > 400 m; volume of frac sand > 40 m3; EDR of 30–60 m; and a decline rate of working fluid level lower than 2 m/day during the initial production stage.

Shu Tao; Dazhen Tang; Hao Xu; Lijun Gao; Yuan Fang

2014-01-01T23:59:59.000Z

425

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Research in Deep Sea Sediments - New Zealand Task Gas Hydrate Research in Deep Sea Sediments - New Zealand Task DE-AI26-06NT42878 Goal The objective of this research is to determine the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Specific objectives include: a). Refine geophysical, geochemical and microbiological technologies for prospecting hydrate distribution and content; b). Contribute to establishing high-priority geographical regions of prospective interest, in terms of methane volume estimates; c). Prediction of environmental effects and geologic risks at the continental margin associated to the natural resource occurrence and resource exploitation; and d). Expand understanding of the biogeochemical parameters and associated microbial community diversity in shallow sediments that influence the porewater sulfate gradient observed through anaerobic oxidation of methane. To accomplish these objectives, the Naval Research Laboratory (NRL) collaborated with New ZealandÂ’s Institute of Geological and Nuclear Sciences (GNS) in a research cruise off the coast of New Zealand. NRL has conducted similar research cruises off the west coast and east coast of the United States, in the Gulf of Mexico and off the coast of Chile.

426

Production of the giant kelp, Macrocystis, estimated by in situ ... - ASLO  

Science Journals Connector (OSTI)

May 4, 1972 ... and Prescott 1959)) and oxygen production by isolated blade discs (Sargent ... base of the pneumatocyst with latex rubber tubing. For control ...

1999-12-27T23:59:59.000Z

427

Estimation of CO2 Emissions from China's Cement Production: Methodologies and Uncertainties  

E-Print Network [OSTI]

emissions from electricity consumption. This paper examinesmainly from electricity consumption for cement production,CO 2 emissions from electricity consumption are usually

Ke, Jing

2014-01-01T23:59:59.000Z

428

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

429

Carbon Dioxide and Methane Emissions from Estuaries  

Science Journals Connector (OSTI)

Carbon dioxide and methane emissions from estuaries are reviewed in relation with biogeochemical processes and carbon cycling. In estuaries, carbon dioxide and methane emissions show a large spatial and temporal ...

Gwenaël Abril; Alberto Vieira Borges

2005-01-01T23:59:59.000Z

430

Optical constants of liquid and solid methane  

Science Journals Connector (OSTI)

The optical constants nr + ini of liquid methane and phase I solid methane were determined over the entire spectral range by the use of various data sources published in the...

Martonchik, John V; Orton, Glenn S

1994-01-01T23:59:59.000Z

431

U.S. and Japan Complete Successful Field Trial of Methane Hydrate  

Broader source: Energy.gov (indexed) [DOE]

U.S. and Japan Complete Successful Field Trial of Methane Hydrate U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2, 2012 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the completion of a successful, unprecedented test of technology in the North Slope of Alaska that was able to safely extract a steady flow of natural gas from methane hydrates - a vast, entirely untapped resource that holds enormous potential for U.S. economic and energy security. Building upon this initial, small-scale test, the Department is launching a new research effort to conduct a long-term production test in the Arctic as well as research to test additional technologies that could be used to locate,

432

coalbed methane | OpenEI  

Open Energy Info (EERE)

coalbed methane coalbed methane Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations Source NREL Date Released April 30th, 2005 (9 years ago) Date Updated November 07th, 2007 (7 years ago) Keywords coalbed methane GEF Kenya NREL SWERA TMY UNEP Data application/zip icon Download Data (zip, 5.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

433

Method for the photocatalytic conversion of methane  

DOE Patents [OSTI]

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

1998-02-24T23:59:59.000Z

434

Estimate of risk from environmental exposure to radon-222 and its decay products  

Science Journals Connector (OSTI)

... principal ways in which members of the public receive natural irradiation is by breathing the radon-222 decay products in air. ... -222 decay products in air. Radon gas is emitted by soil, rocks and building materials, all of which contain the ...

