Powered by Deep Web Technologies
Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Damage of Land Biosphere due to Intense Warming by 1000-Fold Rapid Increase in Atmospheric Methane: Estimation with a Climate–Carbon Cycle Model  

Science Conference Proceedings (OSTI)

Decadal-time-scale responses of climate and the global carbon cycle to warming associated with rapid increases in atmospheric methane from a massive methane release from marine sedimentary methane hydrates are investigated with a coupled climate–...

Atsushi Obata; Kiyotaka Shibata

2012-12-01T23:59:59.000Z

2

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

3

Soil–Atmosphere Exchange of Nitrous Oxide, Nitric Oxide, Methane, and Carbon Dioxide in Logged and Undisturbed Forest in the Tapajos National Forest, Brazil  

Science Conference Proceedings (OSTI)

Selective logging is an extensive land use in the Brazilian Amazon region. The soil–atmosphere fluxes of nitrous oxide (N2O), nitric oxide (NO), methane (CH4), and carbon dioxide (CO2) are studied on two soil types (clay Oxisol and sandy loam ...

Michael Keller; Ruth Varner; Jadson D. Dias; Hudson Silva; Patrick Crill; Raimundo Cosme de Oliveira Jr.; Gregory P. Asner

2005-11-01T23:59:59.000Z

4

Estimation of methane and carbon dioxide surface fluxes using a 3-D global atmospheric chemical transport model  

E-Print Network (OSTI)

Methane (CH?) and carbon dioxide (CO?) are the two most radiatively important greenhouse gases attributable to human activity. Large uncertainties in their source and sink magnitudes currently exist. We estimate global ...

Chen, Yu-Han, 1973-

2004-01-01T23:59:59.000Z

5

Measurements of Atmospheric Methane and 13C/12C of Atmospheric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane and 13C12C, Flask Air Samples Measurements of Atmospheric Methane and 13C12C of Atmospheric Methane from Flask Air Samples (1999) data Data Investigators Paul Quay and...

6

On the Sources of Methane to the Los Angeles Atmosphere  

NLE Websites -- All DOE Office Websites (Extended Search)

On the Sources of Methane to the Los Angeles Atmosphere Title On the Sources of Methane to the Los Angeles Atmosphere Publication Type Journal Article Year of Publication 2012...

7

Methane Emissions from Natural Wetlands in the United States: Satellite-Derived Estimation Based on Ecosystem Carbon Cycling  

Science Conference Proceedings (OSTI)

Wetlands are an important natural source of methane to the atmosphere. The amounts of methane emitted from inundated ecosystems in the United States can vary greatly from area to area. Seasonal temperature, water table dynamics, and carbon ...

Christopher Potter; Steven Klooster; Seth Hiatt; Matthew Fladeland; Vanessa Genovese; Peggy Gross

2006-12-01T23:59:59.000Z

8

Microbial Sequestration of Carbon Dioxide and Subsequent Conversion to Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration of Carbon Dioxide and Subsequent Sequestration of Carbon Dioxide and Subsequent conversion to Methane By Nirupam Pal Associate Professor California Polytechnic State University San Luis Obispo, CA 93401 Email : npal@calpoly.edu Phone : (805) 756-1355 INTRODUCTION The rising level of carbon dioxide in the atmosphere has been of growing concern in recent years. The increasing levels of carbon dioxide, the most dominant component of greenhouse gases, contribute to global warming and changing global weather patterns which could potentially lead to catastrophic events that could threaten life in every form on this planet. The level of carbon dioxide in the worlds atmosphere has increased from about 280 ppm in 1850 to the current level of approximately 350 ppm. There are several natural sources and sinks of

9

Enhanced carbon monoxide utilization in methanation process  

DOE Green Energy (OSTI)

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

10

Methane, Nonmethane Hydrocarbons, Alkyl Nitrates, and Chlorinated Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases in Whole-Air Samples Atmospheric Trace Gases in Whole-Air Samples Methane, Nonmethane Hydrocarbons, Alkyl Nitrates, and Chlorinated Carbon Compounds including 3 Chlorofluorocarbons (CFC-11, CFC-12, and CFC-113) in Whole-air Samples graphics Graphics data Data Investigator Donald Blake Department of Chemistry, University of California Irvine, California, 92697 USA Period of Record April 1979 - December 2012 Methods Whole-air samples are collected in conditioned, evacuated, 2-L stainless steel canisters; each canister is filled to ambient pressure over a period of about 1 minute (approximately 20 seconds to 2 minutes). These canisters are returned to the University of California at Irvine for chromatographic analysis. Analysis for methane includes gas chromatography with flame ionization, as

11

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

E-Print Network (OSTI)

of Methane– Title: Carbon Dioxide Mixed Hydrates Tae-Hyukof methane with carbon dioxide in hydrate has been proposedsequestration of carbon dioxide ( CO 2 ) and/or production

Kwon, T.H.

2012-01-01T23:59:59.000Z

12

INHIBITION OF METHANE ATMOSPHERIC FLAMES BY ...  

Science Conference Proceedings (OSTI)

... atmospheric pressure was studied. The burner temperature was maintained at 65 “C by using a thermostat. The volumetric velocity ...

2011-10-20T23:59:59.000Z

13

Atmospheric Methane at Cape Meares, Oregon, U.S.A.: A High-Resolution Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Methane » Atmospheric Trace Gases » Methane » Atmospheric Methane, Cape Meares Atmospheric Methane at Cape Meares, Oregon, U.S.A.: A High-Resolution Data Base for the Period 1979-1992 DOI: 10.3334/CDIAC/atg.db1007 data Data (DB1007) Investigators M. A. K. Khalil and R. A. Rasmussen Description This data base presents continuous automated atmospheric methane (CH4) measurements taken at the atmospheric monitoring facility in Cape Meares, Oregon, by the Oregon Graduate Institute of Science and Technology. The Cape Meares data represent some 119,000 individual atmospheric methane measurements carried out during 1979-1992. Analysis of ambient air (collected 12 to 72 times daily) was carried out by means of an automated sampling and measurement system, using the method of gas chromatography and

14

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

15

Methanation of gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

Frost, Albert C. (Congers, NY)

1983-01-01T23:59:59.000Z

16

Mechanisms controlling the production and transport of methane, carbon dioxide, and dissolved solutes within a boreal peatland  

SciTech Connect

Peatlands are one of the most important terrestrial reservoirs in the global cycle for carbon, and are a major source for atmospheric methane. However, little is known about the dynamics of these carbon reservoirs or their feedback mechanisms with the pool of atmospheric CO{sub 2} during the Holocene. Specifically, it is unknown whether large peat basins are sources, sinks, or steady-state reservoirs for the global carbon cycle. In particular, the production and transport of methane, carbon dioxide, and dissolved organic carbon form the deeper portions of these peatlands is unknown. Our DOE research program is to conduct an integrated ecologic and hydrogeochemical study of the Glacial Lake Agassiz peatlands (northern Minnesota) to better understand the carbon dynamics in globally significant peat basins. Specifically, our study will provide local and regional data on (1), rates of carbon accumulation and loss and fluxes of methane in the peat profiles; (2) the physical and botanical factors controlling the production of methane and carbon dioxide in the wetland; and (3) the role of hydrogeologic processes in controlling the fluxes of gases and solutes through the peat. We intend to use computer simulation models, calibrated to field data, to scale-up from local to regional estimates of methane and carbon dioxide within the basin. How gases and dissolved organic carbon escapes form peatlands in unknown. It has been suggested that the concentrations of methane produced in the upper peat are sufficient to produce diffusion gradients towards the surface. Alternatively, gas may move through the peat profile by groundwater advection.

Siegel, D.I.

1992-04-09T23:59:59.000Z

17

Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)  

Science Conference Proceedings (OSTI)

A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation, respectively. Based on the contemporaneous wind speeds at this site, contemporary estimates of the diffusive fluxes from the mixed layer to the atmosphere for methane, ethane, and propane are 26.5, 2.10, and 2.78 {micro}mol/m{sup 2}d, respectively. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 ppm and 2.40 ppm during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Considering that the majority of seeps in the GOM are deep (>500 m), elevated CH{sub 4} concentrations in near-surface waters resulting from bubble-mediated CH4 transport in the water column are expected to be widespread in the Gulf of Mexico.

Ian MacDonald

2011-05-31T23:59:59.000Z

18

Biomass burning sources of nitrogen oxides, carbon monoxide, and non-methane hydrocarbons  

SciTech Connect

Biomass burning is an important source of many key tropospheric species, including aerosols, carbon dioxide (CO{sub 2}), nitrogen oxides (NO{sub {times}}=NO+NO{sub 2}), carbon monoxide (CO), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), methyl bromide (CH{sub 3}Br), ammonia (NH{sub 3}), non-methane hydrocarbons (NMHCs) and other species. These emissions and their subsequent products act as pollutants and affect greenhouse warming of the atmosphere. One important by-product of biomass burning is tropospheric ozone, which is a pollutant that also absorbs infrared radiation. Ozone is formed when CO, CH{sub 4}, and NMHCs react in the presence of NO{sub {times}} and sunlight. Ozone concentrations in tropical regions (where the bulk of biomass burning occurs) may increase due to biomass burning. Additionally, biomass burning can increase the concentration of nitric acid (HNO{sub 3}), a key component of acid rain.

Atherton, C.S.

1995-11-01T23:59:59.000Z

19

Thermodynamic investigation into steam-methane reforming and the synthesis of methane from carbon monoxide and hydrogen  

SciTech Connect

In this study the stream-methane equilibrium reaction was investigated by considering both methane synthesis from hydrogen and carbon monoxide and by considering steam-methane reforming from methane and steam. A FORTRAN computer program was written to carry out all the calculations over a wide range of temperatures, pressures, and initial compositions. The products of each process as a function of pressure, temperature, and starting ratio of reactant gases were calculated, as well as the heats involved. In both processes the minimum ratios above which no carbon precipitates were determined as a function of temperature and pressure were given.

Wu, L.H.; Lietzke, M.H.

1976-11-01T23:59:59.000Z

20

Atmospheric carbon dioxide and the greenhouse effect  

SciTech Connect

This document contains a non-technical review of the problems associated with atmospheric carbon dioxide and the resulting greenhouse effect. (TEM)

Firestine, M.W. (ed.)

1989-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

Controlled landfilling is an approach to manage solid waste landfills, so as to rapidly complete methane generation, while maximizing gas capture and minimizing the usual emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated to more rapid and earlier completion to full potential by improving conditions (principally moisture, but also temperature) to optimize biological processes occurring within the landfill. Gas is contained through use of surface membrane cover. Gas is captured via porous layers, under the cover, operated at slight vacuum. A field demonstration project has been ongoing under NETL sponsorship for the past several years near Davis, CA. Results have been extremely encouraging. Two major benefits of the technology are reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times, more predictably, than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role both in reduction of US greenhouse gas emissions and in US renewable energy. The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein; Ramin Yazdani; Rick Moore; Michelle Byars; Jeff Kieffer; Professor Morton Barlaz; Rinav Mehta

2000-02-26T23:59:59.000Z

22

Atmospheric Inverse Estimates of Methane Emissions from Central California  

SciTech Connect

Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

2008-11-21T23:59:59.000Z

23

HOT METHANE LINE LISTS FOR EXOPLANET AND BROWN DWARF ATMOSPHERES  

SciTech Connect

We present comprehensive experimental line lists of methane (CH{sub 4}) at high temperatures obtained by recording Fourier transform infrared emission spectra. Calibrated line lists are presented for the temperatures 300-1400 Degree-Sign C at twelve 100 Degree-Sign C intervals spanning the 960-5000 cm{sup -1} (2.0-10.4 {mu}m) region of the infrared. This range encompasses the dyad, pentad, and octad regions, i.e., all fundamental vibrational modes along with a number of combination, overtone and hot bands. Using our CH{sub 4} spectra, we have estimated empirical lower state energies (E{sub low} in cm{sup -1}) and our values have been incorporated into the line lists along with line positions ({nu}-bar in cm{sup -1}) and calibrated line intensities (S' in cm molecule{sup -1}). We expect our hot CH{sub 4} line lists to find direct application in the modeling of planetary atmospheres and brown dwarfs.

Hargreaves, Robert J.; Bernath, Peter F. [Department of Chemistry, University of York, Heslington, York YO10 5DD (United Kingdom); Beale, Christopher A.; Michaux, Laurent; Irfan, Melis, E-mail: rjh135@york.ac.uk, E-mail: cbeale@odu.edu, E-mail: lm595@york.ac.uk, E-mail: melis.irfan@postgrad.manchester.ac.uk, E-mail: pbernath@odu.edu [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom)

2012-09-20T23:59:59.000Z

24

Bayesian Modelling Volatility of Growth Rate in Atmospheric Carbon Dioxide Concentrations  

Science Conference Proceedings (OSTI)

Atmospheric gases, such as carbon dioxide, ozone, methane, nitrous oxide, and etc., create a natural greenhouse effect and cause climate change. Therefore, modelling behavior of these gases could help policy makers to control greenhouse effects. In a ... Keywords: Stochastic volatility, Smooth transition autoregressive, Markov chain Monte Carlo, methods, Bayesian, ARCH, GARCH

Esmail Amiri

2009-12-01T23:59:59.000Z

25

The Effect of Oxygen to Methane Ratio on the Methane-wet Air Autothermal Reforming and Carbon Deposition in the Micro-chamber  

Science Conference Proceedings (OSTI)

Considering the problems of catalyst carbon deposition and reforming endothermic reaction in micro-reforming chamber, coupled methane catalyst partial oxidation and steam methane reforming can make the micro-reforming system auto-supply heat and inhibit ... Keywords: micro-chamber, autothermal reforming, carbon deposition, oxygen to methane ratio

Ran Jingyu; Tu Weifeng

2011-01-01T23:59:59.000Z

26

Carbon Dioxide Variability and Atmospheric Circulation  

Science Conference Proceedings (OSTI)

Hourly values of the concentration of atmospheric carbon dioxide at Mauna Loa Observatory (MLO) formed the basis for an investigation of concentration fluctuations on daily to monthly time scales. In agreement with earlier studies we found no ...

James C. Sadler; Colin S. Ramage; Arnold M. Hori

1982-06-01T23:59:59.000Z

27

800,000-year Ice-Core Records of Atmospheric Methane (CH4)  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH4) » Ice Cores Methane (CH4) » Ice Cores 800,000-year Ice-Core Records of Atmospheric Methane (CH4) This page introduces ice-core records of methane (CH4) extending back 800,000 years at Dome C, Antarctica and over 400,000 years at the Vostok site. Links are also provided to shorter records from other Antarctic locations. The 2000-year record from Law Dome, Antarctica, has been merged with modern records to create a long-term record to the present. These records are maintained by the World Data Center for Paleoclimatology, National Oceanic and Atmospheric Administration (NOAA), and have graciously been made freely available for access and distribution. The original investigators made the effort to obtain the data and assure their quality. To assure proper credit is given, please follow the citation instructions

28

METHANE IN THE ATMOSPHERE OF THE TRANSITING HOT NEPTUNE GJ436B?  

SciTech Connect

We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5, and 8 {mu}m obtained with the Infrared Array Camera on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, Hubble Space Telescope, and ground-based V, I, H, and K{sub s} published observations, the range 0.5-10 {mu}m can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the data set. Representative climate models were calculated by using a three-dimensional, pseudospectral general circulation model with idealized thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio-calculated, line list for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water, and other molecules. No clear evidence of carbon monoxide and carbon dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesized to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.

Beaulieu, J.-P.; Batista, V. [Institut d'Astrophysique de Paris, UMR7095, CNRS, Universite Paris VI, 98bis Boulevard Arago, 75014 Paris (France); Tinetti, G.; Kipping, D. M.; Barber, R. J.; Tennyson, J.; Waldmann, I.; Miller, S.; Fossey, S. J.; Aylward, A. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Ribas, I. [Institut de Ciencies de l'Espai (CSIC-IEEC), Campus UAB, 08193 Bellaterra (Spain); Cho, J. Y.-K.; Polichtchouk, I. [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Yurchenko, S. N. [Institut fur Physikalische Chemie und Elektrochemie, Technische Universitat Dresden, D-01062 Dresden (Germany); Griffith, C. A. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States); Carey, S. [IPAC-Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Mousis, O., E-mail: beaulieu@iap.fr [Universite de Franche-Comte, Institut UTINAM, CNRS/INSU, UMR 6213, 25030 Besancon Cedex (France)

2011-04-10T23:59:59.000Z

29

Assessing the Thermodynamic Feasibility of the Conversion of Methane Hydrate into Carbon Dioxide Hydrate in Porous Media  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing the Thermodynamic Feasibility of the Conversion of Methane Assessing the Thermodynamic Feasibility of the Conversion of Methane Hydrate into Carbon Dioxide Hydrate in Porous Media Duane H. Smith (dsmith@netl.doe.gov; 304-285-4069), U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 Kal Seshadri (kal.seshadri@netl.doe.gov; 304-285-4680), Parsons Infrastructure and Technology Group, Morgantown, WV 26505 Joseph W. Wilder (wilder@math.wvu.edu; 304-293-2011), U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 (Permanent Address: Dept of Mathematics, P. O. Box 6310, West Virginia University, Morgantown, WV, 26506-6310) Abstract Concerns about the potential effects of rising carbon dioxide levels in the atmosphere have stimulated interest in a number of carbon dioxide sequestration studies. One

30

Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature  

E-Print Network (OSTI)

- ronmental impact. Present technology uses steam reforming to produce synthesis gas which is converted into enhance- ment of the carbon balance of methane conversion by reforming with CO2 in order to "recycleOxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature

Mallinson, Richard

31

Fluxes of methane between landfills and the atmosphere: Natural and engineered controls  

SciTech Connect

Field measurement of landfill methane emissions indicates natural variability spanning more than 2 seven orders of magnitude, from approximately 0.0004 to more than 4000 g m{sub -2} day{sup -1}. This wide range reflects net emissions resulting from production (methanogenesis), consumption (methanotrophic oxidation), and gaseous transport processes. The determination of an {open_quotes}average{close_quotes} emission rate for a given field site requires sampling designs and statistical techniques which consider spatial and temporal variability. Moreover, particularly at sites with pumped gas recovery systems, it is possible for methanotrophic microorganisms in aerated cover soils to oxidize all of the methane from landfill sources below and, additionally, to oxidize methane diffusing into cover soils from atmospheric sources above. In such cases, a reversed soil gas concentration gradient is observed in shallow cover soils, indicating bidirectional diffusional transport to the depth of optimum methane oxidation. Rates of landfill methane oxidation from field and laboratory incubation studies range up to 166 g m{sup -2} day{sup -1} among the highest for any natural setting, providing an effective natural control on net emissions. Estimates of worldwide landfill methane emissions to the atmosphere have ranged from 9 to 70 Tg yr{sup -1}, differing mainly in assumed methane yields from estimated quantities of landfilled refuse. At highly controlled landfill sites in developed countries, landfill methane is often collected via vertical wells or horizontal collectors. Recovery of landfill methane through engineered systems can provide both environmental and energy benefits by mitigating subsurface migration, reducing surface emissions, and providing an alternative energy resource for industrial boiler use, on-site electrical generation, or upgrading to a substitute natural gas.

Bogner, J. [Argonne National Lab., IL (United States); Meadows, M. [ETSU, Harwell, Oxfordshire (United Kingdom); Czepiel, P. [Harvard Univ., Cambridge, MA (United States)

1997-08-01T23:59:59.000Z

32

Mechanisms controlling the production and transport of methane, carbon dioxide, and dissolved solutes within a boreal peatland. Progress report, January 15, 1991--July 14, 1992  

SciTech Connect

Peatlands are one of the most important terrestrial reservoirs in the global cycle for carbon, and are a major source for atmospheric methane. However, little is known about the dynamics of these carbon reservoirs or their feedback mechanisms with the pool of atmospheric CO{sub 2} during the Holocene. Specifically, it is unknown whether large peat basins are sources, sinks, or steady-state reservoirs for the global carbon cycle. In particular, the production and transport of methane, carbon dioxide, and dissolved organic carbon form the deeper portions of these peatlands is unknown. Our DOE research program is to conduct an integrated ecologic and hydrogeochemical study of the Glacial Lake Agassiz peatlands (northern Minnesota) to better understand the carbon dynamics in globally significant peat basins. Specifically, our study will provide local and regional data on (1), rates of carbon accumulation and loss and fluxes of methane in the peat profiles; (2) the physical and botanical factors controlling the production of methane and carbon dioxide in the wetland; and (3) the role of hydrogeologic processes in controlling the fluxes of gases and solutes through the peat. We intend to use computer simulation models, calibrated to field data, to scale-up from local to regional estimates of methane and carbon dioxide within the basin. How gases and dissolved organic carbon escapes form peatlands in unknown. It has been suggested that the concentrations of methane produced in the upper peat are sufficient to produce diffusion gradients towards the surface. Alternatively, gas may move through the peat profile by groundwater advection.

Siegel, D.I.

1992-04-09T23:59:59.000Z

33

Palladium-catalyzed combustion of methane: Simulated gas turbine combustion at atmospheric pressure  

Science Conference Proceedings (OSTI)

Atmospheric pressure tests were performed in which a palladium catalyst ignites and stabilizes the homogeneous combustion of methane. Palladium exhibited a reversible deactivation at temperatures above 750 C, which acted to ``self-regulate`` its operating temperature. A properly treated palladium catalyst could be employed to preheat a methane/air mixture to temperatures required for ignition of gaseous combustion (ca. 800 C) without itself being exposed to the mixture adiabatic flame temperature. The operating temperature of the palladium was found to be relatively insensitive to the methane fuel concentration or catalyst inlet temperature over a wide range of conditions. Thus, palladium is well suited for application in the ignition and stabilization of methane combustion.

Griffin, T.; Weisenstein, W. [ABB Corporate Research Center, Daettwill (Switzerland); Scherer, V. [ABB Kraftwerke, Mannheim (Germany); Fowles, M. [ICI Katalco, Cleveland (United Kingdom)

1995-04-01T23:59:59.000Z

34

The Extraction of the Thermal Emission Band of Methane from the Longwave Spectrum of the Atmosphere  

Science Conference Proceedings (OSTI)

The thermal emission band at 1306 cm?1 of atmospheric methane, an important greenhouse gas, is presented for a cold, clear day in January 1994. A spectrum of the nonmethane emission features has been simulated using the FASCD3P radiation code and ...

W. F. J. Evans; E. Puckrin

1995-12-01T23:59:59.000Z

35

Accessibility of pores in coal to methane and carbon dioxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Accessibility Accessibility of pores in coal to methane and carbon dioxide 3 Yuri B. Melnichenko a,b,⇑ , Lilin He a , Richard Sakurovs c,⇑ , Arkady L. Kholodenko d , Tomasz Blach e , 4 Maria Mastalerz f , Andrzej P. Radlin ´ ski e,f , Gang Cheng g,h , David F.R. Mildner i 5 a Neutron Scattering Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 6 b Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA 7 c CSIRO Energy Technology, 11 Julius Avenue, North Ryde, 2113 NSW, Australia 8 d 375 H.L. Hunter Laboratories, Clemson University, Clemson, SC 29634-0973, USA 9 e Nanoscale Science and Technology Centre, Griffith University, Nathan 4111, Brisbane, Australia 10 f Indiana Geological Survey, Indiana University, Bloomington, IN 47405-2208, USA 11 g Sandia National Laboratories, Q1 Livermore, CA 94551, USA 12 h Sandia National Laboratories, Albuquerque,

36

Cyclic process for producing methane from carbon monoxide with heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

1982-01-01T23:59:59.000Z

37

Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record  

NLE Websites -- All DOE Office Websites (Extended Search)

(CH4) » Ice Cores (CH4) » Ice Cores Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record from Law Dome, Antarctica Introduction This page provides an introduction and links to records of atmospheric methane (CH4) over the last 2000 years, emphasizing large data bases each representing currently active stations. Records in recent decades (time period depending on location) have been obtained from samples of ambient-air at remote locations, which represent global atmospheric conditions rather than influences of local sources. The longer (2000-year) record is from the Law Dome ice core in Antarctica. The ice-core record has been merged with modern annual data from Cape Grim, Tasmania to provide a 2000-year record ending with the most recent data. A spline function has

38

Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel  

Science Conference Proceedings (OSTI)

The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

Mavila Chathoth, Suresh [ORNL; He, Lilin [ORNL; Mamontov, Eugene [ORNL; Melnichenko, Yuri B [ORNL

2012-01-01T23:59:59.000Z

39

Low pressure storage of methane on interlayered clays for potential vehicular applications. [Comparison with activated carbon  

SciTech Connect

Inexpensive, high surface area sorbents were prepared by treating naturally occurring hectorite and bentonite clays with aluminum chlorohydroxide, zirconium chlorohydroxide, or silica-sol solutions. Data were obtained comparing these interlayered clays with activated carbons and zeolites as sorbents for the low pressure storage of methane onboard natural gas powered vehicles. Methane sorption at pressures up to 7 MPa (1000 psig) resembled a Langmuir-type curve with a saturation sorption equal to about six micromoles of methane per square meter of surface area. Even at low pressures, methane sorption capacity was largely determined by surface area. At 2.2 MPa (300 psig), the best interlayered clay sorbed less than one-third the methane sorbed by an equal volume of Witco grade 9JXC activated carbon. Both the activated carbons and interlayered clays exhibited excellent release-on-demand capability. Driving ranges were calculated for a 2500-lb automobile equipped with three, 35-liter fuel tanks filled with sorbent and pressurized to 3.6 MPa (500 psig) with methane. Enough methane was stored with the best interlayered clay to travel 41 km (25 mi). With 9JXC carbon, one could travel 82 km (51 mi). The same vehicle equipped with high pressure (2400 psig) fuel tanks having the same volume but containing no sorbent would have a 190 km (118 mi) range.

Innes, R.A.; Lutinski, F.E.; Occelli, M.L.; Kennedy, J.V.

1984-07-01T23:59:59.000Z

40

Extinguishment of methane diffusion flames by carbon dioxide ...  

Science Conference Proceedings (OSTI)

... These were determined from a flammability map presented by Coward and Jones for methane in air diluted with CO2 [41]. ... [15] KE Lange, AT Perka ...

2008-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

METHOD FOR PRODUCING ISOTOPIC METHANES FROM LITHIUM CARBONATE AND LITHIUM HYDRIDE  

DOE Patents (OSTI)

A process is descrlbed for the production of methane and for the production of methane containing isotopes of hydrogen and/or carbon. Finely divided lithium hydrlde and litldum carbonate reactants are mixed in intimate contact and subsequently compacted under pressures of from 5000 to 60,000 psl. The compacted lithium hydride and lithium carbenate reactunts are dispised in a gas collecting apparatus. Subsequently, the compact is heated to a temperature in the range 350 to 400 deg C whereupon a solid-solid reaction takes place and gaseous methane is evolved. The evolved methane is contaminated with gaseous hydrogen and a very small amount of CO/sub 2/; however, the desired methane product is separated from sald impurities by well known chemical processes, e.g., condensation in a cold trap. The product methane contalns isotopes of carbon and hydrogen, the Isotopic composition being determined by the carbon isotopes originally present In the lithium carbonate and the hydrogen isotopes originally present in the lithium hydride.

Frazer, J.W.

1959-10-27T23:59:59.000Z

42

Atmospheric Carbon Dioxide Record from Mauna Loa  

NLE Websites -- All DOE Office Websites (Extended Search)

SIO Air Sampling Network » Mauna Loa SIO Air Sampling Network » Mauna Loa Atmospheric Carbon Dioxide Record from Mauna Loa DOI: 10.3334/CDIAC/atg.035 graphics Graphics data Data Investigators R.F. Keeling, S.C. Piper, A.F. Bollenbacher and J.S. Walker Carbon Dioxide Research Group Scripps Institution of Oceanography University of California La Jolla, California 92093-0444, U.S.A. Period of Record 1958-2008 Methods Air samples at Mauna Loa are collected continuously from air intakes at the top of four 7-m towers and one 27-m tower. Four air samples are collected each hour for the purpose of determining the CO2 concentration. Determinations of CO2 are made by using a Siemens Ultramat 3 nondispersive infrared gas analyzer with a water vapor freeze trap. This analyzer registers the concentration of CO2 in a stream of air flowing at ~0.5

43

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Atmospheric Carbon Dioxide Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication titled Trends Online: A Compendium of Global Change Data. Most datasets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to atmospheric carbon dioxide data includes: Atmospheric Carbon Dioxide and Carbon Isotopes • Atmospheric carbon dioxide records from Mauna Loa, Hawaii • Monthly atmospheric CO2 mixing ratios and other data from the NOAA/CMDL continuous monitoring network • Data from the CSIRO GASLAB Flask Sampling Network • Atmospheric CO2 records from continuous measurements at Jubany Station, Antarctica and from 10 sites in the SIO air sampling network • Historical data from the extended Vostok ice core (2003) and the Siple Station ice core (1997) • Historical records from the Law Dome DE08, DE08-2, and DSS ice cores (1998) • AmeriFlux Carbon Dioxide, Water Vapor, and Energy Balance Measurements • Data from the Canadian Background Air Pollution Monitoring Network • Flask Samples from at U.S.S.R.-Operated Sites (1991) • The CISIRO (Australia) Monitoring Program from Aircraft for 1972-1981 • CO2 Concentrations in Surface Water and the Atmosphere during 1986-1989 NOAA/PMEL Cruises in the Pacific and Indian Oceans • Surface Water and Atmospheric CO2 and Nitrous Oxide Observations by Shipboard Automated Gas Chromatography: Results from Expeditions Between 1977 and 1990 (1992) • IPCC Working Group 1, 1994: Modeling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (1995). New datasets are added when available to the category of atmospheric carbon dioxide.

44

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 Assessing the Efficacy of the Aerobic Methanotropic Biofilter in Methane Hydrate Environments Last Reviewed 1/8/2013 DE-NT0005667 Goal The goal of this project is to assess the efficacy of aerobic methanotrophy in preventing the escape of methane from marine, hydrate-bearing reservoirs to the atmosphere and ultimately to better define the role of aerobic methanotrophy in the global carbon cycle. Graph overlayed on photo - Methane seeps with the resulting methane plume Methane seeps with the resulting methane plume, Geophysical Research Letters, November 2007 Performers University of California – Santa Barbara, Santa Barbara (UCSB), CA 93106 Background The global methane reservoir in the form of gas hydrate is estimated at 500–10,000 Gt (KVENVOLDEN, 1995; MILKOV, 2004). This pool of carbon

45

Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water  

SciTech Connect

The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (â??Methane in the Arctic Shelfâ?ť or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (â??metagenomesâ?ť). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in anaerobic methane oxidation.

David Kirchman

2011-12-31T23:59:59.000Z

46

Dissociation of carbon dioxide in atmospheric pressure microchannel plasma devices.  

E-Print Network (OSTI)

??Plasma discharge of carbon dioxide at atmospheric pressure was successfully demonstrated in microchannel plasma devices at breakdown voltages lower than 1 kVRMS. Optical emissions of… (more)

Oh, Taegon

2013-01-01T23:59:59.000Z

47

Atmospheric Carbon Dioxide Record from Flask Measurements at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Island Atmospheric Carbon Dioxide Record from Flask Measurements at Lampedusa Island graphics Graphics data Data Investigators Paolo Chamard, Luigi Ciattaglia, Alcide di Sarra,...

48

Graphics: Atmospheric Trace Gases in Whole-Air Samples  

NLE Websites -- All DOE Office Websites (Extended Search)

Graphics graphics Graphics: Atmospheric Trace Gases in Whole-Air Samples The following links are for methane, nonmethane hydrocarbons, alkyl nitrates, and chlorinated carbon...

49

Transient Response of a Global Ocean-Atmosphere Model to a Doubling of Atmospheric Carbon Dioxide  

Science Conference Proceedings (OSTI)

The transient response of climate to an instantaneous increase in the atmospheric concentration of carbon dioxide has been investigated by a general circulation model of the coupled ocean-atmosphere-land system with global geography and annual ...

Syukuro Manabe; Kirk Bryan; Michael J. Spelman

1990-05-01T23:59:59.000Z

50

Methane storage in multi-walled carbon nanotubes at the quantity of 80 g  

SciTech Connect

Methane storage in multi-walled carbon nanotubes (MWNTs) is studied at ambient temperature and pressures of 0-10.5 MPa, with a quantity of 80 g samples that were synthesized by nano-agglomerate fluidized-bed reactors (NAFBR). The volume of methane released by MWNTs was measured by volumetric method. We study the effects of purification and the pretreatments on methane storage. Results show that mixed acid treatment, alkali treatment, and mechanical shearing can obviously enhance gas uptake while high-temperature treatment can only slightly reduce it. For properly pretreated samples, an optimal 11.7% of mass storage capacity was achieved at room temperature and the pressure of 10.5 MPa, indicating that CNTs is a potential material for methane uptake.

Wu Yulong [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Wei Fei [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)], E-mail: wf-dce@tsinghua.edu.cn; Luo Guohua; Ning Guoqing [Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Yang Mingde [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

2008-06-03T23:59:59.000Z

51

Atmospheric Trace Gases, Carbon Isotopes, Radionuclides, and Aerosols: Isotopes in Greenhouse Gases Data from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

(Scroll down to find Isotopes in Greenhouse Gases, a subheading under the broader heading of Atmospheric Trace Gases, etc.) CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to isotopes in greenhouse gases includes: • Monthly atmospheric 13C/12C isotopic ratios for 10 SIO stations, (2005) (Trends Online) • Mixing ratios of CO, CO2, CH4, and isotope ratios of associated 13C, 18O, and 2H in air samples from Niwot Ridge, Colorado, and Monta±a de Oro, California, USA (2004) • Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) ?13C in CO2 from the CSIRO GASLAB Flask Sampling Network (Trends Online) • In Situ 13CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (2001) (Trends Online) • In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim, Tasmania, Australia: 1982-1993 (1995) • Carbon-13 Isotopic Abundance and concentration of Atmospheric Methane for Background Air in the Southern and Northern Hemispheres from 1978 to 1989 (1995) • Measurements of Atmospheric Methane and 13C/12C of Atmospheric Methane from Flask Air Samples (1999) • 14CO 2 Observations from Schauinsland, Germany (1997) (Trends Online) • Carbon-14 Measurements in Atmospheric CO 2 from Northern and Southern Hemisphere Sites, 1962-1992 (1996) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 (1998) (Specialized Interface)

52

Methane Decomposition: Production of Hydrogen and Carbon Filaments  

E-Print Network (OSTI)

) is an obvious source for hydrogen. Steam reforming of methane represents the current trend for hydrogen. The process required to eliminate CO from the hydrogen produced in the steam reformer is briefly described below. The steam reformer products containing B10% CO (depending on the feedstock and conditions

Goodman, Wayne

53

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy  

E-Print Network (OSTI)

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks projects aimed at using hydrogen as a clean fuel for automobiles and producing clean energy by designing achieve higher storage capacities for hydrogen, (1) (a) Leaf, D.; Verolmec, H. J. H.; Hunt, W. F., Jr. En

Yaghi, Omar M.

54

Process for producing methane from gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

Frost, Albert C. (Congers, NY)

1980-01-01T23:59:59.000Z

55

Synthesis of superlow friction carbon films from highly hydrogenated methane plasmas.  

DOE Green Energy (OSTI)

In this study, we investigated the friction and wear performance of diamondlike carbon films (DLC) derived from increasingly hydrogenated methane plasmas. The films were deposited on steel substrates by a plasma-enhanced chemical vapor deposition process at room temperature and the tribological tests were performed in dry nitrogen. Tests results revealed a close correlation between the hydrogen in source gas plasma and the friction and wear coefficients of the DLC films. Specifically, films grown in plasmas with higher hydrogen-to-carbon ratios had much lower friction coefficients and wear rates than did films derived from source gases with lower hydrogen-to-carbon ratios. The lowest friction coefficient (0.003) was achieved with a film derived from 25% methane--75% hydrogen, while a coefficient of 0.015 was found for films derived from pure methane. Similar correlations were observed for wear rates. Films derived from hydrogen-rich plasmas had the least wear, while films derived from pure methane suffered the highest wear. We used a combination of surface analytical methods to characterize the structure and chemistry of the DLC films and worn surfaces.

