Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Methane generation from waste materials  

DOE Patents (OSTI)

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

2

System for recovering methane gas from liquid waste  

SciTech Connect

A system for and method of recovering methane gas from liquid waste which is stored within a pit is disclosed herein. The methane gas is produced by causing the liquid waste to undergo anaerobic fermentation. Therefore, it is necessary to close the pit in an air tight fashion. This is carried out using a cover sheet which is fixedly disposed over the pit in an air tight but readily disengagable fashion. The liquid waste within this air tight pit is preferably agitated intermittently during its storage therein whereby to increase the amount of methane gas produced.

Grabis, D.W.

1983-07-19T23:59:59.000Z

3

Final report for the Iowa Livestock Industry Waste Characterization and Methane Recovery Information Dissemination Project  

DOE Green Energy (OSTI)

This report summarizes analytical methods, characterizes Iowa livestock wastes, determines fossil fuel displacement by methane use, assesses the market potential, and offers recommendations for the implementation of methane recovery technologies.

Garrison, M.V.; Richard, Thomas L

2001-11-13T23:59:59.000Z

4

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

DOE Green Energy (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

5

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network (OSTI)

landfills, we developed reference projections of waste generation, recycling and landfill-gas captureSardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard

Columbia University

6

The landfill methane balance: Model and practical applications  

SciTech Connect

A rational mass-balance framework is described for improved quantification of landfill methane processes at a given site. The methane balance model examines the partitioning of methane generated into methane recovered (via extraction systems), methane emitted, methane oxidized, methane migrated, and methane storage. This model encourages use of field-based data to better quantify rates of methane recovery and emissions.

Bogner, J.; Spokas, K.

1995-10-01T23:59:59.000Z

7

Title I preliminary engineering for: A. S. E. F. solid waste to methane gas  

DOE Green Energy (OSTI)

An assignment to provide preliminary engineering of an Advanced System Experimental Facility for production of methane gas from urban solid waste by anaerobic digestion is documented. The experimental facility will be constructed on a now-existing solid waste shredding and landfill facility in Pompano Beach, Florida. Information is included on: general description of the project; justification of basic need; process design; preliminary drawings; outline specifications; preliminary estimate of cost; and time schedules for design and construction of accomplishment of design and construction. The preliminary cost estimate for the design and construction phases of the experimental program is $2,960,000, based on Dec. 1975 and Jan. 1976 costs. A time schedule of eight months to complete the Detailed Design, Equipment Procurement and the Award of Subcontracts is given.

None

1976-01-01T23:59:59.000Z

8

Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas  

E-Print Network (OSTI)

Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are from point sources such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity to offset the rather high cost of sequestration. Texas has large coal resources. Although they have been studied there is not enough information available on these coals to reliably predict coalbed methane production and CO2 sequestration potential. The goal of the work was to determine if sequestration of CO2 in low rank coals is an economically feasible option for CO2 emissions reduction. Additionally, reasonable CO2 injection and methane production rates were to be estimated, and the importance of different reservoir parameters investigated. A data set was compiled for use in simulating the injection of CO2 for enhanced coalbed methane production from Texas coals. Simulation showed that Texas coals could potentially produce commercial volumes of methane if production is enhanced by CO2 injection. The efficiency of the CO2 in sweeping the methane from the reservoir is very high, resulting in high recovery factors and CO2 storage. The simulation work also showed that certain reservoir parameters, such as Langmuir volumes for CO2 and methane, coal seam permeability, and Langmuir pressure, need to be determined more accurately. An economic model of Texas coalbed methane operations was built. Production and injection activities were consistent with simulation results. The economic model showed that CO2 sequestration for enhanced coalbed methane recovery is not commercially feasible at this time because of the extremely high cost of separating, capturing, and compressing the CO2. However, should government mandated carbon sequestration credits or a CO2 emissions tax on the order of $10/ton become a reality, CO2 sequestration projects could become economic at gas prices of $4/Mscf.

Saugier, Luke Duncan

2003-08-01T23:59:59.000Z

9

Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

Fdez-Gueelfo, L.A., E-mail: alberto.fdezguelfo@uca.es [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Alvarez-Gallego, C. [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Sales, D. [Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Romero Garcia, L.I. [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain)

2012-03-15T23:59:59.000Z

10

Processing high solids concentration of municipal solid waste by anaerobic digester for methane production  

SciTech Connect

Cellulosic solids are pretreated by calcium hydroxide to produce salts of volatile orangic acids and other water-soluble substances. Pure cellulose, sawdust, and waste paper are used as model substances for the study of alkaline degradation. It is found that sawdust is more difficult to degrade than the other two substances. The cooking conditions for high conversion of model substances and high yeild of orangic acids are found to be 275/degree/C to 300/degree/C with the corresponding reaction time from 30 minutes to 15 minutes. The cooking liquor can be readily fermented in an anaerobic fluidized-bed digester for methane production. The cooking liquor from different reaction conditions can all be digested by the methanogens. Higher than 90% of COD can be removed under the conditions of low organic loading rate (<2.0 g COD/1/day) and low hydraulic retention time (1.5 to 2.0 days). 14 refs., 10 figs., 2 tabs.

Tsao, G.T.

1988-01-01T23:59:59.000Z

11

Development of METHANE de-NOX Reburn Process for Wood Waste and Biomass Fired Stoker Boilers - Final Report - METHANE de-NOX Reburn Technology Manual  

Science Conference Proceedings (OSTI)

The overall objective of this project was to demonstrate the effectiveness of the METHANE de-NOX® (MdN) Reburn process in the Forest Products Industry (FPI) to provide more efficient use of wood and sludge waste (biosolids) combustion for both energy generation and emissions reduction (specifically from nitrogen oxides (NOx)) and to promote the transfer of the technology to the wide range of wood waste-fired stoker boilers populating the FPI. This document, MdN Reburn Commercial Technology Manual, was prepared to be a resource to promote technology transfer and commercialization activities of MdN in the industry and to assist potential users understand its application and installation requirements. The Manual includes a compilation of MdN commercial design data from four different stoker boiler designs that were baseline tested as part of the development effort. Design information in the Manual include boiler CFD model studies, process design protocols, engineering data sheets and commercial installation drawings. Each design package is unique and implemented in a manner to meet specific mill requirements.

J. Rabovitser; B. Bryan; S. Wohadlo; S. Nester; J. Vaught; M. Tartan (Gas Technology Institute) L. Szymanski; R. Glickert (ESA Environmental Solutions)

2007-12-31T23:59:59.000Z

12

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

13

Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield  

SciTech Connect

Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Colturato, L.F. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Font, X.; Vicent, T. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Institut de Ciencia i Tecnologia Ambiental (ICTA) Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

2010-10-15T23:59:59.000Z

14

Commercialization of waste gob gas and methane produced in conjunction with coal mining operations. Final report, August 1992--December 1993  

Science Conference Proceedings (OSTI)

The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of the processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.

Not Available

1993-12-01T23:59:59.000Z

15

Screening for organic solvents in Hanford waste tanks using total non- methane organic compound vapor concentrations  

SciTech Connect

The potential ignition of organic liquids stored in the Hanford high-level radioactive waste tanks is a safety issue because expanding gases could affect tank dome integrity. This report presents results of a screening test that was applied to 75 passively ventilated waste tanks at Hanford to determine those that might contain a significant amount of organic liquid waste. The screening test is based on a simple model of tank headspace, headspace organic vapor concentrations, and certain tank physical parameters. Analyses indicate that damage to the tank dome is credible only if the organic liquid burn rate is above a threshold value, and this can occur only if the surface area of organic liquid in a tank is above a corresponding threshold value of about one square meter. Twelve tanks were identified as potentially containing at least that amount of semivolatile organic liquid based on conservative estimates. Tank head space organic vapor concentrations and physical parameters required by the screening test have been compiled and are presented for each of the tanks studied. Estimates of the ventilation rates of the waste tanks were revised to reflect recent information obtained from hydrogen monitoring data. A simple analysis of the uncertainty in the test results suggests that the largest current uncertainty in the estimation of organic liquid surface area is that associated with knowledge of the tank ventilation rate. The uncertainty analysis is applied to determine 95% confidence limits for the estimated organic waste surface area in each tank.

Huckaby, J.L.; Glissmeyer, J.A.; Sklarew, D.S.

1997-02-01T23:59:59.000Z

16

An environmental assessment of recovering methane from municipal solid waste by anaerobic digestion  

Science Conference Proceedings (OSTI)

The development of an experimental process which produces synthetic natural gas (SNG) or biogas by anaerobic digestion of municipal solid waste (MSW) is evaluated. This technology, if implemented, would be utilized in lieu of incineration or directly landfilling waste. An environmental assessment describing the principal impacts associated with operating the MSW anaerobic digestion process is presented. Variations in process configurations provide for SNG or electricity production and digester residue incineration, composting, or landfilling. Four process configuration are compared to the conventional solid waste disposal alternative of mass burn incineration and landfilling. Emissions are characterized, effluents quantified, and landfill areas predicted. The quantity of SNG and electricity recovered, and aluminum and ferrous metals recycled is predicted along with the emissions and effluents avoided by recovering energy and recycling metals. Air emissions are the primary on-site concern with the anaerobic digestion process. However, when compared to mass burn incineration, the projected particulate emissions for the anaerobic digestion process range from 2.9 {times} 10{sup {minus}6} to 2.6 {times} {sup 10{minus}5} pounds per ton of waste vs. 3.3 {times} 10{sup {minus}5} pounds per ton for mass burn. SO{sub 2}, NO{sub x}, and PCCD emissions have a similar relationship.

O'Leary, P.R.

1989-01-01T23:59:59.000Z

17

Methane Main  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

18

Methane Recovery from Animal Manures The Current Opportunities Casebook  

DOE Green Energy (OSTI)

Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only helps prevent pollution but can also convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially viable conversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This casebook examines some of the current opportunities for recovering methane from anaerobic digestion animal manures.

Lusk, P.

1998-09-22T23:59:59.000Z

19

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network (OSTI)

2006 Abstract Methane gas is a by-product of landfilling municipal solid wastes (MSW). Most tonnes of methane annually, 70% of which is used to generate heat and/or electricity. The landfill gas. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

20

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Methane Emissions from Natural Wetlands in the United States: Satellite-Derived Estimation Based on Ecosystem Carbon Cycling  

Science Conference Proceedings (OSTI)

Wetlands are an important natural source of methane to the atmosphere. The amounts of methane emitted from inundated ecosystems in the United States can vary greatly from area to area. Seasonal temperature, water table dynamics, and carbon ...

Christopher Potter; Steven Klooster; Seth Hiatt; Matthew Fladeland; Vanessa Genovese; Peggy Gross

2006-12-01T23:59:59.000Z

22

Waste  

Science Conference Proceedings (OSTI)

Nowadays, Brazilian´s Light Emitting Diode - Liquid Crystal Display (LED-LCD) End-of-Life (EoL) disposal is traditionally landfills and incineration.

23

Coalbed Methane  

Energy.gov (U.S. Department of Energy (DOE))

Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D.

24

Methane production by attached film  

DOE Patents (OSTI)

A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

1981-01-01T23:59:59.000Z

25

Methane (CH4)  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH4) Gateway Pages to Methane Data Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record from Law Dome, Antarctica 800,000-year Ice-Core Records of...

26

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Project Development Handbook Landfill Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Biomass, - Landfill Gas Phase: Determine Baseline, Evaluate Options, Get Feedback Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/lmop/publications-tools/handbook.html Cost: Free References: Project Development Handbook[1] The handbook describes the process of implementing a waste-to-energy landfill gas project. Overview "Approximately 250 million tons of solid waste was generated in the United States in 2008 with 54 percent deposited in municipal solid waste (MSW)

27

Methane Recovery from Animal Manures The Current Opportunities Casebook  

DOE Green Energy (OSTI)

Growth and concentration of the livestock industry create opportunities for the proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. Pollutants from unmanaged livestock wastes can degrade the environment, and methane emitted from decomposing manure may contribute to global climate change. One management system not only provides pollution prevention but also can convert a manure problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion (AD) of livestock manures is a commercially available bioconversion technology with considerable potential for providing profitable coproducts, including a cost-effective renewable fuel for livestock production operations. This Casebook examines some of the current opportunities for the recovery of methane from the AD animal manures. U.S. livestock operations currently employ four types of anaerobic digester technology: slurry, plug-flow, complete-mix, and covered lagoon. An introduction to the engineering economies of these technologies is provided, and possible end-use applications for the methane gas generated by the digestion process are discussed. The economic evaluations are based on engineering studies of digesters that generate electricity from the recovered methane. Case studies of operating digesters, with project and maintenance histories and the operators ''lessons learned,'' are included as reality checks. Factors necessary for successful projects, as well as a list of reasons explaining why some AD projects fail, are provided. The role of farm management is key; not only must digesters be well engineered and built with high-quality components, they must also be sited at farms willing to incorporate the uncertainties of a new technology. More than two decades of research has provided much information about how manure can be converted to an energy source; however, the American farmer has not been motivated to adopt new practices. More cost-effective and easily managed manure management techniques are still needed to encourage farmers to use animal manure for conversion into energy and nutrients, especially for smaller farms. AD benefits farmers monetarily and mitigates possible manure pollution problems, thereby sustaining development while maintaining environmental quality. Moreover, rural economic development will benefit from the implicit multiplier effect resulting from jobs created by implementing digester systems. Promising future waste-to-profit activities may add to the economic performance of AD. New end-use applications, which provide added value to coproducts, are discussed.

Lusk, P.

1998-09-01T23:59:59.000Z

28

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

29

Transuranic (TRU) Waste  

Energy.gov (U.S. Department of Energy (DOE))

Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste with half-lives greater than 20 years, except for (A)...

30

NIST: Methane Symmetry Operations  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Version History Methane Symmetry Operations. JT Hougen Optical Technology Division Gloria Wiersma ...

2010-10-05T23:59:59.000Z

31

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

32

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

The enormous amount of biomass waste created by animal feeding operations releases methane, a valuable fuel but also a greenhouse gas, and other pollutants into the environment. Waste digesters reduce this pollution by converting the waste into ...

33

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

34

An investigation of the presence of methane and other gases at the Uzundere-Izmir solid waste disposal site, Izmir, Turkey  

SciTech Connect

Izmir is a large metropolitan city with a population of 3,114,860. The city consists of 27 townships, each township has a population of not less than 10,000 inhabitants. The two major solid waste disposal sites are in the townships of Uzundere and Harmandali. The amount of solid waste that is disposed at each of these sites is about 800 and 1800 t/day, respectively. In Uzundere, compost is produced from the organic fraction of urban solid wastes while the residual material is deposited at a disposal site with a remaining capacity of 700,000 m{sup 3} as of 2001. Gas monitoring and measurements were carried out at the disposal site in Uzundere. For this purpose, nine sampling wells were drilled on selected locations. Each well was furnished with perforated metal pipes suitable for gas monitoring and measurements. The following gases were monitored: O{sub 2}, CH{sub 4}, CO, CO{sub 2}, and H{sub 2}S. The most important finding was that the concentrations of CH{sub 4} in the wells ranged from 7 to 57%. Dilution of the CH{sub 4} by O{sub 2} down to the LEL levels (5-15%) is always possible and poses a continuing risk at the site. Furthermore, the levels of O{sub 2} require that access to the site be limited to only authorized personnel.

Onargan, T.; Kucuk, K.; Polat, M

2003-07-01T23:59:59.000Z

35

NETL: Methane Hydrates - Methane Hydrate Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Ridge region Ongoing areas of study in the Hydrate Ridge region Map showing where gas hydrates occur off the Cascadia Margin Locations of methane hydrate off the Cascadia Margin...

36

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrates Primer provides background and general information about the history of hydrate R&D, the science of methane hydrates, their occurrences, and R&D related issues. Photo...

37

Why not methane--5. Delivering methane  

SciTech Connect

A discussion showed that the methane delivery system in the U.S. consists of 350,000 mi of underground high-pressure pipelines, 650,000 mi of distribution mains and connections to 45 million energy users. This delivery system now carries much less natural gas than it could carry because of the regulation-caused shortages of recent years. The delivery system is also connected to an efficient storage system of exhausted underground gas wells into which methane from any source (e.g., gasification of coal or vegetation) could be pumped and then recovered as needed. This storage system could be readily expanded and could thus be used for strategic storage of methane. Enough methane could be stored to replace foreign oil if the foreign supply should be interrupted; and methane can be quickly delivered nation-wide, whereas strategic oil storage requires unusual and expensive provisions for delivery. Natural gas usage could be increased by 20Vertical Bar3< in two years and would reduce payments for imported oil by about $10 billion. Doubling the amount of methane used in the U.S. would eliminate the need for foreign oil entirely.

Luntey, E.

1979-01-01T23:59:59.000Z

38

Methane to methanol conversion  

DOE Green Energy (OSTI)

The purpose of this project is to develop a novel process by which natural gas or methane from coal gasification products can be converted to a transportable liquid fuel. It is proposed that methanol can be produced by the direct, partial oxidation of methane utilizing air or oxygen. It is anticipated that, compared to present technologies, the new process might offer significant economic advantages with respect to capital investment and methane feedstock purity requirements. Results to date are discussed. 6 refs.

Finch, F.T.; Danen, W.C.; Lyman, J.L.; Oldenborg, R.C.; Rofer, C.K.; Ferris, M.J.

1990-01-01T23:59:59.000Z

39

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009...

40

Plasma—Methane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Trends Online Methane Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Introduction Annual Estimates of Global Anthropogenic Methane Emissions: 1860-1994 - D.I. Stern and R.K. Kaufmann Contents-Trends | CDIAC Home 102001...

42

Methane Hydrate Advisory Committee Charter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter...

43

NIST: Methane Symmetry Operations - Introduction  

Science Conference Proceedings (OSTI)

Methane Symmetry Operations. ... At least three T d symmetry classification systems are widely used at present in the methane literature [5-13]. ...

44

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

45

Methane flux and oxidation at two types of intermediate landfill covers  

SciTech Connect

Methane emissions were measured on two areas at a Florida (USA) landfill using the static chamber technique. Because existing literature contains few measurements of methane emissions and oxidation in intermediate cover areas, this study focused on field measurement of emissions at 15-cm-thick non-vegetated intermediate cover overlying 1-year-old waste and a 45-cm-thick vegetated intermediate cover overlying 7-year-old waste. The 45 cm thick cover can also simulate non-engineered covers associated with older closed landfills. Oxidation of the emitted methane was evaluated using stable isotope techniques. The arithmetic means of the measured fluxes were 54 and 22 g CH{sub 4} m{sup -2} d{sup -1} from the thin cover and the thick cover, respectively. The peak flux was 596 g m{sup -2} d{sup -1} for the thin cover and 330 g m{sup -2} d{sup -1} for the thick cover. The mean percent oxidation was significantly greater (25%) at the thick cover relative to the thin cover (14%). This difference only partly accounted for the difference in emissions from the two sites. Inverse distance weighing was used to describe the spatial variation of flux emissions from each cover type. The geospatial mean flux was 21.6 g m{sup -2} d{sup -1} for the thick intermediate cover and 50.0 g m{sup -2} d{sup -1} for the thin intermediate cover. High emission zones in the thick cover were fewer and more isolated, while high emission zones in the thin cover were continuous and covered a larger area. These differences in the emission patterns suggest that different CH{sub 4} mitigation techniques should be applied to the two areas. For the thick intermediate cover, we suggest that effective mitigation of methane emissions could be achieved by placement of individualized compost cells over high emission zones. Emissions from the thin intermediate cover, on the other hand, can be mitigated by placing a compost layer over the entire area.