R. D. Evans; J. H. Harley; W. Jacobi; A. S. McLean; W. A. Mills; C. G. Stewart

1981-03-12T23:59:59.000Z

435

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Numerical Simulation Last Reviewed 3/8/2013 Numerical Simulation Last Reviewed 3/8/2013 Project Goal The goal of NETL's gas hydrate numerical simulation studies is to obtain pertinent, high-quality information on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with NETL's experimental and field studies programs to ensure the validity of input datasets and scenarios. Project Performers Brian Anderson, NETL/RUA Fellow (West Virginia University) Hema Siriwardane, NETL/RUA Fellow (West Virginia University) Eugene Myshakin, NETL/URS Project Locations National Energy Technology Laboratory, Pittsburgh PA, and Morgantown WV West Virginia University, Morgantown, WV Background Field-scale hydrate production tests rely heavily on reservoir-scale

436

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico DE-FC26-02NT41327 Goal The project goal was to develop new methodologies to characterize the physical properties of methane hydrate and hydrate sediment systems. Performers Westport Technology Center International - Houston, TX University of Houston - Houston, TX Results Project researchers created a pressure cell for measuring acoustic velocity and resistivity on hydrate-sediment cores. They utilized the measurements for input to an existing reservoir model for evaluating possible offshore hydrate accumulations. The organization of an industry-led Advisory Board and the development of a Research Management Plan have been completed. The development of a handbook for transporting, preserving, and storing hydrate core samples brought from the field to the laboratory was completed and distributed for review by industry and researchers.

437

DOE/SC-ARM/TR-100 Raman Lidar Profiles Best Estimate Value-Added Product Technical Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 Raman Lidar Profiles Best Estimate Value-Added Product Technical Report R Newsom January 2012 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

438

Methane production using resin-wafer electrodeionization  

DOE Patents [OSTI]

The present invention provides an efficient method for creating natural gas including the anaerobic digestion of biomass to form biogas, and the electrodeionization of biogas to form natural gas and carbon dioxide using a resin-wafer deionization (RW-EDI) system. The method may be further modified to include a wastewater treatment system and can include a chemical conditioning/dewatering system after the anaerobic digestion system. The RW-EDI system, which includes a cathode and an anode, can either comprise at least one pair of wafers, each a basic and acidic wafer, or at least one wafer comprising of a basic portion and an acidic portion. A final embodiment of the RW-EDI system can include only one basic wafer for creating natural gas.

Snyder, Seth W; Lin, YuPo; Urgun-Demirtas, Meltem

2014-03-25T23:59:59.000Z

439

Reduction of titania by methane-hydrogen-argon gas mixture  

SciTech Connect (OSTI)

Reduction of titania using methane-containing gas was investigated in a laboratory fixed-bed reactor in the temperature range 1,373 to 1,773 K. The reduction production product is titanium oxycarbide, which is a solid solution of TiC and TiO. At 1,373 K, the formation rate of TiC is very slow. The rate and extent of reaction increase with increasing temperature to 1,723 K. A further increase in temperature to 1,773 K does not affect the reaction rate and extent. An increase in methane concentration to 8 vol pct favors the reduction process. A further increase in methane concentration above 8 vol pct causes excessive carbon deposition, which has a negative effect on the reaction rate. Hydrogen partial pressure should be maintained above 35 vol pct to depress the cracking of methane. Addition of water vapor to the reducing gas strongly retards the reduction reaction, even at low concentrations of 1 to 2 vol pct. Carbon monoxide also depresses the reduction process, but its effect is significant only at higher concentrations, above 10 vol pct.

Zhang, G.; Ostrovski, O.

2000-02-01T23:59:59.000Z

440

Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas  

E-Print Network [OSTI]

such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity...

