Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Methane generation from waste materials  

DOE Patents [OSTI]

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

2

Methane Production Quantification and Energy Estimation for Bangalore Municipal Solid Waste  

Science Journals Connector (OSTI)

Landfills are considered as cornerstone of solid waste management. Landfill gas (LFG) and leachate are principal outputs ... from landfills. Methane, occupying significant volume of landfill gas, has considerable...

A. Kumar; R. Dand; P. Lakshmikanthan…

2014-01-01T23:59:59.000Z

3

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

SciTech Connect (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

4

Biogenesis of tritiated and carbon-14 methane from low-level radioactive waste  

SciTech Connect (OSTI)

Methane bacteria were detected in leachate samples collected from commercial low-level radioactive waste disposal sites. Significant amounts of tritiated and carbon-14 methane were generated by a mixed methanogenic culture from a leachate sample collected from the low-level radioactive waste disposal site, Maxey Flats, KY. Tritiated methane was produced by methane bacteria from synthetic media containing 2 mCi of tritium as tritiated water or tritiated acetate, and the level of tritium added to the medium had no effect on methanogenesis. Under anaerobic conditions the organic compounds containing /sup 14/C and /sup 3/H activity and tritiated water in the waste are metabolized by microorganisms and they produce radioactive gases which escape into the environment from the disposal sites. 4 figures, 3 tables.

Francis, A.J.; Dobbs, S.; Doering, R.F.

1980-01-01T23:59:59.000Z

5

Biogenesis of tritiated and carbon-14 methane from low-level radioactive waste  

Science Journals Connector (OSTI)

Methane bacteria were detected in leachate samples collected from commercial low-level radioactive waste disposal sites. Significant amounts of tritiated and carbon-14 methane were generated by a mixed methanogenic culture from a leachate sample collected from the low-level radioactive waste disposal site, Maxey Flats, KY. Tritiated methane was produced by methane bacteria from synthetic media containing 2 mCi of tritium as tritiated water or tritiated acetate, and the level of tritium added to the medium had no effect on methanogenesis. Under anaerobic conditions the organic compounds containing 14C and 3H activity and tritiated water in the waste are metabolized by microorganisms and they produce radioactive gases which escape into the environment from the disposal sites.

A.J Francis; S Dobbs; R.F Doering

1980-01-01T23:59:59.000Z

6

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network [OSTI]

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard ~1200 Tg/yr (1 Tg = 1012 g), >70% of which is landfilled. Landfilling of waste contributes ~30-35 Tg

Columbia University

7

Quantum-cascade laser photoacoustic detection of methane emitted from natural gas powered engines  

Science Journals Connector (OSTI)

In this work we present a laser photoacoustic arrangement for the detection of the important greenhouse gas methane. A quantum-cascade laser and a differential photoacoustic cell were ... tested in the detection ...

M. V. Rocha; M. S. Sthel; M. G. Silva; L. B. Paiva; F. W. Pinheiro…

2012-03-01T23:59:59.000Z

8

Methanation  

Science Journals Connector (OSTI)

Methanation describes the heterogeneous, gas-catalytic or biological synthesis of CH4 from H2 and CO/CO2...or in case of the biological path, alternatively from other carbon sources. It is the second substantial,...

Markus Lehner; Robert Tichler…

2014-01-01T23:59:59.000Z

9

Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge  

Science Journals Connector (OSTI)

Abstract The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 ?mol g?1 dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production.

Minh Tuan Nguyen; Nazlina Haiza Mohd Yasin; Toshiki Miyazaki; Toshinari Maeda

2014-01-01T23:59:59.000Z

10

Uncertainty propagation in a model for the estimation of the1 ground level concentration of dioxin/furans emitted from a waste2  

E-Print Network [OSTI]

Uncertainty propagation in a model for the estimation of the1 ground level concentration of dioxin concentration of dioxin/furans emitted from a waste gasification plant. Under the17 condition of insufficient

Paris-Sud XI, UniversitƩ de

11

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

12

A 25 kWe low concentration methane catalytic combustion gas turbine prototype unit  

Science Journals Connector (OSTI)

Abstract Low concentration methane, emitted from various industries e.g. coal mines and landfills into atmosphere, is not only an important greenhouse gas, but also a wasted energy resource if not utilized. In the past decade, we have been developing a novel VAMCAT (ventilation air methane catalytic combustion gas turbine) technology. This turbine technology can be used to mitigate methane emissions for greenhouse gas reduction, and also to utilize the low concentration methane as an energy source. This paper presents our latest research results on the development and demonstration of a 25 kWe lean burn catalytic combustion gas turbine prototype unit. Recent experimental results show that the unit can be operated with 0.8 vol% of methane in air, producing about 19–21 kWe of electricity output.

Shi Su; Xinxiang Yu

2014-01-01T23:59:59.000Z

13

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

SciTech Connect (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

14

ISSUE PAPER METHANE AVOIDANCE FROM  

E-Print Network [OSTI]

.........................................................................................1 1.2. GHG Emissions from Organic Waste...........................................................................................................39 6.2. Standard Methods for Quantifying Methane from Organic Waste in Landfills...40 6.3. GHG.2. Compost GHG Potential

Brown, Sally

15

Emission of methane from plants  

Science Journals Connector (OSTI)

...basis for the efforts to ameliorate fluxes of this potent greenhouse gas, which may contribute significantly to global warming...was emitting significant quantities of methane under ambient lighting in laboratory-controlled conditions. We also examined other...

2009-01-01T23:59:59.000Z

16

Methane Main  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

17

Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas  

E-Print Network [OSTI]

such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity...

Saugier, Luke Duncan

2004-09-30T23:59:59.000Z

18

Production of methane gas from organic fraction municipal solid waste (OFMSW) via anaerobic process: application methodology for the Malaysian condition  

Science Journals Connector (OSTI)

Solid waste management in Malaysia is confronted with many problems, including low collection coverage, irregular collection services, inadequate equipment used for waste collection, crude open dumping and burning without air and water pollution control systems, inadequate legal provisions and resource constraints. These problems have various effects on the development of the solid waste management system in Malaysia. Anaerobic digestion has been suggested as an alternative method for removing high concentrations of organic waste. In this study, two types of anaerobic digesters which are Simulated Landfill Bioreactor (SLBR) and Anaerobic Solid-Liquid (ASL) reactor were proposed. The reactors were operated at a temperature 60°C, analysed for biogas production and volatile fatty acid.

Irnis Azura Zakarya; Ismail Abustan; Norli Ismail; Mohd Suffian Yusoff

2013-01-01T23:59:59.000Z

19

Transuranic (TRU) Waste | Department of Energy  

Office of Environmental Management (EM)

Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

20

Das Methan  

Science Journals Connector (OSTI)

Bei Einwirkung von Salzsäure auf Aluminiumkarbid entwickelt sich ein farbloses Gas, welches, angezündet, mit schwach leuchtender Flamme brennt: Es ist Methan.

A. Lipp

1928-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Capture and Use of Coal Mine Ventilation-Air Methane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

22

Methane production by attached film  

DOE Patents [OSTI]

A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

1981-01-01T23:59:59.000Z

23

Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia  

Science Journals Connector (OSTI)

... primarily through the microbial degradation of organic matter, but abiogenic methane emitted from seeps and geothermal areas is also a major contribution to the atmospheric budget, estimated at 45–75? ... at 45–75?Tg annually. Hell’s Gate (Tikitere), New Zealand, is a geothermal area rich in abiogenic methane. We studied methane oxidation in an area of woody ...

Peter F. Dunfield; Anton Yuryev; Pavel Senin; Angela V. Smirnova; Matthew B. Stott; Shaobin Hou; Binh Ly; Jimmy H. Saw; Zhemin Zhou; Yan Ren; Jianmei Wang; Bruce W. Mountain; Michelle A. Crowe; Tina M. Weatherby; Paul L. E. Bodelier; Werner Liesack; Lu Feng; Lei Wang; Maqsudul Alam

2007-11-14T23:59:59.000Z

24

Nuclear Waste  

Science Journals Connector (OSTI)

Nuclear waste is radioactive material no longer considered valuable...238U, 235U, and 226Ra (where the latter decays to 222Rn gas by emitting an alpha particle) or formed through fission of fissile radioisotopes ...

Rob P. Rechard

2014-01-01T23:59:59.000Z

25

ARM - Methane Background Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

our atmosphere's methane levels have more than doubled in the last 200 years. These methane levels contribute to the greenhouse effect, which contributes to overall climate change....

26

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Project Development Handbook Landfill Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Biomass, - Landfill Gas Phase: Determine Baseline, Evaluate Options, Get Feedback Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/lmop/publications-tools/handbook.html Cost: Free References: Project Development Handbook[1] The handbook describes the process of implementing a waste-to-energy landfill gas project. Overview "Approximately 250 million tons of solid waste was generated in the United States in 2008 with 54 percent deposited in municipal solid waste (MSW)

27

Delaware Solid Waste Authority (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

28

Application of carbonized paper sludge as support of a Ni catalyst. Performance in steam reforming of methane  

Science Journals Connector (OSTI)

Carbonized paper sludge (C.P.S....) from an industrial waste was employed for steam reforming of methane, and Ni loaded C.P.S. pretreated at 973 K showed an initial methane conversion of over 90% at 1073 K...

Toru Kanno; Kiyoshi Tada; Jun-ichi Horiuchi…

2007-06-01T23:59:59.000Z

29

NOx is emitted. In addition, extended idling can result in a consid-erable waste of fuel and cause wear on truck engines. More than  

E-Print Network [OSTI]

wear on truck engines. More than 2 million gal of diesel is wasted on a daily basis nationwide (6). Studies (5) have shown that a long-haul truck can idle away more than a gallon of diesel fuel per hour emissions and fuel consumption, Ā· Examination of factors affecting results and analysis, and Ā· Measurement

30

Methane-steam reforming  

SciTech Connect (OSTI)

A discussion covers steam reforming developments to the 1950's; the kinetics of methane-steam reforming, of the water-gas shift during methane-steam reforming, and of the carbon formation during methane-steam reforming, as approached by Akers and Camp.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

31

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

32

Gammaproteobacterial Methanotrophs Dominate Cold Methane Seeps in Floodplains of West Siberian Rivers  

Science Journals Connector (OSTI)

...for about 20% of the warming induced by long-lived...understood (1, 4). The global methane emission is currently...which is emitted from coal beds, natural gas deposits...geothermal areas (5). The global seepage area and the...2013. Three decades of global methane sources and sinks...

Igor Y. Oshkin; Carl-Eric Wegner; Claudia Lüke; Mikhail V. Glagolev; Illiya V. Filippov; Nikolay V. Pimenov; Werner Liesack; Svetlana N. Dedysh

2014-07-25T23:59:59.000Z

33

Methane Hydrate Field Program  

SciTech Connect (OSTI)

This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

None

2013-12-31T23:59:59.000Z

34

Timelines for mitigating methane emissions from energy technologies  

E-Print Network [OSTI]

Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

Roy, Mandira; Trancik, Jessika E

2015-01-01T23:59:59.000Z

35

Coalbed Methane Production  

U.S. Energy Information Administration (EIA) Indexed Site

NA Not Available; W Withheld to avoid disclosure of individual company data. Notes: Coalbed Methane production data collected in conjunction with proved reserves data on Form...

36

Coalbed Methane | Department of Energy  

Energy Savers [EERE]

Coalbed Methane Coalbed Methane Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable...

37

Coalbed methane gains viability  

SciTech Connect (OSTI)

In recent government studies, the Department of Energy (DOE) states that coal bed methane can be produced economically by using recovery systems that maximize return on investment rather than a system to produce a single coal seam just prior to mining. DOE suggests that the cost of recovering coal bed methane can be substantially reduced by increasing well spacing and employing multizone production if possible. Created as a by-product during the formation of coal, methane frequently is trapped in coal beds and associated strata. Estimates of total US methane contained in coal beds range from 260 to 860 TCF. The Pittsburgh seam in the N. Appalachia basin has estimates of 0.6 to 4 TCF alone. With current technology, DOE thinks that approximately 300 TCF of coal bed methane can be extracted from coal beds.

Not Available

1981-08-01T23:59:59.000Z

38

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California  

E-Print Network [OSTI]

November 2007. [1] Large quantities of natural gas are emitted from the seafloor into the stratified current surface water at 79 stations in a 280 km2 study area. The methane plume spread over an area of $70 stations showed variable methane concentrations which were correlated with changing sub-mesoscale surface

Washburn, Libe

39

Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills  

Science Journals Connector (OSTI)

Abstract Methane emission from landfill gas emission (LandGEM) model was validated through the results of laboratory scale biochemical methane potential assay. Results showed that LandGEM model over estimates methane (CH4) emissions; and the true CH4 potential of waste depends on the level of segregation. Based on these findings, correction factors were developed to estimate CH4 emission using LandGEM model especially where the level of segregation is negligible or does not exist. The correction factors obtained from the study were 0.94, 0.13 and 0.74 for food waste, mixed un-segregated municipal solid waste (MSW) and vegetable wastes, respectively.

Avick Sil; Sunil Kumar; Jonathan W.C. Wong

2014-01-01T23:59:59.000Z

40

Methane Hydrates - Methane Hydrate Graduate Fellowship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Future Supply and Emerging Resources Future Supply and Emerging Resources The National Methane Hydrates R&D Program - Graduate Fellowship Program Methane Hydrate Graduate Fellowship Program Jeffrey James Marlow, a graduate student in Geobiology at the California Institute of Technology, was recently selected as the 2012 recipient of the NETL-National Academy of Sciences (NAS) Methane Hydrate Research Fellowship. Please see page 15 of the March 2013 issue (Vol. 13, Issue 1) of Fire in the Ice for more information on the recipient. The Department of Energy has a long history of building synergistic relationships with research universities. Funding academic research is a "win-win-win" situation. The U.S. government is able to tap into some of the best minds available for solving national energy problems, the universities get the support they need to maintain cutting edge faculty and laboratories, and the students involved are provided with opportunities that help them along their chosen path of study, strengthening the national pool of scientists and engineers. According to Samuel Bodman, speaking about graduate research in methane hydrates, "Students are the foundation of our energy future, bringing new ideas and fresh perspectives to the energy industry. What better way to assure technology innovation than to encourage students working on the development of a resource that has the potential to tip our energy balance toward clean-burning, domestic fuels."

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimal(Estimation(of(North(American(Methane( Emissions(using(GOSAT(data:(  

E-Print Network [OSTI]

Optimal(Estimation(of(North(American(Methane( Emissions(using(GOSAT(data:( A&Sciences&Division,&Lawrence&Berkeley&National&Laboratory,&Berkeley,&CA,&USA.! *aturner@fas.harvard.edu& Harvard(University( #12;Prior Methane Emissions from EDGARv4.2/Kaplan Major/Gas Waste Coal 0 5 10 15 20 Wetlands Livestock Oil/Gas Landfills Coal North America Global #12;Satellites

Jacob, Daniel J.

42

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network [OSTI]

production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

43

Methane Hydrate Program  

Broader source: Energy.gov (indexed) [DOE]

FY 2011 FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of research. Pursuant to statutory requirements, this report is being provided to the following

44

Atmosphärisches Methan als Treibhausgas  

Science Journals Connector (OSTI)

Methan (CH4) gehört neben Wasser(dampf), Kohlendioxid (CO2), Distickstoffmonoxid (Lachgas, N2O), Ozon (O3) und den Fluorchlorkohlenwasserstoffen (FCKW) zu den sog.Treibhausgasen, von denen man mit großer Sicherhe...

W. Klöpffer

1990-09-01T23:59:59.000Z

45

Ionisierungsspannung von Methan  

Science Journals Connector (OSTI)

In einer näher skizzierten Versuchsanordnung wird die Ionisierungsspannung von Methan zu 14,58±0,05 Volt, die...4?Molekel erforderliche Energie zu 15,40±0,05 Volt in guter Übereinstimmung mit der für den homogene...

Erich Pietsch; Gertrud Wilcke

1927-01-01T23:59:59.000Z

46

Methane Hydrate Program  

Broader source: Energy.gov (indexed) [DOE]

Fiscal Year 2012 Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S. Department of Energy Fiscal Year 2012 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area

47

Electrochemical methane sensor  

DOE Patents [OSTI]

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

48

TRENDS: METHANE EMISSIONS - INTRODUCTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Wm-2), almost 20% is attributable to methane (CH4), according to the 1995 report of the Intergovernmental Panel on Climate Change (IPCC 1995). Since the mid-1700s, the atmospheric concentration of methane has increased by about 145% (IPCC 1995). Thus, an understanding of the various sources of methane is important. Atmospheric methane is produced both from natural sources (e.g., wetlands) and from human activities (see global methane cycle, from Professor W.S. Reeburgh at the University of California Irvine). Total sources of methane to the atmosphere for the period 1980-1990 were about 535 (range of 410-660) Tg (1 Teragram = 1 million metric tons) CH4 per year, of which 160 (110-210) Tg CH4/yr were from natural sources and 375 (300-450) Tg CH4/yr

49

Methane Hydrate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

50

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network [OSTI]

. Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

51

AT A GLANCE Title: Hydrogen, Methane and Nitrous oxide: Trend  

E-Print Network [OSTI]

to increases in atmospheric molecular hydrogen (H2) and reductions of fossil fuel burning emissions burning emissions have been calculated with one of the models. MAIN RESULTS Improved methane emissions (from ruminants and waste) is larger. First robust estimates of the uptake of hydrogen by

Haak, Hein

52

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network [OSTI]

Municipal Solid Waste-Sewage Sludge. b 4.15 SCF CH 4 / cu ftUP I j methane 31.5 scf sludge 18.61b water 161b Btu/scfsewer 65.3 lb ( 7.9 gal) sludge ash 1.74 lb stack emissions

Haven, Kendall F.