Abichou, Tarek [Department of Civil and Environmental Engineering, Florida A and M University, Florida State University, College of Engineering, Tallahassee, FL 32310 (United States)]. E-mail: abichou@eng.fsu.edu; Chanton, Jeffery [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Powelson, David [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Fleiger, Jill [Department of Oceanography, Florida State University, Tallahassee, FL 32306 (United States); Escoriaza, Sharon [Department of Civil and Environmental Engineering, Florida A and M University, Florida State University, College of Engineering, Tallahassee, FL 32310 (United States); Lei, Yuan [Department of Civil and Environmental Engineering, Florida A and M University, Florida State University, College of Engineering, Tallahassee, FL 32310 (United States); Stern, Jennifer [Department of Geology, Florida State University, Tallahassee, FL 32306 (United States)

2006-07-01T23:59:59.000Z

46

Methane Hydrates - Methane Hydrate Graduate Fellowship  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Supply and Emerging Resources Future Supply and Emerging Resources The National Methane Hydrates R&D Program - Graduate Fellowship Program Methane Hydrate Graduate Fellowship Program Jeffrey James Marlow, a graduate student in Geobiology at the California Institute of Technology, was recently selected as the 2012 recipient of the NETL-National Academy of Sciences (NAS) Methane Hydrate Research Fellowship. Please see page 15 of the March 2013 issue (Vol. 13, Issue 1) of Fire in the Ice for more information on the recipient. The Department of Energy has a long history of building synergistic relationships with research universities. Funding academic research is a "win-win-win" situation. The U.S. government is able to tap into some of the best minds available for solving national energy problems, the universities get the support they need to maintain cutting edge faculty and laboratories, and the students involved are provided with opportunities that help them along their chosen path of study, strengthening the national pool of scientists and engineers. According to Samuel Bodman, speaking about graduate research in methane hydrates, "Students are the foundation of our energy future, bringing new ideas and fresh perspectives to the energy industry. What better way to assure technology innovation than to encourage students working on the development of a resource that has the potential to tip our energy balance toward clean-burning, domestic fuels."

47

Comparison of models for predicting landfill methane recovery. Final report  

DOE Green Energy (OSTI)

Landfill methane models are tools used to project methane generation over time from a mass of landfilled waste. These models are used for sizing landfill gas (LFG) collection systems, evaluations and projections of LFG energy uses, and regulatory purposes. The objective of this project was to select various landfill methane models and to provide a comparison of model outputs to actual long-term gas recovery data from a number of well managed and suitable landfills. Another objective was to use these data to develop better estimates of confidence limits that can be assigned to model projections. This project assessed trial model forms against field data from available landfills where methane extraction was maximized, waste filling history was well-documented, and other pertinent site information was of superior quality. Data were obtained from 18 US landfills. Four landfill methane models were compared: a zero-order, a simple first order, a modified first order, and a multi-phase first order model. Models were adjusted for best fit to field data to yield parameter combinations based on the minimized residual errors between predicted and experienced methane recovery. The models were optimized in this way using two data treatments: absolute value of the differences (arithmetic error minimization) and absolute value of the natural log of the ratios (logarithmic error minimization).

Vogt, W.G. [SCS Engineers, Reston, VA (United States); Augenstein, D. [Institute for Environmental Management, Palo Alto, CA (United States)

1997-03-01T23:59:59.000Z

48

Methane Hydrate Advisory Committee Meeting Minutes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes June 6th - 7th, 2013...

49

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2011 FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of research. Pursuant to statutory requirements, this report is being provided to the following

50

Methane Hydrate Annual Reports  

Energy.gov (U.S. Department of Energy (DOE))

Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per...

51

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fiscal Year 2012 Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S. Department of Energy Fiscal Year 2012 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area

52

Electrochemical methane sensor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

53

TRENDS: METHANE EMISSIONS - INTRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Wm-2), almost 20% is attributable to methane (CH4), according to the 1995 report of the Intergovernmental Panel on Climate Change (IPCC 1995). Since the mid-1700s, the atmospheric concentration of methane has increased by about 145% (IPCC 1995). Thus, an understanding of the various sources of methane is important. Atmospheric methane is produced both from natural sources (e.g., wetlands) and from human activities (see global methane cycle, from Professor W.S. Reeburgh at the University of California Irvine). Total sources of methane to the atmosphere for the period 1980-1990 were about 535 (range of 410-660) Tg (1 Teragram = 1 million metric tons) CH4 per year, of which 160 (110-210) Tg CH4/yr were from natural sources and 375 (300-450) Tg CH4/yr

54

Methane Hydrate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

55

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Methane Gas Hydrates Last Reviewed 6142013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate...

56

An intensity-modulated dual-wavelength He-Ne laser for remote sensing of methane  

SciTech Connect

The differential absorption laser radar for methane sensing detects a leakage of methane gas by emitting into the atmosphere the light of a wavelength absorbable by methane, receiving the light returning after being reflected or scattered on a road or wall surface, etc., and measuring the light intensity lost during the travel. This methane detection system is highly practicable as it makes an instantaneous remote detection possible. The authors have developed a new He-Ne laser that could be used as the light source for the above system. This device emits a two-wavelength laser beam (one wavelength absorbable by methane and the other not absorbable by methane but used for referential purposes) from a single plasma tube, and there is no possibility of the axes of the two-wavelength component deviating from each other. Further, using this laser, they have developed a vehicle-mounted type differential absorption laser radar system which has successfully detected low density methane leakage while the vehicle was moving.

Ueki, T.; Tanaka, H.; Uehara, K.

1988-01-01T23:59:59.000Z

57

Storage of methane as volatile fatty acids for intermittent fuel use  

SciTech Connect

A process for on-site production of methane from sweet potato canning wastes was developed. In this process methane is stored conveniently as a liquid in the form of organic acids which are produced in an acid pond. When methane is needed, the acids are pumped into a methane pond underneath a sludge blanket, where high rates of methane production begin shortly after feeding. A demonstration plant has been designed and is being constructed using the existing pond system and facilities in a sweet potato canning factory in Louisiana. The methane produced is burned on-site to generate process steam for use in the main plant. 14 references, 10 figures, 3 tables.

Nghiem, N.P.; Mehta, K.; Callihan, C.D.

1983-01-01T23:59:59.000Z

58

The basics of coalbed methane  

Science Conference Proceedings (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

59

Methane Emissions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Equivalent; Estimated 2003 ... for about 8.7 percent of total U.S. greenhouse gas emissions when weighted by methane’s global warming potential factor.

60

Enhanced coalbed methane recovery  

SciTech Connect

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Methane emissions from natural wetlands  

SciTech Connect

Analyses of air trapped in polar ice cores in conjunction with recent atmospheric measurements, indicate that the atmospheric methane concentration increased by about 250% during the past two or three hundred years (Rasmussen and Khalil, 1984). Because methane is a potent ``greenhouse`` gas, the increasing concentrations are expected to contribute to global warning (Dickinson and Cicerone, 1986). The timing of the methane increase suggests that it is related to the rapid growth of the human population and associated industrialization and agricultural development. The specific causes of the atmospheric methane concentration increase are not well known, but may relate to either increases in methane sources, decreases in the strengths of the sinks, or both.

Meyer, J.L. [Georgia Univ., Athens, GA (United States); Burke, R.A. Jr. [Environmental Protection Agency, Athens, GA (United States). Environmental Research Lab.

1993-09-01T23:59:59.000Z

62

Predicting methane fermentation biodegradability  

Science Conference Proceedings (OSTI)

Estimation of the feedstock digestibility in cows by procedures developed by Van Soest was performed. By feeding cows feedstuff of different lignin content, cell wall digestibility can be estimated. In this article a digestibility model has been employed and tested along with other models for the rapid prediction of substrate methane fermentation biodegradability.

Chandler, J.A.; Jewell, W.J.; Gossett, J.M.; Van Soest, P.J.; Robertson, J.B.

1980-01-01T23:59:59.000Z

63

Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site  

Science Conference Proceedings (OSTI)

Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed. Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.

Chiriac, R., E-mail: rodica.chiriac@univ-lyon1.fr [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5615, Laboratoire des Multimateriaux et Interfaces, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); De Araujos Morais, J. [Universite Federal de Paraiba, Campus I Departamento de Engenharia Civil e Ambiental, Joao Pessoa, Paraiba (Brazil); Carre, J. [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5256, Institut de Recherche sur la Catalyse et l'Environnement, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Bayard, R. [Universite de Lyon, INSA de Lyon, Laboratoire de Genie Civil et d'Ingenierie environnementale (LGCIE), F-69622 Villeurbanne (France); Chovelon, J.M. [Universite de Lyon, Universite Lyon 1, CNRS, UMR 5256, Institut de Recherche sur la Catalyse et l'Environnement, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne (France); Gourdon, R. [Universite de Lyon, INSA de Lyon, Laboratoire de Genie Civil et d'Ingenierie environnementale (LGCIE), F-69622 Villeurbanne (France)

2011-11-15T23:59:59.000Z

64

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network (OSTI)

Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile and characterized by temperature, pH, ash content and C02 evolved during aerobic respiration. Assuming a 1 0% lignin content, the labile carbon fraction was reduced by an estimated 71 % during composting. Over a of six month period, simulated landfill cells filled with raw waste generated 66 M3 methane per Mg of dry refuse, while cells containing compost produced 31 M3 methane per Mg of dry compost. Per unit weight of dry raw material, composted waste placed in a landfill produced only 23% of the methane that was generated from raw refuse.

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

65

Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa  

Science Conference Proceedings (OSTI)

The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2011-07-15T23:59:59.000Z

66

Methanation of gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

Frost, Albert C. (Congers, NY)

1983-01-01T23:59:59.000Z

67

Methane conversion to methanol  

DOE Green Energy (OSTI)

The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

Noble, R.D.; Falconer, J.L.

1992-06-01T23:59:59.000Z

68

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

69

Revaluing waste in New York City : planning for small-scale compost  

E-Print Network (OSTI)

One-third of the municipal solid waste stream is organic material that, when processed in landfills, produces methane, a highly potent greenhouse gas. Composting is a proven strategy for organic waste management, which ...

Neilson, Sarah (Sarah Jane)

2009-01-01T23:59:59.000Z

70

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

71

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

72

NETL: Methane Hydrates - Interagency Coordination  

NLE Websites -- All DOE Office Websites (Extended Search)

Links to interagency pdf. The multi-faceted issues associated with naturally occurring methane hydrates demand a coordinated approach to studying (1) the potential of this resource...

73

Revaluing waste in New York City : planning for small-scale compost; Planning for small-scale compost.  

E-Print Network (OSTI)

??One-third of the municipal solid waste stream is organic material that, when processed in landfills, produces methane, a highly potent greenhouse gas. Composting is a… (more)

Neilson, Sarah (Sarah Jane)

2009-01-01T23:59:59.000Z

74

Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions  

DOE Green Energy (OSTI)

United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

2006-04-01T23:59:59.000Z

75

New Materials Make Methane Capture Possible  

Science Conference Proceedings (OSTI)

May 8, 2013... SBN, captured enough medium source methane to turn it to high purity methane, which in turn could be used to generate efficient electricity.

76

Enhanced Renewable Methane Production System | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

77

Florida Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves Changes, and...

78

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

with sampling and observation from the surface ship. Activities included collection of methane hydrate, sediment, water, and other materials from methane hydrate and seep sites...

79

NIST: Methane Symmetry Operations - Td Symmetry Species  

Science Conference Proceedings (OSTI)

Table of Contents Methane Symmetry Operations. 11. ... Magnetic-dipole transitions are observed in molecular-beam studies of methane [42]. ...

80

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

represent components of dynamic biogeochemical environments with inputs and outputs of methane, accurate rates of biological methane production are poorly understood. Recent...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Michigan Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Michigan Coalbed Methane Proved Reserves, Reserves Changes, and...

82

Kentucky Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and...

83

MethaneHydrateRD_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety...

84

The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan  

Science Conference Proceedings (OSTI)

The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.

Batool, Syeda Adila [Department of Space Science, Punjab University, Lahore 54600 (Pakistan)], E-mail: aadila_batool@yahoo.com; Chuadhry, Muhammad Nawaz [College of Earth and Environmental Sciences, University of the Punjab, Lahore (Pakistan)], E-mail: muhammadnawazchaudhry@yahoo.com

2009-01-15T23:59:59.000Z

85

Coal mine methane global review  

Science Conference Proceedings (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

86

Long persistent light emitting diode  

Science Conference Proceedings (OSTI)

Light emitting diodes(LEDs)coated with Sr 2 Mg Si 2 O 7 : Eu 2 + Nd 3 + (blue) Sr Al 2 O 4 : Eu 2 + Dy 3 + (green) Sr S : Eu 2 + Y 3 + Ce 3 + (orange)

D. Jia; D. N. Hunter

2006-01-01T23:59:59.000Z

87

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

88

TRAITEMENT DES EFFLUENTS WASTE TREATMENT  

E-Print Network (OSTI)

TRAITEMENT DES EFFLUENTS WASTE TREATMENT Anaerobic digestion of pig manure B. DE LA FARGE Michèle properties of the methanized effluemt are preserved. A trial on anaerobic digestion of untreated pig manure technique du Porc, Station expérimentale, Les Cabrière.l, 12200 Villefranche-de-Rouer/(ue Frctnce Anaerobic

Recanati, Catherine

89

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

Science Conference Proceedings (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

90

Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials  

SciTech Connect

The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

2011-05-15T23:59:59.000Z

91

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane...  

NLE Websites -- All DOE Office Websites (Extended Search)

On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 6242013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced...

92

Infrared emitting device and method  

DOE Patents (OSTI)

An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

Kurtz, Steven R. (Albuquerque, NM); Biefeld, Robert M. (Albuquerque, NM); Dawson, L. Ralph (Albuquerque, NM); Howard, Arnold J. (Albuquerque, NM); Baucom, Kevin C. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

93

Methane Hydrate Advisory Committee Meeting Minutes, June 6th...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee...

94

Methane Hydrate Research and Development Act of 2000 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and...

95

Methane Hydrate Advisory Committee Meeting Minutes, January 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2010 Methane Hydrate Advisory Committee Meeting Minutes, January 2010 Methane Hydrate Advisory Committee Meeting Minutes January, 2010 Atlanta, GA Methane Hydrate Advisory...

96

Department of Energy Advance Methane Hydrates Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane...

97

Methane Hydrate Advisory Committee Meeting Minutes, March 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2010 Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes March 2010 Washington, DC Methane Hydrate Advisory...

98

NETL: Methane Hydrates - Hydrate Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate R&D Program Newsletter Methane Hydrate R&D Program Newsletter An image of a hydrate burning overlayed with the Newsletter Title: Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a bi-annual publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in the Ice please send an email to karl.lang@contr.netl.doe.gov Please click on the links below to access issues of "Fire in the Ice". More on Methane Hydrates

99

Methane Credit | Open Energy Information  

Open Energy Info (EERE)

Methane Credit Methane Credit Jump to: navigation, search Name Methane Credit Place Charlotte, North Carolina Zip 28273 Product Specialises in utilising methane produced on municipal landfill sites. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Biological conversion of biomass to methane. Quarterly progress report  

DOE Green Energy (OSTI)

Progress in comparative studies of complete-mix and multi-stage reactors for use in the anaerobic fermentation of organic solids for methane production is reported. Results indicate that if a balanced population of organisms can be maintained in the initial stage, multi-stage fermentation is more efficient than a complete-mix system. However, if the system is stressed, failure of the multi-staged system is more rapid. When the first stage is not inhibited due to a short retention time, the waste stabilization in the additional stages is minimal. Further studies on the effect of retention time on reaction rates indicate that the type of reactor design desired will depend upon the objective of the system. If it is desired to maximize the conversion of solids to methane, a staged system will produce more methane per unit volume of reactor for a given quantity of substrate. If the objective is to maximize methane production per unit volume of reactor, a single-stage reactor operating at near the minimum retention is required. Results of studies on the fermentation of manures and corn stover are discussed briefly. (JGB)

Pfeffer, J T

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Blue light emitting thiogallate phosphor  

DOE Patents (OSTI)

A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

Dye, Robert C. (Los Alamos, NM); Smith, David C. (Los Alamos, NM); King, Christopher N. (Portland, OR); Tuenge, Richard T. (Hillsboro, OR)

1998-01-01T23:59:59.000Z

102

Broadband light-emitting diode  

DOE Patents (OSTI)

A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

Fritz, Ian J. (Albuquerque, NM); Klem, John F. (Sandia Park, NM); Hafich, Michael J. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

103

Broadband light-emitting diode  

DOE Patents (OSTI)

A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

Fritz, I.J.; Klem, J.F.; Hafich, M.J.

1998-07-14T23:59:59.000Z

104

Infrared emitting device and method  

DOE Patents (OSTI)

The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

1997-04-29T23:59:59.000Z

105

Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions  

SciTech Connect

Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)

2011-05-15T23:59:59.000Z

106

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

107

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

108

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

109

Concentrations of dissolved methane (CH sub 4 ) and nitrogen (N sub 2 ) in groundwaters from the Hanford Site, Washington  

SciTech Connect

This document reports all available dissolved gas concentration data for groundwaters from the Hanford Site as of June 1985. Details of the computational procedures required to reduce data obtained from the field measurements made by the Basalt Waste Isolation Project are provided in the appendix. Most measured values for methane concentration from reference repository boreholes are in the range of from 350 to 700 mg/L for the Cohassett flow top. Because of the uncertainties associated with these measurements, it is currently recommended that a conservative methane concentration of 1200 mg/L (methane saturated) in groundwater be considered the most reasonable upper-bounding value. 16 refs., 2 figs., 2 tabs.

Early, T.O.