Saugier, Luke Duncan

2004-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Estimating the effects of new product promotion on U.S. beef in Guatemala  

E-Print Network [OSTI]

to promotion activities that launched three new U.S. beef value cuts in Guatemala’s Hotel, Restaurant and Institutional (HRI) sector were estimated by applying the Parks Model of Generalized Least Squares regression to pooled, time-series and cross sectional...

Leister, Amanda Marie

2009-06-02T23:59:59.000Z

442

Determination of uncertainty in reserves estimate from analysis of production decline data  

E-Print Network [OSTI]

.2 Challeges in Probabilistic Reserves Estimation............................4 CHAPTER III METHODOLOGY……………………………… .............................10 3.1 Modified Bootstap and Block Resampling.................................10 3.2 Backward Analysis Scheme.... ....................................................................11 3.2 Modified bootstrap sequence. ...........................................................................11 3.3 Original data for conventional bootstrap example............................................12 3.4 Synthetic data set 1...

Wang, Yuhong

2007-09-17T23:59:59.000Z

443

The Product Process Service Life Cycle Assessment Framework to Estimate GHG Emissions for Highways  

Science Journals Connector (OSTI)

This chapter introduces readers to the Product Process Service (PPS) Life Cycle Assessment (LCA) framework. This framework is founded in principals of pavement life cycle assessment and provides the basis for too...

Amlan Mukherjee; Darrell Cass

2014-01-01T23:59:59.000Z

444

Estimation of vertical permeability from production data of wells in bottom water drive reservoirs  

E-Print Network [OSTI]

in Vertical Permeability Introduced by Erroneous Horizontal Permeabilty on Future performance of a Mell 13 39 43 43 10 Effect of Production From Test Perforation on Future Performance of a Well (Kh/Kv 1) . . . . . . . . . . . 57 Effect of Production... between perforations and the WOC, Kh/Kv = I . . . . . . . . . . . . . . . . . . . . . . . 17 Effect of cell break-up on producing WOR performance for 9 ft interval between perforations and the WOC, Kh/Kv 30 . l8 Effect of cell break-up on cumulative...

Tirek, Ali

1982-01-01T23:59:59.000Z

445

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

SciTech Connect (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

446

Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills  

Science Journals Connector (OSTI)

Abstract Methane emission from landfill gas emission (LandGEM) model was validated through the results of laboratory scale biochemical methane potential assay. Results showed that LandGEM model over estimates methane (CH4) emissions; and the true CH4 potential of waste depends on the level of segregation. Based on these findings, correction factors were developed to estimate CH4 emission using LandGEM model especially where the level of segregation is negligible or does not exist. The correction factors obtained from the study were 0.94, 0.13 and 0.74 for food waste, mixed un-segregated municipal solid waste (MSW) and vegetable wastes, respectively.

Avick Sil; Sunil Kumar; Jonathan W.C. Wong

2014-01-01T23:59:59.000Z

447

Electron Transport in Methane Gas  

Science Journals Connector (OSTI)

We propose a kinetic theory for electron-drift-velocity maxima in polyatomic gases. The case of methane is considered in detail, and good agreement with experiment is obtained with use of model cross sections. The Boltzmann equation is solved directly by applying an iterative numerical technique, which converges well when inelastic scattering effects are important.

Peter Kleban and H. Ted Davis

1977-08-22T23:59:59.000Z

448

Methane generation from waste materials  

DOE Patents [OSTI]

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

449

Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology  

SciTech Connect (OSTI)

Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL

2011-01-01T23:59:59.000Z

450

Analytical solutions to estimate the floating free product thickness and efficiency of recovery operations  

E-Print Network [OSTI]

solutions to estimate the recovery of oil from an established oil lens by a two pump recovery system. The solutions will be obtained by applying the Laplace and Double integral transformations to averaged linear partial differential equations governing... MODEL DEVELOPMENT 2. 1 Physical Problem 2. 2 Assumptions 2. 3 Mathematical Formulations 2. 4 Derivation of Oil Phase Equation 2. 5 Derivation of Water Phase Equation 7 8 12 13 24 III UNCOUPLED SOLUTIONS 30 3. 1 Introduction 3. 2 Case 1...