2011-01-01T23:59:59.000Z

53

Waste Inspection Tomography (WIT)  

SciTech Connect (OSTI)

Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons.

Bernardi, R.T.

1995-12-01T23:59:59.000Z

54

The basics of coalbed methane  

SciTech Connect (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

55

Enhanced coalbed methane recovery  

SciTech Connect (OSTI)

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

56

Direct Aromaization of Methane  

SciTech Connect (OSTI)

The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

George Marcelin

1997-01-15T23:59:59.000Z

57

Can Algae utilize Methane?  

Science Journals Connector (OSTI)

... in connexion with oil prospecting, corrosion problems and formation of a microbial sludge in jet fuel tanks?. The scope of hydrocarbon microbiology has expanded rapidly in the meantime and currently ... the growth of photosynthetic sulphur bacteria in different gaseous environments Dr Enebo isolated the green alga Chlorella from highly reducing enrichment media in which carbonate and methane provided the carbon sources ...

Our Correspondent in Microbiology

1967-07-01T23:59:59.000Z

58

Methane from Anaerobic Fermentation  

Science Journals Connector (OSTI)

...removal rate; and recycling. Many studies have...di-gestion is utilized for wastewater stabili-zation...processes are used in some wastewater treatment plants...sludge is separated for recycling from the digester effluent...percent meth-ane. Many wastewater treatment plants in...

Donald L. Klass

1984-03-09T23:59:59.000Z

59

Methane and Coal  

Science Journals Connector (OSTI)

... stored source of the energy supplies of the world ; every twenty years the world burns a volume of coal equivalent to the volume of Snowdon (a cone of base ... hole method being most in favour. This method is being applied in about twelve British pits. The amount of methane drawn off appears to depend on the movement of the ...

ALFRED EGERTON

1952-07-19T23:59:59.000Z

60

Highly Efficient Silicon Light Emitting Diode  

E-Print Network [OSTI]

silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

62

Methane-steam reforming  

SciTech Connect (OSTI)

The literature relating to the kinetics of methane-steam reforming involving integral and differential reactor data, porous nickel catalysts and nickel foil, and data over large ranges of temperature (500 to 1700/sup 0/F), pressure (0.01 to 50 atm), and intrinsic catalyst activities (200,000-fold) was reviewed. A simple reversible first-order kinetic expression for the steam-methane reaction appears to be applicable throughout the operable region of steam-to-carbon ratios. Internal pore diffusion limitation on the conversion rate, due to catalyst size and/or intrinsic catalyst activity and total operating pressure was underlined. S-shaped Arrhenium plots (changing activation energy) are obtained when steam reforming is conducted over a temperature range sufficient to produce intrinsic kinetics (low temperature, inactive catalyst, or small catalyst size), pore diffusional limitations, and reaction on the outside surface. Homogeneous gas-phase kinetics appear to contribute only at relatively high temperature (1400/sup 0/F). In steam reforming, the water-gas shift reaction departs from its equilibrium position, especially at low methane conversion level. A general correlation of approach to water-gas shift equilibration as a function of conversion level only was indicated. (DP) 18 figures, 6 tables.

Van Hook, J.P.

1980-01-01T23:59:59.000Z

63

Revaluing waste in New York City : planning for small-scale compost  

E-Print Network [OSTI]

One-third of the municipal solid waste stream is organic material that, when processed in landfills, produces methane, a highly potent greenhouse gas. Composting is a proven strategy for organic waste management, which ...

Neilson, Sarah (Sarah Jane)

2009-01-01T23:59:59.000Z

64

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

65

Methane/nitrogen separation process  

DOE Patents [OSTI]

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

66

Bioconversion of biomass to methane  

SciTech Connect (OSTI)

The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

1995-12-01T23:59:59.000Z

67

Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa  

SciTech Connect (OSTI)

The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2011-07-15T23:59:59.000Z

68

Federal Offshore California Coalbed Methane Proved Reserves ...  

Gasoline and Diesel Fuel Update (EIA)

12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore, Pacific (California) Coalbed Methane Proved Reserves, Reserves Changes, and...

69

methane hydrate science plan-final.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 Principal Authors: Consor um for Ocean Leadership and the Methane Hydrate Project Science Team December 2013 DOE Award Number: DE-FE0010195 Project Title: Methane Hydrate...

70

Ohio Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Ohio Coalbed Methane Proved Reserves, Reserves...

71

Florida Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves...

72

Michigan Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Michigan Coalbed Methane Proved Reserves, Reserves...

73

Enhanced Renewable Methane Production System | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

74

Coal mine methane global review  

SciTech Connect (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

75

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

76

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

SciTech Connect (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

77

Methane generation at Grand Gulf Nuclear Station  

SciTech Connect (OSTI)

The methane generation at Grand Gulf has been brought to light twice. The initial event occurred in February 1990 and the second in December 1993. Both events involved the receipt of a cask at Barnwell Waste Management Facility that when opened indicated a gas escaping. The gas was subsequently sampled and indicated a percentage of explosive gas. Both events involved powdered resin and indicated that the generation was from a bacterial attack of the organic materials (cellulose in the powdered resin mixture). The first event occurred and was believed to be isolated in a particular waste stream. The situation was handled and a biocide was found to be effective in treatment of liners until severe cross contamination of another waste stream occurred. This allowed the shipment of a liner that was required to be sampled for explosive gases. The biocide used by GGNS was allowed reintroduction into the floor drains and this allowed the buildup of immunity of the bacterial population to this particular biocide. The approval of a new biocide has currently allowed GGNS to treat liners and ship them offsite.

Carver, M.L. [Entergy Operations, Inc., Grand Gulf Nuclear Station, Port Gibson, MS (United States)

1995-09-01T23:59:59.000Z

78

7.4 Landfill Methane Utilization  

Broader source: Energy.gov [DOE]

A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

79

Chapter 8 - Methane Hydrates  

Science Journals Connector (OSTI)

Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.

Ray Boswell; Koji Yamamoto; Sung-Rock Lee; Timothy Collett; Pushpendra Kumar; Scott Dallimore

2014-01-01T23:59:59.000Z

80

Method of coalbed methane production  

SciTech Connect (OSTI)

This patent describes a method for producing coalbed methane from a coal seam containing coalbed methane and penetrated by at least one injection well and at least one producing well. It comprises: injecting an inert gas through the injection well and into the coal seam. The inert gas being a gas that does not react with the coal under conditions of use and that does not significantly adsorb to the coal; and producing a gas from the production well which consists essentially of the inert gas, coalbed methane, or mixtures thereof.

Puri, R.; Stein, M.H.

1989-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Photonic crystal light emitting diode.  

E-Print Network [OSTI]

?? This master's thesis describe electromagnetic simulations of a gallium antimonide (GaSb) light emitting diode, LED. A problem for such devices is that most of… (more)

Leirset, Erlend

2010-01-01T23:59:59.000Z

82

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

83

Louisiana--State Offshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane...

84

Methane Credit | Open Energy Information  

Open Energy Info (EERE)

Methane Credit Methane Credit Jump to: navigation, search Name Methane Credit Place Charlotte, North Carolina Zip 28273 Product Specialises in utilising methane produced on municipal landfill sites. Coordinates 35.2225Ā°, -80.837539Ā° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

NETL: Methane Hydrates - Hydrate Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrate R&D Program Newsletter Methane Hydrate R&D Program Newsletter An image of a hydrate burning overlayed with the Newsletter Title: Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a bi-annual publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in the Ice please send an email to karl.lang@contr.netl.doe.gov Please click on the links below to access issues of "Fire in the Ice". More on Methane Hydrates

86

Der atmosphärische Kreislauf von Methan  

Science Journals Connector (OSTI)

Present methane concentrations in the northern troposphere average 1.65 ppm. Most CH4 is of recent biogenic origin. 14C analyses indicate that no more than 10% is released by fossil sources. The various CH4-produ...

D. H. Ehhalt

1979-06-01T23:59:59.000Z

87

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste Ā· Program is designed to;Radioactive Waste Ā· Program requires Ā· Generator support Ā· Proper segregation Ā· Packaging Ā· labeling #12;Radioactive Waste Ā· What is radioactive waste? Ā· Anything that Ā· Contains Ā· or is contaminated

Slatton, Clint

88

Catalytic Reduction of Nitrogen Oxides by Methane over Pd(110) S. M. Vesecky, J. Paul, and D. W. Goodman*  

E-Print Network [OSTI]

emissions.1 The subfield of environ- mental catalysis concerned with air quality control involves and stationary sources2 There are many stationary sources of environmental gas phase pollutants. Methane is perhaps the largest pollutant by volume, emitted from sources such as livestock, gas wells, and landfills

Goodman, Wayne

89

Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions  

SciTech Connect (OSTI)

Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)

2011-05-15T23:59:59.000Z

90

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

91

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect (OSTI)

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (ā??Methane in the Arctic Shelfā?¯ or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (ā??metagenomesā?¯). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

92

Methane oxidation rates in the anaerobic sediments of Saanich Inlet  

Science Journals Connector (OSTI)

water methane concentration were avail- able. ... water solute concentrations and methane oxidation rates ..... Diffusion of light paraffin hydrocarbons in water.

2000-02-09T23:59:59.000Z

93

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

94

Chapter 18 - Worldwide Coal Mine Methane and Coalbed Methane Activities  

Science Journals Connector (OSTI)

Abstract The chapter provides an overview of coal bed methane production in all countries (except USA; covered in Chapter 17) around the world where there is a viable coal deposit. Coal deposits are shown in a map and coal bed methane reserves are estimated. All countries can follow the lead provided by USA in CBM production where 10% of total gas consumption (2 TCF/year) comes from coal seams. Exploitation of thick and deep coal seams using the latest technology can create a vast source of domestic energy for many countries around the world.

Charlee Boger; James S. Marshall; Raymond C. Pilcher

2014-01-01T23:59:59.000Z

95

Why Sequence a Methane-Oxidizing Archaean?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Methane-Oxidizing Archaeon? a Methane-Oxidizing Archaeon? Methane is a potent greenhouse gas whose atmospheric concentration has increased significantly because of anthropogenic activities and fluctuated naturally over glacial and interglacial cycles. While the importance of methane in Earth's climate dynamics has been well established, the global processes regulating its oceanic cycling remain poorly understood. Although there are high rates of methane production in many marine sedimentary environments (including a number that have been targeted as petroleum reserves), net methane sources from the ocean to the atmosphere appear to be small. This is due in large part to a biogeochemical process known as the anaerobic oxidation of methane (AOM). Microbially mediated AOM reduces methane flux from ocean to atmosphere, stimulates subsurface microbial

96

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of aerobic methanotrophy in preventing the escape of methane from marine, hydrate-bearing reservoirs to the atmosphere and ultimately to better define the role of aerobic methanotrophy in the global carbon cycle. Graph overlayed on photo - Methane seeps with the resulting methane plume Methane seeps with the resulting methane plume, Geophysical Research Letters, November 2007 Performers University of California Ā– Santa Barbara, Santa Barbara (UCSB), CA 93106 Background The global methane reservoir in the form of gas hydrate is estimated at 500Ā–10,000 Gt (KVENVOLDEN, 1995; MILKOV, 2004). This pool of carbon

97

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

98

Carbon Dioxide and Methane Emissions from Estuaries  

Science Journals Connector (OSTI)

Carbon dioxide and methane emissions from estuaries are reviewed in relation with biogeochemical processes and carbon cycling. In estuaries, carbon dioxide and methane emissions show a large spatial and temporal ...

Gwenaėl Abril; Alberto Vieira Borges

2005-01-01T23:59:59.000Z

99

Optical constants of liquid and solid methane  

Science Journals Connector (OSTI)

The optical constants nr + ini of liquid methane and phase I solid methane were determined over the entire spectral range by the use of various data sources published in the...

Martonchik, John V; Orton, Glenn S

1994-01-01T23:59:59.000Z

100

coalbed methane | OpenEI  

Open Energy Info (EERE)

coalbed methane coalbed methane Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations Source NREL Date Released April 30th, 2005 (9 years ago) Date Updated November 07th, 2007 (7 years ago) Keywords coalbed methane GEF Kenya NREL SWERA TMY UNEP Data application/zip icon Download Data (zip, 5.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system  

Science Journals Connector (OSTI)

Abstract Methane, a major contributor to global warming, is a greenhouse gas emitted from coal mines. Abundance of coal mines and consequently a considerable amount of methane emission requires drastic measures to mitigate harmful effects of coal mining on the environment. One of the commonly adopted methods is to use emitted methane to fuel power generation systems; however, instability of fuel sources hinders the development of systems using conventional prime movers. To address this, application of Stirling engines may be considered. Here, we develop a techno-economic methodology for conducting an optimisation-based feasibility study on the application of Stirling engines as the prime movers of coal mine CHP systems from an economic and an environmental point of view. To examine the impact of environmental policies on the economics of the system, the two commonly implemented ones (i.e. a carbon tax and emissions trading scheme) are considered. The methodology was applied to a local coal mine. The results indicate that incorporating the modelled system not only leads to a substantial reduction in greenhouse gas emissions, but also to improved economics. Further, due to the heavy economic burden, the carbon tax scheme creates great incentive for coal mine industry to address the methane emissions.

Mehdi Aghaei Meybodi; Masud Behnia

2013-01-01T23:59:59.000Z

102

Method for the photocatalytic conversion of methane  

DOE Patents [OSTI]

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

1998-02-24T23:59:59.000Z

103

Electron Transport in Methane Gas  

Science Journals Connector (OSTI)

We propose a kinetic theory for electron-drift-velocity maxima in polyatomic gases. The case of methane is considered in detail, and good agreement with experiment is obtained with use of model cross sections. The Boltzmann equation is solved directly by applying an iterative numerical technique, which converges well when inelastic scattering effects are important.

Peter Kleban and H. Ted Davis

1977-08-22T23:59:59.000Z

104

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network [OSTI]

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

105

Methane Hydrate Advisory Committee | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Advisory Methane Hydrate Advisory Committee Methane Hydrate Advisory Committee The Methane Hydrate Advisory Committee was created in response to provisions of the Methane Hydrate Research and Development Act of 2000 and reauthorized by the Energy Policy Act of 2005. The Committee is to advise the Secretary of Energy on potential applications of methane hydrate; assist in developing recommendations and priorities for the methane hydrate research and development program; and submit to Congress one or more reports on an assessment of the research program and an assessment of the DOE 5-year research plan. The Committee's charter stipulates that up to 15 members can be appointed by the Secretary of Energy, representing institutions of higher education, industrial enterprises and oceanographic institutions and state agencies.

106

Methane Hydrate Production Feasibility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

107

Infrared emitting device and method  

DOE Patents [OSTI]

An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

108

Waste to Energy: Biogas CHP  

E-Print Network [OSTI]

Southside Wastewater Treatment Plant Biogas Cogeneration Project November 9, 2011 2011 Clean Air Through Energy Efficiency Conference ?Turning Waste Into Energy? What to Expect ? ? Southside Overview ? Wastewater Treatment Process... gallons per day ? Processes and disposes over 150 tons of solids/day from both of the City?s wastewater treatment plants What is Biogas? ? Biogas is the methane (CH4) produced as a by-product of the anaerobic digestion process at the Southside...

Wagner, R.

2011-01-01T23:59:59.000Z

109

Blue light emitting thiogallate phosphor  

DOE Patents [OSTI]

A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

Dye, Robert C. (Los Alamos, NM); Smith, David C. (Los Alamos, NM); King, Christopher N. (Portland, OR); Tuenge, Richard T. (Hillsboro, OR)

1998-01-01T23:59:59.000Z

110

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network [OSTI]

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

111

Waste inspection tomography (WIT)  

SciTech Connect (OSTI)

The WIT program will provide an inspection system that offers the nuclear waste evaluator a unique combination of tools for regulatory-driven characterization of low-level waste (LLW), transuranic waste (TRU), and mixed waste drums. WIT provides nondestructive, noninvasive, and environmentally safe inspections using X-ray and gamma ray technologies, with reasonable cost and throughput. Two emission imaging techniques will be employed for characterizing materials in waste containers. The first of these is gamma emission tomography, commonly called single-photon emission computed tomography (SPECT). Rather than using an external radiation source, SPECT uses the emission of radioactive materials within the object of interest for imaging. In this case, emission from actual nuclear waste within a container will provide a three-dimensional image of the radioactive substances in the container. The second emission technique will use high-purity germanium detectors for gamma ray spectroscopy. This technique, called nondestructive assay (NDA), can identify the emitting isotopic species and strength. Work in emission tomography and assay of nuclear waste has been undertaken at Lawrence Livermore National Laboratory using a technique called Passive Tomography. Results from a process development unit are presented.