1986-03-14T23:59:59.000Z

110

Why Sequence a Methane-Oxidizing Archaean?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Methane-Oxidizing Archaeon? a Methane-Oxidizing Archaeon? Methane is a potent greenhouse gas whose atmospheric concentration has increased significantly because of anthropogenic activities and fluctuated naturally over glacial and interglacial cycles. While the importance of methane in Earth's climate dynamics has been well established, the global processes regulating its oceanic cycling remain poorly understood. Although there are high rates of methane production in many marine sedimentary environments (including a number that have been targeted as petroleum reserves), net methane sources from the ocean to the atmosphere appear to be small. This is due in large part to a biogeochemical process known as the anaerobic oxidation of methane (AOM). Microbially mediated AOM reduces methane flux from ocean to atmosphere, stimulates subsurface microbial

111

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of aerobic methanotrophy in preventing the escape of methane from marine, hydrate-bearing reservoirs to the atmosphere and ultimately to better define the role of aerobic methanotrophy in the global carbon cycle. Graph overlayed on photo - Methane seeps with the resulting methane plume Methane seeps with the resulting methane plume, Geophysical Research Letters, November 2007 Performers University of California – Santa Barbara, Santa Barbara (UCSB), CA 93106 Background The global methane reservoir in the form of gas hydrate is estimated at 500–10,000 Gt (KVENVOLDEN, 1995; MILKOV, 2004). This pool of carbon

112

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

as described by Dillon, et al. (1998). Failure would be accompanied by the release of methane gas, but a portion of the methane is likely to be oxidized unless the gas release is...

113

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

114

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Waters Last Reviewed 5152012 DE-NT0005666 Goal The goal of this project is gain a better understanding of...

115

NETL: News Release - Methane Hydrate Production Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

of CO2 molecules for methane molecules in the solid-water hydrate lattice, the release of methane gas, and the permanent storage of CO2 in the formation. This field experiment will...

116

Quantum Dot Light Emitting Diode  

SciTech Connect

The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

Kahen, Keith

2008-07-31T23:59:59.000Z

117

Quantum Dot Light Emitting Diode  

SciTech Connect

The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

Keith Kahen

2008-07-31T23:59:59.000Z

118

Light Emitting Diodes and General Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Emitting Diodes and General Lighting Speaker(s): Martin Moeck Date: August 6, 2009 - 12:00pm Location: 90-3122 We give a short overview on high-power light emitting diodes,...

119

LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP)  

E-Print Network (OSTI)

1 LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP) John A. McNeill ECE Box 000 January 19, 1997 ABSTRACT This lab investigates the V-I characteristic of a light-emitting diode (LED

McNeill, John A.

120

coalbed methane | OpenEI  

Open Energy Info (EERE)

coalbed methane coalbed methane Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations Source NREL Date Released April 30th, 2005 (9 years ago) Date Updated November 07th, 2007 (7 years ago) Keywords coalbed methane GEF Kenya NREL SWERA TMY UNEP Data application/zip icon Download Data (zip, 5.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Objective was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields under relatively mild reaction conditions. Results in this document are reported under the headings: methane oxidation over silica, methane oxidation over Sr/La{sub 2}O{sub 3} catalysts, and oxidative coupling of methane over sulfate-doped Sr/La{sub 2}O{sub 3} catalysts. 24 refs, 10 figs, 4 tabs.

Klier, K.; Herman, R.G.

1993-12-31T23:59:59.000Z

122

Method for the photocatalytic conversion of methane  

DOE Patents (OSTI)

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D' Este, Joseph R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

123

Method for the photocatalytic conversion of methane  

DOE Patents (OSTI)

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

1998-02-24T23:59:59.000Z

124

QUEST FOR NEW MATERIALS FOR METHANE STORAGE ...  

Science Conference Proceedings (OSTI)

Quest for New Materials for Methane Storage: Gas Adsorption and Neutron Diffraction Measurements. Yang Peng, 1,2 Vaiva ...

125

EIA - Greenhouse Gas Emissions - Methane Emissions  

U.S. Energy Information Administration (EIA)

Residential wood consumption accounted for just over 45 percent of U.S. methane emissions from stationary combustion in 2009.

126

NIST: Methane Symmetry Operations - Nuclear spin functions  

Science Conference Proceedings (OSTI)

Methane Symmetry Operations. 9. Symmetry Properties of Laboratory-Fixed Nuclear Spin Functions, Nuclear Spin Statistics, and Parities. ...

127

Methane Emissions from Rice Fields - Final Report  

SciTech Connect

Methane (Ch4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning.

Khalil, M. Aslam; Rasmussen,Reinhold A.

2002-12-03T23:59:59.000Z

128

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network (OSTI)

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

129

White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode  

E-Print Network (OSTI)

White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode generation using CdSe/ZnS core-shell nanocrystals hybridized with InGaN/GaN light emitting diodesGaN/conjugated polymer hybrid light-emitting diodes," Appl. Phys. Lett. 70, 2664-2666 (1997). 9. H. V. Demir, S

Demir, Hilmi Volkan

130

ACTION CONCENTRATION FOR MIXTURES OF VOLATILE ORGANIC COMPOUNDS (VOC) & METHANE & HYDROGEN  

DOE Green Energy (OSTI)

Waste containers may contain volatile organic compounds (VOCs), methane, hydrogen and possibly propane. These constituents may occur individually or in mixtures. Determining if a waste container contains a flammable concentration of flammable gases and vapors (from VOCs) is important to the safety of the handling, repackaging and shipping activities. This report provides the basis for determining the flammability of mixtures of flammable gases and vapors. The concentration of a mixture that is at the lowest flammability limit for that mixture is called the action concentration. The action concentration can be determined using total VOC concentrations or actual concentration of each individual VOC. The concentrations of hydrogen and methane are included with the total VOC or individual VOC concentration to determine the action concentration. Concentrations below this point are not flammable. Waste containers with gas/vapor concentrations at or above the action concentration are considered flammable.

MARUSICH, R.M.

2006-07-10T23:59:59.000Z

131

Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste  

Science Conference Proceedings (OSTI)

The effect of alkaline hydrothermal pre?treatment for anaerobic digestion of mechanically?sorted municipal solid waste (MSW) and source?sorted waste was studied. Waste was hydrothermally pre?treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170?°C at the dose of 4 g NaOH/100 g solid for one hour. Soluble COD was 13936 mg/L and methane yield was 164 ml/g VS for 6 days incubation at optimum conditions. More than 50% biogas increase was achieved over the control

W. Hao; W. Hongtao

2008-01-01T23:59:59.000Z

132

Visible light emitting vertical cavity surface emitting lasers  

DOE Patents (OSTI)

A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.

Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.

1995-06-27T23:59:59.000Z

133

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

134

Methane Hydrate Production Feasibility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

135

Methane Hydrate Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Methane Hydrate Advisory Committee Methane Hydrate Advisory Committee The Methane Hydrate Advisory Committee was created in response to provisions of the Methane Hydrate Research and Development Act of 2000 and reauthorized by the Energy Policy Act of 2005. The Committee is to advise the Secretary of Energy on potential applications of methane hydrate; assist in developing recommendations and priorities for the methane hydrate research and development program; and submit to Congress one or more reports on an assessment of the research program and an assessment of the DOE 5-year research plan. The Committee's charter stipulates that up to 15 members can be appointed by the Secretary of Energy, representing institutions of higher education, industrial enterprises and oceanographic institutions and state agencies.

136

Record of Decision on Treating Transuranic (TRU)/Alpha Low-Level Waste at the Oak Ridge National Laboratory (DOE/EIS-0305) (8/9/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

83 83 Federal Register / Vol. 65, No. 154 / Wednesday, August 9, 2000 / Notices 1 TRU waste is waste containing alpha-emitting radionuclides with an atomic number greater than 92 and half-lives greater than 20 years, at concentrations greater than 100 nanocuries per gram of waste. 2 Alpha low-level waste is low-level waste that contains alpha-emitting isotopes. 3 Mixed waste contains radioactive waste regulated under the Atomic Energy Act of 1954, as amended, and a hazardous component subject to RCRA regulation. 4 Low-level waste is any radioactive waste that is not classified as high-level waste, spent nuclear fuel, TRU waste, byproduct material, or mixed waste. 5 Remote-handled TRU/alpha low-level waste contains alpha-, beta-, and gamma-emitting isotopes with a surface dose rate greater than 200 millirem

137

Turbulent burning rates of methane and methane-hydrogen mixtures  

Science Conference Proceedings (OSTI)

Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

2009-04-15T23:59:59.000Z

138

Microbial effects on radioactive wastes at SLB sites  

DOE Green Energy (OSTI)

The objectives of this study are to determine the significance of microbial degradation of organic wastes on radionuclide migration on shallow land burial for humid and arid sites, establish which mechanisms predominate and ascertain the conditions under which these mechanisms operate. Factors contolling gaseous eminations from low-level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide and possibly hydrogen from the site stems from the inclusion of tritium and/or /sup 14/C into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste materials, primary emphasis of the study involved on examination of the biochemical pathways producing methane, carbon dioxide and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Although the methane and carbon dioxide production rate indicates the degradation rate of the organic substances in the waste, it does not predict the methane evolution rate from the trench site. Methane fluxes from the soil surface are equivalent to the net synthesis minus the quantity oxidized by the microbial community as the gas passes through the soil profile. Gas studies were performed at three commercial low-level radioactive waste disposal sites (West Valley, New York; Beatty, Nevada; Maxey Flats, Kentucky) during the period 1976 to 1978. The results of these studies are presented. 3 tables.

Colombo, P.

1982-01-01T23:59:59.000Z

139

Dairy methane generator. Final report  

Science Conference Proceedings (OSTI)

Details of the work completed under this contract are presented. During the winter of 1979-80 three students enrolled, in the Mechanical Design Engineering Technology program at the Pennsylvania State University's Capitol Campus (Middletown, PA), undertook a feasibility study for the utilization of the manure generated by the dairy cows located on Mr. Thomas B. Williams farm for the generation and use of methane gas. The results of their effort was the design of an Anaerobic Digester/Electric Generation System. This preliminary designed system was later changed and improved by another group of P.S.U. MDET students in the spring of 1980. The final design included working drawings and an economic analysis of the estimated investment necessary to complete the Methane Generator/Electric Power Generation System.

Williams, T.B.

1981-09-30T23:59:59.000Z

140

Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler  

Science Conference Proceedings (OSTI)

Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

Changfu You; Xuchang Xu [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

future science group 133ISSN 1758-300410.4155/CMT.12.11 2012 Future Science Ltd Municipal solid waste (MSW) is a ubiquitous byprod-  

E-Print Network (OSTI)

- monly known as waste-to-energy (WTE). This method reduces the land requirement for waste disposal of waste-to-energy in reducing GHG emissions Munish K Chandel1 , Gabriel Kwok2 , Robert B Jackson*1 or electricity (waste-to-energy [WTE]) could reduce net GHG emissions in the USA compared with combusting methane

Jackson, Robert B.

142

Electrically driven nanopyramid green light emitting diode  

Science Conference Proceedings (OSTI)

An electrically driven nanopyramid green light emitting diode(LED) was demonstrated. The nanopyramid arrays were fabricated from a GaN substrate by patterned nanopillar etch

S.-P. Chang; Y.-C. Chen; J.-K. Huang; Y.-J. Cheng; J.-R. Chang; K.-P. Sou; Y.-T. Kang; H.-C. Yang; T.-C. Hsu; H.-C. Kuo; C.-Y. Chang

2012-01-01T23:59:59.000Z

143

Light emitting diode color rendition properties.  

E-Print Network (OSTI)

??This paper discusses the color rendition capabilities of light emitting diodes (LEDs) and their relationship with the current standard for color rendition quality. The current… (more)

Hood, Sean

2013-01-01T23:59:59.000Z

144

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 EST-380-NEDA Goal The purpose of this study is to establish sediment lithology and quantification of methane in hydrates hosted in fine-grained sediments from the Gulf of Mexico (GoM), a marine site of methane hydrate occurrence. The results will help establish a correlation between laboratory data and hydrate accumulation field data on dispersed hydrates in the natural environment. Performer Brookhaven National Laboratory (BNL), Upton, New York 11973 Background Gas hydrates are located in permafrost and marine environments and show potential as a vast methane source worldwide. However, methane is about 17 times more potent a greenhouse gas than CO2 and the inherent instability of

145

Methane Hydrates R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

146

Table 16. Coalbed Methane Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

aIncludes Illinois and Indiana. Note: The above table is based on coalbed methane proved reserves and production volumes as reported to the EIA on ...

147

GRI methane chemistry program review meeting  

SciTech Connect

Methane is an important greenhouse gas which affects the atmosphere directly by the absorption and re-emission of infrared radiation as well as indirectly, through chemical interactions. Emissions of several important greenhouse gases (GHGS) including methane are increasing, mainly due to human activity. Higher concentrations of these gases in the atmosphere are projected to cause a decrease in the amount of infrared radiation escaping to space, and a subsequent warming of global climate. It is therefore vital to understand not only the causes of increased production of methane and other GHGS, but the effect of higher GHG concentrations on climate, and the possibilities for reductions of these emissions. In GRI-UIUC methane project, the role of methane in climate change and greenhouse gas abatement strategies is being studied using several distinct approaches. First, a detailed treatment of the mechanisms controlling each important methane source and sink, and hence the atmospheric concentration of methane, is being developed for use with the UIUC Integrated Science Assessment Model. The focus of this study is to resolve the factors which determine methane emissions and removal, including human population, land use, energy demand, global temperature, and regional concentrations of the hydroxyl radical, carbon monoxide, nitrous oxides, non-methane hydrocarbons, water vapor, tropospheric and stratospheric ozone.

Dignon, J.; Grant, K.; Grossman, A.; Wuebles, D.; Brasseur, G.; Madronich, S.; Huang, T.; Chang, J.; Lott, B.

1997-02-01T23:59:59.000Z

148

EIA - Greenhouse Gas Emissions - Methane Emissions  

Gasoline and Diesel Fuel Update (EIA)

oil production dropping by 28 percent from 1990 to 2009, methane emissions from petroleum exploration and production have declined by the same percentage. Residential wood...

149

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Seol, Y. and T. J. Kneafsey, Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media, Journal of Geophysical Research, 2011, In...

150

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL ORD Methane Hydrate Research - Thermal Properties of Hydrate Tool Development Last Reviewed 3182013 Project Goal The goal of this project is increased understanding of...

151

NETL: Methane Hydrates - Hydrate Model Code Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservoir Simulator Code Comparison Study An International Effort to Compare Methane Hydrate Reservoir Simulators Code Comparison Logo The National Energy Technology Laboratory...

152

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of...

153

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5102012 ESD05-048 Goal The project is bringing new laboratory measurements and...

154

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Projects If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed...

155

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to Arctic climate change Last Reviewed 632013 DE-NT0005665...

156

,"California - Coastal Region Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

- Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","...

157

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

in the Gulf of Mexico and 2) NRL's Advanced Research Initiative on shallow sediment methane seeps. Geochemical data coupled with heat flow probe data were used to estimate...

158

Methane Hydrate Advisory Committee Meeting Minutes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2013 Washington, DC July 16, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Electricity Advisory Committee Notice of Open...

159

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

late Quaternary. An investigation of the nature of deposition and alteration of the methane hydrate in cores from the Umnak Plateau in the southeastern Bering Sea was conducted...

160

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

establishing high-priority geographical regions of prospective interest, in terms of methane volume estimates; c). Prediction of environmental effects and geologic risks at the...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

goal was to develop new methodologies to characterize the physical properties of methane hydrate and hydrate sediment systems. Performers Westport Technology Center...

162

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

during NGHP Expedition 01 Background Gas hydrate distribution in sediments depends on methane supply, which in turn depends on fluid flow. When drilling data are available to...

163

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3182013 Project Goals The primary goals of the DOENETL Natural Gas Hydrate Field Studies...

164

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

(RUS) technique to examine hydrate formationdissociation processes. For determining methane abundance and location on a grain-to-grain scale, a completely new method of...

165

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

natural and simulated sediment samples, and to use these sediments as hosts to form methane hydrate and to investigate the kinetics of hydrate formation and dissociation...

166

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

167

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

for this sample, but Raman bands from both samples were essentially identical: methane and ethane along with trace amounts of isobutene and trans-butane. Small angle...

168

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with...

169

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of...

170

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02172010 EST-380-NEDA Goal The purpose of this study is to...

171

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and presentations as well as a listing of funded students can be found in the Methane Hydrate Program Bibliography PDF. A final report is available by request. Contact...

172

,"Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

173

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and presentations as well as a listing of funded students can be found in the Methane Hydrate Program Bibliography PDF. Final Project Report PDF-23MB - October, 2009...

174

,"Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

175

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization project has resulted in a characterization of two large prospective methane hydrate accumulations (or trends); the Eileen Trend, which underlies but extends well...

176

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Structure and Physical Properties of Methane Hydrate Deposit at Blake Ridge Last Reviewed 02052010 Bathymetric location map of the Blake Ridge study area Bathymetric location map...

177

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Horizon spill approximately 10 miles from the observatory showed increased levels of methane at two depths where detectable levels had not been seen in the past. The evidence...

178

NETL: Methane Hydrates - ANS Research Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Slope represents an important milestone in an ongoing evaluation of Alaskan Arctic methane hydrate potential. This evaluation, a joint effort of DOE, USGS, BP Exploration...

179

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey, Woods Hole Field Center Location Woods Hole Massachusetts Background Oceanic methane hydrates are a major emerging research topic spanning energy resource issues, global...

180

New Materials Make Methane Capture Possible  

Science Conference Proceedings (OSTI)

May 8, 2013... and FER, were able to concentrate dilute methane streams into moderate concentrations that could be used to treat coal-mine ventilation air.

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Coal bed methane reservoir simulation studies.  

E-Print Network (OSTI)

??The purpose of this study is to perform simulation studies for a specific coal bed methane reservoir. First, the theory and reservoir engineering aspects of… (more)

Karimi, Kaveh

2005-01-01T23:59:59.000Z

182

methane hydrate science plan-final.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Revolu on. Methane in the atmosphere comes from many sources, including wetlands, rice cul va on, termites, cows and other ruminants, forest fi res, and fossil fuel...

183

Method for the photocatalytic conversion of methane  

DOE Patents (OSTI)

The invention relates to a method for converting methane and water to methanol and hydrogen using visible light and a catalyst.

Noceti, R.P.; Taylor, C.E.; D' Este, J.R.

1996-12-01T23:59:59.000Z

184

A conduit dilation model of methane venting from lake sediments  

E-Print Network (OSTI)

Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the ...

Ruppel, Carolyn

185

Data accumulation on the methane potential of the coal beds of Colorado. Final report  

SciTech Connect

A two-year project was conducted to gather data that would assist in the evaluation of the methane potential of the coal beds of Colorado. It was found that a number of closed underground coal mines in the State had reported gassy conditions or had experienced fires and explosions of varied intensity and frequency. The majority of such occurrences have been in those areas characterized by coals of relatively low (i.e., below 31%) volatile matter (VM) content. The south half of the Raton Mesa coal region (Las Animas County) and the southeastern part of the Unita region (in Gunnison and Pitkin Counties) contain coals with the lowest percentages of VM, the gassiest producing mines, and the highest grade coking coal in the State. Five active mines in Pitkin County presently are emitting a total of over 8 million cu ft of methane per day. These mines produce the highest quality metallurgical-grade coal in the western US (high-volatile A and medium-volatile bituminous). The gassy coals in these two regions range from Late Cretaceous to Paleocene in age and usually occur in areas related to igneous activity of late Tertiary age. The VM percentages of Colorado coals can be used, with some caution, to determine their potential methane content. Additional desorption measurements and coal analyses are needed to more accurately predict the effects of rank and depth of occurrence on the methane content of coals in the State.