Lingam, Rajasekhar

1992-01-01T23:59:59.000Z

451

Methodology for estimating building integrated photovoltaics electricity production under shadowing conditions and case study  

Science Journals Connector (OSTI)

Abstract Building integrated photovoltaic (BIPV) systems are a relevant application of photovoltaics. In countries belonging to the International Energy Agency countries, 24% of total installed PV power corresponds to BIPV systems. Electricity losses caused by shadows over the PV generator have a significant impact on the performance of BIPV systems, being the major source of electricity losses. This paper presents a methodology to estimate electricity produced by BIPV systems which incorporates a model for shading losses. The proposed methodology has been validated on a one year study with real data from two similar PV systems placed on the south façade of a building belonging to the Technical University of Madrid. This study has covered all weather conditions: clear, partially overcast and fully overcast sky. Results of this study are shown at different time scales, resulting that the errors committed by the best performing model are below 1% and 3% in annual and daily electricity estimation. The use of models which account for the reduced performance at low irradiance levels also improves the estimation of generated electricity.

Daniel Masa-Bote; Estefanía Caamańo-Martín

2014-01-01T23:59:59.000Z

452

Techniques and Methods Used to Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility C. Sivaraman, D. D. Turner, and C. J. Flynn Pacific Northwest National Laboratory Richland, Washington Objective Profiles of aerosol optical properties are needed for radiative closure exercises such as the broadband heating rate profile (BBHRP) project (Mlawer et al. 2002) and the Shortwave Quality Measurement Experiment (QME). Retrieving cloud microphysical properties using radiation measurements in the shortwave, such as the spectral retrieval technique described in Daniel et al. (2002), also require the optical properties of the aerosols so that they can be accounted for in the retrieval process. The objective of the aerosol best estimate (ABE) value-added procedure (VAP) is to provide profiles of

453

Methane Hydrate Advisory Committee | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Advisory Methane Hydrate Advisory Committee Methane Hydrate Advisory Committee The Methane Hydrate Advisory Committee was created in response to provisions of the Methane Hydrate Research and Development Act of 2000 and reauthorized by the Energy Policy Act of 2005. The Committee is to advise the Secretary of Energy on potential applications of methane hydrate; assist in developing recommendations and priorities for the methane hydrate research and development program; and submit to Congress one or more reports on an assessment of the research program and an assessment of the DOE 5-year research plan. The Committee's charter stipulates that up to 15 members can be appointed by the Secretary of Energy, representing institutions of higher education, industrial enterprises and oceanographic institutions and state agencies.

454

Estimates of carbon stored in harvested wood products from United States Forest Service  

E-Print Network [OSTI]

associated with harvested wood products (HWP) to meet greenhouse gas monitoring commitments and climate Mountain Research Station, Missoula, MT. Nathaniel Anderson is a Research Forester with the United States Forest Service, Rocky Mountain Research Station, Missoula, MT. Keith Stockmann is an Economist

455

Estimates of carbon stored in harvested wood products from United States Forest Service  

E-Print Network [OSTI]

associated with harvested wood products (HWP) to meet greenhouse gas monitoring commitments and climate, Rocky Mountain Research Station, Missoula, MT. Jesse Young is Forestry Research Technician with the United States Forest Service, Rocky Mountain Research Station, Missoula, MT. Kenneth Skog is a Project

456

Estimates of carbon stored in harvested wood products from United States Forest  

E-Print Network [OSTI]

products (HWP) to meet greenhouse gas monitoring commitments and climate change adaptation and mitigation Mountain Research Station, Missoula, MT. Nathaniel Anderson is a Research Forester with the United States Forest Service, Rocky Mountain Research Station, Missoula, MT. Keith Stockmann is an Economist