Bernardi, R.T.; Han, K.S.

1994-12-31T23:59:59.000Z

112

Microbial effects on radioactive wastes at SLB sites  

SciTech Connect (OSTI)

The objectives of this study are to determine the significance of microbial degradation of organic wastes on radionuclide migration on shallow land burial for humid and arid sites, establish which mechanisms predominate and ascertain the conditions under which these mechanisms operate. Factors contolling gaseous eminations from low-level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide and possibly hydrogen from the site stems from the inclusion of tritium and/or /sup 14/C into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste materials, primary emphasis of the study involved on examination of the biochemical pathways producing methane, carbon dioxide and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Although the methane and carbon dioxide production rate indicates the degradation rate of the organic substances in the waste, it does not predict the methane evolution rate from the trench site. Methane fluxes from the soil surface are equivalent to the net synthesis minus the quantity oxidized by the microbial community as the gas passes through the soil profile. Gas studies were performed at three commercial low-level radioactive waste disposal sites (West Valley, New York; Beatty, Nevada; Maxey Flats, Kentucky) during the period 1976 to 1978. The results of these studies are presented. 3 tables.

Colombo, P.

1982-01-01T23:59:59.000Z

113

Infrared emitting device and method  

DOE Patents [OSTI]

The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

1997-04-29T23:59:59.000Z

114

Nickel crystallite thermometry during methanation  

SciTech Connect (OSTI)

A magnetic method to measure the average temperature of superparamagnetic nickel crystallites has been applied during CO methanation. The method takes advantage of the temperature dependence of the low field magnetization of such catalysts; however, the adsorption of carbon monoxide and the formation of surface carbon species complicate the interpretation of results. Calibrations to account for temperature change and the adsorption of reactants are described. The calibration for the effects of CO is based on the assumption that the interaction of CO with nickel is the same for methanation and disproportionation. Interphase heat transfer calculations based on the thermometric data compare favorably with previous results from ethane hyrogenolysis, and give no indication of microscopic temperature differences between the nickel crystallites and support.

Ludlow, D.K.; Cale, T.S.

1986-01-01T23:59:59.000Z

115

Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project  

SciTech Connect (OSTI)

NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered to capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.

Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

2014-07-01T23:59:59.000Z

116

Doubling of atmospheric methane supported  

SciTech Connect (OSTI)

Atmospheric methane over the past 27,000 years was measured by analyzing air trapped in glacial ice in Greenland and Antarctica. Atmospheric concentrations were stable over that period until about 200 years b.p. In the last 200 years they have more than doubled. This change in concentration is correlated with the increase in human population; the implications for climate modification are discussed. 1 figure, 3 references.

Kerr, R.A.

1984-11-23T23:59:59.000Z

117

A study on the solubility of heavy hydrocarbons in liquid methane and methane containing mixtures.  

E-Print Network [OSTI]

??The solubilities of the hydrocarbons n-butane, n-pentane, n-hexane, n-octane, and n-nonane in liquid methane and of n-hexane in the mixed solvents of methane and ethane… (more)

Brew, T. C. L.

2009-01-01T23:59:59.000Z

118

Plasma catalytic reforming of methane  

Science Journals Connector (OSTI)

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This article describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius), and a high degree of dissociation and a substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (40% H2, 17% CO2 and 33% N2, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2–3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H2 with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content (?1.5%) with power densities of ?30 kW (H2 HHV)/l of reactor, or ?10 m3/h H2 per liter of reactor. Power density should further increase with increased power and improved design.

L Bromberg; D.R Cohn; A Rabinovich; N Alexeev

1999-01-01T23:59:59.000Z

119

Chapter 14 - Coal bed methane  

Science Journals Connector (OSTI)

Publisher Summary Methane adsorbed to the surface of coal is a very old issue with some new commercial ramifications. This explosive gas has made underground coal mines dangerous both from the risk of explosion and the possibility of an oxygen-poor atmosphere that wouldn't support life. The miner's main concern with coal bed methane (CBM) has been how to get rid of it. Techniques to deal with CBM in mines have ranged from the classic canary in a cage to detect an oxygen-poor atmosphere to huge ventilation fans to force the replacement of a methane-rich environment with outside air, to drilling CBM wells in front of the coal face to try to degas the coal prior to exposing the mine to the CBM. All these techniques have met with some amount of success. None of the techniques to prevent CBM from fouling the air in an underground mine has been totally successful. With the CBM's unique method of gas storage, the preponderance of the gas is available only to very low coalface pressures. The coalface pressure is set by a combination of flowing wellhead pressure and the hydrostatic head exerted by standing liquid within the well bore. Effective compression strategies can lower the wellhead pressure to very low values. Effective deliquification techniques can reduce or remove the backpressure caused by accumulated liquid. CBM's economic impact is briefly explained in this chapter.

James F. Lea; Henry V. Nickens; Mike R. Wells

2008-01-01T23:59:59.000Z

120

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 EST-380-NEDA Goal The purpose of this study is to establish sediment lithology and quantification of methane in hydrates hosted in fine-grained sediments from the Gulf of Mexico (GoM), a marine site of methane hydrate occurrence. The results will help establish a correlation between laboratory data and hydrate accumulation field data on dispersed hydrates in the natural environment. Performer Brookhaven National Laboratory (BNL), Upton, New York 11973 Background Gas hydrates are located in permafrost and marine environments and show potential as a vast methane source worldwide. However, methane is about 17 times more potent a greenhouse gas than CO2 and the inherent instability of

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Methane Hydrates R&D Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

122

Record of Decision on Treating Transuranic (TRU)/Alpha Low-Level Waste at the Oak Ridge National Laboratory (DOE/EIS-0305) (8/9/00)  

Broader source: Energy.gov (indexed) [DOE]

83 83 Federal Register / Vol. 65, No. 154 / Wednesday, August 9, 2000 / Notices 1 TRU waste is waste containing alpha-emitting radionuclides with an atomic number greater than 92 and half-lives greater than 20 years, at concentrations greater than 100 nanocuries per gram of waste. 2 Alpha low-level waste is low-level waste that contains alpha-emitting isotopes. 3 Mixed waste contains radioactive waste regulated under the Atomic Energy Act of 1954, as amended, and a hazardous component subject to RCRA regulation. 4 Low-level waste is any radioactive waste that is not classified as high-level waste, spent nuclear fuel, TRU waste, byproduct material, or mixed waste. 5 Remote-handled TRU/alpha low-level waste contains alpha-, beta-, and gamma-emitting isotopes with a surface dose rate greater than 200 millirem

123

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013...

124

Miscellaneous States Coalbed Methane Proved Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Revision Decreases (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

125

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

126

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

127

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

128

,"Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

129

A guide to coalbed methane operations  

SciTech Connect (OSTI)

A guide to coalbed methane production is presented. The guide provides practical information on siting, drilling, completing, and producing coalbed methane wells. Information is presented for experienced coalbed methane producers and coalbed methane operations. The information will assist in making informed decisions about producing this resource. The information is presented in nine chapters on selecting and preparing of field site, drilling and casing the wellbore, wireline logging, completing the well, fracturing coal seams, selecting production equipment and facilities, operating wells and production equipment, treating and disposing of produced water, and testing the well.

Hollub, V.A.; Schafer, P.S.

1992-01-01T23:59:59.000Z

130

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

131

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

132

,"Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

133

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

134

CO2 Sequestration Enhances Coalbed Methane Production.  

E-Print Network [OSTI]

??Since 1980s, petroleum engineers and geologists have conducted researches on Enhanced Coalbed Methane Recovery (ECBM). During this period, many methods are introduced to enhance the… (more)

Pang, Yu

2013-01-01T23:59:59.000Z

135

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

136

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

137

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

138

,"California - Coastal Region Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

139

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network [OSTI]

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

140

Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane  

Science Journals Connector (OSTI)

Lately, there has been considerable interest in the development of more efficient processes to generate syngas, an intermediate in the production of fuels and chemicals, including methanol, dimethyl ether, ethylene, propylene and Fischer–Tropsch fuels. Steam methane reforming (SMR) is the most widely applied method of producing syngas from natural gas. Dry reforming of methane (DRM) is a process that uses waste carbon dioxide to produce syngas from natural gas. Dry reforming alone has not yet been implemented commercially; however, a combination of steam methane reforming and dry reforming of methane (SMR + DRM) has been used in industry for several years. The aim of this work was to simulate both the SMR and SMR + DRM processes and to conduct an economic and environmental analysis to determine whether the SMR + DRM process is competitive with the more popular SMR process. The results indicate that the SMR + DRM process has a lower carbon footprint. Further research on DRM catalysts could make this process economically competitive with steam methane reforming.

Preeti Gangadharan; Krishna C. Kanchi; Helen H. Lou

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Quantum Cascade Lasers Emitting below 3 µm  

Science Journals Connector (OSTI)

First quantum cascade lasers emitting below 3 µm are demonstrated. The lasers based on the InAs/AlSb material system emit at 2.95-2.97 µm at 83 K and operate up to room temperature.

Devenson, Jan; Teissier, Roland; Cathabard, Olivier; Baranov, Alexei N

142

Assessment of the resource associated with biomethane from food waste  

Science Journals Connector (OSTI)

This paper assesses the resource of biomethane produced from food waste at a state level in the EU. The resource is dependent on the quantity of food waste available for anaerobic digestion and the specific methane yield from food waste. The specific method of undertaking biomethane potential (BMP) tests was shown to be crucial. BMP tests were carried out at different scales (5 L and 0.5 L) with different sources of inoculum, for both wet and dried substrate samples. The upper bound BMP results for source segregated canteen food waste gave specific methane yields of between 467 and 529 L CH4 per kg volatile solids added. The higher results were associated with acclimatised inoculum and wet samples of food waste. The potential renewable resource of biomethane from food waste is shown to be equivalent to 2.8% of energy in transport in Ireland; this is significant as it surpasses the resource associated with electrifying 10% of the private car fleet in Ireland, which is currently the preferred option for renewable energy in transport in the country. However for this resource to be realised within the EU, source segregation of food waste must be effected. According to the Animal By-Products Regulations, digestate from source segregated food waste may be applied to agricultural land post anaerobic digestion. Digestate from food waste derived from a mixed waste source may not be applied to agricultural land. Thus biomethane from food waste is predicated on source segregation of food waste.

James D. Browne; Jerry D. Murphy

2013-01-01T23:59:59.000Z

143

Scientists detect methane levels three times larger than expected...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methane that actually preceded recent concerns about potential emissions from fracking," Dubey said. Scientists detect methane levels three times larger than expected over...

144

Three-dimensional model synthesis of the global methane cycle  

E-Print Network [OSTI]

39, Ehhalt, D. H. , The atmo•heric cycle of methane, Tellugworld-wide increase in t•heric methane, 1978-1987, Science,

1991-01-01T23:59:59.000Z

145

Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Texas State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

146

Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and...

147

Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Federal Offshore Texas Coalbed Methane Proved Reserves, Reserves Changes, and Production...

148

California--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 CA, State Offshore Coalbed Methane Proved Reserves, Reserves Changes, and Production...

149

Texas--RRC District 9 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 9 Coalbed Methane Proved Reserves,...

150

North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved...

151

Texas--RRC District 6 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 6 Coalbed Methane Proved Reserves,...

152

California (with State off) Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 California Coalbed Methane Proved Reserves,...

153

Alaska (with Total Offshore) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves...

154

Texas--RRC District 1 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 1 Coalbed Methane Proved Reserves,...

155

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves,...

156

Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Michigan Coalbed Methane Proved Reserves,...

157

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

158

California (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves...

159

Texas (with State Offshore) Coalbed Methane Proved Reserves ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0...

160

Prediction of coalbed methane reservoir performance with type curves.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoirs are dual-porosity systems that are characterized by… (more)

Bhavsar, Amol Bhaskar.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, South Onshore Coalbed Methane Proved...

162

New York Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves...

163

Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 5 Coalbed Methane Proved...

164

Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 1 Coalbed Methane Proved...

165

North Dakota Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production North Dakota Coalbed Methane Proved Reserves,...

166

Mississippi (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves...

167

The Optimization of Well Spacing in a Coalbed Methane Reservoir.  

E-Print Network [OSTI]

??Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The… (more)

Sinurat, Pahala Dominicus

2012-01-01T23:59:59.000Z

168

Louisiana--South Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production LA, South Onshore Coalbed Methane Proved Reserves,...

169

Lower 48 Federal Offshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production Federal Offshore U.S. Coalbed Methane Proved...

170

Mississippi (with State off) Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Mississippi Coalbed Methane Proved Reserves,...

171

Texas--RRC District 8 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8 Coalbed Methane Proved Reserves,...

172

Diffusion Characterization of Coal for Enhanced Coalbed Methane Production.  

E-Print Network [OSTI]

??This thesis explores the concept of displacement of sorbed methane and enhancement of methane recovery by injection of CO2 into coal, while sequestering CO2. The… (more)

Chhajed, Pawan

2011-01-01T23:59:59.000Z

173

Development of gas production type curves for coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists on methane production from the coal seams. The unique coal characteristic results in a dual-porosity system.… (more)

Garcia Arenas, Anangela.

2004-01-01T23:59:59.000Z

174

Four Corners methane hotspot points to coal-related sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

methane hotspot points to coal-related sources Methane is very efficient at trapping heat in the atmosphere and, like carbon dioxide, it contributes to global warming. October...

175

Plasma catalytic reforming of methane  

SciTech Connect (OSTI)

Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

Bromberg, L.; Cohn, D.R.; Rabinovich, A. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center; Alexeev, N. [Russian Academy of Sciences, Moscow (Russian Federation). Baikov Inst. of Metallurgy

1998-08-01T23:59:59.000Z

176

Waste-to-Energy and Fuel Cell Technologies Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste-to-Energy and Fuel Cell Waste-to-Energy and Fuel Cell T h l i O i Innovation for Our Energy Future Technologies Overview Presented to: DOD-DOE Waste-to- Energy Workshop Energy Workshop Dr. Robert J. Remick J 13 2011 January 13, 2011 Capital Hilton Hotel Washington, DC NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Global Approach for Using Biogas Innovation for Our Energy Future Anaerobic Digestion of Organic Wastes is a Good Source of Methane. Organic waste + methanogenic bacteria ā†’ methane (CH 4 ) Issues: High levels of contamination Time varying output of gas quantity and quality Innovation for Our Energy Future Photo courtesy of Dos Rios Water Recycling Center, San Antonio, TX

177

The 1991 coalbed methane symposium proceedings  

SciTech Connect (OSTI)

The proceedings of the 1991 coalbed methane symposium are presented. The proceedings contains 50 papers on environmental aspects of recovering methane from coal seams, reservoir characterization and testing mine safety and productivity, coalbed stimulation, geology and resource assessment, well completion and production technologies, reservoir modeling and case histories, and resources and technology.

Not Available

1991-01-01T23:59:59.000Z

178

Technical Note Methane gas migration through geomembranes  

E-Print Network [OSTI]

and Fick's law. This chart can be used by landfill designers to evaluate the methane gas transmission rate for a selected geomembrane type and thickness and expected methane gas pressure in the landfill. KEYWORDS landfill usually consists, from bottom to top, of: graded landfill surface; a gas-venting layer; a low

179

CLASSIFICATION AND REACTIVITY OF SECONDARY ALUMINUM PRODUCTION WASTE  

E-Print Network [OSTI]

aluminum30 production process emits seventeen (17) times less pollution to the atmosphere (see Table 1 in the ASCE Journal of Hazardous, Toxic, and Radioactive Waste November 8, 2012 #12;2 Classification

180

Mr. John E. Kieling, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to enhance waste stream collection. The cost ofthe bins was 2,717. 70. * Light-emitting diode (LED) task lights were purchased to replace fluorescent units with the purpose...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching  

E-Print Network [OSTI]

Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching S, France *E-mail : sebastien.forget@univ-paris13.fr Keywords: OLED, quenching, doping, red-emitting organic. We herein report on Organic Light-Emitting Diodes (OLEDs) based on a fluorescent amorphous red

Paris-Sud XI, UniversitƩ de

182

Arctic Methane, Hydrates, and Global Climate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arctic Methane, Hydrates, and Global Climate Arctic Methane, Hydrates, and Global Climate Speaker(s): Matthew T. Reagan Date: March 17, 2010 - 12:00pm Location: 90-3122 Paleooceanographic evidence has been used to postulate that methane may have had a significant role in regulating past climate. However, the behavior of contemporary permafrost deposits and oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. A recent expedition to the west coast of Spitsbergen discovered substantial methane gas plumes exiting the seafloor at depths that correspond to the upper limit of the receding gas hydrate stability zone. It has been suggested that these plumes may be the

183

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 DE-FC26-06NT42963 Goal The goal of this project is to develop observational and experimental data that can provide a better understanding of the basic mechanisms at work in a methane hydrate reservoir that is under production. To this end, a thorough physical understanding of underlying phenomena associated with methane hydrate production will be acquired through unique, multi-scale experiments and associated analyses. In addition, one or more mathematical models that account for the observed phenomena and provide insights that may help to optimize methane hydrate production methods will be developed. Performers Georgia Tech Research Corporation, Atlanta, Georgia 30332 Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee 37831

184

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...4). Although disposal of HLW remains...for long-term disposal is through deep...successful waste-disposal program has eluded...geologic repository at Yucca Mountain, Nevada. Authorized...Administration withdrew funding for Yucca Mountain...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

185

Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

Silva, M.K.; Neill, R.H.