Erdemir, A.; Eryilmaz, O. L.; Nilufer, I. B.; Fenske, G. R.

2000-10-13T23:59:59.000Z

56

Polyaniline-Based Membranes for Separating Carbon Dioxide and Methane  

Berkeley Lab researchers have optimized polymer membrane technology to more efficiently remove carbon dioxide (CO2) from natural gas. The invention ...

57

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

Science Conference Proceedings (OSTI)

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

58

Methane (CH4)  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane (CH4) Gateway Pages to Methane Data Modern Records of Atmospheric Methane (CH4) and a 2000-year Ice-core Record from Law Dome, Antarctica 800,000-year Ice-Core Records of...

59

DETERMINATION OF CARBON IN ATMOSPHERIC AEROSOLS BY DEUTERON-INDUCED NUCLEAR REACTIONS  

E-Print Network (OSTI)

deuteron irradiation of an atmospheric aerosol sample.CARBON IN ATMOSPHERIC AEROSOLS BY DEUTERON-INDUCED NUCLEARCARBON IN ATMOSPHERIC AEROSOLS BY DEUTERON-INDUCED NUCLEAR

Clemenson, Mark

2013-01-01T23:59:59.000Z

60

Sequence Stratigraphy and Architecture of Lower Pennsylvanian Strata, Southern West Virginia: Potential for Carbon Sequestration and Enhanced Coal-Bed Methane Recovery in the Pocahontas Basin.  

E-Print Network (OSTI)

??Carbon dioxide sequestration in coal-bed methane fields has potential to add significant recoverable reserves and extend the production life of coal-bed methane fields while at… (more)

Rouse, William Allan

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Effects of carbon dioxide injection on the displacement of methane and carbonate dissolution in sandstone cores  

E-Print Network (OSTI)

Previous coreflood experiments show that CO2 sequestration in carbonate rocks is a win-win technology. Injecting CO2 into a depleted gas reservoir for storage also produces hitherto unrecoverable gas. This in turn helps to defray the cost of CO2 sequestration. This thesis reports the results from experiments conducted on a Berea sandstone core. The experiments include displacement experiments and unconfined compressive strength tests. The displacement experiments were conducted at cell pressures of 1500 psig and temperature of 60oC using a 1 foot long and 1 inch diameter Berea sandstone core. Pure CO2 and treated flue gas (99.433 % mole CO2) were injected into the Berea sandstone core initially saturated with methane at a pressure of 1500 psig and 800 psig respectively. Results from these experiments show that the dispersion coefficient for both pure CO2 and treated flue gas are relatively small ranging from 0.18-0.225 cm2/min and 0.28-0.30 cm2/min respectively. The recovery factor of methane at break-through is relatively high ranging from 71%-80% of original gas in place for pure CO2 and 90% to 92% OGIP for treated flue gas, the difference resulting from different cell pressures used. Therefore it would appear that, in practice injection of treated flue gas is a cheaper option compared to pure CO2 injection. For the unconfined compressive strength tests, corefloods were first conducted at high flowrates ranging from 5 ml/min to 20 ml/ min, pressures of 1700-1900 Psig and a temperature of 65oC. These conditions simulate injecting CO2 originating from an electric power generation plant into a depleted gas reservoir and model the near well bore situation. Results from these experiments show a 1% increase in porosity and changes in injectivity due to permeability impairment. The cores are then subjected to an unconfined compressive strength test. Results from these tests do not show any form of weakening of the rock due to CO2 injection.

Maduakor, Ekene Obioma

2006-08-01T23:59:59.000Z

62

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

63

Pore accessibility of methane and carbon dioxide in coals  

Science Conference Proceedings (OSTI)

Two Australian coals were heat-treated, and the accessibility of the pore space to CH{sub 4} and CO{sub 2} was investigated. Samples heat-treated at 573 and 673 K exhibit larger adsorption/desorption hysteresis and smaller surface areas (measured by CO{sub 2} adsorption at 273 K) than untreated samples. For samples heat-treated at 773 K, however, the surface area increased by 50% and the hysteresis was lower, compared to untreated samples. These results demonstrate that volatile hydrocarbons at pore mouths are the cause of energy barriers that prevent adsorbing molecules from passing through. A conceptual model is proposed to illustrate changes in activation energy at constricted pore mouths. Also, the results suggest that both adsorption and desorption isotherms should be measured to determine kinetically inaccessible pore spaces in order to correctly estimate CH{sub 4} recovery and CO{sub 2} storage capacity. The results have importance to the problem of estimating CH{sub 4} recovery and CO{sub 2} storage capacity for CO{sub 2} geosequestration as part of a CO{sub 2}-enhanced coal bed methane recovery operation. 28 refs., 11 figs., 5 tabs.

Jun-Seok Bae; Suresh K. Bhatia; Victor Rudolph; Paul Massarotto [University of Queensland, Qld. (Australia). Division of Chemical Engineering

2009-05-15T23:59:59.000Z

64

Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. Black-Right-Pointing-Pointer Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. Black-Right-Pointing-Pointer we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO{sub 2} equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortality burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m{sup 3}/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO{sub 2} equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.

Yuan Qi; Saunders, Samuel E. [Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, NE (United States); Bartelt-Hunt, Shannon L., E-mail: sbartelt2@unl.edu [Department of Civil Engineering, Peter Kiewit Institute, University of Nebraska-Lincoln, Omaha, NE (United States)

2012-05-15T23:59:59.000Z

65

Atmospheric Circulation Response to an Instantaneous Doubling of Carbon Dioxide. Part II: Atmospheric Transient Adjustment and Its Dynamics  

Science Conference Proceedings (OSTI)

The dynamical mechanisms underlying the transient circulation adjustment in the extratropical atmosphere after the instantaneous doubling of carbon dioxide are investigated using the National Center for Atmospheric Research Community Atmosphere ...

Yutian Wu; Richard Seager; Tiffany A. Shaw; Mingfang Ting; Naomi Naik

2013-02-01T23:59:59.000Z

66

A New Portable Instrument for In Situ Measurement of Atmospheric Methane Mole Fraction by Applying an Improved Tin Dioxide–Based Gas Sensor  

Science Conference Proceedings (OSTI)

A new portable instrument based on a tin dioxide natural gas leak detector was developed to monitor the atmospheric methane mixing ratio in areas lacking sufficient infrastructure to sustain a conventional measurement system, such as a large ...

Hiroshi Suto; Gen Inoue

2010-07-01T23:59:59.000Z

67

Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production  

Science Conference Proceedings (OSTI)

Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for CO{sub 2} sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed such simulations for a hypothetical pilot-scale project in representative coal seams. In these simulations we assume four horizontal production wells that form a square, that is, two wells drilled at right angles to each other forming two sides of a square, with another pair of horizontal wells similarly drilled to form the other two sides. Four shorter horizontal wells are drilled from a vertical well at the center of the square, forming two straight lines orthogonal to each other. By modifying coal properties, especially sorption rate, we have approximated different types of coals. By varying operational parameters, such as injector length, injection well pressure, time to injection, and production well pressure, we can evaluate different production schemes to determine an optimum for each coal type. Any optimization requires considering a tradeoff between total CO{sub 2} sequestered and the rate of methane production. Values of total CO{sub 2} sequestered and methane produced are presented for multiple coal types and different operational designs. 30 refs., 11 figs., 1 tab.

W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith [EG& G Technical Services, Morgantown, WV (United States). National Energy Technology Laboratory

2005-12-01T23:59:59.000Z

68

GRI methane chemistry program review meeting  

SciTech Connect

Methane is an important greenhouse gas which affects the atmosphere directly by the absorption and re-emission of infrared radiation as well as indirectly, through chemical interactions. Emissions of several important greenhouse gases (GHGS) including methane are increasing, mainly due to human activity. Higher concentrations of these gases in the atmosphere are projected to cause a decrease in the amount of infrared radiation escaping to space, and a subsequent warming of global climate. It is therefore vital to understand not only the causes of increased production of methane and other GHGS, but the effect of higher GHG concentrations on climate, and the possibilities for reductions of these emissions. In GRI-UIUC methane project, the role of methane in climate change and greenhouse gas abatement strategies is being studied using several distinct approaches. First, a detailed treatment of the mechanisms controlling each important methane source and sink, and hence the atmospheric concentration of methane, is being developed for use with the UIUC Integrated Science Assessment Model. The focus of this study is to resolve the factors which determine methane emissions and removal, including human population, land use, energy demand, global temperature, and regional concentrations of the hydroxyl radical, carbon monoxide, nitrous oxides, non-methane hydrocarbons, water vapor, tropospheric and stratospheric ozone.

Dignon, J.; Grant, K.; Grossman, A.; Wuebles, D.; Brasseur, G.; Madronich, S.; Huang, T.; Chang, J.; Lott, B.

1997-02-01T23:59:59.000Z

69

Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report  

Science Conference Proceedings (OSTI)

Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

2007-09-01T23:59:59.000Z

70

Phase relation between global temperature and atmospheric carbon dioxide  

E-Print Network (OSTI)

The primary ingredient of Anthropogenic Global Warming hypothesis is the assumption that atmospheric carbon dioxide variations are the cause for temperature variations. In this paper we discuss this assumption and analyze it on basis of bi-centenary measurements and using a relaxation model which causes phase shifts and delays.

Stallinga, Peter

2013-01-01T23:59:59.000Z

71

Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide  

Science Conference Proceedings (OSTI)

To speculate on the future change of climate over several centuries, three 500-year integrations of a coupled ocean-atmosphere model were performed. In addition to the standard integration in which the atmospheric concentration of carbon dioxide ...

Syukuro Manabe; Ronald J. Stouffer

1994-01-01T23:59:59.000Z

72

Production and Ebullition of Methane in a Shallow Eutrophic Lake (Lake Elsinore, CA)  

E-Print Network (OSTI)

monoxide, methane, carbon dioxide and total gaseous mercuryFluxes of methane and carbon dioxide from a small productiveebullition of methane and carbon dioxide from a eutrophied

Martinez, Denise Nicole

2012-01-01T23:59:59.000Z

73

Atmospheric Plasma Deposition of Diamond-like Carbon Coatings  

DOE Green Energy (OSTI)

DLC coatings in a low-pressure environment. For example, ion beam processes are widely utilized since the ion bombardment is thought to promote denser sp3-bonded carbon networks. Other processes, such as sputtering, are better suited for coating large parts [29,30,44]. However, the deposition of DLC in a vacuum system has several disadvantages, including high equipment cost and restrictions on the size and shape of material that may be treated. The deposition of DLC at atmospheric pressure has been demonstrated by several researchers. Izake, et al [53] and Novikov and Dymont [54] have demonstrated an electrochemical process that is carried out with organic compounds such as methanol and acetylene dissolved in ammonia. This process requires that the substrates be immersed in the liquid [53-54]. The atmospheric pressure deposition of DLC was also demonstrated by Kulik, et al. utilizing a plasma torch. However, this process requires operating temperatures in excess of 800 oC [55]. In this report, we investigate the deposition of diamond-like carbon films using a low temperature, atmospheric pressure plasma-enhanced chemical vapor deposition (PECVD) process. The films were characterized by solid-state carbon-13 nuclear magnetic resonance (13C NMR) and found to have a ratio of sp2 to sp3 carbon of 43 to 57%. The films were also tested for adhesion, coefficient of friction, and dielectric strength.

Ladwig, Angela

2008-01-23T23:59:59.000Z

74

Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, With Application to HD 209458b  

E-Print Network (OSTI)

Chemical equilibrium considerations suggest that, assuming solar elemental abundances, carbon on HD 209458b is sequestered primarily as carbon monoxide (CO) and methane (CH4). The relative mole fractions of CO(g) and CH4(g) in chemical equilibrium are expected to vary greatly according to variations in local temperature and pressure. We show, however, that in the p = 1--1000 mbar range, chemical equilibrium does not hold. To explore disequilibrium effects, we couple the chemical kinetics of CO and CH4 to a three-dimensional numerical model of HD 209458b's atmospheric circulation. These simulations show that vigorous dynamics caused by uneven heating of this tidally locked planet homogenize the CO and CH4 concentrations at p < 1 bar, even in the presence of lateral temperature variations of ~500--1000 K. In the 1--1000 mbar pressure range, we find that over 98% of the carbon is in CO. This is true even in cool regions where CH4 is much more stable thermodynamically. Our work shows furthermore that planets 300--500 K cooler than HD 209458b can also have abundant CO in their upper layers due to disequilibrium effects. We demonstrate several interesting observational consequences of these results.

Curtis S. Cooper; Adam P. Showman

2006-02-22T23:59:59.000Z

75

Discovery of carbon monoxide in the upper atmosphere of Pluto  

E-Print Network (OSTI)

Pluto's icy surface has changed colour and its atmosphere has swelled since its last closest approach to the Sun in 1989. The thin atmosphere is produced by evaporating ices, and so can also change rapidly, and in particular carbon monoxide should be present as an active thermostat. Here we report the discovery of gaseous CO via the 1.3mm wavelength J=2-1 rotational transition, and find that the line-centre signal is more than twice as bright as a tentative result obtained by Bockelee-Morvan et al. in 2000. Greater surface-ice evaporation over the last decade could explain this, or increased pressure could have caused the atmosphere to expand. The gas must be cold, with a narrow line-width consistent with temperatures around 50 K, as predicted for the very high atmosphere, and the line brightness implies that CO molecules extend up to approximately 3 Pluto radii above the surface. The upper atmosphere must have changed markedly over only a decade since the prior search, and more alterations could occur by the...

Greaves, J S; Friberg, P

2011-01-01T23:59:59.000Z

76

Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications  

SciTech Connect

Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for the design, implementation and performance of enhanced coalbed methane recovery and CO{sub 2} sequestration projects.

L. J. Pekot; S. R. Reeves

2002-03-31T23:59:59.000Z

77

Adsorption near ambient temperatures of methane, carbon tetrafluoride, and sulfur hexafluoride on commercial activated carbons  

SciTech Connect

The adsorption isotherms for CH{sub 4}, CF{sub 4}, and SF{sub 6} are measured at three or four temperatures near ambient on three commercial activated carbons. The data are reduced using a virial-type equation of adsorption. Using this equation, isosteric heats of adsorption are calculated. It is shown that this fundamental thermodynamic quantity provides a basis for differentiating between the carbons` micropore structures.

Jagiello, J.; Bandosz, T.J.; Putyera, K.; Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1995-11-01T23:59:59.000Z

78

Adsorption of methane, ethane, ethylene, and carbon dioxide on high silica pentasil zeolites and zeolite like materials using gas chromatography pulse technique  

SciTech Connect

Adsorption of methane, ethane, ethylene, and carbon dioxide in H-ZSM-5, Na-ZSM-5, H-ZSM-8, Na-ZSM-8, Silicalite, and ALPO-5 at 303-473 K has been investigated using a gas chromatography pulse technique. The zeolites have been compared for the heat of adsorption of the adsorbates at near zero adsorbate loading and also for the specific retention volume (or thermodynamic adsorption equilibrium constant) of ethane, ethylene, and carbon dioxide relative to that of methane. Among the zeolites, ALPO-5 has a high potential for the separation of methane, ethane, ethylene, and carbon dioxide from their mixture. 21 refs., 4 figs., 4 tabs.

Choudhary, V.R.; Mayadevi, S. (National Chemical Lab., Pune (India))

1993-10-01T23:59:59.000Z

79

The effects of atmospheric pressure plasma on the synthesis of carbon nanotubes  

Science Conference Proceedings (OSTI)

In this study, we investigated the effects of atmospheric plasma on the synthesis of carbon nanotubes (CNTs) forests. Tall and high CNTs forests have been successfully grown on a large scale using a newly developed system called atmospheric pressure ... Keywords: Atmospheric pressure, Carbon nanotubes, Mass production, Plasma effects, Plasma enhanced chemical vapor deposition

Seok Seung Shin; Bum Ho Choi; Young Mi Kim; Jong Ho Lee; Dong Chan Shin

2009-04-01T23:59:59.000Z

80

Large-Scale Changes of Soil Wetness Induced by an Increase in Atmospheric Carbon Dioxide  

Science Conference Proceedings (OSTI)

The change in soil wetness in response to an increase of atmospheric concentration of carbon dioxide is investigated by two versions of a climate model which consists of a general circulation model of the atmosphere and a static mixed layer ...

S. Manabe; R. T. Wetherald

1987-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Thermal dissociation behavior and dissociation enthalpies of methane-carbon dioxide mixed hydrates  

SciTech Connect

Replacement of methane with carbon dioxide in hydrate has been proposed as a strategy for geologic sequestration of carbon dioxide (CO{sub 2}) and/or production of methane (CH{sub 4}) from natural hydrate deposits. This replacement strategy requires a better understanding of the thermodynamic characteristics of binary mixtures of CH{sub 4} and CO{sub 2} hydrate (CH{sub 4}-CO{sub 2} mixed hydrates), as well as thermophysical property changes during gas exchange. This study explores the thermal dissociation behavior and dissociation enthalpies of CH{sub 4}-CO{sub 2} mixed hydrates. We prepared CH{sub 4}-CO{sub 2} mixed hydrate samples from two different, well-defined gas mixtures. During thermal dissociation of a CH{sub 4}-CO{sub 2} mixed hydrate sample, gas samples from the head space were periodically collected and analyzed using gas chromatography. The changes in CH{sub 4}-CO{sub 2} compositions in both the vapor phase and hydrate phase during dissociation were estimated based on the gas chromatography measurements. It was found that the CO{sub 2} concentration in the vapor phase became richer during dissociation because the initial hydrate composition contained relatively more CO{sub 2} than the vapor phase. The composition change in the vapor phase during hydrate dissociation affected the dissociation pressure and temperature; the richer CO{sub 2} in the vapor phase led to a lower dissociation pressure. Furthermore, the increase in CO{sub 2} concentration in the vapor phase enriched the hydrate in CO{sub 2}. The dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate was computed by fitting the Clausius-Clapeyron equation to the pressure-temperature (PT) trace of a dissociation test. It was observed that the dissociation enthalpy of the CH{sub 4}-CO{sub 2} mixed hydrate lays between the limiting values of pure CH{sub 4} hydrate and CO{sub 2} hydrate, increasing with the CO{sub 2} fraction in the hydrate phase.

Kwon, T.H.; Kneafsey, T.J.; Rees, E.V.L.

2011-02-15T23:59:59.000Z

82

Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties  

DOE R&D Accomplishments (OSTI)

The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

1987-12-00T23:59:59.000Z

83

Syngas formation in methane flames and carbon monoxide release during quenching  

SciTech Connect

Following a recent investigation into chemi-ionization and chemiluminescence during gradual aeration of small, laminar methane flames, we proposed that partial oxidation products, or syngas constituents, formed in the pre-flame zone well below the luminous region, were responsible for the observed effects. We therefore map temperature, CO, and H{sub 2} for geometries and conditions relevant to burners in domestic boiler systems, to assess the potential hazard of CO release into the ambient atmosphere, should any partial quenching occur. CO concentrations peaks of 5.5 volume % are recorded in the core surrounding the axis. Appreciable CO concentrations are also found in the absence of added air. Experiments on various burner port geometries and temperatures suggest that this is not due to air entrainment at the flame base but to diffusion from zones closer to the flame. Next, quenching surfaces such as grids, perforated plates and flame trap matrices of different metals are progressively lowered into the flame. To avoid flow line distortion, suction aspirates the quenched products. The highest emission rate occurs with the quenching plane some 4 mm above the burner; further lowering of the quenching surface causes flame extinction. The maximum CO release is close to converting 10% of the CH{sub 4} feed, with some variation with quenching material. Expressing this potential release in terms of, e.g. boiler power, predicts a potentially serious hazard. Results of numerical simulations adequately parallel the experimental sampling profiles and provide insights into local concentrations, as well as the spatially resolved CO flux, which is calculated for a parabolic inlet flow profile. Integration across the stream implies, on the basis of the simulation, a possible tripling of the experimental CO release, were quenching simply to release the local gas composition into the atmosphere. Comparison with experiment suggests some chemical interaction with the quenching surface. (author)

Weinberg, Felix; Carleton, Fred; Houdmont, Raphael [Department of Chemical Engineering, Imperial College, London (United Kingdom); Dunn-Rankin, Derek; Karnani, Sunny [Department of Mechanical and Aerospace Engineering, University of California, Irvine (United States)

2011-02-15T23:59:59.000Z

84

Carbon capture and storage in geologic formations has been proposed as a global warming mitigation strategy  

E-Print Network (OSTI)

Abstract Carbon capture and storage in geologic formations has been proposed as a global warming mitigation strategy that can contribute to stabilize the atmospheric concentration of carbon dioxide to maintain adsorbed methane in the coalbed formation. But now carbon dioxide will replace the methane

Mohaghegh, Shahab

85

Carbon nanostructures production by AC arc discharge plasma process at atmospheric pressure  

Science Conference Proceedings (OSTI)

Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out ...

Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

2011-01-01T23:59:59.000Z

86

Atmospheric Radiation Measurement Program facilities newsletter, July 2001.  

Science Conference Proceedings (OSTI)

Global Warming and Methane--Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as ''greenhouse gases.'' These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro-carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a greenhouse enclosure, trapping infrared radiation inside and warming the space. One of the more important greenhouse gases is the naturally occurring hydrocarbon methane. Methane, a primary component of natural gas, is the second most important contributor to the greenhouse effect (after carbon dioxide). Natural sources of methane include wetlands, fossil sources, termites, oceans, fresh-waters, and non-wetland soils. Methane is also produced by human-related (or anthropogenic) activities such as fossil fuel production, coal mining, rice cultivation, biomass burning, water treatment facilities, waste management operations and landfills, and domesticated livestock operations (Figure 1). These anthropogenic activities account for approximately 70% of the methane emissions to the atmosphere. Methane is removed naturally from the atmosphere in three ways. These methods, commonly referred to as sinks, are oxidation by chemical reaction with tropospheric hydroxyl ion, oxidation within the stratosphere, and microbial uptake by soils. In spite of their important role in removing excess methane from the atmosphere, the sinks cannot keep up with global methane production. Methane concentrations in the atmosphere have increased by 145% since 1800. Increases in atmospheric methane roughly parallel world population growth, pointing to anthropogenic sources as the cause (Figure 2). Increases in the methane concentration reduce Earth's natural cooling efficiency by trapping more of the outgoing terrestrial infrared radiation, increasing the near-surface temperature.

Holdridge, D. J.

2001-07-23T23:59:59.000Z

87

Plasma—Methane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

88

Hypothesis for increased atmospheric methane input from hydrocarbon seeps on exposed continental shelves during glacial low sea level  

E-Print Network (OSTI)

.- 2 Sept.1998 '" HYDROGEN PRODUCTION FROM COAL AND COAL BED METHANE, USING BYPRODUCT CO2 FOR ENHANCED METHANE RECOVERY AND SEQUESTERING THE CO2 IN mE COAL BED RH Williams, Center for Energy and Environmental that are poorly endowed with conventional hydrocarbon resources but coal- and coal-bed-methane-rich would

Luyendyk, Bruce

89

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

90

Simulation of binary mixture adsorption of methane and CO{sub 2} at supercritical conditions in carbons  

Science Conference Proceedings (OSTI)

Knowledge of the adsorption behavior of coal-bed gases, mainly under supercritical high-pressure conditions, is important for optimum design of production processes to recover coal-bed methane and to sequester CO{sub 2} in coal-beds. Here, we compare the two most rigorous adsorption methods based on the statistical mechanics approach, which are Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) simulation, for single and binary mixtures of methane and carbon dioxide in slit-shaped pores ranging from around 0.75 to 7.5 nm in width, for pressure up to 300 bar, and temperature range of 308-348 K, as a preliminary study for the CO{sub 2} sequestration problem. For single component adsorption, the isotherms generated by DFT, especially for CO{sub 2}, do not match well with GCMC calculation, and simulation is subsequently pursued here to investigate the binary mixture adsorption. For binary adsorption, upon increase of pressure, the selectivity of carbon dioxide relative to methane in a binary mixture initially increases to a maximum value, and subsequently drops before attaining a constant value at pressures higher than 300 bar. While the selectivity increases with temperature in the initial pressure-sensitive region, the constant high-pressure value is also temperature independent. Optimum selectivity at any temperature is attained at a pressure of 90-100 bar at low bulk mole fraction of CO{sub 2}, decreasing to approximately 35 bar at high bulk mole fractions.

Kurniawan, Y.; Bhatia, S.K.; Rudolph, V. [University of Queensland, Brisbane, Qld. (Australia). Division of Chemical Engineering

2006-03-15T23:59:59.000Z

91

Climate Impacts of Atmospheric Sulfate and Black Carbon Aerosols  

SciTech Connect

Although the global average surface temperature has increased by about 0.6°C during the last century (IPCC, 2001), some regions such as East Asia, Eastern North America, and Western Europe have cooled rather than warmed during the past decades (Jones, 1988; Qian and Giorgi, 2000). Coherent changes at the regional scale may reflect responses to different climate forcings that need to be understood in order to predict the future net climate response at the global and regional scales under different emission scenarios. Atmospheric aerosols play an important role in global climate change (IPCC 2001). They perturb the earth’s radiative budget directly by scattering and absorbing solar and long wave radiation, and indirectly by changing cloud reflectivity, lifetime, and precipitation efficiency via their role as cloud condensation nuclei. Because aerosols have much shorter lifetime (days to weeks) compared to most greenhouse gases, they tend to concentrate near their emission sources and distribute very unevenly both in time and space. This non-uniform distribution of aerosols, in conjunction with the greenhouse effect, may lead to differential net heating in some areas and net cooling in others (Penner et al. 1994). Sulfate aerosols come mainly from the oxidation of sulfur dioxide (SO2) emitted from fossil fuel burning. Black carbon aerosols are directly emitted during incomplete combustion of biomass, coal, and diesel derived sources. Due to the different optical properties, sulfate and black carbon affect climate in different ways. Because of the massive emissions of sulfur and black carbon that accompany the rapid economic expansions in East Asia, understanding the effects of aerosols on climate is particularly important scientifically and politically in order to develop adaptation and mitigation strategies.

Qian, Yun; Song, Qingyuan; Menon, Surabi; Yu, Shaocai; Liu, Shaw C.; Shi, Guangyu; Leung, Lai R.; Luo, Yunfeng

2008-09-19T23:59:59.000Z

92

Remote sounding of the mixing ratio of carbon dioxide in the atmosphere from a satellite  

SciTech Connect

Carbon dioxide is the most important atmospheric constituent contributing to the greenhouse effect in the earth-atmosphere system. Here, a method is presented for the remote sounding of the mixing ratio of carbon dioxide in the atmosphere from a satellite, including the inversion method and preliminary calculation results. The results indicate that the measurement accuracy of the mixing ratio of carbon dioxide in 0.25 ppm, calculated according to volume, in ground field of view of 1,127 x 1,162 km[sup 2] for an instrument such as the HIRS-2 on the US National Oceanographic and Atmospheric Administration meteorological satellite.

Zhaoxian Zhang (Shangai Inst. of Technical Physics (China))

1993-03-01T23:59:59.000Z

93

A conduit dilation model of methane venting from lake sediments  

E-Print Network (OSTI)

Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the ...

Ruppel, Carolyn

94

Formation and emission of methane in rice soils: Experimental determination and modeling analysis. Final report  

DOE Green Energy (OSTI)

Rice paddy soils have been identified as a major source of methane emissions contributing to the observed atmospheric increase in methane. This points to the need for a method of quantifying and predicting methane emissions for the widely varying conditions used in rice agriculture throughout the world. In the present work, a mathematical model for estimating the emission of methane from rice paddy soils is developed and refined. Kinetic parameters for methanogenesis in a Louisiana rice soil are determined from laboratory data on methane production from acetic acid substrate. Use of a stirred reactor allows simultaneous measurement of acetate consumption and methane production while minimizing mass transfer limitations. An existing model for rice plant growth is utilized to provide data on the availability of root exudates as a carbon source for the methanogens. The final methane model includes the kinetic parameters, plant data, and estimated transport parameters. With adjustments in these parameters, it provides an acceptable match to field data.

Law, V.J.; Bhattacharya, S.K.

1993-08-31T23:59:59.000Z

95

Methane cracking over a bituminous coal char  

Science Conference Proceedings (OSTI)

Methane cracking over a bed of Chinese bituminous coal char was studied using a fixed-bed reactor at atmospheric pressure and temperatures between 1073 and 1223 K. Methane conversion over the fresh char increased with increasing temperature to 90% at 1223 K. Hydrogen was the only gas-phase product that was detected during the experimentation. The char was shown to exert a significant catalytic effect on methane cracking by comparing results from experiments with the raw char and demineralised char as well as from blank experiments using quartz. It was further shown that the ash was not the source of the catalytic effect of the char. However, both methane conversion and hydrogen yield decreased with increasing reaction time, irrespective of other experimental conditions, indicating that the char rapidly became deactivated following the exposure to methane. It was speculated that the deposition of carbon from methane cracking was responsible for this deactivation, which is supported by scanning electron microscopy (SEM) image analysis. It was demonstrated that the catalytic activity of the deactivated char can be partially recovered by burning off the carbon deposits with an oxidizing gas mixture containing 0.46% oxygen. 10 refs., 11 figs., 1 tab.

Zhi-qiang Sun; Jin-hu Wu; Mohammad Haghighi; John Bromly; Esther Ng; Hui Ling Wee; Yang Wang; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2007-06-15T23:59:59.000Z

96

Methane emissions from natural wetlands  

SciTech Connect

Analyses of air trapped in polar ice cores in conjunction with recent atmospheric measurements, indicate that the atmospheric methane concentration increased by about 250% during the past two or three hundred years (Rasmussen and Khalil, 1984). Because methane is a potent ``greenhouse`` gas, the increasing concentrations are expected to contribute to global warning (Dickinson and Cicerone, 1986). The timing of the methane increase suggests that it is related to the rapid growth of the human population and associated industrialization and agricultural development. The specific causes of the atmospheric methane concentration increase are not well known, but may relate to either increases in methane sources, decreases in the strengths of the sinks, or both.

Meyer, J.L. [Georgia Univ., Athens, GA (United States); Burke, R.A. Jr. [Environmental Protection Agency, Athens, GA (United States). Environmental Research Lab.

1993-09-01T23:59:59.000Z

97

Methane Emissions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Carbon Dioxide Equivalent; Estimated 2003 ... for about 8.7 percent of total U.S. greenhouse gas emissions when weighted by methane’s global warming potential factor.

98

THE REACTIONS OF ENERGETIC CARBON ATOMS IN METHANE OXYGEN AND PHASE DEPENDENCE RADIATION DAMAGE EFFECTS  

DOE Green Energy (OSTI)

Studies were made on the reactions of C/sup 11/ in methane containing oxygen. The nuclear reactions C/sup 12/(n,2n) and C/sup 12/(p,pn) were used to produce C/sup 11/. Concomitant radiolysis of the methane during C/sup 11/ production clearly affected product distribution. C/sup 11/-labeled ethane and propane decreased while methane, ethylene, and acetylene decreased. It was assumed that reduction by hydrogen atoms was probably occurring in the unscavenged system. The effects of oxygen and of phase are discussed. In all cases, in duplicate systems, the product distributions resulting from inducing the C/sup 12/(p,pn) reaction were the same within experimental error as those resulting from the C/sup 12/(n,2n) reaction. (P.C.H.)

Stoecklin, G.; Stangl, H.; Christman, D.R.; Cumming, J.B.; Wolf, A.P.

1963-08-01T23:59:59.000Z

99

Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality  

Science Conference Proceedings (OSTI)

Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

Torbert, H.A. [Blackland, Soil and Water Research Lab., Temple, TX (United States); Prior, S.A.; Rogers, H.H. [National Soil Dynamics Lab., Auburn, AL (United States); Schlesinger, W.H. [Duke Univ., Durham, NC (United States); Mullins, G.L.; Runion, G.B. [Auburn Univ., AL (United States)

1996-07-01T23:59:59.000Z

100

Experimental study of the reforming of methane with carbon dioxide over coal char - article no. A16  

Science Conference Proceedings (OSTI)

As one of the fundamental issues of the new poly-generation system on the basis of gasification gas and coke oven gas, carbon dioxide reforming of methane experiments have been performed over coal chars derived from different parent coals in a lab-scale fixed-bed reactor (internal diameter 12 mm, length 700 mm). The char derived from TongChuan coal exhibited higher activity than other samples employed under the same conditions. After the reforming reaction, the char samples were covered with different amounts of carbon deposition which resulted in the surface areas decrease. As the flow rate of feed gas increased from 200 ml/min to 600 ml/min over the Xuzhou char sample at 1050{sup o}C, the conversion of methane decreased from 52.7% to 17.5% and the H{sub 2}/CO dropped from 0.75 to 0.55. While maintaining the flow rate of CO{sub 2} at 20ml/min at 1050{sup o}C, the mole ratio of reactants CH{sub 4}/CO{sub 2} was varied from 1 to 1.75 which led to the H{sub 2}/CO ratio increase from 0.75 to 1.2.

Li, Y.B.; Xiao, R.; Jin, B.S.; Zhang, H.Y.

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Enhanced Coalbed Methane Recovery Through Sequestration of Carbon Dioxide: Potential for a Market-Based Environmental Solution in the Black Warrior Basin of Alabama  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalbed Methane Recovery Through Sequestration of Coalbed Methane Recovery Through Sequestration of Carbon Dioxide: Potential for a Market-Based Environmental Solution in the Black Warrior Basin of Alabama Jack C. Pashin (jpashin@gsa.state.al.us; 205-349-2852) Geological Survey of Alabama P.O. Box 869999 Tuscaloosa, AL 35486 Richard H. Groshong, Jr. (rgroshon@wgs.geo.ua.edu; 205-348-1882) Deparment of Geology University of Alabama Tuscaloosa, AL 35487 Richard E. Carroll (rcarroll@gsa.state.al.us; 205-349-2852) Geological Survey of Alabama P.O. Box 869999 Tuscaloosa, AL 35486 Abstract Sequestration of CO 2 in coal is a market-based environmental solution with potential to reduce greenhouse gas emissions while increasing coalbed methane recovery. Producing coalbed methane through injection of CO 2 is also more efficient than current techniques requiring

102

Might Carbon-Atmosphere White Dwarfs Harbour a New Type of Pulsating Star?  

E-Print Network (OSTI)

In the light of the recent and unexpected discovery of a brand new type of white dwarfs, those with carbon-dominated atmospheres, we examine the asteroseismological potential of such stars. The motivation behind this is based on the observation that past models of carbon-atmosphere white dwarfs have partially ionized outer layers that bear strong resemblance with those responsible for mode excitation in models of pulsating DB (helium-atmosphere) and pulsating DA (hydrogen-atmosphere) white dwarfs. Our exciting main result is that, given the right location in parameter space, some carbon-atmosphere white dwarfs are predicted to show pulsational instability against gravity modes. We are eagerly waiting the results of observational searches for luminosity variations in these stars.

G. Fontaine; P. Brassard; P. Dufour

2008-03-14T23:59:59.000Z

103

TRENDS Online - Carbon Flux to the Atmosphere from Land-Use Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Trends graphic Carbon Flux to the Atmosphere from Land-Use Changes 1850-2005 Richard A. Houghton The Woods Hole Research Center, 149 Woods Hole Road, Falmouth, Massachusetts 02540,...