Fender, H. B.; Murray, D. K.

1978-03-31T23:59:59.000Z

186

Green emitting phosphors and blends thereof  

DOE Patents (OSTI)

Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

Setlur, Anant Achyut (Niskayuna, NY); Siclovan, Oltea Puica (Rexford, NY); Nammalwar, Prasanth Kumar (Bangalore, IN); Sathyanarayan, Ramesh Rao (Bangalore, IN); Porob, Digamber G. (Goa, IN); Chandran, Ramachandran Gopi (Bangalore, IN); Heward, William Jordan (Saratoga Springs, NY); Radkov, Emil Vergilov (Euclid, OH); Briel, Linda Jane Valyou (Niskayuna, NY)

2010-12-28T23:59:59.000Z

187

Light emitting device having peripheral emissive region  

DOE Patents (OSTI)

Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

Forrest, Stephen R

2013-05-28T23:59:59.000Z

188

Utah Coalbed Methane Proved Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane New Field Discoveries Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production...

189

Changes related to "Coal Bed Methane Protection Act (Montana...  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Coal Bed Methane Protection Act (Montana)" Coal Bed Methane Protection Act (Montana)...

190

Pages that link to "Coal Bed Methane Protection Act (Montana...  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Coal Bed Methane Protection Act (Montana)" Coal Bed Methane Protection Act (Montana)...

191

Louisiana--South Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production LA, South Onshore Coalbed Methane Proved Reserves, Reserves...

192

California (with State off) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production California Coalbed Methane Proved Reserves, Reserves Changes,...

193

Other States Natural Gas Coalbed Methane, Reserves Based Production...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Reserves Based Production (Billion Cubic Feet)...

194

Texas (with State Offshore) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Texas Coalbed Methane Proved Reserves, Reserves Changes, and...

195

Texas--RRC District 8 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8 Coalbed Methane Proved Reserves, Reserves...

196

Texas--RRC District 5 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 5 Coalbed Methane Proved Reserves, Reserves...

197

Texas--RRC District 3 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 3 Onshore Coalbed Methane Proved...

198

Texas--RRC District 6 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 6 Coalbed Methane Proved Reserves, Reserves...

199

Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 5 Coalbed Methane Proved Reserves,...

200

Lower 48 Federal Offshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Federal Offshore U.S. Coalbed Methane Proved Reserves, Reserves...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Texas--RRC District 9 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 9 Coalbed Methane Proved Reserves, Reserves...

202

Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, South Onshore Coalbed Methane Proved Reserves,...

203

Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Alaska Coalbed Methane Proved Reserves, Reserves...

204

Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 6 Coalbed Methane Proved Reserves,...

205

Texas--RRC District 3 Onshore Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 3 Onshore Coalbed Methane Proved Reserves,...

206

Texas--RRC District 4 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 4 Onshore Coalbed Methane Proved Reserves,...

207

North Dakota Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Dakota Coalbed Methane Proved Reserves, Reserves...

208

Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 10 Coalbed Methane Proved Reserves,...

209

Texas--RRC District 1 Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 1 Coalbed Methane Proved Reserves, Reserves...

210

Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 4 Onshore Coalbed Methane Proved...

211

Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 1 Coalbed Methane Proved Reserves,...

212

Methane Hydrate Advisory Committee Meeting Minutes, October 2011...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2011 Methane Hydrate Advisory Committee Meeting Minutes, October 2011 Methane Hydrate Advisory Committee Meeting Minutes October 2011 Washington, DC Advisory Committee...

213

New York Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production New York Coalbed Methane Proved Reserves, Reserves Changes, and...

214

Texas--RRC District 10 Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 10 Coalbed Methane Proved Reserves, Reserves...

215

North Dakota Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production North Dakota Coalbed Methane Proved Reserves, Reserves Changes,...

216

Louisiana--State Offshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production LA, State Offshore Coalbed Methane Proved Reserves, Reserves...

217

Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 9 Coalbed Methane Proved Reserves,...

218

Texas--RRC District 2 Onshore Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 2 Onshore Coalbed Methane Proved Reserves,...

219

Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, State Offshore Coalbed Methane Proved Reserves,...

220

Alaska (with Total Offshore) Coalbed Methane Production (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Alaska Coalbed Methane Proved Reserves, Reserves Changes, and...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Texas--State Offshore Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, State Offshore Coalbed Methane Proved Reserves, Reserves...

222

Mississippi (with State off) Coalbed Methane Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Mississippi Coalbed Methane Proved Reserves, Reserves...

223

Why sequence functional metagenomics of methane and nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

functional metagenomics of methane and nitrogen cycles in freshwater lakes? Methane is a more potent greenhouse gas than carbon dioxide, but it is also a potential source of...

224

Airborne observations of methane emissions from rice cultivation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California Title Airborne observations of methane emissions from rice cultivation in...

225

METHANE HYDRATE ADVISORY COMMITTEE U.S. DEPARTMENT OF ENERGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

METHANE HYDRATE ADVISORY COMMITTEE U.S. DEPARTMENT OF ENERGY Advisory Committee Charter 1. Committee's Official Designation. Methane Hydrate Advisory Committee (MHAC) 2. Authority....

226

Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kentucky Coalbed Methane Proved Reserves, Reserves...

227

Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 8 Coalbed Methane Proved Reserves,...

228

Mississippi (with State off) Coalbed Methane Production (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes,...

229

Other States Natural Gas Coalbed Methane, Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Other States Natural Gas Coalbed Methane, Proved Reserves (Billion Cubic Feet) Other States Natural Gas Coalbed Methane, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

230

NETL: Methane Hydrates - DOE/NETL Projects - Application of Crunch...  

NLE Websites -- All DOE Office Websites (Extended Search)

multi-dimensional reactive transport simulation code to constrain modern day methane fluxes and to reconstruct past episodes of methane flux that can be correlated with...

231

Waste-to-Energy and Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy and Fuel Cell Waste-to-Energy and Fuel Cell T h l i O i Innovation for Our Energy Future Technologies Overview Presented to: DOD-DOE Waste-to- Energy Workshop Energy Workshop Dr. Robert J. Remick J 13 2011 January 13, 2011 Capital Hilton Hotel Washington, DC NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Global Approach for Using Biogas Innovation for Our Energy Future Anaerobic Digestion of Organic Wastes is a Good Source of Methane. Organic waste + methanogenic bacteria → methane (CH 4 ) Issues: High levels of contamination Time varying output of gas quantity and quality Innovation for Our Energy Future Photo courtesy of Dos Rios Water Recycling Center, San Antonio, TX

232

Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant  

SciTech Connect

The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

Silva, M.K.; Neill, R.H.

1994-09-01T23:59:59.000Z

233

Manifold methods for methane combustion  

SciTech Connect

Objective is to develop a new method for studying realistic chemistry in turbulent methane combustion with NO{sub x} mechanism. The realistic chemistry is a simplification to a more detailed chemistry based on the manifold method; accuracy is determined by interaction between the transport process and the chemical reaction. In this new (tree) method, probability density function or partially stirred reactor calculations are performed. Compared with the reduced mechanism, manifold, and tabulation methods, the new method overcomes drawbacks of the reduced mechanism method and preserves the advantages of the manifold method. Accuracy is achieved by specifying the size of the cell.

Yang, B.; Pope, S.B. [Cornell Univ., Ithaca, NY (United States)

1995-12-31T23:59:59.000Z

234

Arctic Methane, Hydrates, and Global Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

Arctic Methane, Hydrates, and Global Climate Arctic Methane, Hydrates, and Global Climate Speaker(s): Matthew T. Reagan Date: March 17, 2010 - 12:00pm Location: 90-3122 Paleooceanographic evidence has been used to postulate that methane may have had a significant role in regulating past climate. However, the behavior of contemporary permafrost deposits and oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. A recent expedition to the west coast of Spitsbergen discovered substantial methane gas plumes exiting the seafloor at depths that correspond to the upper limit of the receding gas hydrate stability zone. It has been suggested that these plumes may be the

235

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 Methane Recovery from Hydrate-bearing Sediments Last Reviewed 11/30/2011 DE-FC26-06NT42963 Goal The goal of this project is to develop observational and experimental data that can provide a better understanding of the basic mechanisms at work in a methane hydrate reservoir that is under production. To this end, a thorough physical understanding of underlying phenomena associated with methane hydrate production will be acquired through unique, multi-scale experiments and associated analyses. In addition, one or more mathematical models that account for the observed phenomena and provide insights that may help to optimize methane hydrate production methods will be developed. Performers Georgia Tech Research Corporation, Atlanta, Georgia 30332 Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee 37831

236

SOLID-PHASE METHANE FERMENTATION OF SOLID WASTES  

E-Print Network (OSTI)

of Oahu by The Gas Company (TGC), a division of Citizens Communications. Synthetic natural gas (SNG) is produced at an SNG plant adjacent to the refineries and distributed at modest pressures through several Propane Jet Fuel Gasoline SNG Diesel Residual Fuel Finished Product Energy End

Columbia University

237

SOLID-PHASE METHANE FERMENTATION OF SOLID WASTES  

E-Print Network (OSTI)

(1-9 scf/lb) biogas versus 2.5 scf/lb for the proposed system. This is not totally a fair comparison doubt that any system using it will be predictable. The fact that the principal product will be biogas since considerable biogas was generated in the bed. In addition, DOE sponsored experiments indicate

Columbia University

238

Upgrading drained coal mine methane to pipeline quality: a report on the commercial status of system suppliers  

Science Conference Proceedings (OSTI)

In today's scenario of growing energy demand worldwide and rising natural gas prices, any methane emitted into the atmosphere is an untapped resource of energy and potentially a lost opportunity for additional revenue. In 2005, 9.7% of the total US anthropogenic emissions of methane were attributed to coal production. In recent years, many gassy coal mines have seized the opportunity to recover coal mine methane (CMM) and supply it to natural gas pipeline systems. With natural gas prices in the US exceeding $7.00 per million Btu, CMM pipeline sales brought in an annual revenue topping $97 million in 2005. However, significant opportunity still exists for tapping into this resource as 22% of the drained CMM remains unutilized as of 2005, primarily because its quality does not meet the requirements of natural gas pipeline systems. Recent advances in technologies now offer off-the-shelf options in the US that can upgrade the drained CMM to pipeline quality. These gas upgrading technologies are not only opening up the market to lower-quality methane resources but also providing significant means for reducing emissions, since methane is over 20 times a more potent greenhouse gas than carbon dioxide. This report reviews current gas upgrading technologies available in the market for removal of typical CMM contaminants, provides examples of their successful commercial implementation and compiles a list of vendors specific to nitrogen rejection systems, since nitrogen exposes the biggest challenge to upgrading CMM. 2 figs., 3 tabs., 9 apps.

Carothers, F.P.; Schultz, M.L.

2008-01-15T23:59:59.000Z

239

Energy_Savings_Light_Emitting_Diodes_Niche_Lighting_Apps.pdf...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergySavingsLightEmittingDiodesNicheLightingApps.pdf EnergySavingsLightEmittingDiodesNicheLightingApps.pdf EnergySavingsLightEmittingDiodesNicheLightingApps.p...

240

Waste management activities and carbon emissions in Africa  

Science Conference Proceedings (OSTI)

This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

2011-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

ZERO WASTE.  

E-Print Network (OSTI)

??The aim of the thesis was to develop a clear vision on better waste management system. The thesis introduced the sustainable waste management along with… (more)

Upadhyaya, Luv

2013-01-01T23:59:59.000Z

242

ZnSe light?emitting diodes  

Science Conference Proceedings (OSTI)

We report the successful fabrication of ZnSe p?n junction light?emitting diodes in which Li and Cl are used as p?type and n?type dopants

J. Ren; K. A. Bowers; B. Sneed; D. L. Dreifus; J. W. Cook Jr.; J. F. Schetzina; R. M. Kolbas

1990-01-01T23:59:59.000Z

243

Resonant cavity light?emitting diode  

Science Conference Proceedings (OSTI)

A novel concept of a light?emitting diode(LED) is proposed and demonstrated in which the active region of the device is placed in a resonantoptical cavity. As a consequence

E. F. Schubert; Y.?H. Wang; A. Y. Cho; L.?W. Tu; G. J. Zydzik

1992-01-01T23:59:59.000Z

244

Progress in Organic Light emitting Diodes  

NLE Websites -- All DOE Office Websites (Extended Search)

90-3075 Seminar HostPoint of Contact: Samuel Mao The development of organic light emitting diode (OLED) from its discovery in the Kodak Research Laboratories in the late 1970's...

245

Thermal pumping of light-emitting diodes  

E-Print Network (OSTI)

The work presented here is a study of thermally enhanced injection in light-emitting diodes (LEDs). This effect, which we refer to as "thermal pumping", results from Peltier energy exchange from the lattice to charge ...

Gray, Dodd (Dodd J.)

2011-01-01T23:59:59.000Z

246

Photochemistry of Organic Light?Emitting Diodes  

Science Conference Proceedings (OSTI)

The optical properties and excited?state geometries of some organic light?emitting diodes have been investigated by the SAC?CI method. The absorption and emission spectra have been predicted in high accuracy and the chain?length dependence of transition energies has been precisely reproduced. The present study provides the useful basis for the theoretical design predicting the photo?physical properties of the organic light?emitting diodes.

Masahiro Ehara; Hiroshi Nakatsuji

2007-01-01T23:59:59.000Z

247

Modeling Population Exposures to Pollutants Emitted From Natural...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Population Exposures to Pollutants Emitted From Natural Gas Cooking Burners Title Modeling Population Exposures to Pollutants Emitted From Natural Gas Cooking Burners...

248

SRP radioactive waste releases. Startup through 1959  

SciTech Connect

This report summarizes and documents radioactive waste released to the environs of the Savannah River Plant from startup through 1959. During this period, the quantity of beta-emitting radioisotopes released was determined by a total or ``gross`` analysis. However, advanced instrumentation and technology now permit an economical determination of most individual radionuclides. Therefore, future waste audit reports, beginning with January 1960, will record the quantity of specific radioisotopes released rather than gross amounts.

Ashley, C.

1960-09-01T23:59:59.000Z

249

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Energy.gov (U.S. Department of Energy (DOE))

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

250

DEVELOPMENT OF COAL BED METHANE UTILIZING GIS TECHNOLOGIES  

Science Conference Proceedings (OSTI)

During the second half of the 1990's, Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period were the advancements in Geographical Information Systems (GIS) technologies generating terra-bytes of new data for the oil and gas industry. Coupled to these accelerating initiatives are many environmental concerns relating to production wastes and water table depletion of fresh water resources. It is these concerns that prompted a vital need within the industry for the development of Best Management Practices (BMPs) and mitigation strategies utilizing GIS technologies for efficient environmental protection in conjunction with effective production of CBM. This was accomplished by developing a framework to take advantage of a combination of investigative field research joined with leading edge GIS technologies for the creation of environmentally characterized regions of study. Once evaluated these regions had BMP's developed to address their unique situations for Coal Bed Methane production and environmental protection. Results of the project will be used to support the MBOGC's Programmatic Environmental Impact Statement as required by the Montana Environmental Policy Act (MEPA) and by the BLM for NEPA related issues for acreage having federally owned minerals.

J. Daniel Arthur

2003-04-01T23:59:59.000Z

251

Remote sensor improves methane leakage surveys  

SciTech Connect

The remote sensing methane detector (RSMD) described in this paper is the result of a twelve year cooperative research program sponsored by the Columbia Gas System Service Corp., Environmental Research and Technology, Inc. and the Gas Research Institute. It is a hand-held, rechargeable battery-powered sensor that operates eight hours on one charge with a sensitivity very specific to methane. It can be scanned along the right of way to detect any methane in its path, up to at least 50 feet away. The RSMD is methane specific in that it only sense methane with minor sensitivity to ethane. This makes it particularly useful in industrial areas where present instruments are confused by solvents. It cannot be poisoned by silicones or leaded gasoline, since it is an optical system. When a cloud of methane has been detected by the RSMD, a sample cell attachment can be used to determine methane concentration in parts per million. A low power microcomputer is used in the RSMD to control its operation.

Eberle, A.C.; Kebabian, P.L.; Kruse, J.R.

1984-12-01T23:59:59.000Z

252

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

253

Methane Hydrates and Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrates and Climate Change Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater sediments, the ocean or atmosphere. DOE is conducting research to understand the mechanisms and volumes involved in these little-studied processes. DOE environmental and climate change research projects related to Arctic methane hydrate deposits include: Characterization of Methane Degradation and Methane-Degrading

254

Diffusive Accumulation of Methane Bubbles in Seabed  

E-Print Network (OSTI)

We consider seabed bearing methane bubbles. In the absence of fractures the bubbles are immovably trapped in a porous matrix by surface tension forces; therefore the dominant mechanism of transfer of gas mass becomes the diffusion of gas molecules through the liquid. The adequate description of this process requires accounting "other-than-normal" (non-Fickian) diffusion effects, thermodiffusion and gravity action. We evaluate the diffusive flux of aqueous methane and predict the possibility of existence of bubble mass accumulation zones (which can appear independently from the presence/absence of hydrate stability zone) and effect of non-Fickian drift on the capacity of shallow and deep methane-hydrate deposits.

Goldobin, D S; Levesley, J; Lovell, M A; Rochelle, C A; Jackson, P; Haywood, A; Hunter, S; Rees, J

2010-01-01T23:59:59.000Z

255

Application of the GRI 1.2 methane oxidation model to methane and methanol oxidation in supercritical water  

SciTech Connect

The GRI 1.2 mechanism is used to predict the oxidation rates of methane and methanol by oxygen in supercritical water at 250 bar and temperatures ranging from 420--630 C. Using the Chemkin II computational package which assumes an ideal gas equation of state, the GRI model does very well in representing the available experimental results on methane over a wide temperature and concentration rate. However, the model may lack key CH{sub 3}O{sub 2} reactions needed for a complete description in the < 450 C region. The oxidation of methanol and formation of formaldehyde is not well represented by the GRI mechanism when left unchanged. If two important modifications are made to the reactivity of HO{sub 2}, good agreement with the methanol oxidation results is achieved. This paper illustrates that the carefully-assembled GRI 1.2 mechanism, although designed for conventional combustion conditions, can be successfully extended with very little modification to much lower temperature and extreme pressure conditions. The purpose of this study is to understand the operative chemical kinetics of supercritical water oxidation required for the more efficient application of this technology to treatment of hazardous wastes, obsolete munitions, rocket motors, and chemical warfare agents.