1994-09-01T23:59:59.000Z

186

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Broader source: Energy.gov [DOE]

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

187

DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES  

SciTech Connect (OSTI)

During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

J. Daniel Arthur

2003-04-01T23:59:59.000Z

188

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

189

Methane Hydrates and Climate Change | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrates and Climate Change Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater sediments, the ocean or atmosphere. DOE is conducting research to understand the mechanisms and volumes involved in these little-studied processes. DOE environmental and climate change research projects related to Arctic methane hydrate deposits include: Characterization of Methane Degradation and Methane-Degrading

190

Diffusive Accumulation of Methane Bubbles in Seabed  

E-Print Network [OSTI]

We consider seabed bearing methane bubbles. In the absence of fractures the bubbles are immovably trapped in a porous matrix by surface tension forces; therefore the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. The adequate description of this process requires accounting "other-than-normal" (non-Fickian) diffusion effects, thermodiffusion and gravity action. We evaluate the diffusive flux of aqueous methane and predict the possibility of existence of bubble mass accumulation zones (which can appear independently from the presence/absence of hydrate stability zone) and effect of non-Fickian drift on the capacity of shallow and deep methane-hydrate deposits.

Goldobin, D S; Levesley, J; Lovell, M A; Rochelle, C A; Jackson, P; Haywood, A; Hunter, S; Rees, J

2010-01-01T23:59:59.000Z

191

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect (OSTI)

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

192

Sandia National Laboratories: light-emitting diode  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

light-emitting diode Sandian Receives the Illuminating Engineering Society of North America, South Region Technical Award On December 12, 2014, in Capabilities, Energy, Energy...

193

E-Print Network 3.0 - atmospheric methane extracted Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: atmospheric methane extracted Page: << < 1 2 3 4 5 > >> 1 Oceanic sediment methane, including methane clathrate hydrates (hydrates), is the Earth's largest...

194

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network [OSTI]

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

195

Development of water production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. The key parameters for the evaluation of coalbed methane… (more)

Burka Narayana, Praveen Kumar.

2007-01-01T23:59:59.000Z

196

Tool to predict the production performance of vertical wells in a coalbed methane reservoir.  

E-Print Network [OSTI]

??Coalbed Methane (CBM) is an unconventional gas resource that consists of methane production from coal seams. Coalbed Methane gas production is controlled be interactions of… (more)

Enoh, Michael E.

2007-01-01T23:59:59.000Z

197

Methane Digester Loan Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Digester Loan Program Methane Digester Loan Program Methane Digester Loan Program < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate RFA can provide up to $250,000 of loan principal Program Info Funding Source Minnesota Rural Finance Authority (RFA) State Minnesota Program Type State Loan Program Rebate Amount RFA participation limited to 45% of loan principal Provider Minnesota Department of Agriculture Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by providing zero-interest loans to eligible borrowers. The loan program is part of the Rural Finance Authority (RFA) revolving loan fund, through which farmers can receive financial aid

198

Methane Hydrate Program Annual Report to Congress  

Broader source: Energy.gov (indexed) [DOE]

FY 2010 FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled, U.S. Department of Energy FY 2010 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of

199

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 ESD05-048 Goal The project is bringing new laboratory measurements and evaluation techniques to bear on the difficult problems of characterization and gas recovery from methane hydrate deposits. Performer Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Background LBNL is performing laboratory tests to provide data to support the characterization and development of methane hydrate deposits. Major areas of research underway include hydrologic measurements, combined geomechanical/geophysical measurements, and synthetic hydrate formation studies. Hydrologic Measurements Relatively little research has been done to experimentally determine

200

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection and Microbiological Analysis of Gas Hydrate Cores Collection and Microbiological Analysis of Gas Hydrate Cores FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a fundamental modeling parameter - the amount of methane generated in deep sediments by methanogenic microorganisms. This would allow methane distribution models of gas hydrate reservoirs to accurately reflect an unknown volume and the distribution of biogenic methane within in a reservoir. The personnel at INEL have experience in similar biologic research and are considered to be experts by their global peers. Performer Idaho National Engineering and Environmental Laboratory (INEEL) - sample collection and analysis Location

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seismic-Scale Rock Physics of Methane Hydrate Seismic-Scale Rock Physics of Methane Hydrate DE-FC26-05NT42663 Goal The goal of this project was to establish rock physics models for use in generating synthetic seismic signatures of methane hydrate reservoirs. Ultimately, the intent was to improve seismic detection and quantification of offshore and onshore methane hydrate accumulations. Performer Stanford University, Stanford, CA 94305 Background Gas hydrate reservoir characterization is, in principle, no different from traditional hydrocarbon reservoir characterization. The seismic response of the subsurface is determined by the spatial distribution of the elastic properties (properties of the subsurface that deform as seismic waves pass through it) and attenuation. By mapping changes in the elastic properties, scientists can identify geologic features, including hydrocarbon reservoirs.

202

methane_hydrates | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrate and its potential as a fuel source, please read the 2011 Methane Hydrates Primer. Information on other elements of the program can be found under the links below. Fire...

203

Hydraulic fracturing accelerates coalbed methane recovery  

SciTech Connect (OSTI)

Methane production from deep coal seams that never will be mined requires hydraulic fracturing for faster, optimal recovery. Since this can be a complex process, proper formation evaluation beforehand is essential, according to this paper.

Holditch, S.A. (Texas A and M Univ. (US)); Ely, J.W.; Semmelbeck, M.E.; Carter, R.H. (S.A. Holditch and Associates (US)); Hinkel, J.J.; Jeffrey, R.G. Jr. (Dowell Schlumberger (US))

1990-11-01T23:59:59.000Z

204

Mikrobiologie und Ökophysiologie des Methan-Kreislaufs  

Science Journals Connector (OSTI)

Methan ist ein Spurengas in der Atmosphäre (1,8 ppmv), dessen Konzentration aufgrund von anthropogenen Aktivitäten jährlich mit etwa 0,5–1% zunimmt. Es wird zusammen mit CO2, N2O (Lachgas), O3 (Ozon) und Fluorchl...

Professor em. Dr. sc. agr. habil. Johannes C. G. Ottow

2011-01-01T23:59:59.000Z

205

Virginia Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

206

Oklahoma Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

207

Montana Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

208

Virginia Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

209

Pennsylvania Coalbed Methane Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

210

Colorado Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Colorado Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12...

211

Alabama Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23...

212

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

213

Virginia Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

214

Arkansas Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

215

Kansas Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Kansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 25 38...

216

Colorado Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

217

Oklahoma Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) Oklahoma Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 58 68...

218

Arkansas Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3...

219

Pennsylvania Coalbed Methane Proved Reserves Revision Increases...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

220

Virginia Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Colorado Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

222

Oklahoma Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

223

Montana Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

224

Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

225

Utah Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Utah Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 74 83 103...

226

Wyoming Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

227

Arkansas Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

228

Oklahoma Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

229

Miscellaneous States Coalbed Methane Proved Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

230

Pennsylvania Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Pennsylvania Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 5...

231

Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

232

Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

233

Colorado Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

234

Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

235

Colorado Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

236

Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

237

Colorado Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

238

Arkansas Coalbed Methane Proved Reserves Revision Decreases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

239

Virginia Coalbed Methane Proved Reserves Revision Increases ...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

240

Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Processes for Methane Production from Gas Hydrates  

Science Journals Connector (OSTI)

The main cost here is only that of the pipeline used to transport the gas to the production platform. For subsea systems that do not ... group of wells. Transporting methane from the production site to the shore ...

2010-01-01T23:59:59.000Z

242

Methane Hydrates R&D Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

abundance suggest that they contain perhaps more organic carbon that all the world's oil, gas, and coal combined. The primary mission of the Methane Hydrates R&D Program is to...

243

Estimating Waste Inventory and Waste Tank Characterization |...  

Office of Environmental Management (EM)

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

244

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

245

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...06520, USA. Nuclear power is re-emerging...proclaiming a “nuclear renaissance...example, plant safety...liabilities, terrorism at plants and in transport...high-level nuclear wastes (HLW...factor in risk perceptions...supporting nuclear power in the abstract...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

246

Green emitting phosphors and blends thereof  

DOE Patents [OSTI]

Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

Setlur, Anant Achyut (Niskayuna, NY); Siclovan, Oltea Puica (Rexford, NY); Nammalwar, Prasanth Kumar (Bangalore, IN); Sathyanarayan, Ramesh Rao (Bangalore, IN); Porob, Digamber G. (Goa, IN); Chandran, Ramachandran Gopi (Bangalore, IN); Heward, William Jordan (Saratoga Springs, NY); Radkov, Emil Vergilov (Euclid, OH); Briel, Linda Jane Valyou (Niskayuna, NY)

2010-12-28T23:59:59.000Z

247

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

248

ULTRASONIC ARRAY TECHNIQUE FOR THE INSPECTION OF COPPER LINED CANISTERS FOR NUCLEAR WASTE FUEL  

E-Print Network [OSTI]

ULTRASONIC ARRAY TECHNIQUE FOR THE INSPECTION OF COPPER LINED CANISTERS FOR NUCLEAR WASTE FUEL and Waste Management Co.) for encapsulation of nuclear waste. Due to the radiation emitted by the nuclear, and characterization. The applicability of linear array technique for inspection of copper lined canisters for nuclear

249

COMPLIANCE FOR HANFORD WASTE RETRIEVAL RADIOACTIVE AIR EMISSIONS  

SciTech Connect (OSTI)

{sm_bullet} Since 1970, approximately 38,000 suspect transuranic (TRU) and TRU waste cont{approx}iners have been placed in retrievable storage on the Hanford Site in the 200Area's burial grounds. {sm_bullet} TRU waste is defined as waste containing greater than 100 nanocuries/gram of alpha emitting transuranic isotopes with half lives greater than 20 years. {sm_bullet} The United States currentl{approx}permanently disposes of TRU waste at the Waste Isolation Pilot Plant (WIPP).

FM SIMMONS

2009-06-30T23:59:59.000Z

250

Methane Power Inc | Open Energy Information  

Open Energy Info (EERE)

Methane Power Inc Methane Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name Methane Power Inc. Address 121 Edinburgh South Drive Place Cary, NC Zip 27511 Sector Renewable Energy Product Methane Power is a renewable energy project developer that focuses on landfill gas-to-energy projects. Currently, they are a supplier of landfill gas generated energy to Duke Energy in North Carolina. Phone number 919-297-7206 Website http://www.methanepower.net Coordinates 35.7395875Ā°, -78.8029226Ā° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7395875,"lon":-78.8029226,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

251

Carbon deposition in steam reforming and methanation  

SciTech Connect (OSTI)

The purpose of this review is to survey recent studies of carbon deposition on metals used as catalysts in steam reforming and methanation, emphasizing research where significant progress has been made. Where possible, an attempt is made to treat the fundamental nature of carbon formation and deactivation by carbon and the relationships between these two phenomena. Steam reforming and methanation are emphasized in this review because (1) deactivation of catalysts by carbon deposits is a serious concern in both processes, (2) much of the previous research with carbon formation on metals involved one or the other of these two reactions, and (3) there are interesting differences and similarities between these two reactions; for example, methanation is typically carried out at moderate reaction temperatures (200-450/sup 0/C) while steam reforming is typically carried out at significantly higher reaction temperatures (600-900/sup 0/C). Yet the two reactions are very closely related, since methane steam reforming is the reverse of methanation of CO. Moreover, there is evidence that some of the carbons formed in these two different processes are similar in their morphology.

Bartholomew, C.H.

1982-01-01T23:59:59.000Z

252

Organic light emitting devices for illumination  

SciTech Connect (OSTI)

An organic light emitting device an a method of obtaining illumination from such a device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient than an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

Hack, Michael (Lambertville, NJ); Lu, Min-Hao Michael (Lawrenceville, NJ); Weaver, Michael S. (Princeton, NJ)

2012-01-24T23:59:59.000Z

253

Organic light emitting devices for illumination  

DOE Patents [OSTI]

An organic light emitting device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient that an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

Hack, Michael (Lambertville, NJ); Lu, Min-Hao Michael (Lawrenceville, NJ); Weaver, Michael S. (Princeton, NJ)

2010-02-16T23:59:59.000Z

254

Natural Gas Infrastructure R&D and Methane Emissions Mitigation...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop November 12, 2014 11:00AM EST to...

255

Numerical modeling of methane venting from lake sediments  

E-Print Network [OSTI]

The dynamics of methane transport in lake sediments control the release of methane into the water column above, and the portion that reaches the atmosphere may contribute significantly to the greenhouse effect. The observed ...

Scandella, Benjamin P. (Benjamin Paul)

2010-01-01T23:59:59.000Z

256

Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

257

U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

258

Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

259

Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

260

Louisiana (with State Offshore) Coalbed Methane Proved Reserves...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

262

Eastern States Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Production (Billion Cubic Feet) Eastern States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

263

Western States Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

264

Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

265

Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

266

Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

267

Methane Adsorption and Dissociation and Oxygen Adsorption and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Adsorption and Dissociation and Oxygen Adsorption and Reaction with CO on Pd Nanoparticles on MgO(100) and on Pd(111). Methane Adsorption and Dissociation and Oxygen...

268

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

269

Direct use of methane in coal liquefaction  

DOE Patents [OSTI]

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

1987-01-01T23:59:59.000Z

270

Direct use of methane in coal liquefaction  

DOE Patents [OSTI]

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

Sundaram, M.S.; Steinberg, M.

1985-06-19T23:59:59.000Z

271

MethaneHydrateRD_FC.indd  

Broader source: Energy.gov (indexed) [DOE]

gas is an important energy gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy (FE) has played a major role in developing technologies to help tap new, unconventional sources of natural gas. FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and managed a high-quality research portf olio that has enabled signifi cant progress toward the (DOE) Program's long-term goals." The Nati onal Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety of forms in sediments within and below thick permafrost in Arctic regions, and in the

272

Surface Plasmon Coupled Light-emitting Diode  

Science Journals Connector (OSTI)

The fundamental phenomena, basic principles, and device fabrication and characterization of surface plasmon coupled InGaN/GaN quantum-well light-emitting diode are reviewed, including...

Chen, Horng-Shyang; Kuo, Yang; Lin, Chun-Han; Chen, Chia-Feng; Chou, Wang-Hsien; Chiu, Min-Hsuan; Shih, Pei-Ying; Su, Chia-Ying; Liao, Che-Hao; Hsieh, Chieh; Chen, Chih-Yen; Kiang, Yean-Woei; Yang, Chih-Chung

273

Thermal pumping of light-emitting diodes  

E-Print Network [OSTI]

The work presented here is a study of thermally enhanced injection in light-emitting diodes (LEDs). This effect, which we refer to as "thermal pumping", results from Peltier energy exchange from the lattice to charge ...

Gray, Dodd (Dodd J.)

2011-01-01T23:59:59.000Z

274

Measurements of Methane Emissions at Natural Gas Production Sites  

E-Print Network [OSTI]

Measurements of Methane Emissions at Natural Gas Production Sites in the United States #12;Why = 21 #12;Need for Study Ā· Estimates of methane emissions from natural gas production , from academic in assumptions in estimating emissions Ā· Measured data for some sources of methane emissions during natural gas

Lightsey, Glenn

275

Gravimetric study of adsorbed intermediates in methanation of carbon monoxide  

SciTech Connect (OSTI)

The purpose of this study is to more fully elucidate the adsorbed intermediates and mechanism involved in catalytic methanation of CO on a typical nickel methanation catalyst. Rates of adsorption and desorption of surface species and of gasification of carbon were measured gravimetrically to determine their kinetics and possible roles in methanation. 19 refs.

Gardner, D.C.; Bartholomew, C.H.