104

Development of an Implementation Plan for Atmospheric Carbon Monitoring in California  

E-Print Network (OSTI)

carbon dioxide on very tall towers: results of the NOAA/CMDLDioxide on a Very Tall Tower. Tellus Series B-Chemical &vapor measurements from a tall tower. JGR-Atmospheres 109:

Fischer, Marc L.; Riley, William J.; Tonse, Shaheen

2004-01-01T23:59:59.000Z

105

Responses of primary production and total carbon storage to changes in climate and atmospheric CO? concentration  

E-Print Network (OSTI)

The authors used the terrestrial ecosystem model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total carbon storage to changes in climate and atmospheric CO2, driven by the ...

Xiao, Xiangming.; Kicklighter, David W.; Melillo, Jerry M.; McGuire, A. David.; Stone, Peter H.; Sokolov, Andrei P.

106

Contrasting Regional Responses to Increasing Leaf-Level Atmospheric Carbon Dioxide over Australia  

Science Conference Proceedings (OSTI)

Using a coupled atmosphere–land surface model, simulations were conducted to characterize the regional climate changes that result from the response of stomates to increases in leaf-level carbon dioxide (CO2) under differing conditions of ...

Faye T. Cruz; Andrew J. Pitman; John L. McGregor; Jason P. Evans

2010-04-01T23:59:59.000Z

107

Diffusion and adsorption of methane confined in nanoporous carbon aerogel: a combined quasi-elastic and small-angle neutron scattering study  

SciTech Connect

The diffusion of methane confined in nano-porous carbon aerogel with the average pore size 48 {angstrom} and porosity 60% was investigated as a function of pressure at T = 298 K using quasi-elastic neutron scattering (QENS). The diffusivity of methane shows a clear effect of confinement: it is about two orders of magnitude lower than in bulk at the same thermodynamic conditions and is close to the diffusivity of liquid methane at 100 K (i.e. {approx} 90 K below the liquid-gas critical temperature T{sub C} {approx} 191 K). The diffusion coefficient (D) of methane initially increases with pressure by a factor of {approx}2.5 from 3.47 {+-} 0.41 x 10{sup -10} m{sup 2} s{sup -1} at 0.482 MPa to D = 8.55 {+-} 0.33 x 10{sup -10} m{sup 2} s{sup -1} at 2.75 MPa and starts to decrease at higher pressures. An explanation of the observed non-monotonic behavior of the diffusivity in the confined fluid is based on the results of small-angle neutron scattering experiments of the phase behavior of methane in a similar carbon aerogel sample. The initial increase of the diffusion coefficient with pressure is explained as due to progressive filling of bigger pores in which molecular mobility in the internal pore volume is less affected by the sluggish liquid-like molecular mobility in the adsorbed phase. Subsequent decrease of D, is associated with the effect of intermolecular collisions, which result in a lower total molecular mobility with pressure, as in the bulk state. The results are compared with the available QENS data on the methane diffusivity in zeolites, metal organic frameworks, and porous silica as well as with the molecular dynamics simulations of methane in nano-porous carbons and silica zeolites.

Mavila Chathoth, Suresh [ORNL; Mamontov, Eugene [ORNL; Melnichenko, Yuri B [ORNL; Zamponi, Michaela M [ORNL

2010-01-01T23:59:59.000Z

108

Atmospheric Radon Measurements in the Arctic; Fronts, Seasonal Observations, and Transport of Continental Air to Polar Regions  

Science Conference Proceedings (OSTI)

Radon was determined in the atmosphere over the Arctic Ocean in flights of a United States Naval Research Laboratory aircraft in April and May 1974. Simultaneously collected air samples were analyzed for carbon monoxide, methane, ...

P. E. Wilkniss; R. E. Larson

1984-08-01T23:59:59.000Z

109

Microbial methane formation from hard coal and timber in an abandoned coal mine  

Science Conference Proceedings (OSTI)

About 7% of the global annual methane emissions originate from coal mining. Also, mine gas has come into focus of the power industry and is being used increasingly for heat and power production. In many coal deposits worldwide, stable carbon and hydrogen isotopic signatures of methane indicate a mixed thermogenic and biogenic origin. In this study, we have measured in an abandoned coal mine methane fluxes and isotopic signatures of methane and carbon dioxide, and collected samples for microbiological and phylogenetic investigations. Mine timber and hard coal showed an in-situ production of methane with isotopic signatures similar to those of the methane in the mine atmosphere. Enrichment cultures amended with mine timber or hard coal as sole carbon sources formed methane over a period of nine months. Predominantly, acetoclastic methanogenesis was stimulated in enrichments containing acetate or hydrogen/carbon dioxide. Molecular techniques revealed that the archaeal community in enrichment cultures and unamended samples was dominated by members of the Methanosarcinales. The combined geochemical and microbiological investigations identify microbial methanogenesis as a recent source of methane in abandoned coal mines.

Kruger, M.; Beckmann, S.; Engelen, B.; Thielemann, T.; Cramer, B.; Schippers, A.; Cypionka, H. [Federal Institute for Geoscience and Natural Resources BGR, Hannover (Germany)

2008-07-01T23:59:59.000Z

110

Modern Records of Atmospheric Carbon Dioxide (CO2) and a 2000-year Ice-core  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) » Ice Cores Carbon Dioxide (CO2) » Ice Cores Modern Records of Atmospheric Carbon Dioxide (CO2) and a 2000-year Ice-core Record from Law Dome, Antarctica Introduction This page provides an introduction and links to records of atmospheric carbon dioxide (CO2) concentrations over the last 2000 years, emphasizing large data bases each representing many currently active stations. Records since about 1960 (depending on location) have been obtained from samples of ambient-air at remote stations, which represent changing global atmospheric concentrations rather than influences of local sources. The longer (2000-year) record is from the Law Dome ice core in Antarctica. The ice-core record has been merged with modern annual data from Cape Grim, Tasmania to provide a 2000-year record ending with the most recent data. A

111

Short-range atmospheric dispersion of carbon dioxide  

E-Print Network (OSTI)

important. We model dense gas dispersion using the steady-eld data to analyze dense gas dispersion mod- eling issues.element modeling of gas dispersion in the atmosphere. In:

Cortis, A.

2010-01-01T23:59:59.000Z

112

Adsorption of Pure Methane, Nitrogen, and Carbon Dioxide and Their Mixtures on San Juan Basin Coal  

SciTech Connect

The major objectives of this project were to (a) measure the adsorption behavior of pure methane, nitrogen, CO{sub 2} and their binary and ternary mixtures on wet Tiffany coal at 130 F and pressures to 2000 psia; (b) correlate the equilibrium adsorption isotherm data using the extended Langmuir model, the Langmuir model, the loading ratio correlation and the Zhou-Gasem-Robinson equation of state; and (c) establish sorption-time estimates for the pure components. Specific accomplishments are summarized below regarding the complementary tasks involving experimental work and data correlation. Representative coal samples from BP Amoco Tiffany Injection Wells No.1 and No.10 were prepared, as requested. The equilibrium moisture content and particle size distribution of each coal sample were determined. Compositional coal analyses for both samples were performed by Huffman Laboratories, Inc. Pure gas adsorption for methane on wet Tiffany coal samples from Injection Wells No.1 and No.10 was measured separately at 130 F (327.6 K) and pressures to 2000 psia (13.7 MPa). The average expected uncertainty in these data is about 3% (9 SCF/ton). Our measurements indicate that the adsorption isotherms of the two coal samples exhibit similar Langmuir-type behavior. For the samples from the two wells, a maximum variation of about 5% in the amount adsorbed is observed at 2000 psia. Gas adsorption isotherms were measured for pure methane, nitrogen and CO{sub 2} on a wet, mixed Tiffany coal sample. The coal sample was an equal-mass mixture of coals from Well No.1 and Well No.10. The adsorption measurements were conducted at 130 F at pressures to 2000 psia. The adsorption isotherms have average expected experimental uncertainties of 3% (9 SCF/ton), 6% (8 SCF/ton), and 7% (62 SCF/ton) for methane, nitrogen, and CO{sub 2}, respectively. Adsorption isotherms were measured for methane/nitrogen, methane/CO{sub 2} and nitrogen/CO{sub 2} binary mixtures on wet, mixed Tiffany coal at 130 F and pressures to 2000 psia. These measurements were conducted for a single molar feed composition for each mixture. The expected uncertainties in the amount adsorbed for these binary mixtures vary with pressure and composition. In general, average uncertainties are about 5% (19 SCF/ton) for the total adsorption; however, the expected uncertainties in the amount of individual-component adsorption are significantly higher for the less-adsorbed gas at lower molar feed concentrations (e.g., nitrogen in the 20/80 nitrogen/CO{sub 2} system). Adsorption isotherms were measured for a single methane/nitrogen/CO{sub 2} ternary mixture on wet, mixed Tiffany coal at 130 F and pressures to 2000 psia. The nominal molar feed composition was 10/40/50. The average expected uncertainty for the total adsorption and CO{sub 2} adsorption is about 5% (16 SCF/ton). However, the low adsorption of nitrogen and methane in this ternary yield average experimental uncertainties of 14% (9 SCF/ton) and 27% (9 SCF/ton), respectively. Limited binary and ternary gas-phase compressibility factor measurements at 130 F and pressures to 2000 psia involving methane, nitrogen, and CO{sub 2} were conducted to facilitate reduction of our ternary adsorption data. These newly acquired data (and available data from the literature) were used to improve the Benedict-Webb-Rubin (BWR) equation-of-state (EOS) compressibility factor predictions, which are used in material balance calculations for the adsorption measurements. In general, the optimized BWR EOS represents the experimental compressibility factor data within 0.5% AAD. The Langmuir/loading ratio correlation (LRC) and the Zhou-Gasem-Robinson (ZGR) two-dimensional EOS were used to analyze the newly acquired adsorption data. Model parameters were obtained for the systems studied. The LRC and ZGR EOS were used to correlate the adsorption data for methane, nitrogen, and CO{sub 2} and their mixtures on wet Tiffany coal. The model parameters were determined by minimizing the sum of squares of weighted errors in the calculated amounts of gas adsorbed. The results

K. A. M. Gasem; R. L. Robinson; S. R. Reeves

2002-03-01T23:59:59.000Z

113

Methane Main  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 Report of the Methane Hydrate Advisory Committee on Methane Hydrate Issues and Opportunities Including Assessment of Uncertainty of the Impact of Methane Hydrate on Global Climate Change December 2002 i CONTENTS What is Methane Hydrate? ............................................................................................. 1 Why Methane Hydrate Matters for the United States? ..................................................... 4 Resource Potential of Methane Hydrate .......................................................................... 5 Implications of Methane Hydrate on Safety and Seafloor Stability

114

Evaluating the Carbon Cycle of a Coupled Atmosphere-Biosphere Model  

SciTech Connect

We investigate how well a coupled biosphere-atmosphere model, CCM3-IBIS, can simulate the functioning of the terrestrial biosphere and the carbon cycling through it. The simulated climate is compared to observations, while the vegetation cover and the carbon cycle are compared to an offline version of the biosphere model IBIS forced with observed climatic variables. The simulated climate presents some local biases that strongly affect the vegetation (e.g., a misrepresentation of the African monsoon). Compared to the offline model, the coupled model simulates well the globally averaged carbon fluxes and vegetation pools. The zonal mean carbon fluxes and the zonal mean seasonal cycle are also well represented except between 0{sup o} and 20{sup o}N due to the misrepresentation of the African monsoon. These results suggest that, despite regional biases in climate and ecosystem simulations, this coupled atmosphere-biosphere model can be used to explore geographic and temporal variations in the global carbon cycle.

Delire, C; Foley, J A; Thompson, S

2002-08-21T23:59:59.000Z

115

Photochemistry and Transport of Carbon Monoxide in the Middle Atmosphere  

Science Conference Proceedings (OSTI)

Two-dimensional model calculations of the photochemistry and transport of carbon monoxide in the stratosphere, mesosphere, and lower thermosphere are presented. Results are compared to available observations at midlatitudes, where both ...

S. Solomon; R. R. Garcia; J. J. Olivero; R. M. Bevilacqua; P. R. Schwartz; R. T. Clancy; D. O. Muhleman

1985-05-01T23:59:59.000Z

116

Impact of emissions, chemistry, and climate on atmospheric carbon monoxide : 100-year predictions from a global chemistry-climate model  

E-Print Network (OSTI)

The possible trends for atmospheric carbon monoxide in the next 100 yr have been illustrated using a coupled atmospheric chemistry and climate model driven by emissions predicted by a global economic development model. ...

Wang, Chien.; Prinn, Ronald G.

117

Why sequence functional metagenomics of methane and nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

functional metagenomics of methane and nitrogen cycles in freshwater lakes? Methane is a more potent greenhouse gas than carbon dioxide, but it is also a potential source of...

118

Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering  

SciTech Connect

Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD{sub 4}, in four bituminous coals in the range of pore sizes between {approx}10 {angstrom} and {approx}5 {micro}m. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD{sub 4}, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD{sub 4} varied from {approx}13 to {approx}36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO{sub 2} and CD{sub 4} were conducted as a function of the pressure in the range of 1-400 bar. The neutron scattering intensity from small pores with radii less than 35 {angstrom} in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO{sub 2} and supercritical methane in small pores.

He, Lilin [ORNL; Melnichenko, Yuri B [ORNL; Mastalerz, Maria [Indiana Geological Survey; Sakurovs, Richard [ORNL; Radlinski, Andrzej Pawell [ORNL; Blach, Tomasz P [ORNL

2012-01-01T23:59:59.000Z

119

Methane release from igneous intrusion of coal during Late Permian extinction events  

SciTech Connect

Unusually large and locally variable carbon isotope excursions coincident with mass extinctions at the end of the Permian Period (253 Ma) and Guadalupian Epoch (260 Ma) can be attributed to methane outbursts to the atmosphere. Methane has isotopic values {delta}{sup 13}C low enough to reduce to feasible amounts the carbon required for isotopic mass balance. The duration of the carbon isotopic excursions and inferred methane releases are here constrained to < 10,000 yr by counting annual varves in lake deposits and by estimating peat accumulation rates. On paleogeographic maps, the most marked carbon isotope excursions form linear arrays back to plausible methane sources: end-Permian Siberian Traps and Longwood-Bluff intrusions of New Zealand and end-Guadalupian Emeishan Traps of China. Intrusion of coal seams by feeder dikes to flood basalts could create successive thermogenic methane outbursts of the observed timing and magnitude, but these are unreasonably short times for replenishment of marine or permafrost sources of methane. Methane released by fracturing and heating of coal during intrusion of large igneous provinces may have been a planetary hazard comparable with bolide impact.

Retallack, G.J.; Jahren, A.H. [University of Oregon, Eugene, OR (USA). Dept. of Geological Science

2008-01-15T23:59:59.000Z

120

Methane Emissions from Rice Fields - Final Report  

SciTech Connect

Methane (Ch4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning.

Khalil, M. Aslam; Rasmussen,Reinhold A.

2002-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Compressed Air Sample Technology for Isotopic Analysis of Atmospheric Carbon Monoxide  

Science Conference Proceedings (OSTI)

A methodology for the collection of large (1000 L) air samples for isotopic analysis of atmospheric carbon monoxide is presented. A low-background, high-pressure, high-flow sampling system with a residual background of less than 2 ppbv CO has ...

John E. Mak; Carl A. M. Brenninkmeijer

1994-04-01T23:59:59.000Z

122

Utilization of fuel cells to beneficially use coal mine methane. Final report  

DOE Green Energy (OSTI)

DOE has been given the responsibility to encourage industry to recover and use methane that is currently being released to the atmosphere. At this time the only method being employed at the Left Fork Mine to remove methane is the mine ventilation system. The methane content was measured at one one-hundredth of a percent. To prevent this methane from being vented to the atmosphere, degasification wells are proposed. To use the coal mine methane, it is proposed to use phosphoric-acid fuel cells to convert methane to electric power. These fuel cells contain (1) a steam reformer to convert the methane to hydrogen (and carbon dioxide), (2) the fuel cell stack, and (3) a power conditioner that provides 200 kW of 60 Hz alternating current output. The environmental impacts and benefits of using this technology ware summarized in the report. The study indicates the methane emission reduction that could be achieved on a national and Global level. The important point being that this technology is economically viable as is demonstrated in the report.

Brown, J.T.; O`Brien, D.G.; Miller, A.R.; Atkins, R.; Sanders, M.

1996-03-01T23:59:59.000Z

123

TRENDS: METHANE EMISSIONS - INTRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Of the total direct radiative forcing of long-lived greenhouse gases (2.45 Wm-2), almost 20% is attributable to methane (CH4), according to the 1995 report of the Intergovernmental Panel on Climate Change (IPCC 1995). Since the mid-1700s, the atmospheric concentration of methane has increased by about 145% (IPCC 1995). Thus, an understanding of the various sources of methane is important. Atmospheric methane is produced both from natural sources (e.g., wetlands) and from human activities (see global methane cycle, from Professor W.S. Reeburgh at the University of California Irvine). Total sources of methane to the atmosphere for the period 1980-1990 were about 535 (range of 410-660) Tg (1 Teragram = 1 million metric tons) CH4 per year, of which 160 (110-210) Tg CH4/yr were from natural sources and 375 (300-450) Tg CH4/yr

124

Carbon Flux to the Atmosphere From Land-use Changes: 1850 to 1990  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Flux to the Atmosphere From Land-use Changes: 1850 to 1990 Carbon Flux to the Atmosphere From Land-use Changes: 1850 to 1990 (NDP-050/R1) DOI: 10.3334/CDIAC/lue.ndp050 data Data PDF PDF The PDF of NDP-050/R1 (body of report, plus appendices A through E) and tellus51b.pdf (Appendix F, reprint of Houghton paper in Tellus, Vol. 51B; copyright 1999 Blackwell Publishing Ltd and reprinted with kind permission from the publisher) Contributors Richard A. Houghton Joseph L. Hackler The Woods Hole Research Center Woods Hole, Massachusetts Please Note: Revised data through the year 2000 are available in CDIAC's Trends Online. Prepared by Robert M. Cushman Carbon Dioxide Information Analysis Center Environmental Sciences Division Publication No. 5054 Date Published: February 2001 Prepared for the Environmental Sciences Division Office of Biological and Environmental Research

125

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

SciTech Connect

A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

2010-11-05T23:59:59.000Z

126

Why Sequence a Methane-Oxidizing Archaean?  

NLE Websites -- All DOE Office Websites (Extended Search)

a Methane-Oxidizing Archaeon? a Methane-Oxidizing Archaeon? Methane is a potent greenhouse gas whose atmospheric concentration has increased significantly because of anthropogenic activities and fluctuated naturally over glacial and interglacial cycles. While the importance of methane in Earth's climate dynamics has been well established, the global processes regulating its oceanic cycling remain poorly understood. Although there are high rates of methane production in many marine sedimentary environments (including a number that have been targeted as petroleum reserves), net methane sources from the ocean to the atmosphere appear to be small. This is due in large part to a biogeochemical process known as the anaerobic oxidation of methane (AOM). Microbially mediated AOM reduces methane flux from ocean to atmosphere, stimulates subsurface microbial

127

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of...

128

methane hydrate science plan-final.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Revolu on. Methane in the atmosphere comes from many sources, including wetlands, rice cul va on, termites, cows and other ruminants, forest fi res, and fossil fuel...

129

Low Cost Open-Path Instrument for Monitoring Atmospheric Carbon Dioxide at Sequestration Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost open-path Instrument for Low Cost open-path Instrument for monItorIng atmospherIC Carbon DIoxIDe at sequestratIon sItes Background Growing concern over the effect on global climate of the buildup of greenhouse gases (GHG), particularly carbon dioxide (CO 2 ), in the atmosphere may lead to the curtailment of CO 2 emissions. One potential course of action by industry to reduce GHG emissions is the subsurface disposal of CO 2 . An important requirement of such disposal is verification that the injected gases remain in place and do not leak to the surface. Perhaps the most direct evidence of a successful sequestration project is the lack of a detectable CO 2 concentration above the background level in the air near the ground. Although measurement of CO 2 concentration can be performed, it is

130

Atmospheric Carbon Dioxide Record from In Situ Measurements at Baring Head  

NLE Websites -- All DOE Office Websites (Extended Search)

Baring Head Baring Head Atmospheric Carbon Dioxide Record from In Situ Measurements at Baring Head graphics Graphics data Data Investigators M.R. Manning, A.J. Gomez, K.P. Pohl National Institute of Water and Atmospheric Research, Ltd., Climate Division, Gracefield Road, Gracefield, P.O. Box 31-311, Lower Hutt, New Zealand Period of Record 1970-93 Methods Determinations of atmospheric CO2 mixing ratios are made using a Siemens Ultramat-3 nondispersive infrared (NDIR) gas analyzer. The NDIR CO2 analyzer is connected via a gas manifold consisting of stainless steel tubing and computer-controlled solenoid switches to 12 gas cylinders and 2 sample air lines. The NDIR analyzer compares ambient air CO2 mixing ratios relative to known CO2 mixing ratios in tanks of compressed reference gases.

131

In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim,  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Isotopes and Ratios » 13C and 18O Oxygen Isotopes and Ratios » 13C and 18O Ratios, Atmospheric CO2, Cape Grim In situ Carbon 13 and Oxygen 18 Ratios of Atmospheric CO2 from Cape Grim, Tasmania, Australia: 1982-1993 DOI: 10.3334/CDIAC/atg.db1014 data Data Investigators Francey R. J. and C. E. Allison Description Since 1982, a continuous program of sampling atmospheric CO2 to determine stable isotope ratios has been maintained at the Australian Baseline Air Pollution Station, Cape Grim, Tasmania (40°, 40'56"S, 144°, 41'18"E). The process of in situ extraction of CO2 from air, the preponderance of samples collected in conditions of strong wind from the marine boundary layer of the Southern Ocean, and the determination of all isotope ratios relative to a common high purity CO2 reference gas with isotopic δ13C close to

132

NREL: News - NREL to Help Convert Methane to Liquid Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

113 113 NREL to Help Convert Methane to Liquid Diesel Advanced research project could lead to lower greenhouse emissions, new life for spent gas and oil wells January 3, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) will help develop microbes that convert methane found in natural gas into liquid diesel fuel, a novel approach that if successful could reduce greenhouse gas emissions and lower dependence on foreign oil. The amount of natural gas simply flared or vented from oil wells globally is enormous - equal to one-third of the amount of petroleum used in the United States each year. And every molecule of methane vented to the atmosphere in that process has the global-warming capacity of 12 molecules of carbon dioxide.

133

Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990  

DOE Green Energy (OSTI)

The database documented in this numeric data package, a revision to a database originally published by the Carbon Dioxide Information Analysis Center (CDIAC) in 1995, consists of annual estimates, from 1850 through 1990, of the net flux of carbon between terrestrial ecosystems and the atmosphere resulting from deliberate changes in land cover and land use, especially forest clearing for agriculture and the harvest of wood for wood products or energy. The data are provided on a year-by-year basis for nine regions (North America, South and Central America, Europe, North Africa and the Middle East, Tropical Africa, the Former Soviet Union, China, South and Southeast Asia, and the Pacific Developed Region) and the globe. Some data begin earlier than 1850 (e.g., for six regions, areas of different ecosystems are provided for the year 1700) or extend beyond 1990 (e.g., fuelwood harvest in South and Southeast Asia, by forest type, is provided through 1995). The global net flux during the period 1850 to 1990 was 124 Pg of carbon (1 petagram = 10{sup 15} grams). During this period, the greatest regional flux was from South and Southeast Asia (39 Pg of carbon), while the smallest regional flux was from North Africa and the Middle East (3 Pg of carbon). For the year 1990, the global total net flux was estimated to be 2.1 Pg of carbon.

Houghton, R.A.

2001-02-22T23:59:59.000Z

134

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

Science Conference Proceedings (OSTI)

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

135

ISOTOPIC RATIOS IN TITAN's METHANE: MEASUREMENTS AND MODELING  

SciTech Connect

The existence of methane in Titan's atmosphere ({approx}6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of {approx}20 Myr. In this paper, we examine the clues available from isotopic ratios ({sup 12}C/{sup 13}C and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH{sub 4} collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: {sup 13}CH{sub 4}, {sup 12}CH{sub 3}D, and {sup 13}CH{sub 3}D. From these we compute estimates of {sup 12}C/{sup 13}C = 86.5 {+-} 8.2 and D/H = (1.59 {+-} 0.33) Multiplication-Sign 10{sup -4}, in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH{sub 4} + C{sub 2}H {yields} CH{sub 3} + C{sub 2}H{sub 2}. Using these new measurements and predictions we proceed to model the time evolution of {sup 12}C/{sup 13}C and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH{sub 4}), we find that the present-day {sup 12}C/{sup 13}C implies that the CH{sub 4} entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing. We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.

Nixon, C. A.; Achterberg, R. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Temelso, B. [Dean's Office, College of Arts and Sciences, Department of Chemistry, Bucknell University, Lewisburg, PA 17837 (United States); Vinatier, S.; Bezard, B.; Coustenis, A. [LESIA, Observatoire de Paris, CNRS, 5 Place Jules Janssen, 92195 Meudon Cedex (France); Teanby, N. A. [School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ (United Kingdom); Mandt, K. E. [Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228 (United States); Sherrill, C. D. [School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400 (United States); Irwin, P. G. J. [Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Jennings, D. E.; Romani, P. N.; Flasar, F. M. [Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2012-04-20T23:59:59.000Z

136

Natural gas cleanup: Evaluation of a molecular sieve carbon as a pressure swing adsorbent for the separation of methane/nitrogen mixtures  

SciTech Connect

This report describes the results of a preliminary evaluation to determine the technical feasibility of using a molecular sieve carbon manufactured by the Takeda Chemical Company of Japan in a pressure owing adsorption cycle for upgrading natural gas (methane) contaminated with nitrogen. Adsorption tests were conducted using this adsorbent in two, four, and five-step adsorption cycles. Separation performance was evaluated in terms of product purity, product recovery, and sorbent productivity for all tests. The tests were conducted in a small, single-column adsorption apparatus that held 120 grams of the adsorbent. Test variables included adsorption pressure, pressurization rate, purge rate and volume, feed rate, and flow direction in the steps from which the product was collected. Sorbent regeneration was accomplished by purging the column with the feed gas mixture for all but one test series where a pure methane purge was used. The ratio between the volumes of the pressurization gas and the purge gas streams was found to be an important factor in determining separation performance. Flow rates in the various cycle steps had no significant effect. Countercurrent flow in the blow-down and purge steps improved separation performance. Separation performance appears to improve with increasing adsorption pressure, but because there are a number of interrelated variables that are also effected by pressure, further testing will be needed to verify this. The work demonstrates that a molecular sieve carbon can be used to separate a mixture of methane and nitrogen when used in a pressure swing cycle with regeneration by purge. Further work is needed to increase product purity and product recovery.

Grimes, R.W.

1994-06-01T23:59:59.000Z

137

Microbial Carbon Cycling in Permafrost-Affected Soils  

Science Conference Proceedings (OSTI)

The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

Vishnivetskaya, T. [University of Tennessee, Knoxville (UTK); Liebner, Susanne [University of Tromso, Norway; Wilhelm, Ronald [McGill University, Montreal, Quebec; Wagner, Dirk [Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany

2011-01-01T23:59:59.000Z

138

Henry's Law Constants of Methane, Nitrogen, Oxygen and Carbon Dioxide in Ethanol from 273 to 498 K: Prediction from Molecular Simulation  

E-Print Network (OSTI)

noindent Henry's law constants of the solutes methane, nitrogen, oxygen and carbon dioxide in the solvent ethanol are predicted by molecular simulation. The molecular models for the solutes are taken from previous work. For the solvent ethanol, a new rigid anisotropic united atom molecular model based on Lennard-Jones and Coulombic interactions is developed. It is adjusted to experimental pure component saturated liquid density and vapor pressure data. Henry's law constants are calculated by evaluating the infinite dilution residual chemical potentials of the solutes from 273 to 498K with Widom's test particle insertion. The prediction of Henry's Law constants without the use of binary experimental data on the basis of the Lorentz-Berthelot combining rule agree well with experimental data, deviations are 20%, except for carbon dioxide for which deviations of 70% are reached. Quantitative agreement is achieved by using the modified Lorentz-Berthelot combining rule which is adjusted to one experimental mixture ...

Schnabel, T; Hasse, H

2009-01-01T23:59:59.000Z

139

Feasibility analysis of ternary feed mixtures of methane with oxygen, steam, and carbon dioxide for the production of methanol synthesis gas  

SciTech Connect

The feasibility of ternary feed mixtures of CH{sub 4} with O{sub 2}, H{sub 2}O, and CO{sub 2} is analyzed in relation to the production of methanol syngas. Stoichiometric constraints are formulated in terms of three parameters characterizing the steam, partial oxidation, and carbon dioxide reforming reactions of methane. The equilibrium analysis is conducted using the methanol balance ratio {mu} and methane slip fraction {chi} as explicit design parameters. General results are derived for the feasibility of each ternary feed combination as a function of pressure and temperature in the range 1 < {mu} < 3 under carbon-free conditions. Numerical calculations indicate that CH{sub 4}/O{sub 2}/CO{sub 2} feeds can be used in single-stage adiabatic reformers at low values of {mu}, but the produced syngas requires further treatment. Reforming based on CH{sub 4}/O{sub 2}/H{sub 2}O feeds is endothermic at {mu} {ge} 2 under typical reaction conditions, thus requiring the application of a two-stage process involving primary and secondary reformers. Utilization of CH{sub 4}/O{sub 2}/H{sub 2}O feeds in single-stage adiabatic reactors is feasible for {mu} = 1.7--1.9, yielding syngas which can be upgraded by partial CO{sub 2} removal. The endothermic CH{sub 4}/CO{sub 2}/H{sub 2}O feed combination is always feasible for 1 < {mu} < 3.

Tjatjopoulos, G.J. [Chemical Process Engineering Research Inst., Thessaloniki (Greece). Foundation for Research and Technology; Vasalos, I.A. [Aristotle Univ. of Thessaloniki (Greece). Chemical Engineering Dept.

1998-04-01T23:59:59.000Z

140

Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone  

NLE Websites -- All DOE Office Websites (Extended Search)

Mt. Cimone Mt. Cimone Atmospheric Carbon Dioxide Record from In Situ Measurements at Mt. Cimone graphics Graphics data Data Investigators Tiziano Colombo and Riccardo Santaguida Italian Meteorological Service, Via delle Ville, 100-41029 Sestola (MO), Italy Period of Record 1979-1997 Methods Continuous atmospheric CO2 measurements have been carried out at Mt. Cimone since 1979. Since December 1988, air samples have also been collected approximately once per week in a pair of 2-L, electropolished, stainless steel cylindrical flasks. From 1979 until December 1988, a Hartmann and Braun URAS-2T NDIR gas analyzer was used for CO2 determinations. Currently, CO2 determinations are made through the use of a Siemens Ultramat-5E NDIR gas analyzer. Water vapor is eliminated by passing the air through a U-tube

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Composition and decomposition of soybean and sorghum tissues grown under elevated atmospheric carbon dioxide  

Science Conference Proceedings (OSTI)

It has been hypothesized that changes in both quantity and quality of plant residue inputs to soils as atmospheric carbon dioxide (CO{sub 2}) concentration increases may alter carbon (C) and nitrogen (N) turnover rates and pool sizes. We determined the effect of elevated atmospheric CO{sub 2} on plant tissue quality, and how modifications in tissue quality affect C and N mineralization. Soybean and sorghum were grown under elevated (704.96 {plus_minus} 0.33 {mu}mol CO{sub 2} mol{sup {minus}1}) and ambient (357.44 {plus_minus} 0.12 {mu}mol CO{sub 2} mol{sup {minus}1}) atmospheric CO{sub 2} in open-top chambers. Leaf and stem tissues were separated form harvested plants and analyzed for C,N, lignin, and cellulose. Tissues were applied to Norfolk loamy sand (fine-loamy, siliceous, thermic Typic Kandiudult) and aerobically incubated for 70-d to determine C and N mineralization, C turnover, relative N mineralization, and C/N mineralized. Elevated CO{sub 2} had no effect on plant residue C concentration, but N concentration of soybean leaves and stems and sorghum stems was reduced; however, CO{sub 2} enrichment increased C/N ratio and lignin concentration for only sorghum stems and soybean leaves, respectively. Source of plant residue (i.e., produced under either elevated or ambient CO{sub 2}) had no impact on soil C turnover, relative N mineralization, cumulative C and N mineralization, and C/N mineralized. These data suggest that increasing atmospheric CO{sub 2} will have little effect on composition or decomposition of field crop residues. Thus, since CO{sub 2} enrichment results in increased photosynthetic C fixation, the possibility exists for increased soil C storage under field crops in an elevated CO{sub 2} world. 29 refs., 4 figs., 4 tabs.

Henning, F.P. [Cooperative Ext. Serv., Dunwoody, GA (United States); Wood, C.W. [Auburn Univ., AL (United States); Rogers, H.H.; Runion, G.B.; Prior, S.A. [National Soil Dynamics Lab., Auburn, AL (United States)

1996-07-01T23:59:59.000Z

142

CARBON FLUX TO THE ATMOSPHERE FROM LAND-USE CHANGES: 1850 TO 1990 (APPENDIX  

NLE Websites -- All DOE Office Websites (Extended Search)

E: FULL LISTING OF COMPARE.DAT (FILE 4) E: FULL LISTING OF COMPARE.DAT (FILE 4) The following is a full listing of ascii file compare.dat (File 4), which is also provided, in binary spreadsheet format, as file compare.wk1 (File 5). This file compares the estimated global total net flux of carbon to the atmosphere from land-use change, from 1850 to 1990, by year, for this database (Houghton 1999) and three earlier publications (Houghton et al. 1983, Houghton and Skole 1990, and Houghton and Hackler 1995). Note that the data for the period 1850 through 1859 attributed below to Houghton et al. (1983) were not actually presented in that publication but are present in the data used in that publication. Units = Pg of carbon (1 petagram = 1015 grams); -9.999 denotes missing value Year Houghton Houghton Houghton Houghton

143

CARBON FLUX TO THE ATMOSPHERE FROM LAND-USE CHANGES: 1850 TO 1990 (APPENDIX  

NLE Websites -- All DOE Office Websites (Extended Search)

D: FULL LISTING OF NDP050.DAT (FILE 2) D: FULL LISTING OF NDP050.DAT (FILE 2) The following is a full listing of ascii file ndp050.dat (File 2), which is also provided, in binary spreadsheet format, as file ndp050.wk1 (File 3). This file lists the estimated net flux of carbon, in units of 1000 Gg of carbon (1 gigagram = 109 g), to the atmosphere from land-use change, from 1850 through 1990, by year and by region, along with the global totals. The values in this listing replace the values in files netflux.* in Houghton and Hackler (1995), the previous version of this database. Year North South and Europe North Tropical Former China South and Pacific TOTAL America Central Africa and Africa Soviet Southeast Developed FLUX America Middle East Union Asia Region

144

Methane Hydrates and Climate Change | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrates and Climate Change Hydrates and Climate Change Methane Hydrates and Climate Change Methane hydrates store huge volumes of methane formed by the bacterial decay of organic matter or leaked from underlying oil and natural gas deposits. The active formation of methane hydrates in the shallow crust prevents methane, a greenhouse gas, from entering the atmosphere. On the other hand, warming of arctic sediments or ocean waters has the potential to cause methane hydrate to dissociate, releasing methane into the deepwater sediments, the ocean or atmosphere. DOE is conducting research to understand the mechanisms and volumes involved in these little-studied processes. DOE environmental and climate change research projects related to Arctic methane hydrate deposits include: Characterization of Methane Degradation and Methane-Degrading

145

Response of a Coupled Ocean–Atmosphere Model to Increasing Atmospheric Carbon Dioxide: Sensitivity to the Rate of Increase  

Science Conference Proceedings (OSTI)

The influence of differing rates of increase of the atmospheric CO2 concentration on the climatic response is investigated using a coupled ocean–atmosphere model. Five transient integrations are performed each using a different constant ...