457

Estimates of carbon stored in harvested wood products from United States Forest Service  

E-Print Network [OSTI]

products (HWP) to meet greenhouse gas monitoring commitments and climate change adaptation and mitigation, Missoula, MT. and cooperator with the Rocky Mountain Research Station, Missoula, MT. Nathaniel Anderson is a Research Forester with the United States Forest Service, Rocky Mountain Research Station, Missoula, MT

458

Estimates of carbon stored in harvested wood products from United States Forest Service  

E-Print Network [OSTI]

associated with harvested wood products (HWP) to meet greenhouse gas monitoring commitments and climate of Montana, Missoula, MT. and cooperator with the Rocky Mountain Research Station, Missoula, MT. Nathaniel Anderson is a Research Forester with the United States Forest Service, Rocky Mountain Research Station

459

Estimates of carbon stored in harvested wood products from United States Forest Service  

E-Print Network [OSTI]

associated with harvested wood products (HWP) to meet greenhouse gas monitoring commitments and climate Forest Service, Rocky Mountain Research Station, Missoula, MT. Jesse Young is Forestry Research Technician with the United States Forest Service, Rocky Mountain Research Station, Missoula, MT. Kenneth Skog

460

Estimates of carbon stored in harvested wood products from United States Forest Service  

E-Print Network [OSTI]

associated with harvested wood products (HWP) to meet greenhouse gas monitoring commitments and climate Research Station, Missoula, MT. Jesse Young is Forestry Research Technician with the United States Forest Service, Rocky Mountain Research Station, Missoula, MT. Kenneth Skog is a Project Leader

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Study of Methane Reforming in Warm Non-Equilibrium Plasma Discharges  

E-Print Network [OSTI]

Utilization of natural gas in remote locations necessitates on-site conversion of methane into liquid fuels or high value products. The first step in forming high value products is the production of ethylene and acetylene. Non-thermal plasmas, due...

Parimi, Sreekar

2012-02-14T23:59:59.000Z

462

Well testing in coalbed methane (CBM) wells: An environmental remediation case history  

SciTech Connect (OSTI)

In 1993, methane seepage was observed near coalbed methane wells in southwestern Colorado. Well tests were conducted to identify the source of the seeps. The well tests were complicated by two-phase flow, groundwater flow, and gas readsorption. Using the test results, production from the area was simulated. The cause of the seeps was found to be depressuring in shallow coal near the surface, and a remediation plan using water injection near the seep area was formulated.

Cox, D.P.; Young, G.B.C.; Bell, M.J.

1995-12-31T23:59:59.000Z

463

Phase behavior of methane hydrate in silica sand  

Science Journals Connector (OSTI)

Abstract Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2) K and (5.9 to 7.8) MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5) K and (7.3 to 16.0) MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the Gibbs–Thomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc.

Shi-Cai Sun; Chang-Ling Liu; Yu-Guang Ye; Yu-Feng Liu

2014-01-01T23:59:59.000Z

464

Methane-derived hydrocarbons produced under upper-mantle conditions  

SciTech Connect (OSTI)

There is widespread evidence that petroleum originates from biological processes. Whether hydrocarbons can also be produced from abiogenic precursor molecules under the high-pressure, high-temperature conditions characteristic of the upper mantle remains an open question. It has been proposed that hydrocarbons generated in the upper mantle could be transported through deep faults to shallower regions in the Earth's crust, and contribute to petroleum reserves. Here we use in situ Raman spectroscopy in laser-heated diamond anvil cells to monitor the chemical reactivity of methane and ethane under upper-mantle conditions. We show that when methane is exposed to pressures higher than 2 GPa, and to temperatures in the range of 1,000-1,500 K, it partially reacts to form saturated hydrocarbons containing 2-4 carbons (ethane, propane and butane) and molecular hydrogen and graphite. Conversely, exposure of ethane to similar conditions results in the production of methane, suggesting that the synthesis of saturated hydrocarbons is reversible. Our results support the suggestion that hydrocarbons heavier than methane can be produced by abiogenic processes in the upper mantle.