1981-08-01T23:59:59.000Z

276

Planetary and Space Science 54 (2006) 11771187 Titan's methane cycle  

E-Print Network [OSTI]

Abstract Methane is key to sustaining Titan's thick nitrogen atmosphere. However, methane is destroyed and the pressure induced opacity in the infrared, particularly by CH4Ā­N2 and H2Ā­N2 collisions in the troposphere), whose reaction with carbon grains or carbon dioxide in the crustal pores produces methane gas

Atreya, Sushil

277

METHANE IN SUBSURFACE: MATHEMATICAL MODELING AND COMPUTATIONAL CHALLENGES  

E-Print Network [OSTI]

advanced models of adsorption occuring in coalbed methane recovery processes, and discuss the underlying methods, hysteresis, coalbed methane, mean-field equi- librium models AMS(MOS) subject classifications. 76 applications important for global climate and energy studies, namely Enhanced Coalbed Methane (ECBM) recovery

Peszynska, Malgorzata

278

Methane in lakes and wetlands Microbiological production, ecosystem  

E-Print Network [OSTI]

Methane in lakes and wetlands Microbiological production, ecosystem uptake, climatological significance LAKES AND WETLANDS Ā­ A RELEVANT METHANE SOURCE Lakes and other wetlands are an important source methane from wetlands will respond to future climatic change. Dr. Paul Bodelier (Netherlands Institute

MĆ¼hlemann, Oliver

279

Bio-hydrogen production from renewable organic wastes  

SciTech Connect (OSTI)

Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

Shihwu Sung

2004-04-30T23:59:59.000Z

280

Detection and Production of Methane Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reducing Waste and Harvesting Energy This Halloween | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reducing Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween October 30, 2013 - 9:57am Addthis This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department Paul Grabowski Demonstration and Deployment, Bioenergy Technologies Office This Halloween, think of turning seasonal municipal solid waste (MSW) to energy as a very important "trick" that can have a positive environmental impact. Usually, these seasonal items including hay, pumpkins, candy, and leaves, are thrown away and sent to landfills. From there, the MSW decomposes and eventually turns into methane-a harmful

282

U.S. Natural Gas System Methane Emissions: State of Knowledge from LCAs, Inventories, and Atmospheric Measurements (Presentation)  

SciTech Connect (OSTI)

Natural gas (NG) is a potential "bridge fuel" during transition to a decarbonized energy system: It emits less carbon dioxide during combustion than other fossil fuels and can be used in many industries. However, because of the high global warming potential of methane (CH4, the major component of NG), climate benefits from NG use depend on system leakage rates. Some recent estimates of leakage have challenged the benefits of switching from coal to NG, a large near-term greenhouse gas (GHG) reduction opportunity. During this presentation, Garvin will review evidence from multiple perspectives - life cycle assessments (LCAs), inventories and measurements - about NG leakage in the US. Particular attention will be paid to a recent article in Science magazine which reviewed over 20 years of published measurements to better understand what we know about total methane emissions and those from the oil and gas sectors. Scientific and policy implications of the state of knowledge will be discussed.

Heath, G.

2014-04-01T23:59:59.000Z

283

Stable blue phosphorescent organic light emitting devices  

DOE Patents [OSTI]

Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

2014-08-26T23:59:59.000Z

284

How Miami, Florida is Turning Waste Into Cash | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

How Miami, Florida is Turning Waste Into Cash How Miami, Florida is Turning Waste Into Cash How Miami, Florida is Turning Waste Into Cash April 7, 2011 - 3:43pm Addthis Miami-Dade officials talk about using EECBG grant funds for their Methane Sequestration Project. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this project do? Methane gas captured from a landfill will provide 30 percent of the electricity used at an adjacent wastewater plant. The project will upgrade and expand the existing power generation system at the water plant. The county will increase the amount of self-generated electricity, and reduce the county's consumption of electricity generated from fossil fuels. In Miami, Florida, methane gas captured from a regional landfill will be used to provide 30 percent of the electricity used at an adjacent regional

285

An assessment of the flammability and explosion potential of transuranic waste  

SciTech Connect (OSTI)

The explosion potential of transuranic (TRU) waste, destined for the Waste Isolation Pilot (WIPP), was recently examined in EEG-45. That investigation focused on the volatile organic compounds (VOCs) in the waste, particularly acetone, and concluded that an explosion due to the VOCs was unlikely. Recent evidence raises serious concerns about drums containing mixed radioactive hazardous waste bound for the WIPP. Static electricity generated by the plastic bags represents a potential ignition source for other fuels, such as methane gas or hydrogen gas, during transportation and during the test phase. The potential danger of explosion due to hydrogen gas or methane gas generation has not yet been resolved. This report investigates that potential hazard and examines documented ignitions, fires, explosions and incidents of overpressurization of containers at generating and storage sites planning to send transuranic waste to the WIPP for disposal. 68 refs., 6 figs.

Silva, M.

1991-06-01T23:59:59.000Z

286

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

287

Integrated Waste Management in Sweden Where incineration is not a dirty word  

E-Print Network [OSTI]

emissions dramatically, particularly in the case of dioxins. Fifteen years ago, 18 Swedish waste incineration plants emitted a total of about 100 grams of dioxins every year. Today, the collective dioxin

Columbia University

288

File:Methane.pdf | Open Energy Information  

Open Energy Info (EERE)

Methane.pdf Methane.pdf Jump to: navigation, search File File history File usage File:Methane.pdf Size of this preview: 448 Ć— 600 pixels. Go to page 1 2 3 4 5 Go! next page ā†’ next page ā†’ Full resolution ā€ˇ(1,218 Ć— 1,630 pixels, file size: 929 KB, MIME type: application/pdf, 5 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:51, 9 February 2012 Thumbnail for version as of 15:51, 9 February 2012 1,218 Ć— 1,630, 5 pages (929 KB) Graham7781 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: Hydraulic Fracturing Retrieved from "http://en.openei.org/w/index.php?title=File:Methane.pdf&oldid=404017"

289

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

290

High Temperature Solar Splitting of Methane  

E-Print Network [OSTI]

-term commercialization opportunities #12;Why Use Solar Energy?Why Use Solar Energy? Ā· High concentrations possible (>1000High Temperature Solar Splitting of Methane to Hydrogen and Carbon High Temperature Solar Splitting and worldwide) Ā­ Sufficient to power the world (if we choose to) Ā· Advantages tradeoff against collection area

291

California - Coastal Region Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 - No Data...

292

Generating power with drained coal mine methane  

SciTech Connect (OSTI)

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

293

Global atmospheric methane: budget, changes and dangers  

Science Journals Connector (OSTI)

...contribute emissions to an air...larger. Reducing emissions from many...emissions related to economic...climate|greenhouse gas mitigation...Prospects for reducing emissions Methane is...reductions in greenhouse warming...agriculture, energy sectors...oil and gas) and landfills...

2011-01-01T23:59:59.000Z

294

Formation and retention of methane in coal  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

295

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

SciTech Connect (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

296

Coal Bed Methane Protection Act (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Fuel Distributor Program Info State Montana Program Type Environmental Regulations Provider Montana Department of Natural Resources and Conservation The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and water right holders for damage to land and to water quality and availability that is attributable to the development of coal bed methane wells. The Act aims to provide for

297

Methane Hydrates - The National R&D Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program The National Methane Hydrates R&D Program Welcome to the information portal for the National Methane Hydrate R&D Program. Over the past eight years, research carried out under this program has resulted in significant advances in our understanding of methane hydrates, their role in nature, and their potential as a future energy resource. This success is largely due to an unprecedented level of cooperation between federal agencies, industry, national laboratories, and academic institutions. For a quick introduction to methane hydrate and its potential as a fuel source, please read the 2011 Methane Hydrates Primer. Information on other elements of the program can be found under the remaining Key Links. Read More.

298

Energy aspects of solid waste management: Proceedings  

SciTech Connect (OSTI)

The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

Not Available

1990-12-31T23:59:59.000Z

299

Enhanced methane production from wool textile residues by thermal and enzymatic pretreatment  

Science Journals Connector (OSTI)

Abstract Methane production from two types of wool textile wastes (TW1 and TW2) was investigated. To improve the digestibility of these textiles, different pretreatments were applied, and comprised thermal treatment (at 120 °C for 10 min), enzymatic hydrolysis (using an alkaline endopeptidase at different levels of enzymatic loading, at 55 °C for 0, 2, and 8 h), and a combination of these two treatments. Soluble protein concentration and sCOD (soluble chemical oxygen demand) were measured to evaluate the effectivity of the different pretreatment conditions to degrade wool keratin. The sCOD as well as the soluble protein content had increased in both textile samples in comparison to untreated samples, as a response to the different pretreatments indicating breakdown of the wool keratin structure. The combined treatments and the thermal treatments were further evaluated by anaerobic batch digestion assays at 55 °C. Combined thermal and enzymatic treatment of TW1 and TW2 resulted in methane productions of 0.43 N m3/kg VS and 0.27 N m3/kg VS, i.e., 20 and 10 times higher yields, respectively, than that gained from untreated samples. The application of thermal treatment by itself was less effective and resulted in increasing the methane production by 10-fold for TW1 and showing no significant improvement for TW2.

Maryam M. Kabir; Gergely Forgįcs; Ilona Sįrvįri Horvįth

2013-01-01T23:59:59.000Z

300

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect (OSTI)

Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Side-emitting fiber optic position sensor  

DOE Patents [OSTI]

A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

Weiss, Jonathan D. (Albuquerque, NM)

2008-02-12T23:59:59.000Z

302

Regulation of methane genes and genome expression  

SciTech Connect (OSTI)

At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ?H (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein, designated TFE, that had sequences in common with the eukaryotic general transcription factor TFIIE, stimulated archaeal transcription initiation and that the archaeal TATA-box binding protein (TBP) remained attached to the promoter region whereas the transcription factor TFB dissociated from the template DNA following initiation. DNA sequences that directed the localized assembly of archaeal histones into archaeal nucleosomes were identified, and we established that transcription by an archaeal RNA polymerase was slowed but not blocked by archaeal nucleosomes. We developed a new protocol to purify archaeal RNA polymerases and with this enzyme and additional improvements to the in vitro transcription system, we established the template requirements for archaeal transcription termination, investigated the activities of proteins predicted to be methane gene regulators, and established how TrpY, a novel archaeal regulator of expression of the tryptophan biosynthetic operon functions in M. thermautotrophicus. This also resulted in the discovery that almost all M. thermautotrophicus mutants isolated as spontaneously resistant to 5-methyl tryptophan (5MTR) had mutations in trpY and were therefore 5MTR through de-repressed trp operon expression. This established a very simple, practical procedure to determine and quantify the DNA sequence changes that result from exposure of this Archaeon to any experimental mutagenesis protocol. Following the discovery that the Thermococcus kodakaraensis was amenable to genetic manipulation, we established this technology at OSU and subsequently added plasmid expression, a reporter system and additional genetic selections to the T. kodakaraensis genetic toolbox. We established that transcription and translation are coupled in this Archaeon, and by combining in vitro transcription and in vivo genetics, we documented that both TFB1 and TFB2 support transcription initiation in T. kodakaraensis. We quantified the roles of ribosome binding sequences and alternative initiation codons in translation initiation, established that polarity e

John N. Reeve

2009-09-09T23:59:59.000Z

303

Visible light surface emitting semiconductor laser  

DOE Patents [OSTI]

A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

Olbright, Gregory R. (Boulder, CO); Jewell, Jack L. (Bridgewater, NJ)

1993-01-01T23:59:59.000Z

304

Pumpkin Power: Turning Food Waste into Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy November 1, 2013 - 1:28pm Addthis Pumpkin Power: Turning Food Waste into Energy Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? 1.4 billion pounds of pumpkins are produced in the U.S. each year, many of which end up in landfills or compost piles after Halloween. Oakland's EBMUD collects food waste and uses microbes to convert it into methane gas that is burned to generate electricity. The Energy Department is helping to fund the development of integrated biorefineries, industrial centers dedicated to converting plant material into biofuels and other products. To commemorate National Energy Action Month, we're featuring some scarily

305

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In Situ Sampling and Characterization of Naturally Occurring Methane Hydrate Using the D/V JOIDES Resolution Last Reviewed 02/05/2010 In Situ Sampling and Characterization of Naturally Occurring Methane Hydrate Using the D/V JOIDES Resolution Last Reviewed 02/05/2010 DE-FC26-01NT41329 photo of a man showing the pressure core sampler on the deck of JOIDES Resolution Pressure core sampler on deck courtesy Texas A&M University Goal The goal of the project was to characterize hydrate accumulation at Hydrate Ridge (offshore Oregon) and improve the ability to use geophysical and subsurface logging to identify hydrates. A follow-on goal was to characterize hydrate accumulation at offshore Vancouver Island, BC, Canada. Background This project focused on physically verifying the existence of hydrates at Hydrate Ridge through the collection of pressurized and non-pressurized core samples and logging data. This study developed and tested tools to

306

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas hydrate systems from three perspectives: as an energy resource, as a geohazard, and as a long-term influence on global climate. Performers Rice University, Houston, TX University of Texas, Austin, TX Oklahoma State University, Stillwater, OK Background Heterogeneity in the distribution of gas hydrate accumulations impacts all aspects of research into gas hydrate natural systems. The challenge is to delineate, understand, and appreciate these differences at the regional and local scales, where differences in in situ concentrations are relevant to the importance of gas hydrate as a resource, a geohazard, and a factor in

307

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 - Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 Project Goals The primary goals of the DOE/NETL Natural Gas Hydrate Field Studies (NGHFS) project are: Conduct field-based studies that advance the ability to predict, detect, characterize, and understand distribution of and controls on natural gas hydrate occurrences. Analyze geologic, geochemical, and microbiologic data for indications of past and current changes to the stability of natural gas hydrate in marine settings. Develop links between the U.S. Gas Hydrate Program and international R&D efforts through direct participation in international field programs and workshops. Evaluate the potential role natural gas hydrates may play in the global carbon cycle through analysis of modern and paleo-natural gas

308

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ā– Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 Ā– Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 Project Objective Observe hydrate formation and dissociation phenomena in various porous media and characterize hydrate-bearing sediments by estimating physical properties (kinetic parameters for hydrate formation and dissociation, thermal conductivity, permeability, relative permeability, and mechanical strength) to enhance fundamental understanding on hydrate formation and accumulation and to support numerical simulations and potential gas hydrate production Project Performers Yongkoo Seol Ā– NETL Office of Research & Development Jeong Choi Ā– Oak Ridge Institute for Science and Education Jongho Cha-Virginia Polytech Institute Project Location National Energy Technology Laboratory - Morgantown, West Virginia

309

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields DE-FC26-06NT42962 Goal The goal of this project is to characterize and quantify the postulated gas hydrate resource associated with the Barrow Gas Fields Ā– three producing fields located in a permafrost region near Barrow, the North Slope's biggest population center and economic hub. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Performers North Slope Borough, Barrow, Alaska (North Slope Borough) 99723

310

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 DE-FC26-01NT41331 photo of new Anadarko drilling rig in place at Hot Ice No.1 on Alaska's North Slope Hot Ice No. 1 Drilling Platform courtesy Anadarko Petroleum Corp. Goal The goal of the project was to develop technologies for drilling and recovering hydrates in arctic areas. The specific objectives were to drill, core, and test a well through the hydrate stability zone in northern Alaska Performers Maurer Technology, Inc.* - Project coordination with DOE Anadarko Petroleum Corporation - Overall project management for the design, construction, and operation of the Arctic Drilling Platform and mobile core lab, and field coring operations Noble Engineering and Development* - Real time data collection and

311

Detection and Production of Methane Hydrate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42960 Quarterly Progress Report Reporting Period: April-June 2007 Detection and Production of Methane Hydrate Submitted by: Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2007 Office of Fossil Energy Detection and Production of Methane Hydrate Quarterly Progress Report Reporting Period: April-June 2007 Prepared by: George Hirasaki Rice University August 2007 CONTRACT NO. DE-FC26-06NT42960 Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; Fax: 713-348-5478; Email: gjh@rice.edu

312

Methane Hydrate Field Studies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Field Studies Field Studies Methane Hydrate Field Studies Arctic/Alaska North Slope Field Studies Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and currently lack outlets to commercial markets, Alaska provides an excellent laboratory to study E&P technology. The research also has implications for various Alaska resources, including potential gas hydrate resources for local communities, conventional "stranded" gas, as well as Alaska's large unconventional oil resources. The hydrate deposits have been delineated in the process of developing underlying oil fields, and drilling costs are much lower than offshore. DOE-BP Project

313

Enhanced carbon monoxide utilization in methanation process  

DOE Patents [OSTI]

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

314

EIA - Greenhouse Gas Emissions - Methane Emissions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

credit for renewable energy, including waste-to-energy and landfill gas combustion. Wastewater treatment, including both domestic wastewater (about two-thirds) and industrial...

315

Gamma-emitting Materials for Industry  

Science Journals Connector (OSTI)

... , p. 717). A paper dealing with the supply and uses of radium and radon for industry is now being distributed by the Ministry to trade associations, professional institutes ... Points of interest arising from this paper are the different physical properties of radium and radon. Though they both emit gamma-rays of identical quality, the radiation of the former ...

1949-06-04T23:59:59.000Z

316

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station DE-FC26-02NT41328 Goal Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of California, San Diego (Scripps Institution of Oceanography) - manage geochemical, hydrological and sedimentological investigations Texas A&M University - manage field monitoring program Location La Jolla, California 92093 Background This project will monitor, characterize, and quantify the rates of formation and dissociation of methane gas hydrates at and near the seafloor in the northern Gulf of Mexico, and determine linkages between formation/dissociation and physical/chemical parameters of the deposits over the course of a year. The stability and response of shallow gas hydrates to temperature and chemical perturbations will be monitored in situ, and localized seafloor and water column environmental impacts of hydrate formation and dissociation characterized. The following will be determined: 1) The equilibrium/steady state conditions for structure II methane gas hydrates at the field site,2) whether the system is in dynamic equilibrium and the local hydrology is characterized by steady state episodic fluid flow, and 3) how fluid fluxes and fluid composition work together to dynamically influence gas hydrate stability.