Ronald J. Stouffer; Syukuro Manabe

1999-08-01T23:59:59.000Z

146

Transient Response of the Hadley Centre Coupled Ocean-Atmosphere Model to Increasing Carbon Dioxide. Part III: Analysis of Global-Mean Response Using Simple Models  

Science Conference Proceedings (OSTI)

The roles of surface, atmospheric, and oceanic feedbacks in controlling the global-mean transient response of a coupled ocean-atmosphere general circulation model to increasing carbon dioxide are investigated. The analysis employs a four-box ...

J. M. Murphy

1995-03-01T23:59:59.000Z

147

Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials  

SciTech Connect

The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity and diffusive ingress of atmospheric air. For one material with elevated levels of fine particles and high organic matter content, methane production impeded the quantification of methane oxidation potentials. Regarding the design of landfill cover layers it was concluded that the magnitude of the expected methane load, the texture and expected compaction of the cover material are key variables that need to be known. Based on these, a column study can serve as an appropriate testing system to determine the methane oxidation capacity of a soil intended as landfill cover material.

Rachor, Ingke, E-mail: i.rachor@ifb.uni-hamburg.de [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany); Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria [University of Hamburg, Institute of Soil Science, Allende-Platz 2, 20146 Hamburg (Germany)

2011-05-15T23:59:59.000Z

148

Implications of Representative Concentration Pathway 4.5 Methane Emissions to Stabilize Radiative Forcing  

SciTech Connect

Increases in the abundance of methane (CH4) in the Earth’s atmosphere are responsible for significant radiative forcing of climate change (Forster et al., 2007; Wuebbles and Hayhoe, 2002). Since 1750, a 2.5 fold increase in atmospheric CH4 contributed 0.5 W/m2 to direct radiative forcing and an additional 0.2 W/m2 indirectly through changes in atmospheric chemistry. Next to water and carbon dioxide (CO2), methane is the most abundant greenhouse gas in the troposphere. Additionally, CH4 is significantly more effective as a greenhouse gas on a per molecule basis than is CO2, and increasing atmospheric CH4 has been second only to CO2 in radiative forcing (Forster et al., 2007). The chemical reactivity of CH4 is important to both tropospheric and stratospheric chemistry. Along with carbon monoxide, methane helps control the amount of the hydroxyl radical (OH) in the troposphere where oxidation of CH4 by OH leads to the formation of formaldehyde, carbon monoxide, and ozone.

Emanuel, William R.; Janetos, Anthony C.

2013-02-01T23:59:59.000Z

149

Methane Fluxes Between Terrestrial Ecosystems and the Atmosphere at Northern High Latitudes During the Past Century: A retrospective analysis with a process-based biogeochemistry model  

E-Print Network (OSTI)

We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in high-latitude soils of the Northern Hemisphere have changed over the past century ...

Zhuang, Qianlai.

150

Enhanced coalbed methane recovery  

SciTech Connect

The recovery of coalbed methane can be enhanced by injecting CO{sub 2} in the coal seam at supercritical conditions. Through an in situ adsorption/desorption process the displaced methane is produced and the adsorbed CO{sub 2} is permanently stored. This is called enhanced coalbed methane recovery (ECBM) and it is a technique under investigation as a possible approach to the geological storage of CO{sub 2} in a carbon dioxide capture and storage system. This work reviews the state of the art on fundamental and practical aspects of the technology and summarizes the results of ECBM field tests. These prove the feasibility of ECBM recovery and highlight substantial opportunities for interdisciplinary research at the interface between earth sciences and chemical engineering.

Mazzotti, M.; Pini, R.; Storti, G. [ETH, Zurich (Switzerland). Inst. of Process Engineering

2009-01-15T23:59:59.000Z

151

Modification of Ni state to promote the stability of Ni-Al{sub 2}O{sub 3} catalyst in methane decomposition to produce hydrogen and carbon nanofibers  

SciTech Connect

The methodology was illustrated for modifying the state of Ni to promote the stability of the coprecipitated Ni-Al{sub 2}O{sub 3} catalyst via incorporating ZnO and Cu in methane decomposition to produce hydrogen and carbon nanofibers. The influences of the incorporation on the state of Ni were examined with XRD, TPR, XPS and TEM. For the incorporation of ZnO, ZnAl{sub 2}O{sub 4} spinel-like structure could be formed in the interface between ZnO and Al{sub 2}O{sub 3}. The interaction between Ni and the ZnAl{sub 2}O{sub 4} structure can promote both the activity and the stability of Ni in methane decomposition. The formation of a Ni-Cu alloy from Ni and the incorporated Cu decreases the activity of Ni, however, promotes the stability pronouncedly. - Graphical abstract: Highlights: Black-Right-Pointing-Pointer Methodology for modifying Ni state of coprecipitated Ni-Al{sub 2}O{sub 3} was illustrated. Black-Right-Pointing-Pointer Influence of incorporating ZnO/Cu on Ni state of Ni-Al{sub 2}O{sub 3} was compared. Black-Right-Pointing-Pointer Influence of modifying Ni state on performance of Ni-Al{sub 2}O{sub 3} was investigated.

Chen Jiuling, E-mail: cjlchen@yahoo.com [Department of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Qiao Yuanhua; Li Yongdan [Department of Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300072 (China)

2012-07-15T23:59:59.000Z

152

Role of reaction and factors of carbon nanotubes growth in chemical Vapour decomposition process using methane: a highlight  

Science Conference Proceedings (OSTI)

One of the remarkable achievements in the field of nanotechnology is Carbon Nanotubes (CNT) synthesis. Since their discovery in 1991 by Iijima, CNTs have attracted much attention across the world. The CNTs are broadly classified into single-walled carbon ...

V. M. Sivakumar; Abdul Rahman Mohamed; Ahmad Zuhairi Abdullah; Siang-Piao Chai

2010-01-01T23:59:59.000Z

153

Short-Term Carbon Dioxide Exchange and Environmental Factors in a Boreal Fen  

E-Print Network (OSTI)

Introduction Northern peatlands are important contributors to the global carbon cycle. In cold and moist climatic conditions, boreal peatlands have sequestered large amounts of atmospheric carbon during the past few thousand years (GORHAM 1991). The carbon balance in mires depends on the rates of photosynthesis and respiration which are affected by both the long-term and the short-term variations in environmental factors. So far, more emphasis has been put on the annual carbon balance of mires, and short-term dynamics have received less attention. However, a relationship between the carbon dioxide and methane cycling has been proposed as newly photosynthesized carbon provides substrates for methanogenesis substrates and promotes methane emissions (WHITING & CHANTON 1993). To analyze the connection between green plant photosynthesis and methane emissions, we need to analyze the short-term dynamics of carbon dioxide exchange. Consequently, we use earlier data (ALM et al. 1997) to study

Anu Kettunen

2000-01-01T23:59:59.000Z

154

Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases catalog of databases and reports  

SciTech Connect

Data products and reports made available by the US Department of Energy's (DOE) Environmental Sciences Division, Office of Biological and Environmental Research (OBER), and the Carbon Dioxide Information Analysis Center (CDIAC) provide coverage in a number of areas relevant to the greenhouse effect and global climate change. Such areas include records of the concentration of carbon dioxide and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of carbon dioxide to the atmosphere; long-term climate trends; the effects of elevated carbon dioxide on vegetation; and the vulnerability of coastal areas to rising sea level. Currently, in its eighth revision, this catalog provides information about the data products and reports available through CDIAC.

Burtis, M.D. [comp.

1998-05-01T23:59:59.000Z

155

Time-series analysis for the episodic production and transport of methane from the Glacial Lake Agassiz peatlands, northern Minnesota. Final report  

SciTech Connect

The large peat basins of North America are an important reservoir in the global carbon cycle and a significant source of atmospheric methane. The authors investigated carbon cycling in the Glacial Lake Agassiz peatlands (GLAP) of Minnesota. Initially in 1990, they identified a dramatic change in the concentration of methane in the pore-waters of the raised bogs in the GLAP during an extreme drought. This methane dissipated when the drought broke in 1991 and the occurrence of deep methane is related to changes in the direction of groundwater flow in the peat column. The production of methane and its diffusive loss to the atmosphere was modeled and was about 10 times less than that measured directly in chambers at the land surface. It is clear from the reversals in hydraulic heat, changes in pore-water chemical composition over time, and paleostratigraphic markers, that regional ground water flow systems that are controlled by climate change are unexpectedly a major control over methanogenesis and carbon cycling in GLAP. Seismic profiles made showed that buried bedrock ridges particularly deflect regional groundwater flow upwards towards the land surface and towards raised bog landforms. In addition, high-resolution GPS measurements from data stations funded by this DOE project have shown this year that the peakland land surface elevation changes daily on a scale of cms, and seasonally on a scale of 10s of cm. This most recent observation is exciting because it may reflect episodic degassing of free phase methane from the peat column to the atmosphere, a source for methane previously unaccounted for by methane researchers.

Siegel, D.I.

1998-01-01T23:59:59.000Z

156

Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil  

Science Conference Proceedings (OSTI)

The carbon monoxide consumption rates of the carboxydobacteria Pseudomonas (Seliberia) carboxydohydrogena, P. carboxydovorans, and P. carboxydoflava were measured at high (50%) and low (0.5 ..mu..l liter/sup -1/) mixing ratios of CO in air. CO was only consumed when the bacteria had been grown under CO-autotrophic conditions. At low cell densities the CO comsumption rates measured at low CO mixing ratios were similar in cell suspensions and in mixtures of bacteria in soil. CO consumption observed in natural soil (loess, eolian sand, chernozem) as well as in suspensions or soil mixtures of carboxydobacteria showed Michaelis-Menten kinetics. Considering the difference of the K/sub m/, values and the observed V/sub max/ values, carboxydobacteria cannot contribute significantly to the consumption of atmospheric CO.

Conrad, R. (Max-Planck-Institut fuer Chemie, Mainz, Germany); Meyer, O.; Seiler, W.

1981-08-01T23:59:59.000Z

157

A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the Global Carbon Cycle  

Science Conference Proceedings (OSTI)

The primary goal of our research program, consistent with the goals of the U.S. Climate Change Science Program and funded by the terrestrial carbon processes (TCP) program of DOE, has been to improve understanding of changes in the distribution and cycling of carbon among the active land, ocean and atmosphere reservoirs, with particular emphasis on terrestrial ecosystems. Our approach is to systematically measure atmospheric CO2 to produce time series data essential to reveal temporal and spatial patterns. Additional measurements of the 13C/12C isotopic ratio of CO2 provide a basis for distinguishing organic and inorganic processes. To pursue the significance of these patterns further, our research also involved interpretations of the observations by models, measurements of inorganic carbon in sea water, and of CO2 in air near growing land plants.

Stephen C. Piper

2005-10-15T23:59:59.000Z

158

Atmospheric Measurements of Climate-Relevant Species  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Measurements of Climate-Relevant Species Atmospheric Measurements of Climate-Relevant Species CDIAC's data collection includes measurements of the following climate-relevant chemical species. A summary of recent greenhouse gas concentrations is also available. To determine how compounds are named, see the CDIAC "Name that compound" page. Butane (C4H10) Carbon Dioxide (CO2) Carbon Isotopes Carbon Monoxide (CO) Carbon Tetrachloride (CCl4) Chlorofluorocarbons Chloroform (CHCl3) Deuterium (2H) Ethane (C2H6) Ethyl Nitrate (C2H5ONO2) Ethyne (C2H2) Fluoroform (CHF3) Halogenated Compounds (modern records) Halons (fluorocarbons) Hydrogen (H2) Hydrochlorofluorocarbons (HCFCs) Hydrofluorocarbons (HFCs) i-Propyl Nitrate (C3H7ONO2) Methane (CH4) Methyl Bromide (CH3Br) Methyl Chloride (CH3Cl) Methyl Chloroform (CH3CCl3)

159

Climatic changes from increased atmospheric carbon dioxide (citations from the NTIS data base). Report for 1970-Jan 1980  

SciTech Connect

The cited reports of Federally-funded research examine the relationship between climatic changes and an increase in atmospheric carbon dioxide. Topics considered include the Greenhouse effect, global climatic models, and climatic effects from increased combustion of fossil fuels. (Contains 39 abstracts)

Reimherr, G.W.

1980-02-01T23:59:59.000Z

160

Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994  

SciTech Connect

This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

Burtis, M.D. [comp.] [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W. [Oak Ridge National Lab., TN (United States)

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report  

SciTech Connect

The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

Cushman, R.M.

2003-08-28T23:59:59.000Z

162

Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes  

SciTech Connect

Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

2011-06-01T23:59:59.000Z

163

The role of methane in tropospheric chemistry  

E-Print Network (OSTI)

While methane is chemically quite inert to reactions with atmospheric molecular species, it does react with atomic species and molecular radicals. Because of its relatively large abundance in the global troposphere and ...

Golomb, D.

1989-01-01T23:59:59.000Z

164

Landfill CH sub 4 : Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-01-01T23:59:59.000Z

165

Landfill CH{sub 4}: Rates, fates, and role in global carbon cycle  

SciTech Connect

Published estimates for worldwide landfill methane emissions range from 9 to 70 Tg yr{sup {minus}1}. Field and laboratory studies suggest that maximum methane yields from lanfilled refuse are about 0.06 to 0.09 m{sup 3} (dry Kg){sup {minus}1} refuse, depending on moisture content and other variables, such as organic loading, buffering capacity, and nutrients in landfill microevnironments. Methane yields may vary by more than an order of magnitude within a given site. Fates for landfill methane include (1) direct or delayed emission to the atmosphere through landfill cover materials or surface soils; (2) oxidation by methanotrophs in cover soils, with resulting emission of carbon dioxide; or (3) recovery of methane followed by combustion to produce carbon dioxide. The percent methane assigned to each pathway will vary among field sites and, for individual sites, through time. Nevertheless, a general framework for a landfill methane balance can be developed by consideration of landfill age, engineering and management practices, cover soil characteristics, and water balance. Direct measurements of landfill methane emissions are sparse, with rates between 10{sup {minus}6} and 10{sup {minus}8} g cm{sup {minus}2} s{sup {minus}1}; very high rates of 400 kg m{sup {minus}2} yr{sup {minus}1} have been measured at a semiarid unvegetated site. The proportion of landfill carbon that is ultimately converted to methane and carbon dioxide is problematical; the literature suggests that, at best, 25% to 40% of refuse carbon can be converted to biogas carbon. Cellulose contributes the major portion of the methane potential. Routine excavation of nondecomposed cellulosic materials after one or two decades of landfill burial suggests that uniformly high conversion rates are rarely attained at field sites.

Bogner, J.; Spokas, K.

1991-12-31T23:59:59.000Z

166

Environmental control technology for atmospheric carbon dioxide. Quarterly progress report No. 1, June 20, 1977--September 30, 1977  

DOE Green Energy (OSTI)

The primary objective of the subject program is to assess the potential options for controlling atmospheric CO/sub 2/. Accordingly, CO/sub 2/ control scenarios based on conventional technology and applied to the larger industrial emitters will be prepared. The studies will include preliminary cost estimates of selected processes, to identify fruitful areas for environmental control technology (ECT) programmatic development as related to CO/sub 2/ release control. BNL's prior experience in this area includes the development and evaluation of a number of processes for removing CO/sub 2/ from the atmosphere for the purpose of producing synthetic carbonaceous fuels including methanol, gasoline, and methane. Background information from other DOE programs will be used to determine the limitations for the control studies. This progress report presents background information on: (1) the concentration levels of CO/sub 2/ in the atmosphere during the last one hundred years; (2) the possible effects of rising CO/sub 2/ levels; (3) the impact of fossil fuel use in the United States on overall worldwide CO/sub 2/ emissions; (4) the impact of increased coal utilization on CO/sub 2/ emissions; and (5) process considerations for controlling CO/sub 2/.

Steinberg, M.; Albanese, A.S.; Dang, V.D.

1977-10-01T23:59:59.000Z

167

Whitings as a Potential Mechanism for Controlling Atmospheric Carbon Dioxide Concentrations – Final Project Report  

SciTech Connect

Species of cyanobacteria in the genera Synechococcus and Synechocystis are known to be the catalysts of a phenomenon called "whitings", which is the formation and precipitation of fine-grained CaCO3 particles. Whitings occur when the cyanobacteria fix atmospheric CO2 through the formation of CaCO3 on their cell surfaces which leads to precipitation to the ocean floor and subsequent entombment in mud. Whitings represent one potential mechanism for CO2 sequestration. Research was performed to determine the ability of various strains of Synechocystis and Synechococcus to calcify when grown in microcosms amended with 2.5 mM HCO3- and 3.4 mM Ca2+. Results indicated that while all strains tested have the ability to calcify, only two, Synechococcus species, strains PCC 8806 and PCC 8807, were able to calcify to the extent that CaCO3 was precipitated. Enumeration of the cyanobacterial cultures during testing indicated that cell density did not appear to have an effect on calcification. Factors that had the greatest effect on calcification were CO2 removal and subsequent generation of alkaline pH. As CO2 was removed, growth medium pH increased and soluble Ca2+ was removed from solution. The largest increases in growth medium pH occurred when CO2 levels dropped below 400 ppmv. Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the Genus Synechococcus represents a potential mechanism for sequestration of atmospheric CO2 produced during the burning of coal for power generation. Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested in microcosm experiments for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and dissolved inorganic carbon concentrations of 0.5, 1.25 and 2.5 mM. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment producing approximately 18.6 mg of solid-phase calcium. Calcium removal occurred over a two-day time period when Synechococcus sp. strain PCC 8807 was tested and only 8.9 mg of solid phase calcium was produced. The ability of the cyanobacteria to create an alkaline growth environment appeared to be the primary factor responsible for CaCO3 precipitation in these experiments. These research results demonstrate the potential of using cyanobacterial catalyzed “whitings” as a method to sequester CO2 from the atmosphere.

Brady D. Lee; William A. Apel; Michelle R. Walton

2006-03-01T23:59:59.000Z

168

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

for measuring ecosystem carbon oxidation state and oxidativemean oxidation number of carbon (MOC) - A useful concept forJ.F. & Barsanti, K.C. The Carbon Number-Polarity Grid: A

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

169

Methane Hydrate Research and Modeling | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Modeling Clean Coal Carbon Capture and Storage Oil & Gas Methane Hydrate LNG Offshore Drilling Enhanced Oil Recovery Shale Gas Research is focused on understanding...

170

NETL: Methane Hydrates - DOE/NETL Projects - Properties of Hydrate...  

NLE Websites -- All DOE Office Websites (Extended Search)

is to measure physical, chemical, mechanical, and hydrologic property changes in methane hydrate-bearing sediments subjected to injection of carbon dioxide and nitrogen....

171

NETL: Methane Hydrates - 2012 Ignik Sikumi gas hydrate field...  

NLE Websites -- All DOE Office Websites (Extended Search)

fluid, by flowmeters in the Low-flow Gas Measurement Skid. Compositional analysis of methane, nitrogen, carbon dioxide, and tracers pumped during injection are being monitored...

172

Swapping Global Warming Gases for Methane in Gas Hydrate ...  

Science Conference Proceedings (OSTI)

Swapping Global Warming Gases for Methane in Gas Hydrate Layer ... would serve as energy sources as well as carbon dioxide storage sites in the ...

2006-07-20T23:59:59.000Z

173

Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector  

SciTech Connect

Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

Johnson, J.E.; Bates, T.S. [NOAA, Seattle, WA (United States)

1993-12-01T23:59:59.000Z

174

CARBON FLUX TO THE ATMOSPHERE FROM LAND-USE CHANGES: 1850 TO...  

NLE Websites -- All DOE Office Websites (Extended Search)

C: REGIONAL CARBON-CHANGE COEFFICIENTS The following listing provides the regional values and coefficients associated with oxidation and recovery of carbon in vegetation, soils,...

175

Mechanisms controlling the production and transport of methane, carbon dioxide, and dissolved solutes within a boreal peatland. Progress report, July 15, 1992--July 14, 1993  

SciTech Connect

The role of freshwater peatlands in the global methane cycle remains uncertain. Field measurements of methane emissions tend to be highly variable across a peatland and exhibit sharp seasonal fluctuations. The process of extrapolating these variable measurements to regional estimates is further complicated by rudimentary knowledge of the environmental controls can the production and emissions of methane from peat. The distribution of methanogenesis within the peat profile will strongly influence the response of methane emissions to potential climatic changes. During the summers of 1990 and 1991 we conducted a study on the mechanisms for the production, transport, and storage of methane within the Glacial Lake Agassiz peatland region as the regional climate shifted from extreme drought to a period of normal rainfall. This natural experiment provided unexpected insights on the linkages among climate, hydrology, and the methane cycle in large peat basins. This report presents project progress for period July 15, 1992--July 14, 1993

Siegel, D.I.

1993-06-24T23:59:59.000Z

176

Chemical Bonding and Structural Information of Black Carbon Reference Materials and Individual Carbonaceous Atmospheric Aerosols  

E-Print Network (OSTI)

HULIS) in biomass-burning aerosols, Atmospheric Chemistrymicroscopical and aerosol dynamical characterizationof soot aerosols, Journal of Aerosol Science , 34 , 1347-

Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

2007-01-01T23:59:59.000Z

177

Coalbed Methane  

Energy.gov (U.S. Department of Energy (DOE))

Coalbed methane is natural gas found in coal deposits. It was once considered a nuisance and mine safety hazard, but today has become a valuable part of the U.S. energy portfolio. A major reason for this is resource characterization and the establishment of efficient recovery methods pioneered by Office of Fossil Energy R&D.

178

Production Test IP-358-AC: Replacement of carbon dioxide with nitrogen as a constituent of the K reactor atmosphere  

SciTech Connect

Compensation for the positive long-term reactivity transient associated with Hanford reactor may be accomplished in two ways: The addition of a poisonous material (rods, splines, etc.) to the reactor, or cooling the moderator by changing the gas composition. The objective of this study is to investigate the reactivity and temperature effects and the associated operating problems if any, resulting from the use of nitrogen instead of carbon dioxide as a constituent of the reactor atmosphere.

Bailey, G.F.; Benoliel, R.W.

1960-10-03T23:59:59.000Z

179

Carbon Dioxide as Cushion Gas for Natural Gas Storage  

Carbon dioxide injection during carbon sequestration with enhanced gas recovery can be carried out to produce the methane while

180

CFD Modeling of Methane Production from Hydrate-Bearing Reservoir  

Science Conference Proceedings (OSTI)

Methane hydrate is being examined as a next-generation energy resource to replace oil and natural gas. The U.S. Geological Survey estimates that methane hydrate may contain more organic carbon the the world's coal, oil, and natural gas combined. To assist in developing this unfamiliar resource, the National Energy Technology Laboratory has undertaken intensive research in understanding the fate of methane hydrate in geological reservoirs. This presentation reports preliminary computational fluid dynamics predictions of methane production from a subsurface reservoir.

Gamwo, I.K.; Myshakin, E.M.; Warzinski, R.P.

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ecosystem-Atmosphere Exchange of Carbon, Water and Energy over a Mixed Deciduous Forest in the Midwest  

Science Conference Proceedings (OSTI)

During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration of atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.

Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond; J.C. Randolph; J.R. White

2012-12-17T23:59:59.000Z

182

NETL: Methane Hydrates - Gas Hydrate Research in Deep Sea Sediments - New  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 Hydrate Research in Deep Sea Sediments - Chatham Rise, New Zealand Task Last Reviewed 12/30/2013 DE-AI26-06NT42878 Goal The goal of the Interagency Agreement between the National Energy Technology Laboratory and the Naval Research Laboratory is to conduct research to enhance understanding of the extent and dynamics of gas hydrate deposits and their relation to areas of focused fluid flux at and beneath the seafloor. Performer Marine Biogeochemistry Section, Naval Research Laboratory, Washington, DC 20375 Background Methane is a potent greenhouse gas necessitating a better understanding of the mechanisms controlling its contribution to the atmospheric carbon cycle. Active methane fluxes (from deep sediment hydrates and seeps) contribute to shallow sediment biogeochemical carbon cycles, which in turn

183

Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries  

Science Conference Proceedings (OSTI)

Changes in atmospheric CO2 variability during the twenty-first century may provide insight about ecosystem responses to climate change and have implications for the design of carbon monitoring programs. This paper describes changes in the three-...

Gretchen Keppel-Aleks; James T. Randerson; Keith Lindsay; Britton B. Stephens; J. Keith Moore; Scott C. Doney; Peter E. Thornton; Natalie M. Mahowald; Forrest M. Hoffman; Colm Sweeney; Pieter P. Tans; Paul O. Wennberg; Steven C. Wofsy

2013-07-01T23:59:59.000Z

184

Atmospheric Circulation Response to an Instantaneous Doubling of Carbon Dioxide. Part I: Model Experiments and Transient Thermal Response in the Troposphere  

Science Conference Proceedings (OSTI)

This study aims to understand the dynamical mechanisms driving the changes in the general circulation of the atmosphere due to increased carbon dioxide (CO2) by looking into the transient step-by-step adjustment of the circulation. The transient ...

Yutian Wu; Richard Seager; Mingfang Ting; Naomi Naik; Tiffany A. Shaw

2012-04-01T23:59:59.000Z

185

Long-Term, Autonomous Measurement of Atmospheric Carbon Dioxide Using an Ormosil Nanocomposite-Based Optical Sensor  

Science Conference Proceedings (OSTI)

The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected to increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.

Kisholoy Goswami

2005-10-11T23:59:59.000Z

186

800,000-year Ice-Core Records of Atmospheric Carbon Dioxide ...  

NLE Websites -- All DOE Office Websites (Extended Search)

time series extending to the present These records are maintained by the World Data Center for Paleoclimatology, National Oceanic and Atmospheric Administration (NOAA), and...

187

Transient Response of the Hadley Centre Coupled Ocean-Atmosphere Model to Increasing Carbon Dioxide. Part II: Spatial and Temporal Structure of Response  

Science Conference Proceedings (OSTI)

A high-resolution (2.75° lat × ° 3.75° long) coupled ocean-atmosphere model has been used to simulate the transient response of climate to a gradual increase in atmospheric carbon dioxide concentrations. Although the radiative forcing increases ...

J. M. Murphy; J. F. B. Mitchell

1995-01-01T23:59:59.000Z

188

Geologic Storage of Carbon Dioxide Principal Investigators  

E-Print Network (OSTI)

of our methane extraction around 10 years from now, similar to growth in coal-bed methane over the last reserves of coal, oil, and gas--is frozen into an icy material known as methane clathrates or hydratesCarbon.1018g Coal Oil Gas Methane Hydrate Amount of Carbon in Fossil Fuels and Hydrate Proven reserves

Harris, Jerry M.

189

EIA - The National Energy Modeling System: An Overview 2003-Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide and Methane Emissions Carbon Dioxide and Methane Emissions The National Energy Modeling System: An Overview 2003 Carbon Dioxide and Methane Emissions The emissions policy submodule, part of the integrating module, estimates the energy–related emissions of carbon dioxide and methane. Carbon dioxide emissions are dependent on the fossil fuel consumed, the carbon content of the fuel, and the fraction of the fuel consumed in combustion. The product of the carbon dioxide coefficient and the combustion fraction yields a carbon dioxide emission factor. For fuel uses of fossil energy, the combustion fractions are assumed to be 0.99 for liquid fuels and 0.995 for gaseous fuels. The carbon dioxide potential of nonfuel uses of energy, such as asphalt and petrochemical feedstocks, is assumed to be sequestered in the product and not released to the atmosphere. The coefficients for carbon dioxide emissions are updated each year from the Energy Information Administration’s annual, Emissions of Greenhouse Gases in the United States.17

190

Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report  

SciTech Connect

The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

Cushman, R.M.

2001-11-15T23:59:59.000Z

191

Methane production by attached film  

DOE Patents (OSTI)

A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

Jewell, William J. (202 Eastwood Ave., Ithaca, NY 14850)

1981-01-01T23:59:59.000Z

192

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 Global Assessment of Methane Gas Hydrates Last Reviewed 12/18/2013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate informed decision-making regarding the potential development of gas hydrate resources between the scientific community and other stakeholders/decision makers. The Assessment will provide science-based information on the role of gas hydrates in natural climate change and the carbon cycle, their sensitivity to climate change, and the potential environmental and socio-economic impacts of hydrate production. Performers Stiftelsen GRID-Arendal, Arendal, Norway Funding Institutions United Nations Environment Programme (UNEP) Statoil Schlumberger United States Department of Energy (USDOE)

193

Application of numerical, experimental and life cycle assessment methods to the investigation of natural gas production from methane hydrate deposits using carbon dioxide clathrate sequestration.  

E-Print Network (OSTI)

??Natural gas hydrates, commonly called methane (CH4) hydrates, are ice-like materials belonging to the family of clathrates that form at low temperature and high pressure.… (more)

Nago, Annick

2013-01-01T23:59:59.000Z

194

Atmospheric carbon diooxide mixing ratios from the NOAA Climate Monitoring and Diagnostics Laboratory cooperative flask sampling network, 1967-1993  

Science Conference Proceedings (OSTI)

This data report documents monthly atmospheric CO{sub 2} mixing ratios and measurements obtained by analyzing individual flask air samples for the NOAA/CMDL global cooperative flask sampling network. Measurements include land-based sampling sites and shipboard measurements covering 14 latitude bands in the Pacific Ocean and South China Sea. Analysis of the NOAA/CMDL flask CO{sub 2} database shows a long-term increase in atmospheric CO{sub 2} mixing ratios since the late 1960s. This report describes how the samples are collected and analyzed and how the data are processed, defines limitations, and restrictions of the data, describes the contents and format of the data files, and provides tabular listings of the monthly carbon dioxide records.

Conway, T.J.; Tans, P.P. [National Oceanic and Atmospheric Administration, Boulder, CO (United States); BBoden, T.A. [Oak Ridge National Lab., TN (United States)

1996-02-01T23:59:59.000Z

195

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA)

Carbon Sequestration: The fixation of atmospheric carbon dioxide in a carbon sink through biological or physical processes. Carbon Sink: ...

196

A Lightweight Observation System for Atmospheric Carbon Dioxide Concentration Using a Small Unmanned Aerial Vehicle  

Science Conference Proceedings (OSTI)

To make the investigation of the temporal and spatial variations of atmospheric CO2 in and above the planetary boundary layer more flexible and economical, a lightweight observation system using a small unmanned aerial vehicle has been developed ...

T. Watai; T. Machida; N. Ishizaki; G. Inoue

2006-05-01T23:59:59.000Z

197

Regional Estimates of Net Ecosystem-Atmosphere Exchange of Carbon Dioxide over a Heterogeneous Ecosystem.  

E-Print Network (OSTI)

??The net ecosystem-atmosphere exchange of CO2 (NEE) is estimated over a mixed forest ecosystem in the 40×40km2 region centered at the WLEF tall tower in… (more)

Wang, Weiguo

2005-01-01T23:59:59.000Z

198

Carbon-14 Measurements in Atmospheric CO2 from Northern and Southern...  

NLE Websites -- All DOE Office Websites (Extended Search)

ray neutrons and the nitrogen atoms of the air (Libby 1952). Solar (heliomagnetic), geomagnetic, and ocean forcing all play a role in atmospheric 14CO2 (Stuiver and Braziunas...

199

Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites  

Science Conference Proceedings (OSTI)

Understanding the potential impacts of unexpected surface releases of CO{sub 2} is an essential part of risk assessment for geologic carbon sequestration sites. We have extended a mesoscale atmospheric model to model dense gas dispersion of CO{sub 2} leakage. The hazard from CO{sub 2} leakage is greatest in regions with topographic depressions where the dense gas can pool. Simulation of dispersion in idealized topographies shows that CO{sub 2} can persist even under high winds. Simulation of a variety of topographies, winds, and release conditions allows the generation of a catalog of simulation results that can be queried to estimate potential impacts at actual geologic carbon sequestration sites.

Chow, Fotini K.; Granvold, Patrick W.; Oldenburg, Curtis M.

2008-11-01T23:59:59.000Z

200

NIST: Methane Symmetry Operations  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Version History Methane Symmetry Operations. JT Hougen Optical Technology Division Gloria Wiersma ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The tropical cyclone-induced flux of carbon between the ocean and the atmosphere  

E-Print Network (OSTI)

Tropical cyclones are known to cause phytoplankton blooms in regions of the ocean that would otherwise support very little life; it is also known that these storms entrain carbon-rich deep water, which can cause ...

Zimmerman, Neil L

2012-01-01T23:59:59.000Z

202

SAES ST 909 PILOT SCALE METHANE CRACKING TESTS  

DOE Green Energy (OSTI)

Pilot scale (500 gram) SAES St 909 methane cracking tests were conducted to determine material performance for tritium process applications. Tests that ran up to 1400 hours have been performed at 700 C, 202.7 kPa (1520 torr) with a 30 sccm feed of methane, with various impurities, in a 20 vol% hydrogen, balance helium, stream. A 2.5 vol% methane feed was reduced below 30 ppm for 631 hours. A feed of 1.1 vol% methane plus 1.4 vol% carbon dioxide was reduced below 30 ppm for 513 hours. The amount of carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered to estimate a reduced bed life for methane cracking. The effect of 0.4 vol % and 2.1 vol% nitrogen in the feed reduced the time to exceed 30 ppm methane to 362 and 45 hours, respectively, but the nitrogen equivalence to reduced methane gettering capacity was found to be dependent on the nitrogen feed composition. Decreased hydrogen concentrations increased methane getter rates while a drop of 30 C in one bed zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if the nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate.

Klein, J; Henry Sessions, H

2007-07-02T23:59:59.000Z

203

Capturing and sequestering carbon by enhancing the natural carbon cycle: Prelimary identification of basic science needs and opportunities  

SciTech Connect

This document summarizes proceedings and conclusions of a US DOE workshop. The purpose of the workshop was to identify the underlying research needed to answer the following questions: (1) Can the natural carbon cycle be used to aid in stabilizing or decreasing atmospheric CO{sub 2} and CH{sub 4} by: (a) Increasing carbon capture; (b) Preventing carbon from returning to the atmosphere through intermediate (<100 years) to long-term sequestration (> 100 years)?; and (2) What kind of ecosystem management practices could be used to achieve this? Three working groups were formed to discuss the terrestrial biosphere, oceans, and methane. Basic research needs identified included fundamental understanding of carbon cycling and storage in soils, influence of climate change and anthropogenic emissions on the carbon cycle, and carbon capture and sequestration in oceans. 2 figs., 4 tabs.

Benson, S.M.

1997-07-01T23:59:59.000Z

204

A Guidebook for Low-Carbon Development at the Local Level  

E-Print Network (OSTI)

Industrial Sector Carbon Dioxide Emissions: Projections andEnergy Costs, and Carbon Dioxide Emissions (ORNL/TM-main carbon-based GHGs: carbon dioxide (CO 2 ) and methane (

Zhou, Nan

2012-01-01T23:59:59.000Z

205

Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments  

SciTech Connect

A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica" Rocasolano" C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L' Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

2007-12-28T23:59:59.000Z

206

Review of recent reports dealing with the greenhouse effect of atmospheric carbon dioxide  

SciTech Connect

Prior to the Industrial Revolution, the concentration of CO/sub 2/ in the Earth's atmosphere is estimated to have been between 260 to 270 ppm by volume. Direct measurements begun during the International Geophysical year of 1957-1958 indicate a change in global concentration to 315 ppm; current measurements indicate levels of just over 350 ppm. The author states that theoretical climate models may not reflect demonstrable biological realities; that increased atmospheric CO/sub 2/ levels may lead to increased vegetation, with grasslands spreading out over deserts and forests encroaching on grasslands.

Idso, S.B.