Kolesnikov, Anton; Kutcherov, Vladimir G.; Goncharov, Alexander F.; (CIW); (RITS)

2009-08-13T23:59:59.000Z

465

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

If you need help finding information on a particular project, please contact the content manager. If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed Projects Click on project number for a more detailed description of the project. Project Number Project Name Primary Performer DE-FC26-01NT41332 Alaska North Slope Gas Hydrate Reservoir Characterization BP Exploration Alaska, Inc. DE-FC26-01NT41330 Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration Chevron Energy Technology Company DE-FE0009897 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Georgia Tech Research Corporation DE-FE0009904 Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Oklahoma State University

466

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Testing of Gas Hydrate/Sediment Samples Mechanical Testing of Gas Hydrate/Sediment Samples DE-AT26-99FT40267 Goal Develop understanding of the mechanical characteristics of hydrate-containing sediments. Background The ACE CRREL has a unique group of experienced personnel that have studied the mechanical characteristics of ice and permafrost that can be applied to the study and characterization of the mechanical properties of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of sediments related to drilling and seafloor installations in the Gulf of Mexico. Performers US Army Corp of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory (CRREL) - project management and research products

467

OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS  

SciTech Connect (OSTI)

The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

1998-04-01T23:59:59.000Z

468

Nickel crystallite thermometry during methanation  

SciTech Connect (OSTI)

A magnetic method to measure the average temperature of superparamagnetic nickel crystallites has been applied during CO methanation. The method takes advantage of the temperature dependence of the low field magnetization of such catalysts; however, the adsorption of carbon monoxide and the formation of surface carbon species complicate the interpretation of results. Calibrations to account for temperature change and the adsorption of reactants are described. The calibration for the effects of CO is based on the assumption that the interaction of CO with nickel is the same for methanation and disproportionation. Interphase heat transfer calculations based on the thermometric data compare favorably with previous results from ethane hyrogenolysis, and give no indication of microscopic temperature differences between the nickel crystallites and support.

Ludlow, D.K.; Cale, T.S.

1986-01-01T23:59:59.000Z

469

Doubling of atmospheric methane supported  

SciTech Connect (OSTI)

Atmospheric methane over the past 27,000 years was measured by analyzing air trapped in glacial ice in Greenland and Antarctica. Atmospheric concentrations were stable over that period until about 200 years b.p. In the last 200 years they have more than doubled. This change in concentration is correlated with the increase in human population; the implications for climate modification are discussed. 1 figure, 3 references.

Kerr, R.A.

1984-11-23T23:59:59.000Z

470

A study on the solubility of heavy hydrocarbons in liquid methane and methane containing mixtures.  

E-Print Network [OSTI]

??The solubilities of the hydrocarbons n-butane, n-pentane, n-hexane, n-octane, and n-nonane in liquid methane and of n-hexane in the mixed solvents of methane and ethane… (more)

Brew, T. C. L.

2009-01-01T23:59:59.000Z

471

Chapter 14 - Coal bed methane  

Science Journals Connector (OSTI)

Publisher Summary Methane adsorbed to the surface of coal is a very old issue with some new commercial ramifications. This explosive gas has made underground coal mines dangerous both from the risk of explosion and the possibility of an oxygen-poor atmosphere that wouldn't support life. The miner's main concern with coal bed methane (CBM) has been how to get rid of it. Techniques to deal with CBM in mines have ranged from the classic canary in a cage to detect an oxygen-poor atmosphere to huge ventilation fans to force the replacement of a methane-rich environment with outside air, to drilling CBM wells in front of the coal face to try to degas the coal prior to exposing the mine to the CBM. All these techniques have met with some amount of success. None of the techniques to prevent CBM from fouling the air in an underground mine has been totally successful. With the CBM's unique method of gas storage, the preponderance of the gas is available only to very low coalface pressures. The coalface pressure is set by a combination of flowing wellhead pressure and the hydrostatic head exerted by standing liquid within the well bore. Effective compression strategies can lower the wellhead pressure to very low values. Effective deliquification techniques can reduce or remove the backpressure caused by accumulated liquid. CBM's economic impact is briefly explained in this chapter.