317

Alternative technologies to steam-methane reforming  

SciTech Connect (OSTI)

Steam-methane reforming (SMR) has been the conventional route for hydrogen and carbon monoxide production from natural gas feedstocks. However, several alternative technologies are currently finding favor for an increasing number of applications. The competing technologies include: steam-methane reforming combined with oxygen secondary reforming (SMR/O2R); autothermal reforming (ATR); thermal partial oxidation (POX). Each of these alternative technologies uses oxygen as a feedstock. Accordingly, if low-cost oxygen is available, they can be an attractive alternate to SMR with natural gas feedstocks. These technologies are composed technically and economically. The following conclusions can be drawn: (1) the SMR/O2R, ATR and POX technologies can be attractive if low-cost oxygen is available; (2) for competing technologies, the H{sub 2}/CO product ratio is typically the most important process parameter; (3) for low methane slip, the SMR/O2R, ATR and POX technologies are favored; (4) for full CO{sub 2} recycle, POX is usually better than ATR; (5) relative to POX, the ATR is a nonlicensed technology that avoids third-party involvement; (6) economics of each technology are dependent on the conditions and requirements for each project and must be evaluated on a case-by-case basis.

Tindall, B.M.; Crews, M.A. [Howe-Baker Engineers, Inc., Tyler, TX (United States)

1995-11-01T23:59:59.000Z

318

Carbon dioxide adsorption and methanation on ruthenium  

SciTech Connect (OSTI)

The adsorption and methanation of carbon dioxide on a ruthenium-silica catalyst were studied using temperature-programmed desorption (TPD) and temperature-programmed reaction (TPR). Carbon dioxide adsorption was found to be activated; CO/sub 2/ adsorption increased significantly as the temperature increased from 298 to 435 K. During adsorption, some of the CO/sub 2/ dissociated to carbon monoxide and oxygen; upon hydrogen exposure at room temperature, the oxygen reacted to water. Methanation of adsorbed CO and of adsorbed CO/sub 2/, using TPR in flowing hydrogen, yielded a CH/sub 4/ peak with a peak temperature of 459 K for both adsorbates, indicating that both reactions follow the same mechanism after adsorption. This peak temperature did not change with initial surface coverage of CO, indicating that methanation is first order in CO coverage. The desorption and reaction spectra for Ru/SiO/sub 2/ were similar to those previously obtained for Ni/SiO/sub 2/, but both CO/sub 2/ formation and CH/sub 4/ formation proceeded faster on Ru. Also, the details of CO desorption and the changes in CO/sub 2/ and CO desorptions with initial coverage were different on the two metals. 5 figures, 3 tables.

Zagli, E.; Falconer, J.L.

1981-05-01T23:59:59.000Z

319

International Cooperation in Methane Hydrates | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil & Gas Ā» Methane Hydrate Ā» Oil & Gas Ā» Methane Hydrate Ā» International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program (DSDP) recovered the first subsea substantial methane hydrate deposits, which spurred methane hydrate research in the US and other countries. The successor programs, the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) sampled hydrate deposits off Oregon (ODP 204, 2002) and in the Cascadia Margin off Vancouver Island, Canada (ODP 146, 1992 and IODP 311, 2005). In the Atlantic Ocean off the US, ODP Leg 146 sampled hydrate deposits on the Blake Ridge and Carolina Rise in 1995. International cooperation helps scientists in the US and other countries

320

METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

METHANE HYDRATE ADVISORY COMMITTEE METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------~ 1. Committee's Official Designation. Methane Hydrate Advisory Committee (MHAC) 2. Authority:. This charter establishes the Methane Hydrate Advisory Committee (Committee) pursuant to Title IX, Subtitle F, Section 968, Methane Hydrate Research of the Energy Policy Act of 2005 (EPACT), Public Law 109-58. This charter establishes the MHAC under the authority of the Department of Energy (DOE). The MHAC is being renewed in accordance with the provisions of the Federal Advisory Committee Act (FACA), as amended, 5 U.S.C., App.2. 3. Objectives and Scope of Activities. The Committee provides advice to the Secretary of Energy by developing recommendations and broad programmatic priorities for the methane

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Process for separating nitrogen from methane using microchannel process technology  

DOE Patents [OSTI]

The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

2007-07-31T23:59:59.000Z

322

Hydrogen production in Multi-Channel Membrane Reactor via Steam Methane Reforming and Methane Catalytic Combustion  

Science Journals Connector (OSTI)

Abstract A novel Multi-Channel Membrane Reactor (MCMR) was designed and built for the small-scale production of hydrogen via Steam Methane Reforming (SMR). The prototype alternates an SMR gas channel to produce hydrogen catalytically, with a Methane Catalytic Combustion (MCC) gas channel to provide the heat of reaction needed by the endothermic reforming. A palladium–silver membrane inside the reforming gas channel shifts the reaction equilibrium, allowing lower operating temperatures, and producing pure hydrogen in a single vessel. Using an innovative air-spray coating technique, channels were coated with Ru–MgO–La2O3/?-Al2O3 and Pd/?-Al2O3 catalyst particles for the SMR and MCC reactions, respectively. Results for the proof-of-concept MCMR showed that methane conversion in the reformer of 91% and a hydrogen purity in excess of 99.99% were possible with the reformer operating at 570 °C and 15 bar.

Alexandre Vigneault; John R. Grace

2014-01-01T23:59:59.000Z

323

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2012,"6...

324

Warum Methan in der Atmosphäre ansteigt — Die Rolle von Archaebakterien  

Science Journals Connector (OSTI)

Methan ist ein brennbares Gas, das nach seiner Herkunft auch als Erdgas, Grubengas oder Sumpfgas bezeichnet wird. Es ist der einfachste Kohlenwasserstoff. Seine Summenformel ist CH4.

Rudolf K. Thauer

1992-01-01T23:59:59.000Z

325

Spektroskopische Vorgänge in Explosionszonen von Methan und anderen Kohlenwasserstoffen  

Science Journals Connector (OSTI)

Zur Untersuchung gelangen stehende Explosionen von Methan-Sauerstoff und vergleichsweise die von Acetylen- bzw. Benzoldampf-Sauerstoff. Die einzelnen Zonen bei der Verbrennung werden spektrographisch festgehal...

F. J. Lauer

1933-01-01T23:59:59.000Z

326

,"New York Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

327

Biomass Gasification and Methane Digester Property Tax Exemption  

Broader source: Energy.gov [DOE]

Michigan exempts certain energy production related farm facilities from real and personal property taxes. Among exempted property are certain methane digesters, biomass gasification equipment,...

328

Oxidation of methane by a biological dicopper centre  

Science Journals Connector (OSTI)

... Cu(I) ions and their implications. J. Am. Chem. Soc. 118, 12766–12776 (1996) Chan, S. I. et al. Redox potentiometry studies of particulate methane ...

Ramakrishnan Balasubramanian; Stephen M. Smith; Swati Rawat; Liliya A. Yatsunyk; Timothy L. Stemmler; Amy C. Rosenzweig

2010-04-21T23:59:59.000Z

329

,"California--State Offshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

330

,"Texas (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

331

,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

332

,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Lower 48 Federal Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

333

,"Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

334

,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

335

,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013...

336

,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

337

,"Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

338

,"North Louisiana Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

339

,"Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

340

,"Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"630...

342

,"Montana Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

343

,"U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

344

,"Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

345

Ohio Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

W Withheld to avoid disclosure of individual company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Reserves Revision Increases...

346

,"Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2010 ,"Release...

347

Ohio Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Available; W Withheld to avoid disclosure of individual company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Reserves Adjustments...

348

,"Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

349

,"U.S. Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",201...

350

,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

351

,"Kansas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

352

Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

353

,"Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

354

,"NM, West Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

355

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network [OSTI]

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to mining… (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

356

,"U.S. Coalbed Methane Production (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Production (Billion Cubic Feet)",1,"Annual",2013 ,"Release Date:","124...

357

,"Florida Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

358

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

359

,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

360

,"West Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

362

,"Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

363

,"TX, RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

364

,"Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

365

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

366

,"U.S. Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013...

367

Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

368

,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

369

,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

370

,"U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

371

,"U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013...

372

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

373

,"TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

374

,"Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

375

,"TX, RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

376

,"NM, East Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

377

,"TX, RRC District 3 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

378

,"Texas Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

379

,"U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

380

,"U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

382

,"West Virginia Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

383

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

384

Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting...  

Broader source: Energy.gov (indexed) [DOE]

June 6-7 2013 Methane Hydrates Advisory Meeting Presentations from June 6-7 2013 Methane Hydrates Advisory Meeting ConocoPhillips test results and data analysis Methane Hydrate...

385

Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase  

E-Print Network [OSTI]

Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

Kopp, Daniel Arthur

2003-01-01T23:59:59.000Z

386

Waste Hoist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton...

387

Effect of Sulfur Compounds and Higher Homologues of Methane on Hydrogen Cyanide Production by the Andrussow Method  

Science Journals Connector (OSTI)

The influence of sulfur compounds, higher homologues of methane on the parameters ofoxidative ammonolysis of methane was studied.

N. V. Trusov

2001-10-01T23:59:59.000Z

388

Method of making organic light emitting devices  

DOE Patents [OSTI]

The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.

Shiang, Joseph John (Niskayuna, NY); Janora, Kevin Henry (Schenectady, NY); Parthasarathy, Gautam (Saratoga Springs, NY); Cella, James Anthony (Clifton Park, NY); Chichak, Kelly Scott (Clifton Park, NY)

2011-03-22T23:59:59.000Z

389

Exploiting coalbed methane and protecting the global environment  

SciTech Connect (OSTI)

The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

Yuheng, Gao

1996-12-31T23:59:59.000Z

390

Methane Steam Reforming in Hydrogen-permeable Membrane Reactor for Pure Hydrogen Production  

Science Journals Connector (OSTI)

Steam reforming of methane over a ruthenium catalyst has been carried ... hydrogen separation from the reaction mixture, the methane conversion significantly exceeds the equilibrium value, which ... an important ...

Yasuyuki Matsumura; Jianhua Tong

2008-12-01T23:59:59.000Z

391

Texas--RRC District 8A Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8A Coalbed Methane Proved Reserves,...

392

Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 8A Coalbed Methane Proved...

393

Texas--RRC District 7C Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7C Coalbed Methane Proved Reserves,...

394

Texas--RRC District 7B Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 7B Coalbed Methane Proved...

395

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

396

Texas--RRC District 7B Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

company data. Release Date: 1242014 Next Release Date: 12312015 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7B Coalbed Methane Proved Reserves,...

397

E-Print Network 3.0 - atmospheric methane consumption Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxidation of Methane with Air in AC Electric Gas Discharge Summary: , and specific energy consumption. Methane and oxygen conversions increased with input power but...

398

Presentations from the March 27th - 28th Methane Hydrates Advisory...  

Broader source: Energy.gov (indexed) [DOE]

the March 27th - 28th Methane Hydrates Advisory Committee Meeting Presentations from the March 27th - 28th Methane Hydrates Advisory Committee Meeting International Gas Hydrate...

399

E-Print Network 3.0 - anthropogenic methane emissions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

regional assessments... and global lake methane emissions, contributing to the greenhouse effect, are poorly known. We developed... predictions of methane emissions from easily...

400

Methane Production from Acetate and Associated Methane Fluxes from Anoxic Coastal Sediments  

Science Journals Connector (OSTI)

...ORGANIC-RICH COASTAL MARINE BASIN .1. METHANE SEDIMENT-WATER...IRRIGATION IN CAPE LOOKOUT BIGHT, NORTH-CAROLINA, SCIENCE...sediments ofa small coastal basin on the Outer Banks ofNorth...site was Cape Lookout Bight, North Carolina, an organic-rich marine basin of approximately 2 km2...

FRANCIS J. SANSONE; CHRISTOPHER S. MARTENS

1981-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

WASTE TO WATTS Waste is a Resource!  

E-Print Network [OSTI]

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,Ā· ABB Waste-to-Energy Plants Edmund Fleck,Ā· ESWET Marcel van Berlo,Ā· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

Columbia University

402

Water production in enhanced coalbed methane operations  

Science Journals Connector (OSTI)

Coalbed methane (CBM) formations provides a considerable amount of the US natural gas production and have the potential of storing significant amounts of carbon dioxide (CO2) through enhanced gas recovery operations. Enhanced coalbed methane (ECBM) recovery by injection of CO2 or a mixture of CO2 and nitrogen (N2) has been proven to recover additional natural gas resources. However, since coalbeds are normally saturated with water and can be in communication with an aquifer, a large amount of water is often co-produced during the natural gas extraction. The conventional approach for CBM production relies on the reduction of the gas partial pressure in the coal seam. This can be accomplished by either pumping the formation water to the surface and/or by injecting gases such as N2 and CO2. Disposal of the produced water is an environmental challenge as harmful impurities must be removed by appropriate purification techniques. Consequently, a reduction of water production in CBM operations is desirable. In this paper we present a numerical investigation of the potential reduction in water production during ECBM operations that are commonly used to increase methane (CH4) recovery. We use a three-dimensional coalbed model with an aquifer located at the bottom to investigate the amounts of gas and water produced in ECBM operations per volume of coal seam as a function of aquifer strength and sorption characteristics including sorption induced strain. The amount of gas/water that is produced varies significantly depending on the aquifer strength and injection gas composition. We demonstrate that injection of CO2 and/or N2 in some settings reduces the water handling problem substantially. CBM is an important worldwide energy source with a large number of formations being excellent candidates for ECBM recovery processes. Our analysis of the interplay between coal characteristics, aquifer support and the resultant behavior in terms of gas/water production provides valuable input for optimization of future planning and operations.

M. Jamshidi; K. Jessen

2012-01-01T23:59:59.000Z

403

Bonding Strength by Methane Hydrate Formed among Sand Particles  

Science Journals Connector (OSTI)

The mechanical properties of methane hydrate?bearing sand were investigated by low temperature and high confining pressure triaxial testing apparatus in the present study. The specimens were prepared by infiltrating the methane gas into partially saturated sand specimen under the given temperature and stress condition which is compatible with the phase equilibrium condition for the stability of methane hydrate. The tests were firstly performed to investigate the effect of temperature on the shear behaviour of the specimen. Then the effect of backpressure was investigated. The strength of methane hydrate bearing sand increased as the temperature decreased and the back pressure increased. The bonding strength due to methane hydrate was dependent on methane hydrate saturation temperature and back pressure but independent of effective stress. Dissociation tests of methane hydrate were also performed by applying the temperature to the specimen at the various initial stress conditions. The marked development of shear and volumetric strains were observed due to dissociation of the methane hydrate in the specimen corresponding to the initial stress conditions.

M. Hyodo; Y. Nakata; N. Yoshimoto; R. Orense; J. Yoneda

2009-01-01T23:59:59.000Z

404

Storms, polar deposits and the methane cycle in Titan's atmosphere  

Science Journals Connector (OSTI)

...2004GL021415 . Lorenz, R.D , 2006The sand seas on Titan: Cassini RADAR...Stevenson1985Thermodynamics of clathrate hydrate at low and high pressures with...constituent, methane, exists as a gas, liquid and solid, and cycles...constituent, methane, exists as a gas, liquid and solid, and cycles...

2009-01-01T23:59:59.000Z

405

Development of a Series of National Coalbed Methane Databases  

E-Print Network [OSTI]

Development of a Series of National Coalbed Methane Databases Mohaghegh, S. D., Nunsavathu, U Growing Interest in Coalbed Methane Ā­ Elevated natural gas prices Ā­ Demand for clean energy sources DatabaseDatabase One Location Reservoir & Sorption Collection Ā­ 126 Coalbed Areas Ā­ 34 Parameters Ordered

Mohaghegh, Shahab

406

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston  

E-Print Network [OSTI]

Rapid communication Mapping urban pipeline leaks: Methane leaks across Boston Nathan G. Phillips a of methane (CH4) in the United States. To assess pipeline emissions across a major city, we mapped CH4 leaks signatures w20& lighter (m Ā¼ Ć?57.8&, Ć?1.6& s.e., n Ā¼ 8). Repairing leaky natural gas distribution systems

Jackson, Robert B.

407

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network [OSTI]

Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I Landfill, OK, provides an excellent natural laboratory for the study of anaerobicprocessesimpactinglandfill enrichment indicated that 80-90% of the original landfill methane was oxidized over the 210-m transect. First

Grossman, Ethan L.

408

Photofragment imaging of methane Albert J. R. Heck  

E-Print Network [OSTI]

on CH4. Ā© 1996 American Institute of Physics. S0021-9606 96 03810-3 INTRODUCTION Knowledge about the photo dissociation pathways of the methane molecule is of fundamental importance as it is of central, the photochemistry of methane in the atmosphere is mostly driven by intense solar atomic emission lines

Zare, Richard N.