1984-05-01T23:59:59.000Z

207

Extracting value from coal mine methane  

Science Conference Proceedings (OSTI)

Emerging US policy to regulate greenhouse gas (GHG) emissions through a cap-and-trade program presents mine managers with a new opportunity to explore and develop methane utilization or abatement projects that generate value from the anodization of carbon offset credits. In addition, the rising focus on US energy security and domestic energy supply is promoting mine managers and engineers to give further consideration to the importance of their methane gas by-products. The market through which coal mine methane offset projects can be developed and carbon offset credits monetized is quickly maturing. While many methane utilization projects have previously been uneconomical, the carbon offset credit market provides a new set of financing tools for mine engineers to capitalize these projects today. Currently , there are two certification programs that have approved project protocols for CMM projects. The Voluntary Carbon Standard (VCS) offers a methodology approved under the Clean Development Mechanism, the international compliance based offset market under the Kyoto Protocol. The VCS protocol is applicable to projects that combust ventilation air methane (VAM) and methane extracted from pre-and post-mine drainage systems. The Chicago Climate Exchange (CCX), which operates a voluntary yet binding cap-and-trade market, also has an approved protocol for CMM projects. CCX's protocol can be applied to projects combusting VAM, and methane extracted from pre-and-post-mine drainage systems, as well as abandoned mines. The article describes two case studies - Developing a gob gas utilization project financed by carbon offset credits and First VAM oxidation system to be commissioned at an operating mine in the US. 1 tab., 4 photos.

Liebert, B. [Verdao Group (United States)

2009-06-15T23:59:59.000Z

208

Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer  

Science Conference Proceedings (OSTI)

Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

2012-05-01T23:59:59.000Z

209

Upgrading drained coal mine methane to pipeline quality: a report on the commercial status of system suppliers  

Science Conference Proceedings (OSTI)

In today's scenario of growing energy demand worldwide and rising natural gas prices, any methane emitted into the atmosphere is an untapped resource of energy and potentially a lost opportunity for additional revenue. In 2005, 9.7% of the total US anthropogenic emissions of methane were attributed to coal production. In recent years, many gassy coal mines have seized the opportunity to recover coal mine methane (CMM) and supply it to natural gas pipeline systems. With natural gas prices in the US exceeding $7.00 per million Btu, CMM pipeline sales brought in an annual revenue topping $97 million in 2005. However, significant opportunity still exists for tapping into this resource as 22% of the drained CMM remains unutilized as of 2005, primarily because its quality does not meet the requirements of natural gas pipeline systems. Recent advances in technologies now offer off-the-shelf options in the US that can upgrade the drained CMM to pipeline quality. These gas upgrading technologies are not only opening up the market to lower-quality methane resources but also providing significant means for reducing emissions, since methane is over 20 times a more potent greenhouse gas than carbon dioxide. This report reviews current gas upgrading technologies available in the market for removal of typical CMM contaminants, provides examples of their successful commercial implementation and compiles a list of vendors specific to nitrogen rejection systems, since nitrogen exposes the biggest challenge to upgrading CMM. 2 figs., 3 tabs., 9 apps.

Carothers, F.P.; Schultz, M.L.

2008-01-15T23:59:59.000Z

210

Assessing methane oxidation under landfill covers and its contribution to the above atmospheric CO{sub 2} levels: The added value of the isotope ({delta}{sup 13}C and {delta}{sup 18}O CO{sub 2}; {delta}{sup 13}C and {delta}D CH{sub 4}) approach  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Comparison of the isotope and mass balance approaches to evaluate the level of methane oxidation within a landfill. Black-Right-Pointing-Pointer The level of methane oxidation is not homogenous under the landfill cover and is strongly correlated to the methane flux. Black-Right-Pointing-Pointer Isotope tracking of the contribution of the methane oxidation to the CO{sub 2} concentrations in the ambient air. - Abstract: We are presenting here a multi-isotope approach ({delta}{sup 13}C and {delta}{sup 18}O of CO{sub 2}; {delta}{sup 13}C and {delta}D of CH{sub 4}) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO{sub 2} levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH{sub 4} oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH{sub 4} is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH{sub 4} oxidation by the methanotrophic bacteria. {delta}{sup 13}C of CO{sub 2} samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.

Widory, D., E-mail: d.widory@brgm.fr [BRGM, 3 ave Claude Guillemin, 45000 Orleans (France); Proust, E.; Bellenfant, G. [BRGM, 3 ave Claude Guillemin, 45000 Orleans (France); Bour, O. [INERIS, Parc Technologique ALATA, 60550 Verneuil-en-Halatte (France)

2012-09-15T23:59:59.000Z

211

UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION  

SciTech Connect

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

Anna Lee Tonkovich

2004-01-01T23:59:59.000Z

212

Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites  

E-Print Network (OSTI)

CO 2 from geologic carbon sequestration sites, Vadose Zoneleakage at geologic carbon sequestration sites Fotini K.assessment for geologic carbon sequestration sites. We have

Chow, Fotini K.

2009-01-01T23:59:59.000Z

213

Coupled Vadose Zone and Atmospheric Surface-Layer Transport of CO2 from Geologic Carbon Sequestration Sites  

E-Print Network (OSTI)

1999. Reichle, D. et al. , Carbon sequestration research andfrom geologic carbon sequestration sites: unsaturated zoneCO 2 from a geologic carbon sequestration site showing the

Oldenburg, Curtis M.; Unger, Andre J.A.

2004-01-01T23:59:59.000Z

214

A Guidebook for Low-Carbon Development at the Local Level  

E-Print Network (OSTI)

level. Percentage of landfill gas (methane) that is capturedenergy and reducing carbon emissions: landfill gas capture.Landfill gas is primarily methane; thus it can be captured

Zhou, Nan

2012-01-01T23:59:59.000Z

215

EXTRACTION OF CARBON DIOXIDE FROM THE ATMOSPHERE THROUGH ENGINEERED CHEMICAL SINKAGE.  

DOE Green Energy (OSTI)

We present the case for C02 extraction from air as a means of sustaining fossil energy use by avoiding climate change. Our concept harnesses atmospheric circulation to transport C02 to sites where the C02 is extracted by binding it to an adsorbent. As a proof of concept, we show that an aqueous Ca(OH)2 solution efficiently converts C02 to a CaC03 solid that can be heated to obtain pure C02 and recover the CaO. Even with recycling costs, C02 extraction from air blown by wind through a 1 m2 aperture could eliminate the greenhouse gas impact of 100 kW gasoline engine, making it more favorable than renewable sources as solar, wind, or bio-mass. In addition it collects C02 from dispersed sources, preserves the energy infrastructure, can yield negative emissions, and provide free C02 transport to sequestration sites. We report economic and scaling arguments, atmospheric simulations and experiments that support pursuing air-extraction as an advanced C02 capture technology. This method could process today's world output of C02 with many collection units with a net area of 103-104 km2 at costs of -5/liter of gasoline, a manageable scale for this massive undertaking.

Dubey, M. K. (Manvendra K.); Ziock, H. J. (Hans-Joachim); Rueff, G. (Gordon); Elliott, S. M. (Scott M.); Smith, W. S. (William S.); Lackner, K. S. (Klaus S.); Johnston, N. A.

2001-01-01T23:59:59.000Z

216

EXTRACTION OF CARBON DIOXIDE FROM THE ATMOSPHERE THROUGH ENGINEERED CHEMICAL SINKAGE  

DOE Green Energy (OSTI)

We present the case for CO{sub 2} extraction from air as a means of sustaining fossil energy use by avoiding climate change. Our concept harnesses atmospheric circulation to transport CO{sub 2} to sites where the CO{sub 2} is extracted by binding it to an adsorbent. As a proof of concept, we show that an aqueous Ca(OH){sub 2} solution efficiently converts CO{sub 2} to a CaCO{sub 3} solid that can be heated to obtain pure CO{sub 2} and recover the CaO. Even with recycling costs, CO{sub 2} extraction from air blown by wind through a 1 m{sup 2} aperture could eliminate the greenhouse gas impact of 100 kW gasoline engine, making it more favorable than renewable sources as solar, wind, or bio-mass. In addition it collects CO{sub 2} from dispersed sources, preserves the energy infrastructure, can yield negative emissions, and provide free CO{sub 2} transport to sequestration sites. We report economic and scaling arguments, atmospheric simulations and experiments that support pursuing air-extraction as an advanced CO{sub 2} capture technology. This method could process today's world output of CO{sub 2} with many collection units with a net area of 10{sup 3}-10{sup 4} km{sup 2} at costs of {approx} 5{cents}/liter of gasoline, a manageable scale for this massive undertaking.

M. K. DUBEY; H. ZIOCK; ET AL

2001-11-01T23:59:59.000Z

217

Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center]|[Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center

1994-01-01T23:59:59.000Z

218

Climatic changes from increased atmospheric carbon dioxide. 1970-February 1981 (citations from the NTIS Data Base). Report for 1970-Feb 81  

SciTech Connect

The cited reports of Federally-funded research examine the relationship between climatic changes and an increase in atmospheric carbon dioxide. Topics considered include the Greenhouse effect, global climatic models, and climatic effects from increased combustion of fossil fuels. (This updated bibliography contains 59 citations, 20 of which are new entries to the previous edition.)

1981-03-01T23:59:59.000Z

219

Heat pipe methanator  

DOE Patents (OSTI)

A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

Ranken, William A. (Los Alamos, NM); Kemme, Joseph E. (Los Alamos, NM)

1976-07-27T23:59:59.000Z

220

Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report  

SciTech Connect

The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made up of three groups: Data Systems, Information Services, and Computer Systems, with nineteen full-time or part-time staff. The following section provides details on CDIAC's staff and organization. The Data Systems Group identifies and obtains databases important to global-change research; analyzes data; compiles needed databases; provides data management and support to specific programs [e.g., NARSTO, Free-Air CO{sub 2} Enrichment (FACE), AmeriFlux, Oceans]; and prepares documentation to ensure the long-term utility of CDIAC's data holdings. The Information Services Group responds to data and information requests; maintains records of all request activities; analyzes user statistics; assists in Web development and maintenance; and produces CDIAC's newsletter (CDIAC Communications), the fiscal year annual reports, and various information materials. The Computer Systems Group provides computer system support for all CDIAC and WDC activities; designs and maintains CDIAC's computing system network; ensures compliance with ORNL/DOE computing security regulations; ensures long-term preservation of CDIAC data holdings through systematic backups; evaluates, develops, and implements software; ensures standards compliance; generates user statistics; provides Web design, development, and oversight; and provides systems analysis and programming assistance for scientific data projects.

Cushman, R.M.

2002-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 1999 Annual Report  

SciTech Connect

The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has--since its inception in 1982--enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea level. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Acting Director) of DOE's Office of Biological and Environmental Research. CDIAC's FY 1999 budget was 2.2M dollars. CDIAC represents the DOE in the multi-agency Global Change Data and Information System. Bobbi Parra, and Wanda Ferrell on an interim basis, is DOE's Program Manager with responsibility for CDIAC. CDIAC comprises three groups, Global Change Data, Computer Systems, and Information Services, with seventeen full-time and part-time staff. The Global Change Data group is responsible for identifying and obtaining databases important to global-change research, analyzing data, compiling needed databases, providing data management support to specific programs (e.g., NARSTO), and preparing documentation to ensure the long-term utility of CDIAC's data holdings. The Computer Systems group provides computer system support for all CDIAC and WDC activities, including designing and maintaining CDIAC's computing system network; ensuring compliance with ORNL/DOE computing security regulations; ensuring long-term preservation of CDIAC data holdings through systematic backups; evaluating, developing, and implementing software; ensuring standards compliance; generating user statistics; providing Web design, development, and oversight; and providing systems analysis and programming assistance for scientific data projects. The Information Services group responds to data and information requests; maintains records of all request activities; assists in Web development and maintenance; and produces CDIAC's newsletter, CDIAC Communications, catalog, glossary, and educational materials. The following section provides further details on CDIAC's organization.

Cushman, R.M.

2000-03-31T23:59:59.000Z

222

Structure of Isoprene Synthase Illuminates the Chemical Mechanism of Teragram Atmospheric Carbon Emission  

SciTech Connect

The X-ray crystal structure of recombinant PcISPS (isoprene synthase from gray poplar hybrid Populus x canescens) has been determined at 2.7 {angstrom} resolution, and the structure of its complex with three Mg{sup 2+} and the unreactive substrate analogue dimethylallyl-S-thiolodiphosphate has been determined at 2.8 {angstrom} resolution. Analysis of these structures suggests that the generation of isoprene from substrate dimethylallyl diphosphate occurs via a syn-periplanar elimination mechanism in which the diphosphate-leaving group serves as a general base. This chemical mechanism is responsible for the annual atmospheric emission of 100 Tg of isoprene by terrestrial plant life. Importantly, the PcISPS structure promises to guide future protein engineering studies, potentially leading to hydrocarbon fuels and products that do not rely on traditional petrochemical sources.

Koksal, M.; Zimmer, I; Schnitzler, J; Christianson, D

2010-01-01T23:59:59.000Z

223

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Reference Shelf Reference Shelf The Methane Hydrate Reference Shelf was created to provide a repository for information collected from projects funded as part of the National Methane Hydrate R&D Program. As output from the projects is received, it will be reviewed and then placed onto the reference shelf to be available to other methane hydrate researchers. Projects: DOE/NETL Projects : These pages contain detailed information on methane hydrate projects funded through the National Energy Technology Laboratory. Publications: Newsletter | Bibliography | Software | Reports | Program Publications | Photo Gallery Newsletter: Fire in the Ice: A publication highlighting the National Methane Hydrate R&D Program Bibliography: "Project Reports Bibliography"[PDF]: The bibliography lists publications resulting from DOE/NETL-sponsored

224

Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water  

Science Conference Proceedings (OSTI)

Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

Song Jin

2007-05-31T23:59:59.000Z

225

Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds  

SciTech Connect

The enrichment of black carbon (BC) in residuals of small ice crystals was investigated during intensive experiments in winter 2004 and 2005 at the high alpine research station Jungfraujoch (3580 m asl, Switzerland). Two inlets were used to sample the bulk aerosol (residuals of cloud droplets and ice crystals as well as non-activated aerosol particles) and the residual particles of small ice crystals (diameter 5 - 20 ?m). An enrichment of the BC mass fraction in the ice particle residuals was observed by investigating the measured BC mass concentration as a fraction of the bulk (submicrometer) aerosol mass concentration sampled by the two inlets. On average, the BC mass fraction was 5% for the bulk aerosol and 27% for the ice particle residuals. The observed enrichment of BC in ice particle residuals suggests that BC containing particles preferentially act as ice nuclei, with important implications for the indirect aerosol effect via glaciation of clouds.

Cozic, J.; Mertes, S.; Verheggen, B.; Cziczo, Daniel J.; Gallavardin, S. J.; Walter, S.; Baltensperger, Urs; Weingartner, E.

2008-08-15T23:59:59.000Z

226

Black carbon enrichment in atmospheric ice particle residuals observed in lower trophospheric mixed phase clouds  

SciTech Connect

The enrichment of black carbon (BC) in residuals of small ice particles was investigated during intensive experiments in winter 2004 and 2005 at the high alpine research station Jungfraujoch (3580 m asl, Switzerland). Two inlets were used to sample the bulk aerosol (residuals of cloud droplets and ice crystals as well as non-activated aerosol particles) and the residual particles of small ice crystals (diameter 5 - 20 m). An enrichment of the BC mass fraction in the ice particle residuals was observed by investigating the measured BC mass concentration as a fraction of the bulk (submicrometer) aerosol mass concentration sampled by the two inlets. On average, the BC mass fraction was 5% for the bulk aerosol and 14% for the ice particle residuals. The observed enrichment of BC in ice particle residuals suggests that BC may act as ice nuclei, with important implications for the indirect aerosol effect via glaciation of clouds.

Cozic, J.; Mertes, S.; Verheggen, B.; Cziczo, Dan; Gallavardin, S. J.; Walter, S.; Baltensperger, Urs; Weingartner, E.

2008-08-15T23:59:59.000Z

227

NETL: Methane Hydrates - DOE/NETL Projects - Measurement and...  

NLE Websites -- All DOE Office Websites (Extended Search)

of CO2 for CH4 has been proposed (and briefly tested) as a method of both extracting methane and sequestering carbon dioxide. Our suite of measurements can be systematically...

228

Comparison of porous and nonporous materials for methane storage  

SciTech Connect

Sublimed, low-density p-tert-buytlcalix(4)arene absorbs methane more readily at room temperature and 1 atm pressure than do either single wall carbon nanotubes (SWNT) or a comparaitive porous metal-organic framework (MOF-1).

Thallapally, Praveen K.; Kirby, Karen A.; Atwood, Jerry L.

2007-05-10T23:59:59.000Z

229

Data from Alaska Test Could Help Advance Methane Hydrate R&D | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from Alaska Test Could Help Advance Methane Hydrate R&D from Alaska Test Could Help Advance Methane Hydrate R&D Data from Alaska Test Could Help Advance Methane Hydrate R&D March 25, 2013 - 1:27pm Addthis Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Image of how methane hydrates can form in arctic and marine environments. | Illustration by the Energy Department. Gayland Barksdale Technical Writer, Office of Fossil Energy DOE & Methane Hydrates The Methane Hydrate Research and Development Act of 2000 established DOE as the lead U.S. agency for methane hydrate R&D. Innovative technology is being developed to inject CO2 into methane hydrate deposits to both release the fuel and permanently store carbon dioxide. DOE's R&D program is focused on developing the tools and

230

On the coupled evolution of inflation, wealth and atmospheric concentrations of carbon dioxide  

E-Print Network (OSTI)

In a prior study (Garrett, 2009), a thermodynamically-based economic growth model was introduced that was based on the finding that the rate of consumption of energy by civilization has been related to its historical accumulation of inflation-adjusted Gross World Product (GWP), or its ``wealth'', through a constant value {\\lambda} of 9.7 {\\pm} 0.3 milliwatts per 1990 US dollar. Here, this simple model is extended to describe, first, a thermodynamically-based theory for economic inflation and, second, a prognostic model for the coupled multi-decadal evolution of CO2 concentrations and GWP. Multi-decadal hindcasts of GWP and CO2 concentrations made with this model are shown to be accurate. Applied to coming decades, the model implies that, like a long-term natural disaster, future greenhouse warming will accelerate economic inflation. Such inflation will slow growth of not just inflation-adjusted economic wealth, but also CO2 emission rates because the two are coupled through {\\lambda}. Maintaining atmospheric ...

Garrett, Timothy J

2010-01-01T23:59:59.000Z

231

Geologic Carbon Storage Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Corporation 9302005 Enhanced Microbial Pathways for Methane Production from Oil Shale Western Research Institute 1012005 Carbon Sequestration for Existing Power Plants...

232

Methane level rise blamed in greenhouse effect  

SciTech Connect

As scientists continue to probe effects of global warming trends and the greenhouse effect, increasing attention is being placed on the impact of methane. Last year, scientists at the University of California in Irvine found there were almost 1.7 parts per million of methane in the troposphere- 11% higher that a decade ago and climbing at 1% annually. European scientists came up with similar analyses, and the belief is that methane is currently 2.4 times higher than it has ever been in the last 160,000 years. The big challenge now is to identify the sources of the methane. About 15 to 20% can be traced to oil and gas wells, coal mining and other tapping of the gas trapped in the planet's crust. Other sources are bacteria working in tropical rain forests, burned-off clearings, etc. Cattle figure high on the list of methane generators. When domesticated herds of sheep, goats, pigs, etc. are figured, the total rises to 73 million metric tons per year- a 435% increase since 1890. Rice paddies are also rated a major source of methane. It's estimated that 115 million metric tons rise from rice paddies a year, as much as is coming from natural swamps and wetlands. When scientists added up all the published estimates of methane production, the total ranged from 400 million to 640 million metric tons a year. Estimates of how much methane the atmosphere can handle are similarly uncertain, ranging from 300 million to 650 million metric tons a year.

1989-01-01T23:59:59.000Z

233

CSIRO GASLAB Network: Individual Flask Measurements of Atmospheric Trace  

NLE Websites -- All DOE Office Websites (Extended Search)

GASLAB Network GASLAB Network CSIRO GASLAB Network: Individual Flask Measurements of Atmospheric Trace Gases (April 2003) data Data Investigators L.P. Steele, P.R. Krummel, and R.L. Langenfelds Commonwealth Scientific and Industrial Research Organisation (CSIRO) DOI 10.3334/CDIAC/atg.db1021 Data are available for four atmospheric trace gases at nine stationary sites and one moving platform (aircraft over Cape Grim, Tasmania, and Bass Strait, between the Australian continent and Tasmania). The trace gases are carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and hydrogen (H2). Measurements of δ13C from CO2 are also included in this database. The nine stationary sites are, from north to south: Alert, Canada; Shetland Islands, Scotland; Estevan Point, Canada; Mauna Loa, Hawaii; Cape Ferguson,

234

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, October 1, 1994--December 31, 1994  

SciTech Connect

This report describes research on the oxidative coupling of methane and catalysts involved in coal gasification. Topics include methane pyrolysis and catalysts, and magnetic properties of the coal gasification catalyst Ca-Ni-K-O system.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1994-12-01T23:59:59.000Z

235

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be present in only trace proportions in our atmosphere but it has a leading role in the cast of greenhouse gases, with a thermal radiative effect nearly three times as large as the next biggest contributor. Energy related processes are the biggest sources of atmospheric CO2, especially the burning of fossil fuels and the production of hydrogen from methane. Since both human-caused CO2 concentrations and global average temperatures have been increasing steadily since the mid-20th century it could very well be that our energy future depends on our ability to effectively remove CO2

236

NETL: Methane Hydrates - Methane Hydrate Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Ridge region Ongoing areas of study in the Hydrate Ridge region Map showing where gas hydrates occur off the Cascadia Margin Locations of methane hydrate off the Cascadia Margin...

237

NETL: Methane Hydrates - Methane Hydrate Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrates Primer provides background and general information about the history of hydrate R&D, the science of methane hydrates, their occurrences, and R&D related issues. Photo...

238

Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Annual technical report  

Science Conference Proceedings (OSTI)

Northern ecosystems contain up to 455 Gt of C in the soil active layer and upper permafrost. The soil carbon in these layers is equivalent to approximately 60% of the carbon currently in the atmosphere as CO{sub 2}. Much of this carbon is stored in the soil as dead organic matter. Its fate is subject to the net effects of global change on the plant and soil systems of northern ecosystems. The arctic alone contains about 60 Gt C, 90% of which is present in the soil active layer and upper permafrost. The arctic is assumed to have been a sink for CO{sub 2} during the historic and recent geologic past. The arctic has the potential to be a very large, long-term source or sink of CO{sub 2} with respect to the atmosphere. In situ experimental manipulations of atmospheric CO{sub 2}, indicated that there is little effect of elevated atmospheric CO{sub 2} on leaf level photosynthesis or whole-ecosystem CO{sub 2} flux over the course of weeks to years, respectively. However, there may be longer- term ecosystem responses to elevated CO{sub 2} that could ultimately affect ecosystem CO{sub 2} balance. In addition to atmospheric CO{sub 2}, climate may affect net ecosystem carbon balance. Recent results indicate that the arctic has become a source of CO{sub 2} to the atmosphere. This change coincides with recent climatic variation in the arctic, and suggests a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. The research proposed in this application has four principal aspects: (A) Long-term response of arctic plants and ecosystems to elevated atmospheric CO{sub 2}; (B) Circumpolar patterns of net ecosystem CO{sub 2} flux; (C) In situ controls by temperature and moisture on net ecosystem CO{sub 2} flux; (D) Scaling of CO{sub 2} flux from plot, to landscape, to regional scales (In conjunction with research proposed for NSF support).

Oechel, W.C.

1992-04-01T23:59:59.000Z

239

Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species  

Science Conference Proceedings (OSTI)

The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes.

Nassar, Ray [University of Toronto; Jones, DBA [University of Toronto; Suntharalingam, P [University of East Anglia, Norwich, United Kingdom; Chen, j. [University of Toronto; Andres, Robert Joseph [ORNL; Wecht, K. J. [Harvard University; Yantosca, R. M. [Harvard University; Kulawik, SS [Jet Propulsion Laboratory, Pasadena, CA; Bowman, K [Jet Propulsion Laboratory, Pasadena, CA; Worden, JR [Jet Propulsion Laboratory, Pasadena, CA; Machida, T [National Institute for Environmental Studies, Japan; Matsueda, H [Meteorological Research Institute, Japan

2010-01-01T23:59:59.000Z

240

Coal bed methane global market potential  

Science Conference Proceedings (OSTI)

Worldwide increases in energy prices, as well as the increased potential for project financing derived from emissions credits, have renewed focus on coal bed methane (CBM) and coal mine methane (CMM) projects in coal-producing countries around the world. Globally, CBM utilization projects (in the operational, development, or planning stages) capture and utilize methane from gassy underground coal mines in at least 13 countries. The total methane emission reductions that could be achieved by these projects are approximately 135 billion cubic feet per year (equal to 14.8 million tons of carbon equivalent per year). This global activity level reflects a growing awareness of the technological practicality and the economic attractiveness of coal mine methane recovery and use. This report outlines the potential of the global CBM market. Contents: An overview of CBM; Challenges and issues; Technologies to generate power from CAM; Global CBM/CMM utilization; Country highlights; Ranking of countries with the largest CMM development potential (Australia, Canada, China, Germany, Mexico, Poland, Russia, Ukraine, United Kingdom, USA, Bulgaria, Czech Republic, France, India, Japan, Kazakhstan, South Africa); Planning CBM/CMM projects; Pre-feasibility and feasibility studies; Demonstration projects; Development plan and application process; Equity and debt; Carbon financing; Government sponsors; Private sponsors; Project risk reduction support; Examples of integrated project financing; Glossary.

Drazga, B. (ed.)

2007-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis  

Science Conference Proceedings (OSTI)

A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

2007-05-16T23:59:59.000Z

242

Why not methane--5. Delivering methane  

SciTech Connect

A discussion showed that the methane delivery system in the U.S. consists of 350,000 mi of underground high-pressure pipelines, 650,000 mi of distribution mains and connections to 45 million energy users. This delivery system now carries much less natural gas than it could carry because of the regulation-caused shortages of recent years. The delivery system is also connected to an efficient storage system of exhausted underground gas wells into which methane from any source (e.g., gasification of coal or vegetation) could be pumped and then recovered as needed. This storage system could be readily expanded and could thus be used for strategic storage of methane. Enough methane could be stored to replace foreign oil if the foreign supply should be interrupted; and methane can be quickly delivered nation-wide, whereas strategic oil storage requires unusual and expensive provisions for delivery. Natural gas usage could be increased by 20Vertical Bar3< in two years and would reduce payments for imported oil by about $10 billion. Doubling the amount of methane used in the U.S. would eliminate the need for foreign oil entirely.

Luntey, E.

1979-01-01T23:59:59.000Z

243

Non-oxidative conversion of methane with continuous hydorgen removal  

SciTech Connect

The objective is to overcome the restrictions of non-oxidative methane pyrolysis and oxidative coupling of methane by transferring hydrogen across a selective inorganic membrane between methane and air streams, without simultaneous transport of hydrocarbon reactants or products. This will make the overall reaction system exothermic, remove the thermodynamic barrier to high conversion, and eliminate the formation of carbon oxides. Our approach is to couple C-H bond activation and hydrogen removal by passage of hydrogen atoms through a dense ceramic membrane. In our membrane reactor, catalytic methane pyrolysis produces C2+ hydrogen carbons and aromatics on the one side of the membrane and hydrogen is removed through an oxide film and combusted with air on the opposite side. This process leads to a net reaction with the stoichiometry and thermodynamic properties of oxidative coupling, but without contact between the carbon atoms and oxygen species.

Borry, R.W. III [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering; Iglesia, E. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

1997-12-31T23:59:59.000Z

244

Methane to methanol conversion  

DOE Green Energy (OSTI)

The purpose of this project is to develop a novel process by which natural gas or methane from coal gasification products can be converted to a transportable liquid fuel. It is proposed that methanol can be produced by the direct, partial oxidation of methane utilizing air or oxygen. It is anticipated that, compared to present technologies, the new process might offer significant economic advantages with respect to capital investment and methane feedstock purity requirements. Results to date are discussed. 6 refs.

Finch, F.T.; Danen, W.C.; Lyman, J.L.; Oldenborg, R.C.; Rofer, C.K.; Ferris, M.J.

1990-01-01T23:59:59.000Z

245

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network (OSTI)

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration and enhanced coalbed methane production in San Juan and Alberta basins, but reservoir modeling is needed to assess the potential of the Black Warrior basin. Alabama ranks 9th nationally in CO2 emissions from power plants; two electricity generation plants are adjacent to the Black Warrior coalbed methane fairway. This research project was a reservoir simulation study designed to evaluate the potential for CO2 sequestration and enhanced coalbed methane (ECBM) recovery in the Blue Creek Field of Black Warrior basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector and producer. The simulation study was based on a 5-spot well pattern 40-ac well spacing. Injection of 100 percent CO2 in coal seams resulted in average volumes of 0.57 Bcf of sequestered CO2 and average volumes of 0.2 Bcf of enhance methane production for the Mary Lee coal zone only, from an 80-acre 5-spot well pattern. For the entire Blue Creek field of the Black Warrior basin, if 100 percent CO2 is injected in the Pratt, Mary Lee and Black Creek coal zones, enhance methane resources recovered are estimated to be 0.3 Tcf, with a potential CO2sequestration capacity of 0.88 Tcf. The methane recovery factor is estimated to be 68.8 percent, if the three coal zones are completed but produced one by one. Approximately 700 wells may be needed in the field. For multi-layers completed wells, the permeability and pressure are important in determining the breakthrough time, methane produced and CO2 injected. Dewatering and soaking do not benefit the CO2 sequestration process but allow higher injection rates. Permeability anisotropy affects CO2 injection and enhanced methane recovery volumes of the field. I recommend a 5-spot pilot project with the maximum well BHP of 1,000 psi at the injector, minimum well BHP of 500 psi at the producer, maximum injection rate of 70 Mscf/D, and production rate of 35 Mscf/D. These technical results, with further economic evaluation, could generate significant projects for CO2 sequestration and enhance coalbed methane production in Blue Creek field, Black Warrior Basin, Alabama.

He, Ting

2009-12-01T23:59:59.000Z

246

The economic feasibility of enhanced coalbed methane recovery using CO2 sequestration in the San Juan Basin  

E-Print Network (OSTI)

Carbon dioxide emissions are considered a major source of increased atmospheric CO2 levels leading towards global warming. CO2 sequestration in coal bed reservoirs is one technique that can reduce the concentration of CO2 in the air. In addition, due to the chemical and physical properties of carbon dioxide, CO2 sequestration is a potential option for substantially enhancing coal bed methane recovery (ECBM). The San Juan Fruitland coal has the most prolific coal seams in the United States. This basin was studied to investigate the potential of CO2 sequestration and ECBM. Primary recovery of methane is controversial ranging between 20-60% based on reservoir properties in coal bed reservoirs15. Using CO2 sequestration as a secondary recovery technique can enhance coal bed methane recovery up to 30%. Within the San Juan Basin, permeability ranges from 1 md to 100 md. The Fairway region is characterized with higher ranges of permeability and lower pressures. On the western outskirts of the basin, there is a transition zone characterized with lower ranges of permeability and higher pressures. Since the permeability is lower in the transition zone, it is uncertain whether this area is suitable for CO2 sequestration and if it can deliver enhanced coal bed methane recovery. The purpose of this research is to determine the economic feasibility of sequestering CO2 to enhance coal bed methane production in the transition zone of the San Juan Basin Fruitland coal seams. The goal of this research is two- fold. First, to determine whether there is a potential to enhance coal bed methane recovery by using CO2 injection in the transition zone of the San Juan Basin. The second goal is to identify the optimal design strategy and utilize a sensitivity analysis to determine whether CO2 sequestration/ECBM is economically feasible. Based on the results of my research, I found an optimal design strategy for four 160- acre spacing wells. With a high rate injection of CO2 for 10 years, the percentage of recovery can increase by 30% for methane production and it stores 10.5 BCF of CO2. The economic value of this project is $17.56 M and $19.07 M if carbon credits were granted at a price of $5.00/ton. If CO2 was not injected, the project would only give $15.55 M.

Agrawal, Angeni

2003-05-01T23:59:59.000Z

247

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009...

248

Trends Online Methane Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Introduction Annual Estimates of Global Anthropogenic Methane Emissions: 1860-1994 - D.I. Stern and R.K. Kaufmann Contents-Trends | CDIAC Home 102001...

249

Detection and Production of Methane Hydrate  

NLE Websites -- All DOE Office Websites (Extended Search)

July-September 2007 July-September 2007 Detection and Production of Methane Hydrate Submitted by: Rice University University of Houston George J. Hirasaki Department of Chemical and Biomolecular Engineering Rice University - MS 362 6100 Main St. Houston, TX 77251-1892 Phone: 713-348-5416; FAX: 713-348-5478; Email: gjh@rice.edu Prepared for: United States Department of Energy National Energy Technology Laboratory December, 2007 Office of Fossil Energy Table of Contents DOE Methane Hydrate Program Peer Review.................................................. 3 Task 5: Carbon Inputs and Outputs to Gas Hydrate Systems ........................... 3 Task 6: Numerical Models for Quantification of Hydrate and Free Gas Accumulations....................................................................................................

250

TITAN'S TRANSPORT-DRIVEN METHANE CYCLE  

SciTech Connect

The mechanisms behind the occurrence of large cloud outbursts and precipitation on Titan have been disputed. A global- and annual-mean estimate of surface fluxes indicated only 1% of the insolation, or {approx}0.04 W m{sup -2}, is exchanged as sensible and/or latent fluxes. Since these fluxes are responsible for driving atmospheric convection, it has been argued that moist convection should be quite rare and precipitation even rarer, even if evaporation globally dominates the surface-atmosphere energy exchange. In contrast, climate simulations indicate substantial cloud formation and/or precipitation. We argue that the top-of-atmosphere (TOA) radiative imbalance is diagnostic of horizontal heat transport by Titan's atmosphere, and thus constrains the strength of the methane cycle. Simple calculations show the TOA radiative imbalance is {approx}0.5-1 W m{sup -2} in Titan's equatorial region, which implies 2-3 MW of latitudinal heat transport by the atmosphere. Our simulation of Titan's climate suggests this transport may occur primarily as latent heat, with net evaporation at the equator and net accumulation at higher latitudes. Thus, the methane cycle could be 10-20 times previous estimates. Opposing seasonal transport at solstices, compensation by sensible heat transport, and focusing of precipitation by large-scale dynamics could further enhance the local, instantaneous strength of Titan's methane cycle by a factor of several. A limited supply of surface liquids in regions of large surface radiative imbalance may throttle the methane cycle, and if so, we predict more frequent large storms over the lakes district during Titan's northern summer.

Mitchell, Jonathan L. [Department of Earth and Space Sciences, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095 (United States)

2012-09-10T23:59:59.000Z

251

Investigations into methane accumulation in coal storage silos  

SciTech Connect

The ventilation systems of coal storage silos are normally capable of rapidly dispersing any accumulations of methane in the atmosphere above the coal pile surface. However, the results of an investigation which is presented in this report show that hazardous concentrations of methane can accumulate within the coal pile. Methane trapped within the coal pile is released into the atmosphere of the loading gallery when coal is discharged from a silo. If the methane released is of a flammable concentration it is necessary to ventilate the gallery to reduce the risk of an ignition. This report proposes a simple test, which, after further investigations may prove to be an effective method to calculate gallery ventilation requirements.

Kolada, R.J.

1985-01-01T23:59:59.000Z

252

Methane Hydrate Advisory Committee Charter | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter Methane Hydrate Advisory Committee Charter...

253

NIST: Methane Symmetry Operations - Introduction  

Science Conference Proceedings (OSTI)

Methane Symmetry Operations. ... At least three T d symmetry classification systems are widely used at present in the methane literature [5-13]. ...