Rice, S.F. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

1996-05-01T23:59:59.000Z

256

METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF  

DOE Patents (OSTI)

A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

Frazer, J.W.

1959-08-18T23:59:59.000Z

257

Assessment of microbial processes on gas production at radioactive low-level waste disposal sites  

SciTech Connect

Factors controlling gaseous emanations from low level radioactive waste disposal sites are assessed. Importance of gaseous fluxes of methane, carbon dioxide, and possible hydrogen from the site, stems from the inclusion of tritium and/or carbon-14 into the elemental composition of these compounds. In that the primary source of these gases is the biodegradation of organic components of the waste material, primary emphasis of the study involved an examination of the biochemical pathways producing methane, carbon dioxide, and hydrogen, and the environmental parameters controlling the activity of the microbial community involved. Initial examination of the data indicates that the ecosystem is anaerobic. As the result of the complexity of the pathway leading to methane production, factors such as substrate availability, which limit the initial reaction in the sequence, greatly affect the overall rate of methane evolution. Biochemical transformations of methane, hydrogen and carbon dioxide as they pass through the soil profile above the trench are discussed. Results of gas studies performed at three commercial low level radioactive waste disposal sites are reviewed. Methods used to obtain trench and soil gas samples are discussed. Estimates of rates of gas production and amounts released into the atmosphere (by the GASFLOW model) are evaluated. Tritium and carbon-14 gaseous compounds have been measured in these studies; tritiated methane is the major radionuclide species in all disposal trenches studied. The concentration of methane in a typical trench increases with the age of the trench, whereas the concentration of carbon dioxide is similar in all trenches.

Weiss, A.J.; Tate, R.L. III; Colombo, P.

1982-05-01T23:59:59.000Z

258

Production and Ebullition of Methane in a Shallow Eutrophic Lake (Lake Elsinore, CA)  

E-Print Network (OSTI)

monoxide, methane, carbon dioxide and total gaseous mercuryFluxes of methane and carbon dioxide from a small productiveebullition of methane and carbon dioxide from a eutrophied

Martinez, Denise Nicole

2012-01-01T23:59:59.000Z

259

Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane  

E-Print Network (OSTI)

Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

Green, Michael A.

2005-01-01T23:59:59.000Z

260

Methane Digester Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Digester Loan Program Methane Digester Loan Program Methane Digester Loan Program < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate RFA can provide up to $250,000 of loan principal Program Info Funding Source Minnesota Rural Finance Authority (RFA) State Minnesota Program Type State Loan Program Rebate Amount RFA participation limited to 45% of loan principal Provider Minnesota Department of Agriculture Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by providing zero-interest loans to eligible borrowers. The loan program is part of the Rural Finance Authority (RFA) revolving loan fund, through which farmers can receive financial aid

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Methane Hydrate Program Annual Report to Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2010 FY 2010 Methane Hydrate Program Annual Report to Congress September 2011 U.S. Department of ENERGY United States Department of Energy Washington, DC 20585 Department of Energy | September 2011 FY 2010 Methane Hydrate Program Annual Report to Congress | Page 2 Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled, U.S. Department of Energy FY 2010 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of

262

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 Laboratory Studies in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5/10/2012 ESD05-048 Goal The project is bringing new laboratory measurements and evaluation techniques to bear on the difficult problems of characterization and gas recovery from methane hydrate deposits. Performer Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Background LBNL is performing laboratory tests to provide data to support the characterization and development of methane hydrate deposits. Major areas of research underway include hydrologic measurements, combined geomechanical/geophysical measurements, and synthetic hydrate formation studies. Hydrologic Measurements Relatively little research has been done to experimentally determine

263

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Collection and Microbiological Analysis of Gas Hydrate Cores Collection and Microbiological Analysis of Gas Hydrate Cores FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a fundamental modeling parameter - the amount of methane generated in deep sediments by methanogenic microorganisms. This would allow methane distribution models of gas hydrate reservoirs to accurately reflect an unknown volume and the distribution of biogenic methane within in a reservoir. The personnel at INEL have experience in similar biologic research and are considered to be experts by their global peers. Performer Idaho National Engineering and Environmental Laboratory (INEEL) - sample collection and analysis Location

264

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Seismic-Scale Rock Physics of Methane Hydrate Seismic-Scale Rock Physics of Methane Hydrate DE-FC26-05NT42663 Goal The goal of this project was to establish rock physics models for use in generating synthetic seismic signatures of methane hydrate reservoirs. Ultimately, the intent was to improve seismic detection and quantification of offshore and onshore methane hydrate accumulations. Performer Stanford University, Stanford, CA 94305 Background Gas hydrate reservoir characterization is, in principle, no different from traditional hydrocarbon reservoir characterization. The seismic response of the subsurface is determined by the spatial distribution of the elastic properties (properties of the subsurface that deform as seismic waves pass through it) and attenuation. By mapping changes in the elastic properties, scientists can identify geologic features, including hydrocarbon reservoirs.

265

Arkansas Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Arkansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 3 3 3...

266

Alabama Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Alabama Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23...

267

Kansas Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Kansas Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 17 25 38...

268

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Sampling and Characterization of Naturally Occurring Methane Hydrate Using the DV JOIDES Resolution Last Reviewed 02052010 DE-FC26-01NT41329 photo of a man showing the pressure...

269

Virginia Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Virginia Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 81...

270

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

that the hydrate in this region occurs in patchy deposits and may require a high methane flux from the subsurface in order to form more continuous drilling prospects. Project...

271

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

DE-AF26-01NT00370 Goal The goal of the project is to better characterize potential methane hydrate drilling sites in the Gulf of Mexico for the Ocean Drilling Program....

272

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

273

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

area, known as Mississippi Canyon lease block 118, is well-known for the occurrence of methane hydrate and is the location of the University of Mississippis gas hydrate...

274

Oklahoma Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Production (Billion Cubic Feet) Oklahoma Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 58 68...

275

Methane Hydrates - Mt. Elbert Well Log Data  

NLE Websites -- All DOE Office Websites (Extended Search)

more. Project background information - Alaska North Slope Gas Hydrate Reservoir Characterization - DE-FC26-01NT41332 More information on the National Methane Hydrates R&D Program...

276

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

FWP-4340-60 and FWP-42C1-01 Goal Determine the presence and activity of methanogens in methane hydrate-bearing sediments. Background The project was set up to determine a...

277

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of high chloride concentration and no sulfate reduction zone, indicating areas of high methane flux. The February 2005 RV Pelican cruise was a follow-up to the May 2004 cruise....

278

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 182013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of...

279

Montana Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13...

280

Pennsylvania Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

Production (Billion Cubic Feet) Pennsylvania Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3 5...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

to develop a two-dimensional, basin-scale model for the deep sediment biosphere with methane dynamics to provide a better picture of the distribution of hydrates on the sea floor...

282

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Goal The overall objective of this project is to develop a new method to assess methane hydrate distribution using 3-D seismic data calibrated to wellbore data. The method...

283

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of Methane Hydrate Last Reviewed 5152012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas...

284

The role of methane in tropospheric chemistry  

E-Print Network (OSTI)

While methane is chemically quite inert to reactions with atmospheric molecular species, it does react with atomic species and molecular radicals. Because of its relatively large abundance in the global troposphere and ...

Golomb, D.

1989-01-01T23:59:59.000Z

285

Methane level rise blamed in greenhouse effect  

SciTech Connect

As scientists continue to probe effects of global warming trends and the greenhouse effect, increasing attention is being placed on the impact of methane. Last year, scientists at the University of California in Irvine found there were almost 1.7 parts per million of methane in the troposphere- 11% higher that a decade ago and climbing at 1% annually. European scientists came up with similar analyses, and the belief is that methane is currently 2.4 times higher than it has ever been in the last 160,000 years. The big challenge now is to identify the sources of the methane. About 15 to 20% can be traced to oil and gas wells, coal mining and other tapping of the gas trapped in the planet's crust. Other sources are bacteria working in tropical rain forests, burned-off clearings, etc. Cattle figure high on the list of methane generators. When domesticated herds of sheep, goats, pigs, etc. are figured, the total rises to 73 million metric tons per year- a 435% increase since 1890. Rice paddies are also rated a major source of methane. It's estimated that 115 million metric tons rise from rice paddies a year, as much as is coming from natural swamps and wetlands. When scientists added up all the published estimates of methane production, the total ranged from 400 million to 640 million metric tons a year. Estimates of how much methane the atmosphere can handle are similarly uncertain, ranging from 300 million to 650 million metric tons a year.

1989-01-01T23:59:59.000Z

286

Anaerobic digestion as a waste disposal option for American Samoa  

DOE Green Energy (OSTI)

Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

Rivard, C

1993-01-01T23:59:59.000Z

287

Side-emitting fiber optic position sensor  

SciTech Connect

A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

Weiss, Jonathan D. (Albuquerque, NM)

2008-02-12T23:59:59.000Z

288

Estimating Waste Inventory and Waste Tank Characterization |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

289

COMPLIANCE FOR HANFORD WASTE RETRIEVAL RADIOACTIVE AIR EMISSIONS  

Science Conference Proceedings (OSTI)

{sm_bullet} Since 1970, approximately 38,000 suspect transuranic (TRU) and TRU waste cont{approx}iners have been placed in retrievable storage on the Hanford Site in the 200Area's burial grounds. {sm_bullet} TRU waste is defined as waste containing greater than 100 nanocuries/gram of alpha emitting transuranic isotopes with half lives greater than 20 years. {sm_bullet} The United States currentl{approx}permanently disposes of TRU waste at the Waste Isolation Pilot Plant (WIPP).

FM SIMMONS

2009-06-30T23:59:59.000Z

290

Methane cracking over a bituminous coal char  

Science Conference Proceedings (OSTI)

Methane cracking over a bed of Chinese bituminous coal char was studied using a fixed-bed reactor at atmospheric pressure and temperatures between 1073 and 1223 K. Methane conversion over the fresh char increased with increasing temperature to 90% at 1223 K. Hydrogen was the only gas-phase product that was detected during the experimentation. The char was shown to exert a significant catalytic effect on methane cracking by comparing results from experiments with the raw char and demineralised char as well as from blank experiments using quartz. It was further shown that the ash was not the source of the catalytic effect of the char. However, both methane conversion and hydrogen yield decreased with increasing reaction time, irrespective of other experimental conditions, indicating that the char rapidly became deactivated following the exposure to methane. It was speculated that the deposition of carbon from methane cracking was responsible for this deactivation, which is supported by scanning electron microscopy (SEM) image analysis. It was demonstrated that the catalytic activity of the deactivated char can be partially recovered by burning off the carbon deposits with an oxidizing gas mixture containing 0.46% oxygen. 10 refs., 11 figs., 1 tab.

Zhi-qiang Sun; Jin-hu Wu; Mohammad Haghighi; John Bromly; Esther Ng; Hui Ling Wee; Yang Wang; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2007-06-15T23:59:59.000Z

291

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

292

Visible light surface emitting semiconductor laser  

DOE Patents (OSTI)

A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

Olbright, Gregory R. (Boulder, CO); Jewell, Jack L. (Bridgewater, NJ)

1993-01-01T23:59:59.000Z

293

Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming  

SciTech Connect

U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments when water supplies sourced from coalbed methane extraction are plentiful. Constructed wetlands, planted to native, salt tolerant species demonstrated potential to utilize substantial volumes of coalbed methane product water, although plant community transitions to mono-culture and limited diversity communities is a likely consequence over time. Additionally, selected, cultured forage quality barley varieties and native plant species such as Quail bush, 4-wing saltbush, and seaside barley are capable of sustainable, high quality livestock forage production, when irrigated with coalbed methane product water sourced from the Powder River Basin. A consequence of long-term plant water use which was enumerated is elevated salinity and sodicity concentrations within soil and shallow alluvial groundwater into which coalbed methane product water might drain. The most significant conclusion of these investigations was the understanding that phytoremediation is not a viable, effective technique for management of coalbed methane product water under the present circumstances of produced water within the Powder River Basin. Phytoremediation is likely an effective approach to sodium and salt removal from salt-impaired sites after product water discharges are discontinued and site reclamation is desired. Coalbed methane product water of the Powder River Basin is most frequently impaired with respect to beneficial use quality by elevated sodicity, a water quality constituent which can cause swelling, slaking, and dispersion of smectite-dominated clay soils, such as commonly occurring within the Powder River Basin. To address this issue, a commercial-scale fluid-bed, cationic resin exchange treatment process and prototype operating treatment plant was developed and beta-tested by Drake Water Technologies under subcontract to this award. Drake Water Technologies secured U.S. Patent No. 7,368,059-B2, 'Method for removal of benevolent cations from contaminated water', a beta Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operatio

James Bauder

2008-09-30T23:59:59.000Z

294

Separation and Purification of Methane from coal-Bed Methane via the Hydrate Technology  

Science Conference Proceedings (OSTI)

The separation of methane from coal-bed methane (CBM) via hydrate process using tetrahydrofuran (THF) + sodium dodecyl sulfate (SDS) as additives was investigated in this work. The effect of additives, the concentration of the additives and hydrate memory ... Keywords: CBM, hydrate, separation, THF, SDS

Cai Jing; Chen Zhaoyang; Li Xiaosen; Xu Chungang

2010-12-01T23:59:59.000Z

295

Extracting value from coal mine methane  

Science Conference Proceedings (OSTI)

Emerging US policy to regulate greenhouse gas (GHG) emissions through a cap-and-trade program presents mine managers with a new opportunity to explore and develop methane utilization or abatement projects that generate value from the anodization of carbon offset credits. In addition, the rising focus on US energy security and domestic energy supply is promoting mine managers and engineers to give further consideration to the importance of their methane gas by-products. The market through which coal mine methane offset projects can be developed and carbon offset credits monetized is quickly maturing. While many methane utilization projects have previously been uneconomical, the carbon offset credit market provides a new set of financing tools for mine engineers to capitalize these projects today. Currently , there are two certification programs that have approved project protocols for CMM projects. The Voluntary Carbon Standard (VCS) offers a methodology approved under the Clean Development Mechanism, the international compliance based offset market under the Kyoto Protocol. The VCS protocol is applicable to projects that combust ventilation air methane (VAM) and methane extracted from pre-and post-mine drainage systems. The Chicago Climate Exchange (CCX), which operates a voluntary yet binding cap-and-trade market, also has an approved protocol for CMM projects. CCX's protocol can be applied to projects combusting VAM, and methane extracted from pre-and-post-mine drainage systems, as well as abandoned mines. The article describes two case studies - Developing a gob gas utilization project financed by carbon offset credits and First VAM oxidation system to be commissioned at an operating mine in the US. 1 tab., 4 photos.

Liebert, B. [Verdao Group (United States)

2009-06-15T23:59:59.000Z

296

Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. Black-Right-Pointing-Pointer Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. Black-Right-Pointing-Pointer we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO{sub 2} equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortality burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m{sup 3}/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO{sub 2} equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.

Yuan Qi; Saunders, Samuel E. [Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, NE (United States); Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu [Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, NE (United States)

2012-05-15T23:59:59.000Z

297

Hazardous Waste  

Science Conference Proceedings (OSTI)

Table 6   General refractory disposal options...D landfill (b) Characterized hazardous waste by TCLP

298

Methane Power Inc | Open Energy Information  

Open Energy Info (EERE)

Methane Power Inc Methane Power Inc Jump to: navigation, search Logo: Methane Power Inc. Name Methane Power Inc. Address 121 Edinburgh South Drive Place Cary, NC Zip 27511 Sector Renewable Energy Product Methane Power is a renewable energy project developer that focuses on landfill gas-to-energy projects. Currently, they are a supplier of landfill gas generated energy to Duke Energy in North Carolina. Phone number 919-297-7206 Website http://www.methanepower.net Coordinates 35.7395875°, -78.8029226° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.7395875,"lon":-78.8029226,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Coal bed methane global market potential  

Science Conference Proceedings (OSTI)

Worldwide increases in energy prices, as well as the increased potential for project financing derived from emissions credits, have renewed focus on coal bed methane (CBM) and coal mine methane (CMM) projects in coal-producing countries around the world. Globally, CBM utilization projects (in the operational, development, or planning stages) capture and utilize methane from gassy underground coal mines in at least 13 countries. The total methane emission reductions that could be achieved by these projects are approximately 135 billion cubic feet per year (equal to 14.8 million tons of carbon equivalent per year). This global activity level reflects a growing awareness of the technological practicality and the economic attractiveness of coal mine methane recovery and use. This report outlines the potential of the global CBM market. Contents: An overview of CBM; Challenges and issues; Technologies to generate power from CAM; Global CBM/CMM utilization; Country highlights; Ranking of countries with the largest CMM development potential (Australia, Canada, China, Germany, Mexico, Poland, Russia, Ukraine, United Kingdom, USA, Bulgaria, Czech Republic, France, India, Japan, Kazakhstan, South Africa); Planning CBM/CMM projects; Pre-feasibility and feasibility studies; Demonstration projects; Development plan and application process; Equity and debt; Carbon financing; Government sponsors; Private sponsors; Project risk reduction support; Examples of integrated project financing; Glossary.

Drazga, B. (ed.)

2007-01-16T23:59:59.000Z

300

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network (OSTI)

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

Russell, Lynn

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network (OSTI)

2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

Firtel, Richard A.

302

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network (OSTI)

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

Maxwell, Bruce D.

303

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

The basic energy conversion system being considered in thisEnergy Fixation and Conversion with Algal Bacterial Systems/energy producer based on current methane prices. bility of a kelp to methane conversion system

Haven, Kendall F.

2011-01-01T23:59:59.000Z

304

On the Sources of Methane to the Los Angeles Atmosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

On the Sources of Methane to the Los Angeles Atmosphere Title On the Sources of Methane to the Los Angeles Atmosphere Publication Type Journal Article Year of Publication 2012...

305

Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

306

Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

307

Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

308

New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

309

Eastern States Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Eastern States Coalbed Methane Proved Reserves (Billion Cubic Feet) Eastern States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

310

Western States Coalbed Methane Proved Reserves (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

Western States Coalbed Methane Proved Reserves (Billion Cubic Feet) Western States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

311

New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

312

Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet) Pennsylvania Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

313

Eastern States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Coalbed Methane Production (Billion Cubic Feet) Eastern States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

314

Western States Coalbed Methane Production (Billion Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Western States Coalbed Methane Production (Billion Cubic Feet) Western States Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

315

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

316

SCREENING TESTS FOR IMPROVED METHANE CRACKING MATERIALS  

DOE Green Energy (OSTI)

Bench scale (1 to 6 gram) methane cracking tests have been performed on a variety of pure elements, some alloys, and SAES{reg_sign} commercial getters St 101, St 198, St 707, St 737, and St 909 to determine methane cracking performance (MCP) of 5% methane in a helium carrier at 700 C, 101.3 kPa (760 torr) with a 10 sccm feed. The MCP was almost absent from some materials tested while others showed varying degrees of MCP. Re, Cr, V, Gd, and Mo powders had good MCP, but limited capacities. Nickel supported on kieselguhr (Ni/k), a Zr-Ni alloy, and the SAES{reg_sign} getters had good MCP in a helium carrier. The MCP of these same materials was suppressed in a hydrogen carrier stream and the MCP of the Zr-based materials was reduced by nitride formation when tested with a nitrogen carrier gas.