James F. Lea; Henry V. Nickens; Mike R. Wells

2008-01-01T23:59:59.000Z

472

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 EST-380-NEDA Goal The purpose of this study is to establish sediment lithology and quantification of methane in hydrates hosted in fine-grained sediments from the Gulf of Mexico (GoM), a marine site of methane hydrate occurrence. The results will help establish a correlation between laboratory data and hydrate accumulation field data on dispersed hydrates in the natural environment. Performer Brookhaven National Laboratory (BNL), Upton, New York 11973 Background Gas hydrates are located in permafrost and marine environments and show potential as a vast methane source worldwide. However, methane is about 17 times more potent a greenhouse gas than CO2 and the inherent instability of

473

Powder River Basin Coalbed Methane Development and Produced Water Management Study  

SciTech Connect (OSTI)

Coalbed methane resources throughout the entire Powder River Basin were reviewed in this analysis. The study was conducted at the township level, and as with all assessments conducted at such a broad level, readers must recognize and understand the limitations and appropriate use of the results. Raw and derived data provided in this report will not generally apply to any specific location. The coal geology in the basin is complex, which makes correlation with individual seams difficult at times. Although more than 12,000 wells have been drilled to date, large areas of the Powder River Basin remain relatively undeveloped. The lack of data obviously introduces uncertainty and increases variability. Proxies and analogs were used in the analysis out of necessity, though these were always based on sound reasoning. Future development in the basin will make new data and interpretations available, which will lead to a more complete description of the coals and their fluid flow properties, and refined estimates of natural gas and water production rates and cumulative recoveries. Throughout the course of the study, critical data assumptions and relationships regarding gas content, methane adsorption isotherms, and reservoir pressure were the topics of much discussion with reviewers. A summary of these discussion topics is provided as an appendix. Water influx was not modeled although it is acknowledged that this phenomenon may occur in some settings. As with any resource assessment, technical and economic results are the product of the assumptions and methodology used. In this study, key assumptions as well as cost and price data, and economic parameters are presented to fully inform readers. Note that many quantities shown in various tables have been subject to rounding; therefore, aggregation of basic and intermediate quantities may differ from the values shown.

Advanced Resources International

2002-11-30T23:59:59.000Z

474

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013...

475

Miscellaneous States Coalbed Methane Proved Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

476

,"Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

477

,"Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

478

,"California - Coastal Region Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

479

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update September 30, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski & Kevin N. Baum One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared under: Subcontract No. AGB-0-40628-01 to the National Renewable Energy Laboratory (NREL) under Prime Contract No. DE-AC36-08GO28308 to the U.S. Department of Energy Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gasses and pollutants than

480

NETL: Methane Hydrates Interagency R&D Conference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrates Interagency R&D Conference Methane Hydrates Interagency R&D Conference March 20-22, 2002 Table of Contents Disclaimer Papers and Presentations The Curiosity of Hydrates Methane Hydrates Issues Arctic Region Projects West Coast Projects East Coast Projects Gulf of Mexico Projects Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Note: This page contains sample records for the topic "methane estimated production" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Scientists detect methane levels three times larger than expected...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

482

Three-dimensional model synthesis of the global methane cycle  

E-Print Network [OSTI]

39, Ehhalt, D. H. , The atmo•heric cycle of methane, Tellugworld-wide increase in t•heric methane, 1978-1987, Science,

1991-01-01T23:59:59.000Z

483

Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

484

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

485

North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved...