254

Carbon molecular sieve (CMS) membranes are microporous carbon membranes formed by pyrolysis of polymers. CMS membranes  

E-Print Network (OSTI)

Carbon molecular sieve (CMS) membranes are microporous carbon membranes formed by pyrolysis mixtures such as carbon dioxide / methane and ethane / ethylene separations. While there are many reports including carbon dioxide, methane, ethane and ethylene and also with selected two-component mixtures

McQuade, D. Tyler

255

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is the greenhouse effect? is the greenhouse effect? Greenhouse Effect Greenhouse Effect The greenhouse effect is used to describe the phenomenon whereby the Earth's atmosphere traps solar radiation, caused by the presence of gases, such as carbon dioxide (CO2), methane (CH4), and water vapor (H2O), in the atmosphere that allow incoming sunlight to pass through but absorb heat radiated back from the Earth's surface, resulting in higher temperatures. The greenhouse effect gets its name from what actually happens in a greenhouse. In a greenhouse, short wavelength visible sunlight shines through the glass panes and warms the air and the plants inside. The radiation emitted from the heated objects is of longer wavelength and is unable to pass through the glass barrier, maintaining a warm temperature

256

Study of the Role of Terrestrial Processes in the Carbon Cycle Based on Measurements of the Abundance and Isotopic Composition of Atmospheric CO2  

Science Conference Proceedings (OSTI)

The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic ratios 13C/12C, 18O/16O, and 14C/12C. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. Using models of varying complexity, the concentration and isotopic measurements were used to study long-term change in the interhemispheric gradients in CO2 and 13C/12C to assess the magnitude and evolution of the northern terrestrial carbon sink, to study the increase in amplitude of the seasonal cycle of CO2, to use isotopic data to refine constraints on large scale changes in isotopic fractionation which may be related to changes in stomatal conductance, and to motivate improvements in terrestrial carbon cycle models. The original proposal called for a continuation of the new time series of 14C measurements but subsequent descoping to meet budgetary constraints required termination of measurements in 2007.

Stephen C. Piper; Ralph F. Keeling

2012-01-03T23:59:59.000Z

257

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed Gas Hydrate Production Trial Using CO2 / CH4 Exchange Completed DE-NT0006553 Goal The goal of this project is to define, plan, conduct and evaluate the results of a field trial of a methane hydrate production methodology whereby carbon dioxide (CO2) molecules are exchanged in situ for methane (CH4) molecules within a hydrate structure, releasing the methane for production. The objective is to evaluate the viability of this hydrate production technique and to understand the implications of the process at a field scale. image showing Conceptual rendering of proposed CO2 - CH4 exchange methodology for the production of natural gas from hydrates Conceptual rendering of proposed CO2 - CH4 exchange methodology for the

258

Surface water and atmospheric underway carbon data obtained during the World Ocean Circulation Experiment Indian Ocean survey cruises (R/V Knorr, December 1998--January 1996)  

SciTech Connect

This data documentation presents the results of the surface water and atmospheric underway measurements of mole fraction of carbon dioxide (xCO{sub 2}), sea surface salinity, and sea surface temperature, obtained during the World Ocean Circulation Experiment (WOCE) Indian Ocean survey cruises (December 1994--January 1996). Discrete and underway carbon measurements were made by members of the CO{sub 2} survey team. The survey team is a part of the Joint Global Ocean Flux Study supported by the US Department of Energy to make carbon-related measurements on the WOCE global survey cruises. Approximately 200,000 surface seawater and 50,000 marine air xCO{sub 2} measurements were recorded.

Kozyr, A. [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center; Allison, L. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center

1997-11-01T23:59:59.000Z

259

Sources of biogenic methane to form marine gas hydrates: In situ production or upward migration?  

SciTech Connect

Potential sources of biogenic methane in the Carolina Continental Rise -- Blake Ridge sediments have been examined. Two models were used to estimate the potential for biogenic methane production: (1) construction of sedimentary organic carbon budgets, and (2) depth extrapolation of modern microbial production rates. While closed-system estimates predict some gas hydrate formation, it is unlikely that >3% of the sediment volume could be filled by hydrate from methane produced in situ. Formation of greater amounts requires migration of methane from the underlying continental rise sediment prism. Methane may be recycled from below the base of the gas hydrate stability zone by gas hydrate decomposition, upward migration of the methane gas, and recrystallization of gas hydrate within the overlying stability zone. Methane bubbles may also form in the sediment column below the depth of gas hydrate stability because the methane saturation concentration of the pore fluids decreases with increasing depth. Upward migration of methane bubbles from these deeper sediments can add methane to the hydrate stability zone. From these models it appears that recycling and upward migration of methane is essential in forming significant gas hydrate concentrations. In addition, the depth distribution profiles of methane hydrate will differ if the majority of the methane has migrated upward rather than having been produced in situ.

Paull, C.K.; Ussler, W. III; Borowski, W.S.

1993-09-01T23:59:59.000Z

260

Computational fluid dynamics simulations of oxy-coal combustion for carbon capture at atmospheric and elevated pressures  

E-Print Network (OSTI)

Oxy-fuel combustion of solid fuels, often performed in a mixture of oxygen and wet or dry recycled carbon dioxide, has gained significant interest in the last two decades as one of the leading carbon capture technologies ...

Chen, Lei, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mitigation of atmospheric carbon emissions through increased energy efficiency versus increased non-carbon energy sources: A trade study using a simplified {open_quotes}market-free{close_quotes} exogenously driven model  

SciTech Connect

A simplified model of global, long-term energy use is described and used to make a `top-level` comparison of two generic approaches for mitigating atmospheric carbon emissions: (a) those based on increased energy efficiency; and (b) those based on increased use of reduced- or non-carbon fuels. As approximate as is the model, first-order estimates of and trade offs between increasing non-carbon generation capacities (e.g., supply-side solutions) versus energy-use efficiency (e.g., demand-side solutions) to stem atmospheric carbon accumulations can be useful in guiding more elaborate models. At the level of this analysis, both the costs of abatement and the costs of damage can be large, with the formation of benefit-to-cost ratios as a means of assessment being limited by uncertainties associated with relating given climatic responses to greenhouse warming to aggregate damage cost, as well as uncertainties associated with procedures used for multi-generation discounting of both abatement and damage costs. In view of uncertainties associated with both supply-side and demand-side approaches, as well as the estimation of greenhouse-warming responses per se, a combination of solutions seems prudent. Key findings are: (a) the relative insensitivity of the benefit-to-cost ratio adopted in this study to supply-side versus demand-side approaches to abating atmospheric carbon-dioxide emissions; (b) the extreme sensitivity of damage costs, abatement costs, and the related benefit-to-cost ratios to the combination of discounting procedure and the (time) concavity of the function used to relate global temperature rise to damage costs; and (c) no matter the discounting procedure and/or functional relationship between average temperature rise and a damage cost, a goal of increased per-capita gross world product at minimum damage suggests action now rather than delay.

Krakowski, R.A.

1997-08-24T23:59:59.000Z

262

Methane Hydrates - Methane Hydrate Graduate Fellowship  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Supply and Emerging Resources Future Supply and Emerging Resources The National Methane Hydrates R&D Program - Graduate Fellowship Program Methane Hydrate Graduate Fellowship Program Jeffrey James Marlow, a graduate student in Geobiology at the California Institute of Technology, was recently selected as the 2012 recipient of the NETL-National Academy of Sciences (NAS) Methane Hydrate Research Fellowship. Please see page 15 of the March 2013 issue (Vol. 13, Issue 1) of Fire in the Ice for more information on the recipient. The Department of Energy has a long history of building synergistic relationships with research universities. Funding academic research is a "win-win-win" situation. The U.S. government is able to tap into some of the best minds available for solving national energy problems, the universities get the support they need to maintain cutting edge faculty and laboratories, and the students involved are provided with opportunities that help them along their chosen path of study, strengthening the national pool of scientists and engineers. According to Samuel Bodman, speaking about graduate research in methane hydrates, "Students are the foundation of our energy future, bringing new ideas and fresh perspectives to the energy industry. What better way to assure technology innovation than to encourage students working on the development of a resource that has the potential to tip our energy balance toward clean-burning, domestic fuels."

263

Regional Impacts of Climate Change and Atmospheric CO2 on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis  

Science Conference Proceedings (OSTI)

The increase in atmospheric CO2 over this century depends on the evolution of the oceanic air–sea CO2 uptake, which will be driven by the combined response to rising atmospheric CO2 itself and climate change. Here, the future oceanic CO2 uptake is ...

Tilla Roy; Laurent Bopp; Marion Gehlen; Birgit Schneider; Patricia Cadule; Thomas L. Frölicher; Joachim Segschneider; Jerry Tjiputra; Christoph Heinze; Fortunat Joos

2011-05-01T23:59:59.000Z

264

Influence of pore geometry on the design of microporous materials for methane storage  

SciTech Connect

The advantages of storing methane by adsorption in microporous materials are briefly reviewed, and the merits of currently available zeolites and microporous carbons are discussed. Grand canonical ensemble Monte-Carlo computer simulations of methane in slit pores (to model porous carbons) and cylindrical pores (to model zeolites) were carried out to determine the best geometry and the optimal pore size for storing the maximum amount of methane at a given storage pressure. At 274K, the optimal material is a porous carbon of pore size sufficient to contain two adsorbed layers of methane. At 500 psi (3.4 MPa), the energy density of such a material at 274K is only a quarter that of gasoline. These results suggest that an optimal zeolitic material would be a less useful material for adsorptive storage of methane than an optimal porous carbon. 21 refs., 10 figs., 3 tabs.

Cracknell, R.F.; Gordon, P.; Gubbins, K.E. (Cornell Univ., Ithaca, NY (United States))

1993-01-14T23:59:59.000Z

265

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents (OSTI)

A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

Lokhandwala, Kaaeid (Menlo Park, CA)

1997-01-01T23:59:59.000Z

266

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents (OSTI)

A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

Lokhandwala, K.

1997-07-15T23:59:59.000Z

267

The thermal decomposition of methane in a tubular reactor  

DOE Green Energy (OSTI)

The reaction rate of methane decomposition using a tubular reactor having a 1 inch inside diameter with an 8 foot long heated zone was investigated in the temperature range of 700 to 900 C with pressures ranging from 28.2 to 56.1 atm. Representing the rate by a conventional model, {minus}dC{sub CH4}/dt= k1 C{sub CH4} {minus}k2 C{sub H2}{sup 2}, the rate constant k1 for methane decomposition was determined. The activation energy, 31.3 kcal/mol, calculated by an Arrhenius Plot was lower than for previously published results for methane decomposition. This result indicates that submicron particles found in the reactor adhere to the inside of the reactor and these submicron high surface area carbon particles tend to catalyze the methane decomposition. The rate constant has been found to be approximately constant at 900 C with pressure range cited above. The rate of methane decomposition increases with methane partial pressure in first-order. The rate of the methane decomposition is favored by higher temperatures and pressures while the thermochemical equilibrium of methane decomposition is favored by lower pressures. 8 refs., 7 figs., 2 tabs.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

268

Carbon Management Technologies for Sustainable Coal Utilization  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Methane Olefins H 2 CO CO 2 Olefins ethylene + propylene + C 4 -ene + benzene Water pump off Water pump on Fully reformed local pump diesel Equilibrium...

269

A tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system  

E-Print Network (OSTI)

, such as steam reforming of methane and methanation of carbon monoxide.2 Another more recent example catalytic reactions in relation with the air pollution problem. Sur- face reactions of methane on nickel

Paris-Sud XI, Université de

270

Methane Hydrate Advisory Committee Meeting Minutes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes Methane Hydrate Advisory Committee Meeting Minutes June 6th - 7th, 2013...

271

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2011 FY 2011 Methane Hydrate Program Report to Congress July 2012 United States Department of Energy Washington, DC 20585 Department of Energy | July 2012 FY 2011 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of methane hydrate research. I am pleased to submit the enclosed report entitled U.S. Department of Energy FY 2011 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area of research. Pursuant to statutory requirements, this report is being provided to the following

272

Methane Hydrate Annual Reports  

Energy.gov (U.S. Department of Energy (DOE))

Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the results of Methane Hydrate research. Listed are the Annual Reports per...

273

Methane Hydrate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fiscal Year 2012 Fiscal Year 2012 Methane Hydrate Program Report to Congress August 2013 United States Department of Energy Washington, DC 20585 Department of Energy | August 2013 Fiscal Year 2012 Methane Hydrate Program Report to Congress | Page ii Message from the Secretary Section 968 of the Energy Policy Act of 2005 requires the Department of Energy to submit to Congress an annual report on the actions taken to carry out methane hydrate research. I am pleased to submit the enclosed report, entitled U.S. Department of Energy Fiscal Year 2012 Methane Hydrate Program Report to Congress. The report was prepared by the Department of Energy's Office of Fossil Energy and summarizes the progress being made in this important area

274

Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Annual technical report  

Science Conference Proceedings (OSTI)

Northern ecosystems contain up to 455 Gt of C in the soil active layer and upper permafrost, which is equivalent to approximately 60% of the carbon currently in the atmosphere as CO{sub 2}. Much of this carbon is stored in the soil as dead organic matter. Its fate is subject to the net effects of global change on the plant and soil systems of northern ecosystems. The arctic alone contains about 60 Gt C, 90% of which is present in the soil active layer and upper permafrost, and is assumed to have been a sink for CO{sub 2} during the historic and recent geologic past. Depending on the nature, rate, and magnitude of global environmental change, the arctic may have a positive or negative feedback on global change. Results from the DOE- funded research efforts of 1990 and 1991 indicate that the arctic has become a source of CO{sub 2} to the atmosphere. Measurements made in the Barrow, Alaska region during 1992 support these results. This change coincides with recent climatic variation in the arctic, and suggests a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. There are obvious potential errors in scaling plot level measurements to landscape, mesoscale, and global spatial scales. In light of the results from the recent DOE-funded research, and the remaining uncertainties regarding the change in arctic ecosystem function due to high latitude warming, a revised set of research goals is proposed for the 1993--94 year. The research proposed in this application has four principal aspects: (A) Long- term response of arctic plants and ecosystems to elevated atmospheric CO{sub 2}. (B) Circumpolar patterns of net ecosystem CO{sub 2} flux. (C) In situ controls by temperature and moisture on net ecosystem CO{sub 2} flux. (D) Scaling of CO{sub 2} flux from plot, to landscape, to regional scales.

Oechel, W.C.

1993-02-01T23:59:59.000Z

275

Electrochemical methane sensor  

DOE Patents (OSTI)

A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

Zaromb, S.; Otagawa, T.; Stetter, J.R.

1984-08-27T23:59:59.000Z

276

A Concept for a Gas-Filter Correlation Radiometer to Remotely Sense the Atmospheric Carbon Dioxide Column from Space  

Science Conference Proceedings (OSTI)

Concern about the climatic effects of anthropogenic emissions of CO2 has resulted in a growing need, both scientifically and politically, to monitor atmospheric CO2. The development of a satellite instrument that could measure the global ...

Boyd T. Tolton

2004-05-01T23:59:59.000Z

277

Black Carbon’s Properties and Role in the Environment: A Comprehensive Review  

E-Print Network (OSTI)

Keywords: soil carbon sequestration; carbon budget;of an energy efficient carbon sequestration mechanism, asin the later section on carbon sequestration. In atmospheric

Shrestha, Gyami

2010-01-01T23:59:59.000Z

278

IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE  

E-Print Network (OSTI)

differently based on the type and characteristics of the coal and where the coal bed is located. Equipment acre of each coal bed in the State. These ten factors include: · The present value per acre of a coal bed; · The coal price per million BTU; · The average royalty rate; · The BTU and sulfur adjustment

Paris-Sud XI, Université de

279

Performance of carbon-based hot frit substrates. 2, Coating performance studies in hydrogen at atmospheric pressure  

DOE Green Energy (OSTI)

Erosion tests were conducted on coated graphite and 2D, 3D carbon- carbons in 1 atm hydrogen at high temperatures. Refractory NbC, TaC coatings were used. It was found that the most effective combination of coating and substrate was TaC deposited by chemical vapor reaction method on AXF-5QI graphite.

Barletta, R.; Vanier, P.; Adams, J.; Svandrlik, J.; Powell, J.R.

1993-07-01T23:59:59.000Z

280

Methane Hydrate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Methane Hydrate Methane Hydrate Types of Methane Hydrate Deposits Types of Methane Hydrate Deposits Methane hydrate is a cage-like lattice of ice inside of which are trapped molecules of methane, the chief constituent of natural gas. If methane hydrate is either warmed or depressurized, it will revert back to water and natural gas. When brought to the earth's surface, one cubic meter of gas hydrate releases 164 cubic meters of natural gas. Hydrate deposits may be several hundred meters thick and generally occur in two types of settings: under Arctic permafrost, and beneath the ocean floor. Methane that forms hydrate can be both biogenic, created by biological activity in sediments, and thermogenic, created by geological processes deeper within the earth.

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Cyclic process for producing methane in a tubular reactor with effective heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-Lee (Spring Valley, NY)

1986-01-01T23:59:59.000Z

282

Enhanced catalyst stability for cyclic co methanation operations  

DOE Green Energy (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is thereafter reacted with steam or hydrogen to form methane. Enhanced catalyst stability for long term, cyclic operation is obtained by the incorporation of an alkali or alkaline earth dopant in a silica binding agent added to the catalyst-support additive composition.

Risch, Alan P. (New Fairfield, CT); Rabo, Jule A. (Armonk, NY)

1983-01-01T23:59:59.000Z

283

Methanation process utilizing split cold gas recycle  

DOE Patents (OSTI)

In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

Tajbl, Daniel G. (Evanston, IL); Lee, Bernard S. (Lincolnwood, IL); Schora, Jr., Frank C. (Palatine, IL); Lam, Henry W. (Rye, NY)

1976-07-06T23:59:59.000Z

284

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane Expulsion  

NLE Websites -- All DOE Office Websites (Extended Search)

Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 Controls On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 12/24/2013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced temperature change, the conditions under which gas will be expelled from existing accumulations of gas hydrate into the shallow ocean or directly to the atmosphere. When those conditions are met, the fraction of the gas accumulation that escapes and the rate of escape shall be quantified. The predictions shall be applicable in Arctic regions and in gas hydrate systems at the updip limit of the stability zone on continental margins. The behavior shall be explored in response to both longer term changes in sea level (e.g., twenty-thousand years) and shorter term due to atmospheric

285

Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions and a new approach for estimating net ecosystem exchange from inventory-based data  

Science Conference Proceedings (OSTI)

While fossil fuel emissions are calculated with relatively high precision, understanding the fate of those emissions with respect to sequestration in terrestrial ecosystems requires data and methods that can reduce uncertainties in the diagnosis of land-based CO2 sinks. The wide range in the land surface flux estimates is related to a number of factors, but most generally because of the different methodologies used to develop estimates of carbon stocks and flux, and the uncertainties inherent in each approach. The alternative approaches to estimating continental scale carbon fluxes that we explored here can be broadly classified as applying a top-down or bottom-up perspective. Top-down approaches calculate land-atmosphere carbon fluxes based on atmospheric budgets and inverse modeling. Bottom-up approaches rely primarily on measurements of carbon stock changes (the inventory approach) or on spatially distributed simulations of carbon stocks and/or fluxes using process-based modeling (the forward modelapproach).

Hayes, D. J.; Turner, D. P.; Stinson, Graham; McGuire, A. David; Wei, Yaxing; West, Tristram O.; Heath, L.; deJong, B.; McConkey, Brian; Birdsey, Richard A.; Kurz, Werner; Jacobson, Andy; Huntzinger, Deborah N.; Pan, Y.; Post, W. M.; Cook, R. B.

2012-04-02T23:59:59.000Z

286

NETL: Methane Hydrates - Global Assessment of Methane Gas Hydrates  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of Methane Gas Hydrates Last Reviewed 6142013 DE-FE0003060 Goal The goal of this project is to develop a global assessment of methane gas hydrates that will facilitate...

287

Analysis of the carbon dioxide concentration in the lowest atmospheric layers and the factors affecting China based on satellite observations  

Science Conference Proceedings (OSTI)

Carbon dioxide CO2 is the most important anthropogenic greenhouse gas contributing to global climate change. SCIAMACHY on board ENVISAT launched in 2002 is the first satellite instrument to monitor the changes in CO2 concentration ...

Yanfang Hou; Shixin Wang; Yi Zhou; Fuli Yan; Jinfeng Zhu

2013-03-01T23:59:59.000Z

288

Carbon Dioxide and Hydrogen Sulfide Emission Factors Applicable to Wastewater Wet Wells.  

E-Print Network (OSTI)

??Transport of wastewater in sewer networks causes potential problems associated with gases which include ammonia, carbon dioxide, carbon monoxide, hydrogen sulfide and methane, in regard… (more)

Mudragaddam, Madhuri

2010-01-01T23:59:59.000Z

289

The basics of coalbed methane  

Science Conference Proceedings (OSTI)

The report is an overview of coalbed methane (CBM), also known as coal seam gas. It provides an overview of what coalbed methane is and the current status of global coalbed methane exploration and production. Topics covered in the report include: An analysis of the natural gas industry, including current and future production, consumption, and reserves; A detailed description of coalbed methane, its characteristics, and future potential; An analysis of the key business factors that are driving the increased interest in coalbed methane; An analysis of the barriers that are hindering the development of coalbed methane; An overview of the technologies used for coalbed methane production and water treatment; and Profiles of key coalbed methane producing countries. 25 figs., 5 tabs., 1 app.

NONE

2006-12-15T23:59:59.000Z

290

On the Influence of Pacific Ocean Temperatures on Atmospheric Carbon Dioxide Concentration at Ocean Weather Station P  

Science Conference Proceedings (OSTI)

The study presents an analysis of atmospheric CO2 measurements at Ocean Weather Station P (50°N, 145°W) and sea surface temperatures over the North Pacific for the period 1974–78. The results show that during 1976 and 1977 sea surface ...

Kirby J. Hanson; James T. Peterson; Jerome Namias; Robert Born; C. S. Wong

1981-07-01T23:59:59.000Z

291

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, April 1, 1992--June 30, 1992  

DOE Green Energy (OSTI)

Work continued on the catalytic conversion of methane to produce C{sub 2}, C{sub 3},and C{sub 4} hydrocarbons. Progress is reported on the catalytic effects of Lithium Oxide and Magnesium Oxide catalysts.

Heinemann, H.; Somorjai, G.A.; Perry, D.L.

1992-06-01T23:59:59.000Z

292

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, 1 January--31 March 1994  

DOE Green Energy (OSTI)

This report describes work in progress on three tasks: (1) Catalytic steam gasification of coals and cokes; (2) Oxidative coupling of methane; and (3) Synthesis and characterization of catalysts. Since Task 1 is complete, a final report has been written. This report describes membrane reactors, cyclic methane conversion reactors, theoretical descriptions of reaction-separation schemes, and time-space relationships in cyclic and membrane reactors, all subtasks of Task 2. Initial studies under Task 3 are briefly described.

Iglesia, E.; Heinemann, H.; Perry, D.L. [Lawrence Berkeley Lab., CA (United States). Center for Advanced Materials

1994-03-01T23:59:59.000Z

293

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

- Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 - Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3/18/2013 Project Goals The primary goals of the DOE/NETL Natural Gas Hydrate Field Studies (NGHFS) project are: Conduct field-based studies that advance the ability to predict, detect, characterize, and understand distribution of and controls on natural gas hydrate occurrences. Analyze geologic, geochemical, and microbiologic data for indications of past and current changes to the stability of natural gas hydrate in marine settings. Develop links between the U.S. Gas Hydrate Program and international R&D efforts through direct participation in international field programs and workshops. Evaluate the potential role natural gas hydrates may play in the global carbon cycle through analysis of modern and paleo-natural gas

294

Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: Fiscal year 1995 annual report  

SciTech Connect

Fiscal year 1995 was both a very productive year for the Carbon Dioxide Information Analysis Center and a year of significant change. This document presents information about the most notable accomplishments made during the year. Topics include: high-lights; statistics; future plans; publications, presentations, and awards; and change in organization and staff.

Burtis, M.D. [comp.; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.; Stoss, F.W.

1996-01-01T23:59:59.000Z

295

Predicting methane fermentation biodegradability  

Science Conference Proceedings (OSTI)

Estimation of the feedstock digestibility in cows by procedures developed by Van Soest was performed. By feeding cows feedstuff of different lignin content, cell wall digestibility can be estimated. In this article a digestibility model has been employed and tested along with other models for the rapid prediction of substrate methane fermentation biodegradability.

Chandler, J.A.; Jewell, W.J.; Gossett, J.M.; Van Soest, P.J.; Robertson, J.B.

1980-01-01T23:59:59.000Z

296

The landfill methane balance: Model and practical applications  

SciTech Connect

A rational mass-balance framework is described for improved quantification of landfill methane processes at a given site. The methane balance model examines the partitioning of methane generated into methane recovered (via extraction systems), methane emitted, methane oxidized, methane migrated, and methane storage. This model encourages use of field-based data to better quantify rates of methane recovery and emissions.

Bogner, J.; Spokas, K.

1995-10-01T23:59:59.000Z

297

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench-scale. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. The project is on schedule and on budget. Task 4, a bench-scale demonstration of the ultra-fast TSA system is complete. Rapid thermal swing of an adsorbent bed using microchannels has been successfully demonstrated and the separation of a 70% methane and 30% nitrogen was purified to 92% methane. The bench-scale demonstration unit was small relative to the system dead volume for the initial phase of experiments and a purge step was added to sweep the dead volume prior to desorbing the bed and measuring purity. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement.

Anna Lee Tonkovich

2005-07-01T23:59:59.000Z

298

Influence of temperature, moisture, and organic carbon on the flux of H/sub 2/ and CO between soil and atmosphere: field studies in subtropical regions  

Science Conference Proceedings (OSTI)

Production and deposition rates of atmospheric hydrogen and carbon monoxide were studied during field measurements in subtropical regions, i.e., Transvaal (South Africa), Andalusia (Spain), and the Karoo (South Africa). Measurements were carried out by applying static and equilibrium box techniques. The equilibrium technique has been introduced as a novel method to measure production and destruction rates simultaneously even when soil conditions (e.g., temperature) change during the course of the measurements. Deposition velocities of H/sub 2/ and CO were virtually independent of the soil temperature measured in 3- to 10-mm depths and agreed with those measured in the temperate regions. The deposition velocities were inhibited or stimulated by irrigation water depending on the conditions of the individual field sites. H/sub 2/ production by soil was not observed. By contrast, CO was produced by soil in a dark chemical reaction. Production rates increased exponentially with soil temperatures, giving activation energies of 57-110 kJ mol/sup -1/ and increased linearly with soil organic carbon content. CO production rates followed a diel rhythm parallel to soil surface temperatures. Production generally exceeded CO deposition during the hot hours of the day, so that arid subtropical soils act as a net source of atmospheric CO during this time. On a global basis, CO production by soil may reach source strengths of 30 Tg yr/sup -1/, which is considerably less than the global deposition of CO estimated to be 190-580 Tg yr/sup -1/. Global H/sub 2/ deposition rates were estimated to 70-110 Tg yr/sup -1/.

Conrad, R.; Seiler, W.

1985-06-20T23:59:59.000Z

299

Regulation of methane genes and genome expression  

DOE Green Energy (OSTI)

At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ?H (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein, designated TFE, that had sequences in common with the eukaryotic general transcription factor TFIIE, stimulated archaeal transcription initiation and that the archaeal TATA-box binding protein (TBP) remained attached to the promoter region whereas the transcription factor TFB dissociated from the template DNA following initiation. DNA sequences that directed the localized assembly of archaeal histones into archaeal nucleosomes were identified, and we established that transcription by an archaeal RNA polymerase was slowed but not blocked by archaeal nucleosomes. We developed a new protocol to purify archaeal RNA polymerases and with this enzyme and additional improvements to the in vitro transcription system, we established the template requirements for archaeal transcription termination, investigated the activities of proteins predicted to be methane gene regulators, and established how TrpY, a novel archaeal regulator of expression of the tryptophan biosynthetic operon functions in M. thermautotrophicus. This also resulted in the discovery that almost all M. thermautotrophicus mutants isolated as spontaneously resistant to 5-methyl tryptophan (5MTR) had mutations in trpY and were therefore 5MTR through de-repressed trp operon expression. This established a very simple, practical procedure to determine and quantify the DNA sequence changes that result from exposure of this Archaeon to any experimental mutagenesis protocol. Following the discovery that the Thermococcus kodakaraensis was amenable to genetic manipulation, we established this technology at OSU and subsequently added plasmid expression, a reporter system and additional genetic selections to the T. kodakaraensis genetic toolbox. We established that transcription and translation are coupled in this Archaeon, and by combining in vitro transcription and in vivo genetics, we documented that both TFB1 and TFB2 support transcription initiation in T. kodakaraensis. We quantified the roles of ribosome binding sequences and alternative initiation codons in translation initiation, established that polarity e

John N. Reeve

2009-09-09T23:59:59.000Z

300

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station Support of Gulf of Mexico Hydrate Research Consortium: Activities to Support Establishment of Sea Floor Monitoring Station DE-FC26-02NT41328 Goal Determine the potential impacts of gas hydrate instability in terms of the release of methane into seafloor sediments, the ocean and the atmosphere. Performers University of California, San Diego (Scripps Institution of Oceanography) - manage geochemical, hydrological and sedimentological investigations Texas A&M University - manage field monitoring program Location La Jolla, California 92093 Background This project will monitor, characterize, and quantify the rates of formation and dissociation of methane gas hydrates at and near the seafloor in the northern Gulf of Mexico, and determine linkages between formation/dissociation and physical/chemical parameters of the deposits over the course of a year. The stability and response of shallow gas hydrates to temperature and chemical perturbations will be monitored in situ, and localized seafloor and water column environmental impacts of hydrate formation and dissociation characterized. The following will be determined: 1) The equilibrium/steady state conditions for structure II methane gas hydrates at the field site,2) whether the system is in dynamic equilibrium and the local hydrology is characterized by steady state episodic fluid flow, and 3) how fluid fluxes and fluid composition work together to dynamically influence gas hydrate stability.

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EA-1846: Demonstration of Carbon Dioxide Capture and Sequestration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Demonstration of Carbon Dioxide Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production, Port Arthur, Texas EA-1846:...

302

NETL: News Release - Novel Technology Locates Potential Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

as wood. Since all potential leaks must be detected to ensure permanent carbon dioxide storage, SEQURE's methane detectors then fill in the gaps. The detectors, which will...

303

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California  

E-Print Network (OSTI)

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil coastal ocean near Coal Oil Point, Santa Barbara Channel, California. Methane was quantified in the down originating from Coal Oil Point enters the atmosphere within the study area. Most of it appears

California at Santa Barbara, University of

304

Diel Variation of Methane Emission from a Subtropical Paddy Field of South China in the Second Crop Season  

Science Conference Proceedings (OSTI)

Rice paddy has been identified as one of the important sources of the atmospheric methane and has large variability in emission estimates. This study was conducted to evaluate CH4 emission from a subtropical paddy field of south China with closed static ... Keywords: Diel variation, paddy field, methane, greenhouse gas

Hui Liu

2012-05-01T23:59:59.000Z

305

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, October 1--December 31, 1993  

SciTech Connect

This report covers the time period from October 1 through December 31, 1993. A description of tasks for fiscal year 1994 is included in this report. Highlights and progress of work performed during this quarter is reported in (a) catalytic steam gasification of coals and cokes; (b) oxidative coupling of methane; and (c) synthesis and characterization of catalysts. Attached to this report is a copy of a manuscript submitted to Proceeding of Fuels Technology Contractors Meeting {open_quotes}Steady-State and Transient Catalytic Oxidation and Coupling of Methane{close_quotes} by Heinemann, Iglesia, and Perry.

Heinemann, H.; Iglesia, E.; Perry, D.L.

1993-12-01T23:59:59.000Z

306

Methane conversion to methanol  

DOE Green Energy (OSTI)

The objective of this research study is to demonstrate the effectiveness of a catalytic membrane reactor for the partial oxidation of methane. The specific goals are to demonstrate that we can improve product yield, demonstrate the optimal conditions for membrane reactor operation, determine the transport properties of the membrane, and provide demonstration of the process at the pilot plant scale. The last goal will be performed by Unocal, Inc., our industrial partner, upon successful completion of this study.

Noble, R.D.; Falconer, J.L.

1992-06-01T23:59:59.000Z

307

Coal Bed Methane Primer  

SciTech Connect

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

308

CARBON DIOXIDE SEQUESTRATION ENHANCED COALBED METHANE RECOVERY  

E-Print Network (OSTI)

restructuring policies, resulting in a decline in coal production and consump- tion. Although China found a net increase in coal-bed emissions from 5.58 Tg CH4 in 1990 to 6.75 Tg in 1996, falling to 5 is that they are increasing steadily, because of the large quantities of coal being used to fuel a fast-growing industrial

Nur, Amos

309

Enhanced research program on the long-range climatic effects of increased atmospheric carbon dioxide and sulfate aerosols. Final report  

SciTech Connect

Consistent with the objectives to extract as much as possible from existing models on the role of the oceans in the greenhouse effect and to improve various aspects of the coupled system, the authors made significant progress in three areas. (1) In a series of manuscripts, they documented how the El Nino-Southern Oscillation operates in the model and how it is enhanced with increased carbon dioxide. (2) In studies with collaborators Branstator, Karoly, and Karl, they explored the possible carbon dioxide ``fingerprint`` in zonal mean temperatures, the effects of changes in extratropical teleconnections, and the regional effects of low-frequency variability and climate change. (3) They experimented with an advanced version of the NCAR community climate model (CCM0) that also includes the Ramanathan and Collins cirrus albedo feedback mechanism. This model was run with a mixed layer and was tested with the 1{degree} 20-level Semtner and Chervin ocean model. The latter includes the Arctic Ocean and dynamic sea ice, both showing realistic results. The authors completed the coupling of the advanced models. The dynamic ocean model was a 1{degree}x1{degree} version of the Semtner-Chervin 1/2{degree}x1/2{degree} ocean model with 20 vertical levels. The 1{degree}x1{degree} version of the Semtner-Chervin model used in this research explicitly resolved some aspects of the mesoscale eddies as did the parent model. The new coupled model system for greenhouse gas simulations on climate change was tested on multidecadal runs.

Washington, W.M.; Meehl, G.A.

1997-04-01T23:59:59.000Z

310

ON CALCULATING THE TRANSFER OF CARBON-13 IN RESERVOIR MODELS OF THE CARBON CYCLE  

E-Print Network (OSTI)

7. Keeling. C. D. 1973. The carbon dioxide cycle: reservoirexchange of atmospheric carbon dioxide with the oceans andmodel to study the carbon dioxide exchange in nature. Tellus

Tans, Pieter P.

2013-01-01T23:59:59.000Z

311

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

312

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

313

NETL: Methane Hydrates - Interagency Coordination  

NLE Websites -- All DOE Office Websites (Extended Search)

Links to interagency pdf. The multi-faceted issues associated with naturally occurring methane hydrates demand a coordinated approach to studying (1) the potential of this resource...

314

Reforming of methane with carbon dioxide to synthesize gas over supported rhodium catalysts: II. A steady-state tracing analysis: Mechanistic aspects of the carbon and oxygen reaction pathways to form CO  

SciTech Connect

Steady-state tracing techniques have been applied to investigate mechanistic aspects of the CH{sub 4} reforming reaction over CO{sub 2} over Rh supported on yttria-stabilized zirconia (YSZ) and Al{sub 2}O{sub 3} as catalysts. It was found that the surface coverage of active carbon-containing species, which are found in the reaction pathway to CO formation, is of the order of 0.2 over the Rh/Al{sub 2}O{sub 3} catalyst, while it is very small ({theta}{sub c}, < 0.02) over Rh/YSZ. The surface coverage of active oxygen-containing species which lead to the formation of CO is found to be very small over both Rh/Al{sub 2}O{sub 3} and Rh/YSZ catalysts. However, over the Rh/YSZ catalyst it was found that there exists a large reservoir of lattice oxygen species of the carrier which interact reversibly with gaseous CO{sub 2} under reforming reaction conditions. A spillover of these lattice oxygen species onto the Rh surface seems to occur, contributing to the formation of CO and H{sub 2}O. This reaction route proceeds in parallel with the reforming reaction on the Rh surface. 27 refs., 12 figs.