409

The thermal decomposition of methane in a tubular reactor  

SciTech Connect (OSTI)

The reaction rate of methane decomposition using a tubular reactor having a 1 inch inside diameter with an 8 foot long heated zone was investigated in the temperature range of 700 to 900 C with pressures ranging from 28.2 to 56.1 atm. Representing the rate by a conventional model, {minus}dC{sub CH4}/dt= k1 C{sub CH4} {minus}k2 C{sub H2}{sup 2}, the rate constant k1 for methane decomposition was determined. The activation energy, 31.3 kcal/mol, calculated by an Arrhenius Plot was lower than for previously published results for methane decomposition. This result indicates that submicron particles found in the reactor adhere to the inside of the reactor and these submicron high surface area carbon particles tend to catalyze the methane decomposition. The rate constant has been found to be approximately constant at 900 C with pressure range cited above. The rate of methane decomposition increases with methane partial pressure in first-order. The rate of the methane decomposition is favored by higher temperatures and pressures while the thermochemical equilibrium of methane decomposition is favored by lower pressures. 8 refs., 7 figs., 2 tabs.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

410

Supplement Analysis for Disposal of Polychlorinated Biphenyl-Commingled Transuranic Waste at the Waste Isolation Pilot Plant (DOE/EIS-0026-SA02) (6/23/04)  

Broader source: Energy.gov (indexed) [DOE]

Disposal of Disposal of Polychlorinated Biphenyl-Commingled Transuranic Waste at the Waste Isolation Pilot Plant (DOE/EIS-0026-SA02) 1.0 Purpose and Need for Action Transuranic (TRU) waste is waste that contains alpha particle-emitting radionuclides with atomic numbers greater than uranium (92) and half-lives greater than 20 years, in concentrations greater than 100 nanocuries per gram of waste. Some TRU wastes are mixed with polychlorinated biphenyls (PCBs) (referred to as PCB-commingled TRU waste). PCBs exist in DOE's TRU waste as mixtures of synthetic organic chemicals with physical properties ranging from oily liquids to waxy solids. Exposure to PCBs can result in adverse health effects. For example, PCBs in blood or in fatty tissue as a result of inhalation, ingestion, or dermal absorption may cause reproductive effects,

411

Anaerobic Biodegradation of Indole to Methane  

Science Journals Connector (OSTI)

...compounds are contained in waste products from many industrial...processes, especially industries in- volved in thermal...material, such as coal gasification, petroleum refining...the treatment of coal gasification wastewater. Biotechnol...

Yi-Tin Wang; Makram T. Suidan; John T. Pfeffer

1984-11-01T23:59:59.000Z

412

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Broader source: Energy.gov (indexed) [DOE]

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

413

Energy Department Advances Research on Methane Hydrates - the World's  

Broader source: Energy.gov (indexed) [DOE]

Research on Methane Hydrates - the Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource August 31, 2012 - 1:00pm Addthis Washington, DC - The Energy Department today announced the selection of 14 new research projects across 11 states that will be a part of an expanding portfolio of projects designed to increase our understanding of methane hydrates' potential as a future energy supply. Methane hydrates are 3D ice-lattice structures with natural gas locked inside, and are found both onshore and offshore - including under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world. Today's projects build on the completion of a successful, unprecedented test

414

EA-1157: Methyl Chloride via Oxyhydrochlorination of Methane: A Building  

Broader source: Energy.gov (indexed) [DOE]

57: Methyl Chloride via Oxyhydrochlorination of Methane: A 57: Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas, Carrollton, Kentucky EA-1157: Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas, Carrollton, Kentucky SUMMARY This EA evaluates the environmental impacts for the proposal to advance Oxyhydrochlorination technology to an integrated engineering-scale process. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 27, 1996 EA-1157: Finding of No Significant Impact Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas September 27, 1996 EA-1157: Final Environmental Assessment Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for

415

Energy Department Advances Research on Methane Hydrates - the World's  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Advances Research on Methane Hydrates - the Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource Energy Department Advances Research on Methane Hydrates - the World's Largest Untapped Fossil Energy Resource August 31, 2012 - 1:20pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - The Energy Department today announced the selection of 14 new research projects across 11 states that will be a part of an expanding portfolio of projects designed to increase our understanding of methane hydrates' potential as a future energy supply. Methane hydrates are 3D ice-lattice structures with natural gas locked inside, and are found both onshore and offshore - including under the Arctic permafrost and in ocean sediments along nearly every continental shelf in the world.

416

DOE Announces $2 Million Funding for Methane Hydrates Projects | Department  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects DOE Announces $2 Million Funding for Methane Hydrates Projects November 7, 2005 - 12:43pm Addthis Seeks to Unlock World's Biggest Potential Source of "Ice That Burns" WASHINGTON, DC - The Department of Energy (DOE) today announced a total of $2 million in funding to five research projects that will assess the energy potential, safety, and environmental aspects of methane hydrate exploration and development. Termed the "ice that burns," methane hydrates are crystalline solids that release a flammable gas when melted. They are considered the Earth's biggest potential source of hydrocarbon energy and could be a key element in meeting natural gas demand in the United States,

417

Mr. James Bearzi, Chief Hazardous Waste Bureau  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carlsbad Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number NM4890139088 - TSDF Dear Mr. Bearzi: As required under Permit Condition IV.F.5.e, the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of the loss of two hydrogen and methane monitoring sampling lines. The sampling lines involved were in Panel 3 Rooms 7 and 6. These lines are identified as 7E (exhaust side) and 61 (inlet side). These line losses were previously reported to the NMED on September 2, 2010 and September 28, 2010, respectively.

418

A STUDY ON SPHERICAL EXPANDING FLAME SPEEDS OF METHANE, ETHANE, AND METHANE/ETHANE MIXTURES AT ELEVATED PRESSURES  

E-Print Network [OSTI]

High-pressure experiments and chemical kinetics modeling were performed for laminar spherically expanding flames for methane/air, ethane/air, methane/ethane/air and propane/air mixtures at pressures between 1 and 10 atm and equivalence ratios...

De Vries, Jaap

2010-07-14T23:59:59.000Z

419

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Hydrate Research in Deep Sea Sediments - New Zealand Task Gas Hydrate Research in Deep Sea Sediments - New Zealand Task DE-AI26-06NT42878 Goal The objective of this research is to determine the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Specific objectives include: a). Refine geophysical, geochemical and microbiological technologies for prospecting hydrate distribution and content; b). Contribute to establishing high-priority geographical regions of prospective interest, in terms of methane volume estimates; c). Prediction of environmental effects and geologic risks at the continental margin associated to the natural resource occurrence and resource exploitation; and d). Expand understanding of the biogeochemical parameters and associated microbial community diversity in shallow sediments that influence the porewater sulfate gradient observed through anaerobic oxidation of methane. To accomplish these objectives, the Naval Research Laboratory (NRL) collaborated with New ZealandĀ’s Institute of Geological and Nuclear Sciences (GNS) in a research cruise off the coast of New Zealand. NRL has conducted similar research cruises off the west coast and east coast of the United States, in the Gulf of Mexico and off the coast of Chile.

420

Kinetics of methanation on nickel catalysts  

SciTech Connect (OSTI)

Extensive steady-state and transient measurements of the disproportionation of carbon monoxide, the hydrogenation of deposited carbon, and methanation of carbon monoxide were performed over 2 and 10% nickel on silica support. The results indicated that the methanation of carbon monoxide involves competitively adsorbed species; that the reaction is nearly zero order in carbon monoxide at 0.1-0.5 atm CO and 1 atm H/sub 2/, but negative at higher CO partial pressures and that it becomes less negative with increasing temperature or increasing hydrogen pressure; and that the reaction order with respect to hydrogen changes from 0.5 to 1.0 with increasing CO pressure and decreasing H/sub 2/ pressure. A reaction mechanism is proposed which consists of the molecular adsorption of CO, the dissociative adsorption of H/sub 2/, dissociation of the surface CO species, and reaction of two adsorbed hydrogen atoms with the oxygen; and a multistep hydrogenation and desorption process for the adsorbed carbon. The dissociation and reaction of adsorbed CO is probably the rate-limiting step. The kinetic behavior is best represented with the assumption of a heterogeneous catalyst surface, containing three types of sites of widely varying activity.

Ho, S.V.; Harriott, P.

1980-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

422

Dry formation of polymer hole injection layer for top emitting organic light emitting diodes  

Science Journals Connector (OSTI)

Dry formation of polymer hole injection layer is introduced as an effective method for improving the performance of top emitting organic light emitting diodes (TOLEDs). This method involves transferring a metal/polymer bilayer to the surface of organic layers of the device by pressing. An added advantage of this method is the ability to pattern the anode in the transfer process. Fabrication of the inverted TOLED by this method results in a drastic reduction of the turn-on voltage from 14.5 to 6.5 V when compared with a reference.

Soon-min Seo; Jong H. Kim; Hong H. Lee

2006-01-01T23:59:59.000Z

423

Tunable, superconducting, surface-emitting teraherz source  

DOE Patents [OSTI]

A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.

Welp, Ulrich (Lisle, IL); Koshelev, Alexei E. (Bolingbrook, IL); Gray, Kenneth E. (Evanston, IL); Kwok, Wai-Kwong (Evanston, IL); Vlasko-Vlasov, Vitalii (Downers Grove, IL)

2009-10-27T23:59:59.000Z

424

Quantitative gas-chromatographische Simultanbestimmung von Wasserstoff, Methan, Äthan und Äthylen  

Science Journals Connector (OSTI)

Die quantitative gas-chromatographische Bestimmung von Wasserstoff, Methan, Äthan und Äthylen führt bei Verwendung einer...

H. W. Dürbeck

425

EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS  

E-Print Network [OSTI]

methane levels. KEYWORDS Ventilation, water sprays, methane, coal mining, dust scrubber INTRODUCTIONChapter 65 EFFECTS OF WATER SPRAYS AND SCRUBBER EXHAUST ON FACE METHANE CONCENTRATIONS Ch.D. Taylor-mounted scrubber and water sprays can reduced methane levels at the face. The current research was conducted

Saylor, John R.

426

Global methane emissions from landfills: New methodology and annual estimates 19801996  

E-Print Network [OSTI]

Change: Instruments and techniques; KEYWORDS: landfill, landfill gas, methane emissions, methanotrophy

427

Research on Methane-Electricity-Heatpump System Model in Cold Area  

Science Journals Connector (OSTI)

The heat energy loss of methane liquid is the most important reason for low temperature of methane biochemical reaction in cold area by energy-flow analysis. The heat energy recovery of methane liquid can build a self-energizing system. Vegetable greenhouses ... Keywords: cold area, self-energizing, methane, heat pump, model

Zhang Chenghu; Pan Yawen; Ma Fang; Sun Dexing; Qiu Shan

2011-01-01T23:59:59.000Z

428

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane Expulsion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced temperature change, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the updip limit of the stability zone on continental margins. The behavior shall be explored in response to both longer term changes in sea level (e.g., twenty-thousand years) and shorter term due to atmospheric

429

Preliminary resource assessment of coalbed methane in the United States  

SciTech Connect (OSTI)

Preliminary results of the DOE Methane Recovery from Coalbeds Project reveal that many of the coal regions in the United States have significant volumes of coalbed methane. These results show that 45 cooperative wells drilled to date have helped to update the estimates of methane in the various coal regions. The most promising coal region is in the Green River Basin where preliminary estimates show that the methane potential may be over 23 trillion cubic feet. Another area of considerable interest is in the Arkoma Basin where the methane content of coal samples ranged from 200 to 400 cubic feet per ton (cf/ton) of coal. The methane estimte in this basin is between 1.6 to 3.6 trillion cubic feet. The Piceance Creek coal region is an area presently generating considerable interest and industry activity. The methane content of the coal samples extracted from this basin averaged over 100 cf/ton. The Northern Appalachian region also shows considerable promise.

Not Available

1981-04-01T23:59:59.000Z

430

Methane emission by bubbling from Gatun Lake, Panama  

SciTech Connect (OSTI)

We studied methane emission by bubbling from Gatun Lake, Panama, at water depths of less than 1 m to about 10 m. Gas bubbles were collected in floating traps deployed during 12- to 60-hour observation periods. Comparison of floating traps and floating chambers showed that about 98% of methane emission occurred by bubbling and only 2% occurred by diffusion. Average methane concentration of bubbles at our sites varied from 67% to 77%. Methane emission by bubbling occurred episodically, with greatest rates primarily between the hours of 0800 and 1400 LT. Events appear to be triggered by wind. The flux of methane associated with bubbling was strongly anticorrelated with water depth. Seasonal changes in water depth caused seasonal variation of methane emission. Bubble methane fluxes through the lake surface into the atmosphere measured during 24-hour intervals were least (10-200 mg m{sup -2} d{sup -1}) at deeper sites (>7 m) and greatest (300-2000 mg m{sup -2} d{sup -1}) at shallow sites (<2 m). 37 refs., 11 figs., 5 tabs.

Keller, M. [National Center for Atmospheric Research, Boulder, CO (United States)] [National Center for Atmospheric Research, Boulder, CO (United States); Stallard, R.F. [Geological Survey, Denver, CO (United States)] [Geological Survey, Denver, CO (United States)

1994-04-20T23:59:59.000Z

431

Long-range master plan for defense transuranic waste management  

SciTech Connect (OSTI)

The Long Range Master Plan for the Defense Transuranic Waste Program (DTWP), or ''Master Plan,'' details current TRU waste management plans and serves as a framework for the DTWP. Not all final decisions concerning activities presented in the Master Plan have been made (e.g., land withdrawal legislation, the WIPP Compliance and Operational Plan and the TRUPACT Certificate of Compliance). It is the goal of the DTWP to end interim storage and achieve permanent disposal of TRU waste. To accomplish this goal, as much TRU waste as possible will be certified to meet the WIPP Acceptance Criteria (WAC). The certified waste will then be disposed of at WIPP. The small quantity of waste which is not practical to certify will be disposed of via alternative methods that require DOE Headquarters approval and shall comply with the National Environmental Policy Act requirements and EPA/State Regulations. The definition of TRU waste is ''without regard to source or form, waste that is contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years and concentrations greater than 100 nanocuries/gram (nCi/g) at the time of assay. Heads of Field Elements can determine that other alpha contaminated wastes, peculiar to a specific site, must be managed as transuranic waste.''

Not Available

1988-12-01T23:59:59.000Z

432

Pollution by cereal waste burning in Spain  

Science Journals Connector (OSTI)

In this paper, the amount of cereal waste burned in Spain, which represents the most important source of biomass burning in this country, is estimated. During the period between 1980 and 1998, an average mass of 8 Tg of cereal waste was burned annually, with remaining 1 Tg of ash on the cereal fields after combustion. By using emission factors previously calculated by Ortiz de Zįrate et al. [Ortiz de Zįrate, I., Ezcurra, A., Lacaux, J.P., Van Dihn, P., 2000. Emission factor estimates of cereal waste burning in Spain. Atmos. Environ. 34, 3183–3193.], it is deduced that pollutant emissions linked to cereal waste-burning process reach values of 11 Tg CO2, 80 Gg of TPM and 23 Gg of \\{NOx\\} year?1 during the cereal-burning period. These emissions represent 46% of total CO2 and 23% \\{NOx\\} emitted in Spain during the burning period that lasts 1 month after harvesting. Therefore, the relative importance of cereal waste burning as pollutant source in Spain almost during fire period becomes evident. Finally, our study allows to deduce that the production of 1 kg of cereal crop implies that 410 g of carbon and 3.3 g of nitrogen are going to be introduced into the atmosphere by this pollutant process. We estimate a total gaseous emission of 3.3 Tg of C and 25 Gg N as different pollutants by cereal waste burning.

I. Ortiz de Zįrate; A. Ezcurra; J.P. Lacaux; P. Van Dinh; J. Dķaz de Argandońa

2005-01-01T23:59:59.000Z

433

Coalbed methane production potential in U. S. basins  

SciTech Connect (OSTI)

The major emphasis of the U.S. DOE's coalbed methane research has been on estimating the magnitude of the resource and developing systems for recovery. Methane resource estimates for 16 basins show that the greatest potential is in the Piceance, Northern Appalachian, Central Appalachian, Powder River, and Greater Green River coal basins. Small, high-potential target areas have been selected for in-depth analysis of the resource. Industry interest is greatest in the Warrior, San Juan, Piceance, Raton Mesa, and Northern and Central Appalachian basins. Production curves for several coalbed methane wells in these basins are included.

Byer, C.W.; Mroz, T.H.; Covatch, G.L.

1987-07-01T23:59:59.000Z

434

Nickel Catalysts Supported on Barium Hexaaluminate for Enhanced CO Methanation  

Science Journals Connector (OSTI)

(4, 5) Since Sabatier and Senderens discovered that some metals such as Ni, Ru, Rh, Pt, Fe, and Co could be used in the methanation reaction in 1902,(6) many methanation catalysts have been developed. ... In short, although Ni/Al2O3 catalysts have been extensively explored, their thermal stability and resistance to carbon deposition still need to be improved. ... Meanwhile, the catalyst coatings on the walls of micro-channel reactor showed high activity and stability, having the excellent catalytic performance for methanation reaction in micro-channel reactors and the reliability in long-term use as well. ...