Klein, J; Jeffrey Holder, J

2007-07-16T23:59:59.000Z

317

Direct use of methane in coal liquefaction  

DOE Patents (OSTI)

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

Sundaram, Muthu S. (Shoreham, NY); Steinberg, Meyer (Melville, NY)

1987-01-01T23:59:59.000Z

318

Direct use of methane in coal liquefaction  

DOE Patents (OSTI)

This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

Sundaram, M.S.; Steinberg, M.

1985-06-19T23:59:59.000Z

319

MethaneHydrateRD_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

gas is an important energy gas is an important energy resource for the United States, providing nearly one-quarter of total energy use. The Department of Energy's Office of Fossil Energy (FE) has played a major role in developing technologies to help tap new, unconventional sources of natural gas. FOSSIL ENERGY RESEARCH BENEFITS Methane Hydrate R&D "The (DOE) Program has supported and managed a high-quality research portf olio that has enabled signifi cant progress toward the (DOE) Program's long-term goals." The Nati onal Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety of forms in sediments within and below thick permafrost in Arctic regions, and in the

320

CFD Modeling of Methane Production from Hydrate-Bearing Reservoir  

Science Conference Proceedings (OSTI)

Methane hydrate is being examined as a next-generation energy resource to replace oil and natural gas. The U.S. Geological Survey estimates that methane hydrate may contain more organic carbon the the world's coal, oil, and natural gas combined. To assist in developing this unfamiliar resource, the National Energy Technology Laboratory has undertaken intensive research in understanding the fate of methane hydrate in geological reservoirs. This presentation reports preliminary computational fluid dynamics predictions of methane production from a subsurface reservoir.

Gamwo, I.K.; Myshakin, E.M.; Warzinski, R.P.

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Reducing Waste and Harvesting Energy This Halloween | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween October 30, 2013 - 9:57am Addthis This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department Paul Grabowski Demonstration and Deployment, Bioenergy Technologies Office This Halloween, think of turning seasonal municipal solid waste (MSW) to energy as a very important "trick" that can have a positive environmental impact. Usually, these seasonal items including hay, pumpkins, candy, and leaves, are thrown away and sent to landfills. From there, the MSW decomposes and eventually turns into methane-a harmful

322

Solubilities of gases in simulated Tank 241-SY-101 wastes  

DOE Green Energy (OSTI)

Oxygen, nitrogen, hydrogen, methane, and nitrous oxide solubilities were evaluated as a function of temperature in SYl-SIM-93B, a homogeneous simulated waste mixture containing sodium hydroxide, sodium nitrite, sodium nitrate, sodium aluminate, and sodium carbonate, the principal inorganic constituents of the wastes in Tank 241-SY-101. Ammonia solubility data for this simulated waste was obtained as a function of temperature in an earlier study. The choice of a homogeneous waste mixture in this study has the advantage of eliminating complications associated with a changing electrolyte concentration as a function of temperature that would be encountered with a slurry simulant. Dissolution is one of the means by which gases may be retained in Hanford Site wastes. While models are available to estimate gas solubilities in electrolyte solutions, few data are in existence that pertain to highly concentrated, multicomponent electrolytes such as those stored in Hanford Site waste tanks.

Norton, J.D.; Pederson, L.R.

1995-09-01T23:59:59.000Z

323

Bio-hydrogen production from renewable organic wastes  

DOE Green Energy (OSTI)

Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

Shihwu Sung

2004-04-30T23:59:59.000Z

324

Software, Data and Modelling News: A web-based database on methanogenic potential of crops and wastes  

Science Conference Proceedings (OSTI)

The Methanogenic Potential Database (BMP Database) provides engineers and scientists with specific and standardized information on the chemical composition and biochemical methane potential of crops, manures, wastes, as well as of mixed substrates. Currently, ... Keywords: Anaerobic digestion, Bioenergy, Crop, Manure, Waste

Mario Alberto Luna Del Risco; Henri-Charles Dubourguier

2010-08-01T23:59:59.000Z

325

Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

2012-01-15T23:59:59.000Z

326

Multivariate statistical evaluation of equilibrium methane adsorption isotherms of coal  

SciTech Connect

The adsorption of methane by coals varies over a broad range of values and appears to depend on a complex function related to coal rank. In order to evaluate these variations in methane adsorption 100 coal samples were analyzed. The paper presents some preliminary results of this study based on multivariate statistical evaluation of equilibrium methane adsorption isotherm data, coal petrology, and vitrinite reflectance.

Schwarzer, R.S.; Bayliss, G.S.

1982-01-01T23:59:59.000Z

327

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

328

Method for removal of methane from coalbeds  

DOE Patents (OSTI)

A method for removing methane gas from underground coalbeds prior to mining the coal which comprises drilling at least one borehole from the surface into the coalbed. The borehole is started at a slant rather than directly vertically, and as it descends, a gradual curve is followed until a horizontal position is reached where the desired portion of the coalbed is intersected. Approaching the coalbed in this manner and fracturing the coalbed in the major natural fraction direction cause release of large amounts of the trapped methane gas.

Pasini, III, Joseph (Morgantown, WV); Overbey, Jr., William K. (Morgantown, WV)

1976-01-01T23:59:59.000Z

329

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry  

E-Print Network (OSTI)

New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico Keywords: Methane flux Mass spectrometer Brine pool Methane oxidation Gulf of Mexico a b s t r a c t Deep report direct measurements of methane concentrations made in a Gulf of Mexico brine pool located

Girguis, Peter R.

330

How Miami, Florida is Turning Waste Into Cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

How Miami, Florida is Turning Waste Into Cash How Miami, Florida is Turning Waste Into Cash How Miami, Florida is Turning Waste Into Cash April 7, 2011 - 3:43pm Addthis Miami-Dade officials talk about using EECBG grant funds for their Methane Sequestration Project. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this project do? Methane gas captured from a landfill will provide 30 percent of the electricity used at an adjacent wastewater plant. The project will upgrade and expand the existing power generation system at the water plant. The county will increase the amount of self-generated electricity, and reduce the county's consumption of electricity generated from fossil fuels. In Miami, Florida, methane gas captured from a regional landfill will be used to provide 30 percent of the electricity used at an adjacent regional

331

Very high radiance edge-emitting LED  

SciTech Connect

A new light-emitting diode (LED) whose radiance is 1000 W/cm/sup 2/sr, an order of magnitude higher than any previous LED, is described. The LED is an (AlGa)As double-heterojunction edge-emitting structure. This structure acts as a waveguide for the internally generated light, and with appropriate Al concentration difference at the heterojunctions (..delta..x approximately equal to 0.3) and active region width (approximately 500 A), the radiation pattern perpendicular to the junction can be less than 30/sup 0/ (FWHM). For fiber-optic communications this LED is capable of coupling 850 ..mu..w, at a coupling loss of only -10 dB into a 0.14-numerical-aperture (NA), 90-..mu..m-diam low-loss fiber. The LED is capable of being directly modulated at 250 MHz and has a spectral width of less than 300 A.

Ettenberg, M.; Kressel, H.; Wittke, J.P.

1976-06-01T23:59:59.000Z

332

Highly Efficient Silicon Light Emitting Diode  

E-Print Network (OSTI)

In this paper, we describe the fabrication, using standard silicon processing techniques, of silicon light-emitting diodes (LED) that efficiently emit photons with energy around the silicon bandgap. The improved efficiency had been explained by the spatial confinement of charge carriers due to a local strain field that is formed by dislocation loop arrays. The dependence of device electroluminescent properties on the annealing conditions is carefully examined as a high temperature process has profound influence on these dislocations. Increased luminescent intensity at higher device temperature, together with pure diffusion current conduction mechanism evidently shows the influence of the dislocation loops. The electrical properties of the diode are reasonable with low leakage reverse current.

Leminh Holleman Wallinga; P. Leminh; J. Holleman; H. Wallinga

2000-01-01T23:59:59.000Z

333

Water Cooling of High Power Light Emitting Diode Henrik Srensen  

E-Print Network (OSTI)

Water Cooling of High Power Light Emitting Diode Henrik Sørensen Department of Energy Technology and product lifetime. The high power Light Emitting Diodes (LED) belongs to the group of electronics

Sørensen, Henrik

334

Energy Department Assisting Launch of Low Greenhouse Gas-Emitting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assisting Launch of Low Greenhouse Gas-Emitting Jet Fuels Energy Department Assisting Launch of Low Greenhouse Gas-Emitting Jet Fuels November 20, 2013 - 8:54am Addthis USAF photo...

335

Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes  

E-Print Network (OSTI)

light sources have wasted emission and energy as can be seenor in other words, wasted electrical energy). Extraction

Lai, Elaine Michelle

2009-01-01T23:59:59.000Z

336

Method of producing a methane rich gas mixture from mine gas  

SciTech Connect

A pressure-swing adsorption system is used to enrich the methane content of mine gas obtained from bores around mine shafts or galleries from the customary 25 to 45% by volume to a product gas quality of 50% by volume. Using a carbon molecular sieve adsorbent, the adsorption is carried out at 5 to 8 bar and is followed by a uniflow expansion to an intermediate pressure and a counterflow expansion to a flushing pressure of 1.1 to 2 bar. Counterflow flushing is carried out with waste gas and the product gas is a mixture of the gases obtained by counterflow expansion and flushing.

Richter, E.; Giessler, K.; Knoblauch, K.; Korbacher, W.

1985-06-04T23:59:59.000Z

337

Light Emitting Diode (LED) Lighting and Systems  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the most promising and unique energy efficient light source light emitting diode (LED) lighting. Business and technical market factors (Chapter 2) explain the upcoming growth of the LED and LED lighting market. Future technical improvements to LEDs and systems are also emphasized. Discussion of the importance of utility involvement in helping their customers make the switch from traditional lighting to LED lighting is provided. LED lighting technologies are covered in...

2007-12-21T23:59:59.000Z

338

Hazardous Waste Program (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

339

An assessment of the flammability and explosion potential of transuranic waste  

SciTech Connect

The explosion potential of transuranic (TRU) waste, destined for the Waste Isolation Pilot (WIPP), was recently examined in EEG-45. That investigation focused on the volatile organic compounds (VOCs) in the waste, particularly acetone, and concluded that an explosion due to the VOCs was unlikely. Recent evidence raises serious concerns about drums containing mixed radioactive hazardous waste bound for the WIPP. Static electricity generated by the plastic bags represents a potential ignition source for other fuels, such as methane gas or hydrogen gas, during transportation and during the test phase. The potential danger of explosion due to hydrogen gas or methane gas generation has not yet been resolved. This report investigates that potential hazard and examines documented ignitions, fires, explosions and incidents of overpressurization of containers at generating and storage sites planning to send transuranic waste to the WIPP for disposal. 68 refs., 6 figs.

Silva, M.

1991-06-01T23:59:59.000Z

340

LIGHT EMITTING DIODE (LED) TRAFFIC SIGNAL SURVEY RESULTS  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION LIGHT EMITTING DIODE (LED) TRAFFIC SIGNAL SURVEY RESULTS STAFFREPORT: Assistance needs 26 Item 12: Information requested 28 Appendix A: Light Emitting Diode (LED) Traffic Signal efficiency upgrades. - 29 - #12;APPENDIX A - 30 - #12;California Energy Commission Light Emitting Diode (LED

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

DOE Green Energy (OSTI)

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

342

File:Methane.pdf | Open Energy Information  

Open Energy Info (EERE)

Methane.pdf Methane.pdf Jump to: navigation, search File File history File usage File:Methane.pdf Size of this preview: 448 × 600 pixels. Go to page 1 2 3 4 5 Go! next page → next page → Full resolution ‎(1,218 × 1,630 pixels, file size: 929 KB, MIME type: application/pdf, 5 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 15:51, 9 February 2012 Thumbnail for version as of 15:51, 9 February 2012 1,218 × 1,630, 5 pages (929 KB) Graham7781 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following page links to this file: Hydraulic Fracturing Retrieved from "http://en.openei.org/w/index.php?title=File:Methane.pdf&oldid=404017"

343

Methane Hydrates R&D U S  

NLE Websites -- All DOE Office Websites (Extended Search)

the Power of Working Together Interagency Coordination on Methane Hydrates R&D U . S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r g y N a t i o n a l...

344

California - Coastal Region Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2012 (EIA)

Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 - No...

345

Federal Offshore California Coalbed Methane Proved Reserves ...  

Annual Energy Outlook 2012 (EIA)

Offshore California Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 -...

346

Generating power with drained coal mine methane  

SciTech Connect

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

347

GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA  

SciTech Connect

Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

2004-01-01T23:59:59.000Z

348

Energy aspects of solid waste management: Proceedings  

Science Conference Proceedings (OSTI)

The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

Not Available

1990-01-01T23:59:59.000Z

349

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

Science Conference Proceedings (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

350

SAES ST 909 PILOT SCALE METHANE CRACKING TESTS  

DOE Green Energy (OSTI)

Pilot scale (500 gram) SAES St 909 methane cracking tests were conducted to determine material performance for tritium process applications. Tests that ran up to 1400 hours have been performed at 700 C, 202.7 kPa (1520 torr) with a 30 sccm feed of methane, with various impurities, in a 20 vol% hydrogen, balance helium, stream. A 2.5 vol% methane feed was reduced below 30 ppm for 631 hours. A feed of 1.1 vol% methane plus 1.4 vol% carbon dioxide was reduced below 30 ppm for 513 hours. The amount of carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered to estimate a reduced bed life for methane cracking. The effect of 0.4 vol % and 2.1 vol% nitrogen in the feed reduced the time to exceed 30 ppm methane to 362 and 45 hours, respectively, but the nitrogen equivalence to reduced methane gettering capacity was found to be dependent on the nitrogen feed composition. Decreased hydrogen concentrations increased methane getter rates while a drop of 30 C in one bed zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if the nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate.

Klein, J; Henry Sessions, H

2007-07-02T23:59:59.000Z

351

Coal Bed Methane Protection Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) Coal Bed Methane Protection Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Fuel Distributor Program Info State Montana Program Type Environmental Regulations Provider Montana Department of Natural Resources and Conservation The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and water right holders for damage to land and to water quality and availability that is attributable to the development of coal bed methane wells. The Act aims to provide for

352

Methane Hydrates - The National R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program The National Methane Hydrates R&D Program Welcome to the information portal for the National Methane Hydrate R&D Program. Over the past eight years, research carried out under this program has resulted in significant advances in our understanding of methane hydrates, their role in nature, and their potential as a future energy resource. This success is largely due to an unprecedented level of cooperation between federal agencies, industry, national laboratories, and academic institutions. For a quick introduction to methane hydrate and its potential as a fuel source, please read the 2011 Methane Hydrates Primer. Information on other elements of the program can be found under the remaining Key Links. Read More.

353

The Effects of Dissolved Methane upon Liquid Argon Scintillation Light  

E-Print Network (OSTI)

In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is injected into a high-purity liquid argon volume. We observe significant suppression of the scintillation light yield by dissolved methane at the 10 part per billion (ppb) level. By examining the late scintillation light time constant, we determine that this loss is caused by an absorption process and also see some evidence of methane-induced scintillation quenching at higher concentrations (50-100 ppb). Using a second PMT assembly we look for visible re-emission features from the dissolved methane which have been reported in gas-phase argon methane mixtures, and we find no evidence of visible re-emission from liquid-phase argon methane mixtures at concentrations between 10 ppb and 0.1%.

B. J. P. Jones; T. Alexander; H. O. Back; G. Collin; J. M. Conrad; A. Greene; T. Katori; S. Pordes; M. Toups

2013-08-16T23:59:59.000Z

354

Operation of an aircraft engine using liquefied methane fuel  

SciTech Connect

The operation of a reciprocating aircraft engine on methane fuel is demonstrated. Since storage of the methane fuel in the gaseous state would impractical for a flight fuel system, a liquid storage system was used. System valving was configured to deliver only liquid methane to the engine supply line. The equipment description includes photo and diagram illustrations of the liquid methane storage dewar, and photos of the methane heat exchanger, pressure regulator and air-fuel mixer. The engine test results are presented for gasoline and methane in terms of RPM, horsepower, fuel flow, specific energy consumption and standard conditions horsepower. Conclusions include the finding that conversion of an aircraft reciprocating engine to operate on liquified methane is possible with very satisfactory results.

Raymer, J.A.

1982-01-01T23:59:59.000Z

355

Waste= Capital.  

E-Print Network (OSTI)

??The evolution of manufacturing practices over the last century has led to the creation of excess waste during the production process, depleting resources and overwhelming… (more)

Stidham, Steve P.

2011-01-01T23:59:59.000Z

356

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

Science Conference Proceedings (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

357

Induction of enhanced methane oxidation in compost: Temperature and moisture response  

Science Conference Proceedings (OSTI)

Landfilling is one of the most common ways of municipal solid waste disposal. Degradation of organic waste produces CH{sub 4} and other landfill gases that significantly contribute to global warming. However, before entering the atmosphere, part of the produced CH{sub 4} can be oxidised while passing through the landfill cover. In the present study, the oxidation rate of CH{sub 4} was studied with various types of compost as possible landfill cover. The influence of incubation time, moisture content and temperature on the CH{sub 4} oxidation capacity of different types of compost was examined. It was observed that the influence of moisture content and temperature on methane oxidation is time-dependent. Maximum oxidation rates were observed at moisture contents ranging from 45% to 110% (dry weight basis), while the optimum temperature ranged from 15 to 30 deg. C.