486

California (with State off) Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 California Coalbed Methane Proved Reserves,...

487

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves,...

488

Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Michigan Coalbed Methane Proved Reserves,...

489

Texas (with State Offshore) Coalbed Methane Proved Reserves ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0...

490

Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, South Onshore Coalbed Methane Proved...

491

Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 5 Coalbed Methane Proved...

492

Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 1 Coalbed Methane Proved...

493

The Optimization of Well Spacing in a Coalbed Methane Reservoir.  

E-Print Network [OSTI]

??Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The… (more)

Sinurat, Pahala Dominicus

2012-01-01T23:59:59.000Z

494

Mississippi (with State off) Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Mississippi Coalbed Methane Proved Reserves,...

495

Four Corners methane hotspot points to coal-related sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methane hotspot points to coal-related sources Methane is very efficient at trapping heat in the atmosphere and, like carbon dioxide, it contributes to global warming. October...

496

Earth'sFuture Remote sensing of fugitive methane emissions from oil and  

E-Print Network [OSTI]

and tight oil reservoirs to exploit formerly inaccessible or unprofitable energy resources in rock are drilled out. In the production process of tight oil, co-occurring natural gas is typically used to drive. Therefore, methane emissions from field production of oil and gas from tight reservoirs have the potential

Dickerson, Russell R.

497

Union Carbide pursuing direct conversion of methane to ethylene  

SciTech Connect (OSTI)

Union Carbide has begun developing an alternative source for ethylene. If a new program is successful, Carbide will be able to supplement present sources of ethylene by direct catalytic conversion of methane. The program also will provide an alternative means for possible future production of distillate motor fuels. Most ethylene consumed today is derived from dehydrogenation of ethane or propane. These sources are becoming increasingly tight, and alternatives are being sought by most polyethylene producers. Alternative sources have been on Carbide's research agenda at least since 1969, when the possibilities of converting methane were first examined. Following the Arab oil embargo of 1974 and the subsequent crude oil and natural gas price rises, most attention turned to coal conversion, at least in the U.S. However, inherent difficulties diminished the immediate prospects for utilizing coal as a source of fuels and petrochemical feedstocks.

Haggin, J.

1988-07-04T23:59:59.000Z

498

Multicomponent 3-D characterization of a coalbed methane reservoir  

SciTech Connect (OSTI)

Methane is produced from fractured coalbed reservoirs at Cedar Hill Field in the San Juan Basin. Fracturing and local stress are critical to production because of the absence of matrix permeability in the coals. Knowledge of the direction of open fractures, the degree of fracturing, reservoir pressure, and compartmentalization is required to understand the flow of fluids through the reservoir. A multicomponent 3-D seismic survey was acquired to aid in coalbed methane reservoir characterization. Coalbed reservoir heterogeneities, including isolated pressure cells, zones of increased fracture density, and variable fracture directions, have been interpreted through the analysis of the multicomponent data and integration with petrophysical and reservoir engineering studies. Strike-slip faults, which compartmentalize the reservoir, have been identified by structural interpretation of the 3-D P-wave seismic data. These faults form boundaries for pressure cells that have been identified by P-wave reflection amplitude anomalies.

Shuck, E.L. [Advance Geophysical Corp., Englewood, CO (United States)] [Advance Geophysical Corp., Englewood, CO (United States); Davis, T.L.; Benson, R.D. [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.] [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.

1996-03-01T23:59:59.000Z

499

Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change  

SciTech Connect (OSTI)

Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

2008-04-15T23:59:59.000Z

500

Technical Note Methane gas migration through geomembranes  

E-Print Network [OSTI]

and Fick's law. This chart can be used by landfill designers to evaluate the methane gas transmission rate for a selected geomembrane type and thickness and expected methane gas pressure in the landfill. KEYWORDS landfill usually consists, from bottom to top, of: graded landfill surface; a gas-venting layer; a low