Efstathiou, A.M.; Kladi, A.; Tsipouriari, V.A. [Univ. of Patras (Greece)] [and others

1996-01-01T23:59:59.000Z

315

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, July 1, 1994--September 30, 1994  

SciTech Connect

Research continued on the study of catalysts and membrane materials involved in the oxidative coupling of methane and coal gasification processes. Membranes studied and fabricated included Sr-Zr-Y-O, Sr-Zr-Y, and Sr-Ce-Y-O systems.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1994-09-01T23:59:59.000Z

316

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

measuring equipment Atmospheric Aerosols Atmospheric aerosol research at Berkeley Lab seeks to understand the air quality and climate impacts of particles in the atmosphere. On...

317

Alcohol fuel use: Implications for atmospheric levels of aldehydes, organic nitrates, pans, and peroxides: Separating sources using carbon isotopes  

DOE Green Energy (OSTI)

We have developed DiNitroPhenylHydrazone (DNPH) derivatization--high performance liquid chromatographic methods for measuring aldehydes in ambient samples with detection limits of approximately 1ppbV. These methods can be used for air or precipitation studies, and have been used for indoor measurements at much higher levels using shorter integration times. We are using gas chromatographs with electron capture detection (GCECD) to measure ambient levels of peroxyacyl nitrates and organic nitrates. Diffusion tubes with synthetically produced organic nitrates in n-tridecane solution are used to calibrate these systems. These compounds are important means of transporting NO/sub x/ over large scales due to their reduced tropospheric reactivity, low water solubilities, photolytic, and thermal stability. Their chemistries are coupled to aldehyde chemistry and are important greenhouse gases as well as phytotoxins. We have completed preliminary studies in Rio de Janeiro examining the atmospheric chemistry consequences of ethanol fuel usage. The urban air mass has been effected by the direct uncontrolled usage of ethanolgasoline and ethanoldiesel mixtures. We are exploring the use of luminol chemiluminescent detection of peroxides using gas chromatography to separate the various organic and inorganic peroxides. These compounds are coupled to the aldehyde chemistry, particularly in remote chemistries down-wind of urban sources. 13 refs.

Gaffney, J.S.; Tanner, R.L.

1988-01-01T23:59:59.000Z

318

Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part 3: Analysis of global-mean response using simple models  

Science Conference Proceedings (OSTI)

The roles of surface, atmospheric, and oceanic feedbacks in controlling the global-mean transient response of a coupled ocean-atmosphere general circulation model (AOGCM) to increasing carbon dioxide are investigated. The analysis employs a four-box energy balance model (EBM) and an oceanic box-diffusion model (BDM) both tuned to the simulated general circulation model response. The land-sea contrast in the surface warming is explained almost entirely by the shortwave radiative feedbacks associated with changes in cloud and surface albedo. The oceanic thermal inertia delays the response; however, the initial delay is enhanced by increases in Anarctic sea-ice cover, which substantially reduce the effective climate sensitivity of the model in the first half of the 75-year experiment. When driven by the observed anthropogenic greenhouse forcing from the pre-industrial period to present day, the energy balance model overestimates the warming observed over land. However, inclusion of the direct forcing due to anthropogenic tropospheric sulphate aerosol eliminates the land/sea contrast in the response at 1990, leaving the simulated warming over land slightly below the observed value, although the rapid warming observed during the 1980s is well reproduced. The vertical penetration of the oceanic response is small below 1000 m. Within the top 1000 m the effective diffusivities are substantially enhanced by reduced convection and thermohaline overturning, driven by increased precipitation minus evaporation at high latitudes. These changes in ocean heat transport become significant after year 30, whereupon the effective oceanic heat capacity increases substantially, although this increase is partially offset by the effect of changes in the sea-ice margin.

Murphy, J.M. [Meteorological Office, Bracknell, Berkshire (United Kingdom)

1995-03-01T23:59:59.000Z

319

Cyclic process for producing methane with catalyst regeneration  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. For practical commercial operations utilizing the two-step process of the invention of a cyclic basis, nickel, cobalt, ruthenium, thenium and alloys thereof are especially prepared for use in a metal state, with CO disproportionation being carried out at temperatures up to about 350.degree. C. and with the conversion of active surface carbon to methane being carried out by reaction with steam. The catalyst is employed in such cyclic operations without the necessity for employing a regeneration step as part of each processing cycle. Inactive carbon or coke that tends to form on the catalyst over the course of continuous operations utilizing such cyclic process is effectively and advantageously removed, on a periodic basis, in place of conventional burn off with an inert stream containing a low concentration of oxygen.

Frost, Albert C. (Congers, NY); Risch, Alan P. (New Fairfield, CT)

1980-01-01T23:59:59.000Z

320

New Materials Make Methane Capture Possible  

Science Conference Proceedings (OSTI)

May 8, 2013... SBN, captured enough medium source methane to turn it to high purity methane, which in turn could be used to generate efficient electricity.

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Enhanced Renewable Methane Production System | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Renewable Methane Production System Technology available for licensing: Enhanced renewable methane production system provides a low-cost process that accelerates...

322

Florida Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2012 (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Florida Coalbed Methane Proved Reserves, Reserves Changes, and...

323

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

with sampling and observation from the surface ship. Activities included collection of methane hydrate, sediment, water, and other materials from methane hydrate and seep sites...

324

NIST: Methane Symmetry Operations - Td Symmetry Species  

Science Conference Proceedings (OSTI)

Table of Contents Methane Symmetry Operations. 11. ... Magnetic-dipole transitions are observed in molecular-beam studies of methane [42]. ...

325

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

represent components of dynamic biogeochemical environments with inputs and outputs of methane, accurate rates of biological methane production are poorly understood. Recent...

326

Michigan Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Michigan Coalbed Methane Proved Reserves, Reserves Changes, and...

327

Kentucky Coalbed Methane Production (Billion Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

data. Release Date: 812013 Next Release Date: 812014 Referring Pages: Coalbed Methane Estimated Production Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and...

328

MethaneHydrateRD_FC.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Academies 2010 One of these is methane hydrate - molecules of natural gas trapped in ice crystals. Containing vast amounts of natural gas, methane hydrate occurs in a variety...

329

Catalysis Letters 59 (1999) 9394 93 Stepwise methane steam reforming: a route to CO-free hydrogen  

E-Print Network (OSTI)

Catalysis Letters 59 (1999) 93­94 93 Stepwise methane steam reforming: a route to CO-free hydrogen-free hydrogen. Keywords: methane decomposition, Ni/zirconia, steam gasification In order to utilize hydrogen of impurities, particularly carbon monoxide. Steam reforming, partial oxidation and au- tothermal reforming [1

Goodman, Wayne

330

Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

Science Conference Proceedings (OSTI)

The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench scale. The project is on schedule and on budget. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement. The system has six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration will be initiated in the next fiscal year. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study.

Anna Lee Tonkovich

2004-07-01T23:59:59.000Z

331

Coal mine methane global review  

Science Conference Proceedings (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

332

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

The synthesis of ethane and ethylene from methane and oxygen will be carried out in novel hydrogen transport inorganic membranes and in cyclic reactors in order to prevent undesirable secondary reactions of C{sub 2} molecules to CO and CO{sub 2}. Neither inorganic membrane reactors nor cyclic tubular reactors are presently used in commercial processes. Their application to catalytic reactions represents a novel application of engineering and solid-state chemistry concepts to catalytic reactions. Our approach combines high temperature membrane and cyclic experimental reactors, synthesis and characterization of thin membrane films and of high surface area catalysts, and detailed models of complex gas phase and surface reactions involved in oxidative coupling. We anticipate that this approach will lead to novel reactors for carrying our kinetic-controlled sequential reactions, such as the oxidative coupling of methane. Careful spectrographic and wet chemical analyses of fresh and silent catalysts have shown considerable differences which have permitted conclusions as to the source of deactivation. Our activities in the first quarter FYI 995 have focused on the synthesis, structural characterization, and catalytic evaluation of membrane films, disks, and reactors. We have also continued to exploit reaction-transport models to predict the performance of membrane, cyclic, and recycle reactors in the oxidative coupling of methane.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1995-03-01T23:59:59.000Z

333

Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report  

DOE Green Energy (OSTI)

In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

1993-09-01T23:59:59.000Z

334

Calculating Residential Carbon Dioxide Emissions --A New Approach  

E-Print Network (OSTI)

Calculating Residential Carbon Dioxide Emissions -- A New Approach Larry Hughes, Kathleen Bohan to submit an annual national greenhouse gas inventory to the United Nations Framework Convention on Climate different sectors and their associated greenhouse gas emissions (principally carbon dioxide, methane

Hughes, Larry

335

Nonlinearity of Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Coupled climate–carbon models have shown the potential for large feedbacks between climate change, atmospheric CO2 concentrations, and global carbon sinks. Standard metrics of this feedback assume that the response of land and ocean carbon uptake ...

Kirsten Zickfeld; Michael Eby; H. Damon Matthews; Andreas Schmittner; Andrew J. Weaver

2011-08-01T23:59:59.000Z

336

Direct conversion of methane to C sub 2 's and liquid fuels  

DOE Green Energy (OSTI)

Research on promoted metal oxide catalysts has continued with the study of alkaline earth/metal oxide halide catalysts. A barium bromide/alumina catalyst was comparable in methane conversion and selectivity to C{sub 2}'s to barium chloride/alumina catalysts. The effects of varying methane to oxygen feed ratios were explored for one of the best alkaline earth catalysts and one of the best literature catalysts (Li/MgO). A significant decrease in the selectivity to C{sub 2}'s is observed upon addition of ethane to the feed gas (feed gas methane/ethane ratio of 3). This observation demonstrates that a significant amount of ethane should not be recycled during methane oxidation over these types of catalysts under process conditions used. Methane oxidation over barium carbonate alone results in high enough selectivities and methane conversions to suggest an oxidized barium species may be responsible for methane oxidation on barium/metal oxide catalysts. Methane coupling studies have continued using layered perovskite catalysts in the cofeed mode and double perovskite catalysts in the sequential mode. Addition of sodium to the double perovskite LaCaMnCoO{sub 6} resulted in a catalyst with improved selectivity over the one without sodium. A reactor system containing two reactors in under construction. These reactors will be used to study different feed diluents, including steam. One reactor will be used to study the effects of pressure on the reaction. Process economics were explored for a hypothetical methane coupling scheme employing a feed mixture of 7/2/1 nitrogen/methane/oxygen. Economic evaluations of the first two of a series of cases based on extrapolations of Union Carbide methane coupling results have been completed. 33 refs., 17 figs., 2 tabs.

Warren, B.K.; Campbell, K.D.; Matherne, J.L.

1990-02-14T23:59:59.000Z

337

Quantifying Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

338

Efficient gas-separation process to upgrade dilute methane stream for use as fuel  

DOE Patents (OSTI)

A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C. (Menlo Park, CA); Lin, Haiqing (Mountain View, CA); Thompson, Scott (Brecksville, OH); Daniels, Ramin (San Jose, CA)

2012-03-06T23:59:59.000Z

339

NETL: Methane Hydrates - DOE/NETL Projects - Controls On Methane...  

NLE Websites -- All DOE Office Websites (Extended Search)

On Methane Expulsion During Melting Of Natural Gas Hydrate Systems Last Reviewed 6242013 DE-FE0010406 Goal The project goal is to predict, given characteristic climate-induced...

340

Gamma-ray spectra of methane in the positron-electron annihilation process  

E-Print Network (OSTI)

Bound electron contribution to the Doppler-shift of gamma-ray spectra in the positron-electron annihilation process of molecular methane has been studied in gas phase. Two accurate ab initio quantum mechanical schemes, i.e. the delocalized molecular orbital (MO) and the localized natural bond orbital (NBO) schemes, are applied to study the multi-centred methane molecule. The present ab initio calculations of methane indicate that the C-H bonds are polarized with the partial negative charge of -0.36 a.u. on the carbon atom and the partial positive charge of +0.09 a.u. on each of the hydrogen atoms. The positively charged hydrogen atoms produce repulsive Coulomb potentials to a positron. Both the MO and NBO schemes further reveal that the 2a1 electrons of methane, that is, the 2a1 electron component of the C-H bonds rather than the whole C-H bonds of methane, predominates the positron-electron annihilation gamma-ray spectra of the molecule. Electrons of a molecule which are dominant the positron-electron annihilation processes are called positrophilic electrons in the present study. It is further shown that the negative electrostatic potential (ESP) of methane facilitates with the density of the positrophilic 2a1 electrons of methane. Other valence electrons (e.g. 1t2) in the C-H bonds play a minor spectator role in the annihilation process of methane.

Xiaoguang Ma; Feng Wang

2012-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Role of Circulation Features on Black Carbon Transport into the Arctic in the Community Atmosphere Model Version 5 (CAM5)  

SciTech Connect

Current climate models generally under-predict the surface concentration of black carbon (BC) in the Arctic due to the uncertainties associated with emissions, transport, and removal. This bias is also present in the Community Atmosphere Model Version 5.1 (CAM5). In this study, we investigate the uncertainty of Arctic BC due to transport processes simulated by CAM5 by configuring the model to run in an “offline mode” in which the large-scale circulations are prescribed. We compare the simulated BC transport when the offline model is driven by the meteorology predicted by the standard free-running CAM5 with simulations where the meteorology is constrained to agree with reanalysis products. Some circulation biases are apparent: the free-running CAM5 produces about 50% less transient eddy transport of BC than the reanalysis-driven simulations, which may be attributed to the coarse model resolution insufficient to represent eddies. Our analysis shows that the free-running CAM5 reasonably captures the essence of the Arctic Oscillation (AO), but some discernable differences in the spatial pattern of the AO between the free-running CAM5 and the reanalysis-driven simulations result in significantly different AO modulation of BC transport over Northeast Asia and Eastern Europe. Nevertheless, we find that the overall climatological circulation patterns simulated by the free-running CAM5 generally resembles those from the reanalysis products, and BC transport is very similar in both simulation sets. Therefore, the simulated circulation features regulating the long-range BC transport is unlikely the most important cause of the large under-prediction of surface BC concentration in the Arctic.

Ma, Po-Lun; Rasch, Philip J.; Wang, Hailong; Zhang, Kai; Easter, Richard C.; Tilmes, S.; Fast, Jerome D.; Liu, Xiaohong; Yoon, Jin-Ho; Lamarque, Jean-Francois

2013-05-28T23:59:59.000Z

342

Enhancement of methane production in the anaerobic digestion of sewage sludges  

DOE Green Energy (OSTI)

The effect of powdered activated carbon on stressed anaerobic digesters utilizing a sewage sludge substrate was evaluated. The addition of carbon resulted in increased methanee production and greater process stability. The degree of enhancement appeared to be proportional to carbon concentration over the dose range studied (500-10,000 mg/l). A maximum increase in methane production of about 150% was observed at the highest carbon dose. The effect of 1500 mg/l carbon, 4000 mg/l coal, and 4000 mg/l flyash on relatively unstressed digesters was also examined. Units using a sewage sludge substrate were operated at 10 and 20 day SRT's. A 12% increase in methane production was observed in a carbon dosed digester functioning at a 10 day detention time. Enhancement was not evident with carbon at a 20 day SRT. No significant improvement in methane production was obtained in any of the digesters using coal or flyash as additives. Using the experimental data, a technique was developed for estimating the efficiencies of the methane forming and acid forming steps in the anaerobic digestion process. The results indicated that in stressed systems both stages of the digestion process were enhanced by the addition of powdered carbon. In the relatively unstressed systems, when enhancement did occur, only the scid forming step was affected. This information will supplement current research at determining the mechanism(s) by which carbon enhances the digestion process.Based on the results of this study, it appears that the benefits of carbon addition are greatest in stressed systems. Only very moderate increases in methane production would probably be attainable in well operating digesters. Coal and flyash do not seem to be effective in enhancing gas production in unstressed systems. However, their effectiveness has not been tested in stressed situations.

Spencer, R.R.

1978-05-10T23:59:59.000Z

343

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat flow and gas hydrates on the continental margin of India Last Reviewed 12/15/2011 Heat flow and gas hydrates on the continental margin of India Last Reviewed 12/15/2011 DE-NT0005669 Goal The goals of this project are to construct maps of apparent and residual heat flow through the western continental margin of India and to investigate the relationship of residual heat flow anomalies to fluid flow and gas hydrate distribution in the subsurface. Performer Oregon State University, College of Oceanic and Atmospheric Science, Corvallis, OR 97331 Map of the four regions sampled during NGHP Expedition 01 Map of the four regions sampled during NGHP Expedition 01 Background Gas hydrate distribution in sediments depends on methane supply, which in turn depends on fluid flow. When drilling data are available to calibrate seismic observations of the base of the gas hydrate stability zone (GHSZ),

344

Methane Hydrate Advisory Committee Meeting Minutes, June 6th...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee Meeting Minutes, June 6th-7th, 2013 Methane Hydrate Advisory Committee...

345

Methane Hydrate Research and Development Act of 2000 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and Development Act of 2000 Methane Hydrate Research and...

346

Methane Hydrate Advisory Committee Meeting Minutes, January 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2010 Methane Hydrate Advisory Committee Meeting Minutes, January 2010 Methane Hydrate Advisory Committee Meeting Minutes January, 2010 Atlanta, GA Methane Hydrate Advisory...

347

Department of Energy Advance Methane Hydrates Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane...

348

Methane Hydrate Advisory Committee Meeting Minutes, March 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2010 Methane Hydrate Advisory Committee Meeting Minutes, March 2010 Methane Hydrate Advisory Committee Meeting Minutes March 2010 Washington, DC Methane Hydrate Advisory...

349

NETL: Methane Hydrates - Hydrate Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate R&D Program Newsletter Methane Hydrate R&D Program Newsletter An image of a hydrate burning overlayed with the Newsletter Title: Fire in the Ice The methane hydrate newsletter, Fire in the Ice, is a bi-annual publication highlighting the latest developments in international gas hydrates R&D. Fire in the Ice promotes the exchange of information amoung those involved in gas hydrates research and development, and also recognizes the efforts of a hydrate researcher in each issue. The newsletter now reaches nearly 1300 scientists and other interested individuals in sixteen countries. To subscribe electronically to Fire in the Ice please send an email to karl.lang@contr.netl.doe.gov Please click on the links below to access issues of "Fire in the Ice". More on Methane Hydrates

350

Methane Credit | Open Energy Information  

Open Energy Info (EERE)

Methane Credit Methane Credit Jump to: navigation, search Name Methane Credit Place Charlotte, North Carolina Zip 28273 Product Specialises in utilising methane produced on municipal landfill sites. Coordinates 35.2225°, -80.837539° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2225,"lon":-80.837539,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

The Woodland Carbon Code  

E-Print Network (OSTI)

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

352

Reconciling carbon-cycle concepts, terminology, and methods  

E-Print Network (OSTI)

factors that determine whether particularly a or net source is sink of ecosystem atmospheric carbon dioxide (

2006-01-01T23:59:59.000Z

353

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

Tom Kirchstetter with aerosol measurement instrument Atmospheric Aerosols Atmospheric aerosol research at LBNL seeks to understand the air quality and climate impacts of particles...

354

Coal-bed methane potential of Vancouver Island coalfields  

SciTech Connect

Commercially attractive quantities of coal-bed methane gas on Vancouver Island, British Columbia, are indicated from recent studies by the provincial Geological Survey Branch and independent consultants. Coal mining activity began in 1847, which provides large amount of data concerning drilling, mining, quality, and reserves. Presence of methane is corroborated by documented accounts of coal mine disasters. Coal measures are part of the Upper Cretaceous Nanaimo Group, which covers approximately 800 mi{sup 2} and are divided into two subbasins. Cretaceous strata rest unconformably on predominantly volcanic basement rocks and are controlled in their distribution by paleotopography. Maximum aggregate coal thickness in the Nanaimo subbasin is 30-60 ft in the Comox subbasin, greater than 40 ft. Post-Cretaceous faulting strongly influences the area. Tertiary intrusives have effected coal quality to some extent. Sampling of coal seams is currently underway to determine levels of thermal maturation. Vitrinite reflectance ranges from 0.59 to 3.21 (R{sub o} max). The majority of coals are of high-volatile B to A bituminous rank, with local variations near Tertiary intrusions. Test-well desorption data have indicated that coals can contain as much as 380 ft{sup 3} of methane per ton of coal. Gas samples taken were pipeline quality, about 95% methane, 4.5% heavier hydrocarbons, and 0.5% carbon dioxide. A conservative estimate of in-place methane resource is 800 bcf. Plans are currently underway to construct a natural gas pipeline from the mainland to service Vancouver Island. This would provide the necessary infrastructure to make extraction of the methane resource economic.

Kenyon, C. (Ministry of Energy, Mines, Petroleum Resources, Victoria, British Columbia (Canada)); Murray, D.K. (D. Keith Murray and Associates, Inc., Golden, CO (USA))

1990-05-01T23:59:59.000Z

355

Capture and Use of Coal Mine Ventilation Air Methane  

Science Conference Proceedings (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

356

Catalysts for carbon and coal gasification  

DOE Patents (OSTI)

Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

McKee, Douglas W. (Burnt Hills, NY); Spiro, Clifford L. (Scotia, NY); Kosky, Philip G. (Schenectady, NY)

1985-01-01T23:59:59.000Z

357

NETL: Methane Hydrates - DOE/NETL Projects - Application of Crunch-Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of CrunchFlow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites Last Reviewed 12/11/2013 Application of CrunchFlow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites Last Reviewed 12/11/2013 DE-FE0010496 Goal The goal of this project is to apply a multi-component, multi-dimensional reactive transport simulation code to constrain modern day methane fluxes and to reconstruct past episodes of methane flux that can be correlated with environmental changes. Performers Oregon State University – Corvallis, OR Background The importance of understanding the role that gas hydrates play in the global carbon cycle and in understanding their potential as a future energy resource have long been recognized and are key components of the Methane Hydrate R&D Program. Fundamental questions remain, however, as to the residence time of gas hydrates near the seafloor and deeper within the

358

An intensity-modulated dual-wavelength He-Ne laser for remote sensing of methane  

SciTech Connect

The differential absorption laser radar for methane sensing detects a leakage of methane gas by emitting into the atmosphere the light of a wavelength absorbable by methane, receiving the light returning after being reflected or scattered on a road or wall surface, etc., and measuring the light intensity lost during the travel. This methane detection system is highly practicable as it makes an instantaneous remote detection possible. The authors have developed a new He-Ne laser that could be used as the light source for the above system. This device emits a two-wavelength laser beam (one wavelength absorbable by methane and the other not absorbable by methane but used for referential purposes) from a single plasma tube, and there is no possibility of the axes of the two-wavelength component deviating from each other. Further, using this laser, they have developed a vehicle-mounted type differential absorption laser radar system which has successfully detected low density methane leakage while the vehicle was moving.

Ueki, T.; Tanaka, H.; Uehara, K.

1988-01-01T23:59:59.000Z

359

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

available free of charge - include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon...

360

Coalbed Methane Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2003 2004 2005 2006 2007 2008 View History U.S. 18,743 18,390 19,892 19,620 21,874 20,798 1989-2008 Alabama 1,665 1,900 1,773 2,068 2,126 1,727 1989-2008 Alaska 0 0 2007-2008 Arkansas 31 31 2007-2008 California 0 0 2007-2008 Colorado 6,473 5,787 6,772 6,344 7,869 8,238 1989-2008 Florida 0 0 2007-2008 Kansas 340 301 2007-2008 Kentucky 0 0 2007-2008 Louisiana 7 9 2007-2008 North 7 9 2007-2008 South Onshore 0 0 2007-2008 South Offshore 0 0 2007-2008 Michigan 0 0 2007-2008 Mississippi 0 0 2007-2008 Montana 66 75 2007-2008 New Mexico 4,396 5,166 5,249 4,894 4,169 3,991 1989-2008

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Activation of methane by transition metal-substituted aluminophosphate molecular sieves  

DOE Patents (OSTI)

Aluminophosphate molecular sieves substituted with cobalt, manganese or iron and having the AlPO.sub.4 -34 or AlPO.sub.4 -5, or related AlPO.sub.4 structure activate methane starting at approximately 350.degree. C. Between 400.degree. and 500.degree. C. and at methane pressures .ltoreq.1 atmosphere the rate of methane conversion increases steadily with typical conversion efficiencies at 500.degree. C. approaching 50% and selectivity to the production of C.sub.2+ hydrocarbons approaching 100%. The activation mechanism is based on reduction of the transition metal(III) form of the molecular sieve to the transition metal(II) form with accompanying oxidative dehydrogenation of the methane. Reoxidation of the - transition metal(II) form to the transition metal(III) form can be done either chemically (e.g., using O.sub.2) or electrochemically.

Iton, Lennox E. (Downers Grove, IL); Maroni, Victor A. (Naperville, IL)

1991-01-01T23:59:59.000Z

362

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Interrelation of Global Climate and the Response of Oceanic Hydrate Accumulations Last Reviewed 8/21/2013 Interrelation of Global Climate and the Response of Oceanic Hydrate Accumulations Last Reviewed 8/21/2013 Field Work Proposals: ESD07-014 (LBNL) and 08FE-003 (LANL) Project Goal The primary objectives of this project are to: 1) investigate the effect of rising water temperatures on the stability of oceanic hydrate accumulations, 2) estimate the global quantity of hydrate-originating carbon that could reach the upper atmosphere as CH4 or CO2 thus affecting global climate, 3) quantify the interrelationship between global climate and the amount of hydrate-derived carbon reaching the upper atmosphere focusing on the potential link between hydrate dissociation and cascading global warming and 4) test the discharge phase of the Clathrate Gun Hypothesis which stipulates large-scale hydrate dissociation and gas

363

News Briefs  

Science Conference Proceedings (OSTI)

... regional carbon in atmospheric methane, carbon monoxide ... An SFG spectrum thus provides information ... improve immunity to vibration, and create ...

1997-04-03T23:59:59.000Z

364

Methane-derived hydrocarbons produced under upper-mantle conditions  

SciTech Connect

There is widespread evidence that petroleum originates from biological processes. Whether hydrocarbons can also be produced from abiogenic precursor molecules under the high-pressure, high-temperature conditions characteristic of the upper mantle remains an open question. It has been proposed that hydrocarbons generated in the upper mantle could be transported through deep faults to shallower regions in the Earth's crust, and contribute to petroleum reserves. Here we use in situ Raman spectroscopy in laser-heated diamond anvil cells to monitor the chemical reactivity of methane and ethane under upper-mantle conditions. We show that when methane is exposed to pressures higher than 2 GPa, and to temperatures in the range of 1,000-1,500 K, it partially reacts to form saturated hydrocarbons containing 2-4 carbons (ethane, propane and butane) and molecular hydrogen and graphite. Conversely, exposure of ethane to similar conditions results in the production of methane, suggesting that the synthesis of saturated hydrocarbons is reversible. Our results support the suggestion that hydrocarbons heavier than methane can be produced by abiogenic processes in the upper mantle.

Kolesnikov, Anton; Kutcherov, Vladimir G.; Goncharov, Alexander F.; (CIW); (RITS)

2009-08-13T23:59:59.000Z

365

Carbon abundances of early B-type stars in the solar vicinity. Non-LTE line-formation for C II/III/IV and self-consistent atmospheric parameters  

E-Print Network (OSTI)

Precise determinations of the chemical composition in early B-type stars consitute fundamental observational constraints on stellar and galactochemical evolution. Carbon is one of the most abundant metals in the Universe but analyses in early-type stars show inconclusive results, like large discrepancies between analyses of different lines in C II, a failure to establish the C II/III ionization balance and the derivation of systematically lower abundances than from other objects. We present a comprehensive and robust C II/III/IV model for non-LTE line-formation calculations based on carefully selected atomic data. The model is calibrated with high-S/N spectra of six apparently slow-rotating early B-type dwarfs and giants, which cover a wide parameter range and are randomly distributed in the solar neighbourhood. A self-consistent quantitative spectrum analysis is performed using an extensive iteration scheme to determine stellar atmospheric parameters and to select the appropriate atomic data used for the derivation of chemical abundances. We establish the carbon ionization balance for all sample stars based on a unique set of input atomic data, achieving consistency for all modelled lines. Highly accurate atmospheric parameters and a homogeneous carbon abundance with reduced systematic errors are derived. This results in a present-day stellar carbon abundance in the solar neighbourhood, which is in good agreement with recent determinations of the solar value and with the gas-phase abundance of the Orion H II region. The homogeneous present-day carbon abundance also conforms with predictions of chemical-evolution models for the Galaxy. The present approach allows us to constrain the effects of systematic errors on fundamental parameters and abundances. (abridged)

M. F. Nieva; N. Przybilla

2007-11-23T23:59:59.000Z

366

Direct catalytic conversion of methane and light hydrocarbon gases. Quarterly report No. 5, November 16, 1987--January 15, 1988  

DOE Green Energy (OSTI)

The goal of this research is to develop catalysts that directly convert methane and light hydrocarbons to intermediates that later can be converted to either liquid fuels or value-added chemicals, as economics dictate. During this reporting period, we have synthesized and tested several novel catalysts for methane reforming (Tasks 1 and 2) and for partial oxidation of methane (Tasks 3 and 4). We started to test a mixed metal system, an FeRu{sub 3} cluster. This catalyst was supported both on zeolite and on magnesium oxide and the systems were tested for methane reforming at various reaction temperatures. We also prepared and tested a monomeric ruthenium catalyst supported on magnesium oxide. We found that methane is activated at a lower temperature with the basic magnesium oxide support than with acidic supports such as zeolite or alumina. Methane conversions increased with temperature, but the production of coke also increased. We prepared a sterically hindered ruthenium porphyrin encapsulated in a zeolite supercage for catalysis of methane oxidation. The results showed that only carbon dioxide was produced. Addition of axial base to this catalyst gave similar results. Another type of catalyst, cobalt Schiff base complexes, was also prepared and tested for methane oxidation. In this case, no methane conversion was observed at temperatures ranging from 200 to 450{degrees}C. These complexes do not appear to be stable under the reaction conditions.

Wilson, R.B. Jr.; Chan Yee Wai

1988-02-05T23:59:59.000Z

367

Novel catalysts for methane activation. Quarterly report No. 12, July 1, 1995--September 30, 1995  

DOE Green Energy (OSTI)

Fullerenes are a recently discovered allotrope of carbon that possess unusual properties, some of which may be ideal for methane activation. This project is designed to evaluate these carbon-based materials for conversion of methane into higher hydrocarbons. The project is divided into three technical tasks. Task 1 deals with synthesis and characterization of the fullerenes and fullerene soots, Task 2 with testing of the catalysts, and Task 3 with evaluation of the results and technical reporting. Due to money constraints we have not done any technical work during this period. However, we hope to continue our work and produce a final report including recommendations for future research when funds are available.

Hirschon, A.S.; Du, Y.; Wu, H.J. [and others

1995-12-01T23:59:59.000Z

368

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network (OSTI)

Methane contributes 20% annually to increases in global warming, and is explosive at concentrations of 5-15% in air. Landfills contribute 15% to total methane emissions. This study was conducted to determine the potential decrease in methane production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile and characterized by temperature, pH, ash content and C02 evolved during aerobic respiration. Assuming a 1 0% lignin content, the labile carbon fraction was reduced by an estimated 71 % during composting. Over a of six month period, simulated landfill cells filled with raw waste generated 66 M3 methane per Mg of dry refuse, while cells containing compost produced 31 M3 methane per Mg of dry compost. Per unit weight of dry raw material, composted waste placed in a landfill produced only 23% of the methane that was generated from raw refuse.

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

369

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

as described by Dillon, et al. (1998). Failure would be accompanied by the release of methane gas, but a portion of the methane is likely to be oxidized unless the gas release is...

370

Miscellaneous States Coalbed Methane Proved Reserves (Billion...  

Gasoline and Diesel Fuel Update (EIA)

Coalbed Methane Proved Reserves (Billion Cubic Feet) Miscellaneous States Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

371

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Waters Last Reviewed 5152012 DE-NT0005666 Goal The goal of this project is gain a better understanding of...

372

NETL: News Release - Methane Hydrate Production Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

of CO2 molecules for methane molecules in the solid-water hydrate lattice, the release of methane gas, and the permanent storage of CO2 in the formation. This field experiment will...

373

coalbed methane | OpenEI  

Open Energy Info (EERE)

coalbed methane coalbed methane Dataset Summary Description (Abstract): Each TMY is a data set of hourly values of solar radiation and meteorological elements for a 1-year period. Solar radiation is modeled using the NREL METSTAT model, with surface observed cloud cover being the principal model input. The container file contains one TMY file for each selected station in the region, plus documentation files and a TMY data reader file for use with Microsoft Excel. (Purpose): Simulations Source NREL Date Released April 30th, 2005 (9 years ago) Date Updated November 07th, 2007 (7 years ago) Keywords coalbed methane GEF Kenya NREL SWERA TMY UNEP Data application/zip icon Download Data (zip, 5.4 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

374

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Objective was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields under relatively mild reaction conditions. Results in this document are reported under the headings: methane oxidation over silica, methane oxidation over Sr/La{sub 2}O{sub 3} catalysts, and oxidative coupling of methane over sulfate-doped Sr/La{sub 2}O{sub 3} catalysts. 24 refs, 10 figs, 4 tabs.

Klier, K.; Herman, R.G.

1993-12-31T23:59:59.000Z

375

Method for the photocatalytic conversion of methane  

DOE Patents (OSTI)

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

Noceti, Richard P. (Pittsburgh, PA); Taylor, Charles E. (Pittsburgh, PA); D' Este, Joseph R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

376

Method for the photocatalytic conversion of methane  

DOE Patents (OSTI)

A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

1998-02-24T23:59:59.000Z

377

QUEST FOR NEW MATERIALS FOR METHANE STORAGE ...  

Science Conference Proceedings (OSTI)

Quest for New Materials for Methane Storage: Gas Adsorption and Neutron Diffraction Measurements. Yang Peng, 1,2 Vaiva ...

378

EIA - Greenhouse Gas Emissions - Methane Emissions  

U.S. Energy Information Administration (EIA)

Residential wood consumption accounted for just over 45 percent of U.S. methane emissions from stationary combustion in 2009.

379

NIST: Methane Symmetry Operations - Nuclear spin functions  

Science Conference Proceedings (OSTI)

Methane Symmetry Operations. 9. Symmetry Properties of Laboratory-Fixed Nuclear Spin Functions, Nuclear Spin Statistics, and Parities. ...

380

Reconciling estimates of the contemporary North American carbon balance among terrestrial biosphere models, atmospheric inversions and a new approach for estimating net ecosystem exchange from inventory-based data  

Science Conference Proceedings (OSTI)

We develop an approach for estimating net ecosystem exchange (NEE) using inventory-based information over North America (NA) for a recent 7-year period (ca. 2000 2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non-fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a 327 252 TgC yr1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (248 TgC yr1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (297 TgC yr1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated tobe a small net source (+18 TgC yr1) due to land use change between 1993 and 2002. We compare these inventorybased estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental-scale NEE estimate for each ensemble is 511 TgC yr1 and 931 TgC yr1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional 239 TgC yr1 to the inventory-based NA sink estimate, thus suggesting some convergence with the modeling approaches.

Hayes, Daniel J [ORNL; Turner, David P [Oregon State University, Corvallis; Stinson, Graham [Pacific Forestry Centre, Canadian Forest Service; Mcguire, David [University of Alaska; Wei, Yaxing [ORNL; West, Tristram O. [Joint Global Change Research Institute, PNNL; Heath, Linda S. [USDA Forest Service; De Jong, Bernardus [ECOSUR; McConkey, Brian G. [Agriculture and Agri-Food Canada; Birdsey, Richard A. [U.S. Department of Agriculture Forest Service; Kurz, Werner [Canadian Forest Service; Jacobson, Andrew [NOAA ESRL and CIRES; Huntzinger, Deborah [University of Michigan; Pan, Yude [U.S. Department of Agriculture Forest Service; Post, Wilfred M [ORNL; Cook, Robert B [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network (OSTI)

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

382

Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments  

SciTech Connect

In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane’s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications to date, with five more circulating in draft form, and several others planned.