Mor, Suman [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India) and Department of Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium)]. E-mail: sumanmor@yahoo.com; Visscher, Alex de [Department of Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Ravindra, Khaiwal [Micro and Trace Analysis Centre, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Dahiya, R.P. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India); Chandra, A. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India); Cleemput, Oswald van [Department of Applied Analytical and Physical Chemistry, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium)

2006-07-01T23:59:59.000Z

358

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network (OSTI)

#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

359

Regulation of methane genes and genome expression  

DOE Green Energy (OSTI)

At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ?H (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein, designated TFE, that had sequences in common with the eukaryotic general transcription factor TFIIE, stimulated archaeal transcription initiation and that the archaeal TATA-box binding protein (TBP) remained attached to the promoter region whereas the transcription factor TFB dissociated from the template DNA following initiation. DNA sequences that directed the localized assembly of archaeal histones into archaeal nucleosomes were identified, and we established that transcription by an archaeal RNA polymerase was slowed but not blocked by archaeal nucleosomes. We developed a new protocol to purify archaeal RNA polymerases and with this enzyme and additional improvements to the in vitro transcription system, we established the template requirements for archaeal transcription termination, investigated the activities of proteins predicted to be methane gene regulators, and established how TrpY, a novel archaeal regulator of expression of the tryptophan biosynthetic operon functions in M. thermautotrophicus. This also resulted in the discovery that almost all M. thermautotrophicus mutants isolated as spontaneously resistant to 5-methyl tryptophan (5MTR) had mutations in trpY and were therefore 5MTR through de-repressed trp operon expression. This established a very simple, practical procedure to determine and quantify the DNA sequence changes that result from exposure of this Archaeon to any experimental mutagenesis protocol. Following the discovery that the Thermococcus kodakaraensis was amenable to genetic manipulation, we established this technology at OSU and subsequently added plasmid expression, a reporter system and additional genetic selections to the T. kodakaraensis genetic toolbox. We established that transcription and translation are coupled in this Archaeon, and by combining in vitro transcription and in vivo genetics, we documented that both TFB1 and TFB2 support transcription initiation in T. kodakaraensis. We quantified the roles of ribosome binding sequences and alternative initiation codons in translation initiation, established that polarity e

John N. Reeve

2009-09-09T23:59:59.000Z

360

Pumpkin Power: Turning Food Waste into Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy November 1, 2013 - 1:28pm Addthis Pumpkin Power: Turning Food Waste into Energy Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? 1.4 billion pounds of pumpkins are produced in the U.S. each year, many of which end up in landfills or compost piles after Halloween. Oakland's EBMUD collects food waste and uses microbes to convert it into methane gas that is burned to generate electricity. The Energy Department is helping to fund the development of integrated biorefineries, industrial centers dedicated to converting plant material into biofuels and other products. To commemorate National Energy Action Month, we're featuring some scarily

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network (OSTI)

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL #12;#12;PNNL-SA-69994 Waste Disposal Workshops: Anthrax- Contaminated Waste AM Lesperance JF Upton SL

362

Effect of bubble size and density on methane conversion to hydrate  

SciTech Connect

Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

Leske, J.; Taylor, C.E.; Ladner, E.P.

2007-03-01T23:59:59.000Z

363

Proton damage effects on light emitting diodes  

SciTech Connect

We have studied the effects of 16-MeV proton irradiation on the performance of a variety of light emitting diodes (LED's) emitting between 820 and 1300 nm. Total light output and current were measured at room temperature as a function of forward bias prior to and following a sequence of room temperature 16-MeV proton irradiations. Our results indicate that the relative amount of proton-induced degradation from one LED type to another is similar to that observed for neutron and gamma irradiations. More specifically, the most sensitive device is the amphoterically Si-doped GaAs LED which is characterized by a long preirradiation minority carrier lifetime. The most resistant LEDs are the high radiance GaAlAs (820 nm) and InGaAsP (1300 nm) LEDs. As in the case of Si devices, the degradation rate per irradiating particle fluence is significantly greater for proton irradiation of these LEDs than it is for neutron exposure. Neutron damage data presented herein indicate that the ratio of proton-to-neutron degradation rates can be as high as 100. Lifetime-damage constant products for constant current operation are calculated for each LED type and vary from 1.5 x 10/sup -13/ cm/sup 2//p for the InGaAsP LED to 1.1 x 10/sup -10/ cm/sup 2//p for the amphoterically Si-doped GaAs LED.

Rose, B.H.; Barnes, C.E.

1982-03-01T23:59:59.000Z

364

Thermocatalytic conversion of food processing wastes: Topical report, FY 1988  

DOE Green Energy (OSTI)

The efficient utilization of waste produced during food processing operations is a topic of growing importance to the industry. While incineration is an attractive option for wastes with relatively low ash and moisture contents (i.e., under about 50 wt % moisture), it is not suitable for wastes with high moisture contents. Cheese whey, brewer's spent grain, and fruit pomace are examples of food processing wastes that are generally too wet to burn efficiently and cleanly. Pacific Northwest Laboratory (PNL) is developing a thermocatalytic conversion process that can convert high-moisture wastes (up to 98 wt % moisture) to a medium-Btu fuel gas consisting primarily of methane and carbon dioxide. At the same time, the COD of these waste streams is reduced by 90% to 99%, Organic wastes are converted by thermocatalytic treatment at 350/degree/C to 400/degree/C and 3000 to 4000 psig. The process offers a relatively simple solution to waste treatment while providing net energy production from wastes containing as little as 2 wt % organic solids (this is equivalent to a COD of approximately 25,000 mg/L). This report describes continuous reactor system (CRS) experiments that have been conducted with food processing wastes. The purpose of the CRS experiments was to provide kinetic and catalyst lifetime data, which could not be obtained with the batch reactor tests. These data are needed for commercial scaleup of the process.

Baker, E.G.; Butner, R.S.; Sealock, L.J. Jr.; Elliott, D.C.; Neuenschwander, G.G.

1989-01-01T23:59:59.000Z

365

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 Methane Hydrate Production from Alaskan Permafrost Last Reviewed 02/05/2010 DE-FC26-01NT41331 photo of new Anadarko drilling rig in place at Hot Ice No.1 on Alaska's North Slope Hot Ice No. 1 Drilling Platform courtesy Anadarko Petroleum Corp. Goal The goal of the project was to develop technologies for drilling and recovering hydrates in arctic areas. The specific objectives were to drill, core, and test a well through the hydrate stability zone in northern Alaska Performers Maurer Technology, Inc.* - Project coordination with DOE Anadarko Petroleum Corporation - Overall project management for the design, construction, and operation of the Arctic Drilling Platform and mobile core lab, and field coring operations Noble Engineering and Development* - Real time data collection and

366

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-06NT42960 Quarterly Progress Report Reporting Period: April-June 2007 Detection and Production of Methane Hydrate Submitted by: Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Prepared for: United States Department of Energy National Energy Technology Laboratory August, 2007 Office of Fossil Energy Detection and Production of Methane Hydrate Quarterly Progress Report Reporting Period: April-June 2007 Prepared by: George Hirasaki Rice University August 2007 CONTRACT NO. DE-FC26-06NT42960 Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; Fax: 713-348-5478; Email: gjh@rice.edu

367

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

In Situ Sampling and Characterization of Naturally Occurring Methane Hydrate Using the D/V JOIDES Resolution Last Reviewed 02/05/2010 In Situ Sampling and Characterization of Naturally Occurring Methane Hydrate Using the D/V JOIDES Resolution Last Reviewed 02/05/2010 DE-FC26-01NT41329 photo of a man showing the pressure core sampler on the deck of JOIDES Resolution Pressure core sampler on deck courtesy Texas A&M University Goal The goal of the project was to characterize hydrate accumulation at Hydrate Ridge (offshore Oregon) and improve the ability to use geophysical and subsurface logging to identify hydrates. A follow-on goal was to characterize hydrate accumulation at offshore Vancouver Island, BC, Canada. Background This project focused on physically verifying the existence of hydrates at Hydrate Ridge through the collection of pressurized and non-pressurized core samples and logging data. This study developed and tested tools to

368

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 Detection and Production of Methane Hydrate Last Reviewed 5/15/2012 DE-FC26-06NT42960 Goal The goal of this project is to improve the understanding of regional and local differences in gas hydrate systems from three perspectives: as an energy resource, as a geohazard, and as a long-term influence on global climate. Performers Rice University, Houston, TX University of Texas, Austin, TX Oklahoma State University, Stillwater, OK Background Heterogeneity in the distribution of gas hydrate accumulations impacts all aspects of research into gas hydrate natural systems. The challenge is to delineate, understand, and appreciate these differences at the regional and local scales, where differences in in situ concentrations are relevant to the importance of gas hydrate as a resource, a geohazard, and a factor in

369

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

- Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 - Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 Project Goals The primary goals of the DOE/NETL Natural Gas Hydrate Field Studies (NGHFS) project are: Conduct field-based studies that advance the ability to predict, detect, characterize, and understand distribution of and controls on natural gas hydrate occurrences. Analyze geologic, geochemical, and microbiologic data for indications of past and current changes to the stability of natural gas hydrate in marine settings. Develop links between the U.S. Gas Hydrate Program and international R&D efforts through direct participation in international field programs and workshops. Evaluate the potential role natural gas hydrates may play in the global carbon cycle through analysis of modern and paleo-natural gas

370

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

– Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 – Formation and Dissociation of Methane Hydrates Last Reviewed 07/7/2011 Project Objective Observe hydrate formation and dissociation phenomena in various porous media and characterize hydrate-bearing sediments by estimating physical properties (kinetic parameters for hydrate formation and dissociation, thermal conductivity, permeability, relative permeability, and mechanical strength) to enhance fundamental understanding on hydrate formation and accumulation and to support numerical simulations and potential gas hydrate production Project Performers Yongkoo Seol – NETL Office of Research & Development Jeong Choi – Oak Ridge Institute for Science and Education Jongho Cha-Virginia Polytech Institute Project Location National Energy Technology Laboratory - Morgantown, West Virginia

371

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields Phase 1 - Characterization and Qualification of the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields DE-FC26-06NT42962 Goal The goal of this project is to characterize and quantify the postulated gas hydrate resource associated with the Barrow Gas Fields – three producing fields located in a permafrost region near Barrow, the North Slope's biggest population center and economic hub. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Map of the North Slope Borough showing the location of its eight major communities, including Barrow, the site of this research project. Performers North Slope Borough, Barrow, Alaska (North Slope Borough) 99723

372

Methane Hydrate Field Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Studies Field Studies Methane Hydrate Field Studies Arctic/Alaska North Slope Field Studies Since 2001, DOE has conducted field trials of exploration and production technology in the Alaska North Slope. Although Alaska methane hydrate resources are smaller than marine deposits and currently lack outlets to commercial markets, Alaska provides an excellent laboratory to study E&P technology. The research also has implications for various Alaska resources, including potential gas hydrate resources for local communities, conventional "stranded" gas, as well as Alaska's large unconventional oil resources. The hydrate deposits have been delineated in the process of developing underlying oil fields, and drilling costs are much lower than offshore. DOE-BP Project

373

Enzymes and microorganisms in food industry waste processing and conversion to useful products: a review of the literature  

DOE Green Energy (OSTI)

Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins, and fats. Solid wastes are generally cellulosic, but may contain other biopolymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.

Carroad, P.A.; Wilke, C.R.

1976-12-01T23:59:59.000Z

374

TITAN'S TRANSPORT-DRIVEN METHANE CYCLE  

SciTech Connect

The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

Mitchell, Jonathan L. [Department of Earth and Space Sciences, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095 (United States)

2012-09-10T23:59:59.000Z

375

Thermal Conversion of Methane to Acetylene  

DOE Green Energy (OSTI)

This report describes the experimental demonstration of a process for the direct thermal conversion of methane to acetylene. The process utilizes a thermal plasma heat source to dissociation products react to form a mixture of acetylene and hydrogen. The use of a supersonic expansion of the hot gas is investigated as a method of rapidly cooling (quenching) the product stream to prevent further reaction or thermal decomposition of the acetylene which can lower the overall efficiency of the process.

Fincke, James Russell; Anderson, Raymond Paul; Hyde, Timothy Allen; Wright, Randy Ben; Bewley, Randy Lee; Haggard, Delon C; Swank, William David

2000-01-01T23:59:59.000Z

376

Enhanced carbon monoxide utilization in methanation process  

DOE Green Energy (OSTI)

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

377

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station DE-FC26-02NT41328 Goal Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of California, San Diego (Scripps Institution of Oceanography) - manage geochemical, hydrological and sedimentological investigations Texas A&M University - manage field monitoring program Location La Jolla, California 92093 Background This project will monitor, characterize, and quantify the rates of formation and dissociation of methane gas hydrates at and near the seafloor in the northern Gulf of Mexico, and determine linkages between formation/dissociation and physical/chemical parameters of the deposits over the course of a year. The stability and response of shallow gas hydrates to temperature and chemical perturbations will be monitored in situ, and localized seafloor and water column environmental impacts of hydrate formation and dissociation characterized. The following will be determined: 1) The equilibrium/steady state conditions for structure II methane gas hydrates at the field site,2) whether the system is in dynamic equilibrium and the local hydrology is characterized by steady state episodic fluid flow, and 3) how fluid fluxes and fluid composition work together to dynamically influence gas hydrate stability.

378

METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

DOE Green Energy (OSTI)

Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 5 is the annual update of the methodology and calculations of the flammable gas Waste Groups for DSTs and SSTs.

BARKER, S.A.

2006-07-27T23:59:59.000Z

379

METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

DOE Green Energy (OSTI)

Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water and organic compounds, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generates ammonia. Nonflammable gases, which act as dilutents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semi-volatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in the tank headspace as described in RPP-7771, Flammable Gas Safety Isme Resolution. Appendices A through I provide supporting information. The document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 6 is the annual update of the flammable gas Waste Groups for DSTs and SSTs.

TU, T.A.

2007-01-04T23:59:59.000Z

380

METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

METHANE HYDRATE ADVISORY COMMITTEE METHANE HYDRATE ADVISORY COMMITTEE U.S. Department of Energy Advisory Committee Charter - - - - ---- ---- ------~ 1. Committee's Official Designation. Methane Hydrate Advisory Committee (MHAC) 2. Authority:. This charter establishes the Methane Hydrate Advisory Committee (Committee) pursuant to Title IX, Subtitle F, Section 968, Methane Hydrate Research of the Energy Policy Act of 2005 (EPACT), Public Law 109-58. This charter establishes the MHAC under the authority of the Department of Energy (DOE). The MHAC is being renewed in accordance with the provisions of the Federal Advisory Committee Act (FACA), as amended, 5 U.S.C., App.2. 3. Objectives and Scope of Activities. The Committee provides advice to the Secretary of Energy by developing recommendations and broad programmatic priorities for the methane

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

International Cooperation in Methane Hydrates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil & Gas » Methane Hydrate » Oil & Gas » Methane Hydrate » International Cooperation in Methane Hydrates International Cooperation in Methane Hydrates In 1982 the multi-national Deep Sea Drilling Program (DSDP) recovered the first subsea substantial methane hydrate deposits, which spurred methane hydrate research in the US and other countries. The successor programs, the Ocean Drilling Program (ODP) and the Integrated Ocean Drilling Program (IODP) sampled hydrate deposits off Oregon (ODP 204, 2002) and in the Cascadia Margin off Vancouver Island, Canada (ODP 146, 1992 and IODP 311, 2005). In the Atlantic Ocean off the US, ODP Leg 146 sampled hydrate deposits on the Blake Ridge and Carolina Rise in 1995. International cooperation helps scientists in the US and other countries

382

Process for separating nitrogen from methane using microchannel process technology  

DOE Patents (OSTI)

The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

2007-07-31T23:59:59.000Z

383

The Particle Adventure | What holds it together? | Quarks emit gluons  

NLE Websites -- All DOE Office Websites (Extended Search)

holds it together? > Quarks emit gluons holds it together? > Quarks emit gluons Quarks emit gluons Color charge is always conserved. When a quark emits or absorbs a gluon, that quark's color must change in order to conserve color charge. For example, suppose a red quark changes into a blue quark and emits a red/antiblue gluon (the image below illustrates antiblue as yellow). The net color is still red. This is because - after the emission of the gluon - the blue color of the quark cancels with the antiblue color of the gluon. The remaining color then is the red color of the gluon. Quarks emit and absorb gluons very frequently within a hadron, so there is no way to observe the color of an individual quark. Within a hadron, though, the color of the two quarks exchanging a gluon will change in a way that keeps the bound system in a color-neutral state.

384

Waste Hoist  

NLE Websites -- All DOE Office Websites (Extended Search)

45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton capacity, it...

385

Light Emitting Diodes (LEDs) for General Illumiation  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT LIGHT EMITTING DIODES (LEDS) FOR GENERAL ILLUMINATION AN OIDA TECHNOLOGY ROADMAP An OIDA Report March 2001 Co-Sponsored by DOE/BTS and OIDA Compiled by Eric D. Jones Sandia National Laboratories OIDA Member Use Only OIDA OPTOELECTRONICS INDUSTRY DEVELOPMENT ASSOCIATION 1133 Connecticut Avenue, NW Suite 600 Washington, DC 20036 Ph: (202) 785-4426 Fax: (202) 785-4428 Web: http://www.OIDA.org © 2001 OIDA Optoelectronics Industry Development Association All data contained in this report is proprietary to OIDA and may not be distributed in either original or reproduced form to anyone outside the client's internal organization within five years of the report date without prior written permission of the Optoelectronics Industry Development Association. Published by: Optoelectronics Industry Development Association

386

The Josephson light-emitting diode  

E-Print Network (OSTI)

We consider an optical quantum dot where an electron level and a hole level are coupled to respective superconducting leads. We find that electrons and holes recombine producing photons at discrete energies as well as a continuous tail. Further, the spectral lines directly probe the induced superconducting correlations on the dot. At energies close to the applied bias voltage eV, a parameter range exists, where radiation proceeds in pairwise emission of polarization correlated photons. At energies close to 2eV, emitted photons are associated with Cooper pair transfer and are reminiscent of Josephson radiation. We discuss how to probe the coherence of these photons in a SQUID geometry via single photon interference.

Patrik Recher; Yuli V. Nazarov; Leo P. Kouwenhoven

2009-02-25T23:59:59.000Z

387

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

388

,"Utah Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6...

389

Methane Hydrate Research and Modeling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Modeling Clean Coal Carbon Capture and Storage Oil & Gas Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Research is focused on understanding...

390

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies The USGS published a USGS Professional Paper in 2010 entitled 

391

Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon Powder River Basin (WY, MT) Coal and Coalbed Methane: Evaluating and Revising 100 Years of Studies Dataset Summary...

392

Coalbed Methane Resources in the Powder River Basin: Lithologic...  

Open Energy Info (EERE)

in Wyoming and North Dakota. Specifically, the analysis looked at: total gas desorbed, coal quality, and high-pressure methane adsorption isotherm data from 963 cored coal samples...

393

Hydrogen Production from Methane Using Oxygen-permeable Ceramic Membranes.  

E-Print Network (OSTI)

??Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest as membrane reactor systems for the conversion of methane and higher hydrocarbons… (more)

Faraji, Sedigheh

2010-01-01T23:59:59.000Z

394

Effect of matrix shrinkage on permeability of coalbed methane reservoirs .  

E-Print Network (OSTI)

??The dynamic nature of coalbed methane reservoir permeability makes the continuous modeling of the flow process difficult. Knowledge of conventional reservoir modeling is of little… (more)

Tandon, Rohit, 1966-

1991-01-01T23:59:59.000Z

395

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

is to develop analytical techniques capable of quantitatively evaluating the nature of methane hydrate reservoir systems through modeling of their acoustic response using...

396

,"Texas--RRC District 2 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

397

NETL: Methane Hydrates - DOE/NETL Projects - GAS HYDRATE DYNAMICS...  

NLE Websites -- All DOE Office Websites (Extended Search)

the first systematic geochemical and microbiological data to constrain subseafloor methane sinks and the spatio-temporal changes in the nature of microbial systems and pore...