Jiajian Gao; Chunmiao Jia; Jing Li; Fangna Gu; Guangwen Xu; Ziyi Zhong; Fabing Su

2012-07-16T23:59:59.000Z

435

Electronic stucture of methane hydrate studied by Compton scattering  

Science Journals Connector (OSTI)

High-resolution Compton scattering spectra of methane, methane hydrate, and ice were measured using incident photon energy of 56.4keV at beamline ID15B of the European Synchrotron Radiation Facility. The experimental Compton profiles are compared to calculations employing density-functional theory using model atomic clusters. The hydrate has a cagelike structure built up from water molecules and the related Compton profile is observed to change apparently when compared to hexagonal ice. Furthermore, the influence of the guest-host interactions between the methane molecules and the water molecules of the cages on the Compton profile is discussed.

C. Sternemann; S. Huotari; M. Hakala; M. Paulus; M. Volmer; C. Gutt; T. Buslaps; N. Hiraoka; D. D. Klug; K. Hämäläinen; M. Tolan; J. S. Tse

2006-05-03T23:59:59.000Z

436

US EPA Landfill Methane Outreach Program | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Outreach Program Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program Agency/Company /Organization United States Environmental Protection Agency Sector Energy, Land Focus Area Biomass Topics Policies/deployment programs, Resource assessment, Background analysis Resource Type Software/modeling tools, Workshop Website http://www.epa.gov/lmop/intern Country China, Ecuador, Mexico, Philippines, Thailand, Ukraine, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Eastern Asia, South America, Central America, South-Eastern Asia, South-Eastern Asia, Eastern Europe, Central America, Central America, Central America, Central America, Central America, Central America, Central America References LMOP[1]

437

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Numerical Simulation Last Reviewed 3/8/2013 Numerical Simulation Last Reviewed 3/8/2013 Project Goal The goal of NETL's gas hydrate numerical simulation studies is to obtain pertinent, high-quality information on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with NETL's experimental and field studies programs to ensure the validity of input datasets and scenarios. Project Performers Brian Anderson, NETL/RUA Fellow (West Virginia University) Hema Siriwardane, NETL/RUA Fellow (West Virginia University) Eugene Myshakin, NETL/URS Project Locations National Energy Technology Laboratory, Pittsburgh PA, and Morgantown WV West Virginia University, Morgantown, WV Background Field-scale hydrate production tests rely heavily on reservoir-scale

438

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico Petrophysical Characterization and Reservoir Simulator for Gas Hydrate Production and Hazard Avoidance in the Gulf of Mexico DE-FC26-02NT41327 Goal The project goal was to develop new methodologies to characterize the physical properties of methane hydrate and hydrate sediment systems. Performers Westport Technology Center International - Houston, TX University of Houston - Houston, TX Results Project researchers created a pressure cell for measuring acoustic velocity and resistivity on hydrate-sediment cores. They utilized the measurements for input to an existing reservoir model for evaluating possible offshore hydrate accumulations. The organization of an industry-led Advisory Board and the development of a Research Management Plan have been completed. The development of a handbook for transporting, preserving, and storing hydrate core samples brought from the field to the laboratory was completed and distributed for review by industry and researchers.

439

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat flow and gas hydrates on the continental margin of India Last Reviewed 12/15/2011 Heat flow and gas hydrates on the continental margin of India Last Reviewed 12/15/2011 DE-NT0005669 Goal The goals of this project are to construct maps of apparent and residual heat flow through the western continental margin of India and to investigate the relationship of residual heat flow anomalies to fluid flow and gas hydrate distribution in the subsurface. Performer Oregon State University, College of Oceanic and Atmospheric Science, Corvallis, OR 97331 Map of the four regions sampled during NGHP Expedition 01 Map of the four regions sampled during NGHP Expedition 01 Background Gas hydrate distribution in sediments depends on methane supply, which in turn depends on fluid flow. When drilling data are available to calibrate seismic observations of the base of the gas hydrate stability zone (GHSZ),

440

NETL: Methane Hydrates - ANS Research Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Well - Location Maps Well - Location Maps Maps of Prospect The Mt. Elbert prospect is located within the Milne Point Unit on AlaskaĀ’s North Slope. The Milne Point field, one of a number of distinct oil fields on the North Slope, extends offshore into the Beaufort Sea and is situated north of the large Kuparuk Field and northwest of the well known Prudhoe Bay Field. Map showing project location Map showing Milne Point Unit on AlaskaĀ’s North Slope The work done under the Ā“Alaska North Slope Gas Hydrate Reservoir CharacterizationĀ” project has resulted in a characterization of two large prospective methane hydrate accumulations (or trends); the Eileen Trend, which underlies but extends well beyond the Milne Point field, and the Tarn Trend to the west of the Kuparuk Field.

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

If you need help finding information on a particular project, please contact the content manager. If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed Projects Click on project number for a more detailed description of the project. Project Number Project Name Primary Performer DE-FC26-01NT41332 Alaska North Slope Gas Hydrate Reservoir Characterization BP Exploration Alaska, Inc. DE-FC26-01NT41330 Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration Chevron Energy Technology Company DE-FE0009897 Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications Georgia Tech Research Corporation DE-FE0009904 Structural and Stratigraphic Controls on Methane Hydrate Occurrence and Distribution: Gulf of Mexico, Walker Ridge 313 and Green Canyon 955 Oklahoma State University

442

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gathering, Processing and Evaluating Seismic and Physical Data on Gas Hydrates in the Gulf of Mexico Last Reviewed 02/05/2010 Gathering, Processing and Evaluating Seismic and Physical Data on Gas Hydrates in the Gulf of Mexico Last Reviewed 02/05/2010 DE-AT26-97FT34343 photo of piston core apparatus prior to being dropped Piston core apparatus with 6-ton weight prior to being dropped Photo courtesy USGS Goal The goal of the project is to characterize hydrates in the Gulf of Mexico (GOM) and further develop field techniques for characterizing hydrates. Performer US Geological Survey, Woods Hole Field Center Location Woods Hole Massachusetts Background Oceanic methane hydrates are a major emerging research topic spanning energy resource issues, global climate change, seafloor stability, ocean acoustics, impact on deep marine biota, and a number of special topics. Recent developments in the last five years have both broadened and deepened

443

NETL: Methane Hydrates - DOE/NETL Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Testing of Gas Hydrate/Sediment Samples Mechanical Testing of Gas Hydrate/Sediment Samples DE-AT26-99FT40267 Goal Develop understanding of the mechanical characteristics of hydrate-containing sediments. Background The ACE CRREL has a unique group of experienced personnel that have studied the mechanical characteristics of ice and permafrost that can be applied to the study and characterization of the mechanical properties of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of sediments related to drilling and seafloor installations in the Gulf of Mexico. Performers US Army Corp of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory (CRREL) - project management and research products

444

Performance tests for steam methane reformers  

SciTech Connect (OSTI)

Most of the synthesis gas plants in operation in the United States for production of hydrogen, carbon monoxide, methanol, and ammonia use steam methane reforming (SMR). Economic projections indicate that the SMR plant may continue to be the most favorable process choice through the 1980s or until partial oxidation or coal gasification processes are technically proven. The complexity of an efficiently designed SMR plant for production of these chemicals requires a thorough understanding of many unit operations to correctly evaluate the performance of an operating plant. Air Products and Chemicals, Inc. (APCI) owns and operates various types of SMR plants for production of hydrogen and carbon monoxide gases for pipe line sales, liquid hydrogen for merchant sale, methanol and ammonia. Over the past few years, APCI has developed guidelines and procedures for plant performance tests done at its major SMR plants. This article documents the plant test procedure used in conducting onsite SMR plant performance tests.

Wang, S.I.; DiMartino, S.P.; Patel, N.M.; Smith, D.D.

1982-08-01T23:59:59.000Z

445

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Office of Environmental Management (EM)

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Full Document and Summary Versions...

446

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network [OSTI]

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency left intentionally blank.] #12;Prepared for the U.S. Department of Energy PNNL-SA-69994 under Contract DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL

447

Biological sources and sinks of methane in tropical habitats and tropical atmospheric chemistry. Doctoral thesis  

SciTech Connect (OSTI)

The contents of this study include: two methods for measuring methane emission from a tropical lake; methane emission by bubbling from Gatun Lake, Panama; methane emission from wetlands in central Panama; consumption of atmospheric methane in soils of central Panama: effects of agricultural development; a seasonal study of soil-atmosphere methane, carbon dioxide, and 222Rn flux in a tropical moist forest; and the effects of tropical deforestation on global and regional atmospheric chemistry.

Keller, M.M.

1990-01-01T23:59:59.000Z

448

Waste-to-Energy Cogeneration Project, Centennial Park  

SciTech Connect (OSTI)

The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

2014-04-29T23:59:59.000Z

449

The Particle Adventure | What holds it together? | Quarks emit gluons  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

holds it together? > Quarks emit gluons holds it together? > Quarks emit gluons Quarks emit gluons Color charge is always conserved. When a quark emits or absorbs a gluon, that quark's color must change in order to conserve color charge. For example, suppose a red quark changes into a blue quark and emits a red/antiblue gluon (the image below illustrates antiblue as yellow). The net color is still red. This is because - after the emission of the gluon - the blue color of the quark cancels with the antiblue color of the gluon. The remaining color then is the red color of the gluon. Quarks emit and absorb gluons very frequently within a hadron, so there is no way to observe the color of an individual quark. Within a hadron, though, the color of the two quarks exchanging a gluon will change in a way that keeps the bound system in a color-neutral state.

450

Waste Processing | Department of Energy  

Office of Environmental Management (EM)

Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Centers Cask Processing Enclosure. Workers process and repackage waste at...

451

Waste Hoist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides (uses a balanced counterweight and tail ropes). With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Hoist deck footprint: 2.87m wide x 4.67m long Hoist deck height: 2.87m wide x 7.46m high Access height to the waste hoist deck is limited by a high-bay door at 4.14m high Nominal configuration is 2-cage (over/under), with bottom (equipment) cage interior height of 4.52m The photo, at left, shows the 4.14m high-bay doors at the top collar of the waste hoist shaft. The perpendicular cross section of the opening is 3.5m x 4.14m, but the bottom cage cross section is 2.87m x 4.5m (and 4.67m into the plane of the photo).

452

Light Emitting Diodes (LEDs) for General Illumiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LIGHT LIGHT EMITTING DIODES (LEDS) FOR GENERAL ILLUMINATION AN OIDA TECHNOLOGY ROADMAP An OIDA Report March 2001 Co-Sponsored by DOE/BTS and OIDA Compiled by Eric D. Jones Sandia National Laboratories OIDA Member Use Only OIDA OPTOELECTRONICS INDUSTRY DEVELOPMENT ASSOCIATION 1133 Connecticut Avenue, NW Suite 600 Washington, DC 20036 Ph: (202) 785-4426 Fax: (202) 785-4428 Web: http://www.OIDA.org Ā© 2001 OIDA Optoelectronics Industry Development Association All data contained in this report is proprietary to OIDA and may not be distributed in either original or reproduced form to anyone outside the client's internal organization within five years of the report date without prior written permission of the Optoelectronics Industry Development Association. Published by: Optoelectronics Industry Development Association

453

Electron emitting filaments for electron discharge devices  

DOE Patents [OSTI]

Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

1983-06-10T23:59:59.000Z

454

Energy Department Expands Research into Methane Hydrates, a Vast, Untapped  

Broader source: Energy.gov (indexed) [DOE]

Expands Research into Methane Hydrates, a Vast, Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. Energy Department Expands Research into Methane Hydrates, a Vast, Untapped Potential Energy Resource of the U.S. November 20, 2013 - 12:08pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, U.S. Energy Secretary Ernest Moniz announced nearly $5 million in funding across seven research projects nationwide designed to increase our understanding of methane hydrates - a large, completely untapped natural gas resource-and what it could mean for the environment, as well as American economic competiveness and energy security. "The recent boom in natural gas production - in part due to long-term Energy Department investments beginning in the 70's and 80's - has had

455

Methane Gas Conversion Property Tax Exemption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption Methane Gas Conversion Property Tax Exemption < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Program Info Start Date 01/01/2008 (retroactive) State Iowa Program Type Property Tax Incentive Rebate Amount 100% exemption for 10 years Provider Iowa Economic Development Authority '''''Note: This exemption is only available to facilities operated in connection or conjunction with a publicly-owned sanitary landfill. The exemption was available to other entities only for systems placed in service by December 31, 2012. Systems in place before this date are eligible to receive the property tax exemption for 10 years.''''' Under Iowa's methane gas conversion property tax exemption, real and

456

NETL: News Release - DOE Study Raises Estimates of Coalbed Methane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

December 16, 2002 December 16, 2002 DOE Study Raises Estimates of Coalbed Methane Potential in Powder River Basin Actual Production Will Hinge on Water Disposal Method WASHINGTON, DC - The Powder River Basin, a vast region of high plains in Wyoming and Montana known for producing low-sulfur coal, is also becoming a primary source of America's fastest growing natural gas resource, coalbed methane. Now, a new Department of Energy report projects that the region may hold more coalbed methane than previously estimated but the amount that will actually be produced will depend largely on the choice of the water disposal method. MORE INFO Download report [7.35MB PDF] The study, Powder River Basin Coalbed Methane Development and Produced Water Management Study, was prepared by Advanced Resources International of

457

Metro Methane Recovery Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Methane Recovery Facility Biomass Facility Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass Facility Type Landfill Gas Location Polk County, Iowa Coordinates 41.6278423Ā°, -93.5003454Ā° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6278423,"lon":-93.5003454,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

A Compact and Efficient Steam Methane Reformer for Hydrogen Production.  

E-Print Network [OSTI]

??A small-scale steam-methane reforming system for localized, distributed production of hydrogen offers improved performance and lower cost by integrating the following technologies developed at the… (more)

Quon, Willard

2012-01-01T23:59:59.000Z

459

Selectivity of the steam reforming of methane over metallic catalysts  

Science Journals Connector (OSTI)

The activity and selectivity of the methane-steam reaction has been studied in a gradientless reactor at atmospheric pressure and 700–850 °C. Differences were found in the course of the reaction on Pd relative...

T. Borowiecki; J. Barcicki

1979-01-01T23:59:59.000Z

460

Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes  

E-Print Network [OSTI]

Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like ...

Faraji, Sedigheh

2010-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Nuclear Fusion Driven by Coulomb Explosion of Methane Clusters  

Science Journals Connector (OSTI)

Nuclear Fusion Driven by Coulomb Explosion of Methane Clusters† ... However, the distributions obtained for Coulomb explosion lack the high-energy tail manifested for the thermal distribution (Figure 4), which is of considerable importance for thermonuclear reactions. ...

Isidore Last; Joshua Jortner

2002-09-20T23:59:59.000Z

462

Preliminary relative permeability estimates of methane hydrate-bearing sand  

E-Print Network [OSTI]

sand, the gas permeability of the sand with hydrate, and thefor gas and water through methane hydrate-bearing sand. X-hydrate dissociation and making a single-phase (gas or water) permeability measurement of the sand

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

2006-01-01T23:59:59.000Z

463

Auswirkung der Verwendung von Methan an Stelle von Propan  

Science Journals Connector (OSTI)

Um zu prüfen, welche Verhältnisse sich ergeben, wenn man an Stelle von Propan, wie es in den international vorgeschlagenen Dreistoff-Gemischen vorgesehen ist, Methan heranzöge, wurden für das Normprüfgas folgende...

Prof. Dr. Ing. Fritz Schuster…

1961-01-01T23:59:59.000Z

464

New analyses reveal higher Four Corners methane emissions than...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the current EPA-reported methane emissions for the region. In light of the expansion of hydraulic fracturing in the Farmington, New Mexico, region it is important that we...

465

U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Extensions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

466

West Virginia Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

467

Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

468

Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

469

Lower 48 States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Lower 48 States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

470

Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

(Billion Cubic Feet) Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30 34 31 31...

471

U.S. Coalbed Methane Production (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) U.S. Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 91 1990's...

472

Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

473

Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

474

New Mexico Coalbed Methane Proved Reserves Revision Decreases...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

475

Texas (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Texas (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

476

New Mexico Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

477

Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

478

U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Adjustments (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

479

West Virginia Coalbed Methane Production (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Production (Billion Cubic Feet) West Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 30...

480

Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

(Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 257 234 340 301...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

West Virginia Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) West Virginia Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

482

Oklahoma Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6...

483

Louisiana (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

484

U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

485

Kansas Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

486

Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Proved Reserves (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

487

Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Billion Cubic Feet) Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

488

U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

489

U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

490

Texas--RRC District 3 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

491

Montana Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

492

New Mexico Coalbed Methane Proved Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 - ...

493

Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Billion Cubic Feet) Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

494

Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 - ...

495

Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

496

Texas--RRC District 10 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Texas--RRC District 10 Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

497

Louisiana--North Coalbed Methane Proved Reserves Sales (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

498

U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

499

Louisiana--North Coalbed Methane Production (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Louisiana--North Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

500

Utah Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...