Valentine, David

2012-09-30T23:59:59.000Z

383

Seasonal Production and Emission of Methane from Rice Fields, Final Report  

DOE Green Energy (OSTI)

B 139 - Methane (CH4) is a greenhouse gas regarded second only to carbon dioxide in its ability to cause global warming. Methane is important because of its relatively fast increase, and also because it is, per molecule, some 60 times more effective than carbon dioxide in causing global warming. The largest present anthropogenic sources of methane are rice fields, cattle and biomass burning. The global emissions from these sources are still not well known. In the middle 1980s there were few available data on methane emissions from rice fields leading to estimates of a global source between 100-280 Tg/yr. Extensive worldwide research during the last decade has shown that the global emissions from rice fields are more likely to be in the range of 30-80Tg/yr. While this work has led to a substantial reduction in the estimated emissions, the uncertainty is still quite large, and seriously affects our ability to include methane in integrated assessments for future climate change and environmental management.China dominated estimates of methane emissions from rice fields because it was, and is, the largest producer of rice, and major increases in rice production had taken place in the country over the last several decades. This report summarizes the work in Sichuan Province, China, in each of the following areas: the design of the experiment; the main results on methane emissions from rice fields, delineating the factors controlling emissions; production of methane in the soil; a survey of water management practices in sample of counties in Sichuan province; and results of ambient measurements including data from the background continental site. B139

Khalil, M. Aslam K.; Rasmussen,Reinhold A.

2002-12-03T23:59:59.000Z

384

Atmospheric Inverse Estimates of Methane Emissions from Central California  

E-Print Network (OSTI)

mixing ratios measured at a tall-tower are compared to modelmade at 91 and 483 m on a tall-tower near Walnut Grove, CA (

Zhao, Chuanfeng

2009-01-01T23:59:59.000Z

385

THERMOCHEMICAL AND PHOTOCHEMICAL KINETICS IN COOLER HYDROGEN-DOMINATED EXTRASOLAR PLANETS: A METHANE-POOR GJ436b?  

Science Conference Proceedings (OSTI)

We introduce a thermochemical kinetics and photochemical model. We use high-temperature bidirectional reaction rates for important H, C, O, and N reactions (most importantly for CH{sub 4} to CO interconversion), allowing us to attain thermochemical equilibrium, deep in an atmosphere, purely kinetically. This allows the chemical modeling of an entire atmosphere, from deep-atmosphere thermochemical equilibrium to the photochemically dominated regime. We use our model to explore the atmospheric chemistry of cooler (T{sub eff} < 10{sup 3} K) extrasolar giant planets. In particular, we choose to model the nearby hot-Neptune GJ436b, the only planet in this temperature regime for which spectroscopic measurements and estimates of chemical abundances now exist. Recent Spitzer measurements with retrieval have shown that methane is driven strongly out of equilibrium and is deeply depleted on the day side of GJ436b, whereas quenched carbon monoxide is abundant. This is surprising because GJ436b is cooler than many of the heavily irradiated hot Jovians and thermally favorable for CH{sub 4}, and thus requires an efficient mechanism for destroying it. We include realistic estimates of ultraviolet flux from the parent dM star GJ436, to bound the direct photolysis and photosensitized depletion of CH{sub 4}. While our models indicate fairly rich disequilibrium conditions are likely in cooler exoplanets over a range of planetary metallicities, we are unable to generate the conditions for substantial CH{sub 4} destruction. One possibility is an anomalous source of abundant H atoms between 0.01 and 1 bars (which attack CH{sub 4}), but we cannot as yet identify an efficient means to produce these hot atoms.

Line, Michael R.; Yung, Yuk L. [California Institute of Technology, Pasadena, CA 91106 (United States); Vasisht, Gautam; Chen, Pin [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Angerhausen, D., E-mail: mrl@gps.caltech.edu, E-mail: gv@s383.jpl.nasa.gov [Hamburger Sternwarte, Universitaet Hamburg, 21029 Hamburg (Germany)

2011-09-01T23:59:59.000Z

386

Methane generation from waste materials  

DOE Patents (OSTI)

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

387

NETL: Methane Hydrates - DOE/NETL Projects - Properties of Hydrate-Bearing  

NLE Websites -- All DOE Office Websites (Extended Search)

Properties of Hydrate-Bearing Sediments Subjected to Changing Gas Compositions Last Reviewed 12/11/2013 Properties of Hydrate-Bearing Sediments Subjected to Changing Gas Compositions Last Reviewed 12/11/2013 ESD12-011 Goal The objective of this research is to measure physical, chemical, mechanical, and hydrologic property changes in methane hydrate-bearing sediments subjected to injection of carbon dioxide and nitrogen. Performer Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720 Background A number of studies have investigated the impact of injecting carbon dioxide (CO2) and CO2-nitrogen (N2) mixtures into methane hydrate for the purpose of sequestering CO2 and releasing methane (CH4), and review articles have been published summarizing the literature. Most of these studies have investigated the fundamental physical/chemical nature of the exchange of CO2 and/or N2 with CH4 in the clathrate. These studies have

388

Atmospheric Chemistry and Physics  

E-Print Network (OSTI)

Abstract. A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF) carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14 C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fNF), which is lower than the measured modern fraction (fM) due to the elevated 14 C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fM and the source-dependent information on modern carbon enrichment. The fNF contained in PM1 total carbon analyzed by a US team (f TC

unknown authors

2010-01-01T23:59:59.000Z

389

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

390

Simulation assessment of CO2 sequestration potential and enhanced methane recovery in low-rank coalbeds of the Wilcox Group, east-central Texas  

E-Print Network (OSTI)

Carbon dioxide (CO2) from energy consumption is a primary source of greenhouse gases. Injection of CO2 from power plants in coalbed reservoirs is a plausible method for reducing atmospheric emissions, and it can have the additional benefit of enhancing methane recovery from coal. Most previous studies have evaluated the merits of CO2 disposal in high-rank coals. Low-rank coals in the Gulf Coastal plain, specifically in Texas, are possible targets for CO2 sequestration and enhanced methane production. This research determines the technical feasibility of CO2 sequestration in Texas low-rank coals in the Wilcox Group in east-central Texas and the potential for enhanced coalbed methane (ECBM) recovery as an added benefit of sequestration. It includes deterministic and probabilistic simulation studies and evaluates both CO2 and flue gas injection scenarios. Probabilistic simulation results of 100% CO2 injection in an 80-acre 5-spot pattern indicate that these coals with average net thickness of 20 ft can store 1.27 to 2.25 Bcf of CO2 at depths of 6,200 ft, with an ECBM recovery of 0.48 to 0.85 Bcf. Simulation results of 50% CO2 - 50% N2 injection in the same 80-acre 5-spot pattern indicate that these coals can store 0.86 to 1.52 Bcf of CO2, with an ECBM recovery of 0.62 to 1.10 Bcf. Simulation results of flue gas injection (87% N2 - 13% CO2) indicate that these same coals can store 0.34 to 0.59 Bcf of CO2, with an ECBM recovery of 0.68 to 1.20 Bcf. Methane resources and CO2 sequestration potential of low-rank coals of the Wilcox Group Lower Calvert Bluff (LCB) formation in east-central Texas are significant. Resources from LCB low-rank coals in the Wilcox Group in east-central Texas are estimated to be between 6.3 and 13.6 Tcf of methane, with a potential sequestration capacity of 1,570 to 2,690 million tons of CO2. Sequestration capacity of the LCB lowrank coals in the Wilcox Group in east-central Texas equates to be between 34 and 59 years of emissions from six power plants in this area. These technical results, combined with attractive economic conditions and close proximity of many CO2 point sources near unmineable coalbeds, could generate significant projects for CO2 sequestration and ECBM production in Texas low-rank coals.

Hernandez Arciniegas, Gonzalo

2006-08-01T23:59:59.000Z

391

Methane Hydrate Production Feasibility | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Production Feasibility Production Feasibility Methane Hydrate Production Feasibility The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. The red curves are temperature profiles for various water depths; the blue line shows methane hydrate stability relative to temperature and pressure. The area enclosed by the two curves represents the area of methane hydrate stability. Methane, the predominant component of natural gas, forms hydrate in the presence of water, low temperatures and high pressures. Alternatively, when the temperature is increased or the pressure decreased so that hydrates are outside their stability field, they dissociate into methane and water.

392

Methane Hydrate Advisory Committee | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Advisory Methane Hydrate Advisory Committee Methane Hydrate Advisory Committee The Methane Hydrate Advisory Committee was created in response to provisions of the Methane Hydrate Research and Development Act of 2000 and reauthorized by the Energy Policy Act of 2005. The Committee is to advise the Secretary of Energy on potential applications of methane hydrate; assist in developing recommendations and priorities for the methane hydrate research and development program; and submit to Congress one or more reports on an assessment of the research program and an assessment of the DOE 5-year research plan. The Committee's charter stipulates that up to 15 members can be appointed by the Secretary of Energy, representing institutions of higher education, industrial enterprises and oceanographic institutions and state agencies.

393

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

394

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES  

E-Print Network (OSTI)

EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions-related emissions. In the U.S., for example, emissions of carbon dioxide (CO2) from the production and use of motor

Kammen, Daniel M.

395

ENHANCED COAL BED METHANE PRODUCTION AND SEQUESTRATION OF CO2 IN UNMINEABLE COAL SEAMS  

Science Conference Proceedings (OSTI)

The availability of clean, affordable energy is essential for the prosperity and security of the United States and the world in the 21st century. Emissions of carbon dioxide (CO{sub 2}) into the atmosphere are an inherent part of electricity generation, transportation, and industrial processes that rely on fossil fuels. These energy-related activities are responsible for more than 80 percent of the U.S. greenhouse gas emissions, and most of these emissions are CO{sub 2}. Over the last few decades, an increased concentration of CO{sub 2} in the earth's atmosphere has been observed. Carbon sequestration technology offers an approach to redirect CO{sub 2} emissions into sinks (e.g., geologic formations, oceans, soils and vegetation) and potentially stabilize future atmospheric CO{sub 2} levels. Coal seams are attractive CO{sub 2} sequestration sinks, due to their abundance and proximity to electricity-generation facilities. The recovery of marketable coalbed methane (CBM) provides a value-added stream, potentially reducing the cost to sequester CO{sub 2} gas. Much research is needed to evaluate this technology in terms of CO{sub 2} storage capacity, sequestration stability, commercial feasibility and overall economics. CONSOL Energy Inc., Research & Development (CONSOL), with support from the US DOE, has embarked on a seven-year program to construct and operate a coal bed sequestration site composed of a series of horizontally drilled wells that originate at the surface and extend through two overlying coal seams. Once completed, all of the wells will be used initially to drain CBM from both the upper (mineable) and lower (unmineable) coal seams. After sufficient depletion of the reservoir, centrally located wells in the lower coal seam will be converted from CBM drainage wells to CO{sub 2} injection ports. CO{sub 2} will be measured and injected into the lower unmineable coal seam while CBM continues to drain from both seams. In addition to metering all injected CO{sub 2} and recovered CBM, the program includes additional monitoring wells to further examine horizontal and vertical migration of CO{sub 2}. This is the fifth Technical Progress report for the project. Progress this period was focused on reclamation of the north access road and north well site, and development of revised drilling methods. This report provides a concise overview of project activities this period and plans for future work.

William A. Williams

2004-03-01T23:59:59.000Z

396

Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, April 1, 1994--June 30, 1994  

DOE Green Energy (OSTI)

Catalytic gasification work has been completed and no other work is planned in the general area of catalytic gasification of coals and chars has operated without a post-doctoral fellow because of budget limitations during the first two quarters of FY1994. Dr. S. Sundararajan joined the group in April 1994 and will be assigned to the project throughout the remaining of the fiscal year. Results published by Hamakawa, et al. in The Journal of the Electrochemical Society have confirmed the concept of methane coupling via a membrane reactor. These findings confirm our previous conclusion that thinner membranes and increased surface activity for C-H bond activation at low temperatures are required in order to reach commercially attractive rates of reaction. The initial analysis of a theoretical model comparing the membrane and cyclic processes has been completed. The results indicate that perovskite membranes on the order of 50 microns will be needed for the membrane operation to be superior to a cyclic one. Two techniques, laser ablation and spin-coating/sol-gel chemistry are being tried to prepare the thin membranes described above. Studies of the magnetochemical properties of the calcium-nickel-potassium oxide powdered catalysts have been concluded and a manuscript describing the work has been completed. Synchrotron x-ray fluorescence microprobe data for calcium-nickel-potassium films have been analyzed and an abstract of the results has been submitted for presentation at the Fall Meeting of the Materials Research Society. Initial films of strontium-zirconium oxide, using yttria-stabilized zirconia as a buffer layer, have been fabricated using pulsed laser deposition. X-ray diffraction data have been obtained for several of the strontium-zirconium-yttrium oxide films.

Iglesia, E.; Perry, D.L.; Heinemann, H.

1994-06-01T23:59:59.000Z

397

Turbulent burning rates of methane and methane-hydrogen mixtures  

Science Conference Proceedings (OSTI)

Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

2009-04-15T23:59:59.000Z

398

Method of making compost and spawned compost, mushroom spawn and generating methane gas  

Science Conference Proceedings (OSTI)

Newly designed ribbon-type mixers provide an improved method for making composts, aerating composts, growing mushroom spawn, generating methane gas, and filling conveyors in the mushroom-growing industry. The mixers may be the double-ribbon type for purely mixing operations or the single-ribbon type for moving the material from one place to another. Both types can operate under pressure. In preparing compost for mushroom growing, operators can first use the airtight mixers for a preliminary anaerobic fermentation to produce methane, then by changing the atmosphere to an oxidizing one, complete the compost preparation under the necessary aerobic conditions.

Stoller, B.B.

1981-04-28T23:59:59.000Z

399

Development of an Atmospheric Carbon Dioxide Standard Gas Saving System and Its Application to a Measurement at a Site in the West Siberian Forest  

Science Conference Proceedings (OSTI)

Observations of the atmospheric CO2 concentration from a 90-m tower in Berezorechka, western Siberia, that have taken place since October 2001 were used to characterize CO2 variations over a vast boreal forest area. A new CO2 standard gas saving ...

T. Watai; T. Machida; K. Shimoyama; O. Krasnov; M. Yamamoto; G. Inoue

2010-05-01T23:59:59.000Z

400

A simulated countercurrent moving-bed chromatographic reactor for the oxidative coupling of methane: Experimental results  

DOE Green Energy (OSTI)

The oxidative coupling reaction of methane (OCM) represents a potential commercial ethylene production route. However, the highest reported yields do not exceed 20%. The methane coupling reaction is accompanied by the undesired conversion of methane to carbon oxides. The relative amount of oxygen and methane along with other parameters, including temperature, determine the favored reaction pathway. High hydrocarbon to oxygen feed ratios give high ethane/ethylene selectivities but at the expense of the hydrocarbon conversion. When the methane to oxygen feed ratio is low, combustion is favored. The simulated countercurrent moving-bed chromatographic reactor (SCMCR) is applied to the OCM. A modified experimental configuration is designed and evaluated. A four-section apparatus, each containing a reaction and two separation columns, is used to quickly separate the reactants and products using the principles of simulated countercurrent flow. Simultaneous reaction and separation of the reactive products column is desired, but unattainable because of an incompatibility between OCM reaction and separation temperatures. Microreactor yields with a samarium oxide catalyst gives yields between 2% and 10%. Yields as high as 50% are observed with the same catalyst and run conditions in the SCMCR. These yields are significantly higher than previously reported values. The effects of temperature, feed switching time, and methane to oxygen feed ratio have been investigated. The reactor, while not fully optimized, does give promise as an alternative production method for ethylene.

Tonkovich, A.L.Y. [Pacific Northwest Lab., Richland, WA (United States); Carr, R.W. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering and Materials Sciences

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Large methane emission upon spring thaw from natural wetlands in the northern permafrost region  

SciTech Connect

The permafrost carbon climate feedback is one of the major mechanisms in controlling the climate ecosystem interactions in northern high latitudes. Of this feedback, methane (CH4) emission from natural wetlands is critically important due to its high warming potential. The freeze thaw transition has been confirmed to play an important role in annual CH4 budget, yet the magnitude of this effect is uncertain. An intensive field campaign was carried out in the Sanjiang Plain, Northeast China to estimate the CH4 emission in the spring freeze thaw transition period. The observation concluded that a large CH4 source was caused by spring thaw; the maximum hourly emission rate was 48.6 g C m 2 h 1, more than three orders of the regularly observed CH4 emission rate in the growing season. In some sporadically observed 'hot spots', the spring thawing effect contributed to a large CH4 source of 31.3 10.1 g C m 2, which is approximately 80% of the previously calculated annual CH4 emission in the same study area. If our results are typical for natural wetlands in the Northern Hemisphere permafrost region, we estimate a global CH4 source strength of 0.5 1.0 Tg C (1 Tg =1012 g) caused by spring thaw in the Northern Hemisphere permafrost region in the year 2011. Combining with available satellite and flask data, a regional extrapolation reaches a temporal pattern of CH4 emission during 2003 2009 which is consistent with recently observed changes in atmospheric CH4 concentration in the high latitudes. This suggests that the CH4 emission upon spring thaw in the high latitudes might be enhanced by the projected climate warming. These findings indicate that the spring thawing effect is an important mechanism in the permafrost carbon climate feedback and needs to be incorporated in Earth system models.

Song, Changchun [Chinese Academy of Sciences; Xu, Xiaofeng [ORNL; Sun, Xiaoxin [Chinese Academy of Sciences; Tian, Hanqin [Auburn University, Auburn, Alabama; Sun, Li [Chinese Academy of Sciences; Miao, Yuqing [Chinese Academy of Sciences; Wang, Xianwei [Chinese Academy of Sciences; Guo, Yuedong [Chinese Academy of Sciences

2012-01-01T23:59:59.000Z

402

Mitigation of methane emission from Fakse landfill using a biowindow system  

Science Conference Proceedings (OSTI)

Landfills are significant sources of atmospheric methane (CH{sub 4}) that contributes to climate change, and therefore there is a need to reduce CH{sub 4} emissions from landfills. A promising cost efficient technology is to integrate compost into landfill covers (so-called 'biocovers') to enhance biological oxidation of CH{sub 4}. A full scale biocover system to reduce CH{sub 4} emissions was installed at Fakse landfill, Denmark using composted yard waste as active material supporting CH{sub 4} oxidation. Ten biowindows with a total area of 5000 m{sup 2} were integrated into the existing cover at the 12 ha site. To increase CH{sub 4} load to the biowindows, leachate wells were capped, and clay was added to slopes at the site. Point measurements using flux chambers suggested in most cases that almost all CH{sub 4} was oxidized, but more detailed studies on emissions from the site after installation of the biocover as well as measurements of total CH{sub 4} emissions showed that a significant portion of the emission quantified in the baseline study continued unabated from the site. Total emission measurements suggested a reduction in CH{sub 4} emission of approximately 28% at the end of the one year monitoring period. This was supported by analysis of stable carbon isotopes which showed an increase in oxidation efficiency from 16% to 41%. The project documented that integrating approaches such a whole landfill emission measurements using tracer techniques or stable carbon isotope measurements of ambient air samples are needed to document CH{sub 4} mitigation efficiencies of biocover systems. The study also revealed that there still exist several challenges to better optimize the functionality. The most important challenges are to control gas flow and evenly distribute the gas into the biocovers.

Scheutz, Charlotte, E-mail: chs@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Fredenslund, Anders M., E-mail: amf@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Chanton, Jeffrey, E-mail: jchanton@fsu.edu [Department of Earth, Ocean and Atmospheric Science, 117 N. Woodward Avenue, Florida State University, Tallahassee, Fl 32306-4320 (United States); Pedersen, Gitte Bukh, E-mail: gbp@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark); Kjeldsen, Peter, E-mail: pk@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljovej - Building 113, 2800 Kongens Lyngby (Denmark)

2011-05-15T23:59:59.000Z

403

Direct conversion of methane to C sub 2 's and liquid fuels  

DOE Green Energy (OSTI)

Objectives of the project are to discover and evaluate novel catalytic systems for the conversion of methane or by-product light hydrocarbon gases either indirectly (through intermediate light gases rich in C{sub 2}'s) or directly to liquid hydrocarbon fuels, and to evaluate, from an engineering perspective, different conceptualized schemes. The approach is to carry out catalyst testing on several specific classes of potential catalysts for the conversion of methane selectively to C{sub 2} products. Promoted metal oxide catalysts were tested. Several of these exhibited similar high ethylene to ethane ratios and low carbon dioxide to carbon monoxide ratios observed for the NaCl/{alpha}-alumina catalyst system reported earlier. Research on catalysts containing potentially activated metals began with testing of metal molecular sieves. Silver catalysts were shown to be promising as low temperature catalysts. Perovskites were tested as potential methane coupling catalysts. A layered perovskite (K{sub 2}La{sub 2}Ti{sub 3}O{sub 10}) gave the highest C{sub 2} yield. Work continued on the economic evaluation of a hypothetical process converting methane to ethylene. An engineering model of the methane coupling system has been prepared. 47 refs., 17 figs., 57 tabs.

Warren, B.K.; Campbell, K.D.

1989-11-22T23:59:59.000Z

404

ARM - Measurement - Atmospheric pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

pressure pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

405

ARM - Measurement - Atmospheric temperature  

NLE Websites -- All DOE Office Websites (Extended Search)

temperature temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

406

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

407

Dairy methane generator. Final report  

Science Conference Proceedings (OSTI)

Details of the work completed under this contract are presented. During the winter of 1979-80 three students enrolled, in the Mechanical Design Engineering Technology program at the Pennsylvania State University's Capitol Campus (Middletown, PA), undertook a feasibility study for the utilization of the manure generated by the dairy cows located on Mr. Thomas B. Williams farm for the generation and use of methane gas. The results of their effort was the design of an Anaerobic Digester/Electric Generation System. This preliminary designed system was later changed and improved by another group of P.S.U. MDET students in the spring of 1980. The final design included working drawings and an economic analysis of the estimated investment necessary to complete the Methane Generator/Electric Power Generation System.

Williams, T.B.

1981-09-30T23:59:59.000Z

408

A STUDY ON SPHERICAL EXPANDING FLAME SPEEDS OF METHANE, ETHANE, AND METHANE/ETHANE MIXTURES AT ELEVATED PRESSURES  

E-Print Network (OSTI)

High-pressure experiments and chemical kinetics modeling were performed for laminar spherically expanding flames for methane/air, ethane/air, methane/ethane/air and propane/air mixtures at pressures between 1 and 10 atm and equivalence ratios ranging from 0.7 to 1.3. All experiments were performed in a new flame speed facility capable of withstanding initial pressures up to 15 atm. The facility consists of a cylindrical pressure vessel rated up to 2200 psi. Vacuums down to 30 mTorr were produced before each experiment, and mixtures were created using the partial pressure method. Ignition was obtained by an automotive coil and a constant current power supply capable of reducing the spark energy close to the minimum ignition energy. Optical cine-photography was provided via a Z-type schlieren set up and a high-speed camera (2000 fps). A full description of the facility is given including a pressure rating and a computational conjugate heat transfer analysis predicting temperature rises at the walls. Additionally, a detailed uncertainty analysis revealed total uncertainty in measured flame speed of approximately +-0.7 cm/s. This study includes first-ever measurements of methane/ethane flame speeds at elevated pressures as well as unique high pressure ethane flame speed measurements. Three chemical kinetic models were used and compared against measured flame velocities. GRI 3.0 performed remarkably well even for high-pressure ethane flames. The C5 mechanism performed acceptably at low pressure conditions and under-predicted the experimental data at elevated pressures. Measured Markstein lengths of atmospheric methane/air flames were compared against values found in the literature. In this study, Markstein lengths increased for methane/air flames from fuel lean to fuel rich. A reverse trend was observed for ethane/air mixtures with the Markstein length decreasing from fuel lean to fuel rich conditions. Flame cellularity was observed for mixtures at elevated pressures. For both methane and ethane, hydrodynamic instabilities dominated at stoichiometric conditions. Flame acceleration was clearly visible and used to determine the onset of cellular instabilities. The onset of flame acceleration for each high-pressure experiment was recorded.

De Vries, Jaap

2009-05-01T23:59:59.000Z

409

Method for in situ biological conversion of coal to methane  

DOE Patents (OSTI)

A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.

Volkwein, Jon C. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

410

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 Characterization and Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02/17/2010 EST-380-NEDA Goal The purpose of this study is to establish sediment lithology and quantification of methane in hydrates hosted in fine-grained sediments from the Gulf of Mexico (GoM), a marine site of methane hydrate occurrence. The results will help establish a correlation between laboratory data and hydrate accumulation field data on dispersed hydrates in the natural environment. Performer Brookhaven National Laboratory (BNL), Upton, New York 11973 Background Gas hydrates are located in permafrost and marine environments and show potential as a vast methane source worldwide. However, methane is about 17 times more potent a greenhouse gas than CO2 and the inherent instability of

411

Atmospheric radiation measurement program facilities newsletter, September 2001.  

SciTech Connect

Our Changing Climate--Is our climate really changing? How do we measure climate change? How can we predict what Earth's climate will be like for generations to come? One focus of the Atmospheric Radiation Measurement (ARM) Program is to improve scientific climate models enough to achieve reliable regional prediction of future climate. According to the Environmental Protection Agency (EPA), the global mean surface temperature has increased by 0.5-1.0 F since the late 19th century. The 20th century's 10 warmest years all occurred in the last 15 years of the century, with 1998 being the warmest year of record. The global mean surface temperature is measured by a network of temperature-sensing instruments distributed around the world, including ships, ocean buoys, and weather stations on land. The data from this network are retrieved and analyzed by various organizations, including the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the World Meteorological Organization. Worldwide temperature records date back to 1860. To reconstruct Earth's temperature history before 1860, scientists use limited temperature records, along with proxy indicators such as tree rings, pollen records, and analysis of air frozen in ancient ice. The solar energy received from the sun drives Earth's weather and climate. Some of this energy is reflected and filtered by the atmosphere, but most is absorbed by Earth's surface. The absorbed solar radiation warms the surface and is re-radiated as heat energy into the atmosphere. Some atmospheric gases, called greenhouse gases, trap some of the re-emitted heat, keeping the surface temperature regulated and suitable for sustaining life. Although the greenhouse effect is natural, some evidence indicates that human activities are producing increased levels of some greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Scientists believe that the combustion of fossil fuels is responsible for the increased levels of carbon dioxide in the atmosphere. According to the EPA, the burning of fossil fuels for cars and trucks, the heating of homes and businesses, and the operation of power plants account for approximately 98% of U.S. carbon dioxide emissions. The increase of greenhouse gases will, theoretically, enhance the greenhouse effect by trapping more of the heat energy emitted by Earth's surface, thus increasing the surface temperatures on a global scale. Scientists expect that the global average surface temperature could rise 1-4.5 F in the next 50 years and as much as 10 F in the next century. Global warming could potentially have harmful effects on human health, water resources, forests, agriculture, wildlife, and coastal areas. A few degrees of warming might lead to more frequent and severe heat waves, worsened air pollution with adverse effects on human respiratory health, and wider spread of tropical disease such as malaria. The world's hydrologic cycle might be affected by an increase in evaporation and, thus, in precipitation. An increase in evaporation will increase atmospheric water vapor, a significant natural greenhouse gas. The increase in water vapor might further enhance the global warming caused by the greenhouse effect. This is known as a positive feedback. The increase in water vapor could also change the amount of clouds present in the atmosphere, which could reduce temperatures in a negative feedback. Many interrelated factors affect the global climate and are responsible for climate change. Predicting the outcome of the interactions among the many factors is not easy, but it must be addressed. The ARM Program is taking a lead in this effort by collecting vast amounts of data whose analysis will improve our forecasting models for both daily weather and long-term climate. For more information on the ARM Program, please visit our web site at www.arm.gov.

Holdridge, D. J.

2001-10-10T23:59:59.000Z

412

Atmospheric radiation measurement program facilities newsletter, September 2001.  

DOE Green Energy (OSTI)

Our Changing Climate--Is our climate really changing? How do we measure climate change? How can we predict what Earth's climate will be like for generations to come? One focus of the Atmospheric Radiation Measurement (ARM) Program is to improve scientific climate models enough to achieve reliable regional prediction of future climate. According to the Environmental Protection Agency (EPA), the global mean surface temperature has increased by 0.5-1.0 F since the late 19th century. The 20th century's 10 warmest years all occurred in the last 15 years of the century, with 1998 being the warmest year of record. The global mean surface temperature is measured by a network of temperature-sensing instruments distributed around the world, including ships, ocean buoys, and weather stations on land. The data from this network are retrieved and analyzed by various organizations, including the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the World Meteorological Organization. Worldwide temperature records date back to 1860. To reconstruct Earth's temperature history before 1860, scientists use limited temperature records, along with proxy indicators such as tree rings, pollen records, and analysis of air frozen in ancient ice. The solar energy received from the sun drives Earth's weather and climate. Some of this energy is reflected and filtered by the atmosphere, but most is absorbed by Earth's surface. The absorbed solar radiation warms the surface and is re-radiated as heat energy into the atmosphere. Some atmospheric gases, called greenhouse gases, trap some of the re-emitted heat, keeping the surface temperature regulated and suitable for sustaining life. Although the greenhouse effect is natural, some evidence indicates that human activities are producing increased levels of some greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Scientists believe that the combustion of fossil fuels is responsible for the increased levels of carbon dioxide in the atmosphere. According to the EPA, the burning of fossil fuels for cars and trucks, the heating of homes and businesses, and the operation of power plants account for approximately 98% of U.S. carbon dioxide emissions. The increase of greenhouse gases will, theoretically, enhance the greenhouse effect by trapping more of the heat energy emitted by Earth's surface, thus increasing the surface temperatures on a global scale. Scientists expect that the global average surface temperature could rise 1-4.5 F in the next 50 years and as much as 10 F in the next century. Global warming could potentially have harmful effects on human health, water resources, forests, agriculture, wildlife, and coastal areas. A few degrees of warming might lead to more frequent and severe heat waves, worsened air pollution with adverse effects on human respiratory health, and wider spread of tropical disease such as malaria. The world's hydrologic cycle might be affected by an increase in evaporation and, thus, in precipitation. An increase in evaporation will increase atmospheric water vapor, a significant natural greenhouse gas. The increase in water vapor might further enhance the global warming caused by the greenhouse effect. This is known as a positive feedback. The increase in water vapor could also change the amount of clouds present in the atmosphere, which could reduce temperatures in a negative feedback. Many interrelated factors affect the global climate and are responsible for climate change. Predicting the outcome of the interactions among the many factors is not easy, but it must be addressed. The ARM Program is taking a lead in this effort by collecting vast amounts of data whose analysis will improve our forecasting models for both daily weather and long-term climate. For more information on the ARM Program, please visit our web site at www.arm.gov.

Holdridge, D. J.

2001-10-10T23:59:59.000Z

413

Methane Hydrates R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrates R&D Program Methane Hydrates R&D Program Gas hydrates are a naturally-occurring combination of methane gas and water that form under specific conditions of low temperature and high pressure. Once thought to be rare in nature, gas hydrates are now known to occur in great abundance in association with arctic permafrost and in the shallow sediments of the deep-water continental shelves. The most recent estimates of gas hydrate abundance suggest that they contain

414

2005 international coalbed methane symposium  

Science Conference Proceedings (OSTI)

Papers are under the following topics: well completions; diversity; geology/resource assessment; reservoirs; and carbon dioxide sequestration.

NONE

2005-07-01T23:59:59.000Z

415

Table 16. Coalbed Methane Proved Reserves, Reserves ...  

U.S. Energy Information Administration (EIA)

aIncludes Illinois and Indiana. Note: The above table is based on coalbed methane proved reserves and production volumes as reported to the EIA on ...

416

EIA - Greenhouse Gas Emissions - Methane Emissions  

Gasoline and Diesel Fuel Update (EIA)

oil production dropping by 28 percent from 1990 to 2009, methane emissions from petroleum exploration and production have declined by the same percentage. Residential wood...

417

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Seol, Y. and T. J. Kneafsey, Methane hydrate induced permeability modification for multiphase flow in unsaturated porous media, Journal of Geophysical Research, 2011, In...

418

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL ORD Methane Hydrate Research - Thermal Properties of Hydrate Tool Development Last Reviewed 3182013 Project Goal The goal of this project is increased understanding of...

419

NETL: Methane Hydrates - Hydrate Model Code Comparison  

NLE Websites -- All DOE Office Websites (Extended Search)

Reservoir Simulator Code Comparison Study An International Effort to Compare Methane Hydrate Reservoir Simulators Code Comparison Logo The National Energy Technology Laboratory...

420

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of gas hydrates. The effort aims to quantify the mechanical characteristics of methane hydrate and hydrate cemented sediments for use in models of the dynamic behavior of...

Note: This page contains sample records for the topic "methane atmospheric carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

in Support of Characterization of Recoverable Resources from Methane Hydrate Deposits Last Reviewed 5102012 ESD05-048 Goal The project is bringing new laboratory measurements and...

422

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Projects If you need help finding information on a particular project, please contact the content manager. Search Hydrates Projects Active Projects | Completed...

423

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to Arctic climate change Last Reviewed 632013 DE-NT0005665...

424

,"California - Coastal Region Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

- Coastal Region Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","...

425

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

in the Gulf of Mexico and 2) NRL's Advanced Research Initiative on shallow sediment methane seeps. Geochemical data coupled with heat flow probe data were used to estimate...

426

Methane Hydrate Advisory Committee Meeting Minutes | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2013 Washington, DC July 16, 2013 Meeting Minutes More Documents & Publications Methane Hydrate Advisory Committee Meeting Minutes Electricity Advisory Committee Notice of Open...

427

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

late Quaternary. An investigation of the nature of deposition and alteration of the methane hydrate in cores from the Umnak Plateau in the southeastern Bering Sea was conducted...

428

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

establishing high-priority geographical regions of prospective interest, in terms of methane volume estimates; c). Prediction of environmental effects and geologic risks at the...

429

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

goal was to develop new methodologies to characterize the physical properties of methane hydrate and hydrate sediment systems. Performers Westport Technology Center...

430

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

during NGHP Expedition 01 Background Gas hydrate distribution in sediments depends on methane supply, which in turn depends on fluid flow. When drilling data are available to...

431

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Research - Geoscience Evaluations and Field Studies Last Reviewed 3182013 Project Goals The primary goals of the DOENETL Natural Gas Hydrate Field Studies...

432

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

(RUS) technique to examine hydrate formationdissociation processes. For determining methane abundance and location on a grain-to-grain scale, a completely new method of...

433

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

natural and simulated sediment samples, and to use these sediments as hosts to form methane hydrate and to investigate the kinetics of hydrate formation and dissociation...

434

,"Federal Offshore California Coalbed Methane Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

435

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

for this sample, but Raman bands from both samples were essentially identical: methane and ethane along with trace amounts of isobutene and trans-butane. Small angle...

436

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

on the behavior of gas hydrates in their natural environment under either production (methane gas extraction) or climate change scenarios. This research is closely linked with...

437

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Decomposition Kinetic Studies of Methane Hydrate in Host Sediments under Subsurface Mimic Conditions Last Reviewed 02172010 EST-380-NEDA Goal The purpose of this study is to...

438

NETL: Methane Hydrates - DOE/NETL Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and presentations as well as a listing of funded students can be found in the Methane Hydrate Program Bibliography PDF. A final report is available by request. Contact...

439

<