398

,"Lower 48 Federal Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

399

,"U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

400

,"U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","812013"...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

402

,"California - Los Angeles Basin Onshore Coalbed Methane Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

403

,"Colorado Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

404

,"Texas--RRC District 8 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

405

,"Utah Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

406

,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

407

Table 16: Coalbed methane proved reserves and production, 2007...  

U.S. Energy Information Administration (EIA) Indexed Site

: Coalbed methane proved reserves and production, 2007 - 2011" "billion cubic feet" ,,"Reserves",,,,,,"Production" "State and Subdivision",,2007,2008,2009,2010,2011,,2007,2008,2009...

408

,"Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

409

NETL-ORD Methane Hydrate Project - Micro XCT Characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

the experimental systempressure vessel development and system parameter optimization, methane hydrate will be formed and dissociated in packed sediments. Micro-XCT scans will be...

410

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6301989"...

411

,"Texas--RRC District 9 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

412

,"Texas--State Offshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

413

,"Michigan Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

414

,"Virginia Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

415

,"Montana Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

416

,"Kansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

417

,"U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

418

,"Texas--RRC District 5 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

419

,"Texas--RRC District 10 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

420

NETL: Methane Hydrates - DOE/NETL Projects - Verification Of...  

NLE Websites -- All DOE Office Websites (Extended Search)

will help to determine bottomhole pressure, predict more accurate production rates of methane and water, and facilitate the selection of hydrate reservoirs for economic...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Ohio Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

422

,"North Dakota Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

423

,"Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

424

NETL: Methane Hydrates - DOE/NETL Projects - Properties of Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

is to measure physical, chemical, mechanical, and hydrologic property changes in methane hydrate-bearing sediments subjected to injection of carbon dioxide and nitrogen....

425

,"Florida Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

426

Converting Methane to Methanol: Structural Insight into the Reaction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA. Methane-oxidizing bacteria (methanotrophs) are extremely attractive from a chemist's...

427

,"U.S. Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

428

NETL: Methane Hydrates - DOE/NETL Projects - Development of a...  

NLE Websites -- All DOE Office Websites (Extended Search)

activities to assess the geologic occurrence, regional context, and characteristics of methane hydrate deposits along the continental margins of the U.S. with an emphasis on the...

429

,"New Mexico--East Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

430

,"U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

431

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas...

432

,"New Mexico Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

433

,"Texas--RRC District 4 Onshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

434

,"West Virginia Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

435

,"New York Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

436

Table 16. Coalbed methane proved reserves and production, 2007 - 2011  

U.S. Energy Information Administration (EIA)

Table 16: Coalbed methane proved reserves and production, 2007 – 2011 billion cubic feet State and Subdivision 2007 2008 2009 2010 2011 2007 2008 2009 2010 2011

437

EA-1157: Methyl Chloride via Oxyhydrochlorination of Methane...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1157: Methyl Chloride via Oxyhydrochlorination of Methane: A Building Black for Chemicals and Fuels from Natural Gas, Carrollton, Kentucky EA-1157: Methyl Chloride via...

438

NETL: Methane Hydrates - DOE/NETL Projects - Mapping Permafrost...  

NLE Websites -- All DOE Office Websites (Extended Search)

20 percent of the land area in the northern hemisphere and often contains associated methane hydrate. Numerous studies have indicated that permafrost and hydrate are actively...

439

,"Louisiana--State Offshore Coalbed Methane Proved Reserves ...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

440

,"New Mexico--West Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

,"Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

442

,"Texas (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

443

,"Texas--RRC District 1 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

444

,"Arkansas Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

445

NETL: Methane Hydrates - Gas Hydrate Research in Deep Sea Sediments...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogeochemistry Section, Naval Research Laboratory, Washington, D.C. 20375 Background Methane is a potent greenhouse gas necessitating a better understanding of the mechanisms...

446

,"Lower 48 States Coalbed Methane Proved Reserves (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

447

NETL-ORD Methane Hydrate Project - Experimental Analysis and...  

NLE Websites -- All DOE Office Websites (Extended Search)

to describe the experimentally-observed stress-strain behavior as a function of methane hydrate saturation All the experimental data and their relationships will be...

448

,"Federal Offshore--Texas Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

449

,"Texas--RRC District 6 Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

450

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

451

,"California - San Joaquin Basin Onshore Coalbed Methane Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

452

NETL: Methane Hydrates - DOE/JIP GOM Hydrate Research Cruise  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis - Fugro Operations and Geotechnical Investigations PDF-7.13MB National Methane Hydrate R&D Program website. Photos: Photo Gallery - miscellaneous - Photos from...

453

,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

454

,"California--State Offshore Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

455

NETL: Methane Hydrates - DOE/NETL Projects - Reconstructing Paleo...  

NLE Websites -- All DOE Office Websites (Extended Search)

to track diagenetic changes that are associated with the anaerobic oxidation of methane. To achieve this goal, this project aims to (1) reconstruct the paleo-positions of...

456

,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

457

,"Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

458

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field...  

NLE Websites -- All DOE Office Websites (Extended Search)

fluid, by flowmeters in the Low-flow Gas Measurement Skid. Compositional analysis of methane, nitrogen, carbon dioxide, and tracers pumped during injection are being monitored...

459

Evaluation of Fluid Transport Properties of Coal Bed Methane Reservoirs.  

E-Print Network (OSTI)

??Determination of petro-physical properties of coal bed methane (CBM) reservoirs is essential in evaluating a potential prospect for commercial exploitation. In particular, permeability is the… (more)

Alexis, Dennis Arun

2013-01-01T23:59:59.000Z

460

Resource Recovery of Coal Bed Methane Formation Water.  

E-Print Network (OSTI)

??During the excavation of natural gas, petroleum hydrocarbon-polluted brine water, termed production water, is drawn from the coal bed methane formations (CBMF) along with the… (more)

Bishop, Catherine Elizabeth

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

,"Ohio Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2010,"...

462

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

463

Swapping Global Warming Gases for Methane in Gas Hydrate ...  

Science Conference Proceedings (OSTI)

Swapping Global Warming Gases for Methane in Gas Hydrate Layer ... would serve as energy sources as well as carbon dioxide storage sites in the ...

2006-07-20T23:59:59.000Z

464

Extinction Studies of Hydrofluorocarons in Methane/Air and ...  

Science Conference Proceedings (OSTI)

... is a major fire threat in shipboard flammable liquid storage rooms (FLSRs). ... agent volume concentration in air for methane and propane fuels ...

2011-10-13T23:59:59.000Z

465

Microbe-Metazoan interactions at Pacific Ocean methane seeps  

E-Print Network (OSTI)

isotope signatures and methane use by New Zealand cold seep benthos. Marine Geology.Geology (Thurber AR, Kröger K, Neira C, Wiklund H, Levin LA, 2010. Stable isotope

Thurber, Andrew R

2010-01-01T23:59:59.000Z

466

Microbe-metazoan interactions at Pacific Ocean methane seeps  

E-Print Network (OSTI)

isotope signatures and methane use by New Zealand cold seep benthos. Marine Geology.Geology (Thurber AR, Kröger K, Neira C, Wiklund H, Levin LA, 2010. Stable isotope

Thurber, Andrew Reichmann

2010-01-01T23:59:59.000Z

467

Extinguishment of methane diffusion flames by carbon dioxide ...  

Science Conference Proceedings (OSTI)

... These were determined from a flammability map presented by Coward and Jones for methane in air diluted with CO2 [41]. ... [15] KE Lange, AT Perka ...

2008-11-04T23:59:59.000Z

468

Decomposition of methane during oxide reduction using Natural gas  

Science Conference Proceedings (OSTI)

Decomposition of methane during oxide reduction using Natural gas · DELIVERING ... Reaction mechanism and reaction rate of Sn evaporation from liquid steel.

469

NETL: Methane Hydrates - DOE/NETL Projects - Borehole Tool for...  

NLE Websites -- All DOE Office Websites (Extended Search)

liquid and gas permeabilities and their variation with saturation define flow rates; and heat capacity and conduction limit dissociation. The study of methane hydrate-bearing...

470

Measurements of Atmospheric Methane and 13C/12C of Atmospheric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane and 13C12C, Flask Air Samples Measurements of Atmospheric Methane and 13C12C of Atmospheric Methane from Flask Air Samples (1999) data Data Investigators Paul Quay and...

471

Mechanistic studies of electron transfer, complex formation, C-H bond activation, and product binding in soluble methane monooxygenase  

E-Print Network (OSTI)

Chapter 1. Soluble Methane Monooxygenase: Activation of Dioxygen and Methane The mechanisms by which soluble methane monooxygenase uses dioxygen to convert methane selectively to methanol have come into sharp focus. Diverse ...

Kopp, Daniel Arthur

2003-01-01T23:59:59.000Z

472

Progress on Production of Alpha-emitting Radioisotopes for Cancer...  

Office of Science (SC) Website

Progress on Production of Alpha-emitting Radioisotopes for Cancer Therapy Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding...

473

Electron traps in organic light-emitting diodes  

Science Conference Proceedings (OSTI)

This work presents the effects of electron traps in organic light-emitting diodes using a model which includes charge injection

Min-Jan Tsai; Hsin-Fei Meng

2005-01-01T23:59:59.000Z

474

Junction temperature measurement of light emitting diode by electroluminescence  

Science Conference Proceedings (OSTI)

Junction temperature (JT) is a key parameter of the performance and lifetime of light emitting diodes(LEDs). In this paper

S. M. He; X. D. Luo; B. Zhang; L. Fu; L. W. Cheng; J. B. Wang; W. Lu

2011-01-01T23:59:59.000Z

475

Resonant energy transfer in light harvesting and light emitting applications.  

E-Print Network (OSTI)

??The performance of light emitting and light harvesting devices is improved by utilising resonant energy transfer. In lighting applications, the emission energy of a semiconductor… (more)

Chanyawadee, Soontorn

2009-01-01T23:59:59.000Z

476

Enhanced Light Extraction from Organic Light Emitting Diodes  

Ames Laboratory researchers have developed a soft lithography microlens fabrication and array that enables more efficient organic light emitting diodes (OLEDs), improving their commercial viability.

477

Si Heterostructures for Pure UV Light Emitting Diode with Carrier ...  

Science Conference Proceedings (OSTI)

Presentation Title, Development of ZnO/MgO/p+-Si Heterostructures for Pure UV Light Emitting Diode with Carrier Blocking Layer. Author(s), Byung Oh Jung, ...

478

Improved Performance of a Fluorescent Blue Organic Light Emitting ...  

Science Conference Proceedings (OSTI)

Presentation Title, Improved Performance of a Fluorescent Blue Organic Light Emitting Diode with Hole Blocking Materials as Dopants for Transport Layers.

479

Save Energy, Money and Prevent Pollution with Light-Emitting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Save Energy, Money and Prevent Pollution with Light-Emitting Diode (LED) Exit Signs Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and...

480

High power flip-chip light emitting diode.  

E-Print Network (OSTI)

??xiv, 74 leaves : ill. (some col.) ; 30 cm HKUST Call Number: Thesis ELEC 2004 Lai Recently, Light-emitting diodes (LEDs) are widely used in… (more)

Lai, Yin Hing

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane emitting wastes" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Analysis of surface plasmon mediated light emitting diode efficiency enhancement.  

E-Print Network (OSTI)

?? The extraction of light from current light emitting diodes (LEDs) is very low due to the large index of refraction mismatch between the semiconductor… (more)

Holmstedt, Jason

2011-01-01T23:59:59.000Z

482

Energy Department Assisting Launch of Low Greenhouse Gas-Emitting...  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2013 Energy Department Assisting Launch of Low Greenhouse Gas-Emitting Jet Fuels Wellbore Cement: Research That Begins Where the Sidewalk Ends USAF photo by Senior Airman...

483

Quantum Efficiency of Micron Scaled Organic Light Emitting Diodes ...  

Science Conference Proceedings (OSTI)

Jun 1, 2004 ... Quantum Efficiency of Micron Scaled Organic Light Emitting Diodes Using Atomic Force Electroluminescence Microscopy by L.S.C. Pingree ...

484

Assessment of Fuel Gas Cleanup Systems for Waste Gas Fueled Power Generation  

Science Conference Proceedings (OSTI)

There are many industrial operations that have waste gas streams that are combustible. Chief among these is biogas produced by anaerobic digestion of organic wastes to produce a methane-rich biogas in landfills and anaerobic digesters. These gas streams are increasingly being used to fuel local power generators. The biogas streams, however, contain traces of a wide variety of contaminants. Removal of these contaminants may be required to either meet the manufacturer's requirements for fuel gas quality to...

2006-12-21T23:59:59.000Z

485

Supplement Analysis for Disposal of Polychlorinated Biphenyl-Commingled Transuranic Waste at the Waste Isolation Pilot Plant (DOE/EIS-0026-SA02) (6/23/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal of Disposal of Polychlorinated Biphenyl-Commingled Transuranic Waste at the Waste Isolation Pilot Plant (DOE/EIS-0026-SA02) 1.0 Purpose and Need for Action Transuranic (TRU) waste is waste that contains alpha particle-emitting radionuclides with atomic numbers greater than uranium (92) and half-lives greater than 20 years, in concentrations greater than 100 nanocuries per gram of waste. Some TRU wastes are mixed with polychlorinated biphenyls (PCBs) (referred to as PCB-commingled TRU waste). PCBs exist in DOE's TRU waste as mixtures of synthetic organic chemicals with physical properties ranging from oily liquids to waxy solids. Exposure to PCBs can result in adverse health effects. For example, PCBs in blood or in fatty tissue as a result of inhalation, ingestion, or dermal absorption may cause reproductive effects,

486

Thermodynamic investigation into steam-methane reforming and the synthesis of methane from carbon monoxide and hydrogen  

SciTech Connect

In this study the stream-methane equilibrium reaction was investigated by considering both methane synthesis from hydrogen and carbon monoxide and by considering steam-methane reforming from methane and steam. A FORTRAN computer program was written to carry out all the calculations over a wide range of temperatures, pressures, and initial compositions. The products of each process as a function of pressure, temperature, and starting ratio of reactant gases were calculated, as well as the heats involved. In both processes the minimum ratios above which no carbon precipitates were determined as a function of temperature and pressure were given.

Wu, L.H.; Lietzke, M.H.

1976-11-01T23:59:59.000Z

487

Advanced Electrochemical Waste Forms  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

488

Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery  

E-Print Network (OSTI)

LIM J.W. Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery Jun Wei LIM, Singapore 639798 (E-mail: jwlim3@e.ntu.edu.sg) Abstract The anaerobic digestion of brown water (BW), food in a decentralized reactor via anaerobic digestion. The bio-methane potential of these substrates at different feed

Paris-Sud XI, Université de

489

White light emitting diode as liquid crystal display backlight; High brightness light emitting diode as liquid crystal display backlight.  

E-Print Network (OSTI)

??The discovery of high brightness (white) light emitting diode (LED) is considered as a real threat to the current lighting industry in various applications. One… (more)

Soon, Chian Myau

2007-01-01T23:59:59.000Z

490

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is… (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

491

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

E-Print Network (OSTI)

of Methane– Title: Carbon Dioxide Mixed Hydrates Tae-Hyukof methane with carbon dioxide in hydrate has been proposedsequestration of carbon dioxide ( CO 2 ) and/or production

Kwon, T.H.

2012-01-01T23:59:59.000Z

492

Texas--RRC District 8A Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC District 8A Coalbed Methane Proved Reserves,...

493

Texas--RRC District 8A Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 8A Coalbed Methane Proved Reserves, Reserves...

494

Texas--RRC District 7C Coalbed Methane Proved Reserves (Billion...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 TX, RRC Distict 7C Coalbed Methane Proved Reserves,...

495

Texas--RRC District 7B Coalbed Methane Production (Billion Cubic...  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC District 7B Coalbed Methane Proved Reserves, Reserves...

496

Texas--RRC District 7C Coalbed Methane Production (Billion Cubic...  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production TX, RRC Distict 7C Coalbed Methane Proved Reserves, Reserves...

497

U.S. and Japan Complete Successful Field Trial of Methane Hydrate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Japan Complete Successful Field Trial of Methane Hydrate Production Technologies U.S. and Japan Complete Successful Field Trial of Methane Hydrate Production Technologies May 2,...

498

METHODOLOGY & CALCULATIONS FOR THE ASSIGNMENT OF WASTE FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT HANFORD SITE [SEC 1 & 2  

DOE Green Energy (OSTI)

Waste stored within tank farm double-shell tanks (DST) and single-shell tanks (SST) generates flammable gas (principally hydrogen) to varying degrees depending on the type, amount, geometry, and condition of the waste. The waste generates hydrogen through the radiolysis of water, thermolytic decomposition of organic compounds, and corrosion of a tank's carbon steel walls. Radiolysis and thermolytic decomposition also generate ammonia. Nonflammable gases, which act as diluents (such as nitrous oxide), are also produced. Additional flammable gases (e.g., methane) are generated by chemical reactions between various degradation products of organic chemicals present in the tanks. Volatile and semivolatile organic chemicals in tanks also produce organic vapors. The generated gases in tank waste are either released continuously to the tank headspace or are retained in the waste matrix. Retained gas may be released in a spontaneous or induced gas release event (GRE) that can significantly increase the flammable gas concentration in tank headspace as described in RPP-7771, Flammable Gas Safety Issue Resolution. Appendices A through L provide supporting information. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste and characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event.

BARKER, S.A.; HEDENGREN, D.C.

2003-08-28T23:59:59.000Z

499

Efficiency enhancement of microcavity organic light emitting diodes  

Science Conference Proceedings (OSTI)

We report microcavity efficiency enhancement of organic electroluminescent devices based on the hole transporter bis(triphenyl) diamine and the electron transporter and light emitter tris(8?hydroxyquinoline) aluminum.Microcavityorganic light emitting diodes are described that emit four times the light measured in the forward direction (spectrally integrated)

R. H. Jordan; A. Dodabalapur; R. E. Slusher

1996-01-01T23:59:59.000Z

500

Nanofabrication of gallium nitride photonic crystal light-emitting diodes  

Science Conference Proceedings (OSTI)

We describe a comparison of nanofabrication technologies for the fabrication of 2D photonic crystal structures on GaN/InGaN blue LEDs. Such devices exhibit enhanced brightness and the possibility of controlling the angular emission profile of emitted ... Keywords: GaN dry-etching, Light-emitting diodes, Nanolithography, Photonic crystals

Ali Z. Khokhar; Keith Parsons; Graham Hubbard; Faiz Rahman; Douglas S. Macintyre; Chang Xiong; David Massoubre; Zheng Gong; Nigel P. Johnson; Richard M. De La Rue; Ian M. Watson; Erdan Gu; Martin D. Dawson; Steve J. Abbott; Martin D. B. Charlton; Martin Tillin

2010-11-01T23:59:59.000Z